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Abstract

Discovery and Remediation of Vulnerabilities in Monolithic IoT Firmware

by

Eric D. Gustafson

Many recent advances in the scale, cost, and connectivity of hardware have brought

about the era of the Internet of Things (IoT), in which numerous objects in our every-

day lives now contain networked computing capabilities. Most notably, this has brought

with it an astonishing array of new device market sectors, form factors, and use cases,

which purport to make our lives easier, simpler, and safer. However, these new network-

connected devices have opened a massive new attack surface for attackers to exploit, and

a challenging landscape for defenders, which could undermine these benefits.

Unfortunately for analysts, the code of these new ubiquitous, low-power embedded

systems increasingly utilizemonolithic firmware images, in which code, libraries, and data

are intermixed, without a conventional operating system or metadata needed by third-

party analyses. This combines with the extreme hardware-software coupling found in

firmware to create a complex software environment, that is extremely difficult to model

for the purposes of conventional program analyses. This has created two significant

gaps in the vulnerability discovery lifecycle: modeling of the execution environment, and

patching of vulnerabilities, even without a manufacturer’s help. As a result, devices with

monolithic firmware have been largely ignored by academia and industry thus far.

In this dissertation, we will showcase novel techniques to help bridge the gaps in

analysis capabilities between traditional programs and the monolithic firmware of deeply-

embedded systems. To overcome the environment modeling problem, we will focus on

re-hosting, the act of transferring a program from one execution environment to another,
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typically from a hardware environment to an emulated one. Re-hosting an important pre-

requisite to fuzzing or symbolic execution used for vulnerability discovery, as it allows

execution environments to be freely copied and scaled. we will propose two techniques: an

automated approach based on observing and modeling the original device’s hardware, and

a semi-automatic approach based on abstracting away and modeling parts of the firmware

itself. we will show how these techniques can allow us to re-host many firmware images,

and can be directly used for security analyses to find both synthetic and previously-

undiscovered real-world vulnerabilities.

Finally, we will address the issue of patching monolithic firmware. While numerous

steps are required for an analyst to produce a final patched firmware image, we focus

on automating three critical steps: finding sources of attacker-controlled input, finding a

safe location to insert a payload, and locating self-checks intended to thwart modification.

We combined these techniques into a system able to produce modified firmware, and used

it to correct serious safety-critical issues in three products from the medical, industrial

automation, and engineering sectors.

Through both re-hosting and patching, this work completes the vulnerability lifecycle

for embedded devices, and helps make our connected world safer.
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Chapter 1

Introduction

Over the last twenty years, advances in wireless networking technology and in the design

of embedded systems have led to a shift in the way technology integrates with our daily

lives. This movement, known as the Internet of Things (IoT), represents the elimination

of the barrier between networked, interactive devices, and more mundane objects, tools,

and appliances.

In the last five years, this phenomenon has become tangible to consumers, with the

mass-market availability of connected devices for homes and businesses, including ther-

mostats, lighting, physical security, and a variety of sensors. The promise of these prod-

ucts is to enable unprecedented convenience and utility, without the usual complexity

and cost of sensing and automation. This increased functionality has been a hit with con-

sumers, with an estimated 5.5 million IoT devices being connected every day in 2016 [1],

and over 20 billion in use in 2020.

While these numbers may seem rather high, IoT does not merely describe one class of

devices with the same functional or security needs, nor can the user typically achieve any

benefit with only one component alone. These devices and services compose an ecosystem,

combining the means to collect data, make decisions based on this data, and act on it,

potentially in a physical manner. One device alone may provide the functionality to

close a water valve through an app, and another may be able to detect when water
1



Introduction Chapter 1

passes a sensor and notify the user, but only through the combination of those two with

communications and logic infrastructure can the user mitigate flood damage in their

home. Because the value of an IoT ecosystem is dependent on its ability to incorporate

a wide array of devices, the value of a single device is also determined by which, and

how many, devices and services it will integrate with. This puts the unusual burden on

manufacturers to inter-operate, even without the presence of dominant IoT standards for

protocols and design.

This emphasis on heterogeneity and high interconnectedness of devices has resulted

in additional implications for the security and privacy of users. Instead of converging on

standards, the market has continued to support a collection of protocols, frameworks,

and Application Program Interfaces (APIs) as diverse as the devices themselves. Each

of these brings with it its own security models, assumptions, and trade-offs, as well as a

broadened networked attack surface. This close relationship with the physical world also

brings deployment complications (e.g., physical location, intended use), which violate

various traditional security assumptions (e.g., physical attacks, observability).

This enticing set of targets has not gone unnoticed by attackers. Security vulnerabili-

ties located in relatively small set of devices allowed for the creation of botnets responsible

for some of the largest Distributed Denial of Service (DDoS) attacks to date, targeting

journalist Brian Krebs [2], DNS infrastructure used by many websites [3], and the coun-

try of Liberia [4]. This botnet leverages weak authentication and poor deployment of

certain IoT devices (i.e., Internet-connected cameras) to compromise them, and direct

traffic toward a target. The Common Vulnerabilities and Exposures (CVE) group, which

catalogs security vulnerabilities, has blamed the rise in IoT-related vulnerabilities for a

massive backlog in their workflow [5]. The European Union is even working on a law

that would require IoT devices to be accompanied by a security rating [6].

Looked at from a different angle, the result of this IoT trend is that newly-commercialized

2



Introduction Chapter 1

embedded systems are now in the hands of consumers, and being used in an increasing

number of security and safety-critical applications. Unfortunately, in stark contrast to

the desktop and mobile ecosystems, market forces have not created any de facto standard

for components, protocols, or software, hampering existing program analysis approaches,

and making the understanding of each new device an independent, mostly manual, time-

consuming effort. At the software level, each new device comes with its unique firmware,

which is purpose-built for its specific function, and may not include a conventional op-

erating system. At the hardware level, each device includes its own unique selection

of hardware, both on the board (sensors, actuators, etc.) and on the chip (bus con-

trollers, timers, and other I/O peripherals), which combine to form the unique execution

environment of the firmware.

Even with rapidly-improving software environments, developers create and test firmware

almost entirely on physical testbeds, typically consisting of development versions of the

target devices. However, modern software-engineering practices that benefit from scale,

such as test-driven development, continuous integration, or fuzzing, are challenging or

impractical due to this hardware dependency. In addition, embedded hardware provides

limited introspection capabilities, including extremely limited numbers of breakpoints

and watchpoints, significantly restricting the ability to perform dynamic analysis on

firmware.

The situation for third-party auditors and analysts is even more complex. Manufac-

turing best-practices dictate stripping out or disabling debugging ports (e.g., JTAG) [7,

8], meaning that many off-the-shelf devices remain entirely opaque. Even if the firmware

can be obtained through other means, dynamic analysis remains challenging due to the

complex environmental dependencies of the code.

One factor that massively complicates this hardware-software dependency is the for-

mat of the firmware itself. Many devices use monolithic binary firmware, also know as

3
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“blobs”, which pack application code, library code, and data into one binary image, with

no discernible metadata or formatting. Therefore, it is difficult for the analyst to dis-

tinguish code and data separation, function boundaries, library vs. application code,

and the memory map of the execution environment, which are typical prerequisites for

common program analyses.

These numerous complexities have caused significant changes in the usual lifecycle

of discovering and remediating vulnerabilities found in traditional desktop and mobile

software. All aspects of obtaining, analyzing, and eventually patching code have become

more difficult as a result of the way hardware and firmware interact. However, the lack

of standardization of execution environments (in the case of monolithic firmware, just

the device’s hardware) has necessitated an additional step: creating a model of this

environment to enable tractable, accurate, analyses.

Firmware re-hosting–the process of enabling code to run in a different environment

from which it was designed–is the primary means by which this gap can be overcome. By

re-hosting the firmware into a fully-virtualized, emulated, environment, we can execute

firmware at scale through the use of commodity computers, and provide more insight into

the execution than is possible on a physical device [9]. Yet, heterogeneity in embedded

hardware poses a significant barrier to the useful re-hosting of firmware. The rise of

intellectual-property-based, highly-integrated chip designs (e.g., ARM based Systems on

Chip – SoC) has resulted in an explosion of available embedded CPUs, whose various

on-chip peripherals and memory layouts must be supported in a specialized manner by

emulators. However, the popular open-source QEMU emulator supports fewer than 30

ARM devices. Intel’s SIMICS [10] supports many CPUs and peripherals, but requires the

analyst to manually construct a full model of the system at the hardware level. Worse yet,

most embedded systems have other components on their circuit boards that must exist

for the firmware to operate, such as sensors, storage devices, or networking components.

4
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Emulation support for these peripherals is virtually nonexistent. Therefore, it is nearly

impossible to take an embedded firmware sample and emulate it without significant

engineering effort.

Current solutions allowing for the re-hosting of diverse hardware rely on a real speci-

men of the device, where the emulator forwards interactions with unsupported peripherals

to the hardware [11, 12, 13]. Such a “hardware-in-the-loop” approach limits the ability

to scale testing to the availability of the original hardware, and offers restricted instru-

mentation and analysis possibilities compared to what is possible in software. Other

techniques [14, 15] focus on recording and subsequently replaying data from hardware,

which allows these executions to be scaled and shared, but necessarily requires trace

recording from within the device itself, limiting faithful execution in the emulator to just

the recorded paths in the program.

Even when bugs are found, and reported, that does not guarantee that a fix will

be available. A worrying trend in IoT devices is that devices are being abandoned by

vendors [16, 17], or otherwise excluded from support by the vendor [18], and do not

receive patches for security issues when they are found. Since embedded systems based

on monolithic firmware cannot be simply updated by updating an operating system or

libraries, vulnerabilities in these systems may have a much longer patch latency, due

to the extra work involved in creating and verifying them. The recent Urgent/11 [19]

vulnerabilities affect such a wide variety of real-time operating systems and libraries [20],

that it is unclear exactly what the patching situation will be for many of these systems.

Unfortunately, the increasingly safety and security critical nature of many of these devices

means that users may have no choice but to patch or replace the device. In some cases,

replacing the device may not be physically possible or financially practical, and users

must take matters into their own hands.

5
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Current solutions tackling binary rewriting work primarily on ELF files [21, 22, 23].

They leverage the metadata found in the files to re-arrange code, fixing code offsets and

pointers. Of course, with blob firmware, this metadata is not present, and we are left with

only Detours-style patching [24], in which code is inserted into an otherwise-unused space,

and the instructions of the program are altered to use it. Worse yet, without metadata,

and without an operating system, there is no standard source of input data to the program

for a patch to make security-related decisions with. Finding the place to put code in the

first place is also difficult, with no guarantees of space to insert code into, minimal on-

board storage, and no easy way to determine existing content that’s expendable. Finally,

in order to make these systems robust, firmware will typically check their content to

ensure that it is not intentionally or accidentally modified; this must be overcome before

any kind of binary patching can take place. In summary, no technique exists which allows

a third-party user or analyst to create patches for a monolithic firmware image without

intensive, manual, firmware-specific reverse-engineering.

In this work, we will address the unique challenges preventing the security

analysis and remediation of monolithic firmware images, through the use of

novel re-hosting and automated program analysis techniques.

We propose to tackle the gap in environment modeling capabilities through the use of

novel re-hosting techniques, allowing the virtualization of the firmware with a minimum

of analyst effort. In order to help frame these approaches, we identified four aspects of an

ideal re-hosting solution, which could allow it to tackle today’s diverse embedded systems:

A re-hosting scheme must be virtual to allow for scale and reduce costs; should also be

interactive, to allow the firmware to process new input and actually withstand program

analysis; should be abstraction-less (i.e., it should not rely on high-level concepts, such

as operating systems and hardware abstraction layers) to allow the system to handle the

6



Introduction Chapter 1

widest possible variety of firmware. Finally, re-hosting should be automated, so that the

system can overcome the extreme diversity that is impractical for humans to handle.

Although previous approaches to the problem are numerous, all are missing at least one

of these aspects.

Automated Re-Hosting. The first approach we will present is the first to strive for this

kind of idealized automated re-hosting. The technique works by observing the behavior

of the original device, then modeling this behavior, creating a set of models which can be

plugged into an emulator. We use the system to emulate three hardware devices, with

six firmware images, and were able to successfully emulate and automatically test the

firmware, and discover synthetic vulnerabilities.

While this approach has the advantage of being mostly hands-off for the analyst,

there are a few challenges remaining to be solved when it comes to tackling real-world

commercial devices. Aspects of these systems, such as high-frequency interrupts, Direct

Memory Access (DMA), and highly-complex peripherals will confound this and similar

approaches.

These same challenges complicate both the development and testing of firmware by

device manufacturers as well. To mitigate some of these issues, and make their platforms

more attractive under tight time-to-market constraints, chip vendors and various third

parties provide Hardware Abstraction Layers (HALs). HALs are software libraries that

provide high-level hardware operations to the programmer, while hiding details of the

particular chip or system on which the firmware executes. This makes porting code

between the many similar models from a given vendor, or even between chip vendors,

much simpler. Application code written with HALs is therefore, by design, less tightly

coupled to the hardware, even when distributed as a monolithic firmware image.

Re-hosting with High Level Emulation. To leverage this observation, the second

7
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re-hosting approach applies re-hosting based on High Level Emulation (HLE), in which

these hardware-facing functions are replaced with analyst-created, high-level equivalents.

When working with a monolithic firmware image, the first step is to locate the libraries

within the firmware using binary analysis. With the function names identified, high

level handlers (e.g., written a scripting language such as Python) can be quickly created,

and re-used for any firmware sample using the same libraries. While this process is

neither fully automatic nor abstraction-less, we will show that this trade-off allows our

prototype system, HALucinator, to re-host dramatically more complex firmware than

other techniques, and keeping the burden on the analyst low. Furthermore, we will

show how this technique can be used to fuzz realistic firmware samples, and discover

previously-unknown vulnerabilities in firmware and libraries.

Security Retrofitting for Monolithic Firmware. In this final chapter, we explore

the challenges of retrofitting monolithic firmware images with new security measures.

First, we outline the steps any analyst must take to retrofit firmware, and show that

previous work is missing crucial aspects of the process, which are required for a practical

solution. We then automate three of these aspects—locating attacker-controlled input,

a safe retrofit injection location, and self-checks preventing modification—through the

use of novel automated program analysis techniques. We assemble these analyses into a

system, Shimware, that is able to guide the analyst in creating a working retrofitted

firmware image with a minimal amount of effort and prior knowledge of the device.

To evaluate our system, we employ both a synthetic evaluation and actual retrofitting

of three case study devices: a networked bench power supply, a Bluetooth-enabled cardiac

implant monitor, and a high-end programmable logic controller (PLC). Not only was our

system able to identify the correct sources of input, injection locations, and self-checks,

but it injected payloads to correct serious safety and security-critical vulnerabilities in

these devices.
8
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1.1 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Marius Muench, Chad

Spensky, Nilo Redini, Machiry Aravind, Yanick Fratantonio, Aurelien Francillon,

Davide Balzarotti, Yung Ryn Choe, Christopher Kruegel, and Giovanni Vigna,

and has previously appeared in the 2019 edition of the Symposium on Research in

Attacks, Instrusions and Defenses (RAID 2019).

2. The content of chapter 3 is the result of a collaboration with Abraham Clements,

Tobias Scharnowski, Paul Grosen, David Fritz, Christopher Kruegel, Giovanni Vi-

gna, Saurabh Bagchi, and Mathias Payer, and will appear in the 2020 edition of

the USENIX Security Symposium.

3. The content of chapter 4 is the result of a collaboration with Paul Grosen, Ruoyu

Wang, Nilo Redini, Saagar Jha, Sara Rampazzi, Kevin Fu, Christopher Kruegel,

and Giovanni Vigna.
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Chapter 2

Background and Related Work

2.1 The Vulnerability Lifecycle

In this section, we will frame the concepts presented in this work in the context of

how vulnerabilities in software are found and fixed by analysts today. In particular we

will discuss how this process differs on embedded systems, and the gaps in our analysis

capabilities this creates.

Vulnerability discovery and detection efforts have become a major part of the secu-

rity efforts of both device and software vendors, and third-party analysts alike. Their

combined efforts can help reduce the number of severe bugs available to hostile adver-

saries, assuming the discovered issues are ethically reported to, and fixed by, the vendors.

For third-party analysts, however, discovering new vulnerabilities is also now a lucrative

business, with numerous bug bounty programs, contests, and other entities willing to

provide significant financial compensation for their efforts.

Regardless of their identities or motives, the overall process used to find and fix

vulnerabilities in programs can be broken down into a few key steps: obtaining the

code-under-test, performing an analysis to locate potential bugs, confirming these bugs,

and creating a patch. In the case of an embedded system, particularly one running a

monolithic firmware image, the steps are similar, but with a dramatically higher level of
10
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complexity and difficulty:

1. Obtaining Code. The analyst needs to first obtain the code-under-test. Depend-

ing on the scenario, this could be source code, or a compiled binary. For common

desktop or mobile software, this step is trivial; the program to be analyzed can be

simply downloaded or installed via the Internet, an app store, or some other distri-

bution mechanism. However, the firmware of an embedded device was developed

for that device only; the manufacturer may only provide the firmware through a

specialized update mechanism (e.g., on the device itself, or through a companion

app or software package), or in some cases, not at all. Therefore, third-party ana-

lysts have the additional tedious step of obtaining this firmware through potentially

invasive means, such as attacking the device’s storage chips, or interfering with the

firmware update mechanism.

2. Environment Modeling. In order to perform a meaningful analysis, the analyst

must understand or recreate the environment in which the code-under-test is run.

When analyzing mobile or desktop applications, this step is generally inherent in

the previous step of obtaining the code. An application designed for Android, for

example, runs within Android’s well-specified environment. Tools are built with

the assumptions of this environment in mind, and allow any app built on top of

this OS’s abstraction to be quickly analyzed in a similar fashion. This is true of all

program analyses; dynamic analyses need to be able to execute the program, and

static analyses need to know enough about the environment to make meaningful

inferences.

With embedded systems, this step is profoundly more difficult, particularly for

devices based on monolithic firmware. The environment that needs to be modeled

instead consists of the device’s hardware, both within the CPU executing the code,
11
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and elsewhere. We explore this issue in depth in Section 2.2.

3. Analysis. With the environment modeled, the analyst can now examine the pro-

gram for bugs. For third-party analysts, this will typically involve binary program

analyses, such as fuzzing, static or dynamic taint tracking, and dynamic symbolic

execution-based approaches. While these same kinds of analyses are used on em-

bedded systems, they contain numerous new caveats. Firmware does not follow

a typical pattern of taking input from or interacting with the user. Many analy-

ses will also need to reason about interrupt events and timing, features typically

handled by the operating system in normal programs.

4. Patching. With newly-discovered bugs in hand, the focus now turns to prevent-

ing them from being abused in the future. This typically involves the vendor

re-compiling the software to create a patched version. Of course, this is similar for

firmware, but the primary difference is that the device vendor completely controls

the update process. Even if the vulnerability is in a library component not written

by the vendor, their complicity is typically required to create updated firmware

versions.

In summary, when searching for vulnerabilities in a device with a monolithic firmware,

there are two major gaps in the typical lifecycle that prevent analysts from readily ex-

ploring them. Complexities in modeling the execution environment prevent execution of

the code without either the original device or significant manual effort. Patching cur-

rently requires the vendor’s help, given that source code and correct build environments

are typically unavailable. As a result, analysts today often do not analyze monolithic

firmware images, due to the immense challenges involved.

In the remainder of this chapter, we will discuss these two issues in more depth. The
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following chapters will present novel approaches to both re-hosting and patching to help

close these gaps.

2.2 The Re-hosting Problem

To deal with the plethora of software applications that need to be analyzed on desk-

top and mobile platforms, the security community has developed many techniques for

enabling the scalable analysis of programs to find bugs and detect malice. In this sec-

tion, we examine what makes embedded systems different and much less tractable to

these techniques, as well as propose qualities that a system capable of analyzing arbi-

trary firmware must have.

Today’s state-of-the-art program analysis techniques, including dynamic analysis tools

such as AFL [25] or symbolic execution engines such as angr [26] or S2E [27], rely on

some form of abstraction to be tractable. Dynamic approaches typically rely on virtual-

ization to enable parallel, scalable analyses, while symbolic approaches rely on function

summarization of the underlying operating system to minimize the code that they need

to execute. In order to use any of these tools, the analyst must take the program out of

its original execution environment, and provide a suitable analysis environment able to

execute it. This is a process referred to as re-hosting.

For desktop and mobile programs, the standardization of the execution environments

(e.g., commodity hardware, which consists of a relatively small number of OSes and ar-

chitectures) has made this re-hosting process simpler. However, with embedded firmware,

many well-established assumptions fail. For example, there may not be a general-purpose

operating system designed to run arbitrary code on the device, leaving the analyst to deal

with the hardware directly. This is especially true for low-power Internet of Things (IoT)

devices, which are typically based on microcontroller-class CPUs that lack the ability to
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run such OSes. Firmware for these devices is typically obtained in the form of a binary

blob, an opaque code object containing no metadata about its contents. How this blob is

handled is entirely dependent on the CPU hardware, and will vary widely from chip to

chip. This also makes distinguishing between library code and device-specific code chal-

lenging. With no visible abstractions to use, the execution environment for embedded

firmware is the hardware itself. We can break this hardware down into three distinct

categories:

• CPU Core. The CPU core itself must, of course, be emulated. This includes the

instruction set, but also any function able to directly alter code execution, such as

the chip’s primary interrupt controller.

• On-Chip Peripherals. These peripherals include timers, bus controllers, serial

ports, General Purpose Input and Output (GPIO), and other features typically

included on the die of the CPU itself. Most CPUs expose these peripherals to the

program as Memory-Mapped Input/Output (MMIO), where they are organized as

a group of contiguous memory locations, that do not behave like normal memory.

Each group may contain multiple locations, used for configuring, checking the status

of, and exchanging data with the peripheral. An example of a typical MMIO

peripheral mapping is shown in Figure 2.1. On-chip peripherals are also responsible

for issuing interrupts, events that trigger asynchronous changes in control flow in

response to a hardware event. More precisely, a peripheral is associated with one

or more numbered interrupt “channels” or “lines”; when an interrupt occurs, the

code in the firmware associated with that interrupt (known as an Interrupt Service

Routine, or ISR) is executed. When, how, and why a peripheral issue interrupts

are all properties of the peripheral’s hardware on a particular chip, but typically

includes the arrival of data, the expiration of timers, and error conditions.
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Table 2.1: Excerpt of tools tackling the re-hosting problem

Tool Virtual Interactive Abstraction-less Automatic

Simics [10] X X X -

FIE [28] X X X -

Avatar [29] - X X -

PROSPECT [30, 31] - X - X

Surrogates [32] - X X -

Firmadyne [33] X X - X

Avatar2 [34] X X X -

P2IM [35] X X X X

Pretender X X X X

HALucinator X X X -

• External Peripherals. These peripherals are the sensors, actuators, and other

circuitry on the device’s circuit board(s). They are exposed to the program only

through one of the on-chip peripherals, including GPIO, or a bus such as Inter-

Integrated Circuit (I2C) or Serial Peripheral Interface (SPI). While from the pro-

grammer’s perspective, communicating with these peripherals is as easy as sending

and receiving messages thanks to software libraries, the resulting compiled firmware

does so through a complex series of accesses to the MMIO regions of on-chip pe-

ripherals, making the direct flow of data in and out of each peripheral difficult

to observe. This is also the source of the most variety in embedded systems, as

these devices typically contain entirely-custom circuit boards, with whatever array

of components the designers felt were necessary.

2.2.1 Aspects of Ideal Re-Hosting

Many solutions have been proposed to enable firmware re-hosting, each with their

own qualities and drawbacks. To showcase their differences, we identify four salient

properties that an ideal analysis system, capable of handling arbitrary firmware, should
15
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possess. Table 2.1 shows prevalent tools that tackled the re-hosting problem in the past,

and classifies them according to the aspects, which are described as follows.

