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Modeling the time evolution of tide level, salinity, temperature, and oxygen
concentration in marine lakes, Palau

by

Sydney Montroy

Master of Science in Applied Mathematics

Professor François Blanchette, Chair

University of California, Merced

2013

Abstract

We aim to model the time evolution of the tide level, salinity, temperature,
and oxygen content of a marine lake. We focus on the marine lake in Palau called
Ongeim’l Tketau, for which we have detailed physical limnological data. By modeling
the concentrations of water flowing through the underground tunnels, which connect
the lake to the surrounding ocean, we are able to achieve stable lake concentration
conditions over time. The model includes a wide array of parameters that can be varied
to explore different climate and initial conditions. We are successful at modeling the
salinity profile in the lake during a tropical storm. This model could be used to explore
a marine lake’s response to natural mixing, human caused effects, and changes in
climate.
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1 Introduction

Palau is an island country in the Pacific Ocean that has a tropical climate and re-
ceives heavy rainfall throughout the year. On many of its smaller islands, there exist saline
lakes that are connected to the ocean by underground tunnels [1]. As with other lakes, the
dynamics of these tropical saline lakes are subject to the effects of solar heat [2]; these
lakes are also influenced by tropical storms and changes in ocean characteristics. Some
of these lakes are inhabited by large populations of Mastigias papua, or ’golden jellyfish’
that can cause additional mixing in the lake [3]. In this paper, we aim to model the level,
salinity, temperature, and oxygen content of a marine lake based on the ocean level, initial
lake conditions, and weather.

Professor Mike Dawson and his lab in U.C. Merced’s Quantitative and Systems Bi-
ology graduate group, and the Coral Reef Research Foundation, have collected data over
a span of several years on one particular lake called Ongeim’l Tketau (Jellyfish Lake) [4].
Using this information, we have developed a mathematical model that simulates the salin-
ity, temperature, and oxygen concentration in the lake over time. We make the model two-
dimensional by averaging each concentration over the area of the lake for a given depth. By
incorporating many different adjustable parameters, we make the model complex enough
to be able to explore responses to a tropical storm. We also refined the model to simulate
how these concentrations change in the underground tunnels so that we can more accurately
determine the water concentrations that are entering the lake from the ocean. This is a key
component to the model since it takes into account the travel distance and possible changes
in concentrations that occur as water flows between the lake and the ocean.

Our purpose in creating this model is to understand how changes in weather and
climate affect the dynamics of marine lakes. The model takes into account the fact that the
properties of the water traveling from the ocean to the lake may change before it reaches the
lake. It also provides the flexibility to simulate many different scenarios through the ability
to adjust a wide array of parameters. Both of these factors will allow for the model to be
used to investigate how external changes can affect the lake and its ecosystem over a given
period of time. In the subsequent sections, we will develop methods to model the tide level
and concentrations of a marine lake as well as the concentrations of water in underground
tunnels between the lake and ocean. Later we will compare our tunnel model with actual
data and present the results of a storm simulation.
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2 Derivation of Governing Equations

2.1 Lake Level

We begin by deriving the equation governing the level of the lake, L(t). We will
make the assumption that the average vertical velocity of lake water is independent of fluid
properties. In other words, there is no large scale vertical motion due to differences in
concentrations, such as salinity or temperature. We also assume that the mass flux of the
lake is proportional to the surface density difference between the lake and the ocean. We
neglect both the contribution of rainfall and evaporation to the lake level since they are of
order 10−5 [5] and 10−6 [6] m/min, respectively, while the order of dL

dt
is 10−3 m/min. With

these assumptions, we arrive at the following equation for the level of the lake:

dL

dt
= ω

(
ρO
ρL
O(t)− L(t)

)
, (1)

where O(t) represents the level of the ocean. Equation (1) represents the vertical velocity
of the lake surface, taking into account the density variation between the ocean and the lake,
ρO/ρL. The proportionality constant, ω, is related to the porosity of the medium between
the lake and ocean and has units of 1

time . We choose to use this fairly simply differential
equation to determine the lake level due to the fact that we do not have a good idea of the
value of the permeability of medium between ocean and lake that would allow for a more
complex model. Additionally, it is worth noting that a more complex model may or may
not better approximate the lake level. We will later approximate the value of this constant
by matching the lake level obtained from the model with actual lake level data.

2.2 Salinity Equation

To track the salinity, temperature, and oxygen content in the lake, we set up the
vertical z-axis such that z = 0 corresponds to the mean lake surface level over one tidal
cycle and z increases with depth. The three concentrations that we are modeling, salinity,
S̄, temperature, T̄ , and oxygen, Ox, are governed by very similar equations. We start by
deriving the equation for salinity and then discuss the differences that exist between the
other two equations.

2
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z 

x 

Tunnels Lake Ocean 

S (z,t),  T (z,t),  Ox(z,t)

L(t) O(t)

Os(z,t),  Ot(z,t),  Oox(z,t)

St(x, z,t),  Tt(x, z,t),  Oxt(x, z,t)

Figure 1: Set up for concentration tracking model.

We first define S(A(z), z, t) as the concentration of salt in the lake as a function
of the horizontal area of the lake, A(z), at some depth z. We use the notation S̄(z, t) (see
Figure 1) for the salinity of lake water averaged over the area of a slice,

S̄(z, t) =
1

A(z)

∫∫
A(z)

S(A(z), z, t)dA,

and M(z, t) as the mass of salt per unit thickness, ∆z, of a slice. Consequently, M(z, t)∆z
represents the mass of salt in a slice. We define De(z, t) to be the diffusion coefficient of
lake water and Q(z, t) as any horizontally averaged source/sink terms. Performing a mass
balance (see Figure 2) over a slice yields the following equations:

M(z, t+ ∆t)∆z = M(z, t)∆z + ∆tDe(z + ∆z, t)

∫∫
A(z+∆z)

∂S(A(z), z, t)

∂z
dA

−∆tDe(z, t)

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA+Q(z, t),

A(z)

(
S̄(z, t+ ∆t)− S̄(z, t)

∆t

)
=

De(z + ∆z + ∆z, t)
∫∫

A(z+∆z)
∂S(A(z),z,t)

∂z
dA−De(z, t)

∫∫
A(z)

∂S(A(z),z,t)
∂z

dA

∆z
+Q(z, t).
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Δ z

z

Q(z,t) De(z + Δ z,t)A(z + Δ z) ∂S (z + Δ z,t)
∂z

De(z,t)A(z)
∂S (z,t)
∂z

Figure 2: Mass balance schematic for diffusion term.

