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Abstract

Halogenated aromatic molecules assemble on surfaces forming both hydrogen

and halogen bonds. Even though these systems have been intensively studied on

flat metal surfaces, high-index vicinal surfaces remain challenging, as they may

induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone

(2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der

Waals corrected density functional theory. Equilibrium geometries and corre-

sponding adsorption energies are systematically investigated for various differ-

ent adsorption configurations. It is shown that bridge sites and step edges are

the preferred adsorption sites for single molecules on flat and stepped surfaces,

respectively. The role of van der Waals interactions, halogen bonds and hy-

drogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules,

revealing that molecular flexibility and intermolecular interactions stabilize two-

dimensional networks on both flat and stepped surfaces. Our results provide

a rationale for experimental observation of molecular carpeting on high-index

vicinal surfaces of transition metals.
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1. Introduction

Supramolecular structures have been attracting great amount of attention

due to their potential applications in materials technology, catalysis, medicine,

and data storage and processing [1, 2, 3]. For this reason, the structural ar-

rangements of large molecules on metal surfaces have been widely explored both

experimentally and theoretically in the last two decades [4, 5, 6, 7]. These stud-

ies have mostly concentrated on understanding the intermolecular interactions

of well-ordered networks of organic molecules, such as hydrogen bonds, halogen

bonds, dispersive interactions and dipole-dipole interactions.

Halogen bonding, occurring between a donor halogen atom and an accep-

tor ligand, is a crucial tool in supramolecular chemistry [8, 9]. Even though

hydrogen bonds are stronger than halogen bonds, one of the main advantages

of halogen bonding is the flexibility it provides in tuning the binding proper-

ties of molecules on metals [10, 11]. Furthermore, it is accepted that halogen

substitution, which cooperates between intermolecular and molecule-surface in-

teractions, plays an important role in the formation of intermolecular networks

on metal surfaces [12, 13]. Among many functional molecules forming ordered

and two-dimensional networks, dibromo- and dichloroanthraquinones molecules

have recently attracted interest for the supramolecular structures that they form

on flat gold surfaces [14, 15, 16].

Defects at surfaces, such as steps, kinks and vacancies, are also of great im-

portance for the molecular self-assembling process. Most of the studies have in-

vestigated the interaction of large molecules with atomically smooth flat surfaces

[6, 14, 17, 18, 19, 20, 21, 22], whereas high-index metallic surfaces, occurring

in realistic situations, have attracted little attention [23, 24, 25]. It is known

that it is easier to control the formation of molecular networks on perfect flat

surfaces [26, 27, 28], whereas on high-index vicinal surfaces it is more challeng-

ing to form uniform supramolecular structures. Few experimental studies have
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targeted the formation of one-dimensional (1D) [17, 23] and two-dimensional

(2D) supramolecular assemblies [25] on stepped surfaces, which have raised the

necessity to understand the interactions taking place between organic molecules

and stepped surfaces. Intermolecular interactions among dibromoanthraquinone

(DBAQ) molecules have been theoretically studied on flat Au(111) surface [14],

however, up to our knowledge, the most favorable adsorption site and geometry

of DBAQ molecule on flat and stepped gold surfaces, as well as the interaction

of DBAQ with the substrate have not been studied.

In this work, we explore the interaction of a large organic molecule, 2,6-

dibromoanthraquinone (2,6-DBAQ), with flat (111) and stepped gold surfaces,

specifically (322) and (443), by means of density functional theory calculations

with nonlocal van der Waals (vdW) correlation functional. The main purpose

of this work is to elucidate the role of intermolecular interactions, such as hy-

drogen and halogen bonding, and vdW interactions with different surfaces, in

the formation of self-assembled structures of DBAQ molecules on gold surfaces.

Adsorption sites and energies as a function of coverage and electronic struc-

tures are studied, allowing a detailed understanding of the interaction of DBAQ

molecule with Au surfaces. We show that the inclusion of vdW forces is cru-

cial to describe the adsorption of DBAQ molecule on gold surfaces. Due to the

higher reactivity of stepped surfaces, the adsorption is more favorable on step

edges than on terrace sites. Furthermore, the energy gain obtained due to the

intermolecular halogen and hydrogen bonds for monolayer structures is partly

compensated by the weaker interaction of DBAQ molecules with the gold sur-

faces. As a result, these interactions cooperatively stabilize 2D networks not

only on flat (111) but also on stepped (322) gold surfaces.