Abstraction-less. An ideal re-hosting solution should not rely on a software abstraction

that greatly limits the kinds of firmware on which it can be used. Recently, advances

have been made in re-hosting firmware based on the abstractions provided by the Linux

OS [33, 36]. Using such an abstraction, when it exists, is advantageous, but it naturally

limits the scope of firmware to those that do not have a significant coupling between

their primary function and the underlying hardware. Relying on an OS precludes the

analysis of, for example, the blob firmware we explore in this work. However, as we

explore in Chapter 4, even blob firmware samples are often built with an abstraction in

mind, although it must be located in the binary in order to be used as such. We therefore

show how we can trade the goal of idealized rehosting, which should indeed not rely on

an abstraction, for the ability to rehost more complex firmware.

Firmware relying on an abstraction can also be simulated without full emulation,

if source code is available. Simulators for Contiki [37], mBed [38] and RIOT-OS [39]

allow the developer to compile their firmware code into a binary that can run on the

host system. In contrast, HALucinator allows for a similar kind of re-hosting to be

performed, but on the final firmware binary, and without the availability of source code.

HALucinator draws some inspiration from the work done in game console emula-

tion [40, 41], which pioneered the idea of High Level Emulation, albeit applied to specific

hardware environments and software stacks. HALucinator represents a generalization

of this idea, and presents the first known application to embedded firmware for security.

Virtual. A re-hosting solution should not depend on the presence of hardware dur-

ing analysis. Many proposed approaches to firmware analysis [29, 32, 30, 42] require

hardware-in-the-loop execution. However, such approaches inherently limit the scale of
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the analyses. In a dynamic context, only one thread of execution is possible per-device,

and re-starting execution, which happens very often in modern fuzzers, can incur a signif-

icant time penalty [43]. One way to allow those optimizations, however, is presented by

Kammerstetter, et al. [31], who proposed a means of caching requests and responses be-

tween a program and the high-level device objects exposed by its Linux-based firmware.

While this approach also concerns approximating state, and has a similar goal, it is

distinct from the State Approximation approach we present here, as it attempts to un-

derstand the state of the program as a proxy for the state of the peripheral, and not the

state of the peripheral directly.

Another way to move from a hardware-in-the-loop approach to a fully emulated envi-

ronment is proposed by Zaddach [44]. Hereby, peripheral fingerprints are first generated

by recording MMIO traces in a manner similar to Pretender. Afterwards, those finger-

prints are used to match peripherals which are already known to a given emulator. While

this allows accurate emulation of peripherals if successful, a single unknown peripheral

would spoil hardware-less emulation.

Symbolic execution is even more impacted by such approaches; analyses using hardware-

in-the-loop must be careful to only execute portions of code that do not contain hardware

interactions, to avoid corrupting the hardware’s state visible by all parallel code paths

being explored. Cost also becomes a factor, as each analyst wishing to explore a set of

devices must purchase and instrument the devices, which raises the barrier to entry for

firmware analysis. While hardware-in-the-loop techniques do allow for interactive, rela-

tively low-effort analyses, they are by no means adequate for thorough program analyses

of arbitrary firmware.

A recent system proposed by Talebi, et al. [45] employs a hybrid of Linux-based

rehosting and hardware-in-the-loop to enable the fuzzing of device drivers. While moving

the bulk of the execution to an already-rehosted system presents speed improvements over
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on-device fuzzing, it inherits the limitations of both approaches: dependence on the Linux

abstraction, scalability limitations due to the need for a device, and incompatibilities with

DMA.

Interactive. A re-hosting solution should be responsive to new program input. While

defining the notion of input on an embedded firmware is itself a nuanced problem, the

remaining hardware (not used as the source of input) should react accordingly. Trace

replay-based solutions, such as PANDA [46], while quite flexible and useful for certain

analyses, are not interactive and cannot be used to implement fuzzing or symbolic exe-

cution, which rely on this primitive.

Automatic. An ideal re-hosting solution should not require a significant effort per-

device to use. The diversity in on-chip and external peripherals is so severe, that it is

highly unlikely that any firmware can be emulated out-of-the-box with a commercial or

open-source emulation package.

While some commercial systems provide the ability to rehost completely custom hard-

ware architectures (e.g., Simics [10]), these systems still require the hardware models to

be programmed manually. This is made worse by customizable CPU cores, and the

diverse array of electronics components that the electronics industry continues to sup-

port. Even static and symbolic analysis tools [47, 28, 48] heavily rely on the manual

specification of hardware behavior, particularly around IO and interrupts.

While there is little useful data able to quantify embedded CPU diversity, and doc-

umentation from vendors is not in a comparable form, we managed to locate a dataset

of 555 CMSIS System View Description (SVD) files [49], which are XML files describing

chipsets based on Cortex-M microcontrollers. They detail the on-chip peripheral loca-

tions and layouts of 463 distinct chips across 13 different chip vendors. This collection is

by no means complete (it does not even include all of the chips used in our experiments
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in Chapter 3 Section 3.2), but it shows the complexity and the scale of this problem. In

this dataset alone, we could identify 1592 unique implementations of peripherals demon-

strating the immense variety of peripheral and chip designs.

This complexity increases even more when considering external peripherals connected

to the chip via on-chip buses and interrupt controllers. Hence, emulators such as QEMU [50]

have to include carefully and—up to now—manually crafted implementations of periph-

erals and align them at the right location. In fact, the upstream version of QEMU only

exposes implementations for three different Cortex-M chips, none of them present in the

above dataset.

As a result, analysts end up creating their own peripheral and board implementa-

tions and maintaining them in separate forks of the project, such as QEMU STM32 [51]

or GNU MCU Eclipse [52]. A different approach is taken by LuaQEMU [53] and

avatar2 [34], which provide an interface for the analyst to define the peripheral layout.

While these may be preferable to languages such as C used by QEMU itself, the analyst

is still required to obtain and understand the full documentation for the particular CPU

model used, and this effort may not transfer entirely to other similar CPUs, even from

the same vendor. Therefore, it is very clear that an automated solution is needed to be

able to make firmware analysis tractable.

In Chapter 3, we will present the first system aiming at ideal rehosting. Subsequent to

this work’s publication, other attempts have been made, such as P2IM [35]. Naturally, no

system presented here or elsewhere claims to have completely achieved ideal re-hosting;

we discuss the limitations of this in Section 3.3
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Figure 2.1: The memory layout for a simple 32 bit memory-mapped timer on the STM32

embedded processor.

2.3 Library Matching

HALucinator’s LibMatch component builds upon related work in binary library

matching and naming.

Previous work has explored various aspects of “function identification”. As this term

has many over-loaded uses, it is important to distinguish the problem LibMatch solves

(labeling specific binary function names in firmware samples) from others. BinDiff [54,

55], and its open source counterpart Diaphora [56] use graph-matching techniques to

effectively and efficiently compare two programs. While these tools can be effectively

used to label functions, by matching a target binary to each library object, the tool does

not account for collisions.

ByteWeight [57] identifies the locations (e.g., start and end) of functions by computing

a prefix-tree of likely sequences based on a database of known libraries but does not attach

labels to located functions. LibMatch must also perform this analysis to eventually label

function names in firmware, but ByteWeight itself does not attach any label to the

functions it locates. The angr platform underlying LibMatch incorporates the results of
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ByteWeight in its CFG recovery algorithm.

Multiple previous works have explored the problem of function labeling, using various

combinations of features extracted from functions, and matching methods, to associate

one set of code from another. Feature extraction techniques include function preamble-

based signatures [58], backward slices from system calls [59], and traces from symbolic

execution [60, 61]. Matching the extracted features has been performed through Bayesian

networks [62], neural networks [63], and locality-sensitive hashing [64]. Unfortunately,

none of these systems are suited for labeling functions in firmware due to several chal-

lenges: the inability to analyze or execute ARM Cortex-M code, the lack of information

available to machine learning approaches due to small size and close similarity of func-

tions in HALs, and the inability of some approaches to deal with collisions in an efficient

way. This lack of existing approaches leads us to develop our function matching approach

that is tailored to embedded firmware.

2.4 Binary Patching

Many previous works have explored the area of patching binary programs. Each has

various pros, cons, limitations, and assumptions, which must be compared to understand

the current state of the field.

Wenzl, et al. [65] dissect this area of research, and define four common steps to binary

rewriting: Parsing, Analysis, Transformation, and Code Generation. The work in this

area varies in terms of how they handle each of these steps.

The largest class of this work concerns reassemblable disassembly [66, 22, 21], the

notion of disassembling a binary completely into standard assembly code for the archi-

tecture in question, adjusting the code, and then simply assembling it again into the

finished binary. This is a preferable technique for the analyst, as it makes the Trans-

21



Background and Related Work Chapter 2

formation and Code Generation step easy; assembly can be easily patched manually or

automatically via the human-readable assembly code, and turned into a binary again

with standard tools.

However, this work presents problems when it comes to tackling the rewriting of

firmware. First, reassembly assumes that the firmware can be disassembled completely

during the Parsing phase. This includes the inter-related problems of distinguishing

code and data, finding function boundaries, distinguishing pointers from integers, and

the resolution of indirect jumps. Unless we can re-host the firmware into an emulated

environment, we are left with performing those tasks entirely statically. We also are

dealing with monolithic firmware images, and therefore do not have an explicit memory

map, symbols, or other metadata that can make these steps easier. Therefore, we cannot

guarantee the completeness of the disassembly, control-flow recovery, or function iden-

tification. As an indicator of this challenge, the samples in Chapter 5 Section 5.4 have

an average of 401 unresolved indirect jumps after angr’s resolution mechanisms (based

on [67], with our real-world firmware samples having an order of magnitude more than

vendor sample code. Since monolithic firmware is not position independent by nature, if

we cannot locate every pointer, including those used to access code and data, and adjust

them during reassembly, the firmware will not execute correctly.

On top of this, many aspects of these approaches are architecture-specific, with the

majority of works focusing only on Intel x86 binaries [66, 22, 68, 69], or requiring x86

hardware extensions [70]. Some caveats related to ARM instruction set features that

inhibit the Parsing and Analysis phases were addressed by Kim, et al. [23], but the

approach still inherits the aforementioned severe limitations of reassembly.

Another emerging class of work revolves around transferring patches from one pro-

gram to another. OSSPatch [71] works by leveraging source code of open-source projects

used in the unpatched target binary to retrofit patches from their upstream sources. A
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similar work [72] aims to transfer the patched portions of compiled binaries, without the

source code. In our scenario, the patch has simply not been developed, and will not be

developed by the manufacturer, therefore we cannot leverage either of these approaches.

Finally, while the above work has explored the Parsing, Analysis, and Transformation

aspects of binary rewriting, little thought has thus far been given to the Code Generation

portion. Unfortunately, this is where the unique challenges of embedded systems, and

particularly safety-hardened systems, begin to restrict our ability to patch. First, all of

the above work assumes that, when a patched binary is created, the system will simply

execute this binary instead of the original. As we discuss in Chapter 5 Section 5.1, most

commercial embedded systems contain self-checks to guard against accidental modifica-

tion or corruption of the firmware (e.g., CRCs and checksums), or intentional manipula-

tion by an attacker or user (e.g., digital signatures) which must be located, and bypassed,

for a patch to work. On top of this, it is also assumed by reassembly-based approaches

that we have the toolchain needed to create a functioning binary image. In the case

of a monolithic firmware image, we do not know what format, if any, is present in the

firmware, or what tools may have been used to create it.

Additionally, we need to find space for our added code, either within the image, or

by appending it to the end. Since we often obtain monolithic firmware in the form

of full flash images (e.g., we cannot simply append data to the end), we must decide

what in this image can be removed, or what apparently-empty space is indeed available.

This relates to the problem of binary de-bloating, the known-undecidable problem of

removing unnecessary content from a program. Recent work has proposed solutions for

debloating Dockerized applications [73], during program compilation [74], or using shared

library files [75]. Naturally, these kinds of approaches involve extensive knowledge of the

program, in the form of source code, object code, or simply do not apply to the firmware

domain.
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Razor [76] uses a series of test-cases, along with the collection of execution traces

and heuristics to determine removable portions of code. Unfortunately, as we mention

in Chapter 5 Section 5.1, this kind of trace collection is not possible in the embedded

systems domain, without a successful re-hosting solution. Redini, et al. [67] propose

BinTrimmer, which aims to remove unnecessary code, without using any of the above

assumptions. It does so through improvements to indirect jump resolution, which are

used as the basis for angr’s own indirect jump resolver, although, as mentioned above,

this too is not complete enough to be useful in this context.

In summary, these numerous issues combine to rule out any Dynamic or Full Trans-

lation approaches (as defined by Wenzl, et al. [65]), and we must resort to the more

simplistic Direct or Minimal Invasive techniques when dealing with monolithic firmware

images. Even these (such as Detours [24]) require us to solve at least the problems of

code insertion, self-checks, and sources of security-relevant data, which we focus on in

this work.
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Chapter 3

Toward Firmware Analysis through
Automated Re-Hosting

In this chapter, we propose an approach, aiming to achieve ideal re-hosting (as defined

in Chapter 2, and propose a proof-of-concept system, called Pretender, which is able

to observe hardware-firmware interactions and create models of hardware peripherals

automatically. Our system first creates a recording of real interactions between the

firmware and its hardware, and uses machine learning and pattern recognition techniques

to create models for each peripheral on the CPU. The generated models can then be

leveraged by popular full-system emulators (e.g., QEMU [50]) or program analysis engines

(e.g., angr [26]) to enable precise, scalable, interactive analyses of the accompanying

firmware.

While automated re-hosting may seem conceptually straightforward, the challenges

in modeling even simple hardware-firmware interactions are numerous. We may think

of a peripheral, such as a serial port, as a simple object that sends and receives data,

but the firmware’s view of this hardware is much more complex, consisting of dozens

of individual configuration, status, or data registers, which, from the point-of-view of

the firmware, appear as only opaque memory accesses, without any indication of their

layout or behavior. Two peripherals performing the same function on two different CPUs,
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even from the same vendor, vary wildly in terms of memory layout and implementation

details. On top of this, accesses to these peripherals occur within the CPU itself, and

obtaining these interactions for modeling is its own challenge. Interrupts are also a

common feature of embedded peripherals, and must occur exactly as expected, or the

hardware or firmware may fail.

To evaluate our approach, we demonstrate our recording and modeling techniques on a

set of six unique “blob” firmware samples,each on three different hardware platforms, with

associated external peripheral devices. Our experiments show that Pretender is able

to successfully extract the peripheral models and execute the firmware in a fully emulated

environment. The models offer enough interactivity to allow for the exploration of parts

of the program not seen during recording or training. We further show the potential for

direct applications to dynamic analysis, by using these modeled environments to trigger

synthetic security vulnerabilities in the firmware samples. The hardware modeled in

these experiments represents CPUs and other components common to low-power IoT and

embedded devices. However, many challenges remain before typical commercial devices

can be modeled in full. We nevertheless believe that the goal of automated firmware

re-hosting is both achievable and necessary. Therefore, we conclude with a discussion of

limitations, open problems, and next steps toward tackling the complexity of commercial

devices.

In summary, our contributions in this chapter are as follows:

• We explore the problem of firmware re-hosting, and show that virtual, interactive,

automatic, and abstraction-less approaches are needed to handle today’s diverse

firmware.

• We present Pretender, a proof-of-concept system able to automatically build

hardware models, through a mix of novel hardware and interrupt recording tech-
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Figure 3.1: Overview of the functionality of Pretender

niques, machine learning, and peripheral state approximation.1.

• We apply Pretender to multiple firmware samples across multiple hardware plat-

forms and show that the generated peripheral models are accurate, automatic, and

interactive enough to enable program analysis and vulnerability discovery.

3.1 Methodology

In this section, we present Pretender, a step toward automating the modeling

of MMIO and interrupt-driven hardware peripherals to enable re-hosting. The goal is

to gather data on, and build models of, these peripherals, such that the firmware under

analysis can later be independently executed in a CPU emulator. We present our solution

in the context of its use to support dynamic analysis of firmware, although the generated

models have other possible uses, which we will discuss in more detail in Section 3.3.

The success metric we adopt to evaluate the completeness of the extracted models

is what we call survivable execution, which we define as the ability for the firmware to
1To allow the reproducibility of this work, the source code to this work is available at https://

github.com/ucsb-seclab/pretender
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execute the same regions of code as it would if the original hardware were present, without

faulting, stalling, or otherwise impeding this process. We include in this definition the

need for our program to be interactive, as this is a requirement for many analyses. That

is, the firmware and our hardware models need to be able to operate on inputs and execute

code paths that were not observed during the recording and model-generation phase.

Assumptions and Prerequisites. We make a few basic assumptions in the implemen-

tation of Pretender.

• We assume that a CPU emulator is available for the target device, and that this

emulator supports all CPU features that can impact control flow, including the

interrupt controller.

• We assume the analyst has the ability to observe memory accesses and the oc-

currence of interrupts in the device in real-time. We will present a method for

accomplishing this on any device with a basic debugging interface, lowering the

requirement to the ability to read and write the device’s memory.

• We assume that the basic memory layout of the target device is known, particularly

the location of code and data in the memory space. More generally, we need to

know where these areas are not located, as we can assume that the remaining areas

are interesting locations we wish to model, including the MMIO regions.

• We assume that a human or automated process is able to interact with the hardware

and that it achieves sufficient code coverage during the recording phase to reveal

enough hardware interactions to generate a model. The more complete the code

coverage is, the more detailed the extracted model will be.

A discussion of these assumptions can be found in Section 3.3.

Pretender works in the following phases:
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1. Recording. We instrument the device to obtain a trace of accesses to the MMIO

regions, and any interrupt that occurs during the execution.

2. Peripheral Clustering. We locate the boundaries of each distinct peripheral

within the device’s memory space, and divide the recording into sub-recordings for

each peripheral.

3. Interrupt Inference. Based on the interleaving of interrupts with MMIO, we

assign each numbered interrupt event to a peripheral group. We then infer which

bits in which memory location in the peripheral control interrupts, and create

timing patterns to be used during emulation.

4. Memory Model Training. In this step, we attempt to select and train known

models for each memory location within the identified peripheral regions. Any

unidentified memory locations will be modeled using State Approximation.

5. Test Harness Creation. Finally, the analyst must decide how input should be

introduced into the system, through the creation of a simple test harness. This is

the only manual step in the process, as the decision depends on the analyst’s needs.

A complete overview of Pretender and the interplay between its different parts

can be seen in Figure 3.1. In the remainder of this section, we will discuss the individual

phases of the system in detail.

3.1.1 Recording MMIO

The natural first step in building models of hardware is recording a trace of the

IO activity that occurred during execution. As we outline in Section 2.2, the firmware

depends on both internal “on-chip” peripherals, and external “off-chip” peripherals, both

of which are needed for the firmware to operate as expected. However, the firmware only
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communicates with off-chip peripherals through its interactions with on-chip peripherals,

so in order to have a complete recording, we must capture all memory accesses that

constitute MMIO.

Rationale. Peripherals are considered “memory-mapped” because they are attached

to, and addressed via, one of the CPU’s internal memory buses. Unlike external buses,

which can be physically probed and monitored, these interactions only occur within the

CPU’s die, and cannot be directly monitored. While some debugging facilities used in

the development of new chips offer a data trace of the memory bus, such as ARM’s

ETM/HTM Data Trace, these features are seldom available on production chips, and

are entirely absent in the low-cost, low-pin-count chips of commercial embedded devices.

Typical CPUs found in the wild include, at best, a debugger capable of simple execution

control, and memory/register access.

On top of this, MMIO behaves differently from a normal region of memory; instead

of just storing data, these locations instead control or represent aspects of on-chip pe-

ripherals. Their value or function may change based on external factors, without any

interaction with the firmware.

One possible alternative approach to MMIO recording would be to instrument the

firmware to record IO interactions. This requires us to understand, from the binary

firmware itself, where this IO takes place. This could be done on architectures where

explicit in and out instructions are used for peripherals. On ARM, however, this is not

a straightforward operation, as peripherals are accessed via normal memory handling

instructions (LDR/STR), and it is often difficult to tell statically whether an instruction

is addressing a peripheral or normal memory. Inserting this instrumentation code non-

destructively, and collecting the cumbersome volumes of data it generates, are both hard

problems, and may even be impossible if the code is present on a Read-Only Memory

(ROM).
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Figure 3.2: State diagram of interrupt recording in Pretender. * indicates the initial state.

Recording Implementation. As a result of these complications, our recording ap-

proach leverages a hardware-in-the-loop execution approach, where the firmware is de-

ployed in an emulator, and the MMIO requests are forwarded to the original hardware,

which allows recording in-transit. We built upon the avatar2 framework [34], which allows

for the simultaneous control and orchestration of emulators and hardware. Avatar2 sup-

ports an event-based callback infrastructure, which allowed us to implement the recording

of memory events.
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3.1.2 Recording Interrupts

In order to fully model on-chip hardware peripherals, we must observe the interrupts

that they generate, in the context of the MMIO activity of the firmware.

Rationale. Interrupts play an important role in most peripherals, and are a particularly

difficult aspect to record and model correctly. Interrupts are triggered by some event,

whether it is an explicit MMIO operation, or an event in the physical world, and cause

the execution of Interrupt Service Routines (ISRs) as a result. These ISRs typically

contain MMIO operations associated with the peripheral that triggered the interrupt

(e.g., reading data that arrives at a serial port or counting the number of times a counter

overflows). Without the peripherals’ ISRs executing at the correct times, the peripherals

may not function, or the system may crash. This behavior is a property of the hardware

itself; the internal logic of the peripheral decides when and how often to trigger its

associated interrupts. Many peripherals allow this behavior to be adjusted at runtime,

through their configuration registers. For example, many peripherals have a single bit in

their configuration register controlling whether interrupt events are generated at all.

Hardware features exist on many chips for providing a log of the interrupts, such as

ARM’s Instrumentation Trace Macrocell (ITM), but these features are not universal, and

are difficult to coordinate with simultaneous peripheral recording or even basic hardware-

in-the-loop emulation. Hence, previous solutions, such as the first version of the Avatar

framework [29] or SURROGATES [32] tried to tackle interrupt forwarding with custom

stubs injected onto the device under analysis. However, both of these solutions forward

interrupts in a “fire-and-forget” manner. This results in inconsistencies between hardware

and emulated firmware, as incoming interrupts on the hardware could easily be missed

when the emulator serves a previous interrupt. Although those inconsistencies are a neg-

ligible problem for manual analysis, they dramatically complicate automated modeling,
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and must be avoided. A more recent approach, presented by Corteggiani et al. [42], uses

a custom tailored protocol to keep hardware and emulator synchronized during interrupt

forwarding. Unfortunately, this method requires custom debugging hardware that would

greatly reduce the generality of Pretender.

Hence, we heavily extended avatar2 to support the notion of forwarding and record-

ing interrupts, while carefully keeping the two systems synchronized without the need

of specialized debugging hardware. The current published version of avatar2 retains the

hardware in a “debug-halt” state while forwarding memory accesses, in order to avoid

side-effects from the resident code. Unfortunately, this debug-halt state inhibits all inter-

rupts, and thus cannot be used as-is. However, we cannot simply keep the CPU running

and forward all of the generated interrupts into the emulator; if too many un-handled

interrupts arrive, or spurious, unwanted interrupts occur, the hardware or emulator can

experience an unrecoverable fault. The current version of avatar2 also does not support

writing to memory while the CPU is running. To make matters worse, halting the CPU

during interrupt routines is problematic, as we noticed that some peripherals, partic-

ularly those that control future interrupts, will not work properly in this halted state

because they are bound to the CPU’s instruction pipeline. As a final complication, we

must ensure that we return from these interrupts properly, both in the emulator and on

the hardware to ensure that the hardware continues to function, even though it is not

executing any code.

