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Abstract

A new trend in Cognitive Science is the use of artificial agents and systems to investigate learning and development of complex

organisms in natural environments. This work, in contrast with traditional AI work, takes into account principles of neural development,

problems of embodiment, and complexities of the environment. Current and future promises and challenges for this approach are defined

and outlined.

r 2007 Elsevier B.V. All rights reserved.
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1. Historical changes in modeling: towards adaptive,

interactive intelligence

A widely circulated story about early Cognitive Science
efforts has it that Marvin Minsky assigned an under-
graduate student ‘‘computer vision’’ as a summer project.
The anecdote builds irony with historical hindsight: The
optimism of early AI work, like successive theoretical
trends in the behavioral and computational sciences, ran
into the barrier of Real Complexity: monumentally
interactive intricacies of organism–environment dynamics
that give rise to human thought and action. Cognitive
Scientists have repeatedly discovered that prosaic skills like
producing phonemes or tracking objects are quite challen-
ging to capture in models that approach the scale of an real
organism. A growing appreciation of behavioral and
cognitive details the complexity of anatomical structure
and function of real brains and bodies, and the difficulties
of describing ecological structures jointly mandate
a reconceptualization of models of intelligent behavior.

The mandate is to push beyond the symbolic models of
human information processing of the 1980s and 1990s, and
to meaningfully elaborate on early work on neural
networks by incorporating relevant information about
neuroscience (e.g., chemistry, physiology, anatomy), con-
cerns about embodiment (e.g., perception–action systems,
biomechanics, motor control), and sensitivity to cognitive
ecology (e.g., ethnographic data at different levels of
detail). Of course, such models must also accurately model
high-quality behavioral data from organisms of interest, be
they rat or human, infant or adult.
In recent years a community of researchers has made

strides in these theoretical and empirical directions. Their
work is bringing new questions and problems to the
foreground, and demonstrating innovative empirical ap-
proaches, as exemplified by contributions to this issue.
Although the methods and questions are quite varied, a
‘‘family resemblance’’ of recurring concerns or positions
can be discerned (though perhaps not all the contributors
would agree with all these formulations):

� Cognition occurs in the context of complex structures,
both physical and social, in the environment. In many
ways this structure alters, and even sometimes simplifies,
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the computational and behavioral tasks faced by active
agents in those environments.
� Problems of embodiment are substantial and important

[13]. We cannot fully understand intelligent behavior
without understanding how the information-processing
system is integrated with, and shaped by, its ‘‘platform’’
for acting and perceiving.
� Cognition is sub-symbolic and distributed. However, it

is not all of one simple type (e.g., unsupervised Hebbian
learning). In discerning types of learning and cognition,
we require contributions from theoretical and experi-
mental neuroscience.
� Nativist accounts that directly ascribe complex cogni-

tion to experience-independent products of the genome
are not consistent with developmental neuroscience,
embryology, or genetics, or with general principles of
epigenesis. Such accounts, while sometimes pragmatic in
initial models of cognition, are unparsimonious and
should be marked as simplified and speculative.

More generally, many proponents of these positions and
others have questioned or even rejected the traditional
theoretical framework of cognitive psychology and AI. As
summarized by Christiansen and Hooker [12], most
theories in cognitive science implicitly assume general
centralized control models. Such models place a disembo-
died, Cartesian mind at the center of a Ptolemean cognitive
universe, wherein the environment (including the body) is
separate and subordinate [17,44]. This standard model
ignores issues of embodiment and the environment. This is
theoretically problematic [12], and contrary to findings
from many disciplines. For example, Pentland [43] has
shown that a great deal of people’s impending behavior can
be predicted by where they are and who they are with. Note
that not all the social sciences have historically subscribed
to this centralized control model: for example, the opposite
problem can be seen in pure ethnographic approaches that
emphasize relativism, where the environment is given full
causal power without considering shared neural and
perceptual–motor attributes of individuals within and
between cultural groups. The alternative is to reject
‘‘either/or’’ models of both extremes. Instead, we assume
that adequate models of cognitive functions require an
accurate account of the tendencies and variability of real
behavior, a detailed model of the body that provides for
and executes the brain’s computation, a detailed model of
the functions and processes of the neural systems, and
detailed models and descriptions of patterns of information
on various spatial, temporal, and cultural scales, within the
environment. Put otherwise, we assume the major chal-
lenge for Cognitive Science is Systems Modeling.