After a brief summary of the computational details used in the calculations,

in section 3.1 the adsorption of a single 2,6-DBAQ on Au(111) surface with

different adsorption sites, energies and heights as a function of coverage will

be discussed. In section 3.2, adsorption properties on stepped Au(322) will be

investigated. In section 3.3, the details of the supramolecular carpeting on both

surface types will be explored. The electronic properties, including the charge
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density and partial density of states, of the systems studied will be analyzed

and discussed in section 3.4.

2. Computational Methods

The adsorption of 2,6-dibromoanthraquinone (DBAQ) on flat and stepped

surfaces is investigated by density functional theory (DFT). The generalized

gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) [29, 30]

exchange-correlation energy functional is used. Since the long-range van der

Waals (vdW) interactions play an important role, especially for planar config-

urations, on the adsorption energy and molecule-surface geometry, their par-

ticular role is investigated by means of the approaches proposed by Dion et

al. [31]. Even though significant developments to treat dispersion forces have

been carried out since, we have verified that this first-generation vdW-DF func-

tional yields a very reliable description of the adsorption energy and geometry

of aromatic compounds at metal surfaces [11, 32, 33, 34, 35]. The electronic

wave functions are expanded in a plane-wave basis set with an energy cutoff set

to 400 eV, and the core electrons are described by the frozen-core all-electron

projector-augmented wave (PAW) potentials [36, 37]. All the calculations were

performed using the VASP code [38, 39].

The lattice constant of Au with vdW-DF exchange-correlation functional is

found to be 4.21 Å, which is close to the experimental value of 4.06 Å [40] and

previously reported theoretical data [41, 42]. The (111) and (322) and (443)

surfaces are considered as model flat and stepped surfaces, respectively, even

though gold may exhibit more complex reconstructions at steps [43]. In par-

ticular, we consider Au(443) surface to compare the adsorption of DBAQ at a

proper terrace to a flat (111) surface. Both flat and stepped surfaces are mod-

eled by slabs four atomic layers thick, with the two bottom layers fixed during

the simulations to mimic the bulk. The rest of the system is fully optimized

with a convergence criterion of 0.1 meV for the energy and 10 meV/Å for the
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forces.

We tested the convergence of adsorption energies and structures with respect

to the size of the simulation cell for the (111) surface, considering three super-

cells, the dimensions of which are reported in Table 1. For a given adsorption

site, increasing the surface supercell area from 1.39 nm2 to 3.72 nm2 increases

the binding energy by 0.06 eV, due to the interaction of DBAQ with its periodic

images. The height of the simulation cell is 30 Å, which assures that the interac-

tion among periodic replicas of the slab is negligible. Brillouin zone integration

was performed using the Monkhorst-Pack scheme [44] with 5×3×1 and 4×2×1

meshes for the (111) surface with (3×3
√

3) supercell and (322) stepped surface

with (6×1) supercell, respectively. When different supercells are used, the size

of the k-point meshes is accordingly scaled.

The adsorption energy, Eads, is defined as

Eads = Etotal − Esurface − Emolecule (1)

where Etotal, Esurface, and Emolecule are the total energies of the adsorbed sys-

tem, the clean Au surface, and the isolated molecule, respectively. Consequently,

a negative adsorption energy tells that the adsorbed system is energetically more

favorable compared to the isolated state.

DBAQ is a planar molecule and is expected to interact weakly with the gold

surface through the p-electrons of the aromatic rings. To test the effect of dis-

persion forces, the adsorption energy of a single DBAQ molecule on Au(111)

surface with B-30 adsorption site is calculated using the conventional PBE func-

tional, which does not include the dispersion corrections. The adsorption energy

is found to be -0.10 eV and the adsorption height to be 3.85 Å with PBE func-

tional, while those calculated with vdW-DF functional are -2.08 eV and 3.38 Å,

respectively. The weak physisorption found with PBE functional shows that the

adsorption of DBAQ on flat gold surfaces should be indeed governed by vdW

interactions. Thus, the calculations presented in this work are performed with

vdW-DF functional, unless otherwise noted.
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Table 1: Supercell sizes and number of Au atoms per supercell.

