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Article

Histone remodeling reflects conserved
mechanisms of bovine and human
preimplantation development
Chuan Zhou1,† , Michelle M Halstead2,3,†, Am�elie Bonnet-Garnier2,3 , Richard M Schultz4,5 &

Pablo J Ross1,*

Abstract

How histone modifications regulate changes in gene expression
during preimplantation development in any species remains poorly
understood. Using CUT&Tag to overcome limiting amounts of
biological material, we profiled two activating (H3K4me3 and
H3K27ac) and two repressive (H3K9me3 and H3K27me3) marks in
bovine oocytes, 2-, 4-, and 8-cell embryos, morula, blastocysts,
inner cell mass, and trophectoderm. In oocytes, broad bivalent
domains mark developmental genes, and prior to embryonic
genome activation (EGA), H3K9me3 and H3K27me3 co-occupy gene
bodies, suggesting a global mechanism for transcription repres-
sion. During EGA, chromatin accessibility is established before
canonical H3K4me3 and H3K27ac signatures. Embryonic transcrip-
tion is required for this remodeling, indicating that maternally
provided products alone are insufficient for reprogramming. Last,
H3K27me3 plays a major role in restriction of cellular potency, as
blastocyst lineages are defined by differential polycomb repression
and transcription factor activity. Notably, inferred regulators of
EGA and blastocyst formation strongly resemble those described in
humans, as opposed to mice. These similarities suggest that cattle
are a better model than rodents to investigate the molecular basis
of human preimplantation development.
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Introduction

Preimplantation development encompasses two fundamentally

important, but poorly understood, cell identity transitions: the

acquisition and subsequent loss of totipotency. Key to these transi-

tions is the maternal-to-embryonic transition (MET), marked by

embryonic genome activation (EGA) and clearance of oocyte-

specific messages (Schultz et al, 2018). As blastomeres continue to

divide, they progressively transition from totipotency to pluripo-

tency, and finally segregate into two cell types that comprise the

blastocyst: the inner cell mass (ICM) and trophectoderm (TE). MET

and blastocyst formation correspond to changes in gene expression

and widespread epigenetic remodeling of DNA methylation, histone

modifications, and chromatin structure (Frum & Ralston, 2015).

Unclear, however, is the causal relationship between transcriptomic

changes and chromatin remodeling.

Modification of histone tails can modulate gene expression by

controlling accessibility of chromatin to transcription factors (TFs)

and RNA polymerase (Eckersley-Maslin et al, 2018; Jambhekar

et al, 2019; Schulz & Harrison, 2019). Of many possible histone

modifications, a select few are commonly profiled to characterize

active and repressed genomic regions. These modifications include

trimethylation of histone 3 lysine 4 (H3K4me3), which marks active

promoters, acetylation of histone 3 lysine 27 (H3K27ac), which

marks both active promoters and enhancers, trimethylation of

histone 3 lysine 27 (H3K27me3), a mark of polycomb repression

and facultative heterochromatin, and trimethylation of histone 3

lysine 9 (H3K9me3), associated with constitutive heterochromatin.

Cross-talk between these modifications and their distribution

throughout the genome collectively allows for fine-tuning of spatial

and temporal gene expression. Unsurprisingly, disruption of this

dynamic has catastrophic effects on transcription and development

(Jambhekar et al, 2019).
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Although several recent reports have shed light on epigenetic

remodeling during preimplantation development, they either do not

capture the entire continuum of stages or focus on discrete levels of

regulation, e.g., chromatin accessibility (Lu et al, 2016; Wu

et al, 2016, 2018; Gao et al, 2018; Li et al, 2018; Liu et al, 2019;

Halstead et al, 2020a; Ming et al, 2021) or specific histone modifi-

cations (Dahl et al, 2016; Liu et al, 2016; Zhang et al, 2016, 2019;

Zheng et al, 2016; Wang et al, 2018; Xia et al, 2019; Lu et al, 2021).

Efforts to integrate such datasets post hoc can be problematic

because technical and methodological differences, such as missing

biological timepoints and differing sample composition, can

confound downstream analyses. Thus, the collective dynamics of

histone modifications, chromatin structure, and DNA methylation

during preimplantation development and how these changes relate

to changes in gene expression—and therefore cell identity and

developmental potential—remain largely unknown, especially in

mammals other than mouse. This gap in knowledge is particularly

conspicuous because accumulating evidence suggests that larger

mammals, e.g., cattle, constitute a better model system than rodents

to understand human preimplantation development (Halstead

et al, 2020a; Lu et al, 2021).

We report here a comprehensive analysis of both active

(H3K4me3, H3K27ac) and repressive histone modifications

(H3K9me3, H3K27me3) that bridges key developmental transitions

from fertilization to blastocyst formation in bovine embryos. In

addition, we integrate these results with previously published DNA

methylation, chromatin accessibility, and gene expression datasets.

We find a dramatic shift in the overall structure of the epigenome

between the 8-cell and morula stages. Prior to EGA, embryos are

distinguished by broad domains of all profiled histone marks, as

well as enrichment for repressive marks in gene bodies. Post-EGA,

this na€ıve chromatin organization resolves into a more typical struc-

ture, with chromatin accessibility appearing earlier than canonical

H3K4me3 and H3K27ac signatures. Inhibiting embryonic transcrip-

tion severely impacts H3K27ac remodeling, leading to the retention

of a 4-cell-like epigenetic state in 8-cell embryos. Finally, the two

cell lineages in blastocysts—ICM and TE—are defined by accumula-

tion of differential polycomb repression and distinct regulatory

circuitry, which is notably similar to that observed in human blasto-

cysts, further supporting use of cattle as a relevant model for human

preimplantation development.

Results

Histone modification profiles during bovine preimplantation
development

Using low-input CUT&Tag (cleavage under targets & tagmentation;

Kaya-Okur et al, 2019), H3K4me3, H3K27ac, H3K9me3, and

H3K27me3 were profiled in bovine germinal-vesicle (GV) oocytes,

2-, 4-, and 8-cell embryos (that developed in the presence or

absence of the transcription inhibitor a-amanitin), morula, blasto-

cysts, ICM, and TE (n = 2 biological replicates). In total, 72

CUT&Tag libraries were generated and sequenced, producing

6,858,594,136 raw reads, from which 1,387,865,654 informative

alignments were obtained and used for downstream analyses

(Appendix Tables S1–S4). To complement data previously published

by our group (Halstead et al, 2020a; Data ref: Halstead &

Ross, 2020), chromatin accessibility was profiled in blastocysts,

ICM, and TE (n = 3 biological replicates) using ATAC-seq (assay for

transposase-accessible chromatin by sequencing; Buenrostro

et al, 2013; Appendix Fig S1A and B, and Table S5). Genome-wide

profiles of CUT&Tag biological replicates were highly correlated (av-

erage Pearson’s r = 0.96; Appendix Fig S1C). For each histone mark,

samples clustered into two general groupings: pre-EGA stages (2-, 4-

, and 8-cell embryos) and post-EGA stages (morula, blastocysts,

ICM, and TE; Fig 1A). For each stage and mark, regions with signifi-

cant enrichment in both biological replicates, i.e., peaks, were iden-

tified. Generally, when calling peaks, H3K4me3 and H3K27ac were

treated as “narrow” marks and H3K27me3 and H3K9me3 as

“broad” marks. However, considering recent findings that broad

domains of noncanonical H3K4me3 (ncH3K4me3) are present in

bovine oocytes (Lu et al, 2021), for peak calling purposes, H3K4me3

was treated as a broad mark up until the 8-cell stage (see Materials

and Methods). Similar to H3K4me3, H3K27ac was also broadly

distributed during early stages and was treated as a broad mark

until the 8-cell stage. Because we previously showed that IgG

controls for CUT&Tag produced negligible reads after sequencing

(Navarro et al, 2022), IgG libraries were not included in the current

study. To confirm that CUT&Tag did not produce a nonspecific

signal, H3K27me3 and H3K27ac peaks were compared across devel-

opment to show that these mutually exclusive marks did not colo-

calize (Appendix Fig S1D).

Global enrichment of a given histone modification, measured as

percent of the genome covered by peaks, changed dramatically

throughout the course of preimplantation development (Fig 1B). In

oocytes and pre-EGA embryos, H3K4me3 was widespread, covering

11% of the genome in GV oocytes (Fig 1B). These broad domains of

H3K4me3 were clearly evident up until the 8-cell stage, at which

point they resolved into narrow peaks at promoters (Fig 1C).

H3K27ac also occupied broad domains in pre-EGA embryos, but the

H3K27ac signal was generally weaker than that observed for

H3K4me3 (Fig 1C). Indeed, genomic coverage of H3K27ac decreased

substantially after fertilization, with partial re-establishment in 8-

cell embryos (Fig 1B), although canonical narrow peaks of H3K27ac

were not abundantly evident until the morula stage (Fig 1C).

Compared to these activating marks, H3K9me3 abundance was rela-

tively stable throughout preimplantation development (Fig 1B).

However, localization of this mark underwent a remarkable shift

after fertilization, with H3K9me3 in oocytes and pre-EGA embryos

occurring primarily at gene bodies (Fig 1C and D) and then switch-

ing to an intergenic distribution between the 8-cell and morula

stages (Fig 1B).

Similar to H3K9me3, H3K27me3 coverage was relatively constant

in oocytes and pre-EGA embryos (Fig 1B). However, unlike

H3K9me3, the localization of this mark changed several times, from

primarily intergenic in oocytes to intragenic in pre-EGA embryos,

and then back to intergenic after EGA (Fig 1C and D). This profile

contradicts immunofluorescence studies, which found that

H3K27me3 is progressively and globally erased after fertilization,

and almost absent in 8-cell embryos (Ross et al, 2008; Canovas

et al, 2012; Zhou et al, 2019). In contrast to our findings, a recent

study using CUT&RUN (cleavage under targets and release using

nuclease; preprint: Skene & Henikoff, 2017) indicated global loss of

H3K27me3 following fertilization from the 4- to 16-cell stage in
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bovine embryos (Lu et al, 2021). To determine whether these dif-

ferences were due to technique, H3K4me3 and H3K27me3 CUT&Tag

profiles were compared to those obtained through CUT&RUN (Lu

et al, 2021). In general, the profiles were highly comparable, with

the exception of H3K27me3 at the 4- and 8-cell stages

(Appendix Fig S2). For these stages, the CUT&RUN H3K27me3 data

suffered from low sequencing depth, resulting in low replicability

between samples (Appendix Table S6). Notably, the CUT&RUN data

for these stages were generated from 10-fold fewer cells than the

current study, suggesting that for certain histone modifications (e.g.,

H3K27me3) at certain stages, it may be advisable to use more cells

as input to maximize library complexity and capture the true biolog-

ical signal.