Interrupt Recording Implementation. Figure 3.2 shows how interrupts are recorded

in Pretender. As interrupts are generated on the real device, we should have the

Real CPU running. Hence, we always have the Real CPU execute an infinite loop.

Furthermore, we replace the ISR of all the interrupts with a recording stub (shown in

dotted box in the Figure 3.2).

When an interrupt occurs (Step 1), the recording stub is triggered, which immediately
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reports the interrupt number to Pretender (i.e., the Emulated CPU), and halts the

Real CPU (Step 2). The emulated CPU then starts executing the actual ISR for the

corresponding interrupt, and directs the real CPU to run a loop in the interrupt’s context

to mimic the execution of the interrupt (Step 3). Once the ISR completes execution on

the emulated CPU (Step 4), Pretender redirects the execution of the Real CPU to the

default infinite loop, and the Emulated CPU to continue executing the firmware (Step 5).

This ensures that both the hardware and emulated interrupt controllers are synchronized.

3.1.3 Peripheral Clustering

With the combined MMIO and interrupt recording collected, we can now proceed to

reason about and model the peripherals themselves. In the end, we need to construct a

model, such that each MMIO location that the firmware accesses returns a reasonable

value. However, these locations are not independent; multiple locations represent one

logical device in the silicon of the chip, which has its own concept of state, control

interrupts, and so on. For example, writing a byte to the data register of a serial port may

cause the “transfer in progress” or “busy” flag to become active in the same peripheral’s

status register. Therefore, a major prerequisite to the future modeling steps is to group

all memory accesses by their associated peripherals.

To do this, we rely on the intuition that each MMIO peripheral is typically associated

with a block of contiguous memory addresses (e.g., 0xC00-0xCFF in Figure 2.1) . While

we cannot be sure exactly what the boundaries between the peripherals are, we assume

there is some fixed alignment for—and the minimal gap between—them, likely due to the

underlying details of the peripheral buses that serve MMIO peripherals. These details are

supported by the SVD data explored in Section 2.2, as well as the manuals for all of the

devices explored in Section 3.2. We can, therefore, find our peripheral boundaries through
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clustering techniques. For this work, we take the set of accessed addresses and employ the

Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [77]

to recover the peripheral groupings.

The intuition behind this choice is that each peripheral will appear as a small cluster of

accesses in a relatively sparse memory space. For example, in Figure 2.1, while an entire

page of memory (0x1000) is allocated to the timer, only a small portion (0x00-0x50)

of that memory space is actually used, meaning that subsequent peripherals in memory

will likely have large gaps between their relative clusters. DBSCAN is able to quickly

discern these clusters, providing us with the capability to efficiently group the various

accesses. In our work, we set our maximum gap between any of the addresses in a

cluster (i.e., epsilon) to be 0x100 and the minimum cluster size to be one. Almost any

reasonable value for epsilon (e.g., 0x8-0x100) would likely produce identical and useful

clusters, and our minimum cluster size of one ensures that we will not exclude simple or

infrequently-used peripherals from our models.

3.1.4 Interrupt Inference

In order to model interrupts correctly, we need to establish a reasonable approxima-

tion for when to fire each interrupt and which MMIO event triggered it. First, we find

the association between the interrupt number and the peripheral firing the interrupt,

which is a property of the hardware that varies widely between chip models. Then, we

discern which MMIO register is used to enable and disable each interrupt, so that we do

not fire it too soon or too late in the execution. Finally, we determine how often to fire

interrupts when they are eventually enabled.

To associate an interrupt with a peripheral, we examine the interleaved interrupt and

MMIO traces and locate all of the MMIO operations that occur during an Interrupt
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Service Routine (ISR) (e.g., between an interrupt event and the emulator returning from

the ISR). We leverage the intuition that the purpose of most interrupts is to trigger the

firmware to communicate with the interrupting peripheral, by executing the code in the

ISR. Therefore, we associate an interrupt number with a peripheral if that peripheral’s

MMIO addresses were accessed the most during the ISR’s execution.

We then locate the memory location containing the interrupt’s trigger, which is a

location in the peripheral which, when a certain bit pattern is written, causes interrupts

to be enabled. The location can be determined by finding the very first interrupt for a

given interrupt number, and seeking backward in the MMIO/interrupt trace until a write

to the associated peripheral is found. This is intuitively the configuration, or interrupt-

enable register, as it is best practice to enable interrupts as the final step during peripheral

configuration, as, after this point, any operation could be interrupted. However, this

memory location may be shared with other functions, and many bit patterns may be

written to it during an execution which have no effect on interrupts. The next step is

therefore to refine the bit pattern which can enable interrupts in the model, based on

which writes appear to control interrupt behavior in the hardware. We start with the

assumption that all bits in the trigger location control the interrupts. For each write to

the detected trigger location, if a bit is set to 0 when interrupts occur, it is unlikely to

be the interrupt trigger bit, and is removed from consideration. The remaining bits are

considered the final interrupt trigger; during emulation, when these bits are set in the

trigger location, interrupt events will be fired by the model.

Finally, we must determine how often to fire interrupts when they are enabled. There

are various kinds of interrupts: pulse interrupts occur once for every event they represent,

and level interrupts occur repeatedly until some MMIO action disables them. While level

interrupts would be easy to model based on the state of the peripheral, we cannot reliably

distinguish these two types in the recording data. As a result, the most general, flexible
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approach is to use interrupt timings. Interrupts can also be very frequent. Since these

are the timings seen during Pretender’s recording, we can be sure that the emulator

can at least support interrupts at this speed. We collect the timings between an interrupt

return and the beginning of the next interrupt (as well as between the trigger and the

first interrupt) and create a repeating sequence. As long as interrupts are enabled via

the correct bits in the interrupt trigger location, they will be fired repeatedly until they

are disabled.

The result is a peripheral model for which interrupts can be enabled and disabled by

the program in a realistic manner, and with timing intervals that the emulator can sup-

port. We find that these intuitive heuristics both align well with the design of peripherals,

and also work well in practice, as we show in Section 3.2.

3.1.5 Memory Model Training

In this step, we select a model for each memory location in a peripheral. We first

look for common memory access patterns, which allow us to train accurate models for

these common types of interactions. For some memory locations, where more complex,

stateful, functionality is implemented, we employ a state approximation mechanism, able

to provide known-valid sequences of observed values for that specific memory location,

based on what state we infer the peripheral to be in.

There are a few basic types of MMIO registers common to many peripherals (e.g.,

configuration registers, status registers, and counters). By using simplified models for

these, we can allow this part of our model to maintain flexibility, and operate as inde-

pendently as possible from the circumstances of the recording. We identify and model a

number of classes of MMIO:

• the Simple Storage Model is used for memory locations that were observed to always
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act like normal memory. That is, the value returned for a read from a location was

always identical to the most recent value written to that location;

• the Pattern Model is used for memory locations whose read values appear to fol-

low some repeating pattern (e.g., 0, 1, 1, 0, 1, 1, ...), including locations that always

return a static value;

• the Increasing Model is used for values that are eventually monotonically increasing

(i.e., the last half of the observations were increasing), which is typically indicative

of a timer or counter;

• and theWrite-only Model is used for memory locations that were only ever observed

to be written to, which are effectively ignored from a modeling perspective, but

interesting for our state approximation, as they are likely configuration registers

that directly affect the state of the peripheral.

While these models are relatively straightforward, our Increasing Model requires mul-

tiple iterations of linear regression modeling to find the best fit line. This is because these

incrementing values are typically configured during the boot process, which means that

their initially read values are unlikely to be indicative of the actual rate of increase. For

example, a counter may start on boot at a certain rate, then the firmware will configure

a new rate and reset the timer, resulting in two distinct functions represented by the

same memory value. To handle this, we iteratively remove outliers (i.e., values that have

a correct p-value greater than 0.0001) from our regression model until we have a good-

fitting function for the steady-state increase. When we are replaying this model, we first

replay the initial outlier values verbatim, and only switch our projection function once

initial values are exhausted and the long-term behavior is expected.

State Approximation. The remainder of locations within a peripheral represent those
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locations that do not follow any easily identifiable pattern. These locations can represent

external sources of input or external physical phenomena, reflect large amounts of state

invisible to the CPU (e.g., the internals of on-chip peripherals), and be related to the

behavior of interrupts. Therefore, methods relying on function-fitting or direct recovery

of a state machine involving these memory locations simply will not suffice.

Rationale. Our state approximation model is used when a MMIO location does not

fit any other model. According to our observations, these tend to be the locations in a

peripheral directly affected by external events, such as the data register of a serial port,

a bus controller, or a status and event flag register.

These locations are the most challenging to model and emulate. For example, in the

case of an I2C bus controller, there are many sources of state, and numerous causes for

the state to change, many of which are not observable. From the software’s perspective,

the I2C bus controller presents an MMIO interface, which specifies how the bus protocol

is spoken (baud rate, master/slave), whether queuing is enabled or interrupt are fired,

and so on. At another layer, the hardware between the MMIO and the pins has a

state, containing the data queue, bus-related timers, and other condition flags not visible

directly through MMIO. Both of these portions also occur in the device on the other side

of the bus. Finally, the two devices share a protocol spoken on the I2C bus itself, which

specifies an ordering of events (start symbol, address, data with acknowledgment, etc.).

The result of this is a series of composed, inter-related state machines, which also rely

somewhat on the physical world’s events, and can only be observed through the rather

limited window of MMIO memory accesses.

Unfortunately, this means that we fail the requirements of state machine recovery

techniques, which are typically used to infer states and transitions from an activity trace.

We do not know the number of possible states, we cannot tell when two states are

equivalent, and it is challenging to know concretely if we have even changed the state
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Figure 3.1.1: Illustration of State Approximation in action, on a simplified serial port peripheral

of the peripheral. We also cannot easily distinguish data registers, which may contain

data respecting some protocol, from others containing status flags, error codes, and

configuration data. However, it is also not sufficient to simply replay values verbatim

from the recorded trace. This is because our models need to be able to function even when

we observe deviation from the recording caused by new input, timing-related deviations

caused by differences between the hardware and emulator, as well as to tolerate the

asynchronous and non-deterministic occurrence of interrupts.

State Approximation Implementation. As a first step toward addressing these chal-

lenges, we instead make an approximation of the device’s state, using only the observed

trace’s data and ordering, by inferring state transitions we know must exist. We observe

that writes to MMIO addresses are typically used to cause a change in state (e.g., the

transmission of data to external hardware or a change in the internal configuration of a

peripheral), and approximate that the activity between two writes found in an MMIO
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recording may roughly represent the same state of the overall peripheral. Interrupts also

represent a change in state, although we cannot know concretely what change in state

they represent. Reading data can also change the state of a peripheral, but in a more

subtle way (e.g., reading a byte from a serial port causes it to be removed from an inter-

nal hardware buffer, and a subsequent read to the same address will return a different

value).

With these intuitions in mind, our State Approximation model consists of the trace

of MMIO and interrupt activity for a given peripheral, and a state pointer consisting

of where in the trace we believe best approximates the state of both the program and

the peripheral. At the beginning of execution, the state points to the beginning of the

trace. We update this state based on the following rules: When an MMIO address for

this peripheral is read, we look ahead in the trace to find the next time this location was

read. If it is found, we return this value, and update the state pointer to this location. If

we encounter a write, an interrupt, or the end of the trace before we find one, we instead

return the most recent value for that location, and do not update the state pointer. This

encodes the behavior that values read from MMIO may be sequential (as in the serial

port buffer mentioned earlier) and that they respect the boundaries of state caused by

writes and interrupts.

When a write to the peripheral’s MMIO occurs, or the associated interrupt event

is triggered, we look forward in the trace for the next location where the same event

occurred, and update the state pointer. If we do not find it before the end of the trace,

we instead seek backward through the trace. If the value written is entirely new, we

do not update the state pointer. These rules allow our model to respond intelligently

to changes in its mode, or new commands, regardless of the order they occur during

execution, particularly when new input causes deviation from the trace.

State Approximation Example. As an example, consider a hypothetical device that
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uses a serial port to act as a client for the thermostat we model in Section 3.2. This

device’s firmware will query the thermostat, with ‘t’ and ‘h’, and expect a properly

formatted temperature or humidity in return. Furthermore, the firmware reacts to this

data, for instance by sending the information across a network, or raising an alarm. The

device firmware must receive a response from the thermostat when expected, and the

response must make sense for the given command, for the firmware to behave correctly.

An illustration of what this model might look like can be seen in Figure 3.1.1. Note

that, in a real-world scenario, there will be many peripherals needed to operate the

firmware, but here we focus on just one to better explain its behavior. The client de-

vice’s serial controller contains many registers, including a configuration register, a status

register, a data register, as well as assorted registers governing physical hardware details,

like baud rate. Each of these is addressed by its own MMIO location, in a contiguous

memory region we identified during clustering. We notice, from our traces and previous

Memory Model Training, that the configuration register is a simple storage location, and

the baud rate control register is only ever written to. The contents of the status register

follow a pattern, alternating between the values 0x1 and 0x3, which we will interpret as

whether data is ready to receive or not. The data register, on the other hand, will change

without respecting any pattern or direct stimulation from the firmware. Therefore, this

location is handled by State Approximation.

When emulation begins, we start in the peripheral’s initial state; during boot-up, the

firmware configures the serial port, writing to the configuration register to enable the

serial port, and set the baud rate to 9600, advancing the peripheral’s state pointer to

the point at which these actions occurred. The firmware then begins its main loop, and

requests a temperature, by writing a ‘t’ into the data register. Naturally, the next thing

that happens chronologically is for the status register to indicate that bytes are ready to

read, and the firmware will read a temperature value out of the data register one byte at
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a time (e.g., “24.24C”). Similar actions occur if an ‘h’ is written to the data register by

the firmware; the status register indicates new data, and the firmware reads it back (e.g.,

“50.35%”). However, when emulating with new input, interrupts, or after the duration of

the original peripheral’s chronologically observed states, we must make a decision about

what state the peripheral is in. In these cases, following the simple rules in Section 3.1, we

will enter the state where a ‘t’ or an ‘h’ was written to the data register, and subsequent

reads will return a temperature or a humidity. In this simple example, the serial port

will, after some time, return only the last valid temperature and humidity values, but

it will continue to return only temperatures or humidities when asked for, and respect

whatever formatting or encoding for these responses the thermostat uses, which may be

checked by the firmware.

Test Harness Creation. Finally, in order for this system to be fully interactive, as we

discuss in Section 2.2, the analyst must decide how input is to be introduced into the

emulated environment. No standards exist for input and output in embedded firmware

and hardware; exactly where an input is introduced is both a function of the target

device’s hardware, and the analyst’s goals. For example, a serial port, in one device,

could be connected to a human-controlled terminal (the obvious source of input), while

in another, it could be wired across the circuit board to a simple sensor with a serial

interface (a model-able device). Pretender, therefore, requires the analyst to provide

their own means of input, in the form of a test harness. We leverage avatar2’s Python

scripting interface to allow any MMIO location to be easily replaced by custom logic. As

an example, for the firmware presented in Section 3.2, we created a harness consisting of

feeding input data via the device’s serial port.
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3.2 Evaluation

To demonstrate the efficacy of Pretender, we use it to create models of the hard-

ware in the context of multiple firmware images. We then use these models, together with

freshly generated inputs, to uncover code paths and orderings not seen during recording

and modeling. The newly covered parts of the firmware include synthetic security vulner-

abilities, which the system is able to trigger and detect within the modeled environment.

Targets. We applied our system to firmware running on three different embedded CPUs

on development hardware, the ST Nucleo L152RE, the Maxim MAX32600MBED [78]

and the STM Nucleo F072RB [79]. The targets represent ARM-based microcontrollers

common to embedded applications; the first two represent Cortex-M3-based designs,

while the latter is based on a Cortex-M0. The layout of the peripherals, and the function

of each MMIO register varies widely, even between the two targets from the same vendor.

It is worth noting that QEMU has no official support for any of these chips, or any

of their contained peripherals. Third-party forks contain partial support for related

chips but would have to be heavily adapted and extended to work on these firmware

samples. Access to all devices was obtained using a commodity CMSIS-DAP debugger.

We showcase the function of our models in-depth in the context of the STM Nucleo

L152RE, but provide results from all three.

We evaluated our technique on six example firmware: four of these were directly

obtained from the ARM mbed [80] development suite’s library of examples. These were

designed to exercise interesting features of the hardware, and we chose them to demon-

strate the challenges Pretender has to overcome for successful hardware modeling. We

extended three of these examples with additional functionality, which we do not trigger

during the recording and modeling phases. Besides additional hardware interactions, our

additions also include synthetic security vulnerabilities, similar to the kind that an ana-
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lyst may wish to locate in a binary firmware. The other two examples, not taken from

the mbed examples, are more complex and mimic real-world firmware found on a door

lock controller and a thermostat. All of our examples were compiled using GCC 5.0, and

ARM’s mbed hardware abstraction layer. While we had the source code available during

our analysis, it should be noted that no part of Pretender leverages this information;

Pretender operates solely on binary firmware and the hardware itself. While this

may seem like a small number of samples in comparison to previous approaches [33, 36],

the need to obtain and instrument original hardware necessarily limits the number of

firmware samples.

We evaluated our system’s effectiveness in terms of its achieved code coverage on

each example, as measured through execution traces from QEMU. We note that good

code coverage during our recording phase is an important factor in our modeling, as we

want to explore as much of the hardware’s functionality as possible. Table 3.1 summa-

rizes the used peripherals and execution behavior of each firmware. We note that the

reported block counts are approximate, particularly for those examples with interrupts,

as QEMU re-defines basic blocks based on where an interrupt occurs and returns, leading

to imprecision. The table shows vastly different amounts of covered basic blocks for the

same firmware across different devices, although the exact same compiler, source code,

and system library was used for all of the examples. This hints toward the many subtle

differences in the hardware abstraction layer, which are required to deal with the diverse

hardware platforms. The block count in the “Rec.“ column serves for baseline comparison

and shows the coverage reached during the initial recording phase. The “Null Model “

column represents the coverage obtained when all MMIO is replaced with a model that

simply returns a zero value for every location (this is in contrast to not having a model at

all, where all of the firmware would cause QEMU to crash). The “SA” column shows the

coverage with complete modeling, including the State Approximation of the firmware’s
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Table 3.1: Approximate basic block coverage for firmware samples with Pretender, as mea-

sured by QEMU

Firmware Name Peripherals Blocks Executed

Rec.
Null

Model
SA Fuzzing

Nucleo L152RE

blink_led Timer, GPIO 218 86 218 n/a

read_hyperterminal Timer, GPIO, UART 545 85 545 636

i2c_master Timer, I2C, AM3215 1185 61 1185 n/a

button_interrupt Timer, GPIO, Button 344 68 314 n/a

thermostat (custom) Timer, I2C, AM3215 1263 62 1261 1276

rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665 758

Nucleo F072RB

blink_led Timer, GPIO 405 117 405 n/a

read_hyperterminal Timer, GPIO, UART 828 102 828 999

i2c_master Timer, I2C, AM3215 1572 103 1572 n/a

button_interrupt Timer, GPIO, Button 362 103 362 n/a

thermostat (custom) Timer, I2C, AM3215 1662 103 1662 1918

rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960 972

MAX32600MBED

blink_led Timer, GPIO 280 9 280 n/a

read_hyperterminal Timer, GPIO, UART 514 8 514 668

i2c_master Timer, I2C, AM3215 941 8 942 n/a

button_interrupt Timer, GPIO, Button 188 8 188 n/a

thermostat (custom) Timer, I2C, AM3215 1009 8 1009 1066

rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692 712

source of input. A firmware that is entirely input-driven will have finite behavior when

the source of input is modeled, but unlike previous approaches, the firmware will con-

tinue to execute after the input ends, but with no additional input-triggered behavior. We

manually verified that all of the firmware samples performed the same overall behavior as

was present during recording. That is, even when no hardware was present, the firmware

used our generated models to function similarly to when it was running on the actual
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hardware. In the last column, Fuzzing, we feed automatically generated random data to

the three firmware examples whose execution is data-dependent, which is equivalent to

a naïve fuzzing approach. We accomplished this by attaching a test harness in place of a

serial port controller to the system, which, instead of supplying modeled data, provides

IO from the host system. This allows new input to be supplied to the firmware program

for exploring new functionality, while letting the rest of the Pretender-created models

function normally. As the table shows, Pretender successfully discovered new blocks,

and, subsequently, revealed new functionality of the firmware. In all cases, this extra

functionality actively interacted with the other peripherals models, such as timers and

system configuration, not just the serial port. While we discuss details of the hardware

peripherals when commenting on Pretender‘s behavior, our system is not aware of

the specific layout, names, or functionality of any of the peripherals, aside from the test

harness, and basic details of the standardized interrupt controller coupled to the CPU.

Our evaluation demonstrates that Pretender is able to successfully allow re-hosting,

while enabling survivable execution at the same time. As a result, analysis techniques

such as fuzzing could be parallelized and scaled. Rather than simple random data,

smarter fuzzing techniques [81] could be used; however, we would like to emphasize that

the goal in this work is not specifically to find new bugs in firmware via fuzzing, but

to enable dynamic analysis, which is necessary to achieve this, and other security goals

going forward.

In the remainder of this section, we will describe the hardware platform and each

example more in-depth, together with the detailed re-hosting capabilities enabled by

Pretender.

blink_led. This simple example blinks a Light Emitting Diode (LED) every 0.5 sec-

onds. While this example may seem overly trivial, we use it to illustrate the basic level of

complexity inherent in any firmware compiled with ARM mbed, and the basic behavior
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Table 3.2: Snippets from a capture of all memory-mapped input/output (MMIO) accesses from

an STM32 firmware.

(a) Increasing read-only

(Timer 5 @ 0x40000C24)

Op. # Operation Value

. . .

524 READ 3690781

. . .

595 READ 3731433

. . .

658 READ 3534604

662 READ 5549086

663 READ 6053877

665 READ 7060952

(b) Read/write storage

(Flash controller configura-

tion @ 0x40023C00)

Op. # Operation Value

. . .

14 READ 0

15 WRITE 4

16 READ 4

17 WRITE 6

. . .

77 READ 6

78 WRITE 7

79 READ 7

of timers. When booting even the simplest firmware, the board performs a number of

initialization tasks, including using the Reset and Clock Control (RCC) to enable various

clock devices, the management of the on-board flash controller, and the configuration of

GPIO pins. The firmware performs various self-checks on these peripherals during boot,

and if they fail to report correct status information, the firmware will hang in an infi-

nite loop. While this can also be solved with simple replay, the ability to execute this

firmware indefinitely can only be achieved using modeling. Table 3.2 shows a memory

trace acquired by Pretender, and shows interactions with the timer (Table 3.2a) and

the flash memory controller (Table 3.2b). Pretender correctly identified the timer as

an Increasing Model, and our linear regression approach correctly resolved the rate at

which the timer increases. Whenever wait() is called, the value of the timer is periodi-

cally checked and the firmware continues execution only when it exceeds an ever increas-

ing amount. Pretender’s model can correctly produce the required values indefinitely.
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Furthermore, the various RCC and other system configuration registers checked by the

timer and GPIO code continue to produce the correct values, as we correctly deduced

their simplified storage, pattern, and state-approximated values.

read_hyperterminal. This firmware receives external input from a user or other device

over a serial port, and turns an LED on or off (“1” or “0”) based on the input. This example

shows diverging firmware execution based on different inputs, as a user can send various

possible inputs, in any order. We stimulated the program by sending random “on” and

“off” commands over the serial port for the duration of the recording. During our State

Approximation-based execution, we were able to identically reproduce the execution.