Surface # of atoms cell size a [Å] b [Å]

Au(111) 72 (3×3
√

3) 8.97 15.54

96 (6×2
√

3) 17.94 10.36

192 (6×4
√

3) 17.94 20.72

Au(322) 120 (6×1) 17.94 12.32

Au(443) 180 (6×1) 17.94 19.15

3. Results and Discussion

The chemical structure of 2,6-dibromoanthraquinone molecule (DBAQ) is

shown in Fig. 1. The vertical length between two Br atoms and the horizontal

width between the oxygens of the molecule are 10.68 and 5.43 Å, respectively.

3.1. DBAQ on Au(111)

We perform the search for the most favorable adsorption site on Au(111)

using an orthorhombic supercell with a 17.94 Å × 20.72 Å section, which cor-

responds to a (6×4
√

3) replica of the unitary surface cell. The adsorption of a

single DBAQ molecule on flat Au(111) surface is explored for flat-lying orienta-

tion which has been suggested by the experimental studies [14, 15]. The center

of the molecule is positioned on four different adsorption sites (top, bridge, fcc

and hcp) with two different orientations (0 and 30◦) with respect to the surface

cell (see Fig. 1). The O-O vector is chosen as the axis of the molecule. Among

the eight different adsorption sites for a (6×4
√

3) supercell, the most favorable

sites are T-0 and B-30 with almost iso-energetic adsorption energies of -2.02

eV. The least energetic site is T-30 site with 0.18 eV adsorption energy differ-

ence with respect to the T-0 site. The other sites have very close adsorption

energies to each other and Eads of hcp-30 site is only 0.03 eV lower than that

of T-0 site. Such small energy differences among adsorption configurations are

within the accuracy of our DFT calculations. Therefore, our results can not be

conclusive regarding the most stable adsorption site, but they show that the
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Figure 1: Au(111) surface showing the high-symmetry adsorption geometries of 2,6-DBAQ

molecule with the position of the center of C-ring is located on the top (T), bridge (B), fcc (F)

and hcp (H) hollow sites. O-O position with respect to the surface is given by the azimuthal

angle (θ) of the molecule from the direction of Au rows. The (3×3
√

3) supercell is drawn with

white dashed line. Orange, red, white, gray and yellow spheres represent Br, O, H, C and Au

atoms, respectively.

potential energy surface of DBAQ on Au(111) exhibits a few minima with very

small energy differences. Hence, lateral and rotational diffusion of DBAQ on

Au(111) are possible even at very low temperatures. DBAQ keeps its flat ge-

ometry upon adsorption for any adsorption site. The equilibrium height of each

configuration, which is always larger than 3.3 Å (see Table 2) indicates that

DBAQ is physisorbed.

In order to understand the effect of bonding patterns in DBAQ self assembled

monolayers, different cell sizes are considered for adsorption of a single DBAQ

molecule with B-30 site as shown in Fig. S2. In the (6×4
√

3) supercell, which

is large enough to host a single DBAQ molecule without interactions with the

neighboring images, the adsorption energy of DBAQ is -2.02 eV. In the (3×3
√

3)

supercell, DBAQ molecule forms a weak hydrogen bond with its neighboring

image and the resulting adsorption energy is stronger by 0.06 eV than that

in the (6×4
√

3) supercell. Arranging DBAQ in a (6×2
√

3) supercell allows a
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Table 2: Adsorption sites, angles (θ), energies (Eads), and average distances between the

C-rings and the surface atoms (zC), nearest atomic distances of oxygens (dO) and bromines

(dBr) with the surface Au atoms of 2,6-DBAQ on Au(111) surfaces with (6×4
√

3) supercells.

The optimized configurations for each site is presented in Fig. S1, Supplementary materials.