Overall, our data indicate that the maternal profiles of H3K4me3

and H3K9me3 were highly similar to that observed in 2-, 4-, and 8-

cell embryos, suggesting substantial inheritance from the oocyte,

both at intergenic regions marked by ncH3K4me3 and at gene

bodies marked by H3K9me3. On the other hand, H3K27ac under-

went substantial depletion after fertilization, and although the

oocyte-specific H3K27me3 is largely erased in 2-cell embryos, de

novo establishment of this mark was evident at gene bodies.

Broad bivalent domains in oocytes mark developmental genes

The results described above raise the question about the relation-

ship between remodeling of histone modifications and the

3e
m4K3

H
ca72K3

H
3e

m72K3
H

3e
m9K3

H

A DC

H
3K

4m
e3

H
3K

27
ac

H
3K

27
m

e3
H

3K
9m

e3

GV
2C
4C
8A
8C
M

BL
TE

ICM
GV
2C
4C
8A
8C
M

BL
TE

ICM
GV
2C
4C
8A
8C
M

BL
TE

ICM
GV
2C
4C
8A
8C
M

BL
TE

ICM

200

150

100

50

0

-50

-100

-150

)denialpxe .r av fo 
%0.0 1( 2

C P

PC1 (71.6% of var. explained)
-200 -100 0 100 200 300

300

200

100

0

-100

-200

)denialpxe  . rav  fo 
%3.71( 2

CP

PC1 (59.0% of var. explained)
-200-100 0 100 200 300 400

100

50

0

-50

-100

-150

)denialpxe . ra v f o 
% 4.61( 2

CP -200

PC1 (58.7% of var. explained)
-200 -100 0 100 200

150

100

50

-50

-100

-150

)denialpxe . rav fo 
%1 .8 1( 2

C P -200

0

PC1 (59.8% of var. explained)
-100 0 100 200

GV
2C
4C

8A
8C
M

BL
ICM
TE

0%
1%
2%
3%
4%
5%
6%
7%

G
en

om
e

co
ve

ra
ge

0%

2%

4%

6%

8%

10%

12%

G
en

om
e

co
ve

ra
ge Intergenic

Genic

c

0%

2%

4%

6%

8%

10%

G
en

om
e

co
ve

ra
ge

B broad peaks

narrow peaks

6%o

0%
1%
2%
3%
4%
5%
6%
7%

G
en

om
e

co
ve

ra
ge

broad peaks

narrow peaks

Figure 1. Profiles of histone modifications in bovine oocytes and preimplantation embryos.

A Principal components analysis (PCA) of CUT&Tag libraries.
B Genome coverage of peaks identified in both biological replicates. Peaks classified as genic (overlapping 2 Kb promoter or gene bodies) or intergenic. For H3K4me3

and H3K27ac, genome coverage calculated for broad peaks until the 8-cell stage, then for narrow peaks.
C Normalized signal (counts per million; CPM) of one biological replicate per developmental stage and histone mark. Shaded regions correspond to noncanonical broad

distributions (green, blue) and intragenic enrichment (red, orange). Viewing range from 0 to 1.5 CPM. Values exceeding maximum range indicated by pink bars.
D Average normalized signal (CPM) for each histone mark at transcription start sites (TSS) and end sites (TES). Transcripts scaled to 2 Kb, 3 Kb upstream and

downstream regions shown.

Data information: GV oocytes (GV), 2-cell (2C), 4-cell (4C), 8-cell embryos (8C), a-amanitin-treated 8-cell embryos (8A), morula (M), blastocyst (BL), trophectoderm (TE),
and inner cell mass (ICM).
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repression and activation of gene expression programs that underlie

changes in cell identity. Chromatin structure of pre-EGA embryos is

markedly immature, characterized by high histone mobility (Ooga

et al, 2016), dispersed chromatin (Ahmed et al, 2010), and lack of

canonical 3-D chromatin architecture (Du et al, 2017). With devel-

opmental time, the chromatin adopts a more mature, condensed

structure, at which point enhancer activity once again becomes

necessary to relieve repression and activate gene expression

(Wiekowski et al, 1993). Consequently, the genomic distribution of

histone modifications during preimplantation development, espe-

cially prior to EGA, does not necessarily follow canonical rules and

may not serve typical functions. For instance, H3K4me3, which

generally occurs as sharp peaks at promoters in differentiated cells,

occupies broad intergenic regions (> 5 Kb) in most mammalian

oocytes and pre-EGA embryos (Dahl et al, 2016; Lu et al, 2021). To

account for this finding, H3K4me3 was treated as a “broad” mark

for peak calling purposes, which improved reproducibility between

biological replicates in GV oocytes, 2-, 4-, and 8-cell embryos

(Fig EV1A). Treating H3K27ac as a broad mark also improved repro-

ducibility at these stages (Fig EV1A), indicating that this mark also

has a broad noncanonical distribution prior to EGA.

Noncanonical H3K4me3 is anticorrelated with DNA methylation

and occurs almost exclusively in partially methylated domains

(PMDs; Dahl et al, 2016; Zhang et al, 2016; Zheng et al, 2016; Lu

et al, 2021). To determine whether this pattern was recapitulated in

bovine oocytes and embryos, and how PMDs relate to other histone

modifications, we first identified PMDs in GV oocytes from

published DNA methylation data (Data ref: Ivanova et al, 2020b;

Ivanova et al, 2020a) using previously described methods (Lu

et al, 2021; see Materials and Methods). We found that PMDs

covered 25.3% of the genome, consistent with previous reports (Lu

et al, 2021). Noncanonical H3K4me3 and H3K27ac were apparent

within PMDs (Fig EV1B and C). In GV oocytes, H3K4me3 was found

almost exclusively in PMDs (90% of broad H3K4me3 peaks over-

lapped PMDs), although only 34% of PMDs were marked by

H3K4me3 (Fig EV1D and E). Enrichment of H3K4me3 in PMDs was

maintained until the 8-cell stage. H3K27ac demonstrated a similar

pattern. In GV oocytes, about 80% of broad H3K27ac domains

occurred within PMDs, and this enrichment was maintained until

the 4-cell stage (Fig EV1E). H3K27me3 was also enriched at PMDs

in GV oocytes, with more than 80% of H3K27me3 peaks overlap-

ping PMDs. However, this enrichment was rapidly lost after fertil-

ization, and H3K27me3 was not re-established at these regions until

after EGA (Fig EV1E). In contrast to the other three marks,

H3K9me3 was notably depleted at PMDs in GV oocytes (only 10%

of peaks overlapped with PMDs) and was gradually established in

PMDs as development progressed (Fig EV1C–E). This lack of

H3K9me3 enrichment at PMDs was anticipated given global

demethylation of the embryonic genome after fertilization (Green-

berg & Bourc’his, 2019; Ivanova et al, 2020a) and that H3K9me

deposition can depend on DNA methylation, and vice versa (Rose &

Klose, 2014).

H3K4me3, H3K27me3, and H3K27ac were all enriched at PMDs.

Because H3K27ac and H3K27me3 are mutually exclusive modifi-

cations, this enrichment suggested that different PMDs are probably

marked by different combinations of histone modifications, which

could entail distinct functions. To identify these patterns, PMDs

were grouped according to histone modifications and chromatin

accessibility signal in GV oocytes. The analysis revealed four clus-

ters of PMDs (Fig 2A), each exhibiting unique developmental

changes (Appendix Fig S3A).

PMDs belonging to “cluster_1”, hereafter referred to as bivalent

PMDs, were co-marked by H3K4me3 and H3K27me3 in GV oocytes

(Fig 2A and B), and covered 2% of the genome. Although H3K4me3

was maintained at bivalent PMDs up to the 8-cell stage, H3K27me3

was rapidly erased following fertilization before re-establishment in

morula, and accessibility remained consistently low (Fig 2C). We

found that bivalent PMDs in bovine GV oocytes mark genes related

to transcriptional activation and development, and especially

conserved homeobox genes (Appendix Table S7). Moreover, among

all PMD clusters, genes marked by bivalent PMDs were the least

expressed throughout preimplantation development

(Appendix Fig S3B), suggesting a role in poising these genes for

future expression, similar to the role of bivalency in ESC.

Both “cluster_2” and “cluster_3” demonstrated enrichment for

activating marks at early stages, but “cluster_2” PMDs, hereafter

referred to as highly active PMDs, were strongly and briefly

enriched for H3K27ac, demonstrated higher accessibility in GV

oocytes, and marked genes related to transcription silencing (Fig 2C

and Appendix Table S7). These strongly active PMDs might there-

fore play a role in maintaining transcriptional quiescence in full-

grown oocytes (Schultz et al, 2018). On the other hand, moderately

active PMDs (“cluster_3”) were not as enriched for activating marks

as strongly active PMDs, and rather than occurring near genes

related to transcriptional repression, instead occurred near genes

related to transcription activation (Fig 2C and Appendix Table S7).

Finally, the most abundant category of PMDs (“cluster_4,”

termed quiescent PMDs), demonstrated low enrichment for most

marks, with slightly higher levels of H3K27me3 in GV oocytes

(Fig 2A and C). Genes marked by these regions demonstrated little

functional enrichment. As such, these PMDs likely represent hete-

rochromatin compartments in differentiated cells, especially given

their stable inaccessibility and accumulation of H3K9me3 during

later stages of development (Fig 2C), which was also maintained in

fetal fibroblasts (Appendix Fig S3C). In summary, these broad

domains, devoid of DNA methylation and precisely marked by

specific combinations of histone modifications, likely function to

both repress transcription and poise developmental genes for future

expression.

H3K9me3 and H3K27me3 co-occupy gene bodies in pre-EGA
embryos

Given the extensive changes to chromatin structure at intergenic

regions, we next focused on the genes themselves. H3K4me3 and

H3K27ac signal at promoters increased progressively after fertiliza-

tion, whereas H3K27me3 and H3K9me3 underwent a remarkable

shift in distribution from gene bodies (“intragenic”) in 2-, 4-, and 8-

cell embryos, to promoters from the morula stage onward (Fig 1D).