Systems modeling: Testing and falsifying formal theories
about specific cognitive functions of organisms with vastly
complex nervous system and vastly complex perceptual
and motor capacities, interacting in real time and space
with highly diverse and changeable environments.

Some proponents go further in breaking from traditional
AI, cognitive psychology, linguistics, and anthropology/
sociology. Historically, these fields have mostly ignored
developmental/epigenetic concerns. Now, however, we
know enough about brain development, and about socio-
cultural effects on infants’/children’s thinking, to infer that
a developmental history must be part of any account of
mature cognitive functioning. A description of the mature
cognitive ‘‘profile,’’ while necessary, cannot yield a full
explanatory account. A full explanation must include an
account of how that profile emerged. A non-developmental
view of adult cognition can lead to systematic misconcep-
tions about the adult profile [36,55]. Mature functioning is
a product of protracted learning and development in
constant interaction with genetically mediated, heterochro-
nous processes of neural change [22,32,46]. Thus, although
most papers in this volume do not explicitly consider
children of a particular age, or seek to model precise
developmental changes, many deal with cognitive processes
that are centrally relevant to infants and children, and are
controversial: for example, face processing [Bartlett],
inductive inference [Nelson and Cottrell], and syntax
acquisition [Desai]. Such difficult natural learning pro-
blems can be re-cast in developmental terms. This in turn
calls for developmental systems modeling.

Developmental systems modeling: We define this kind of
modeling as follows: Testing and falsifying formal theories
about specific cognitive functions of developing organisms
with emerging, vastly complex nervous system and emer-

ging vastly complex afferent and efferent potentials,
through a history of interaction in real time and space
within highly diverse environments that change on multiple

time scales, ranging from moment-by-moment changes to

long-term changes over the organism’s lifespan.
Many proponents of modern approaches to develop-

mental systems modeling realize the limits imposed by
disciplinary boundaries, and seek inspiration from multiple
disciplines. For example, computational models often can
be improved by careful attention to what is neurally
plausible, to are the precise details of human behavior and
cognition. Psychology research benefits from richer
grounding in the neural underpinnings of thought and
behavior, and from rigorous, well-specified process models
of cognition. Cognitive neuroscience benefits from a deeper
grasp of how organisms perceive and act in natural
environments. All of these disciplines can benefit from
greater knowledge of biophysics, embryology, ethnogra-
phy, genetics, linguistics, physical anthropology, and
animal behavior.
What empirical problems are of interest to modern

proponents of developmental systems modeling? The wide-
ranging list is challenging, controversial, and substantive. It
includes such problems as face processing, scene proces-
sing, attention, word learning, imitation, shared attention,
working memory, navigation, articulation, multimodal
perception, fluid motor control, self-awareness, object
recognition, and others. The papers in this issue exemplify
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only a few possible interdisciplinary approaches to a few
trenchant problems in cognitive science. They were borne
of an effort to gain insights about autonomous learning
and development by creating a forum for researchers in
machine learning, robotics, neuroscience, and develop-
mental psychology.

The International Conferences on Development and
Learning (ICDL) have a brief but energetic history. They
began as a Workshop on Development and Learning
funded by NSF and DARPA in 2000. The next meeting
was hosted in 2002 by MIT; the third by UC-San Diego
and the Salk Institute in 2004; the fourth by Osaka
University in 2005; and the fifth by Indiana University at
Bloomington in 2006. The next ICDL meeting will be held
in London, UK, in 2007. The papers in this issue were
submitted for peer review as expanded versions of
presentations from the 2004 meeting.

We now consider how the contributions to this volume
exemplify and advance interdisciplinary approaches to
modeling developing complex organisms and agents. We
organize the discussion around the theoretical challenges
addressed by the papers. We close by briefly considering
future directions heralded by these contributions.

2. Current challenges in developmental systems modeling

2.1. Challenge #1: Modeling the environment

2.1.1. Overview

A major challenge in effective theory-building in
cognitive science is deriving rich and accurate descriptions
of agents’ environments. Traditional AI methods of
representing the environment as highly reduced binary
input vectors, or, worse, symbolic abstractions, are limit-
ing. Symbolic approaches tell us little about how (devel-
oping) brains learn about environments, or how the
structure of the body, the physical environment, or the
social environment constrain the agent’s learning. By
contrast, connectionist models that use sub-symbolic input
vectors avoid some of these limitations, but still do not
capture the precise ecological structure of the sensorimotor
and ecological information that drive information proces-
sing. In other words, modern modeling efforts faces a
dual modeling problem: first, deriving good models of
neural learning; second, deriving accurate models of the
environment. If one is testing, say, models of statistical
learning, the plausibility of the results (in terms of ‘‘fit’’ to a
real organism’s learning) are a function of the accuracy of
the modeled cognition and the modeled to-be-learned
information.