Taking the limit as ∆z → 0 and ∆t→ 0 yields

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
De(z, t)

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA

)
+Q(z, t). (2)

To put the diffusion component in terms of S̄(z, t), we first use the Leibniz integral
rule to compute:

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA.

This gives us the following:

∂

∂z

(∫∫
A(z)

∂S(z, t)

∂z
dA

)
=

∫
∂A(z)

∂A(z)

∂z
S(∂A(z), z, t)ds+

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA,

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA =

∂

∂z
(A(z)S̄(z, t))− ∂A

∂z

∫
∂A(z)

S(∂A(z), z, t)ds,

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA =

∂A

∂z
S̄(z, t) + A(z)

∂S̄

∂z
− ∂A

∂z

∫
∂A(z)

S(∂A(z), z, t)ds. (3)
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At this point, we will make the assumption that S̄(z, t) ≈
∫
∂A(z)

S(∂A(z), z, t)ds because
we do not have any better information that would allow us to make any other assumption. In
other words, the average salinity at height z is approximately equal to the average salinity
around the boundary at the same height z. Applying this assumption to equation (3) yields
the following:

∫∫
A(z)

∂S(A(z), z, t)

∂z
dA = A(z)

∂S̄

∂z
.

Equation (2) becomes

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
De(z, t)A(z)

∂S̄(z, t)

∂z

)
+Q(z, t). (4)

Now we will describe the integrated sources and sinks for when water is exiting and
entering the lake. We define u(z, t) as the vertical velocity of lake water and v(z, t) as the
volume flow rate of lake water out of the side of the lake at depth z. Performing a volume
flow rate balance over a slice yields the following relation:

u(z + ∆z, t)A(z + ∆z) = u(z, t)A(z)− v(z, t),

u(z + ∆z, t)A(z + ∆z)− u(z, t)A(z)

∆z
= −v(z, t)

∆z
,

∂

∂z
(u(z, t)A(z)) = − lim

∆z→0

(
v(z, t)

∆z

)
.

To determine the conditions under which the limit in the equation above is finite as
∆z → 0, we further define v(z, t) as the product of the horizontal velocity of water flowing
out of the lake, w(z, t), and the surface area of the walls of the lake, SA(z), at depth z. We
determine the equation for the surface area to be:

SA(z) = P (z) ∆z

√(
r(z)− r(z + ∆z)

∆z

)2

+ 1,

where P (z) represents the average perimeter of a slice and r(z) is the average radius of the
lake at a given depth. Now taking the limit as ∆z → 0:
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lim
∆z→0

(
v(z, t)

∆z

)
= lim

∆z→0

w(z, t)P (z)∆z

√(
r(z)−r(z+∆z)

∆z

)2

+ 1

∆z


= w(z, t)P (z)

√(
dr

dz

)2

+ 1.

Since we have data available for A(z) and not r(z) [5], we rewrite the equation above in
terms of A(z). With the assumption that A(z) = C1r(z)2, where C1 is a constant, we find
that

lim
∆z→0

(
v(z, t)

∆z

)
= w(z, t)P (z)

√
C0

A(z)

(
dA

dz

)2

+ 1,

where C0 is some constant. This limit is finite under the following condition:

∣∣∣∣∣ 1

A(z)

(
dA

dz

)2
∣∣∣∣∣ ≤M,

where M is a finite number.
Next we define a volume flow distribution function, Tuout(z), of outgoing lake

water that has the following property:

∫ ∞
−∞

Tuout(z)dz = 1.

Figure 3 shows a typical choice of Tuout. Each peak corresponds to the depth of a known
tunnel, where the inflow is therefore enhanced.
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Figure 3: Distribution of outflow of water from lake.

This enables us to define the volume flow rate of lake water at a given depth to be

u(z, t)A(z) = u(0, t)A(0)

∫ z

−∞
Tuout(z

′)dz′. (5)

Note that since u(0, t) is the vertical velocity of the surface of the lake, it satisfies u(0, t) =
−dL

dt
. Now we can perform a mass balance over a slice yielding the advection term in the

scenario where water is exiting the lake (see Figure 4):

M(z, t+ ∆t)∆z = M(z, t)∆z + u(z, t)M(z, t)∆t

− u(z + ∆z, t)M(z + ∆z, t)∆t− v(z, t)S̄(z, t)∆t,

A(z)S̄(z, t+ ∆t)− A(z)S̄(z, t)

∆t
=

−
(
u(z + ∆z, t)A(z + ∆z)S̄(z + ∆z, t)− u(z, t)A(z)S̄(z, t)

∆z

)
− v(z, t)

∆z
S̄(z, t),



8

∂

∂t
(A(z)S̄(z, t)) = − ∂

∂z
(u(z, t)A(z)S̄(z, t)) +

∂

∂z
(u(z, t)A(z))S̄(z, t), (6)

A(z)
∂S̄(z, t)

∂t
= −u(z, t)A(z)

∂S̄(z, t)

∂z
,

A(z)
∂S̄(z, t)

∂t
= −u(0, t)A(0)

∫ z

−∞
Tuout(z

′)dz′
∂S̄(z, t)

∂z
.

Δ z

z

u(z)M (z,t)

u(z + Δ z)M (z + Δ z,t)

v(z)S (z,t)

Figure 4: Mass balance schematic for advection outflow term.

Similarly, we perform a volume flow rate balance over a slice to derive the incoming
advection of salt:

−u(z + ∆z, t)A(z + ∆z) + v(z, t) = −u(z, t)A(z),

u(z + ∆z, t)A(z + ∆z)− u(z, t)A(z)

∆z
=
v(z, t)

∆z
,

∂

∂z
(u(z, t)A(z)) = lim

∆z→0

(
v(z, t)

∆z

)
.