Notably, intragenic H3K9me3 was already evident in GV oocytes,

but intragenic H3K27me3 was not, indicating that maternal

H3K9me3 is inherited, whereas intragenic H3K27me3 is deposited

de novo following fertilization. To determine if this pattern was

characteristic of all genes or only a subset, transcript isoforms were

clustered based on their H3K27me3 and H3K9me3 signatures

(Appendix Fig S4A).
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A small subset of transcripts (“cluster_1”; n = 1,639) was

depleted for both repressive marks in pre-EGA embryos, but

strongly marked from the morula stage onward; these transcripts

also exhibited a strong H3K27me3 signal in GV oocytes, which was

promptly erased after fertilization (Fig 3A and B, and

Appendix Fig S5A). Moreover, they were broadly marked by

H3K4me3 and H3K27ac, rather than demonstrating sharp peaks at

their transcription start sites (TSS, Fig 3A and Appendix Fig S4B),

and were essentially not expressed throughout development

(Appendix Fig S4C). Therefore, “cluster_1” transcripts are hereafter

referred to as repressed loci. Repressed loci demonstrated similar

patterns of histone remodeling to bivalent PMDs and were also

enriched for homeobox genes (Appendix Fig S5B). Notably, not all

homeobox genes belonged to this cluster. For instance, several

homeobox genes implicated in early development and pluripotency

(e.g., NANOG, POU5F1, DUX4) corresponded instead to “cluster_3”,

suggesting that this pattern of strong repression is limited to genes

required later in development.

The majority of transcripts belonged to either “cluster_2”

(n = 6,469) or “cluster_3” (n = 35,754), both of which

demonstrated intragenic H3K9me3 and H3K27me3 in pre-EGA

embryos, although only intragenic H3K9me3 was inherited from

the oocyte (Fig 3A and C, and Appendix Fig S4A). In contrast to

repressed loci, the TSS of these transcripts were markedly enriched

for H3K4me3, H3K27ac, and accessibility, albeit with varying

intensity depending on the developmental stage (Fig 3A and

Appendix Fig S4B). Consequently “cluster_2” and “cluster_3” tran-

scripts are hereafter referred to as “poised-1” and “poised-2” loci,

respectively. “Poised-1” loci exhibited more intense intragenic

H3K9me3 and H3K27me3 and were functionally enriched for ATP-

binding and kinase activity (Appendix Fig S5C and D), whereas

“poised-2” loci demonstrated subtler intragenic H3K9me3 and

H3K27me3 and were enriched for functions related to transcript

processing, such as poly(A) binding, ribosomes, and spliceosomes

(Appendix Fig S5E and F).

These results suggest that genic H3K9me3 and H3K27me3

represses expression of oocyte-specific programs. Based on maternal

and embryonic genes identified from RNA-seq datasets (Graf

et al, 2014b; Data ref: Graf et al, 2014a; Data ref: Bogliotti

et al, 2018; Bogliotti et al, 2020; Appendix Fig S6A–C), genes
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A Clustering of PMDs based on normalized signal of H3K4me3, H3K27ac, H3K27me3, H3K9me3, and ATAC-seq in GV oocytes. Signal normalized by CPM in 100 bp win-
dows, with PMDs scaled to 3 Kb, and showing regions 1 Kb up- and downstream.

B Representative gene track image of a bivalent PMD (cluster_1), overlapping three homeobox genes: CDX2, GSX1, and PDX1. One biological replicate shown per stage
and mark. Viewing range from 0 to 1.5 CPM. Values exceeding maximum range indicated by pink bars.

C Average epigenetic signal (CPM � standard error) for PMDs belonging to each cluster across development.
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upregulated during minor EGA were enriched in “cluster_2” loci,

which demonstrated the strongest genic repression, and maternal

genes were notably depleted in “cluster_1” loci, which lacked genic

H3K9me3 and H3K27me3 (Appendix Fig S6D and E). Maternal

genes were also depleted at bivalent PMDs (Appendix Fig S6F),

which, similarly to “cluster_1” loci, were enriched for homeobox

genes.

In GV oocytes, most genes (poised loci) were marked by high

gene body H3K9me3, but still retained some H3K4me3 at their

promoters (Fig 3A). This situation is highly reminiscent of the

poised state of lineage-specific genes in mesenchymal stem cells and

preadipocytes, in which promoters are marked by H3K4me3 and

gene bodies are marked by DNA methylation, which recruits

SETDB1, leading to deposition of H3K9me3 downstream of TSS

(Matsumura et al, 2015). Intragenic H3K9me3 then prevents histone

acetylation and spreading of H3K4me3, resulting in pausing of RNA

polymerase and very low expression (Matsumura et al, 2015).

Consistent with the poised state observed in these cells, genes with

the highest levels of intragenic H3K9me3 in GV oocytes (“poised-1”

loci) demonstrated significantly higher gene body methylation than

those lacking intragenic H3K9me3 in GV oocytes (“repressed” loci;

unpaired Wilcoxon signed-rank test; P < 2.2e-16; Fig 3D and

Appendix Fig S4D). Thus, in conjunction with DNA methylation,

intragenic H3K9me3 may help prevent aberrant gene transcription

in the transcriptionally quiescent oocyte. After fertilization,

however, the embryonic genome undergoes global DNA demethyla-

tion (Greenberg & Bourc’his, 2019; Ivanova et al, 2020a), including

gene bodies. For both “poised-1” and “poised-2” loci, methylation

levels dropped after fertilization and declined further upon blasto-

cyst formation (Appendix Fig S4D). This loss of gene body methyla-

tion was concomitant with de novo deposition of intragenic

H3K27me3 (Fig 3E). The exchange of gene body methylation for
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Figure 3. H3K9me3 and H3K27me3 mark gene bodies in pre-EGA embryos.

A Average normalized signal (CPM) of histone marks and chromatin accessibility for each transcript cluster, defined by k-means clustering (k = 3) based on normalized
H3K27me3 and H3K9me3 signal (CPM) across development. Loci scaled to 2 Kb, regions 3 Kb upstream and downstream shown.

B An example of “cluster_1” loci: the HOX cluster.
C An example of “cluster_2” loci: GRK2 (a kinase). One biological replicate shown per stage and mark. Viewing range from 0 to 1.5 CPM. Values exceeding maximum

range indicated by pink bars.
D Gene body CpG methylation (%) of “cluster_1” and “cluster_2” genes throughout development.
E For each cluster, comparison of change in gene body CpG methylation (GV oocytes versus 2- to 4-cell embryos) to change in intragenic H3K27me3 signal (GV oocytes

versus 2-cell embryos). Trends summarized in red text.
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H3K27me3 is not surprising, given that DNA methylation antago-

nizes deposition of H3K27me3 (Hagarman et al, 2013).

Overall, the presence of intragenic H3K9me3 in oocytes suggests

a mechanism for general transcriptional repression until major EGA.

As de novo deposition of intragenic H3K27me3 coincides with the

loss of gene body methylation, this mark may serve a compensatory

repressive role during global DNA demethylation, thus preventing

premature transcription of the embryonic genome before the

epigenome has been sufficiently reprogrammed to permit appropri-

ate expression of developmental programs.

Chromatin accessibility precedes establishment of canonical
H3K4me3 and H3K27ac

Whereas all profiled histone marks underwent a dramatic switch in

distribution during the 8-cell to morula transition (Fig 1A–C), the

ATAC-seq signal displayed a more gradual change, with a weaker

separation of pre- and post-EGA stages (Appendix Fig S1B). In fact,

the most notable shift in chromatin accessibility occurred between

the 4- and 8-cell stage (Appendix Fig S1A), when more than 68,000

ATAC-seq peaks were gained. This timing difference could reflect a

priming mechanism, wherein a region becomes accessible before

accumulating activating histone marks. Indeed, H3K27ac peaks

established at the morula stage were already accessible in 8-cell

embryos (Fig 4A). The “accessibility first” pattern was even more

dramatic for transcription start sites (TSS), which often gained

accessibility as early as the 4-cell stage, but did not exhibit canonical

narrow H3K4me3 peaks until the morula stage (Fig 4B and C).

It is possible that pioneer TFs contribute to this accessibility,

given their ability to bind to inaccessible chromatin and subse-

quently recruit remodeling complexes, histone modifiers, and other

TFs (Zaret, 2020). To address this hypothesis, motif enrichment

analyses were conducted on intergenic ATAC-seq and H3K27ac

peaks to determine whether the motifs of certain pioneer factors

were overrepresented in active regions prior to EGA. Although there

was little enrichment for pioneer factor motifs in open chromatin at

the 4-cell stage, H3K27ac peaks were already significantly enriched

for DUX4 motifs (Fig 4D), supporting the hypothesis that DUX4 can

bind initially inaccessible regions and induce H3K27ac by recruiting

histone acetyltransferases (Choi et al, 2016). By the 8-cell stage,

DUX4 motifs were also enriched in open chromatin, along with the

motifs of several other pioneer factors, including NFY, PAX7, KLF4,

and GATA factors (Fig 4D). Of note, whereas DUX4 motifs first

appeared in H3K27ac peaks and then in accessible regions, the

opposite was true for NFY, PAX7, KLF4, and GATA factor motifs,

which first appeared in open chromatin and then in H3K27ac peaks.

The latter pattern—“accessibility first”— is consistent with the pre-

establishment of accessibility at sites of future H3K27ac peaks

(Fig 4A), suggesting that pioneer factors contribute to the establish-

ment of chromatin accessibility at the 8-cell stage prior to deposition

of H3K27ac at these sites in morula.

Transcription is required for histone remodeling but not
maintenance

As described above, temporal changes in histone modification distri-

bution during preimplantation development occur on both a large

scale (e.g., at PMDs) and at specific loci (e.g., genes and enhancers).

The identity of factors responsible for these changes, and whether

they are maternally derived and/or products of embryonic transcrip-

tion, remains unknown. To assess the contribution of embryonic

transcription to epigenetic reprogramming, histone modifications

were profiled in 8-cell embryos cultured from the 1-cell stage in the

presence of a-amanitin. We focused on regions that gained, lost, or

maintained enrichment (e.g., peaks) for a given histone modifi-

cation during the 4- to 8-cell transition, and whether these regions

corresponded to peaks in transcription-inhibited 8-cell embryos.

Among H3K4me3, H3K27ac, H3K27me3, and H3K9me3, 73, 77, 52,

and 63% of gained peaks were not established, respectively, and 36,

73, 50, and 59% of 4-cell peaks normally erased by the 8-cell stage

were still present in 8-cell embryos treated with a-amanitin, respec-

tively. In contrast, for all marks, about 90% of peaks found in both

4- and 8-cell embryos were also present in transcription-inhibited 8-

cell embryos (Appendix Table S8). Signal at these gained, lost, and

retained peaks revealed that the epigenetic landscape of

transcription-inhibited 8-cell embryos more closely resembled that

of 4-cell embryos than 8-cell embryos (Fig 5A), particularly for

H3K27ac, which gained and lost the most peaks of any mark during

the 4- to 8-cell transition (Appendix Table S8).