Site θ [◦] Eads [eV] zC [Å] dO [Å] dBr [Å]

T 0 -2.02 3.34 3.15 3.61

T 30 -1.84 3.39 3.54/4.60 3.54

hcp 0 -1.95 3.40 3.65 3.65/3.50

hcp 30 -1.99 3.38 3.26/3.49 3.69/3.47

fcc 0 -1.95 3.41 3.66 3.51/3.66

fcc 30 -1.98 3.37 3.49/3.27 3.46/3.69

B 0 -1.94 3.42 3.60 3.38

B 30 -2.01 3.37 3.55 3.39

pattern, in which neighboring molecules interact through two Br···H and two

Br···O bonds with an adsorption energy equal to -2.20 eV/molecule. This result

shows that intermolecular Br···H and Br···O bonds may contribute significantly

to the stability of DBAQ assemblies. The detailed bonding schemes are shown

in Fig. 2(a).

3.2. DBAQ on Au(322)

Here we consider an isolated 2,6-DBAQ molecule adsorbed on Au(322). Due

to the lower symmetry of the (322) surface, there are many possible inequivalent

adsorption sites. To understand the details of the molecular arrangement, seven

different adsorption configurations (see Fig. S3) with the molecule on terrace

and step sites with varying adsorption angles have been considered for a 6×1

supercell. The most energetically favored configuration with the adsorption en-

ergy -1.97 eV is shown in Fig. 3. The molecule is tilted from step edge to lower

terrace. The O-O molecular axis is at an angle of 30◦ with the step edge, so

that one O atom is bonded to a gold atom at the step and the other points to

the terrace. The nearest distance between O and Au atom of the step edge is
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2.63 Å. The side view of DBAQ adsorbed at the step edge clearly shows that

the slanting adsorption of DBAQ stems from both the interaction of oxygen

with an undercoordinated step atom and the surface-molecule interaction local-

ized near the step edges, which is revealed by the electronic structure analysis

and is explained more in detail in section 3.4. Decreasing the super cell size to

3×1 resulted in an increase of adsorption energy by 0.17 eV, which is due to

the introduction of O···H and Br···H bonds with the neighboring images. The

configuration in Fig. 3 is assumed as the starting geometry to study the sur-

pramolecular carpeting of DBAQ molecules on Au(322), which is discussed in

the following section.

The terraces of (322) and (443) stepped surfaces hold a (111) orientation

and the steps are separated by four and seven atomic rows, respectively. Since

the size of (443) surface with a (6×1) supercell is comparable to that of the

(6×4
√

3) Au(111) supercell (see Table 1), adsorption properties at terrace sites

of (443) surface might be expected to be similar to the flat one. The adsorption

energy difference between (111) surface and (443) terrace is only 0.06 eV and

similar equilibrium distances (zeq∼3.65 Å) are found. Adsorption energies and

optimized geometries for the T30 adsorption site are presented in Fig. S4.

Stepped surface are more reactive [45], as confirmed by the larger charge dis-

placement (∆Q) upon adsorption and by the presence of shorter Au-O distances.

Nevertheless the adsorption energies of single molecules, at the lowest coverages

considered, are very similar for either flat Au(111) (-2.02 eV) or stepped Au(322)

surface (-1.97 eV). The enhanced reactivity of the steps is compensated by dis-

tortions in the geometry of the molecule, which shifts the energy balance slightly

in favor of flat surface or terrace adsorption.

3.3. Formation of a supramolecular carpet on Au(111) and Au(322)

Supramolecular carpeting of 2,6-DBAQ on Au(111) was studied experimen-

tally by scanning tunneling microscopy, which showed a chevron-like pattern sta-

bilized by halogen and hydrogen bonds [15]. In the same paper a detailed analy-

sis of the intermolecular interactions for a suspended array of DBAQ molecules,
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Table 3: Surface types, adsorption sites, angles (θ), energies (Eads in eV/DBAQ), equilibrium

distances (zeq in Å), nearest atomic distances of oxygens and bromines with the surface gold

atoms (d in Å), and charge displacement (∆Q in e) for DBAQ on Au surfaces calculated using

vdW-DF functionals.