The volume flow rate distribution function of incoming water, Tuin(z), is defined in the
same way as Tuout(z), though the two functions need not be the same. As before, we
can perform a mass balance over a slice, yielding the advection term in the scenario where
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water is entering the lake:

M(z, t+ ∆t)∆z = M(z, t)∆z − u(z + ∆z, t)M(z + ∆z, t)∆t+ u(z, t)M(z, t)∆t

+ v(z, t)Os(z, t)∆t,

A(z)S̄(z, t+ ∆t)− A(z)S̄(z, t)

∆t
=

−
(
u(z + ∆z, t)A(z + ∆z)S̄(z + ∆z, t)− u(z, t)A(z)S̄(z, t)

∆z

)
+
v(z, t)

∆z
Os(z, t),

∂

∂t
(A(z)S̄(z, t)) = − ∂

∂z

(
u(z, t)A(z)S̄(z, t)

)
+

∂

∂z
(u(z, t)A(z))Os(z, t), (7)

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
u(z, t)A(z)(Os(z, t)− S̄(z, t))

)
− u(z, t)A(z)

∂Os(z, t)

∂z
,

A(z)
∂S̄(z, t)

∂t
= u(0, t)A(0)

(
∂

∂z

(
(S̄(z, t)−Os(z, t))

∫ z

−∞
Tuin(z′)dz′

)
−∂Os(z, t)

∂z

∫ z

−∞
Tuin(z′)dz′

)
.

At this point we observe that equations (6) and (7) are the same except for the sec-
ond salinity term. If we replace the salt concentration term with a general salt concentration
Ŝ(z, t), and velocity with a general velocity, û(z, t), we get the following equations:

A(z)
∂S̄(z, t)

∂t
= − ∂

∂z

(
û(z, t)A(z)S̄(z, t)

)
+

∂

∂z
(û(z, t)A(z))Ŝ(z, t),

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
û(z, t)A(z)(Ŝ(z, t)− S̄(z, t))

)
− û(z, t)A(z)

∂Ŝ(z, t)

∂z
.

Now we can plug in equation (5) using a general function d̂(z) in place of the incoming or
outgoing integrated volume flow rate distribution function:
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A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
u(0, t)A(0)d̂(z)(Ŝ(z, t)− S̄(z, t))

)
− u(0, t)A(0)d̂(z)

∂Ŝ(z, t)

∂z
,

A(z)
∂S̄(z, t)

∂t
= u(0, t)A(0)

(
∂

∂z

(
d̂(z)(Ŝ(z, t)− S̄(z, t))

)
− d̂(z)

∂Ŝ(z, t)

∂z

)
,

where

d̂(z) =


∫ z

−∞ Tuin(z′)dz′ if dL
dt
> 0∫ z

−∞ Tuout(z
′)dz′ if dL

dt
< 0

and

Ŝ(z, t) =


St(0, z, t) if dL

dt
> 0

S̄(z, t) if dL
dt
< 0.

The above form takes both incoming and outgoing advective terms into account with their
respective salinity, Ŝ(z, t), and distribution function, d̂(z). St(0, z, t) is defined as the
salinity of water in a tunnel or in the porous medium between the lake and ocean when it
reaches the lake.

The last component remaining in the salinity equation is the source term due to
rainfall. We define cr(z) to be the density of influx of rain water in the lake, which inte-
grates to 1 over the entire depth of the lake. A typical choice of cr(z) is shown in Figure
5.



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

5

10

15

20

25

30

cr

z
 (

m
)

Figure 5: Distribution of inflow of rainwater in lake.

Following from this definition, we can derive the rain source term as follows:

A(0)R(t)cr(z)(Sr(t)− S̄(z, t)),

where R(t) is the rate of rainfall and Sr(t) is the salinity of rain. Putting everything to-
gether, we arrive at our final salinity equation:

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
De(z, t)A(z)

∂S̄(z, t)

∂z

)
+ u(0, t)A(0)

(
∂

∂z

(
d̂(z)(Ŝ(z, t)− S̄(z, t))

)
− d̂(z)

∂Ŝ(z, t)

∂z

)
+ A(0)R(t)cr(z)(Sr(t)− S̄(z, t)). (8)

Now that we have finished deriving the salinity equation, we examine the boundary
conditions at z = 0 and z = N , where N is the depth of the lake. To derive our boundary
conditions, we start with the basic advection-diffusion equation,

A(z)
∂S̄(z, t)

∂t
=

∂

∂z

(
A(z)De(z, t)

∂S̄(z, t)

∂z

)
− ∂

∂z

(
A(z)u(z, t)S̄(z, t)

)
.

The integral of this equation over the entire depth of the lake is equivalent to the time
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derivative of the mass of salt in the lake. We assume that there is no inflow or outflow of
salt, so it is equal to zero. Using the Leibniz integral rule, we integrate the equation over
the entire depth of the lake, taking into account the moving boundary:

0 =
∂

∂t

∫ 0

G(t)

A(z′)S̄(z′, t)dz′,

0 =− ∂L

∂t
A(G(t))S̄(G(t), t) +

∫ 0

G(t)

∂

∂z′

(
A(z′)De(z

′, t)
∂S̄(z′, t)

∂z′

)
− ∂

∂z′
(
A(z′)u(z′, t)S̄(z′, t)

)
dz′,

0 =− u(G(t), t)A(G(t))S̄(G(t), t) + A(0)De(0, t)
∂S̄(0, t)

∂z′

− A(G(t))De(G(t), t)
∂S̄(G(t), t)

∂z′
− A(0)u(0, t)S̄(0, t)

+ A(G(t))u(G(t), t)S̄(G(t), t),

0 =A(0)De(0, t)
∂S̄(0, t)

∂z′
− A(G(t))De(G(t), t)

∂S̄(G(t), t)

∂z′
− A(0)u(0, t)S̄(0, t).