After the recorded input ends, the firmware continued to execute, waiting for more data

from the serial port. To make things more interesting, we added a special backdoor

to the firmware code. More precisely, if a “2” is sent, the firmware will prompt for a

password, a common behavior for a hidden backdoor functionality. This functionality

is also vulnerable to a buffer overflow when reading the password. In order to explore

code-paths of the program not seen during recording, we use the serial port test harness

described above, and provide random bytes as input. Even though this backdoor was not

exercised during our recording, Pretender was able to successfully rehost the firmware

accurately enough so that our emulated version can handle this input, including the

various timer and RCC interactions present in this section of code. When fuzzing the

rehosted firmware, we were also able to trigger the implanted buffer overflow, leading to

corruption of the program counter, and crashing the emulator.

button_interrupt. This example makes use of interrupts that are triggered by an ex-

ternal event (i.e., a physical button). When the physical button is pressed, it causes an

interrupt to execute a callback that blinks an LED. During our recording, we pressed

this button at random intervals over a period of two minutes. Our recording function-
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ality receives the interrupt events and forwards them to the emulator, which in turn

executed a callback that manipulated the GPIO peripheral. We located the trigger for

the GPIO interrupt automatically (0x40010408 with value 0x002000). However, as the

timings for the individual button presses were random, Pretender falls back to State

Approximation for this peripheral, still allowing indefinite execution.

i2c_master. This example is modified from the original ARM mbed example to support

an AM2315 I2C temperature sensor, and reports both the temperature and humidity in

the room. Unlike the previous examples, this one contains multiple sources of interrupts;

both the primary system timer (TIM5) and the I2C bus produce interrupts, which causes

a conflict during recording. For this reason, we utilize the iterative modeling approach

described in Section 3.1. On the first execution, we obtain a recording of the timer’s

overflow-related interrupts, and convert this into a model. On the second execution,

Pretender identifies that we have an interrupt-enabled model of the timer already,

and uses it instead of the hardware. With this source of interrupts removed from the

hardware, we are able to clearly observe the I2C bus’s interrupt patterns. This peripheral

has multiple bits that control interrupts, and through observing the peripheral, we are

able to locate the correct bit mask for the configuration register (0x720), such that these

bits being enabled will cause our timing-based interrupts to occur. While this bus is a

source of external input like our serial port, the input is only generated in response to

an action by the firmware. Therefore, when the firmware writes the configuration and

data registers for the I2C bus with the appropriate values to read from the temperature

sensor, the state of the peripheral will advance or rewind to the appropriate time that

this action occurred during recording and the events will occur as expected.

Thermostat. In this example, we present a firmware that would drive a typical ther-

mostat, indicative of popular smart thermostats (e.g., Google’s Nest). The firmware
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reads the temperature and humidity from the AM2315 sensor used above, but now it

also accepts commands that poll for the temperature and humidity. If the temperature

is too far from a preset temperature, it will enable a GPIO to trigger a hypothetical air

conditioning unit. However, in order to showcase that peripheral models generated with

Pretender are not firmware-specific and can easily be transferred and reused, we did

not actually leverage a recorded peripheral trace to build the models for this firmware.2

Instead, we reuse the models from the i2c_master example above, together with our test

harness to uncover new functionality offered by the firmware. However, when we fuzzed

the firmware using our test harness, we were able to discover this previously un-reached

functionality, which directly results into an increased coverage as shown in Table 3.1.

Rf_door_lock. This firmware uses a Grove Serial RF Pro radio module connected

to an Universal Asynchronous Receiver/Transmitter (UART) peripheral, which accepts

multiple commands. Among others, those commands include “ping” and “unlock,” which

accept a password. If the password is correct, the firmware activates a GPIO, which

unlocks a hypothetical mechanical lock. The functionality of this firmware is indicative

of those on popular IoT smart locks. The radio module operates over a standard serial

port. It can be configured using various commands, and once this is complete, it will

simply transmit data received on the configured channel to nearby radios. Similar to

many small embedded systems, this firmware provides a binary protocol we can use to

send commands via our hypothetical smart lock client, including unlock (0xbb) and ping

(0xdd). To interact with this firmware during recording, we used another radio device

to send random valid and invalid lock codes and pings to the firmware. This firmware

has an additional functionality, implemented as a backdoor that allows any radio user to

overwrite the lock code, by sending command 0xff, followed by the desired code; this
2Note that we obtained a recording of the firmware’s execution nevertheless to provide coverage

information for comparison.
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feature is also vulnerable to a buffer overflow. As our radio uses a normal serial port,

State Approximation works as expected here, but we cannot directly apply our serial port

model and feed it with random data to reach additional block coverage. Instead, we need

to correctly format our inputs according to the format observed by the radio’s responses

during recording; it checks that the radio responds correctly with “OK” to configuration

commands, and will halt execution if it does not. This would be an excellent starting

point for a mutational fuzzer, but for the sake of simplicity, we simply “mutate” by

appending random data to the end of the data held in our model, and replaying it into

our serial port. With this rudimentary fuzzer, we were able to automatically discover the

hidden functionality, and even trigger the bug, causing QEMU to halt the execution.

3.3 Discussion

We have shown that a virtual, interactive, and automatic re-hosting solution is neces-

sary to tackle the diversity in IoT and embedded devices, and demonstrated the possibility

of such a system through Pretender. However, we fully acknowledge that the problem

of automated re-hosting is still challenging to be completely solved. This section dis-

cusses the assumptions and prerequisites laid out in Section 3.1, and explores a number

of the open problems and challenges that must be overcome in order to apply re-hosting

in any context to production embedded devices.

Beyond ARM and MMIO. Currently, Pretender supports ARM devices, for which

an emulator for the instruction set and any core peripherals (those which control code ex-

ecution directly) are available. This is a reasonable requirement, as newer ARM designs,

particularly the Cortex series, have provided more rigid standards to manufacturers gov-

erning memory layout and core components, such as the interrupt controller. This still

leaves vendors ample room to customize every aspect of the remaining peripherals, how-
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ever. While we focus on the ARM architecture, additional architectures can be added by

providing a basic instruction set emulator, creating the short interrupt recording stub,

and providing the needed physical memory access to the device to enable recording.

Additionally, other architectures use “port-mapped IO” (PMIO) to perform their IO op-

erations. While we do not support this today, Pretender could be trivially extended to

record these operations instead. All other features of Pretender are completely device

and architecture-agnostic.

Performance. As Pretender involves sending peripheral data and interrupts back

and forth between the device and an emulator, this adds some overhead to the firmware’s

execution. This is particularly noticeable with interrupts, as they tend to be performance-

and timing-critical, which could cause issues during recording. This could be overcome

through optimization of the implementation, or through the use of purpose-built hardware

to interface with the device, as demonstrated in [42].

Obtaining Traces. The principal limitation on the applicability of Pretender is not

the models or modeling techniques, but in fact the ability to obtain the data to generate

them. First, we must be able to obtain a memory data trace for MMIO. In our case

study, this is provided via the chip’s debug interface, which simply provides access to

read and write to any memory address or CPU register. Any interface that also provides

this functionality, whether it is an intended debugging interface or one adversarially

obtained through an exploit, is sufficient, and could be used to also extract interrupt

traces using only this basic requirement. Second, we must be able to observe enough

hardware functionality to generate a useful model. This means that we require sufficient

code coverage of those code paths that interface with the hardware. We can explore

new program behavior using Pretender models, but will logically encounter incorrect

behavior if these new code paths exercise dramatically different functionality than what
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has been recorded. For example, we can re-use our timer model on a completely new

firmware that also configures the timer in the same way (e.g., to count up), but not

one with a different configuration with vastly different behavior. In our case studies, we

utilize human and automated stimulation to achieve maximal coverage during recording,

but of course, in the general case, this is an open problem.

Additionally, there are a few aspects of many chips that we simply cannot model cor-

rectly with this visibility, particularly Direct Memory Access (DMA) controllers, whose

accesses to memory are initiated by the hardware itself, and therefore not visible ex-

ternally by any conventional means. These are particularly common in higher-speed

peripherals, including USB, networking, storage buses, and those common to modern

CPUs designed for general-purpose computing. We are unaware of any CPU that allows

introspection into DMA activity; however, insight into this problem may be gained by

instead observing the firmware’s code to locate DMA operations.

Heavily-stateful Peripherals. Not all peripherals, particularly external ones, are well-

modeled by a state machine. As we discussed in Section 3.1, we make some assumptions

to build a state machine approximation of devices which require it, but this is by no

means guaranteed to be correct. One notable case where this will fail is external storage

devices, such as SPI-based flash or EEPROM chips. While we could reconstruct much of

the traffic to and from these chips seen during recording, reading and writing arbitrary

data, as could be possible through a modeled serial port used to provide arbitrary input,

will of course not succeed. Fortunately, this problem may be dramatically simplified

through high-level modeling, or through the separation of external peripherals from their

corresponding internal peripherals, as the behavior of a device as storage may become

more apparent.
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3.4 Conclusion

In this chapter, we explored the area of firmware re-hosting, and showed that an en-

tirely new class of approaches can enable scalable, thorough program analysis of firmware.

As a first step toward achieving this goal, we presented Pretender, which generates

models of peripherals automatically from recordings of the original hardware. We demon-

strated the accuracy and interactivity of these models, by evaluating Pretender on

multiple firmware samples across different hardware platforms. While there are many

open problems remaining before this technique can be generally applicable, we believe

this work shows that automated re-hosting is both possible and necessary to ensure that

increasingly-important firmware does not go un-analyzed.
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Chapter 4

Firmware Re-Hosting through
Hardware Abstraction Layer Emulation

The immense diversity of hardware we describe in Chapter 2 significantly complicates the

firmware development process for device manufacturers. To mitigate some of the chal-

lenges of developing firmware, chip vendors and various third parties provide Hardware

Abstraction Layers (HALs). HALs are software libraries that provide high-level hardware

operations to the programmer, while hiding details of the particular chip or system on

which the firmware executes. This makes porting code between the many similar models

from a given vendor, or even between chip vendors, much simpler. Firmware written

with HALs are therefore, by design, less tightly coupled to the hardware.

This observation inspired us to design and implement a novel technique to enable

scalable emulation of embedded systems through the use of high-level abstraction layers

and reusable replacement functionality, known as High-Level Emulation (HLE). Our ap-

proach works by first identifying the HAL functions responsible for hardware interactions

in a firmware image. Then, it provides simple, analyst-created, high-level replacements,

which perform the same conceptual task from the firmware’s perspective (e.g., sending

an Ethernet packet and acknowledging the action to the firmware).

The first crucial step to enabling high-level emulation is the precise identification
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Figure 4.0.1: Overview of HALucinator, with our contribution shown in gray.

of HAL functions within the firmware image. While a developer can re-host their own

code by skipping this step, as they have debugging symbols, third-party analysts must

untangle library and application code from the stripped binary firmware image. We

observe that, to ease development, most HALs are open-source, and are packaged with

a particular compiler toolchain in mind. We leverage the availability of source code for

HALs to drastically simplify this task.

After HAL function identification, we next substitute our high-level replacements for

the HAL functions. While each replacement function (which we term a handler) is cre-

ated manually, this minimal effort scales across chips from the same vendor, and even

across firmware using the same middleware libraries. For example, ARM’s open-source
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mBed OS [38] contains support for over 140 boards and their associated hardware from

16 different manufacturers. By identifying and intercepting the mBed functions in the

emulator, we replace the low-level input/output (I/O) interactions—that a generic em-

ulator such as QEMU does not support—with high level implementations that provide

external interaction, and enable emulation of firmware that uses mBed OS. As an addi-

tional effort-saving step, these handlers can make use of peripheral models, which serve

as the abstraction for generic classes of hardware peripherals (e.g., serial ports, or bus

controllers) and serve as the point of interaction between the emulated environment and

the host environment, without needing complicated logic of their own. This allows the

creation of handlers to also extend across these classes of peripherals, as handlers for any

HAL can use the same peripheral models as-is.

Handlers may perform a task as complicated as sending an Ethernet frame through a

Direct Memory Access (DMA) peripheral, but their implementation remains straightfor-

ward. Most handlers that interact with the outside world merely need to translate the

arguments of the HAL function (for example, the Ethernet device to use, a pointer to

the data to send, and its length), into the data a peripheral model can use to actually

perform a task (e.g., the raw data to be sent). In many cases, the handler does not need

to perform any action at all, as some hardware concepts do not even exist in emulation,

such as power and clocking.

We assemble these ideas into a prototype system, HALucinator, as shown in Fig-

ure 4.0.1, which provides a high-level emulation environment on top of the QEMU em-

ulator. HALucinator supports “blob” firmware, (i.e., a firmware sample in which all

code is statically linked into one binary executable) from multiple chip vendors for the

ARM Cortex-M architecture. It handles complex peripherals, such as Ethernet, WiFi,

and an IEEE 802.15.4 radio (the physical and media access control layers used in Zig-

Bee and 6LoWPAN i.e., IPv6 over Low Power Wireless Personal Area Networks). The
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system is capable of emulating the firmware and its interactions with the outside world.

We present case studies focused on hybrid emulated environments, wireless networks,

and app-enabled devices. HALucinator emulates these systems sufficiently to allow

interactive emulation, such that the device can be used for its original intended pur-

pose without its hardware. We additionally show the applicability of HALucinator

to security analyses by pairing it with the popular AFL fuzzer, and demonstrate its

use in the discovery of security vulnerabilities, without any use of the original hardware.

Additionally, the Shellphish CTF team used HALucinator to win the 2019 CSAW Em-

bedded Security Challenge, by leveraging its unique re-hosting, debugging, and fuzzing

capabilities [82, 83]. In summary, our contributions in this chapter are as follows:

1. We enable emulation of binary firmware using a generic system emulator (QEMU for

us) without relying on the presence of the actual hardware. We achieve this through

the novel use of abstraction libraries called HALs, which are already provided by

vendors for embedded platforms.

2. We improve upon existing library matching techniques, to better locate functions

for interception in the firmware.

3. We present HALucinator, a high-level emulation system capable of interactive

emulation and fuzzing firmware through the use of a library of abstract handlers

and peripheral models.

4. We show the practicality of our approach through case studies modeled on 16 real-

world firmware samples, and demonstrate that HALucinator successfully emu-

lates complex functionality with minimal effort. Through fuzzing the firmware, we

find use-after-free, memory disclosure, and exploitable buffer overflow bugs result-

ing in CVE-2019-9183 and CVE-2019-8359 in Contiki OS [84].
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Figure 4.1.2: (a) Software and hardware stack for an illustrative HTTP Server. (b) Conceptual

illustration of HTTP Server when executing using HALucinator.

4.1 Motivation

Virtually every complex electronic device has a CPU executing firmware. The in-

creasing complexity of these CPUs and the introduction of ubiquitous connectivity has

increased the complexity of firmware. To reduce the burden of creating these devices’

firmware, various libraries (i.e., HALs) have been created to abstract away direct hard-

ware interactions.

To make their product portfolios more attractive to developers, microcontroller man-

ufactures are developing HALs and licensing them under permissive terms (e.g., BSD)
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to gain a market advantage [85, 86, 87]. HALs provide a common abstraction for fam-

ilies of microcontrollers, thus a single HAL covers many different microcontrollers. For

example, STMicroelectronic’s STM32Cube HAL covers all their Cortex-M based micro-

controllers. As evidence of the investment put into HALs, consider that NXP acquired

Freescale in 2015 and currently provides the MCUExpresso HAL—a unified HAL that

covers their Cortex-M microcontrollers. Many of these microcontrollers were originally

designed by separate companies. It is unlikely NXP would have invested into unifying

these HALs if availability of easy to use HALs was not a priority to developers. In ad-

dition, the manufacturer’s HALs are integrated in their own IDEs [88, 89, 90, 91] and

third party development tools (e.g., Keil, IAR). These same HALs are included in em-

bedded OSes (e.g., in FreeRTOS [92], mBed OS [93], RIOT OS [39], and Arduino [94]).

These OSes are currently used in commercially available devices [95]. We believe that

market pressures to reduce time to market will increase the adoption of HAL’s. While

we cannot automatically measure the population of devices using HALs today without a

large dataset of microcontroller firmware (which does unfortunately not exist), given all

of this information, we expect HALs to become ubiquitous in firmware going forward.

Understanding how firmware is built using these HALs is foundational to how HALu-

cinator enables emulation of these firmware samples. Figure 4.1.2a depicts the software

and hardware components used in a representative embedded system that HALucina-

tor is designed to emulate. When emulating the system, the on-chip peripherals and

off-chip hardware are not present, yet much of the system functionality depends on in-

teractions with these components. For example, in section 4.4 we find that QEMU halts

when accessing unsupported (and therefore unmapped) peripherals. The result is all 16

test cases execute less than 39 basic blocks halting on hardware setup, typically clocks,

at power up.
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4.1.1 The Firmware Stack

The software and hardware stack for an illustrative HTTP server is shown in Fig-

ure 4.1.2a. Consider an example where the HTTP server provides the temperature via a

webpage. The application gets the temperature using an API from the library provided

by the temperature sensor’s manufacturer, which in turn uses the I2C HAL provided by

the microcontroller manufacturer, to communicate with the off-chip temperature sensor

over the I2C bus. When the page containing the temperature is requested, the HTTP

server uses the OS library’s API to send and receive TCP messages. The OS, in turn,

uses a TCP stack provided via another library, e.g., Lightweight IP (lwIP) [96]. lwIP

translates the TCP messages to Ethernet frames and uses the Ethernet HAL to send the

frames using the physical Ethernet port.

While this is an illustrative example, the complexity of modern devices and pressure

to reduce development time is increasingly making it so that functionality in firmware is

built on top of a collection of middleware libraries and HALs. Many of these libraries are

available from chip manufacturers in their software development kits (SDKs) to attract

developers to use their hardware. These SDKs incorporate example applications and

middleware libraries including: OS libraries (e.g., mBed OS [38], FreeRTOS [97], and

Contiki [84]), protocol stacks (e.g., TCP/IP, 6LoWPAN, and Bluetooth), file systems,

and HALs for on-chip peripherals. Each of these libraries abstracts lower-level function-

ality, decoupling the application from its physical hardware. In order for HALucinator

to break the coupling between firmware and hardware, it must intercept one of these

layers, middleware/library or HAL, and interpose its replacement functionality instead,

as shown in Figure 4.1.2b. Which layer we choose, however, provides trade-offs in terms

of generality and reusability of the high-level function replacements, the amount of actual

code that we can execute and test, as well as the likelihood of finding a given library in
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a target device’s firmware. While it is more likely that the author of a given firmware is

using the chip vendor’s HAL, this bottom-most layer has the largest number of functions,

which often have very specific semantics, and often have complex interactions with hard-

ware features, such as interrupts and DMA. At a higher level, such as the network stack

or middleware, we may not be able to predict which libraries are in use, but handlers

built around these layers can be simpler, and more portable between devices. The chosen

layer can also affect the efficacy of some analyses, as we demonstrate in section 4.4. In

short, the right answer depends largely on the analyst’s goals, and what libraries the

firmware uses. In this work, we focus primarily on re-hosting at the HAL level, but also

explore high-level emulation approaches targeting other layers, such as the middleware,

in our evaluation of HALucinator.

4.1.2 High-Level Emulation

Before discussing the design of HALucinator, we first highlight the ways in which

high-level emulation enables scalable emulation of firmware.

First, our approach reduces the emulation effort—instead of manual effort that in-

creases with the number of unique devices, emulation effort increases much more slowly

with the number of HALs or middleware libraries, depending on the level where we

interpose the function calls. Large groups of devices, from the same manufacturer or

device family, share the same programmer-facing library abstractions. For example,

STMicroelectronics provides a unified HAL interface for all its Cortex-M devices [85].

Similar higher-level libraries, such as mBed, provide abstractions for devices from mul-

tiple manufacturers, and commonly used protocol stacks (e.g., lwIP) abstract details of

communication protocols. Intercepting these libraries enables emulating devices from

many different manufacturers.
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Since HALs abstract away hardware from the programmer, our handlers inherit this

simplicity as well. High-level emulation removes the requirement of understanding low-

level details of the hardware. Thus, handlers do not need to implement low-level MMIO

manipulations, but simply need to intercept the corresponding HAL function, pass desired

parameters on to an appropriate peripheral model and return a value that the firmware

expects.

Finally, our approach allows flexibility in the fidelity of handlers that we have to

develop. For peripherals that the analyst is not concerned with, or which are not nec-

essary in the emulator, simple low-fidelity handlers that bypass the function and return

a value indicating successful execution can be used. In cases where external input and

output is needed, higher-fidelity handlers enabling communication with the host environ-

ment are needed. For example, the function HAL_TIM_OscConfig from the STM32Cube

HAL configures and calibrates various timer and clock parameters; if not handled, the

firmware will enter an infinite loop inside this function. As the emulator has no concept

of a configurable clock or oscillator, this function’s handler merely needs to return zero,

to indicate it executed successfully. On the other hand, a higher-fidelity handler for the

HAL_Ethernet_RX_Frame and HAL_Ethernet_TX_Frame functions that enables sending

and receiving Ethernet frames emulates network functionality. Our approach allows for

handlers at multiple fidelity levels to co-exist in the same emulation.

4.2 Design

For our design to capitalize on the advantages of high-level emulation, we need to (1)

locate the HAL library functions in the firmware (e.g., via library matching), (2) provide

high-level replacements for HAL functions, and (3) enable external interaction with the

emulated firmware.
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HALucinator employs a modular design to facilitate its use with a variety of

firmware and analysis situations, as seen in Figure 4.0.1. To introduce the various phases

and components of HALucinator, let us consider a simple example firmware which uses

a serial port to echo characters sent from an attached computer. Aside from hardware

initialization code, this firmware needs only the ability to send and receive serial data.

The analyst notices the CPU of the device is an STM32F4 microcontroller, and uses

the LibMatch analysis presented in subsection 4.2.2, with a database built for STMi-

croelectrics’ HAL libraries for this chip series. This identifies HAL_UART_Receive and

HAL_UART_Transmit in the binary. The analyst then creates a configuration for HALu-

cinator, indicating that a set of handlers (i.e., the high-level function replacements),

for the included HAL, should be used. If the handlers do not already exist, the analyst

creates them. These two HAL functions take as arguments a reference to a serial port,

buffer pointer, and a length. To save effort, these handlers simply translete these argu-

ments to and from a form usable by the peripheral model for a serial port (e.g., the raw

data to be sent or received). Finally, the I/O Server transfers the data between the serial

port peripheral model and host machine’s terminal. Now, when the firmware executes

in HALucinator, the firmware is usable through a terminal like any other console pro-

gram. This represents only a small fraction of the capabilities of HALucinator, which

we will explore in detail in the following sections.

4.2.1 Prerequisites

While HALucinator offers a significant amount of flexibility, there are a few require-

ments and assumptions regarding the target firmware. First, the analyst must obtain the

complete firmware for the device. HALucinator focuses on OS-less “blob” firmware

images typically found in microcontrollers. While no hardware is needed during emu-
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lation with HALucinator, some details about the original device are needed to know

what exactly to emulate. HALucinator requires the basic parameters needed to load

the firmware into any emulator, such as architecture, and generic memory layout (e.g.,

where the Flash and RAM reside within memory).

We assume the analyst can also obtain the libraries, such as HALs, OS library, middle-

ware, or networking stacks they want to emulate, and the toolchain typically used by that

chip vendor to compile them. Most chip vendors provide a development environment,

or at least a prescribed compiler and basic set of libraries, to avoid complications from

customers using a variety of different compiler versions. As such, the set of possible HAL

and compiler combinations is assumed to be somewhat small. While firmware developers

are free to use whatever toolchain they wish, we expect that the conveniences provided

by these libraries and toolchains, and the potential for support from the chip vendor, has

convinced a significant number of developers to take advantage of the vendor’s toolchain.

In section 4.5, we discuss the possibility of using high-level emulation, even in firmware

without an automatically identifiable HAL.