A major problem in modeling to-be-learned information
is that the environment, even if it is greatly reduced,
contains a lot of information. This is true even if we
consider information in, say, two spectra (e.g., visible light
and audible speech sound), from a limited sampling source
(e.g., one camera and microphone) in a single setting (e.g.,

driver’s seat of a car). To get a sense of how much
information there is, consider that the computer gaming
industry spends millions of dollars and the best computer
graphics techniques to develop ‘‘realistic’’ simulated
environments. Yet the best results, if pleasing, are still
only highly reduced simulations of two spectra (visible light
in a highly quantized two-dimensional (2D) field; audible
sound in a reduced frequency range), in two dimensions in
a limited field. The results could never be mistaken for a
‘‘real’’ environment, and permit very, very limited embo-
died interaction.

2.1.2. Physical structure

In regard to analysis of the physical environment,
computer vision has come further than other domains.
Machine perception researchers generally care about
systems that accurately, rapidly analyze high-quality rich
images or (preferably) video. (By contrast, for example,
most linguists do not test theories with high-fidelity audio
recordings of natural speech, much less multi-modal
contextual information about the social context of
utterances.) Developmental psychology is in a primitive
state as well, with little expectation that theories must
incorporate details of infants’ and children’s environments
(despite some instructive examples [50]). For example, after
decades of vigorous laboratory work there is still no data
on young infants’ everyday looking behaviors. This
complacency has had a major impact on theory. For
example, neonativist theories of the 1990s [2,56] were based
upon stripped-down laboratory studies, with no conver-
ging evidence from naturalistic behavior, or analysis of the
information patterns available to babies in the first weeks
or months of life. It has now been shown that a simple
learning agent can develop social categories (e.g., faces)
from natural environments after as little as a few minutes
of exposure [11]. Thus, neonativist accounts of infants’
looking behaviors are unparsimonious, and they bear the
burden of proof that specialized learning processes are
congenitally available for high-level visual tasks (e.g.,
counting objects; reasoning about occlusion).
Interest in the structure of information in real environ-

ments, and learnability of that information, is evident in
the papers that follow. Oh and Choe (this issue) illustrate
the importance of self-produced motion by demonstrating
that simple neural networks learn texture segmentation
better when available information is complex three-
dimensional (3D) input, rather than intermediate 2D
images. Because 3D input is provided by self-motion, this
work illustrates the power of simultaneously modeling
ecological information patterns and aspects of embodi-
ment. This supports Gibson’s [26] and Ballard’s [4] idea
that many difficult perceptual problems are simplified when
the visual agent moves in the environment. It also shows
that isolating visual functions with the simplest possible
stimuli is not necessarily the best approach to under-
standing natural vision.
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2.1.3. Social structure

The social structure of the environment is especially
complex: people and organisms are highly structured as
objects, and they dynamically change in hard-to-describe
and hard-to-predict ways. We are all experts in faces, for
example, yet human faces are dauntingly complex, as
machine learning studies have shown. Bartlett (this issue)
explores models of optimal neural coding (i.e., information
maximization) in face processing as a paradigm of high-
level visual processing. A large body of work has shown
relationships between the statistics of the environment and
neural coding in early vision [54]. These principles relate to
higher visual functions including face recognition. Recent
work shows how cognitive phenomena in face processing
such as typicality effects, other-race effects, and face
adaptation can emerge from a system optimized to the
statistics of real face images. In addition, computer face
recognition studies show that more successful algorithms
for complex perceptual tasks like face processing are
adapted to the complex structure of information in the
visual environment (i.e., 2D projections of real faces). This
line of research implies that the human visual system has
developed neural computations optimized to the prob-
ability structure of the visual environment, and insofar as
face recognition is a crucial social function, the visual
system seems to have learned the probability structure of
an aspect of the social environment as well. Other work [25]
suggests that optimization is not innately specialized for
faces, but is plastic during development and even adult-
hood. A critical future direction will be to improve
contextualized face processing systems: robots that move
themselves through complex environments and derive
information about multiple, unpredictable, 3D dynamic
faces.