Note that here the vertical z-axis is oriented so that it increases in the upward direction.
This is for the purpose of being consistent with how we track the level of the lake, L(t).
We define G(t) to be the level of the lake, where G(t) = N + L(t). Since the velocity at
the bottom of the lake is zero (u(0, t) = 0), we can simplify the equation:

0 = A(0)De(0, t)
∂S̄(0, t)

∂z′
− A(G(t))De(G(t), t)

∂S̄(G(t), t)

∂z′
.

Assuming the boundary conditions at the top and bottom of the lake are indepen-
dent, to derive the boundary condition at the top, we temporarily assume that there is no
flux of salt at the bottom of the lake. We write these boundary conditions to be consis-
tent with the axis set up for the salinity concentration model. This yields zero Neumann
boundary conditions at the top of the lake:

A(z)De(z, t)
∂S̄

∂z

∣∣∣∣
z=0

= 0 → ∂S̄

∂z

∣∣∣∣
z=0

= 0.

Similarly at the bottom of the lake, we temporarily assume that there is no flux at the top
of the lake, yielding zero Neumann boundary conditions at the bottom of the lake:
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A(z)De(z, t)
∂S̄

∂z

∣∣∣∣
z=N

= 0 → ∂S̄

∂z

∣∣∣∣
z=N

= 0.

2.3 Temperature and Oxygen Equations

Now that we have completed the derivation of the salinity equation and its associ-
ated boundary conditions, we discuss the differences that exist between this boundary value
problem and that for temperature and oxygen. All three of these quantities are governed by
very similar equations since their dynamics are determined by fluid flow. The advection,
diffusion, and rain terms are the same for each concentration since they are all carried by
the same fluid. Beginning with the temperature equation, the governing equation is the
same as that for salinity, other than an additional source term for solar heat:

A(z)
∂T̄ (z, t)

∂t
=

∂

∂z

(
De(z, t)A(z)

∂T̄ (z, t)

∂z

)
+ u(0, t)A(0)

(
∂

∂z

(
d̂(z)(T̂ (z, t)− T̄ (z, t))

)
− d̂(z)

∂T̂ (z, t)

∂z

)
+ A(0)R(t)cr(z)(Tr(t)− T̄ (z, t)) + A(z)Sh(z, t). (9)

Tr(t) is defined as the temperature of rainwater and Sh(z, t) is a temperature rate due to
heat from the sun that decays exponentially from the surface of the lake. The boundary
conditions for temperature also differ from those for salinity. Instead of zero Neumann
boundary conditions, we use non-homogeneous Dirichlet boundary conditions:

T̄ (0, t) = Tair(t), T̄ (N, t) = Trock(t).

Although the top boundary condition could be made more complex to include effects due
to wind or evaporation, we use this form for the time being for the purpose of simplicity.

The governing equation for oxygen is very similar to that for temperature, except
that the additional sink term is due to oxygen consumption in the lake:

A(z)
∂Ox(z, t)

∂t
=

∂

∂z

(
De(z, t)A(z)

∂Ox(z, t)

∂z

)
+ u(0, t)A(0)

(
∂

∂z

(
d̂(z)(Ôx(z, t)−Ox(z, t))

)
− d̂(z)

∂Ôx(z, t)

∂z

)
+ A(0)R(t)cr(z)(Oxr(t)−Ox(z, t))− A(z)Oc(z, t), (10)

where Oc(z, t) is the rate of oxygen consumption in the lake. This consumption rate de-
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pends primarily on microorganisms not modeled in this paper and would typically scale
like a population of microorganisms. The boundary condition at the bottom of the lake is
that same as that for salinity, i.e. there is no flux of oxygen at the bottom of the lake. For
lack of better information to make the top boundary condition more complex, we use a non-
homogeneous Dirichlet boundary condition at the top of the lake. The boundary conditions
for oxygen content in the lake are as follows:

Ox(0, t) = Oxmax,
∂Ox

∂z

∣∣∣∣
z=N

= 0,

where Oxmax is defined as the maximum oxygen content in the lake.

2.4 Tunnel Concentrations

To model the salinity, temperature, and oxygen content of water flowing through
the tunnels, we set up a horizontal x-axis such that x = 0 corresponds to where the tunnel
meets the lake and the value of x increases as one moves away from the lake (see Figure
1). We use this model to not only track the concentration of water entering the lake from
a tunnel, but also at any other depth in the lake without a tunnel. The difference between
tunnel flow and seepage being that the horizontal velocity of water flowing into the lake at
a depth without a tunnel will be significantly less than at a depth with a tunnel. All three
concentrations are governed by the same equation as they are carried by the same flow.
As water flows through a tunnel, each concentration can change due to advection and any
source or sink effect through the walls of the tunnel. We describe the equation for salinity
as an example:

∂St(x, z, t)

∂t
+ utunnel(z, t)

∂St(x, z, t)

∂x
= −αSt(x, z, t). (11)

In the equation above, we define utunnel(z, t) as the horizontal velocity of water in a tunnel.
Since we only have data [5] available for the velocity of water at the mouth of the tunnel
and not inside the tunnel, we make the assumption that the velocity of water in each tunnel
does not change with respect to x. α is defined as the rate at which the concentration
is gained or lost through the walls of the tunnel. For instance, if the walls of the tunnel
are much colder than the water flowing from the ocean, the temperature of the water may
decrease as it flows toward the lake. However, since we do not have any data that we could
use to get a good approximation of α for any concentration, we assume that this parameter
is zero, meaning that no concentration is being gained or lost through the walls of a tunnel.

We obtain an exact solution to equation (11) of the form

St(x, z, t) = f

(
x−

∫ t

0

utunnel(z, t
′)dt′

)
,
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where

f(η) =


c1(Os(z, t)− S̄(z, t))(η − η0) + S̄(z, t) if 0 < η < D
c2(S̄max(z, t)− S̄(z, t))(η − ηmax) + S̄max(z, t) if −d < η < 0
S̄(z, t) if η < −d.