Terrace Step edge

System Figure Supercell Eads d(O-Au) d(Br-Au) zeq d(O-Au) d(Br-Au) ∆Q

DBAQ/Au(111) S2(a) (6×4
√

3) -2.02 3.26 3.34 3.39 0.71

DBAQ/Au(111) 1 (3×3
√

3) -2.08 3.35 3.40 3.43 0.49

DBAQ/Au(111) 5(a) (6×2
√

3) -2.20 3.36 3.42 3.41 0.72

2DBAQ/Au(111) 2(a) (6×2
√

3) -2.41 3.45 3.50 3.49 0.98

DBAQ/Au(322) 3 6×1 -1.97 3.55 3.52 2.61 3.60 0.99

2DBAQ/Au(322) 2(c) 6×1 -2.13 3.72 3.54 3.53 3.36 1.37

i.e. without a substrate, was also performed using DFT calculations. In the light

of this study, we have performed DFT calculations to examine the formation of

chevron-like structure on Au(111) as well as Au(322) surfaces and confirm its

stability considering the intermolecular and molecule-substrate interactions.

First we consider the formation of a supramolecular carpet on flat Au(111).

To obtain a chevron-like structure on Au(111), two DBAQ molecules in alternat-

ing molecular rows on Au(111) surface have been examined. A (6×2
√

3) Au(111)

supercell is used, in agreement with the reported experimental and theoretical

equilibrium lattice distances [15]. B-30 adsorption site, being the most energetic

site on Au(111), is considered for the initial geometries of DBAQ molecules and

the optimized configuration is shown in Fig. 2(a-b), yielding an adsorption en-

ergy of -2.41 eV/molecule. The intermolecular interactions in 2D network can

be analyzed by considering four nearest neighboring DBAQ molecules. Each

molecule forms with each neighbor two Br···H and two O···H bonds (see red

dotted lines in Fig. 2(a)) as compared to the single DBAQ adsorption case in

the same supercell. These additional bonds further stabilize the supramolecular

structure by 0.21 and 0.40 eV per molecule, compared to single DBAQ adsorp-

tion in (6×2
√

3) and (6×4
√

3) supercells, respectively. Upon adsorption on the
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B-30 sites, both DBAQ molecules maintain their flat geometry and the average

distance between the surface atoms and the C-rings (zeq) is 3.49 Å. The increase

of zeq by 0.10 Å along with the increase of Eads by 0.40 eV, compared to the ad-

sorption of an isolated molecule (in a (6×4
√

3) supercell), suggests an interplay

between the intermolecular interactions and the molecule-substrate interaction,

so to maintain overall a constant bond order.

The intermolecular interactions can be understood by considering the bond

lengths between neighboring molecules as presented in Fig. S5. O···H bond

lengths range from 2.88 to 3.21 Å being larger than the sum of the van der

Waals radii for each bond (rO−H=2.72 Å), which suggest that hydrogen bonds

formed between neighboring molecules are weak. Br···O bond length is 3.49 Å,

while the range of Br···H bond lengths are similar to those of O···H bonds. The

sum of the vdW radii for Br-O is equal to rBr−O=3.37 Å, which is smaller than

the calculated bond length, revealing that the intermolecular Br···O bonds are

weak. On the other hand, rBr−H=3.05 Å, which is within the calculated range

of Br···H bond lengths (from 2.87 to 3.19 Å), showing that the Br···H bonds

are relatively stronger than the other intermolecular bonds occurring in the self

assembled monolayer.

Then, using the most favorable adsorption site found for the single DBAQ

on stepped Au(322) surface, the second DBAQ molecule is added, in a similar

fashion as suggested for the flat surface, so as to form a 2D network. As presented

in Table 1, the terrace width of (322) surface is equal to 12.3 Å, which is 2

Å larger than the supercell used for (111) surface. It is important to mention

here that this difference in the cell size affects both halogen- and hydrogen-

bond strengths, due to the increased intermolecular distances. The optimized

configuration of the 2D network together with the bond length scheme are shown

in Fig. 2(c-d). As in the case of single-molecule adsorption, the flexibility of

DBAQ facilitates the formation of continuous molecular carpeting on stepped

surface. O···H and Br···H bond lengths vary from 2.96 to 3.68 Å and 3.03 to

3.46 Å, as shown in Fig. S6. These bond distances are larger than those found

on flat surface and of the sum of van der Waals radii for each element, indicating
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weaker hydrogen and halogen bonds formed on stepped (322) surface compared

to flat (111) surface. Moreover, distances between Br and neighboring O atoms

is too large (∼4.71 Å) to allow the formation of Br···O bonds. Finally, we note

that there is no significant difference found in adsorption heights between the

monolayer and isolated molecule cases.