HALucinator naturally requires an underlying emulator able to faithfully execute

the firmware’s code, and able to support HALucinator’s instrumentation. This in-

cludes a configurable memory layout, the ability to “hook” a specific address in the code

to trigger a high-level handler, and the ability to access the emulator’s registers and

memory to perform the handler’s function.

While this may appear to be a long list of requirements, in practice, obtaining them is

straightforward. For the ARMCortex-M devices that we focus on in this work, the general

memory map is standardized and available readily from the vendor-provided manual, the

location of the firmware in memory can be read from the firmware blob itself, and common

emulators such as QEMU [98] faithfully emulate instructions. Each Cortex-M vendor

provides open-source HAL(s) for their chips, with compilers and configurations [85, 87,
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86, 99]. All that is needed for HALucinator to be applied to a particular device is to

obtain the firmware, know the CPU’s vendor, and obtain their SDK.

4.2.2 LibMatch

A critical component of high-level emulation is the ability to locate an abstraction

in the program which can be used as the basis for emulation. While those developers

who wish to re-host their own code, or those interested in open-source firmware projects,

can already obtain this information during compilation, analysis of closed-source binary

firmware by third parties requires the ability to locate these libraries before emulation can

proceed. Existing approaches that address the problem of finding functions in stripped

binaries [63, 59, 64] lack support for embedded CPU architectures, particularly the ARM

Cortex-M architecture commonly used in many consumer devices and used in this work.

While much work has also been done in comparing two binary programs [55, 56], these

schemes are not applicable out-of-the-box for comparing a binary with its component

libraries.

The nature of firmware itself further complicates library matching. Firmware library

functions are typically optimized for size, and two functions with nearly identical code

can serve dramatically different purposes. Many smaller HAL functions may simply be

a series of preprocessor definitions resolved at compile-time relating to I/O operations,

which of course serve different purposes depending on the peripheral being used. One

unusual feature of firmware library functions is that they often call functions in the non-

library part of the code. With desktop libraries, it is typically expected that library

functions are monolithic, i.e., they execute, perform their task, and return to the caller.

This is often not true in firmware; common patterns found in HALs include overrides,

where the developer overrides a weak symbol in the HAL during compilation, or explicit
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callbacks, where code pointers are passed in as function arguments. Therefore in order

to provide fully-working handlers, we must not only recover the library functions’ names

and addresses, but those of the application code they call as well.

To address these problems, we create LibMatch, which leverages the context of func-

tions within a program to aid in binary-to-library matching. LibMatch creates a database

of HAL functions to match by extracting the control-flow graph of the unlinked binary

object files of the libraries, plus an Intermediate Representation (IR) of their code. It

then performs the following steps to successively refine possible matches:

1: Statistical comparison. We compare three basic metrics—number of basic blocks,

CFG edges, and function calls—for each pair of function in the target program and library

functions in the database. If functions differ on these three metrics, they are unlikely

to be a match, and removing these non-matches early provides a significant performance

improvement.

2: Basic Block Comparison. For those pairs of functions that match based on the

previous step, we further compare the content of their basic blocks, in terms of an inter-

mediate representation. We consider two functions a match if each of their basic blocks’

IR content matches exactly. We do, however, discard known pointers and relative offsets

used as pointers, and relocation targets, as these will differ between the library and the

binary’s IR code. Additionally, unresolvable jump and call targets, even when they are

resolvable in the library but not in the binary, are ignored.

While our comparison metric is somewhat naive (i.e., some environmental changes

such as compiler, compiler flags, or source code may cause missing matches), and many

more complex matching schemes exist (as noted in section 2.3), we make the trade-off that

any match is a true, high-confidence match. This trade-off is necessary, as inaccuracies in

these direct matches could have cascading effects when used to derrive other matches via
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context. Even in the ideal scenario of matching against the exact compiler and library

versions, collisions are still expected to occur, as we show in section 4.4.

3: Contextual Matching. The previous step will produce a set of matches, but also a

set of collisions, those functions that could not be distinguished from others. We therefore

leverage the function’s context within the target program to disambiguate these cases,

by locating places in the program with matches to infer what other functions could be.

While many program diffing tools [55, 56] use two programs’ call graphs to refine their

matching, we cannot, as our ‘second program’, is a database of libraries. The libraries in

the database are entirely un-linked and have no call graph. We cannot even infer the call

graph of a function within a particular library, as HALs may contain many identically-

named functions chosen via link-time options. Therefore, we use both caller context

and callee context, to effectively approximate the real call graph of the library functions,

disambiguate collisions, and try to provide names for functions that may differ between

the library database and the target (e.g., names overridden by the application code, or

names outside the libraries entirely).

We first leverage caller context to resolve collisions. For each of the possible collided

matches, we use the libraries’ debugging information to extract the set of called function

names. We obtain the same set of called function names from the ambiguous function

in the target binary, by using the exact matches for each of the called functions. If the

sets of function names in the target and the collided match are identical, the match

continues to be valid, and others are discarded. For callee context, we gather the set of

functions called by any function we were able to match exactly in step two, and name

them based on the debug symbols in the library objects. If the function is a collision,

it can then be resolved. If the function is not in the database, such as due to overrides

by the application, it can then be named. Both of these processes occur recursively, as

resolving conflicts in one function may lead to additional matches.
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The Final Match. A valid match is identified if a unique name is assigned to a given

function in the target binary.

4.2.3 High-level Emulation

After function identification, the emulator must replace the execution of selected

functions to ensure the re-hosted firmware executes correctly. These intercepted functions

relate to the on-chip or off-chip peripherals of the device, and are implemented manually.

To simplify implementation, our design breaks the needed implementation per library

into handlers, which encode each HAL function’s semantics, and peripheral models which

reflect aspects common to a peripheral type. Under this scenario, each peripheral model

only has to be written once, requiring only a small specialized handler for each matched

HAL function.

Handlers. We refer to high-level replacements for the HAL’s code within the firmware

as handlers. Creating handlers is done manually, but only needs to be done once for each

HAL or library, and is independent of the firmware being analyzed. Each HAL function,

even those with the same purpose, will likely vary in terms of function arguments, return

value, and exact internal semantics. However, as we will show in section 4.4, almost all

handlers are simple, falling into a few basic categories, such as performing trivial actions

on a peripheral model, returning a constant value, or doing nothing at all.

Some HALs can be quite large, but most firmware samples only utilize a small frac-

tion of the available functions. In this case, the analyst can follow an iterative process to

build handlers. First, the analyst runs the binary in HALucinator, which will report

all I/O accesses that are not currently replaced by a handler, and where they occurred.

If the firmware gets stuck, or is missing desired behavior, the analyst can evaluate which

functions contain the I/O operations, and consider implementing a handler. The process

70



Firmware Re-Hosting through Hardware Abstraction Layer Emulation Chapter 4

repeats, and successive handlers produce greater coverage and more accurate function-

ality. This process can even be performed when the results of library matching are

unavailable, or is missing function names required for emulation.

Peripheral Models. Peripheral models intend to handle common intrinsic aspects of

what a certain class or type of peripheral must do. They contain little actual logic,

but play an important role in creating a common interface between the emulator and

the outside world. For example, the peripheral model for a serial port simply has data

buffers for transmission and reception of data. When a HAL’s serial transmit and receive

functions are called, the associated handler can use the peripheral model to trivially

perform most, if not all, of its duties in an abstract way.

I/O Server. In order for the re-hosted firmware to meaningfully execute, it must interact

with external devices located outside of the CPU. Therefore, in addition to exchanging

data with the firmware, each peripheral model also defines an interface for the host

system to send data, receive data, and trigger interrupts. These interfaces are then

exposed through an I/O server. The I/O server uses a publish/subscribe design pattern,

to which peripheral models publish and/or subscribe to specific topics that they handle.

For example, an Ethernet model will send and receive messages on the ‘Ethernet.Frame’

topic, enabling it to connect with other devices that can receive Ethernet frames.

Using the I/O server centralizes external communication with the emulated system,

by facilitating multiple use cases without changing the emulator’s configuration. For

example, the Ethernet model can be connected to: the host Ethernet interface, other

emulated systems, or both, by appropriately routing the messages published by the I/O

server. In addition, centralizing all I/O enables a program to coordinate all external

interactions of an emulated firmware. For example, this program could coordinate push-

ing buttons, sending/receiving Ethernet frames, and monitoring LED status lights. This
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enables powerful multiple interface instrumentation completely in software, and enables

dynamic analysis to explore complex internal states of the firmware.

Peripheral Accesses Outside a HAL. Replacing the HAL with handlers and periph-

eral models simplifies emulating firmware, but occasionally, direct MMIO accesses from

the firmware will still occur. These can happen when a developer deliberately breaks the

HAL’s abstraction and interacts with hardware directly, or when the compiler inlines a

HAL function. HALucinator will report all I/O outside handlers to the user. Addi-

tionally, all read operations to these areas will return zero, and all writes will be ignored,

allowing code that naively interacts with this hardware directly to execute without crash-

ing. We find many MMIO operations, particularly write operations setting peripheral

flags and configurations, can be safely ignored as the emulator configures its resources

independent of the firmware. We discuss more severe cases, such as firmware not using

a HAL, in section 4.5.

4.2.4 Fuzzing with HALucinator

The use of high-level emulation enables the firmware to be used interactively, and

also explored through automated dynamic analyses, such as fuzzing. However, fuzzing—

especially coverage-guided fuzzing through, e.g., AFL [25]—has different constraints than

interactive emulation:

Fuzzed Input. First, the analyst needs to decide how the mutated input should be

provided to the target. HALucinator provides a special fuzz peripheral model, which

when used in a handler, will dispense data from the fuzzer’s input stream to the handler.

Embedded systems may have multiple sources of input, and this flexibility allows the

analyst to chose one or more of them to fuzz.

Termination. Beyond providing input from the fuzzer, the fuzzed firmware must termi-
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nate. Current fuzzers generally target desktop programs, and expect them to terminate

when input is exhausted; however, firmware never terminates. Thus, we design the fuzz

model to gracefully exit the program, sending a signal to the fuzzer that the program did

not crash during that execution.

Non-determinism. Firmware has significant non-deterministic behavior, which must

be removed to allow the fuzzer to gather coverage metrics correctly. This is typically

removed from programs via instrumentation, and HALucinator’s high-level emulation

enables this as well. HALucinator provides static handlers for randomness-producing

functions when they are identified, such as rand(), time(), or vendor-specific functions

providing these functionalities.

Timers. One special case of non-determinism are timers, which often appear in micro-

controllers as special peripherals that trigger interrupts and other events at a specified

interval. Because we cannot guarantee any clock rate for our execution, implementing

timers based on real time would lead to non-deterministic behavior, as these timer events

can occur at any point in the program. We provide a Timer peripheral model, which ties

the timer’s rate to the number of executed blocks, creating deterministic timer behavior,

and fair execution of the timer’s interrupt handlers and the main program, regardless of

emulation speed.

Crash Detection. Crash detection in embedded systems remains a challenge [9]. A

system based on high-level emulation gains a significant amount of crash detection capa-

bility from the visibility provided by the emulator, making many generated faults much

less silent. Just as with desktop programs, we can instrument firmware to add additional

checks. High-level emulation handlers can perform their own checks, such as check-

ing pre-conditions of their arguments (e.g., pointer validity, or positive buffer lengths).

High-level emulation can also be used to easily add instrumentation usually handled at
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compile-time. For example, HALucinator provides a heap-checking implementation

similar to ASAN [100], if the malloc and free symbols are available.

Input Generation. Finally, fuzzing requires representative inputs to seed its mutation

algorithms. HALucinator’s fully-interactive mode can be used to interact with the

device and log the return values of library calls of interest, which can be used to seed

fuzzing. This removes the need for any hardware, even while generating test inputs.

4.3 Implementation

We implement the concept of high-level emulation by creating prototypes of LibMatch

and HALucinator targeting the widely-used and highly-diverse Cortex-M microcon-

trollers.

LibMatch Implementation. LibMatch uses the angr [101] binary analysis platform.

More specifically, it uses angr’s VEX-based IR, control-flow graph recovery, and flexible

architecture support enables function labeling without any dependence on specific pro-

gram types or architecture features. Statistics needed for matching are gathered using

angr’s CFG recovery analysis. This includes the basic block content comparisons, which

operate on top of the VEX IR statements and their content. Implementing LibMatch for

the Cortex-M architecture required extending angr. We added support for Cortex-M’s

calling conventions, missing instructions, function start detection and indirect jump res-

olution to angr. After these extensions, angr was able to recover the CFG. When run,

LibMatch uses unlinked object files with symbols, obtained by compiling the HAL and

middleware libraries to create a database of known functions. It then uses this database

to locate functions inside a firmware without symbols. When LibMatch is then run

against a firmware sample, it outputs a list of identified functions and their addresses,

and makes note of collisions, in the event that a human analyst wishes to resolve them
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manually.

HALucinator Implementation. HALucinator is implemented in Python, and

uses Avatar2 to set up a full-system QEMU emulation target and instrument its execution.

HALucinator takes as inputs: the memory layout (i.e., size and location of Flash and

RAM), a list of functions to intercept with their associated handlers, and the list of

functions and addresses from LibMatch. It uses the addresses of the functions to place

a breakpoint on the first instruction of each function to be intercepted, and registers

the handler to execute when the breakpoint is hit. Note that, while Avatar2 is typically

deployed as a hardware-in-the-loop orchestration scheme, we use it here exclusively for

its flexible control of QEMU, and not for any hardware-related purpose.

Handlers are implemented as Python classes, with each function covering one or

more functions in the firmware’s HAL or libraries. The handlers can read and write the

emulator’s registers or memory, call functions in the firmware itself, and interact with the

peripheral models. Examples of simple and more complex handlers can be found in [102]

and [103].

Peripheral models are implemented as Python classes, and can make full use of system

libraries or the I/O server to implement the desired functionalities. For example, calls to

get the time from a hardware real-time clock can simply invoke the host system’s time()

function. Most models, however, merely act as a store or queue of events, such as queuing

received data for the serial port or Ethernet interface.

The I/O server is implemented as a publish-subscribe system using the ZeroMQ [104]

messaging library. In addition to serving events to peripheral models from the host

system, the I/O server can also connect emulators’ peripheral models together, allowing

the emulation of multiple interconnected systems. This is particularly useful when the

host system has no concept of the interface being shared, such as in the 6LoWPAN

examples in section 4.4.
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Fuzzing with HALucinator. We created the ability to fuzz firmware using HALu-

cinator by replacing the full-system QEMU engine at the center of HALucinator

with AFL-Unicorn [105]. AFL-Unicorn combines the ISA emulation features of QEMU

with a flexible API, and provides the coverage instrumentation and fork-server capabil-

ities used by AFL. It lacks any peripheral hardware support, making it unable to fuzz

firmware. Adding HALucinator’s high-level emulation provides the needed periph-

eral hardware support. Unicorn and AFL-Unicorn also deliberately remove the concept

of interrupts, which are necessary for emulating firmware. Thus, we add a generalized

interrupt controller model, that supports ARM’s Cortex-M interrupt semantics.

AFL-Unicorn detects crashes by translating various execution errors (e.g., invalid

memory accesses, invalid instructions, etc.) into the equivalent process signal fired upon

the fuzzed process (e.g., SIGSEGV), providing the appropriate signals to AFL. Mod-

els and handlers can also explicitly send these signals to AFL if their assumptions are

violated.

4.4 Evaluation

For HALucinator to meet its goal of enabling scalable emulation, it must accurately

identify HAL functions in firmware, and enable replacement of those functions with han-

dlers. In addition, the handlers must be created with reasonable effort, and the emulation

must be accurate to enable meaningful dynamic analysis of the firmware. In this sec-

tion, we show that HALucinator meets these goals by evaluating LibMatch’s ability

to identify HALs in binaries, demonstrating interactive emulation of 16 applications, and

then utilizing HALucinator to fuzz network-connected applications.

In our experiments, we use 16 firmware samples provided with different develop-

ment boards (STM32F479I-Eval [106], STM32-Nucleo F401RE [107], SAM R21 Xplained
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Mfg. Application
HAL

Syms

LibMatch w/o Context LibMatch w/ Context

Correct Coll. Incorrect Miss. Correct Coll. Incorrect Miss. External

Atmel SD FatFS 107 76 (71.0%) 22 0 9 98 (91.6%) 2 0 7 3

Atmel lwIP HTTP 160 128 (80.0%) 20 0 12 144 (90.0%) 9 0 7 8

Atmel UART 28 24 (85.7%) 2 0 2 26 (92.7%) 1 0 1 1

Atmel 6LoWPAN RX 299 224 (74.9%) 63 2 10 273 (91.3%) 17 4 5 24

Atmel 6LoWPAN TX 300 225 (75.0%) 63 2 10 275 (91.7%) 17 4 4 25

STM UART 33 15 (45.5%) 17 1 1 23 (69.7%) 9 1 4 6

STM UDP Echo RX 235 188 (80.0%) 43 0 4 207 (88.1%) 24 0 0 6

STM UDP Echo TX 235 186 (79.1%) 43 0 4 205 (87.2%) 24 0 0 8

STM TCP Echo RX 239 192 (80.3%) 43 0 4 211 (88.3%) 24 0 0 5

STM TCP Echo TX 237 190 (80.2%) 43 0 4 209 (88.2%) 24 0 4 8

STM SD FatFS 160 111 (69.4%) 47 0 2 140 (87.5%) 20 0 8 5

STM PLC 495 358 (72.3%)) 126 0 11 407 (82.2%) 79 1 8 36

NXP UART 35 21 (60.0%) 13 0 1 21 (60.0%) 13 0 1 8

NXP UDP Echo RX 170 133 (78.2%) 25 0 12 141 (83.0%) 16 8 5 22

NXP TCP Echo RX 176 133 (75.5%) 26 0 17 142(80.7%) 16 8 10 20

NXP HTTP Server 177 133 (75.1%) 26 0 18 145(82.0%) 16 6 6 20

Table 4.1: LibMatch performance, with and without contextual matching.

Pro [108], NXP FRDM-K64F [109]) from Atmel, NXP, and STM. These samples were

chosen for their diverse and complex hardware interactions, including serial communi-

cation, file systems on SD cards, Ethernet, 6LoWPAN, and WiFi. They also contain a

range of sophisticated application logic, including wireless messaging over 6LoWPAN, a

Ladder Logic interpreter, and an HTTP Server with a Common Gateway Interface (CGI).

The set of included libraries is also diverse, featuring STMicroelectronics’ STM32-Cube

HAL [85], NXP’s MCUXpresso [86], Atmel’s Advanced Software Framework (ASF) [87],

lwIP [96], FatFS [110], and Contiki-OS [84], a commonly used OS for low-power wireless

sensors, with its networking stack µIP .

Experiment Setup. All STMicroelectronics firmware was compiled using gcc -Os tar-

geting a Cortex-M3. The STMicroelectronics boards use Cortex-M4 microcontrollers,

however QEMU lacks support for some Cortex-M4 instructions (resulting in a runtime

fault), thus these examples were compiled using the Cortex-M3 instruction set. Atmel’s

example applications were compiled using Atmel Studio 7, using its release build con-

figuration that uses the -Os optimization level and targets the Cortex-M0 ISA (a strict
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subset of the Cortex-M3 ISA) as intended for their target board. All NXP samples were

compiled using the SDK’s “release” configuration, save for using the Cortex-M3 platform

instead of M4. All symbols were stripped from the binaries.

4.4.1 Library Identification in Binaries

We first explore the effectiveness of LibMatch in recovering the addresses of functions

in a binary firmware program. As there are multiple locations within a firmware that

may be hooked, with various trade-offs in the complexity of emulation, here we try to

match the entire set of functions provided by the HAL and its associated middleware.

We use symbol information in each target firmware sample to provide the ground-truth

address of each function. LibMatch then tries to determine the address of each function

in its HAL database using a stripped version of this binary.

A comparison of the 16 firmware samples using LibMatch with and without context

matching is shown in Table 4.1. LibMatch without context matching is comparable to

what is achievable with current matching algorithms (e.g., BinDiff [55], or Diaphora [56]).

However, a direct comparison is not possible because these tools only perform a linked-

binary to linked-binary comparison and LibMatch must match a linked binary to a col-

lection of unlinked library objects obtained from the HALs and middleware.

In Table 4.1, the number of HAL symbols is the number of library functions present

in the firmware, while the ‘Correct’ column shows the number of those functions cor-

rectly identified. The ‘Collision’, ‘Incorrect’, and ‘Missing’ columns delineate reasons

LibMatch was unable to correctly identify the unmatched functions. The last column,

‘External’ is the number of functions external to the HAL libraries that LibMatch with

context matching labels correctly. Overall, LibMatch without context matching averaged

over the 16 applications matches 74.5% of the library functions, and LibMatch with con-
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text matching increases this to an average of 87.4%. Thus, nearly all of the HAL and

middleware libraries are accurately located within the binary.

Context matching identifies many of the functions needed for re-hosting firmware.

The most dramatic example of this is STMicroelectronics’s PLC application; it includes

STMicroelectronic’s WiFi library, which communicates with the application using a series

of callbacks called via overridden symbols. In order to re-host this binary, the handlers

for this library must fulfill its contract with the application, by calling these callbacks.

Thus, recovering their names, even when they are not part of the library database, is

necessary to enable their use during re-hosting. Resolved collisions include various packet

handling, timer, and external interrupt functions of the Atmel 6LoWPAN stack, as well

as functions needed to enable fuzzing, such as lwIP’s IP checksum calculation. One other

important category of functions resolved via context includes those that are neither part

of the vendor’s HAL, nor the application code, but come from the compiling system’s

standard C libraries, such as malloc, free, and even the location of the program’s main.

Collisions are the most common causes of unlabeled functions. Other common causes

include C++ virtual function call stubs, and functions that have multiple implementa-

tions with different names. For example, the STM32 HAL contains functions HAL_TIM_PWM_Init

and HAL_TIM_OC_Init, whose code is entirely identical, but operate on different data,

and have insufficient context to distinguish them. Similarly, in many C++-based HAL

functions, a stub is used to lookup and call a method on the object itself; identical code

for this can exist in many places. Those without actual direct calls cannot be resolved

through context. Finally, many unused interrupt handlers contain the same default con-

tent (e.g., causing the device to halt) and thus collide. Since they are interrupt handlers,

they are never directly called, and thus cannot be resolved via context. It is worth noting

that these cases will confuse any library-matching tool, as there is simply no information

on which to make a correct decision within the program.
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The few “Incorrect” matches made by LibMatch stem from cases where the library

function name actually changed during linking. In these cases, LibMatch has a single

match for the function—thus finding a match—but applies the wrong name (i.e., the

name before it was changed during linking). Our measure of correctness is the name,

and therefore these are marked as “Incorrect”. There are two main causes of ‘Missing‘

functions: the application overrides a symbol and we are unable to infer it as an External

match via context, or bugs in the CFG recovery performed by angr causing the functions’

content to differ between the program and the library when they should not. For exam-

ple, most Cortex-M applications contain a symbol SystemInit, which performs hardware

specific initialization. Most HALs provide a default, but this symbol is very often overrid-

den by the firmware to configure hardware timing parameters, and it is only ever called

from other application-customized code. Thus we lack context to resolve it. None of the

unmatched or collided functions are functions needed to perform high-level emulation,

and thus, the less-than-100% accuracy of LibMatch does not impact HALucinator.

4.4.2 Scaling of High-Level Emulation

We will examine the benefits of HLE by exploring how the simplicity of handlers and

peripheral models allow emulation with a minimum of human effort, and allow this effort

to scale to multiple systems.