S̄max(z, t) is defined to be the maximum value that the salinity reaches at the mouth of
the tunnel and η0 and ηmax depend on the when the tide changes direction. Although D is
defined as the length of the tunnel and d is the horizontal distance over which tunnel water
flows into the lake, in practice, these parameters are not needed in the computation of the
tunnel concentrations. Instead, the slope coefficients, c1 and c2, are used to control these
values, where c1 is proportional to the length of the tunnel and c2 is related to the time it
takes for water flowing out of the lake to be only lake water. Figures 6 and 7 depict example
solutions for the salinity of water in a tunnel at different times.

x 

St(x,z,t) 

S (z,t)

Os(z,t)

Lake Ocean Tunnel 

Figure 6: Exact solution to tunnel model for salinity at some time t = a.

x 

St(x,z,t) 

S (z,t)

Os(z,t)

Lake Ocean Tunnel 

Figure 7: Exact solution to tunnel model for salinity at a later time.

In a later section, we will discuss the methods used to obtain approximations for the veloc-
ity of water in the tunnels as well as the slope coefficients.



3 Numerical Methods

To approximate the lake level in equation (1), we use the backward Euler method
because it is simple, first order accurate, and A-stable [7]. For each lake concentration
model, we apply a combined implicit-explicit numerical scheme. As an example, we focus
on deriving a numerical method for approximating the solution to equation (8). We examine
the scenarios where water is entering the lake and exiting the lake separately. First we look
at the scenario when water is entering the lake, where Ŝ(z, t) = Os(z, t). We split the right
hand side and apply three different methods in conjunction. Since the diffusion component
is stiff, we apply the Crank-Nicolson method to allow for larger time step sizes [7]. This
method is unconditionally stable and second order accurate in space and time. Discretizing
space and time, we let z = ih, where i = 0, 1, ..., I and t = nk, where n = 0, 1, ..., N .
Applying Crank-Nicolson to the diffusion component yields:

S̄n+1
i − S̄n

i

k
=

1

2Ai

[
1

h

(
Ai+ 1

2
Dn

i+ 1
2

S̄n
i+1 − S̄n

i

h
− Ai− 1

2
Dn

i− 1
2

S̄n
i − S̄n

i−1

h

)
+

1

h

(
Ai+ 1

2
Dn+1

i+ 1
2

S̄n+1
i+1 − S̄n+1

i

h
− Ai− 1

2
Dn+1

i− 1
2

S̄n+1
i − S̄n+1

i−1

h

)]
.

For the S̄(z, t) advection component, we apply the Lax-Wendroff method since it
is fairly simple to implement and is also second order accurate in space and time [8]. This
method is stable when k ≤ h

|u(z)| . We approximate d̂(z) using the trapezoidal method to in-
tegrate Tu(z) over the appropriate depths. Applying Lax-Wendroff to the S̄(z, t) advection
component yields:

S̄n+1
i − S̄n

i

k
=− 1

2h
un0
A0

Ai

(
d̂i+1S̄

n
i+1 − d̂i−1S̄

n
i−1

)
+

k

2h2

(
un0
A0

Ai

)2 (
d̂i+1S̄

n
i+1 − 2d̂iS̄

n
i + d̂i−1S̄

n
i−1

)
.

For the Ŝ(z, t) advection component and any source or sink term, we apply the
trapezoidal method since it is second order accurate and is A-stable [8]:

S̄n+1
i − S̄n

i

k
=

1

2

A0

Ai

[
un0

(
d̂i+1Ŝ

n
i+1 − d̂i−1Ŝ

n
i−1

2h
− d̂i

Ŝn
i+1 − Ŝn

i−1

2h

)

+ un+1
0

(
d̂i+1Ŝ

n+1
i+1 − d̂i−1Ŝ

n+1
i−1

2h
− d̂i

Ŝn+1
i+1 − Ŝn+1

i−1

2h

)
+cri(R

n(Srn − S̄n
i ) +Rn+1(Srn+1 − S̄n+1

i ))
]
.
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In matrix form, the final numerical scheme for when water is entering the lake is
(see appendix for complete derivation):

[
I − k

2h2
A1(A2D1B − A3D2C) +

k

2
A0A1CRR

n+1

]
S̄n+1

=

[
I +

k

2h2
A1(A2D3B − A3D4C)− k

2h
un0A0A1E +

k2

2h2
(un0A0A1)2F

−k
2
A0A1CRR

n

]
S̄n +

k

4h
A0A1

[
un0 (E − ZG)Ŝn + un+1

0 (E − ZG)Ŝn+1 + V
]

+
k

2
A0A1CR(RnSrn +Rn+1Srn+1).

Next we will look at the scenario when water is exiting the lake, that is when
Ŝ(z, t) = S̄(z, t). We again apply Crank-Nicolson to the diffusion component, Lax-
Wendroff to the advection component, and trapezoidal method to any source/sink term.
In matrix form, the final numerical scheme is (see appendix for complete derivation):

[
I − k

2h2
A1(A2D1B − A3D2C) +

k

2
A0A1CRR

n+1

]
S̄n+1

=

[
I +

k

2h2
A1(A2D3B − A3D4C)− k

2h
un0A0A1ZM +

k2

2h2
(un0A0A1Z)2H

−k
2
A0A1CRR

n

]
S̄n +

k

2
A0A1CR(RnSrn +Rn+1Srn+1).

Note that all matrices are defined at the end of the appendix.



4 Results

4.1 Lake Level and Tunnel Inflow

We validated both the lake level and tunnel concentration model by matching our
approximations with known data [5]. In the lake level model, we obtained the ocean level,
density of the ocean, and density of the lake from available data [5] and varied the value of
our proportionality constant, ω, to achieve the best fit. In the following plots, we demon-
strate the flexibility and accuracy of the lake level model by plotting the model and actual
lake level for different values of ω.
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Figure 8: Lake level comparison, where ω = 0.0025. This proportionality constant is
too small to match the high or low tide of the lake.
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Figure 9: Lake level comparison, where ω = 0.0042. This proportionality constant
yields a good match for the low tide peak of the lake, but is too large to match the
high tide.
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Figure 10: Lake level comparison, where ω = 0.0033. This proportionality constant
gave the best fit obtainable with the model. It is unclear why we could not match
the low tide of the lake as well as the high tide.
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Now that we have validated the lake level model, we examine how well the tunnel
inflow model matches the actual data [5]. First we approximate the horizontal velocity of
water in the tunnels using the fact that the volume flow rate out of the tunnels or wall of the
lake is proportional to the volume flow rate of water in the lake for a given depth:

Atunnel(z)utunnel(z, t) ∝ u(z, t)A(z),

utunnel(z, t) = β(z)u(0, t).