There are of course many other daunting problems of the
social environment, and we cannot easily intuit how much
social-cognitive ‘‘work’’ is facilitated by patterns (or
frustrated by noise!) in social environments. Cognitive
ethnography work has led many scholars to conclude that
the individual brain should not be the only cognitive unit of
analysis [30]. Historically, though, these insights have not
always guided theories of development. In child language,
for example, Chomskian theorists assumed that syntactic
structures are unlearnable, and therefore innate [15]. This
was not based on any analysis of the language infants
actually hear. In fact, when the matter has been tested,
sufficient information has been found in parental speech to
support the gradual acquisition of seemingly ‘‘unlearnable’’
syntactic constraints [38] (see also Refs. [45,47]).

Developmentalists also have posited high-level innate
skills that are far removed from either neuroscience data,
or rigorous formalization of the information processing
necessary to carry out the skill in question. For example,
claims about neonatal imitation [40] have been challenged
by more parsimonious and plausible accounts [1,33,34].
Imitation seems to be a learned skill constructed from more
basic behaviors in complex social environments. This is

supported by Zukow-Goldring and Arbib’s (this issue)
evidence that manual imitation emerges through social
input from caregivers. Parents scaffold infants’ interactions
with objects to facilitate their discovery of objects’
affordances. Infants do not acquire object-using skills
from observation, but (literally) from hands-on interac-
tions wherein caregivers manually help infants utilize tools.
Without documenting such interactions we might blindly
attribute infants’ imitation, not to mention tool-using
skills, to innate capacities. The same paper raises questions
about how much infants can make mental-state and causal
inferences [59], and how much these inferences are
scaffolded by social experience. It also raises intriguing
questions about what kinds of human learning interactions
should be considered supervised, unsupervised, or semi-
supervised (see Section 2.2). For example, when adults hold
babies’ hands and jointly manipulate an object, what kind
of input is this? What do infants learn from such input,
compared to just observing an adult doing the actions?
Without ethnographic data, we would not recognize the
depth of these questions for framing behavioral and
computational research questions.
Another innovative interdisciplinary approach to mod-

eling the environment is seen in Yu, Ballard and Aslin’s
(this issue) contribution. They ask what information
caregivers might provide to help pre-linguistic infants
acquire word-to-world mappings: a venerable philosophi-
cal problem. Yu et al. test the roles of speaker’s gaze-cues
(i.e., fixations on named referents, or elsewhere [3]), and
prosodic cues [23] as two sources of social information that
might help infants disambiguate meaning. The researchers
used eye tracking and acoustic analysis to capture the
structure of these behaviors while people read picture
books, and then carried out simulations to test the
learnability of this structure. The results show that there
is sufficient information in interactions such as picture-
book reading to support inferences about what the reader
is naming. This addresses debates about the nature of word
learning in children [18,39]. It also suggest powerful studies
of social exchanges which move from speculation to testing
what cues we provide to one another, and to infants and
children, when interacting with them.

2.1.4. Interdisciplinary experiments on social response

One approach to studying social-cognitive development
is to utilize controlled social agents as stimuli. Some
researchers, for example, use robots to study people’s
generalized responses to well-controlled (and simplified)
social agents [9,41]. Oberman, McCleery, Ramachandran
and Piñeda (this issue) show that robotic actions, even
those without objects, can activate the human mirror
neuron system. They show that a neural signal associated
with the mirror system (sensorimotor cortex suppression of
mu-band EEG oscillation) is activated in adults by the sight
of a robotic arm making an anthropomorphic grasp,
similar to a human arm. This opens up new possibilities for
studying the physical stimulus properties that cause the
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human brain to respond to something as another social
being.

A different experimental approach is taken by Teuscher
and Triesch (this issue). They test a model of the emergence
of gaze-following: a gradually-emerging attention-sharing
skill in human infants that is associated with later social
learning, including language development [60]. The authors
vary properties of the teaching signal, notably the
predictability of a simulated ‘‘caregiver’’ that produces
sequences of actions from which a simulated infant might
notice, and learn, associations between the caregiver’s head
pose and possible locations of interesting things in the
surrounding environment. The results support specific
predictions [60] that changes in the caregiver’s behaviors
(e.g., ‘‘personality’’) will have systematic effects on infants’
social skill development. This is a rare developmental
model of the emergence of social skills that takes into
account neural reinforcement [58] and contingency learning
[62], as well as infants’ learning capacities (e.g., habitua-
tion) and stimulus preferences. Although the authors do
not model precise behavioral data, the effects of caregiver
interaction style on infant social development has been
documented [14], and is being studied in more detail [19].