Handlers and Human Effort. Implementing handlers is a manual task; therefore it

is important to quantify the amount of effort required to emulate a system. While we

could perform this evaluation in terms of time, or in terms of an objective measure of

code complexity (which is given in subsection 4.4.4), these measures do not factor in the

amount the analyst actually must understand about the code being replaced, and thus

do not fully convey the effort required. Therefore, we divided the handlers used in our
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experiments into three categories: Trivial handlers simply return a constant—usually

indicating the function executed correctly—and require no knowledge of the implemen-

tation of the function being intercepted. They are commonly used for hardware initial-

ization functions. Translating handlers translate the intercepted function parameters to

an action on a peripheral model. They do not implement any logic, but just call a model

after getting the appropriate data for the model. This requires knowledge of the func-

tion parameters, reading values to be passed to the model, and then writing back values

from the model to the appropriate function parameters. For example, the handler for

the ENET_SendFrame from NXP’s HAL, simply reads the frame buffer and length from

the function parameters, and passes them to the Ethernet model. The final category,

Internal Logic is the most complex for HALucinator and requires understanding the

internal logic of the replaced functions.

Table 4.2 was created by taking the union of the handlers executed during interactive

emulation for the binaries in Table 4.3 and classifying them as trivial, translating, or

internal logic. It shows 44.5% are trivial handlers, 42.2% are translating handlers, and

13.3% implement internal logic. Therefore, for our firmware samples, over 85% of the

handlers can be implemented with little or no understanding of how the internals of

functions they are intercepting are implemented.

The 13% that required understanding internal logic primarily represent cases where

the HAL itself manipulated global state also used by the rest of the program. For exam-

ple, the Atmel Ethernet and 6LowPAN case studies use the external interrupt controller

(EXTI) which maps several external interrupts to a single CPU interrupt. The EXTI

interrupt service routine (ISR) looks up the ID of the actual interrupt source in an MMIO

register, and uses it to look up the correct callback in a global array. HALucinator

does not have access to the global array, and thus cannon directly look up the correct

callback. Instead, the EXTI handler implements a simple MMIO peripheral that enables
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HAL Trivial Translation Internal Logic Total

ASF v3 12 (30.8%) 19 (48.7%) 8 (20.5%) 39

STM32 17 (58.6%) 9 (31.0%) 3 (10.3%) 29

NXP 8 (53.3%) 7 (46.7%) 0 ( 0.0%) 15

Total 37 (44.5%) 35 (42.2%) 11 (13.3%) 83

Table 4.2: Categorization by difficulty of implementing handlers. Showing number of handlers

that implement Trivial, Translating, and Internal Logic behaviors.

reading/writing the MMIO status register. This enables the EXTI ISR to execute cor-

rectly. While this requires understanding some chip-level details, it retains the scaling

and relative simplicity of high-level emulation. We implemented a MMIO register and no

internal machine, versus implementing all the MMIO registers of all the used peripherals

in the firmware and their associated internal state machines that control how the bits in

those registers are used.

Scaling Across Devices. To demonstrate how HLE allows the emulation of one HAL to

scale across devices, we constructed an experiment using samples from the NXP MCUX-

presso HAL, each from a different board and CPU. These represent chips from each of

NXPs major ARM microcontroller product families, including Kinetis, LPC, and i.MX,

whose designs and peripheral layouts are entirely different due to their development un-

der formerly-separate companies. Regardless of family and lineage, all of these parts

share the same HAL. As a result, we obtained 20 instances of the uart_polling exam-

ple, from 20 different development boards. The uart_polling example was selected as

UARTs are available on nearly every board and the presence of other peripherals varies

from board to board. We then emulated these 20 firmware samples using the same NXP

UART handlers and peripheral models. Specifically we used three handlers, a transmit

handler, receive handler, and a default handler that returns zero. The only differences

in the configuration of HALucinator for the different firmware was in the RAM/Flash

layout, clock interception, and power initialization functions all of which were handled

by the trivial default handler. In total 29 unique functions were intercepted. Six function
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QEMU Avatar2 HALucinator

Mfr. Application Software Libraries Modeled Interfaces BB EBC BB Fwd R/W EBC BB Funcs. MMIO EBC

Atmel UART ASF UART 8 7 184 467 7 43 5 4 3

Atmel SD FatFs ASF, FatFS, UART, SD Card, EXTI 8 7 344 554 7 920 14 28 3

Atmel lwIP HTTP ASF, HTTP, lwIP UART, Ethernet 8 7 265 935 7 1,584 8 24 3

Atmel 6LoWPAN TX ASF, Contiki UART, 802.15.4, EXTI 14 7 121 521 7 2,734 21 36 3

Atmel 6LoWPAN RX ASF, Contiki UART, 802.15.4, EXTI 14 7 122 903 7 2,474 21 36 3

STM UART STM32Cube UART, GPIO 8 7 40 17 7 66 10 7 3

STM SD FatFs STM32Cube FatFS GPIO, SD Card, Clock 8 7 41 17 7 625 18 25 3

STM UDP Echo TX STM32Cube, lwIP Ethernet, GPIO, EXTI 8 7 32 15 7 732 16 10 3

STM UDP Echo RX STM32Cube, lwIP Ethernet, Clock 8 7 40 17 7 568 15 10 3

STM TCP Echo TX STM32Cube, lwIP Ethernet, Clock, GPIO 8 7 31 15 7 1,110 16 10 3

STM TCP Echo RX STM32Cube, lwIP Ethernet 8 7 33 15 7 1,002 15 10 3

STM PLC STM32Cube, STM-WiFi Timer, WiFI, UART, SPI 39 7 54 17 7 713 17 41 3

NXP UART MCUExpresso UART 4 7 107 1,766 3 82 6 28 3

NXP UDP Echo RX MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 805 13 43 3

NXP TCP Echo RX MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 1,173 14 43 3

NXP HTTP Server MCUExpresso, lwIP UART, Ethernet 4 7 56 68 7 1,756 14 45 3

Averages 9.7 98.7 341.2 1024.2 13.9 25.0

Table 4.3: Comparison of QEMU, Avatar2, and HALucinator.

at minimum, nine maximum, and 6.9 on average were intercepted per board. This shows

that the same handlers and models can be used to support multiple product families. The

only challenge was to identify the names of the intercepted clock and power initialization

functions.

4.4.3 Interactive Emulation Comparison

Next we re-host the 16 firmware samples shown in Table 4.1 interactively, using

QEMU, Avatar2 [12], and HALucinator. In this experiment, we use the QEMU pro-

vided with Avatar2 in its default configuration and load and execute the firmware into

QEMU without the hardware present. In this configuration any access to unsupported

MMIO in QEMU will fault. Avatar2 was configured to execute the firmware in QEMU

and forward all MMIO to a physical board connected by a debugger. Thus, all reads

and writes to MMIO obtain values from or write to physical hardware. HALucinator

utilized the functions found by LibMatch, and we intercept a sufficient number of HAL

functions to enable the firmware samples to perform their externally observable func-
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tionality as compared to execution on the physical hardware. For any MMIO that is

executed, we implement a default MMIO handler that returns zero for reads and silently

ignore writes.

We consider the external behavior to be “correct” if equivalent functionality can be

performed on the emulated system as on the real hardware. Specifically, the TCP/UDP

examples successfully transmit the same data as the physical hardware. We are able to

access the same pages on the HTTP server firmware samples. The FatFs examples are

able to read and write the required data to the the appropriate files within its file system.

We verified this by mounting the binary images provide by HALucinator through the

SD card model as a FAT32 file system. The 6LoWPAN examples successfully talk to

each other and their echoed messages are sent out their UARTs in the same order as

the physical hardware. The UART examples are able to send and receive data over

their UARTs and give the expected responses. Finally, the PLC sample, connects to its

Android programming app, successfully loads a ladder logic, and executes it. Due to

the limited inspection capabilities of hardware we cannot verify that equal code paths

are followed as compared to physical hardware. Obtaining this level of inspection is a

primary motivation for emulating embedded systems. It should be noted that enabling

this level of emulation exceeds what is needed purely for fuzzing, as fuzzing can be

performed by simply getting the system to read an input. Providing the same level of

functionality enables fuzzing to start from a plausible initial starting point, and as will

be shown in subsection 4.4.5 HLE enables targeting the fuzzer at different layers within

a firmware.

Table 4.3 shows the software libraries used by each firmware, and the interfaces mod-

eled by HALucinator. For each technique it shows the number of unique basic blocks

executed (“BB”), which indicates how much of the firmware executes. It also shows if the

external input and output behavior matches that observed from executing the firmware
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on physical hardware (external behavior correct – “EBC”).

For Avatar2, we report the number of reads and writes forwarded to the board (“Fwd

R/W”) which demonstrate that Avatar2 is correctly forwarding memory requests. For

HALucinator, we report the number of functions intercepted (“Funcs”) and the number

of unique addresses handled by the default MMIO. The number of functions intercepted

gives a measure of how much work is required to emulate the firmware using HALuci-

nator, and the MMIO using the default handler are accesses to hardware that could

potentially be replaced with further interception of HAL functions.

HALucinator enables the correct black-box behavior in all cases—all vendors, all

boards, all firmware samples. Among our baseline approaches, the NXP UART firmware

using Avatar2 is the only other firmware successfully emulated. This is because it is

a simple firmware that polls the MMIO and does not use any interrupts. In all cases,

QEMU triggers a bus fault when any MMIO occurs and executes at most 39 unique basic

blocks (on STM PLC). Avatar2’s MMIO forwarding enables executing further into the

firmware (the average number of basic blocks increases from 9.7 to 98.7), but quickly

runs into problems. All the STM samples and the NXP UDP, TCP, and HTTP sam-

ples enable the SysTick timer early in their initialization. The SysTick timer is part of

the Cortex-M architecture and implemented in QEMU. The emulation is significantly

slower than the actual hardware thus, when SysTick is enabled QEMU is quickly over-

whelmed with interrupts. It is unable to finish handling one interrupt before the next

occurs. HALucinator intercepts the HAL functions that initialize the SysTick timer

and substitutes a counter to keep time; enabling it to avoid this problem. All the Atmel

firmware samples halt when the debugger fails to write an MMIO address on the board.

The debugger does not give any indication why this occurs. In most cases, the debugger

has successfully written the address previously, implying the error is not that the address

is invalid. This highlights one of the challenges of emulating with hardware-in-the-loop.
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The emulator, debugger, and board must be synchronized and execute without error in

unison to enable successful emulation. Even if the debugger worked reliably, the firmware

samples depend on interrupts, which Avatar2 does not synchronize with the emulator and

thus they would still fail to execute correctly.

This experiment shows how HALucinator enables the emulation of complex firmware

that exhibits the same external functionality as the firmware executing on real hardware,

which existing approaches cannot do. HALucinator executed more than 1,000 basic

blocks on average, 10x more than Avatar2, on our sample firmware. The emulation of

four different boards from three different manufactures demonstrates the ability of HLE

to support a wide variety of hardware, and the reuse of the same peripheral models for

all boards shows their scalability across vendors and hardware platforms.

4.4.4 Code Complexity Metrics

To assess the difficulty and complexity of the required manual effort when program-

ming the handlers and peripheral model, we examine the amount of code—in source lines

of code (SLOC)—and its cyclomatic complexity (CC) in Table 4.4. Let us look at the

largest handler for each peripheral. The ASF Ethernet handler requires 119 SLOC across

with an average function cyclomatic complexity of 1.9 and a maximum of 6. The Ether-

net peripheral model takes an additional 60 SLOC with average cyclomatic complexity

of 2.2. This means an Ethernet interface can be emulated in under 200 lines of simple

code.

However, firmware uses more than one peripheral. The 6LoWPAN firmware samples

use the IEEE 802.15.4 radio, UART, Clock, the external interrupt controller (EXTI), and

on-board debugger (EDBG) interfaces. For these firmware samples the amount of code

and complexity of the code is low. It require 228 SLOC for the handlers and 177 SLOC
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lines of code for the peripheral models with the highest average cyclomatic complexity

being 2.2. Thus, with 405 lines of simple code, we emulate the firmware for a wireless

sensor implementing the 6LoWPAN protocol.

4.4.5 Fuzzing with HALucinator

We now demonstrate that HALucinator’s emulation is useful for dynamic analysis

by fuzzing the network connected firmware shown in Table 4.5, and the firmware used

in the experiments in WYCINWYC [9]. WYCINWYC investigates the observability of

memory corruption on embedded systems, and provides a vulnerable implementation of

an XML parser on embedded system. Experiments were performed on a 12-core/24-

thread Xeon server, with 96GB RAM. Table 4.5 shows the statistics provided by AFL

during the fuzzing sessions. Crucially, we were able to scale these experiments to the full

capacity of this hardware, due to removing the dependence on the original hardware.

We include the WYCNINWYC example here, as it provides a benchmark of crash

detection in an embedded environment. This firmware uses the same STM HAL used

in previous experiments, and no additional handlers were implemented. We substituted

our fuzz model for the serial port model, and fuzzing was seeded with the non-crashing

XML input included with the binary. We triggered four of the five crashes in [9], without

the need for additional crash detection instrumentation, and were able to trigger the

final crash by simply adding the ASAN-style sanitizer described in subsection 4.2.4. The

remaining firmware were re-hosted as in the interactive experiments, replacing the I/O

server with the fuzz model for network components and adding fuzzing-related instru-

mentation. We also provided handlers for disabling library-provided non-deterministic

behaviors (e.g., rand()), and generated inputs by simply recording valid interactions

performed in the previous experiments, and serializing them into a form that can be
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mutated by AFL.

These experiments uncovered bugs in the firmware samples. The ST-PLC firmware

implements a Programmable Logic controller that executes uploaded ladder logic pro-

grams. It uses WiFi connectivity to receive the ladder logic programs from an Android

app. This sample is extremely timer-driven, and made use of the deterministic timer

mechanism to ensure that each input produced the same block information for AFL. We

provided AFL with only a minimal sample ladder logic program obtained from the STM

PLC’s Android app by capturing network traffic. After only a few minutes, AFL detected

an out-of-bounds memory access; upon further inspection, we identified a buffer overflow

in the firmware’s global data section, which could result in arbitrary code execution. The

vulnerability is previously unknown, and we are working with the vendor on a mitigation.

The Atmel HTTP server firmware is a small HTML and AJAX application running on

top of the popular lwIP TCP/IP stack. After nearly 9 days, AFL detected 267 “unique”

crashes, which we disambiguated to 37 crashes using the included minimization tools.

Manual examination revealed the crashes related to two bugs: a heap double-free in

lwIP itself, and a heap use-after-free caused by the HTTP server’s erroneous use of lwIP

functions that perform heap management. The firmware, and the Atmel ASF SDK itself

ships with an outdated version of lwIP (version 1.4.1), and both issues have since been

fixed by the lwIP developers.

However, random mutations in Ethernet frames, even guided by AFL, are not likely

to produce much coverage in the core application logic of the firmware. To focus more

directly on the HTTP server, and not the IP stack, we can exploit the flexibility of high-

level emulation, and instead re-host the binary in terms of the TCP APIs of the lwIP

library (discovered by LibMatch) that the HTTP server itself was written with, allowing

the fuzzed packets to reach deeper into the program. Fuzzing at the higher level quickly

found a buffer over-read in the HTTP server’s handling of GET request parsing, which
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provides an information disclosure in the heap.

The three crashes in the 6LoWPAN sample correspond to a buffer overflow in the

handling of the reassembly of fragmented packets, resulting in overwriting many objects

in the binary’s data section with controlled input, and eventually remote code execution.

The issue relates to the Contiki-OS platform, and as in the previous example, has been

fixed since the version included in the latest SDK was produced. However, the fix in the

latest version introduced two critical vulnerabilities, which we reported as CVE-2019-

8359 and CVE-2019-9183 respectively. We worked with the Contiki authors to patch

these bugs.

These experiments show that HALucinator enables practical security analysis of

firmware without massive re-engineering effort and without any hardware. The scalability

is in both the types of firmware that can be emulated, and the number of instances that

can be concurrently emulated. This enables large parallelization of analyses and testing

such as fuzzing. The discovery of bugs in real firmware samples demonstrates that the

emulation is useful for dynamic analysis of complex firmware.

4.4.6 Evaluation of P2IM Firmware Samples

In order to test the applicability of HALucinator to realistic firmware, we ob-

tained a portion of the case-study samples used in the real-world firmware evaluation

of P2IM [35]. These samples represent multiple CPU manufacturers, and various HAL

implementations, as described in Table 6 of the paper.

We obtained and re-hosted the five samples from this set that take input from outside

the device. For the PLC, Heat Press, and car controller, the firmware contained the

Arduino platform HAL, and we implemented handlers for a small subset of the Arduino

platform’s functions, comprising only five new handlers, to allow these samples to run.

89



Firmware Re-Hosting through Hardware Abstraction Layer Emulation Chapter 4

As this HAL is designed for those new to embedded programming, it helpfully abstracts

away all hardware-specific features, making it a natural fit for our technique. As a result,

this meant that all handlers fell into the Trivial or Translating categories. The drone

firmware contains the STM32 HAL used extensively in our evaluation in subsection 4.4.3;

we added three additional Translating handlers, and the firmware ran without issue.

Finally, the console uses RIOT OS [39], which is both an RTOS kernel and a set

of hardware abstractions and drivers. RIOT OS exposes a standard set of functions

for hardware peripherals, with multiple implementations depending on the chip in use.

Of the seven new handlers that were required, five fell into the Trivial or Translating

categories. However, there was one notable exception: the RIOT task switcher uses

new ARM architectural features and CPU instructions not yet supported by QEMU

or Unicorn Engine. Thankfully, this is a standard component of RIOT that, like any

other, can be turned into a handler. By implementing the context switching as a handler

(requiring 15 lines of handler code), we both get deep introspection into the behavior of

RIOT OS programs, and the ability to explore multi-threading-related issues in RIOT

OS programs in the future, regardless of their underlying hardware.

We fuzzed these samples with HALucinator. Table 4.6 shows the results. We

observed a variance in execution speed, both due to the nature and size of the input,

but also how well this input is checked for correctness. For example, the Drone sample

executed particularly slowly, due to the fact that if erroneous input was detected, the

firmware would call an error handler routine, which caused the system to hang. We were

able to reproduce the crashes in the PLC and Heat Poress samples.
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4.5 Limitations and Discussion

We believe that LibMatch and HALucinator represent an important step in the

practicality and scalability of the dynamic analysis of embedded firmware. However,

the problem in general is not fully solved. Here we will discuss limitations, and open

problems in embedded firmware analysis.

Use and Availability of HALs. The process of high-level emulation as described in

this work, requires the firmware use a HAL, and the HAL must be available to the analyst

(e.g., either open source, or part of the microcontroller’s SDK). The compilation environ-

ment for the LibMatch database must be similar to the compilation environment for the

firmware, and QEMU must support the microcontroller architecture. Even when these

conditions are met, handlers and peripheral models must be developed for each HAL.

Progress on any of these limitations will increase the applicability of HALucinator in

analyzing firmware.

We note that microcontroller vendors are investing significant resources into the de-

velopment of HALs and license them under permissive terms. While we cannot estimate

the population of devices today that use HALs, we expect these steps on the part of

manufacturers will lead to a rapid increase in HAL usage. However, if a HAL is not used

in a firmware sample, or is unavailable to the analyst, then LibMatch cannot be used for

identifying interfaces usable for high-level emulation. This does not prohibit high-level

emulation; as a reverse-engineer could manually identify useful abstractions in the binary.

Which would still be preferable to writing low-level QEMU peripherals.

Library Matching. LibMatch implements extensions on top of library matching al-

gorithms that allow them to be used for the purpose of finding HALs and libraries in

firmware. However, we note that the effectiveness of LibMatch, especially when the

compiler or library versions used is unknown, is limited. This limitation comes from
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function matching techniques’ inability to cope with compiler-induced variations in gen-

erated code. While partial techniques have been proposed, most recently in [64], the

problem is not solved in the general case. High-level emulation and LibMatch will bene-

fit directly from any advancement in this orthogonal problem area of function matching

in the future. LibMatch’s primary contribution is the use of context (callees/callers)

of a function to disambiguate binary equivalent functions, which is necessary to enable

correct interception and replacement of functions by HALucinator.

4.6 Conclusion

In this chapter, we explored the concept of high-level emulation to aid in the prac-

tical re-hosting and analysis of embedded “blob” firmware. To find useful abstractions,

we showcased improvements in binary library matching to enable hardware abstraction

layers and other common libraries to be detected in binary firmware images. Implementa-

tions were then broken down into abstract components that are reusable across firmware

samples and chip models.

HALucinator is the first system to combine these techniques into a system for

both interactive dynamic analysis, as well as fuzzing. We re-hosted 16 firmware samples,

across CPUs and HALs from three different vendors, and with a variety of complex pe-

ripherals. High-level emulation made this process simple, allowing for re-hosting to take

place with little human effort, and no invasive access to the real hardware. Finally, we

demonstrated HALucinator’s applications to security, by using it to detect security

bugs in firmware samples. We believe that high-level emulation will enable analysts to

broadly explore embedded firmware samples for fuzz testing and other analyses. HALu-

cinator is available at https://github.com/embedded-sec/halucinator, hal-fuzz is

available at https://github.com/ucsb-seclab/hal-fuzz.
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STM32 Handlers Atmel Handlers NXP Handlers Peripheral Model

CC CC CC CC

Peripheral SLOC Max Ave SLOC Max Ave SLOC Max Ave SLOC Max Ave

802.15.4 — 89 3 1.4 — 62 3 2.0

Clock 21 1 1.0 25 2 1.3 — —

EDBG — 30 2 1.6 — —

Ethernet 67 4 1.5 119 6 1.9 50 2 1.2 60 3 2.2

EXTI — 47 4 2.2 — 32 2 1.4

GPIO 46 1 1.0 — — 36 2 1.3

SD Card 82 5 1.7 116 3 1.5 — 60 4 2.3

SPI 55 1 1.0 — — 66 5 1.9

WiFi TCP 69 8 2.4 — — 59 5 2.2

Timers 77 1 1.0 61 2 1.3 — 43 2 1.7

UART 29 1 1.0 37 1 1.0 36 1 1.0 41 4 2.0

Table 4.4: Showing SLOC, maximum and average cyclomatic complexity (CC) of the handlers

written for the STM32, Atmel, and NXP HALs and the associated peripheral models.

Name Time Executions Total Paths Crashes

WYCINWYC 1d:0h 1,548,582 612 5

Atmel lwIP HTTP (Ethernet) 19d:4h 37,948,954 8,081 273

Atmel lwIP HTTP (TCP) 0d:10h 2,645,393 1,090 38

Atmel 6LoWPAN TX 1d:10 1,876,531 23,982 0

Atmel 6LoWPAN RX 1d:10 2,306,569 38,788 3

STM UDP RX 3d:8h 19,214,779 3,261 0

STM UDP TX 3d:8h 12,703,448 3,794 0

STM TCP RX 3d:8h 16,356,129 4,848 0

STM TCP TX 3d:8h 16,723,950 5,012 0

STM ST-PLC 1d:10h 456,368 772 27

NXP TCP RX 14d:0h 218,214,107 5164 0

NXP UDP RX 14d:0h 240,720,229 3032 0

NXP HTTP Server 14d:0h 186,839,871 9710 0

Table 4.5: Fuzzing experiments results.
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Name Time Executions Total Paths Crashes

PLC 9d1h 167,649,720 1,585 634

Heat Press 9d1h 55,577,331 991 13

Steering Ctlr 23d14h 98,393,268 469 0

Drone 4d1h 9,234,661 4666 0

Console 4d1h 124,442,630 2834 0

Table 4.6: P2IM case-study firmware sample fuzzing results
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Chapter 5

Security Retrofitting for Monolithic
Embedded Firmware

In this chapter, we will explore the reality of security retrofitting monolithic binary

firmware images. We first identify the concrete pre-requisites and challenges an analyst

needs to consider to perform retrofitting on a given device. Then, we will propose novel

automated reverse-engineering techniques able to guide the analyst through the process

to the maximum extent possible. While the immense hardware and software diversity in

monolithic firmware-based devices does not allow for a full automation of the retrofitting

process, our techniques enable an analyst to produce a patch with only basic knowledge

of the device’s hardware and the flaw that needs patching. Specifically, our techniques

perform three fundamental steps that are needed to retrofit firmware: (1) identifying

attacker-controlled sources of input, (2) identifying memory locations suitable for insert-

ing a patch, and (3) identifying verification mechanisms that prevent the deployment of

a patch.