Here β(z) is a dimensionless proportionality constant that is equivalent to

A(0)

Atunnel(z)

∫ z

−∞
Tuout(z

′)dz′.

We adjusted the value of β(z) to achieve the best fit with the velocity data [5] for a
particular tunnel. Since there was only one tunnel for which we had signed velocity data,
we used this data to approximate the value of β(z) for all tunnels.
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Figure 11: Tunnel (depth ∼ 6m) velocity comparison, where β = 1000. Note that
the velocity data does not integrate to zero. This could be due to the sensor being
located just outside of the mouth of the tunnel. As a result, the velocity of water
flowing out of the tunnel may not be accurately captured.
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We chose to best match the tunnel velocity when water is flowing into the lake
since this is likely a more accurate representation of the water velocity in the tunnel. When
water enters a small opening, its velocity profile is more spread out. This is opposed to
when water is exiting a small opening and its velocity profile is more concentrated. So the
velocity just outside the opening will be close to that in the tunnel. Moreover, this is when
the contents of the tunnel need to be most accurately modeled, as water is flowing into the
lake.

Note that although our model provides a good fit for when water is flowing into the
lake, the time at which the tide changes from inflow to outflow is delayed by roughly fifty
minutes. This could be due to a number of factors. One possibility is that the part of the
ocean from which water is flowing into the lake has a different tidal cycle than the ocean
data available for that time period. Another factor is the location of the tunnel versus the
location of the incoming ocean water.

For all other depths that do not have underground tunnels, we estimated the value
of β(z) to be ten times smaller than those depths with tunnels. We chose this value because
we know that the velocity of water flowing into the lake through the wall of the lake should
be significantly less than that through a hollow tunnel. Since we do not have any other
data that would provide a more accurate method of approximating it, we made a reasonable
guess.

Now that we have a good approximation of the velocity of water in each tunnel, we
will compare the salinity and temperature of water at the mouth of a tunnel. We do not
compare the oxygen content in the tunnel simply because we do not have any data for it. In
the exact solution for the tunnel concentration model, we have two parameters, c1 and c2,
that we adjust to obtain the best fit.

After shifting the model concentration back by 50 minutes to account for the tidal
cycle discrepancy, we obtain a good fit for the salinity of water at the opening of the tunnel,
as shown in Figure 12.
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Figure 12: Salinity of water at mouth of tunnel (depth ∼ 6m). Salinity of ocean is
33.5 kg/m3

We chose the salinity of the ocean from the available ocean data at the same depth as the
tunnel [5]. Note that the ocean data was collected two years prior to the tunnel velocity and
concentration data around the same time of year.

Using the same slope parameter values, we compare the temperature of water at
the mouth of the tunnel to the data. We chose the ocean temperature in the same way that
we chose the ocean salinity. In Figure 13 we see that the ocean temperature is not nearly
low enough to account for the significant decrease in temperature of the tunnel water. This
is likely due to cooling effects in the tunnel that are not accounted for in the model. As
mentioned before, it is possible that the walls of the tunnel are colder than the water flowing
through it. As a result, as water flows from the ocean to the lake, it may lose a substantial
amount of heat through the walls of the tunnel. In Figure 14, we determine what ocean
temperature yields the best fit to the data. In this way, we can get an idea of how significant
these changes in temperature that occur in the tunnel are.
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Figure 13: Temperature of water at mouth of tunnel (depth ∼ 6m). Temperature of
ocean is 30.4◦C.
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Figure 14: Temperature of water at mouth of tunnel (depth ∼ 6m). Temperature of
ocean is 26.6◦C
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We find that there is nearly a 4◦C decrease in ocean temperature needed to match the
actual tunnel temperature. We can infer from this that choosing α = 0 in equation (11) is
unrealistic. This is a part of the tunnel model that could be improved upon in the future
by determining an appropriate value for α to account for this sink in temperature in the
tunnels.

4.2 Stable Lake Simulation

For validation purposes, we will explore how well the lake concentration model
does at simulating the lake at equilibrium. Before we begin, we will discuss our choice of
diffusion coefficient as well as other parameters and explain the reasoning behind them. We
had initially sought to make the diffusion coefficient a function of the lake water density, ρ,
and surface wind speed, W , in addition to being a function of depth. Using an appropriate
formulation found in [9], we tried the following definition of the diffusion coefficient:

De(z, t) =

{
28W 1.3 if z < zt
0.00866DmaxN

−1 if z > zt,
(12)

where

N =

(
g

ρ

∂ρ

∂z

)1/2

.

Dmax is defined as the maximum diffusion in the hypolimnium, zt corresponds to the depth
of the top of the thermocline, and g is gravitational acceleration. We approximated Dmax to
be the value of diffusion above the thermocline. This formulation did not give us a diffusion
profile that we would expect for the lake, since diffusion increased toward the bottom of the
lake instead of exhibiting more of an exponential decay. Our next attempt was to combine
equation (12) with another formulation found in [10]:

De(z, t) = e−cz min(0.00866DmaxN
−1 , 28W 1.3),

where c is the decay constant that we obtained a reasonable approximation for (1 · 10−2/m)
from [11]. We chose the minimum between these two values because diffusion in the lake
should not exceed the maximum diffusion coefficient as determined by the surface wind
speed. This version yielded a diffusion profile that we would expect, however, the order
of the diffusion coefficient was too small (O(10−5)) to cause any visible diffusive effects.
This held true for any realistic wind speed (1-10m/s) for Jellyfish lake [5]. Since this form
of the diffusion coefficient yielded negligible values of diffusion for all depths in the lake,
we instead chose reasonable values of diffusion for above and below the approximate depth
of the pycnocline [5] and made a linear transition between the two values.
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Figure 15: Example choice of diffusion coefficient in lake.