This disruption of histone remodeling is mirrored by the a-
amanitin-sensitive expression of the respective histone modifiers.

For instance, erasers of H3K4me3 were highly expressed in 8-cell

embryos relative to oocytes and transcription-inhibited embryos

(Fig EV2A). In particular, KDM5B, which removes ncH3K4me3 in

mouse embryos (Dahl et al, 2016; Liu et al, 2016; Zhang

et al, 2016), was 30-fold more expressed in control relative to tran-

scriptionally inhibited 8-cell embryos. The time it would take to

synthesize sufficient amounts of KDM5B protein from zygotically

generated KDM5B transcripts may account for the observation that

ncH3K4me3 is still present at the 8-cell stage. Regarding H3K27me3

modifiers, components of both polycomb repressive complexes

(PRC1 and 2) and the H3K27me3 demethylase KDM6A are embryon-

ically expressed in 8-cell embryos (Fig EV2B). This expression could

explain the erasure of intragenic H3K27me3 and establishment of

intergenic H3K27me3 domains during the 8-cell to morula transi-

tion. In contrast, transcript abundance of H3K9me3 remodelers was

generally insensitive to transcription inhibition, although CBX3/

HP1-gamma, which binds to H3K9me3 and excludes H3K27me3

from the same loci (Tardat et al, 2015), was upregulated in 8-cell

embryos (Fig EV2C), again reflecting the imminent loss of co-

occupancy of H3K9me3 and H3K27me3 after the 8-cell stage.

Embryonic expression of these key histone modifiers likely under-

pins the transition from a pre-EGA state, characterized by

ncH3K4me3 and intragenic H3K9me3 and H3K27me3, to a post-

EGA state, characterized by canonical distributions of these marks.

In contrast to H3K4me3, H3K9me3, and H3K27me3, the distribu-

tion of H3K27ac, similar to chromatin accessibility (Halstead

et al, 2020a), was markedly perturbed in transcriptionally-inhibited

8-cell embryos. Transcription inhibition prevented 74% of regions

that gained H3K27ac during the 4- to 8-cell transition from becom-

ing marked and resulted in incorrect retention of H3K27ac at 78%

of regions that should have been deacetylated (Fig 5B). These fail-

ures to deposit and remove H3K27ac at pertinent loci were reflected

by downregulation of both histone acetyltransferases (p300, PCAF,

and KAT14) and deacetylases (HDAC1 and HDAC2) in response to

a-amanitin treatment (Fig EV2D). Moreover, 6,223 regions
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accumulated aberrant H3K27ac signal not present in either 4- or 8-

cell embryos (Fig EV2E), suggesting that factors directing HATs to

target loci are also dysregulated. This aberrant H3K27ac signal was

especially evident at TSS, despite reduced H3K4me3 (Fig 5C). Clus-

tering of TSS based on H3K27ac signal revealed that transcription

inhibition substantially increased acetylation signal downstream of

“cluster_3” loci (cluster 3; n = 4,137 TSS; Fig EV2F). This group was

again enriched for homeobox genes (Appendix Table S9), e.g.,

CDX2 (Fig 5D). Of note, another TSS cluster with high H3K27ac

signal in both control and transcriptionally inhibited 8-cell embryos

("cluster_1"; n = 1,324 TSS) was also enriched for homeobox genes

(Appendix Table S9), e.g., OTX2 (Fig 5E). These two distinct

patterns at homeobox genes suggest separate modes of regulation

for different subsets of developmentally related genes. Overall, a

significant portion of TSS (clusters 1, 3, and 5) demonstrated

increased H3K27ac signal in 8-cell embryos that developed in the

presence of a-amanitin. The corresponding genes were functionally

enriched for processes involved in transcription regulation

(Appendix Table S9). This generalized increase in H3K27ac at

promoters is puzzling given that this mark is normally a hallmark of

transcriptional activation. However, because a-amanitin treatment

prevents transcription elongation, but not binding of RNA
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Figure 4. Chromatin accessibility precedes establishment of canonical H3K4me3 and H3K27ac in morula.

A Average ATAC-seq, H3K27ac, and H3K4me3 signal (CPM) at H3K27ac peaks which appeared during the 8-cell to morula transition. Peaks classified as genic if they over-
lapped gene bodies or promoters (2 Kb upstream of TSS).

B Average signal at TSS.
C Normalized ATAC-seq, H3K27ac, and H3K4me3 signal for one biological replicate per developmental stage at the LAPTM4A, NANOG, and DPPA3 loci. Shaded regions cor-

respond to putative enhancers (E; blue) and promoters (TSS; orange). Viewing range from 0 to 1.5 CPM. Values exceeding maximum range indicated by pink bars.
D Enrichment of pioneer transcription factor motifs in H3K27ac and ATAC-seq peaks at each stage. From the GV to 8-cell stage, broad H3K27ac peaks (*) were used for

motif enrichment analysis, then narrow peaks were used.
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Figure 5. Effect of transcription inhibition on the epigenetic profile of 8-cell embryos.

A Normalized signal (CPM) in 4-cell (4C), 8-cell (8C), and 8-cell embryos cultured in the presence of a-amanitin (8A) at regions that gained, lost, or retained peaks during
the 4- to 8-cell transition. Peaks scaled to 500 bp (�500 bp).

B Genomic coverage of regions that gained, lost, or retained peaks. Shading reflects the impact of transcription inhibition on peak status. Red indicates regions with a
change in peak status in 8A embryos compared to 8C.

C Average signal (CPM) of active epigenetic marks at all TSS in 2-cell (2C), 4C, 8C, and 8A embryos.
D Normalized H3K27ac signal at “cluster 3” TSS (�2 Kb), identified based on H3K27ac signal at TSS in 2C, 4C, 8C, and 8A embryos (Fig EV2), and a gene track view of

representative locus, CDX2.
E Normalized H3K27ac signal (CPM) at “cluster 1” TSS (�2 Kb) and a gene track view of a representative locus, OTX2. One biological replicate shown per stage and

mark. Viewing range of gene tracks from 0 to 1.5 CPM. Values exceeding maximum range indicated by pink bars.
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the IQR. Data points indicate biological replicates (n = 3 for GV, 4C, 8C, 8-16C, 16C, BL; n = 4 for MII and 8A).
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polymerase II (Bushnell, 2002), polymerase stalling at TSS may be a

contributing factor.

Regarding regions that were normally acetylated during the 4- to

8-cell transition, those which gained H3K27ac peaks regardless of a-
amanitin treatment were primarily genic (68%; Fig EV2G), and

marked genes related to cell division, e.g., actin and microtubule

binding (Appendix Table S10). In contrast, regions that failed to

gain H3K27ac in transcriptionally inhibited embryos marked genes

related to RNA and chromatin binding (Appendix Table S10) and

were more often intergenic (57%; Fig EV2G). H3K27ac peaks lost

during this transition, regardless whether they were also erased in

transcription inhibited embryos, primarily marked genes involved in

calcium signaling (Appendix Table S10). Overall, these results

suggest that H3K27ac remodeling mediated by maternal factors acts

to (i) repress transcriptional programs related to oogenesis and

fertilization and (ii) reinforce transcriptional programs related to

cleavage. On the other hand, H3K27ac remodeling that depends on

embryonic transcription seems to regulate programs related to

epigenetic regulation and EGA.

Differential motif enrichment was also evident in these different

sets of H3K27ac peaks. Peaks gained from the 4- to 8-cell stage that

depended on embryonic transcription were enriched for KLF, PAX7,

and PHOX2B motifs, which were not found in peaks gained regard-

less of a-amanitin treatment, nor in peaks lost during this transition

(Fig 5F). The opposite pattern was true for NFkB factors, which can

participate in cross-talk with chromatin remodelers, e.g., HAT p300

and acetylation readers such as BRD4 (Zhong et al, 2002; Huang

et al, 2009a). NFkB motifs were uniquely present in gained H3K27ac

peaks that did not depend on embryonic transcription, as well as

regions that incorrectly retained H3K27ac when transcription was

inhibited (Fig 5F). As NFkB factors are maternally provided in mice

(Nishikimi et al, 1999) and transcripts are present in bovine oocytes

(Halstead et al, 2020a), these results suggest dysregulation of a

maternal system that directs HATs to target loci. Notably, in all peak

sets, the top enriched motif was that of DUX4 (Fig 5F), which is a

pioneer factor that induces acetylation by recruiting the HAT p300,

and which is increasingly implicated in establishing totipotency (De

Iaco et al, 2017; Hendrickson et al, 2017). The DUX4 motif was even

enriched in peaks that were gained regardless of a-amanitin treat-

ment (Fig 5F), suggesting that functional DUX4 is present in tran-

scriptionally inhibited embryos. Indeed, DUX4 appears to escape

transcription inhibition (Fig 5G). Because DUX4 is one of only a few

genes activated during minor EGA (Appendix Fig S6C), and RNA-

seq data are unavailable for embryos before the 4-cell stage, DUX4

expression may have initiated before embryos were transferred to

culture medium containing a-amanitin. Zygotic expression of DUX4

would be consistent with preliminary studies of human embryos,

which indicate that DUX4 expression initiates during the 1-cell stage

(Vuoristo et al, 2022).

In summary, the impact of transcription inhibition on the

epigenome is most severe for marks that began to resolve earliest,

namely, H3K27ac. For marks that do not resolve to a canonical form

until after the 8-cell stage (e.g., H3K4me3, H3K27me3, and

H3K9me3), the impact of transcription inhibition was less evident at

the 8-cell stage. The lack of embryonic expression of the appropriate

modifiers, and therefore the inability to resolve the epigenome to a

post-EGA state, may underlie the failure of a-amanitin treated

embryos to progress past the 8- to 16-cell stage (Memili & First, 1998).

Blastocyst lineages are defined by differential polycomb
repression

Following EGA, blastomeres progressively transition from totipo-

tency to pluripotency, and by the blastocyst stage two distinct cell

lineages are present: the ICM, a pluripotent lineage that forms the

embryo proper, and the TE, a differentiated cell type that contri-

butes to extra-embryonic structures (for detailed reviews, see

Simmet et al, 2018; Gerri et al, 2020b). TE specification initiates in

morula via a conserved mechanism in which outer blastomeres

express GATA3, which upregulates TE-specific programs (Gerri

et al, 2020a; Fig 6A). TE specification progresses more quickly in

mouse, as the TE-specific factor CDX2 is already expressed in the

outer cells of the morula, whereas CDX2 is not detected until blasto-

cyst formation in human and cattle (Fig 6B). Moreover, OCT4/

POU5F1 expression remains widespread in human and bovine blas-

tocysts, but is already restricted to the ICM in mouse (Gerri

et al, 2020b; P�erez-G�omez et al, 2021; Fig 6B).