We combine the aforementioned components into a system, Shimware, able to per-

form all of these tasks on a firmware image and insert a patch payload to mitigate a

given vulnerability. Our system is based on the popular open-source angr [101] binary

analysis framework, which allows for minimizing effort while the handling of the diverse
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architectures and binary formats found in firmware.

We first evaluate the capabilities of our system to identify the firmware’s sources of in-

put on a dataset of both synthetic and real-world firmware images, and show that the sys-

tem is able to locate the IO-related code of a program with a low false-positive rate. Then,

we showcase the effectiveness of our system by retrofitting fixes for severe security- and

safety-critical vulnerabilities in three real-world devices: a high-end Programmable Logic

Controller (PLC) found in factory and military equipment, a Bluetooth-enabled cardiac

implant monitoring device, and a network-enabled laboratory power supply. These de-

vices contain vulnerabilities that are not the result of an implementation error, but a

significant defect in the design of the device itself.

In summary, our contributions are as follows:

• We examine and enumerate the challenges inherent in the security retrofitting of

real-world embedded devices, and highlight why current approaches are incompat-

ible with monolithic firmware images.

• We propose novel analyses able to automatically reverse-engineer a firmware image,

and provide an analyst with the information needed to locate sources of attacker-

controlled input, safely insert a patch payload, and ensure that self-checks prevent-

ing such modifications are bypassed.

• We assemble these techniques into a system, Shimware, and show its generality

and effectiveness both through synthetic evaluation, and through the mitigation of

severe logic vulnerabilities in three real-world, safety-critical devices.

In the spirit of open research, we will release all our analyses and code as open-source

upon publication.
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5.1 Challenges & Goals

In this section, we walk through the process that an analyst uses to create a patch for

an embedded system, and discuss the challenges inherent in each step and our solutions

to these problems. At first glance, the process would seem to entail simply taking the

firmware code, altering some bytes in it to fix the vulnerability, and running the new ver-

sion; however, the reality of embedded systems—and even the best-practices advocated

by the security community—can hinder third-party security retrofitting.

Obtaining the Firmware Code. For desktop programs, this step is trivial; the analyst

already has the program, as they are able to run it. In an embedded system, such as one

based on monolithic firmware, this is not trivial. Unfortunately, vendors making their

firmware available is incredibly rare, necessitating the extraction of firmware: either from

the device itself, or from a mobile or desktop application designed to update it.

Many device vendors consider their firmware to be protected intellectual property. To

help address this concern in their products, CPU vendors have come up with numerous

hardware mechanisms to prevent the firmware inside their SoCs from being extracted.

Manufacturers commonly include hardware debugging features such as JTAG in their

devices to ease the hardware development life cycle, but best-practices dictate disabling

this in production devices as it can be used to read the firmware. Some vendors have

begun implementing forms of protection in the flash memory itself to prevent reading

the firmware, even when JTAG is enabled [111, 112]. Vendors also include anti-tamper

mechanisms [113] which can erase the firmware if an extraction is attempted, or even if

the device’s case is opened.

To obtain this firmware, therefore, the analyst must obtain the device and examine it

to see which protections are enabled; if they are not, they and can use readily available

hardware debugging tools to extract the firmware. These hardware mechanisms can also
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be vulnerable to their own implementation vulnerabilities [114, 115]. Nevertheless, if

the vendor has taken simple steps to prevent their firmware from being read, the device

cannot be patched by a third-party.

Creating a Patch. A security patch should, by definition, have an effect related to the

processing of input from an attacker-controlled source. With no standard sources of input,

but numerous hardware peripherals that can generate input data, the analyst currently

has the tedious task of manually reverse-engineering the firmware and hardware to find

the location in the firmware where data from the outside world is accessed. Although we

know that the location and function of MMIO peripherals and registers will vary, we can

assume these locations to be fixed at compile-time, and they can be found in the program

as constant pointers to a peripheral or specific register. However, there are numerous

places where hardware is accessed in ways that do not constitute input; serial ports and

busses are generally more useful for security retrofitting than timers, clocks, and power

controls.

Therefore, we propose IOFinder, an analysis that uses static analysis and symbolic

execution to locate those functions that produce data that affects the rest of the program.

This analysis filters out irrelevant data to only show the actual input, which can be used

to make security-related decisions in a patch.

Inserting a Patch. Once it has been developed, a patch must be inserted into the

firmware image. On a system whose firmware contains a normal filesystem, this could be

as simple as replacing an ELF file. As we target monolithic firmware images, we are left

with the more difficult challenge of finding a place in the firmware to safely add code,

without affecting the original functionality. Unfortunately, we cannot simply insert code

next to the source of attacker-controlled data and shift the remainder of the binary, due

to the known-hard problem of locating and adjusting all pointers which would become
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incorrect due to the shift. Therefore, the most effective option is to insert the additional

code in an unused region of the firmware sample, and substitute an instruction near the

source of data for a branch to this region [24]. Deciding which regions are safe to use,

however, is its own challenge. We develop techniques that help an analyst to find safe

locations to place the patch within the firmware image. As a result, our approach, which

we call LocationFinder, finds either known-unused space on the device’s flash memory,

or known-expendable code regions.

Deploying a Patch. Most firmware designs include some sort of verification mecha-

nism to verify its integrity, either when the system boots, or when it is upgraded. These

mechanisms can be divided into two categories: those designed to prevent accidental

modification (such as CRCs and checksums), and those that are designed to stop inten-

tional modification (such as cryptographic signatures). Which checks we must deal with

also depends on our firmware injection vector. We typically have the choice of using either

the firmware’s own update mechanism to deploy our retrofit or using a hardware injec-

tion mechanism such as JTAG or direct flash memory access. If we find an unprotected

JTAG port on a device and the firmware’s digital signatures are only checked during an

over-the-air update, we can bypass this entirely by flashing our own firmware via JTAG.

Therefore, in order to successfully deploy a patch, we must mitigate any self-check that

affects either our chosen firmware installation vector or the firmware’s boot process.

We thus propose an analysis, SelfCheckFinder, able to identify many forms of self-

checks present in firmware by looking for operations utilizing the content of the firmware

itself.

In summary, the state of modern firmware protections and hardware countermeasures

makes it difficult for an analyst or a tool to patch and deploy a monolithic firmware

image. We discuss the conflict between security best-practices and security retrofitting
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Figure 5.2.1: Shimwareoverview. Our static-symbolic analyses automatically identify (a) at-

tacker controlled sources of input, (b) memory regions where to insert a patch payload, and (c)

self-checks that prevent firmware modifications. An analysts can then leverage the extracted

information to instruct the Shimmer to retrofit the firmware image.

in Section 5.5. In this work, we aim to aid the analyst in retrofitting firmware, where

possible, by automating the tasks of finding sources of attacker-controlled data, safe code

injection locations, and code self-checks.

5.2 Methodology

In this section, we propose our automated program analysis approach to simplify the

process of security retrofitting monolithic embedded firmware. We identify three tasks

that represent time-consuming, firmware-specific efforts, and design program analysis

techniques to automate them. The outputs of these analyses can be combined to allow

an analyst to successfully inject a retrofit payload into a firmware image.

The system combining these techniques, which we call Shimware, performs the fol-

lowing steps (Figure 5.2.1):

IOFinder: The analyst must locate the source of the potential attacker’s input within

the firmware. This analysis locates usage of MMIO-related pointers in the binary,
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and then applies symbolic execution to understand how they are used. This allows

us to filter the vast majority of these usages that are uninteresting to the analyst,

e.g., peripheral configuration and status checks, and instead focus on those where

data from the peripheral enters and affects the rest of the program. The result of

this analysis is a set of functions that read or write data from MMIO.

LocationFinder: The LocationFinder analysis guides the analyst in choosing a region

where to insert their code. We combine possible injection locations through the

identification of known-unused regions, as well as known-expendible functions, and

present the analyst with information on how much space is available from each

source.

SelfCheckFinder: This analysis locates functions in the binary that check their own

content. These can be designed to detect accidental modification of the binary due

to hardware glitches (e.g., CRCs and checksums), as well as intentional modifica-

tion (e.g., digital signatures). We first statically prune the list of all functions to

those that could possibly constitute a self-check, and then perform symbolic exe-

cution on the remaining set to determine if a self-check is performed. The result of

this analysis is a set of functions that contain self-checks, which should either be

mitigated (e.g., by adjusting the firmware’s checksum) or removed altogether.

Shimmer: The final step is to assemble the retrofitted firmware image, and deploy it

onto the device. This phase of the system takes the analyst’s retrofit payload, the

analysts choices about which IO functions to intercept, where to put the payload,

and which self-checks to remove, and creates a ready-to-use firmware image.
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5.2.1 Pre-requisites and Assumptions

There are some pre-requisites that must be satisfied in order to use Shimwareand

its techniques.

Device Access. The device to be retrofitted must be available to the analyst, and

some basic details about the system, such as its basic functionality and CPU model,

must be known. The analyst can provide Shimwarewith the CPU model in order to get

accurate information on the hardware peripherals accessed by the firmware. However,

the analyst must also know which of the many possible sources of input in the firmware

image they wish to safeguard. For example, a firmware image could be communicated

with via multiple serial ports, but if one of these is connected to a radio module that can

be communicated with by an attacker, this is clearly the interface to be inspected. All

of this information can be obtained quickly through examination of the device.

Firmware Access. The firmware must be obtained in full, either from the manufac-

turer, an associated desktop or smartphone app, or from the device itself. Many devices

split their firmware into two parts: a bootloader and a primary application. While the

SelfCheckFinder can spot all the needed checks, many of these checks are found within

the bootloader, so this code is needed as well. An unprotected hardware debug interface,

such as JTAG, provides all of the needed access, but directly interfacing with flash chips

or reverse-engineering of the device’s update mechanism may also be sufficient [116].

Patch Deployment. The analyst needs a way to deploy a retrofitted firmware image

onto the device. An unprotected debug interface, or reverse-engineered update mecha-

nism suffices here, but as discussed in Section 6, some hardware countermeasures may

prevent the use of modified firmware images.

Availability of Test Corpora. Determining whether or not a patch does not alter

the device’s functionality is known to be undecidable in the general case. Therefore, we
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assume the analyst has access to sufficient tests suites or companion apps to ensure the

proper function of the device after the shimmed firmware is applied.

While this may seem like a long list of requirements, we demonstrate that they are

reasonable by applying Shimwareto real-world devices in Section 5.4.

5.2.2 IOFinder

The first step to defend a device from attack is to figure out where that attack is

possibly coming from. Since we deal with monolithic firmware without function names

or library information, and cannot rely on the presence of a standard library that provides

IO functionality, we must reverse-engineer the binary to find where the attacker’s input

comes from.

As we outline in Section 5.1, there are two significant complications with locating IO.

First, in most modern architectures, particularly ARM, we cannot tell statically which

instructions in the binary perform IO operations, as normal load and store instructions are

used to access peripherals. Second, the location, layout, and semantics of each hardware

peripheral varies widely with the CPU on which the firmware is designed to run. Even

when these accesses are located, firmware images perform numerous IO operations that

are of no interest to the analyst, such as setting and clearing configuration flags, or

checking status registers. When retrofitting, we are only interested in the input sources

that handle actual data.

That said, we are able to leverage a few key insights to make this task tractable

through automation. First, and most importantly, the location of MMIO-based periph-

erals is fixed by the hardware and known at compile-time by the firmware’s compiler.

These pointers are often stored in global memory, or used as function arguments to the

IO-related functions to select which peripheral to use. While this indirection must be
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resolved, we know that all IO must result from one of these constant pointers. While

the exact semantics of peripherals varies, these peripherals are all located in pre-defined

regions of the address space that are fixed by the instruction set architecture standard.

Finally, even this semantic information can be resolved to some extent through the use

of the same peripheral labeling information available to debugging tools.

We combine these insights into our IOFinder, which uses a hybrid static-symbolic

approach to locate interesting IO functions. This analysis performs the following steps.

Compute the Fully-initialized State. A common pattern in firmware is to store

global pointers, structs, or objects representing the configured IO devices in global RAM

instead of hard-coding them into the program. These are often initialized at the beginning

of the firmware’s boot, far from where they are actually used. As a result, to know which

functions in the program perform MMIO operations, we need to compute the state of the

program after these initializations occur. To do this, we created a novel static analysis

that locates and performs any assignment of a constant pointer into global memory, and

creates a state consisting of the union of all such initializations.

Find IO Pointers. Leveraging the fully-initialized state, we scan the binary for refer-

ences from the code to the architecturally-defined IO region. We also scan global memory

locations previously found to be initialized to an IO pointer. Since any IO activity must

include one of these pointers, the result of this step is the set of all functions that contain

such an access.

Usage Pattern Analysis. Since all of these pointers are usually not declared or accessed

near where the actual IO operation occurs (e.g., they are passed into another function as

an argument), we utilize symbolic execution to determine how these pointers are used and

locate specific IO operations of interest. We chose every function that defines a pointer to

an IO memory area, or uses a global memory location that is initialized to an IO pointer,
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as entry points for symbolic execution. Since many IO operations are inconsequential

to the analyst, instead of immediately logging all IO operations encountered, we apply

dynamic taint tracking to understand how data is used. During the symbolic execution,

we use the following rules:

• When data is read from an MMIO peripheral, we taint the resulting data.

• When data is written to an MMIO peripheral, we examine the expression relating

to the data to be written. If data being written was previously also read from

MMIO, this is likely a read-modify-write pattern for setting and clearing flags, and

is discarded.

• When data is written to an MMIO peripheral, if the data is constant, it likely was

not a result of a meaningful behavior from the rest of the program (e.g., flags and

configuration) and is ignored.

• When data is written to an MMIO peripheral, and is not from IO or a constant,

it must have come from a function argument or global memory, and is logged as a

source of output.

• When data is written to non-MMIO memory, we check if the destination is related

to a function argument (e.g., a pointer to a buffer) or global memory. If we are

writing to such a location, and the data came from MMIO, this is logged as it

represents a location in which data from MMIO is made available to the rest of the

program.

• When the starting function returns and data from MMIO is returned by value, this

also logged as it represents IO data being made available to the outside program.
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• When data read from MMIO is itself used as a pointer, this is logged as being a

likely source of Direct Memory Access (DMA), as embedded devices tend to handle

pointers to the buffers they are operating on.

This produces a set of CPU instructions that perform some kind of input or output

accessible to the surrounding program, along with the exact MMIO address that was

targeted.

External Peripheral Information. The analyst must now decide which peripheral is

relevant to their retrofitting scenario, so that its data can be used to develop a retrofit

payload. Inevitably, firmware can access data from peripherals which are uninteresting

to the analyst, in the same manner as those which represent external input. While these

are not false-positives in the traditional sense, we can use some information about the

microcontroller’s hardware to help the analyst quickly locate peripherals related to their

retrofitting scenario by labeling the names and registers of peripherals accessed during the

symbolic execution step. For example, on the ARM architecture, SystemView Debugger

files (SVD) are available in an online repository [49] for many popular embedded ARM

CPUs, which can be queried by IOFinder to label the results with names and descriptions.

Listing 5.2.2 shows a set of IO-related functions from the atmel_6lowpan_udp_rx

firmware binary, taken from the dataset used in Chapter 4. This binary implements a

802.15.4 mesh network node, with a radio module controlled over the Atmel SAMR21’s

SPI bus. During the firmware’s boot, the function trx_spi_init() is called, which

sets up the SPI bus selected at compile-time to control the radio and stores a pointer

to it in a global struct. Much later, when data is received, the firmware’s interrupt

handler calls trx_reg_read(), to obtain data from the radio. If we were to examine

spi_trx_reg_read() without its names, and without any other context, we would see a

function that adds an offset to a value in memory, and dereferences it, which may or may
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not be an IO operation, depending on what this global memory value (&master) is. When

we compute the fully-initialized state, however, we notice &master->hw stores a pointer

to the SPI bus controller (0x42001800), and this is added to our fully-initialized state.

When we run our IOFinder using this state, we notice that spi_master->SPI.DATA.reg

is a pointer to the IO region and taint the variable data. When the value of data is

returned, the analysis records this as a MMIO read operation, since the data from the

SPI bus is being made available to the rest of the program. Since we know that this

sample was built for an Atmel ATSAMR21G18A, we can use the available SVD files

for this chip to automatically label this access as coming from the SERCOM4->I2CM_DATA

register, the data register of one of the chip’s combined SPI/I2C/USART interfaces.

5.2.3 LocationFinder

To retrofit a monolithic firmware image, we need to find a location in the binary

where we can insert the payload. However, as discussed in Section 5.1, this is not simple.

Therefore, we have to find a safe region within the binary to insert our payload without

disrupting the device’s functionality.

While this problem can be shown to be undecidable—demonstrating that a memory

region is not used by a program requires solving the halting problem—we can make some

assumptions to find regions in the program that are highly unlikely to be used.

First, we consider monolithic firmware images, which come from non-volatile storage

in embedded systems. One characteristic of this storage is that it is not easily written to;

in order to perform a write operation, a program likely needs to manipulate an MMIO-

based peripheral, erase an entire page of the flash, and replace it with a new one. As

a result, this means that unlike highly volatile data residing in RAM, and our firmware

image can be assumed to be relatively static.
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Second, we may not always have sufficient free space to insert our payload; firmware

binaries typically need to fit into relatively small storage spaces, and are usually compiled

with sized-focused optimizations. Without any guarantees on available insertion space,

we are left to remove something from the binary itself to make room. This too can be

shown to be undecidable; furthermore, existing work on this area [67, 76] relies on having

complete, accurate control-flow graph information, which is not possible in this setting.

To address these issues, we implement the LocationFinder leveraging a series of heuris-

tics to find available regions in the binary.

EmptyRegionFinder. This analysis locates regions of the firmware that are highly

likely to be unused. We locate contiguous regions of repeating values (typically 0 or

0xFF), and track the largest one found in the binary. We ignore regions that are statically

referenced in the binary, such as when pointers referring to the region are used in the

program. While we cannot guarantee that a pointer to a nearby location is not used to

access a seemingly-empty region, such as in a loop, we note that it is highly unlikely to

find such a region in the firmware, given the access constraints on non-volatile storage,

without it being legitimately unused.

SafeFunctionDetector. We locate functions that are safe to remove from the binary.

To sidestep the undecidability of this problem, we make a very conservative definition

of the functions we wish to remove. In some embedded systems, particularly those

with safety-critical roles, functions that test hardware’s correct behavior are occasion-

ally present. An interesting property of such functions is that these functions appear

meaningless from a purely software-focused perspective. For example, a function that

tests memory and registers might perform actions such as writing a pattern, reading it

back, and making sure the values before and after are equivalent. We note that in the

absence of severe hardware failure, removing such functions does not, by definition, alter
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the behavior of the program.

Therefore, we use targeted symbolic execution to identify such functions. We symbol-

ically execute every function in the binary, after statically pruning functions that cannot

meet this definition. If a function branches based on its input, calls a function, writes

to non-stack variables, or returns a value based on its input, we cannot guarantee it is

safe to remove. In other words, if every path constraint in the function simplifies to

true, and the function is void or returns a constant, we can eliminate it. This narrow

definition makes this analysis fast by constraining the amount of execution needed to

make a determination.

The LocationFinder uses both of these analyses, and picks the largest available region

to inject the analyst’s payload. As we mention in Section 5.2.1, we use available testing

corpora, such as test programs and companion apps, to verify that these results are

correct.

5.2.4 SelfCheckFinder

To deploy a retrofitted firmware image, we have to locate any places where the

firmware checks its own integrity so that they can be mitigated or removed.

Defining what a self-check is, however, must be done very carefully. Cryptographic

functions are a logical tool for implementing self-checks, and previous work [117, 118] pro-

poses various static and dynamic approaches to finding cryptographic functions. There

are plenty of self-checks (e.g., the simple addition-based checksum) that would not be

detected by these schemes, but we would still need to locate them here. Moreover, not

all cryptographic functions are self-checks; we only are interested in those which actually

involve the content of the firmware. Finally, modern SoCs include hardware support for

CRCs and cryptography, meaning that a self-check’s actual math operations may not
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appear in the code at all.

To find self-checks, we make two key observations: First, similar to the IOFinder,

our “self-check” must utilize a pointer to the beginning of the region it wishes to check.

Theoretically, this is the base address of the binary, but we note that monolithic firmware

images that are internally composed of a bootloader and an application may have a

scheme in which one region checks another. Therefore, we define a self-reference to be a

pointer to the firmware, which is evenly divisible by 0x400. This was chosen to encode

the intuition that a distinct region in the firmware (or the entire firmware as a whole) is

likely aligned to the beginning of a page of its flash memory, which is typically a multiple

of 0x400.

Second, we know that, with such a pointer, there is some kind of loop that uses the

pointer to access the binary, in order to compute the self-check. As a result, there is

likely a single instruction in this loop that reads from a large number of locations within

the binary.

With these two ideas in mind, the SelfCheckFinder proceeds as follows.

Compute the Fully-initialized State. Using the same technique described in Sec-

tion 5.2.2, we compute a fully-initialized state, but this time considering only pointers

that are self-references.

Identify Self-references. We prune the list of all functions in the binary to contain only

those that use a self-reference, or use global memory known to contain a self-reference.

Behavioral Analysis. We employ symbolic execution on the remaining functions, and

look for places where the same instruction reads from many locations in the firmware.

Precisely, we consider a function a self-check if it accesses at least N locations, where N

is also the number of loop iterations allowed during the execution. In short, if for every

new iteration, we get an additional access to the firmware, this loop likely implements a
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self-check. We exclude from this set any function whose loop also writes to N locations;

these include common primitives for string processing such as memcpy or memmove.

The analysis produces a list of self-checks, which should be bypassed in order for the

firmware to boot when modified. The analyst will determine that this result is correct

by actually performing a retrofitting; the firmware will not boot if the self-checks are not

removed.

5.3 Implementation

We implemented Shimwarein Python using the angr[101] binary analysis framework.

This allowed us to easily implement both static and dynamic symbolic analyses in the

same framework. angr also offers broad architecture support, and the flexibility to handle

monolithic firmware images.

Loading the Binary. In order to perform analyses on any monolithic firmware image,

we first have to obtain the base address, entry point, and architecture of the binary.

Doing this automatically is a known open problem, but we leveraged an angr plugin that

automates this process for many ARM-based firmware images [119], including all of the

binaries used in this work. This produces a representation of the device’s memory with

the loaded firmware.

Static Analyses. Once the binary is loaded into simulated memory, we perform static

control-flow graph recovery, which also locates the boundaries of functions using function

prologue scanning. We also perform calling convention analysis to determine the number

of arguments and return values for each function, as well as locating distinct program

variables using Variable Recovery [120].

Finally, we collect cross-references in the binary, which allows us to determine where

constant code or data locations are used. These analyses give us the data to implement
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the subsequent components, and are provided by pre-existing components of the angr

framework.

Computation of the fully-initialized state, used in both IOFinder and SelfCheck-

Finder, is implemented using angr’s constant propagation and cross-reference collection

analyses. We perform constant propagation for every function in the binary, in topolog-

ical order, following the program’s callgraph. Any value known to be a pointer which

is propagated into memory is reflected in the fully-initialized state. For the purposes

of this analysis, we define a constant pointer as any integer that could represent an ad-

dress in the architecturally-defined RAM or IO regions. These constant pointers are also

propagated into function calls; a function is only propagated after all of its callers, and

will be propagated multiple times, one for each set of arguments used at a callsite. Any

conflicting memory writes result in a value of TOP being stored in the initialized state.