2.2. Challenge #2: Computational models of learning

2.2.1. Machine learning approaches to theories of learning

and development

An important principle when studying the behavior of
agents and systems in complex environments is grounding
models in real sensor data. This encourages a bottom–up
approach to modeling where models are estimated primar-
ily to fit empirical observations instead of relying heavily
on a priori theoretical assumptions or expert knowledge
[24]. Hypotheses need not be conjectured a priori and
tested and rejected through controlled experimentation. In
a data-driven approach, hypotheses and models can
emerge a posteriori from empirical data on behavior and
activity. The branch of artificial intelligence that focuses on
data-driven modeling is known as machine learning and
has enjoyed considerable advances in the past decade
[37,48,57]. Machine learning lies at the intersection of
many fields including statistics, computer science, neu-
roscience, physics, cognitive science, mathematics, and
operations research. It deals primarily with data-driven
statistical, probabilistic, and computational models. As
rich data sources (neural, behavioral, and ecological/
ethnographic) become available, it is increasingly advanta-
geous to use models that automatically exploit data instead
of relying on manual expert knowledge. This is particularly
true for visual and behavioral data, which tend to be not
only complex and multidimensional, but also stochastic,
approximate and incomplete.

2.2.2. Unsupervised approaches

While an overview of machine learning is beyond the
scope of this introduction, several tools have proven useful

in modeling neural and behavioral activity (both develop-
mental and non-developmental), and have generated
biologically plausible, data-driven models. One particularly
useful split of the field is into the categories of unsupervised
and supervised learning. Finer splits can be made to
identify hybrid categories such as semi-supervised learning
and reinforcement learning which lie in the intersection
between supervised and unsupervised approaches. In
unsupervised approaches, general principles are used to
uncover structure from data. For instance, information
theoretic criteria including maximum mutual information,
maximum entropy, and minimum relative entropy can be
exploited as shown by Bartlett (this issue) and Bell and
Sejnowski [5] for visual representations. Many variants of
unsupervised learning are closely interrelated. For exam-
ple, an equivalence between information theoretic max-
imum entropy and the maximum likelihood approach [6] is
well known.
Furthermore, maximum likelihood itself can be viewed

as a variant of Bayesian learning where a single point
estimate is used as a surrogate for a distribution over all
possible models. By exploiting Bayes’ rule and considering
distributions over models and hypotheses, a fully Bayesian
approach to inference is utilized by Nelson and Cottrell
(this volume) for problems of object categorization and
concept learning. The Bayesian framework and Bayes’ rule
are not limited to pairs of variables, but can accommodate
highly structured multivariate networks. Recent efforts
have married principles of Bayesian inference with graph
theory [42] to offer a principled way of performing
inference on large-scale multivariate problems. As the
number of variables grows, Bayesian methods also offer a
natural way of controlling model complexity [28], although
other approaches such as minimum description length [49]
are also viable. Notably, there is now evidence that some
neural processes can be described in terms of Bayesian
inference [63]. The limits of this approach continue to be
explored by Nelson and others.

2.2.3. Supervised and semi-supervised approaches

On the other extreme, supervised learning methods exist
which discriminatively focus on the learning problem of
predicting outputs from inputs. Often, however, supervised
data collection is more expensive since an expert teacher
needs to label or identify correct outputs for each input.
Model complexity is once again kept in check in supervised
approaches. The methods of choice for complexity control
for supervised learning include regularization principles
[27] or statistical generalization guarantees such as
structural risk minimization and the Vapnik–Chervonenkis
dimension [61]. Such supervised methods have been very
successful in applied domains. For instance, supervised
learning has been used to uncover mappings from neuron
activation levels in the macaque cortex to visual object
category [29]. A weaker form of supervision, which is less
cumbersome for data collection process, is reinforcement
learning. Here, the teacher only provides a binary feedback
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if a system produces the correct output or action given the
input [35]. A reinforcement learning approach is exploited
by Teuscher and Triesh (this issue) in order to learn to
predict locations of rewards (conceived as interesting
objects from a simulated caregiver). This approach not
only models some typical developmental sequences but also
some differences in developmental disorders by making
reasonable changes to parameters of the model. Again, this
machine learning approach is supported by neuroscience
data (see Section 2.3), and holds promise for develop-
mental theories [52].