We examined our data to identify potential molecular mecha-

nisms responsible for these differences and observed that the CDX2

locus was polycomb repressed in morula and ICM, whereas POU5F1

demonstrated activating signatures in all three cell types (Fig 6C).

Expected histone modification profiles were also found at other clas-

sical markers of ICM (e.g., NANOG and SOX2) and TE (e.g., GATA2;

Fig 6C). Moreover, the murine-specific TE marker EOMES, which is

not detected in human blastocysts, was polycomb repressed and

downregulated in blastocysts, whereas the human-specific TE

marker PLAC8, which is not detected in mouse TE, demonstrated

stronger H3K27ac in TE and increased expression in blastocysts

relative to 16-cell embryos (Fig EV3A and B). Notably, the locus

coding for pregnancy associated glycoproteins (PAGs)—a group of

ruminant-specific genes expressed in the placenta (Green

et al, 2000)—was specifically repressed by H3K9me3 in morula and

ICM, but not in TE (Fig EV3A).

Across all of these key loci, both activating and repressive signa-

tures in ICM were very similar to those observed in morula, whereas

TE demonstrated a distinct epigenetic profile (Figs 6C and EV3A).

The genome-wide distribution of all four histone marks recapitu-

lated this trend, with ICM always falling between morula and TE

according to PCA (Fig 1A). The resemblance of morula and ICM

was anticipated because the transition from morula to ICM entails a

restriction of pluripotency potential rather than differentiation.

Therefore, we hypothesized that the distinct TE epigenome resulted

from de novo deposition of histone modifications during lineage

specification. Among H3K4me3, H3K27ac, H3K9me3, and

H3K27me3 peaks that were TE-specific (e.g., not present in ICM),

68, 75, 82, and 88%, respectively, were not detected in morula

(Figs 6D and EV3C). Of note, 79% of ICM-specific H3K27me3 peaks

were also newly established during blastocyst formation (Figs 6D

and EV3C), suggesting that polycomb repression plays a major role

in specification of both the ICM and TE.

Increased H3K27me3 suggests that an increasingly repressive

chromatin landscape is formed as potency declines. This restriction

would require reciprocal establishment of enhancer activity to selec-

tively relieve repression and activate cell-specific expression

programs. To address whether lineage segregation in the blastocyst

follows this model, histone modification and chromatin accessibility

data sets were integrated to identify unique chromatin states. The
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resulting 13 states were annotated based on genome coverage,

enrichment at genes and repetitive elements, CpG content, methyla-

tion status, and sequence conservation (Appendix Figs S7 and S8).

Overall, chromatin states represented promoter and enhancer activ-

ity, constitutive and facultative heterochromatin, bivalency, and

quiescence (Fig 6E). Notably, this analysis revealed that bovine-
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Figure 6. Epigenetic shifts that underscore lineage segregation in the blastocyst.

A Conserved mechanisms of TE and ICM specification and maintenance in mammals.
B Species-specific differences in TE and ICM markers in morula and blastocysts. The timing of each stage is indicated by days post fertilization (dpf).
C Epigenetic profiles of key pluripotency genes and TE-specific markers. Viewing range from 0 to 1.5 CPM. Values exceeding maximum range indicated by pink bars. All

biological replicates shown.
D For each histone modification, proportion of peaks unique to the ICM, unique to the TE, or shared in common between ICM and TE that were already present in

morula.
E Chromatin state predictions based on chromatin accessibility and histone modification data. Emission probabilities indicate the likelihood of a given mark occurring

in a given state.
F–I Genome coverage of (F) polycomb repression, (G) strong active TSS and strong active elements, (H) weak active elements, and (I), active elements by developmental

stage.
J Motif enrichment of selected regulators in strong active elements in M, ICM, and TE.
K Average normalized expression of selected regulators in 16-cell embryos (16C) and blastocysts.
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specific long terminal repeats (LTRs) were more epigenetically and

transcriptionally dynamic during preimplantation development than

their conserved counterparts (Fig EV4A and B, and

Appendix Fig S9), which is consistent with findings that species-

specific repetitive elements play roles in preimplantation develop-

ment in human and mouse (Kigami et al, 2003; Peaston et al, 2004;

Macfarlan et al, 2012; Hendrickson et al, 2017). ERVK elements, in

particular, were substantially enriched for H3K9me3 in the blasto-

cyst (Fig EV4A and C), with TE- and ICM-specific domains enriched

for pluripotency and homeobox motifs, respectively

(Appendix Table S11). These results suggest that constitutive hete-

rochromatin contributes to repression of ICM-specific factors in the

TE and morula-specific factors in the ICM.

Overall, repression increased substantially during the morula to

blastocyst transition and was largely due to an increase in polycomb

repression (Fig 6F). Both ICM and TE reached similar levels of

repression to that observed in GV oocytes, although oocytes were

markedly more enriched for constitutive heterochromatin

(H3K9me3), whereas facultative heterochromatin (H3K27me3) was

more prevalent in blastocyst lineages (Appendix Fig S9D). Concur-

rently, the active compartment of the genome steadily decreased

after EGA, reaching a minimum in TE (Appendix Fig S9D).

However, the most active regions (e.g., “Strong active elements”

and “Strong active TSS”) occupied comparable portions of the

genome in morula, ICM, and TE (Fig 6G), whereas regions of inter-

mediate activity (e.g., “Weak active elements” and “Active TSS”)

were progressively eliminated, eventually becoming the least preva-

lent in TE (Fig 6H and I). Overall, these trends suggest that lineage

specification in the blastocyst entails an overall refinement of chro-

matin structure, with targeted repression at cell-specific regions and

restriction of active regions.

Despite the comparable genome occupancy of polycomb repres-

sion and highly active elements (e.g., enhancers and promoters) in

ICM and TE, the differential distribution of these chromatin states,

combined with TF activity, distinguished these two cell lineages. To

identify genes specifically repressed or activated in ICM or TE,

H3K27me3 and H3K27ac signal were quantified in promoters (2 Kb

upstream of TSS) and compared between the two cell types to iden-

tify differentially repressed genes (DRG) and differentially activated

genes (DAG; Fig EV5A). In TE, DRG (n = 1,065 genes) were func-

tionally enriched for calcium ion binding, and DAG (n = 1,611

genes) were enriched for cholesterol biosynthesis

(Appendix Table S12). In ICM, DRG (n = 949 genes) were enriched

for homeobox genes, TFs, and developmental pathways, and DAG

(n = 1,179 genes) were enriched for TF activity

(Appendix Table S12). Notably, although both DRG and DAG in

ICM were enriched for TF activity, different regulators were repre-

sented in each gene set (Appendix Table S13). Moreover, key genes

demonstrated both repression and activation in respective cell types.

Loci that were repressed in TE and activated in ICM (n = 151 genes)

were enriched for cancer pathways and RNA polymerase II core

promoter proximal region sequence-specific DNA binding, and loci

that were activated in TE and repressed in ICM (n = 309 genes) were

enriched for conserved homeoboxes, including CDX2 (Fig EV5A).

Considering the overrepresentation of TFs among genes differen-

tially regulated by H3K27me3 and H3K27ac, motif enrichment anal-

ysis was conducted on strong active elements—the chromatin state

that likely represents active enhancers—to infer key regulators of

ICM and TE identity (Fig 6J). Overall, the motifs of ICM- and TE-

specific markers demonstrated the expected patterns of enrichment.

Key pluripotency factor-binding motifs (OCT4-SOX2-TCF-NANOG)

were differentially enriched in active ICM enhancers relative to TE.

Recognition motifs of SOX17, which is heterogeneously expressed in

morula and then restricted to the ICM (Gerri et al, 2020b), were also

enriched in active enhancers in morula and ICM. In contrast,

TEAD4, which is involved in TE-specification in morula (Gerri

et al, 2020a), was specifically enriched in active enhancers in

morula and TE, but not in the ICM. These results are consistent with

protein localization, as TEAD is markedly cytoplasmic in the ICM

and nuclear in the TE (Home et al, 2012). Enrichment of the GRHL2

motif was highly specific to active enhancers in the TE (14% of

enhancers contained this motif). Notably, in humans, GRHL2 is

widespread in both morula and TE (Gerri et al, 2020a), but in

bovine there was little evidence of GRHL2 activity at the morula

stage, potentially indicating a delay in expression of TE-specific

genes in cattle, relative to human. In a similar manner, active

enhancers in TE demonstrated very little enrichment for CDX2

motifs, despite notable expression in the blastocyst (Fig 6K) and

presence of CDX2 protein (Gerri et al, 2020b; P�erez-G�omez

et al, 2021). Thus, in terms of genome regulation, CDX2 may play a

more prevalent role during later stages of bovine blastocyst develop-

ment.

In both morula and blastocyst lineages, motifs of KLFs and GATA

factors were heavily overrepresented in active enhancers. However,

because of similarities in binding motifs between family members, it

remains unclear which specific members are active in a given cell

type. For example, whereas GATA3 induces TE fate (Ralston

et al, 2010; Deglincerti et al, 2016; Gerri et al, 2020a), GATA6 and

GATA4 are implicated in primitive endoderm specification and

maintenance (Chazaud et al, 2006; Plusa et al, 2008; Roode

et al, 2012). Among KLFs, which generally play roles in pluripo-

tency maintenance, KLF2 marks murine epiblast but is absent in

humans, whereas KLF17 is widespread in human blastocysts but

absent in mouse (Yeo et al, 2014; Blakeley et al, 2015; Lea

et al, 2021). Enrichment of KLF motifs in bovine morula, ICM, and

TE is reminiscent of the widespread expression of KLF17 in human

embryos, but it remains to be determined which member(s) of the

KLF family are active in bovine; several candidates are expressed at

the blastocyst stage, including KLF6, which undergoes a 14-fold

increase in expression between the 16-cell and blastocyst stages

(Fig EV5B).