Compared to single DBAQ adsorbed on Au(322), the presence of a second

molecule increases the adsorption energy by 0.16 eV/molecule, due to the Br· ·

·H and O· · ·H bonds. Conversely, 0.1 eV energy is lost due to the different

adsorption site of the second DBAQ molecule (see Fig. S3(c)) compared to

the most favorable adsorption site. Hence, the flexibility of DBAQ, the higher

reactivity of the step edge, and the formation of a network of Br· · ·H and O· · ·H

bonds among adjacent molecules are the key players in the formation of stable

continuous self-assembled monolayers on Au high-index surfaces.

3.4. Electronic Properties of DBAQ on Au(111) and Au(322)

The electronic properties of the substrate highly depend on the surface

type, which affects the binding characteristics of molecules and the formation of

supramolecular structures. We have performed charge density and partial den-

sity of states (PDOS) analysis of the most favorable adsorption configurations,

so as to further understand the interaction of DBAQ with Au surfaces. PDOS

is obtained by projecting the Kohn-Sham states on atomic orbitals, so that the

contribution to the total electron density can be resolved in space and in or-

bital type. Fig. 4 shows the PDOS for single and two DBAQ molecules on

Au(111) and Au(322) surfaces. The adsorption of DBAQ molecule(s) on flat

and stepped gold surfaces does not significantly affect the electronic density of

states of gold, in which the d-states of the Au surface atoms prevail. In turn the

electronic states of DBAQ are broadened and shifted by the interaction with

gold. Additional molecule-molecule interactions at full coverage exhibit similar

PDOS compared to single adsorbed cases.

The contribution of the p-orbitals of individual species of atoms in DBAQ,

in gas phase as well as adsorbed on Au, is displayed in Fig. S7. The high-
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est occupied molecular orbital (HOMO) of DBAQ has p character and entails

contributions from carbon, bromine and oxygen. When DBAQ is adsorbed on

Au, the Br and C p-type electrons broaden and shift to lower energy. Hence

their contribution to the frontier orbitals is reduced with respect to gas phase.

The higher reactivity of the stepped surfaces leads to a stronger hybridization

between the p-electrons of the molecule and the s-electrons of Au surfaces. The

p-states of C and O atoms below the Fermi level are significantly broadened

and decreased in intensity, while the p-states of Br lowered in intensity without

a significant broadening.

Fig. 5 shows the electronic charge density difference for the energetically

most favored structures on Au surfaces. The charge density differences due to

the adsorption of DBAQ on flat and stepped surfaces are calculated as

∆ρ = ρDBAQ/Au − ρAu − ρDBAQ (2)

where ρDBAQ/Au is the total charge density of DBAQ adsorbed on Au surface,

ρAu is the charge density of Au surface in the adsorbed configuration without

DBAQ molecule, and ρDBAQ is the charge density of the isolated DBAQ in the

adsorbed configuration. The average density profile, ∆ρav(z), is also calculated

for a quantitative analysis of the charge distribution and is presented in Fig.

S8. When DBAQ is adsorbed on Au(111), the region between the surface and

the molecule has charge accumulation (i.e., electron depletion, ∆ρav(z) < 0) and

charge depletion (i.e., electron accumulation, ∆ρav(z) > 0) regions. Particularly

the electron density is depleted just above the surface and there are accumu-

lation regions below and above the molecule. Similar trends are found for the

other configurations discussed in this work, which show that there is a notable

interaction between the molecules and the surfaces. In general, Br atoms might

have both positive and negative electrostatic potential regions when Br···O and

Br···H bonds form, respectively [15]. For the systems studied here, Br atoms

are the main electron depletion regions within the molecule due to the stronger

interaction of Br atoms with hydrogens.