The diffusion coefficient below the pycnocline was chosen to be the largest value that
showed no diffusive effects in the lake, while that above the pycnocline was chosen to
be the smallest value that showed a reasonable amount of diffusion taking place.

For the remaining parameters in equations (8), (9), and (10) not yet specified, some
of these values were obtained from available data while others we made a reasonable guess
for due to lack of information. We obtained A(z) as well as the initial conditions for each
concentration in the lake from the data [5]. The temperature of the air and rock were
assumed to be the temperature of the lake at the surface and the bottom, respectively, since
the lake concentrations are supposed to be at equilibrium. The maximum oxygen content in
the lake, Oxmax, we assumed to be the oxygen content at the surface in the initial condition.
For the distribution of inflow and outflow of water in the lake, Tu(z), we chose a high
proportion for the depths of known tunnels and evenly distributed the remainder throughout
the rest of the lake. For the time being, we set Sh(z, t) and Oc(z, t) to be zero since it was
not the primary focus to study the effects of these parameters.

Now to validate the model’s ability to simulate a stable lake, we start by comparing
a simpler version of the model without modeling flow within the tunnels and the complete
version including tunnels. In the simpler version of the model, water flowing into the lake
comes directly from the ocean. We approximate the distribution of inflow using a Gaussian
function centered near the bottom of the lake, while the distribution of outflow remains the
same. Since the salinity of the ocean is known to be greater than any part of the lake from
the given data, the salinity of the lake immediately begins increasing and we cannot achieve
stable conditions (see Figure 16).
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Figure 16: Salinity in lake before tunnels were included in model. The ocean salinity
is set to 33.5kg/m3.

In the complete model, the distribution of inflow is determined by the level of neu-
tral buoyancy of the incoming tunnel water. We assume that the transition time for incom-
ing water to equilibrate with lake water is negligible. To accomplish this, we compute the
density of the incoming water at each time step. Then we concurrently determine the dis-
tribution of inflow while rearranging the incoming tunnel concentrations according to their
level of neutral buoyancy. We determine the level of neutral buoyancy by computing the
density of the lake water as a function of salinity and temperature [12]. Using this refined
model, we are able to achieve stable lake conditions over time, as can be seen in Figure 17.
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Figure 17: Salinity in lake after tunnels were included in model. The ocean salinity
is set to 33.5kg/m3.

Now that we have confirmed that the model including tunnels can accurately cap-
ture stable conditions for salinity in the lake over time, we can plot all three concentrations
as a function of depth and time to observe whether conditions are stable for all three con-
centrations.
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Figure 18: Salinity in lake under stable conditions. The salinity of the ocean is set to
30.25 kg/m3.
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Figure 19: Temperature in lake under stable conditions. The temperature of the
ocean is set to 31◦C. The temperature of the air and rock are set to value of the
initial condition at the top and bottom of the lake, respectively.
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Figure 20: Oxygen in lake under stable conditions. The oxygen content of the ocean
is set to 6 g/m3. The maximum oxygen content of the lake is set to the value of
the initial condition at the top of the lake. The oxygen consumption rate is set to
0g/m3min.

From Figures 19 and 20, we see that the lake concentrations indeed remain stable over
time.

4.3 Storm Simulation

One of the goals in creating this model is to be able to simulate a tropical storm,
where conditions change rapidly. We have been provided with data for the salinity, tem-
perature, and oxygen in the lake before and after a five day storm [5]. After imposing the
same initial conditions before the storm, we attempt to match the lake concentration data
collected after the storm. Using rainfall data collected during the storm [5], we obtain the
average rate of rainfall over that time period, R = 2.7 · 10−5m/min. There should be a
negligible amount of salt in rainwater so we set Sr to zero. We guess that rainfall should
be distributed only in the top meter of the lake so we defined cr(z) accordingly. We do not
have any data for the temperature of rainwater so we approximate it using the temperature
at the top of the lake after the storm. We also do not have any data for the oxygen content
in rainwater, so we approximate it to be the maximum oxygen content in the lake after the
storm.

We plot each lake concentration using two different diffusion coefficients in the
layer above the pycnocline to demonstrate how the concentration profile changes and the
flexibility of the model.
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Figure 21: Salinity in lake under storm conditions.

In Figure 21, we observe that after the storm, the salinity profile in the lake remains
unchanged except in the top couple of meters, where the salinity decreases. The model was
able to capture this change very well after running it for the length of the storm.
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Figure 22: Salinity in lake under storm conditions with high diffusion above the
pycnocline.

Figure 22 depicts the effects of making the diffusion coefficient ten times larger
above the pycnocline. Although this change does not yield a good fit, we observe that
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increasing the diffusion in the model causes more mixing to occur above the pycnocline, as
expected.
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Figure 23: Temperature in lake under storm conditions.

In Figure 23, we observe that the temperature in the lake after the storm decreased
significantly in the top 13m. We were not able to obtain a good fit for the temperature
profile after the storm. We suspect that this may be due to a number of different factors.
One being that the temperature of the rain may be colder than the value that we chose.
This is one thing that could be improved upon in the model, potentially by using a Robin
boundary condition at the surface that depends on the rate of evaporation and surface wind
speed. Another factor is that the model does not take into account any changes in water
concentrations flowing into the lake that may be caused by the storm. For instance, the
temperature of inflowing water may be colder than usual during a storm. As mentioned
before, choosing a nonzero value of α could also change the temperature profile in the
lake by considering the change in tunnel water temperature as water flows to and from the
ocean.
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Figure 24: Temperature in lake under storm conditions with high diffusion above the
pycnocline.

When using a higher diffusion coefficient for temperature under the same storm
conditions, we obtain a slightly better fit to the profile after the storm, as can be seen
in Figure 24. However, there is still clearly something else that is not being captured as
mentioned before.
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Figure 25: Oxygen in lake under storm conditions. Oxr = 5.14g/m3.
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Figure 26: Oxygen in lake under storm conditions with high diffusion above the
pycnocline.