Similar to KLF and GATA factors, the motif of JUN-AP1, a factor

recently implicated as a gatekeeper to reprogramming of pluripo-

tency (Markov et al, 2021), was also enriched in active enhancers in

morula, ICM, and TE. However, based on TF footprinting analysis

of chromatin accessibility data, which measures TF activity based

on reduced DNA cleavage at motifs actively bound by TFs, the activ-

ity of JUN and FOS factors—which together form the AP-1 complex

—was markedly increased in ICM relative to morula (Fig EV5C and

D) and was accompanied by an increase in expression of both JUN

and FOS factors (Fig EV5E). Moreover, the morula to ICM transition

entailed a loss in homeobox activity (Fig EV5C and F). These shifts

in TF activity distinguished these two pluripotent cell types, which

otherwise demonstrated strong epigenetic similarities, both in terms

of histone modification profiles (Fig 6A) and motif enrichment in

active enhancers (Fig 6J).
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Overall, we find that lineage specification entails further refine-

ment of the epigenome, including increased polycomb repression at

specific loci, especially those related to future developmental path-

ways, and resolution of regions with intermediate or weak activity.

Because the transition from pluripotency to a differentiated state is

generally irreversible, it is possible that by restricting activity to

certain genomic regions, the potential to activate others is conse-

quently lost.

Discussion

Accumulating evidence suggests that the molecular underpinnings of

preimplantation development are not necessarily conserved within

mammals, despite the fundamental nature of this period. Develop-

mental timing, H3K27me3-mediated imprinting, X chromosome inac-

tivation, and TF function during EGA and blastocyst formation all

differ considerably between humans and mice (Ross & Sampaio, 2018;

Chen & Zhang, 2020; Halstead et al, 2020a; Gerri et al, 2020b; Lu

et al, 2021; P�erez-G�omez et al, 2021). These divergences highlight the

need to establish additional animal models, such as bovine, to investi-

gate the molecular basis of key processes, such as the MET and blasto-

cyst formation. By profiling core histone modifications and chromatin

accessibility during bovine preimplantation development, we identify

both conserved and species-specific mechanisms that govern the

reprogramming of cell identity in the oocyte and developing embryo.

For instance, although broad, nontranscribed partially DNA

methylated domains (PMDs) are present in all mammalian oocytes

examined to date, the histone modification profiles associated with

these domains are inconsistent between species. In rodent and

ungulate oocytes—but not humans—PMDs are carpeted by broad

domains of H3K4me3 (Dahl et al, 2016; Liu et al, 2016; Zhang

et al, 2016; Zheng et al, 2016)—a mark usually associated with TSS

activity, but which in this context is essential for gene silencing

(Zhang et al, 2016). Unexpectedly, we find that in bovine oocytes,

PMDs are additionally marked by either H3K27me3 or H3K27ac,

suggesting at least two subtypes of PMDs, which likely serve distinct

functions. As suggested by Zhang et al (2016), acetylated PMDs

may act as “molecular sponges” for TFs, thereby globally suppress-

ing transcription, although it remains unknown whether PMDs are

acetylated in oocytes of other species. Conversely, PMDs bivalently

marked by H3K4me3 and H3K27me3 may poise developmentally

related genes for future expression, similar to bivalent domains in

stem cells (Bernstein et al, 2006). Notably, bivalency at PMDs has

only been observed in cattle and pig oocytes (Lu et al, 2021). In

rodent oocytes, H3K4me3 and H3K27me3 instead occupy distinct

domains within PMDs, and in human oocytes, only broad

H3K27me3 has been observed at PMDs (Xia et al, 2019; Lu

et al, 2021). Curiously, although H3K4me3 at PMDs is maintained

until EGA in all species (in humans, H3K4me3 is deposited de novo

at PMDs in embryos), H3K27me3 is erased from these domains in

humans and ungulates after fertilization, but retained in rodents

until the blastocyst stage (Xia et al, 2019; Lu et al, 2021). These

discrepancies strongly suggest that the functional role of PMDs in

oocytes and pre-EGA embryos is species specific and warrants

investigation in additional animal models.

Even beyond PMDs, substantial portions of oocyte epigenetic

signatures are briefly inherited by the embryo after fertilization,

suggesting regulatory roles beyond oogenesis. For instance, gene

bodies in bovine oocytes and pre-EGA embryos are pervasively

marked by H3K9me3, which usually localizes to repetitive elements

and chromosomal periphery, rather than coding regions. Interest-

ingly, in other cell types, genic H3K9me3 stalls RNA polymerase,

effectively poising lineage-specific genes for future expression (Mat-

sumura et al, 2015). Because H3K9me3 is also enriched at gene

bodies in human and murine oocytes (Wang et al, 2018; Xu

et al, 2022), genic H3K9me3 may be an additional conserved mecha-

nism to globally suppress transcription in the oocyte, complement-

ing the repressive nature of PMDs. Moreover, genic H3K9me3 is

also present in cattle and murine embryos prior to EGA (Wang

et al, 2018; Xu et al, 2022), suggesting this mark continues to

repress transcription until the epigenome has been sufficiently

reprogrammed to permit appropriate expression of developmental

programs. Of note, bovine pre-EGA embryos also demonstrate wide-

spread H3K27me3 in gene bodies, which appears to be deposited de

novo after fertilization, and in a similar fashion to H3K9me3, is

maintained up until major EGA. As such, polycomb repression may

also contribute to transcription repression—similar to H3K27me3-

mediated noncanonical imprinting in mice (Chen & Zhang, 2020; Lu

et al, 2021). However, it remains unclear if genic H3K27me3 is

present in other mammalian embryos, as a previous study failed to

capture the H3K27me3 signal in pre-EGA bovine embryos (Lu

et al, 2021), and H3K27me3 profiles in humans were obtained using

similar methodology (Xia et al, 2019).

Between PMDs and repression of gene bodies, there appear to be

several conserved or semi-conserved mechanisms to suppress tran-

scription in the oocyte and embryo prior to genome activation. The

extended pre-EGA period in bovine embryos, as compared to mice,

may underlie the observation that this repressive epigenetic land-

scape is remodeled in a two-step fashion, wherein discrete regions

of accessibility are established around the 8-cell stage (beginning of

EGA), whereas a classical histone modification landscape is not

evident until the morula stage (post-EGA). This remodeling

sequence could be attributed to increased pioneer factor activity,

leading to establishment of accessible sites in 4- and 8-cell embryos,

with later modifications (e.g., H3K27ac) serving to reinforce that

accessibility. The specific factors that drive this transition remain

unknown and are the subject of ongoing investigation.

Transcription inhibition reduced the activity of certain factors

(e.g., DUX4 and PAX7), and ablated histone acetylation at their

binding sites in 8-cell embryos; however, binding of other pioneer

factors (e.g., KLF4 and GATA factors) was not impaired (Halstead

et al, 2020a), suggesting complementary action by both embryonic

and maternal factors. Although the activity of some pioneer factors

may be conserved, DUX proteins, for example, are implicated in

both mouse and human development (De Iaco et al, 2017; Hendrick-

son et al, 2017; Chen & Zhang, 2019; De Iaco et al, 2020; Bosna-

kovski et al, 2021; Xu et al, 2022), the TFs active during human and

bovine EGA are distinct from mouse (Halstead et al, 2020a). For

instance, NFY and GATA factors do not appear active during murine

EGA, but are markedly enriched at the 8-cell stage in cattle and

humans. Conversely, the pioneer factors DUX4 and KLF4 are

enriched in all three species during major EGA. Altogether, this

finding suggests that although establishment of accessibility by

pioneer factors is a conserved mechanism within mammals, the

specific factors may differ. Moreover, maternally inherited factors
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(NFY and GATA factors, for example) may play a larger role in

species with extended pre-EGA periods, such as humans and cattle,

as opposed to rodents, which rapidly initiate EGA.

Transcription factor utilization continues to differ between

species during blastocyst formation. For example, the key pluripo-

tency factor OCT4 localizes uniquely to the ICM in mouse blasto-

cysts, but OCT4 is not restricted to the ICM in humans, cattle, pigs,

or rabbits (van Eijk et al, 1999; Kirchhof et al, 2000; Cauffman

et al, 2004; Chen et al, 2009; Hall et al, 2009; Kobolak et al, 2009;

Berg et al, 2011; Gerri et al, 2020b; P�erez-G�omez et al, 2021). Wide-

spread expression of OCT4 may delay TE lineage commitment, such

that in both cattle and humans, ICM and TE maintain developmen-

tal plasticity and can be readily interconverted (Berg et al, 2011; De

Paepe et al, 2013; Guo et al, 2021). In keeping with this plasticity,

epigenetic repression in bovine ICM and TE is primarily driven by

H3K27me3, a marker of facultative heterochromatin, as opposed to

constitutive heterochromatin, which acts as a more permanent

barrier to cell fate changes (Becker et al, 2016). In humans,

H3K27me3 is also differentially distributed at ICM- and TE-specific

genes (Xia et al, 2019), and in mice, H3K9me3 is not asymmetrically

distributed at promoters until after blastocyst implantation (Wang

et al, 2018). Overall, these results suggest that in mammals poly-

comb repression is an early contributor to ICM/TE specification,

whereas lineage-specific H3K9me3, especially at promoters, is

mostly established after implantation, signaling commitment of the

ICM and TE cell identities. Additional studies are needed to deter-

mine if asymmetric distribution of H3K9me3 at promoters becomes

apparent at later stages of bovine development.

Concurrently, intergenic H3K9me3 appears to regulate activity at

species-specific transposons in the ICM and TE, entailing species-

specific differences in expression of repetitive elements and TF

activity. In human TE, H3K9me3 represses hominoid-specific retro-

transposons that harbor pluripotency factor motifs, but no such

pattern was detected in ICM (Yu et al, 2022). Similarly, H3K9me3 in

bovine TE is enriched at bovine-specific ERVK elements and demon-

strates moderate enrichment for OCT4-binding sites. However,

H3K9me3 is also enriched at ERVK elements in bovine ICM, and

instead marked homeobox factor motifs. Altogether, this suggests

that in both humans and cattle, H3K9me3 deposition at species-

specific LTRs represses ICM-related signaling in the TE, whereas in

cattle, H3K9me3 repression also contributes to the suppression of

morula-specific homeobox activity, potentially facilitating the transi-

tion from totipotency to pluripotency.

In light of the difficulties entailed by directly studying human

development, establishing appropriate models is crucial to push

forward our understanding of the preimplantation period. Human

oocytes, in particular, remain an especially challenging system, as

their epigenetic signature appears distinct from both rodents and

ungulates. However, epigenetic remodeling and TF activity during

the MET and EGA indicate that bovine embryos are a more appro-

priate model for human than mouse, at least for this specific

window of development. Regarding blastocyst formation, although

bovine and human share several key markers of ICM and TE, dif-

ferences in specific regulators suggest that cell fate commitment in

the bovine blastocyst is delayed relative to human. In bovine TE,

CDX2 activity is very low, and GRHL2, which is widespread in both

morula and TE in humans (Gerri et al, 2020a), is only active in

bovine TE. These differences suggest a delay in TE commitment,

potentially reflecting the timing of implantation: cattle blastocysts

spend two weeks in the uterus before implanting (Berg et al, 2011),

whereas human blastocysts implant after about two days, and mice

implant one day after blastocyst formation (Niakan et al, 2012).