Computational techniques more familiar to psycholo-
gists, such as variants of back-propogation neural net-
works, offer viable approaches to many problems of
learning and development [53]. One application is to neural
processes of sensory coding and perceptual classification.
Yoshikawa, Hosoda and Asada (this issue) address a
famous problem of self-perception: how does the infant
learn to differentiate self from other? This problem was
addressed in a philosophical vein by scholars like Freud
and Piaget, but the authors show it to be amenable to
computational formalisms. They use an elegant ‘‘cross-
anchoring’’ Hebbian learning procedure to demonstrate
how the infant might learn to differentiate self-touching
events from touches by others. It does so by learning cross-
modal associations between regions where a touch is felt
and simultaneously a visual occlusion (as by a hand
touching part of a leg) is seen. This initial work, also
implemented in a simple robot, lays the groundwork for
sophisticated studies of the emergence of intermodal
knowledge in. Yet sensorimotor development is not the
sole domain of computational simulations. Models of
comparable complexity have been used to simulate high-
level language development [7,21]. Desai (this issue), in this
tradition, models language input patterns akin to certain
syntactic structures, and attempts to simulate a curious
developmental phenomenon: the shift with age from using
general context to word-specific syntax and semantics to
correctly use verbs. For example, an English-speaking
toddler’s production *‘‘Don’t fall that on me!’’ [8], while
sensible, assigns non-standard causativity (and transitivity)
to the verb fall. With development, children converge on
lexically specific patterns of use. Some researchers explain
this shift as a competition between innate biases and
specific lexical knowledge. Desai shows that a recurrent
network can learn to predict constituent order in sentences
that might be either transitive or intransitive. The results
suggest a shift from learning general sentence-level cues to
using verb-specific patterns as experience with specific
verbs accrues. Thus, language-specific innate principles are
not necessary to explain the shift from frame-to verb
compliance.

2.2.4. Continuing debates; future directions

The artificial intelligence and learning community has
frequently debated the tradeoff between a priori model
structures (i.e., specifying expert domain knowledge) and

how much should be determined by data (i.e., a black box
learner). Early AI hand-designed symbolic approaches
were challenged by generic tools like the perceptron, but
regained ground due to the linearity limitations of the
perceptron. Neural networks won back ground for black-
box approaches by extending the flexibility of perceptrons
via nonlinear settings. The arrival of Bayesian networks
[42] in the 1990s pushed the pendulum back towards more
expert-driven methods, but a resurgence of black-box
methods is at hand with supervised support vector
machines [61] and regularization theory [27]. In fact, these
approaches can be extended to accommodate structured
knowledge about the problem domain, which further
improves performance [31]. Thus, the tradeoff between
domain knowledge and generic flexibility still exists, and
that is reflected in this issue, as in the contrast between
Nelson and Cottrell’s approach and Desai’s.
Another open issue in machine learning is how to

represent data so models are more reliably applicable and
generalizable. Many measurements from sensory, beha-
vioral, neural, and environmental data sets are not just
simple vectors or discrete states. How can such data be
represented computationally to be more compatible with
our learning algorithms? How can more flexible represen-
tations and more powerful algorithms improve learning
without requiring unrealistically protracted training or
feedback conditions? How can we incorporate a priori
knowledge and partial information without over-constrain-
ing models? Ultimately, machine learning is a versatile tool
if we do not limit it to pure black boxes, or resort to
symbolic approaches. More bridges to embodied develop-
mental, neural, and ecological data are needed for the
impact of machine learning work to be realized in the
cognitive and developmental sciences.

2.3. Challenge #3: Developmental systems modeling

2.3.1. Brain, body, experience, and development

As interdisciplinary attempts to test theories of learning
and development have gained sophistication, formal
models and simulations have been changing. This is seen
in the interface of machine learning and developmental
psychology. Research at this border zone has sharpened
questions of embodiment [13]. Embodiment is the buzz-
word for a break with radical functionalism of circa-1980s
AI (i.e., the idea that implementation of a cognitive process
is irrelevant, and various abstractions, manifested in neural
or silicon systems, can be treated as theoretically equiva-
lent). A central idea is that cognition and behavior cannot
be understood just as cognitive-symbolic abstractions, but
as physical functions for control of real bodies that interact
with a real world. These functions determine not just how
the brain functions, but how it develops in an organism’s
history. Some controversial topics in human development
centrally involve questions of embodiment: for example,
imitation (Section 2.1.3) [10,20,51]. This is an good case
study for embodiment because we use motor actuators to
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imitate other agents with similar motor capacities. Infants
must somehow learn mappings between another’s actions
and their own—a process no less challenging to understand
than to implement.