In Figure 25, we observe that the oxygen profile in the lake remains relatively un-
changed after the storm. The model yielded a decent fit for after the storm. We again take
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note of the mixing effects that are caused by a higher diffusion coefficient in the top layer
of the lake in Figure 26. Since the oxygen content in the lake was not the primary focus
in modeling, we did not explore what the oxygen consumption rate in the lake should be.
This as well as the maximum oxygen content in the lake are two topics that could be further
explored and improved upon in the future.



5 Conclusion

We have created a model that can simulate the time evolution of the tide level,
salinity, temperature, and oxygen in a marine lake, taking into account the concentration
of water flowing in from underground tunnels between the ocean and the lake. In addition,
we have made the model as flexible as possible by incorporating many different parameters
that can be altered for the purpose of exploring the lake’s response to various external
conditions. Both of these accomplishments have allowed us to accurately simulate the
change in salinity profile in Jellyfish lake during a tropical storm.

There are still improvements that can be made to improve the accuracy of the
model. As previously mentioned, one component that could be improved upon is the sur-
face boundary conditions for temperature. Instead of using a non-homogeneous Dirichlet
boundary condition, a Robin boundary condition involving the evaporation rate and surface
wind speed could be implemented. Another area that still has room for improvement is the
tunnel concentration model. To better match the horizontal velocity profile in a tunnel,
the model could take into account the location of the tunnel versus the part of the ocean
that water is flowing to and from. This would better account for any differences in tidal
cycle. The tunnel concentration model could also be improved by considering changes in
the water temperature that are caused by a difference in temperature of the tunnel walls or
by changes occurring during a storm.

This model has a myriad of potential applications. One example is that it could
be used to model climate change and by extension, human effects on marine lakes and
wildlife. By simply adjusting a few parameters (e.g. increasing solar heat, increasing the
amount of annual rainfall, making the ocean warmer and more saline), one could determine
whether the resulting temperature profile after some period of time is conducive to the
organisms that inhabit the lake. It could also be used to model natural mixing, like that due
to the existence of large populations of golden jellyfish. Since these jellyfish migrate to
different depths of the lake depending on the time of day [5], the diffusion coefficient could
be written to encompass this effect. One could then conceivably determine whether the
lake would remain stratified or become well-mixed over time. The answer to this question
is paramount because it can be a determining factor to the survival of lake ecosystems.
Yet another possible application of this model is to study the effect that drastic weather
variations, like El Niño, have on marine lakes and their ecosystems. The model could be
run for the projected period of El Niño to determine whether there is a threshold time at
which lake conditions are no longer inhabitable for the existing plants and organisms. In
creating this model, we have made something that is practical to use and flexible in its
applicability, with the intention that it can be utilized by U.C. Merced’s Quantitative and
Systems Biology department for future studies.
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6 Appendix

Numerical derivation of salinity equation during inflow:

Putting the three methods together into one numerical scheme yields:
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i+1 − Ŝn+1
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Applying the previously found boundary condition to the numerical scheme at i = 0, we
obtain
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Ŝn+1

1

]
+

k

4h

[
un0 (−d̂−1 + d̂0)Ŝn
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−1

]
+
k

2
cr0(RnSrn +Rn+1Srn+1).

Similarly, at i = I , we obtain

S̄n+1
I − k

2h2

1

AI

(
AI+ 1

2
Dn+1

I+ 1
2

(S̄n+1
I−1 − S̄

n+1
I )− AI− 1

2
Dn+1

I− 1
2

(S̄n+1
I − S̄n+1

I−1 )
)

+
k

2

A0

AI

crIR
n+1S̄n+1

I

= S̄n
I +

k

2h2

1

AI

(
AI+ 1

2
Dn

I+ 1
2
(S̄n

I−1 − S̄n
I )− AI− 1

2
Dn

I− 1
2
(S̄n

I − S̄n
I−1)

)
− k

2h
un0
A0

AI

(d̂I+1 − d̂I−1)S̄n
I−1 +

k2

2h2

(
un0
A0

AI

)2

((d̂I+1 + d̂I−1)S̄n
I−1 − 2d̂I S̄

n
I )

− k

2

A0

AI

crIR
nS̄n

I +
k

4h

A0

AI

[
un0

(
−d̂I−1 + d̂I

)
Ŝn
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Numerical derivation of salinity equation during outflow:

Putting the three methods together into one numerical scheme yields:
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Applying the previously found boundary condition to our numerical scheme at i = 0, we
obtain
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Matrix Definitions

The differentiation and coefficient matrices are defined as follows:
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

CR =


cr0

cr1

. . .
crI


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D1 =


D(z 1

2
, tn+1)

D(z 3
2
, tn+1)

. . .
D(zI+ 1

2
, tn+1)



D2 =


D(z− 1

2
, tn+1)

D(z 1
2
, tn+1)

. . .
D(zI− 1

2
, tn+1)



D3 =


D(z 1

2
, tn)

D(z 3
2
, tn)

. . .
D(zI+ 1

2
, tn)



D4 =


D(z− 1

2
, tn)

D(z 1
2
, tn)

. . .
D(zI− 1

2
, tn)



E =


0 d̂1 − d̂−1

−d̂0 0 d̂2

. . . . . . . . .
−d̂I−2 0 d̂I

d̂I+1 − d̂I−1 0



F =


−2d̂0 d̂1 + d̂−1

d̂0 −2d̂1 d̂2

. . . . . . . . .
d̂I−2 −2d̂I−1 d̂I

d̂I+1 + d̂I−1 −2d̂I


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G =


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0



H =


−2 2
1 −2 1

. . . . . . . . .
1 −2 1

2 −2



M =


0 0
−1 0 1

. . . . . . . . .
−1 0 1

0 0



V =



k
4h

[
un0 (−d̂−1 + d̂0)Ŝn

−1 + un+1
0 (−d̂−1 + d̂0)Ŝn+1

−1

]
0
...
0

k
4h

A0

AI

[
un0 (d̂I+1 − d̂I)Ŝn

I+1 + (d̂I+1 − d̂I)Ŝn+1
I+1

]



Z =


d̂0

d̂1

. . .
d̂I


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