Taken together, these results suggest that bovine could be a better

model for human blastocysts than mouse, but more appropriate

models may exist. Rabbit, for instance, has not yet been sufficiently

characterized, although rabbit embryos initiate EGA at the 8-cell

stage (Manes, 1973), similarly to humans, and broadly express

OCT4 in the blastocyst (Kobolak et al, 2009), which implants shortly

(3–4 days) after formation (Orsini, 1962).

To date, it appears that several mechanisms underlying the MET

and blastocyst formation in mice are distinct from those employed

by larger mammals and perhaps evolved to allow rodents to

progress more quickly through development. Consequently, bovine

embryos could constitute an appropriate alternative to study the

biology of human development. To this end, the atlas of chromatin

states produced by this study will be an invaluable resource for

future research in mammalian embryos, ranging from functional

studies of specific genes to broadening our understanding of genome

reprogramming during the preimplantation period.

Materials and Methods

Collection of bovine oocytes and preimplantation embryos

Bovine ovaries were collected from a local slaughterhouse and

transported to the laboratory in 0.9% NaCl solution, complying with

the guidelines of University of California Davis relevant ethical regu-

lation for animal research. Cumulus-oocyte complexes (COCs) were

aspirated from antral follicles (2–10 mm in diameter) with a 10 ml

syringe and then washed in M199 (Sigma, M7653) containing 2%

(v/v) fetal bovine serum (FBS, Hyclone). Only COCs with at least

three layers of compact cumulus cells and evenly granulated cyto-

plasm were selected for maturation in vitro. After washing three

times in M199 supplemented with 2% (v/v) FBS, COCs were

cultured for 22–24 h in BO-IVM media (IVF Bioscience, 71001) in an

atmosphere of 5% CO2 in air at 38.5°C. After maturation in vitro,

MII oocytes were washed three times in SOF-IVF medium

(107.7 mM NaCl, 25.07 mM NaHCO3, 7.16 mM KCl, 1.19 mM

KH2PO4, 1.17 mM CaCl2, 0.49 mM MgCl2, 5.3 mM sodium lactate,

0.20 mM sodium pyruvate, 10 lg/ml heparin, 0.5 mM fructose, 1×

nonessential amino acids, 6 mg/ml BSA, 5 lg/ml gentamicin) and

then transferred to 90 ll drops (50 COCs per drop) of SOF-IVF

covered with mineral oil (Vitrolife, 10029). Frozen semen was

thawed in water at 37°C for 1 min. Sperm were selected using

density gradient centrifugation, washed once using TALP-Sperm

medium (100 mM NaCl, 25 mM NaH2CO3, 3.1 mM KCl, 2.1 mM

CaCl2, 0.29 mM NaH2PO4, 0.4 mM MgCl2, 21.6 mM sodium lactate,

10 mM Hepes, 6 mg/ml BSA, 5 lg/ml gentamicin), counted, and

10 ll of 2 × 106 sperm/ml were added to each drop containing

matured oocytes. After incubating for 6 h in an atmosphere of 5%

CO2 in air at 38.5°C, cumulus cells were removed by vortexing for

5 min and zygotes were washed three times in BO-IVC media (IVF

Bioscience, 71005) and then transferred to 100 ll drops (50 zygotes

per drop) of BO-IVC media covered with mineral oil. For each

collection, 50 zygotes were set aside and cultured to the blastocyst
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stage and only collections for which the incidence of blastocyst

formation was at least 20% were used.

Cumulus cells were removed from COCs by vortexing for 5 min,

and GV oocytes were collected for CUT&Tag library construction.

Embryos at the 2-, 4-, 8-cell (cultured in the presence or absence of

50 lg/ml a-amanitin (Sigma, A2263)), morula, and blastocyst stages

were collected at 32, 44, 56, 122, and 172 h post-insemination,

respectively. For ICM collection, blastocysts were collected at day 7

and subjected to immunosurgery with antibovine serum antibody

(Sigma, B8270) and guinea pig complement serum (Innovative

Research, IGP-COMPL-21249) as previously described (Halstead

et al, 2020a). For TE separation, blastocysts were collected at day 7

and subjected to surgery under a microscope, cutting with a micro

scalpel (Feather, 72046-30). GV oocytes and embryos were treated

with 0.5% pronase to remove the zona pellucida and then used for

library construction. A minimum of 500 oocytes/blastomeres were

used for each CUT&Tag or ATAC-seq library.

CUT&Tag library construction and sequencing

CUT&Tag was performed following the manufacturer’s instructions

(Hyperactive In-Situ ChIP Library Prep Kit, TD901, Vazyme) with

modifications. Individual CUT&Tag libraries were constructed from

about 500 GV oocytes, 200 2-cell embryos, 150 4-cell embryos, 150

8-cell embryos, 50 morula, 50 day 7 blastocysts, 150 isolated ICM,

or 150 isolated TE. In brief, bovine oocytes and embryos were incu-

bated with concanavalin-coated magnetic beads for 20 min on a

thermomixer at 400 rpm at room temperature (RT). The samples

then were incubated with a primary antibody (1:50 dilution of a

rabbit polyclonal anti-H3K4me3 (Cat# C15410003), H3K9me3 (Cat#

C15410193), H3K27me3 (Cat# C15410195), or 1:100 dilution of

H3K27ac (Cat# C15410196) from Diagenode) overnight at 4°C on a

nutator, then with the secondary antibody (1:100 dilution,

ABIN101961, Antibodies online) for 1 h on a nutator at room

temperature (RT), then with hypoactive pA-Tn5 transposon for 1 h

on a nutator at RT. To perform targeted digestion, 300 ll tagmenta-

tion buffer was then added, and samples were incubated at 37°C

for 1 h. The reaction was terminated by adding 10 ll of 0.5 M

EDTA, 3 ll of 10% SDS, and 2.5 ll of 20 mg/ml proteinase K to

each tube, which were then incubated at 50°C for 1 h. DNA extrac-

tion was performed by adding 300 ll of PCI (Phenol: Chloroform:

Isoamyl alcohol = 25:24:1) to each tube and mixed by full-speed

vortexing, after which the sample was transferred to a phase-lock

tube (1038987, Qiagen) and centrifuged for 3 min at RT at

16,000 × g. Then, 300 ll chloroform was added followed by

centrifugation for 3 min at RT at 16,000 × g. The aqueous phase

was removed and transferred to a 1.5 ml tube to which 750 ll of
100% ethanol was added, the tube inverted 10 times, and then

centrifuged for 30 min at 4°C at 16,000 × g. The supernatant was

removed, and 1 ml of 100% ethanol added, followed by centrifuga-

tion for 5 min at 4°C at 16,000 × g. The supernatant was removed

and the tube then allowed to dry in air. TE buffer (20 ll) was

added and PCR was performed using NEBNext High-Fidelity 2X

PCR Master mix (New England Biolabs, M0541) as follows: 58°C

for 5 min, 7°C for 5 min, 98°C for 45 s, followed by 14 cycles of

98°C for 15 s and 60°C for 10 s, with a final extension at 72°C for

1 min. Purification of PCR products was performed using Ampure

XP beads (Bechman Coulter, A63881), and libraries were pooled for

sequencing on the Illumina NextSeq platform to generate 40 bp

paired-end reads.

ATAC-seq library construction and sequencing

Pools of zona-free blastocysts, ICM, and TE were collected for

ATAC-seq library construction from three separate collections,

respectively, and transferred to cold lysis buffer (10 mM Tris–HCl

pH7.4, 10 mM NaCl, 3 mM MgCl2, and 0.1% IGEPAL CA-630). Indi-

vidual ATAC-seq libraries were constructed from about 50 7-day

blastocysts, 150 isolated ICM, or 150 isolated TE. The samples were

incubated on ice for 5 min and then centrifuged using a swinging

bucket rotor for 10 min at 500 × g at 4°C. The supernatant was

removed, and the pellet was resuspended in 50 ll of transposition
reaction mix (25 ll 2× TD buffer (Nextera DNA Library Prep Kit,

Illumina), 2.5 ll TDE1 enzyme (Nextera DNA Library Prep Kit, Illu-

mina), 22.5 ll ddH2O) by pipetting up and down three times. Trans-

position reactions were incubated at 37°C for 60 min in a

thermomixer at 300 rpm. Reaction products were purified with a

MinElute PCR purification kit (Qiagen, Germany) and eluted in

20 ll EB buffer. Transposed DNA was amplified with NEBNext

High-Fidelity 2X PCR Master mix (New England Biolabs, M0541) as

follows: 58°C for 5 min, 72°C for 5 min, 98°C for 45 s, followed by

12 cycles of 98°C for 15 s and 60°C for 10 s, with a final extension

at 72°C for 1 min. Libraries were purified with Ampure XP beads

(Bechman Coulter, A63881) and were pooled for sequencing on the

Illumina NextSeq platform to generate 40 bp paired-end reads.

CUT&Tag and ATAC-seq data processing

The following published data sets were accessed through the NCBI

Gene Expression Omnibus (GEO) repository: ATAC-seq data for

bovine oocytes and embryos (accession GSE143658; Data ref:

Halstead & Ross, 2020), CUT&Tag data for bovine fibroblasts

(GSE171104; Data ref: Halstead et al, 2020b), and CUT&RUN data

for bovine oocytes and blastocysts (GSE163620; Data ref: Lu

et al, 2020). Raw reads were trimmed with Trim Galore (v0.4.0) and

Cutadapt (v1.8.3; Martin, 2011) with options “-q 20 -stringency 1 -

length 10” to remove adaptor sequences and low-quality reads

(q < 20). Trimmed reads were then mapped to the cattle reference

genome (ARS-UCD1.2), excluding the mitochondrial chromosome,

using BWA (v0.7.9a; Li & Durbin, 2010) in “mem” mode and with

default parameters. Duplicate reads were removed using Picard-

Tools (v2.26.10) and low-quality mapped reads (q < 15) were

removed using SAMtools (v1.9; Li et al, 2009) to obtain the final

informative reads used for downstream analyses. Analysis was not

blinded.