2.3.2. Developmental systems theories

In developmental psychology, Karmiloff-Smith [36] and
Elman et al. [22] outlined a ‘‘neuro-constructivist ap-
proach’’ to explaining the autonomous development of
cognition and behavior in children. Two contributions to
this issue outline formalizations and approaches for
explaining autonomous cognitive development. Dominey’s
(this issue) constructivist model takes perceptual primitives
(events and objects) from simple physical environments,
learns to map them to symbols, and learns to represent
strings of symbols in syntactic constructions that support
acquisition of abstract semantic–syntactic structures (e.g.,
sentence roles). Dominey argues that the same cognitive
architecture that learns event abstractions can also learn
syntactic constructions, and, perhaps, social categories.
This model departs markedly from models that assume
modularity of syntactic knowledge, even with respect to
other high-level symbolic and representational knowledge.
Importantly, it addresses the difficult question of how
syntax is related to embodied experience. It will be
intriguing to see this model can be expanded to predict
behavioral and neurological data from a broad range of
domains.

Weng (this issue) describes embodied implementations of
machine learning, also encompassing a range of behaviors,
from drawing to navigation. His paper provides a valuable
conceptual framework for understanding what is meant by
‘‘autonomous development,’’ and for classifying and
comparing computational and robotic approaches ranging
from disembodied toy models, to minimally embodied
virtual agents or simple robots, to robots that can generate
genuinely new behaviors. Importantly, he ventures to
address the difficult problem of how autonomous agents
could acquire self-knowledge and use this knowledge to
drive adaptive learning. Metacognitive development, and
its role in cognitive development and skill acquisition, is
not well understood [16], but because of its clear
importance for learning and self-regulation, it will be
intriguing to see whether future robotic approaches yield
theoretical insights into the nature of self-aware learning.

3. Conclusions

This overview and the papers in this issue address only a
small portion of the potential research questions on
modeling developmental systems. There are many chal-
lenges on the horizon. One challenge is extending current
learning theories to high-level social, linguistic, and
conceptual knowledge. It is difficult enough to demonstrate
the viability of formal models of learning to follow gaze, or
recognize faces. It is another to generate viable theories of
how children learn to lie, or understand that different

people have different beliefs or preferences, or learn to joke
around with other people. An equally difficult problem is
to understand how any of these developmental outcomes
are implemented in real, developing neural systems and
processes.
Another challenge concerns the use of various simulation

platforms (digital, virtual, robotic) to test different models
of learning and development. Regardless of platform, the
kinds of formal learning algorithms used and their relation
to neural systems must be considered. However, the current
interdisciplinary community lacks an agreed-upon heuristic
for matching the ‘‘right’’ platform to the right problem.
Sometimes, as a result, it is not clear why a robot has been
used or what has been learned as a result.
A third challenge is modeling the environment. Simpli-

fied, disembodied input strings might be appropriate for
testing some models, but in most cases we cannot under-
stand learning and development without a rich, theoreti-
cally informed descriptions of the environment. Dense
ethnographic datasets (including audio and video records)
are necessary for deriving good descriptions of the
ecological information structures available to learners.
However, good ethnographic studies present their own
challenges, not least of which is that, using traditional
methods, they are extremely laborious and slow.
A fourth challenge concerns development. Both bodies

and brains change with development, and partly as an
effect of experience. With these changes come shifting
experiences of the environment. Much of this change is
non-monotonous, non-linear, and heterochronous. This
means our models of development cannot be overly
simplistic. Collaborations between developmental research-
ers, machine learning researchers or roboticists, and
neuroscientists will be necessary to make real progress on
complex, well-specified models of development.
In sum, this special issue is a sampling of innovative

efforts to address challenging issues on development and
learning in embodied systems operating in natural envir-
onments. These issues involve complex questions of
brain–behavior, brain–body, and organism–environment
interactions throughout development. For this, we need the
knowledge the methods, and the theory-building tools
from multiple disciplines. The International Conferences
on Learning and Development support a growing, vibrant
community of researchers who share this goal.
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