We then collect statically-resolvable cross-references to global memory that had IO ad-

dresses stored in them during initialization. We select any function that references the

initialized memory locations for further analysis in IOFinder or SelfCheckFinder.

Symbolic Execution. Our analyses use under-constrained symbolic execution to ex-

amine a function’s behavior, by starting at each function’s first instruction, and using

the fully-initialized state. To make this tractable on large binaries, we used a number

of angr’s Exploration Techniques to limit how much execution we perform. We limited

the number of basic blocks in any given path to 10,000, the amount of time spent on a

function to 5 minutes, as well as using depth-first search and removal of dead-ended paths

to reduce memory usage. For IOFinder, we also used the taint tracking and adaptive

inter-function level mechanism proposed in previous work [121], to focus our analysis on

relevant portions of code.

Shimmer. The final step of Shimwareis to assemble all of the information collected
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in the previous steps, and the analyst’s manually-created payload, into a modified image

that can be deployed to the device. While the content of the analyst’s payload is outside

the scope of this work, Shimmer allows for payloads to be written in C, after which

they are compiled to match the target device’s sub-architecture, and size-optimized into

a binary blob. The Shimmer module implements a model of retrofitting in which the

analyst’s payload is triggered right after input is read in from the potentially attacker-

controlled source found in the IOFinder analysis. First, the analyst must chose which

source of input to monitor, from the list found in the IOFinder analysis. Second, they

need to chose from the available payload injection locations with enough space to hold

the payload. Finally, they can opt to simply automatically remove all the self-checks, or

mitigate them manually (e.g., by adjusting the firmware’s checksum).

5.4 Evaluation

To assess the capabilities of our tool, we first perform an in-depth evaluation of our

IOFinder on a synthetic dataset collected from related work. Then, we present three case

studies where we show how Shimwaresuccessfully led to security retrofitting of three

real-world, safety-critical devices.

5.4.1 IOFinder Evaluation

First, we explore the performance of the IOFinder analysis, on firmware samples ob-

tained from previous work. While SelfCheckFinder and LocationFinder locate features

that are only present in production commercial firmware 1, we can use development

board and open-source firmware samples, for which source code and symbols are avail-
1Note that we did run LocationFinder and SelfCheckFinder on these samples, and they correctly

produced no output.
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able, to serve as ground truth for the analysis. To build our dataset, we obtained 17

from related work [35] and from the dataset created in Chapter 4. We used all available

samples that were built as “bare-metal”; we discuss challenges with mbedOS, Arduino,

and other library-OS frameworks in Section 5.5. These samples represent five microcon-

troller models, from three vendors, with widely-varying peripheral and software driver

implementations, and a diverse set of applications, including a PLC, CNC mill, and mesh

network nodes. Using these samples, and the hardware for which they were built, we

enumerated the set of peripherals that actively communicate with the outside world, as

these are the peripherals an analyst would potentially consider as a source of data for a

security retrofit. This process was manual, to account for dead code, and to consider only

those peripherals which actually transmit and receive data externally. This specifically

includes peripherals such as serial ports, busses, and sensors, and excludes timers, clocks,

power control, and other common peripherals that do not constitute communication.

Table 5.1 shows our results; the MCU column indicates which microcontroller model

the firmware was designed for, and the “Useful Peripherals” column lists the peripherals

determined to be useful for retrofitting. The “Tot. No. Functions” column shows the

number of functions in the binary, as identified by angr’s static analyses, while “No. Can-

didate Functions” refers to how many of those were selected for further investigation by

our static heuristics. During the dynamic phase of our analysis, the symbolic execution

generated many load and store operations from the IO region (“Tot. No. IO Ops” col-

umn), of which a much smaller number (“No. Filtered IO Ops.”) survived our heuristics

and are considered potentially useful to the analyst. Finally, the “No. Useful IO Ops.”

column shows how many of those operations flagged by the analysis were related to the

set of useful peripherals.

With regards to our static analysis phase, the results show that we are able to effec-

tively focus our analysis on the part of the program containing IO, while our computation
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of the fully-initialized state allows us to draw proper correlations between IO initialization

functions and later uses.

During the dynamic phase, the results show that in many cases we are able to signif-

icantly reduce the amount of IO the analyst would need to consider. However, we note

that the difference between the useful set of peripheral accesses and the set of filtered IO

operations reported to the analyst does not constitute false-positives in the conventional

sense. All of the reported IO operations are indeed valid IO operations, and are useful

for various reverse-engineering tasks. Even peripherals that are not important for the

task of shimming, such as clocks and timers, can have their data stored and made avail-

able to the rest of the program, and would be reported as such. IOFinder automatically

applies external labeling information from the cmsis-svd [49] database, which labels

each peripheral register for all supported CPUs, allowing an analyst to quickly locate

any peripheral of interest in the output. Actual false-positives could theoretically result

when the underlying static analyses are unable to determine the correct calling conven-

tion of functions (e.g., angr determines a function returns a value to the caller, when it

does not), although we did not notice any such cases in the output of this experiment.

The analysis does, however, have a few false-negatives (“No. Missed IO Ops.” column).

These cases all stem from an inability to determine a correlation between an IO-related

initialization function and an actual IO function, due to the use of nested structs and

C++ objects to store the IO configuration. To test this, we implemented a mode for

IOFinder where the analyst can manually designate IO-related structs, and we were then

able to locate all of the missing peripherals. Future advances in binary type recovery

related to structs will help us determine this information automatically.
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Table 5.1: IOFinder Evaluation Results. For each of the 17 samples in our dataset, we report

the MCU model, the useful peripherals, and the results of our analysis in terms of reported IO

functions and operations. Our filtered IO operations contain all the useful ones.

Sample MCU Useful Tot. No. No. Candidate Tot. No. No. Filtered No. Useful No. Missed Actual Useful

[Dataset] Model Peripherals Functions. Functions IO Ops. IO Ops. IO Ops. IO Ops. Peripherals

atmel_6lowpan_udp_tx ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2† ETH(SPI),I2C

atmel_6lowpan_udp_rx ATSAMR21G18A ETH(SPI),I2C,UART 533 182 91 46 21 2† ETH(SPI),I2C

p2im_cnc [35] STM32F429 UART 331 121 110 32 3 0 UART

p2im_drone [35] STM32F103 UART,I2C 230 71 39 38 18 0 UART,I2C

p2im_robot [35] STM32F103 I2C,UART 205 41 59 22 15 0 I2C,UART

p2im_soldering_iron [35] STM32F103 DMA(ADC),I2C(IMU),I2C(OLED) 371 99 107 40 19 4† DMA(ADC),I2C(IMU)

samr21_http ATSAMR21G18A UART,ETH(SPI) 324 68 61 26 8 0 UART,ETH(SPI)

samr21_uart_polling ATSAMR21G18A UART 44 35 28 16 3 0 UART

samr21_fatfs_usd ATSAMR21G18A SPI(SDIO),UART 207 189 51 25 13 0 SPI(SDIO),UART

st-plc STM32F401 UART(Wifi),SPI,ADC 981 278 142 49 11 0 UART(Wifi),SPI,ADC

stm32_tcp_echo_client STM32F469 ETH,I2C 477 63 86 25 19 0 ETH,I2C

stm32_tcp_echo_server STM32F469 ETH,I2C 478 62 80 26 19 0 ETH,I2C

stm32_udp_echo_client STM32F469 ETH,I2C 468 58 86 25 19 0 ETH,I2C

stm32_udp_echo_server STM32F469 ETH,I2C 463 58 80 25 19 0 ETH,I2C

nxp_uart_polling MK64F12 UART 108 33 36 11 4 0 UART

stm32_fatfs_usd STM32F469 I2C,SDIO 276 42 81 33 26 0 I2C,SDIO

nxp_fatfs_usd MK64F12 SDHC,UART 240 59 64 17 6 0 SDHC,UART

†: We managed to cover these false negatives by providing our system with additional knowledge about

the employed data structures (Section 5.4.1).

5.4.2 Case Study: Power Supply

We used Shimwareto retrofit an RD DPS5015 [122] lab power supply unit (Fig-

ure 5.4.3). This unit allows an engineer in a scientific or industrial setting to adjust the

voltage and current available on the device’s front panel connectors, to power and test de-

vices during development, or for lab experiments. However, like many modern lab power

supplies, it also has communications capabilities, to allow for remote automation, over

RS485, Bluetooth, or WiFi, depending on the configuration. The unit contains an STMi-

cro STM32F100 ARM Cortex-M3-based CPU, and accesses all remote communications

mechanisms over a serial port.

Unfortunately, the legitimate functionality of this communication mechanism can al-

low anyone with network or radio proximity to the device to remove all safety limits,

and adjust the voltage or current to any value, causing damage or destruction of the
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device-under-test, and potentially of the unit itself [123]. While simply disabling net-

work connectivity is one way to make this device safe, we would instead like to add

the functionality that the voltage limits specified by the operator on the physical device

represent a maximum of what the remote automation can set.

We obtained the popular OpenDPS firmware used with this device [124] by installing

it onto our unit, and then dumping it via the device’s exposed SWD debugging port. This

yielded a monolithic firmware image, in which angr’s CFG recovery detected 420 func-

tions. The IOFinder analysis detected functions containing IO references, out of which

109 actually performed interesting IO when executed. Among these was a clearly-labeled

access to the USART1 data register (USART1->DR), which would serve as a source of

input data. LocationFinder discovered a region of 872 bytes between what appears to

be the bootloader and the primary application of the firmware. The SelfCheckFinder

located exactly one self-check: the use of CRC16 to validate the firmware image.

We were successfully able to retrofit our voltage-limiting inside the firmware, and de-

ployed it over the SWD debugging port. To test the correct functionality of the device,

we used the device’s front panel to adjust the voltage and current settings, and manually

triggered each of the device’s configuration menu items. We also tried the remote com-

munication features, and verified that the only difference was that we were unable to set

the maximum voltage higher than the one set on the front panel.

5.4.3 Case Study: PLC

We employed Shimwareto retrofit an Allen-Bradley ControlLogix 1756 PLC [125].

This high-end, but end-of-life, product is suitable for large factory automation tasks,

and comes in the form of a chassis with at least one CPU card, and numerous IO de-

vices depending on the application. Our configuration contains the L64 CPU card, an
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analog output card, and an Ethernet card. The CPU contains a custom ARM7TDMI-S

derivative CPU, with numerous custom ASIC components controlling network and com-

munications features, presenting a unique challenge for our approach. While we do not

know the MMIO layout of the main CPU, we know we are looking for input from the

chassis backplane, a proprietary high-speed bus, which is therefore likely to be using some

form of DMA.

Unfortunately, as with many PLCs, this unit suffers from a similar issue as the power

supply mentioned above: anyone on the same network can control it completely by

default. While the device can be configured to not accept any network traffic (e.g., via

the front keyswitch) this dramatically diminishes the usefulness of the device in a modern

automation setting. This device is also well past its end of support, and will no longer

receive updates from the manufacturer. To this end, we wish to add built-in safeguards to

not allow an attacker to adjust the parameters of a running ladder-logic program outside

of safe parameters.

We obtained the firmware through the manufacturer’s website. CFG recovery yielded

8,937 functions in the binary. Of these, 593 had IO pointers. When executed, IOFinder

detected 340 unique IO operations. Since the CPU is custom, we had to perform the

additional step of reverse-engineering the CPU’s MMIO layout, but were helped by our

analyses in doing so, as we could focus our efforts on those portions of the code detected

by IOFinder. Since the amount of detected IO locations is numerous, and we estimate

that this result is legitimate, we focused on those locations which performed DMA-based

operations. This only consisted of 31 IO-related instructions, representing 5 unique

MMIO registers. All of these appeared to be related to a peripheral at 0x40000000,

which turned out to be the DMA controller for the backplane.

SelfCheckFinder detected 2 self-checks, the checksum and CRC, calculated on the

whole firmware image, which can either be trivially removed, or manually adjusted to
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match after modification.

The LocationFinder’s results for this device were unusual, there were very few empty

regions, all of a small size. This is because this firmware explicitly checked many of

its empty regions to ensure that they were indeed empty, therefore generating memory

accesses that led our analysis to discarded such regions. However, LocationFinder was

able to locate a very large (5.7k) function, which it could prove was safe to remove, giving

us ample room for a payload. This function appears to implement a test of the system’s

ALU and registers, such as performing math, and storing and recalling the results. From

a mathematical perspective, this extremely large function, which seems to consist of

large, unrolled, loops, entirely simplifies away when executed symbolically. The function

also returns no value, instead calling an assert-fail function if an error occurs. In our

testing, simply removing this function was sufficient, and produced no noticeable change

in the program’s behavior.

Using the above information provided by our analyses, we injected a payload into the

firmware, which is able to filter incoming Common Industrial Protocol (CIP) messages,

to ensure that no message alters the variables of a running ladder-logic program outside

of compiled-in parameters. We tested the system for correct behavior by running a test

ladder-logic program on the device, and by connecting the RSLogix companion software

to monitor the device’s behavior. Our ladder logic program causes an LED connected to

one of the PLC’s output cards to blink at a certain rate (see Figure 5.4.4); we used our

payload to clamp this values between 2 and 10 Hz. We verified that, if a CIP message

is received that would set this rate outside the bounds, that it is ignored, and a message

is sent to the operator. We should also note that, like many safety-critical devices, this

PLC has numerous self-tests (other than the one we removed), watchdog timers, and

hardware safeguards, both at boot-time and continuously at run-time, which would have

alerted us to any faults due to our retrofit.
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5.4.4 Case Study: Pacemaker Monitor

We used Shimwarewith a [Redacted for responsible disclosure] pacemaker monitor.

This small hand-held device acts as a bridge between the patient’s phone (via Blue-

tooth) and a pacemaker (via short-range radio). The patient is instructed by the device’s

companion app to use the device daily to transmit cardiac data to their doctor.

Unfortunately, we discovered a flaw in how the device employs cryptography to keep

unauthorized apps and devices from connecting to it. This allows any attacker in range

of the device to connect to it, and issue a broader set of commands to the pacemaker

than the manufacturer intended, along with accessing the contained medical data. For

ethical reasons, we will not speculate on any effects this may have on the implant itself.

We reported this flaw to the vendor, and are working with them on an official fix. Never-

theless, the root cause here is one we can fix via a retrofit, namely stopping the original

cryptographic bruteforce attack. The device contains an STM32F103 Cortex-M3 CPU,

and accesses its Bluetooth controller via a serial port. An unprotected JTAG port is

present, via a pogo pin connector.

While we were able to obtain the firmware through the companion Android app, we

dumped the full firmware, including its bootloader, from the JTAG port. CFG recov-

ery yielded 3,687 total functions. IOFinder yielded 696 candidate IO functions. During

dynamic analysis, this produced 93 potentially-useful IO operations, which were auto-

matically labeled with their peripheral names. Among these was the USART3 peripheral

operating in DMA mode, our desired source of IO. LocationFinder found a large (250k)

unreferenced region of flash memory at 0x80bf96c, between the firmware itself and the

non-volatile storage portion of the flash memory. SelfCheckFinder located 5 self-checks,

3 of which were false-positives, and two of which were hardware-backed CRC32 of the en-

tire firmware, performed at boot-time. These false-positives were related to the firmware
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upgrade routine itself, which naturally loops over the firmware and manipulates the flash

memory controller. That said, if we were to hypothetically remove all detected self-checks,

the firmware would work, excluding the update mechanism, which may be advisable to

remove anyway when using retrofitted firmware.

We tested the LocationFinder and SelfCheckFinder’s results by inserting our shim

into the firmware, and deploying it over JTAG. When the serial port connected to the

Bluetooth chip is written to, we check the outgoing payload against the error message sent

when an incorrect cryptographic key is used. If this message is found, we reset the device,

causing a significant delay, and dramatically lowering the chance of a successful attack.

Because this device is only intended to be powered on for a few minutes at a time, this will

sufficiently mitigate the risks, until a manufacturer-provided patch which fully mitigates

the underlying design issue is available. The device’s companion app has exactly one

function: downloading the implant’s data and sending it to a doctor. It has no menus or

configuration, and after the various steps (connecting via Bluetooth, connecting to the

implant, and downloading the data), will display a large green checkmark, indicating that

it succeeded. We ensured that this process still worked as expected on our retrofitted

unit, and functionality was not impacted.

5.5 Limitations

While we showed Shimwarein action on diverse, real-world devices, our approach

has a few limitations.

IOFinder. Our IOFinder currently does not work effectively on firmware created on

top of large firmware frameworks, such as Arduino [126] or ARM’s mbed [38], which

utilize a high level of abstraction, and object-oriented programming techniques to simplify

development, and ease porting to many hardware platforms. As these requirements do not
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exist in final commercial devices, vendors instead opt to use lighter-weight packages, such

as those provided by the compiler vendor, or creating their own. A careful reader can note

that these characteristics seem to be the opposite of a library matching approach ([127]

and Chapter 4), as the additional, standardized code in these packages is simpler to

locate by matching. Therefore these two approaches are directly complimentary; library

matching works well on larger libraries where static analysis fails, but IOFinder works in

situations where the libraries to match cannot be obtained, or are customized.

Both the IOFinder and LocationFinder rely on angr’s calling convention analysis to

determine whether a function returns data. As this depends on the completeness of the

CFG to work, Shimwarecould hypothetically produce false alerts due to the inability

to determine the proper calling convention of a function. That said, we did not notice

any such alerts during our experiments.

5.6 Conclusion

In this chapter, we explored the challenges and solutions to security retrofitting of

monolithic embedded firmware. We identified the tasks of locating the attacker controlled

IO, finding safe payload injection locations, and mitigating self-check functions as can-

didates for automation. To this end, we proposed three novel static-symbolic analyses

that locate these features in a firmware image automatically, and significantly reduce

the analyst effort. Our prototype system, Shimware, combines these techniques with

a tool to inject an analyst-developed payload into the firmware. In addition to testing

the IOFinder analysis on firmware samples whose IO locations are known, we employed

the full system to address three safety and security-critical vulnerabilities in off-the-shelf

products from the engineering, healthcare, and industrial automation sectors. Our results

show the promise of security retrofitting, even in the challenging context of monolithic
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firmware, and we hope that future advances in securing embedded firmware will continue

to allow users and analysts alike to secure their devices, when manufacturers may not.
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1 // SPI bus connects to the 802.15.4 radio

2 void trx_spi_init () {

3 ...

4 // master is a global , 0x42001800 is the SPI controller

5 // Both are propagated into spi_init

6 spi_init (&master , (Sercom *const)0x42001800 , &config);

7 ...

8 }

9 status_code __fastcall spi_init(spi_module *const module , Sercom *const hw, ...) {

10 ...

11 // The address 0x42001800 is stored into &master

12 module ->hw = hw;

13 ...

14 }

15 // ... much later ...

16 uint8_t __fastcall trx_reg_read(uint8_t addr) {

17 ...

18 spi_master = master.hw;

19 data = spi_master ->SPI.DATA.reg & 0x1FF; // variable data is tainted

20 ...

21 return data; // MMIO_READ detected via return value

22 }

Figure 5.2.2: Example code from the atmel_6lowpan_udp_rx firmware from Chapter 4. With-

out resolving indirection statically, we cannot see the pointer to the SPI bus being used in

trx_reg_read(). Names of functions and variables provided only for clarity and not known

during analysis.
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Figure 5.4.3: RD DPS5015 power supply, opened [122]

Figure 5.4.4: AB ControlLogix PLC [125], disassembled. The LED’s blink is clamped in the

firmware by our retrofit payload.
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Conclusion

Throughout this work, we have explored the challenges of finding and fixing security

vulnerabilities in monolithic embedded firmware. The lack of metadata found in conven-

tional binary programs, the intermixing of code and data, and the lack of abstractions

around hardware interactions all combine to produce a unique challenge for human ana-

lysts and automated analyses alike. This creates two major gaps in the normal lifecycle of

vulnerability discovery: environment modeling to enable dynamic analyses, and patching

without the manufacturer’s help.

The Future of Re-Hosting. We explored two different techniques to environment

modeling for dynamic analysis, which is commonly termed re-hosting : an automated

approach based on recording and automated modeling (Chapter 3), and an approach

based on High-Level Emulation using analyst-provided models. These approaches have

their own strengths and weaknesses; Pretender requires less analyst effort, but requires

invasive device access, and works on a smaller range of devices. HALucinator, by contrast,

does not require access to the device at all, and can handle numerous cases such as DMA,

which Pretender cannot. However, it currently requires the analyst to build the handlers

and models needed for the firmware to run. Both approaches have massively expanded

the set of hardware that can be re-hosted, and created openly-accessible frameworks for
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the further development of this technology.

However, the problem is far from solved. External peripherals remain one of the most

complex parts of re-hosting firmware. Pretender handles external peripherals, such as

the I2C temperature sensor, and RF hardware examples, but does so by modeling the

on-chip peripheral and its associated external device as a composite. This makes our

models specific to a given physical hardware configuration. Ideally, this would not be

the case; for example, a common serial port can be thought of a simple bi-directional

channel over which the CPU and the external device communicate, and we could develop

models for each external serial-based peripheral using this channel alone, and reuse these

on different host CPUs. However, these ports and bus controllers have their own internal

hardware, which follows its own state machine, that responds to the data transferred to

and from the peripheral. A particular complication is that, from the point-of-view of

MMIO, it is impossible to reliably distinguish values read from control or configuration

registers from data coming from outside the CPU.

With HALucinator, however, we get this separation by way of human modeling, but

we still do not have a solution for modeling peripherals. Similarly, Shimware’s IOFinder

can help us to determine the sources of actual data in peripherals. A hybrid of these

techniques may help us take this next important step in increasing the set of re-hostable

devices.

The Future of Security Retrofitting. As we discuss in Chapter 5, many factors be-

yond the control of the analyst, can influence the patchability of a system. Interestingly,

many of these mechanisms, such as hardware roots-of-trust, software signature verifica-

tion, and the disabling of hardware code flashing mechanisms, are often rationalized as

ways of increasing the security of the code against unauthorized modification. Indeed, the

increasingly common hardware-backed integrity verification methods do cleanly accom-

plish this goal, while leaving some possibility of patching. For example, many boot-time
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verification schemes in larger systems (e.g., PC SecureBoot and mobile phone bootload-

ers [128]) allow for the possibility for the user to “unlock” this chain of trust, and run

their own code, at their own risk, if desired.

It is very important, however, to distinguish these techniques from those that instead

aim to implement intellectual property protection, such as flash read-back protection [111,

129], which are commonly found in some form in most embedded microcontrollers. While

these are also commonly touted as security measures, they only achieve this goal when

paired with one of the above verification approaches. Unfortunately, for those vendors

who indeed wish to add intellectual property protection measures, these methods are

directly at odds with security retrofitting, as the firmware itself cannot be easily obtained.

Unless something is done to strike a balance between security, IP protection, and

the end-user’s ability to repair their own devices, the number of unpatched, abandoned

devices will continue to increase. One solution that still allows for both kinds of protection

is to implement a means of relinquishing control of these protections when the device’s

period of support expires. In the case of IP protection, this aligns with the fact that the

vendor has no more commercial interest in the product, and therefore has no need to

obfuscate their firmware further. These ideas seem a natural fit for recent and future IoT

security-related legislation [130, 131] being proposed worldwide, intended to help inform

users about the support and security policies of their devices.

While we hope that researchers and device vendors will work together to find and

fix problems in devices, this work has taken a significant step and giving analysts and

users autonomy in dealing with the security issues of their embedded devices. Monolithic

device firmware can now be tested and analyzed more than before, without the source

code, or the original toolset used to create it. Bugs, when found, can now be resolved

more easily, even if the manufacturer can’t or won’t fix them quickly. Most importantly,
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every possible component of the work developed here has been made available publicly,

to enable its reproducibility, and to serve as a stable platform for future research. We

hope these important steps will lead to a safer connected world.
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