RNA-seq data processing

RNA-seq data for bovine oocytes and embryos were accessed

through the NCBI GEO repository (accession no. GSE52415 (Data

ref: Graf et al, 2014a) and GSE110040 (Data ref: Bogliotti

et al, 2018)). Raw reads were trimmed with Trimmomatic (v0.33;

Bolger et al, 2014) to remove low-quality leading and trailing bases

(three bases) and adapter sequences, allowing for two seed

mismatches, a palindrome clip threshold of 30, and simple clip

threshold of 10. Trimmed reads were mapped to the cattle reference
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genome (ARS-UCD1.2) with STAR (v2.7.2a; Dobin et al, 2013) with

default parameters, except “–seedSearchStartLmax 30 –outFilterS-

coreMinOverLread 0.85.” Low-quality alignments (q < 5) were fil-

tered using SAMtools. HTseq-count (v0.10.0; Love et al, 2014) was

used to calculate the raw count for genes in the Ensembl (v104)

annotation with parameters “—mode = intersection-nonempty –

type = exon.” Differentially expressed genes (DEG) were identified

using the DESeq2 R package (v1.34.0; Anders & Huber, 2010). To

identify maternal and embryonic gene sets, DEG (log2FC > 1 and

FDR < 0.01) were determined from pair-wise comparisons of

MII oocytes, 8- to 16-cell embryos, and 8- to 16-cell embryos

cultured in the presence of a-amanitin, as described previously

(Bogliotti et al, 2020). To identify minor EGA genes, DEG

(log2FC > 1 and FDR < 0.05) were determined between MII oocytes

and 4-cell embryos (Graf et al, 2014b). A looser FDR cutoff was

used to capture subtler differences in gene expression. TEtoolkit in

multimode (Lerat et al, 2017) was used to calculate raw counts for

repetitive elements in the RepeatMasker annotation (downloaded

from the UCSC Genome Browser). DESeq2 (v1.34.0) was used to

identify differentially expressed repeats between the 4- and 16-cell

stage (FDR < 0.01). Raw counts were normalized by counts per

million (CPM) and z-score transformed for visualization.

DNA methylation data processing and identification of PMDs

Post-bisulfite adaptor tagging (PBAT) DNA library data for bovine

oocytes and embryos were accessed through the NCBI GEO reposi-

tory (accession GSE143850 (Data ref: Ivanova et al, 2020b)). Raw

reads were aligned to the cattle reference genome (ARS-UCD1.2)

using Bismark (v0.14.3; Krueger & Andrews, 2011), with options

“–bowtie2 –pbat.” Context-dependent CpG methylation was then

extracted using the “bismark_methylation_extractor” command

with options “–s –bedGraph –cytosine_report.” To identify PMDs,

the genome was first binned into 1 Kb windows with the BEDtools

(v2.27.1; Quinlan & Hall, 2010) command makewindows. Bins that

contained 5 or more CpGs, and which had an average methylation

level less than or equal to 0.5 in GV oocytes, were considered

hypomethylated windows. These were merged, allowing for a

maximum gap between windows of 10 Kb. Regions that fell within

2.5 Kb of TSS were excluded from the final set of PMDs using

BEDtools subtract. Methylation status of genomic features (e.g.,

gene bodies, peaks, chromatin states, etc.) was determined by

taking the average methylation level of all CpGs that overlapped

the given feature.

Reproducibility of CUT&tag and ATAC-seq data

Informative reads were converted to bigwig format, and signal was

normalized by counts per million (CPM) with bamCoverage from

the DeepTools suite (v3.4.3; Ram�ırez et al, 2014) with default

parameters. Resulting bigwig files were uploaded to the UCSC

genome browser (Kent et al, 2002) for track visualization. The view-

ing range was set from 0 to 1.5 CPM, and values exceeding the

maximum range were indicated by pink bars. The smoothing

window was set to 4 pixels, and windowing function was set to

“mean + whiskers,” which shows the average signal in the darkest

shade, one standard deviation away from the mean in a medium

shade, and the maximum and minimum in the lightest shade. To

calculate the correlation between libraries and conduct principal

components analyses, bigwig files were first consolidated using the

multiBigWigSummary function from Deeptools, using a bin size of

500 bp for activating marks (ATAC-seq, H3K4me3, H3K27ac) and

10 Kb for repressive marks (H3K9me3, H3K27me3). The output was

then piped to plotPCA with parameters “-transpose -log2 -ntop

100000” (active marks) or “-transpose -log2 -ntop 50000” (repres-

sive marks), and plotCorrelation with parameters “-corMethod pear-

son –skipZeros.” Finally, files containing normalized signal (RPKM;

reads per kilobase million) of published CUT&RUN H3K27me3 data

for bovine GV oocytes and blastocysts were downloaded from

GSE163620 (Lu et al, 2021). Using the liftOver tool from the UCSC

tool suite, these signal files were converted to the most recent

genome assembly. To compare these data to CUT&Tag, the

H3K27me3 libraries from GV oocytes and blastocysts were also

normalized by RPKM using bamCoverage from DeepTools, and the

multiBigWigSummary and plotCorrelation functions were imple-

mented as previously described to determine correlation between

libraries.

Peak calling

To identify regions with signal enrichment, or “peaks,” for each

library, we first compared two different methods for peak calling:

Epic2 (Stovner & Sætrom, 2019) and Macs2 (Zhang et al, 2008),

using different parameters for narrow and broad epigenetic marks

(Appendix Table S14). Peaks from biological replicates were

compared with the BEDtools jaccard command. We found that

Epic2 generated more consistent peak calls between biological repli-

cates, was less sensitive to differences in read depth, and more logi-

cally captured regions of enrichment, especially for repressive

marks (Appendix Fig S10). Therefore, Epic2 was selected as

the optimal peak caller, using different parameters for narrow and

broad peaks (Appendix Table S14). Unless otherwise stated, only

the overlapping regions, identified by BEDtools intersect, of peaks

called in both biological replicates were identified as “true” peaks

and used for further analyses. Peaks were classified as genic if

they overlapped promoters (2 Kb regions upstream of TSS) or

gene bodies. Otherwise, peaks were considered intergenic.

Genomic coverage of peaks was calculated using BEDtools genome-

cov.

Enrichment of CUT&Tag and ATAC-seq signal

To visualize the signal intensity of histone modifications and chro-

matin accessibility at specific genomic regions (e.g., TSS, gene

bodies, peaks, PMDs), normalized signal from individual libraries or

pooled replicates was analyzed using the computeMatrix function of

DeepTools with option “—skipZeros.” Signal at PMDs was visual-

ized using a bin size of 100 bp. Signal at genes and peaks was visu-

alized using a bin size of 10 bp.The output was then piped to the

plotProfile and plotHeatmap functions from DeepTools. In cases

where regions were clustered, the option “—kmeans” was used with

plotHeatmap and cluster members were extracted using “—outFile-

SortedRegions.” Signal at PMDs was summarized by taking the

average of all 100 bp bins for a given PMD, and then calculating the

mean signal and standard error of all PMDs in a given cluster for a

given developmental stage.
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Comparison of DNA methylation and intragenic H3K27me3 signal

For H3K27me3 libraries, signal in gene bodies was quantified using

HTseq-count with parameters “—mode = intersection-nonempty—

type = gene.” Raw counts were processed using DESeq2 to obtain

log2FC values between GV oocytes and 2-cell embryos. Correlations

between gene body H3K27me3 (log2FC) and change in CpG methy-

lation (2-cell versus GV oocytes) were calculated by linear regres-

sion.

Functional enrichment analysis

Gene sets were identified based on overlap with peaks or chromatin

states using the intersect function from BEDtools. Functional enrich-

ment analysis of gene sets was performed using the Database for

Annotation, Visualization and Integrated Discovery (DAVID,

v2021q4; Huang et al, 2009b, 2009c). Terms with an FDR less than

0.05 were considered significant.

Identification of differentially activated and repressed genes in
ICM and TE

For H3K27me3 and H3K27ac libraries, signal in promoters (2 Kb

regions upstream of genes) was quantified using HTseq-count in

mode “intersection-nonempty.” Genes with differential promoter

signal (log2FC > 1 and FDR < 0.05) between ICM and TE were iden-

tified using DESeq2, and counts were z-score transformed for visual-

ization.

Transcription factor footprinting analysis

Transcription factor footprints were identified from ATAC-seq data

using HINT from the Regulatory Genomic Toolbox (Li et al, 2019)

as previously described (Halstead et al, 2020a). For footprint detec-

tion, alignments from biological replicates were pooled using the

merge function from SAMtools, and peaks were called from pooled

alignments using Epic2. TFs with a significant difference in binding

activity between two cells types were reported (two-tailed t test;

P < 0.05).

Chromatin state annotation

ChromHMM (v1.22; Ernst & Kellis, 2012) was used to train a chro-

matin state model incorporating CUT&Tag (H3K4me3, H3K27ac,

H3K27me3, and H3K9me3) and ATAC-seq from all developmental

stages except for blastocyst. The biological replicates of the same

developmental stage were merged into one file using the merge

function from SAMtools. Specifically, the alignment files from all

developmental stages were first binarized using the “BinarizeBam”

command with the default parameters. The output was then piped

to generate the segmentation model using the “LearnModel”

command with the default parameters. Multistate models were

trained and the 13-state model was finally selected as it exhibited

the maximum number of states with distinct chromatin mark combi-

nations. Fold enrichment of chromatin states at genomic features

was calculated using the “OverlapEnrichment” command. Fold

enrichment was calculated as (C/A)/(B/D), where A represented

the bases in a chromatin state, B the bases in a genomic feature, C

the number of bases overlapped between a chromatin state and

genomic feature, and D the bases in the genome. Chromatin state-

fold enrichment was calculated for gene elements (Ensembl v104

annotation), repetitive element families (RepeatMasker downloaded

from UCSC genome annotation database), and mammalian

conserved elements identified from multiple sequence alignments

using the Genomic Evolutionary Rate Profile (GERP) software based

on 103 mammals (ftp://ftp.ensembl.org/pub/release-100/bed/

ensembl-compara/103_mammals.gerp_constrained_element/). To

determine if a specific type of repetitive element was enriched for a

given chromatin state at a given developmental stage, the overlap of

repetitive elements with a given chromatin state (“observed” over-

lap) was compared to the overlap of randomized intervals (repeti-

tive element locations randomized using BEDtools shuffle) with the

same chromatin state (“expected” overlap). The ratio of observed to

expected was log-transformed to determine the log ratio (LR) of

random to observed.

Data availability

CUT&Tag and ATAC-seq data produced in this study have been

deposited in the NCBI GEO database (GSE193640). A UCSC track

hub is available to view predicted chromatin states, ATAC-seq, and

CUT&Tag read depth (https://genome-euro.ucsc.edu/s/

mmhalstead/Bovine_Embryo_Epigenome).

Expanded View for this article is available online.
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