The charge displacement (∆Q =
∫
|∆ρ(z)|dz) due to the adsorption of the
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molecule on the surface is quantitatively analyzed by integrating the charge

density profile and summarized in Table 3. As expected, stronger adsorption

energies obtained for monolayer cases, compared to single molecule adsorption,

yield larger ∆Q values. Since the stepped surfaces are more reactive than flat

ones, charge displacements calculated for flat surface are smaller by 0.28 and

0.39 e for single and two DBAQ adsorbed configurations, respectively.

4. Conclusions

The interaction of 2,6-dibromoanthraquinones (DBAQ) molecule, which has

been experimentally shown to induce a 2D supramolecular network on Au(111)

surface, has been explored both on the flat (111) and stepped (322) surfaces

of gold by means of density functional theory calculations, including the dis-

persion interactions in terms of the nonlocal vdW-DF correlation functional.

Our calculations show that adsorptions at both surface steps and terraces are

dictated by dispersion forces. The systematic search of various adsorption sites

on surfaces reveals that, in spite of a slight preference for the B-30 site, the en-

ergy differences among different sites are small and DBAQ would diffuse easily

at the surface. On flat surfaces DBAQ retains its planar gas phase geometry,

whereas when it adsorbs at step edges it is deformed. Such deformation energy

compensates the energy gained by DBAQ interacting with highly reactive steps,

thus making step and terrace adsorption energies almost equivalent. At mono-

layer coverage the intermolecular Br· · ·O and Br· · ·H halogen bonds and O· · ·H

hydrogen bonds contribute to stabilize DBAQ assemblies on flat and stepped

surfaces, and lead to an adsorption energy increase by 0.21 eV/molecule with

respect to isolated molecules. In contrast, the increased equilibrium distances of

monolayer networks suggest weaker interaction of molecules with the surfaces,

thus highlighting the interplay between these two types of interactions.

In general, this study demonstrates that the effect of surface type and the

importance of van der Waals interactions as well as the role of halogen- and

14



hydrogen-bonds cooperate to form two-dimensional self-assemblies of complex

aromatic molecules, such as anthraquinones on gold surfaces. Such interactions

dictate the site and orientation selectivity of the adsorption of DBAQ molecule

on gold, and, in general, determine the formation of supramolecular structures.

Specifically the interplay among intermolecular bonding, molecular flexibility

and surface adsorption foster the formation of continuous molecular carpets

even at stepped surfaces, as observed in experiments.
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(a) (b)

(d)(c)

Figure 2: Optimized geometries of two DBAQ adsorbed on (a-b) Au(111) with 6×2 supercell

and (c-d) Au(322) with 6×1 supercell. The supercells are drawn with blue solid lines. The

lattice constants are tabulated in Table 1. A zoom-in scheme of the configuration with the

possible intermolecular bond lengths is presented in Fig. S5 and S6.
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(a)

(b)

Figure 3: The most favored adsorption configuration of DBAQ on Au(322) with (a) top view

and (b) side view. The step-edge gold atoms are displayed with larger spheres and darker color.

The 6×1 supercells are drawn with white dashed lines. The calculated adsorption energy is

-1.97 eV.
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Figure 4: PDOS of DBAQ and 2DBAQ on (a) Au(111) and (b) Au(322). The red and green

lines in the upper panel show the surface gold atom PDOS when single and double DBAQ

is adsorbed, and the black line indicates the PDOS of clean surface. The blue and cyan lines

in the lower panel display the PDOS of adsorbed single and double DBAQ on gold surfaces,

respectively, and the red line indicates the PDOS of DBAQ in vacuum. The density of states

are aligned setting the Fermi level to 0 eV. Energies are broadened by 0.2 eV.
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(a) (c)

(b) (d)

Figure 5: 3D isosurface of the electronic density differences with an isovalue of ±0.003 e/Å3

of single DBAQ on (a) Au(111) with 6×2 supercell and (b) Au(322), and two DBAQ on

(c) Au(111) and (d) Au(322). Blue and white regions represent electron accumulation and

depletion, respectively.
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