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RESEARCH ARTICLE
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INTRODUCTION
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a 

hematologic malignancy in which patients can have leukemic 
involvement of the blood and bone marrow, as well as tumor 
formation in the skin (in  ∼90% of cases), lymphoid organs, 
and other tissues (1). Among the unique epidemiologic fea-
tures of the disease is the extreme male predominance, with 
a male/female incidence ratio of at least 3:1 in adults (2, 
3). There is no explanation to date for why males are pre-
disposed to the disease or, alternatively, why females are 
relatively protected. Outcomes for patients with BPDCN are 
poor, with a median survival of 12 to 24 months from diag-
nosis (3, 4), demonstrating the unmet need for additional 
biological insight.

DNA sequencing of bone marrow or skin involved with 
BPDCN has identified mutations in genes often affected in 
other blood cancers, particularly myelodysplastic syndrome 
(MDS) and related myeloid malignancies. These include point 

mutations or insertion–deletion (indel)/frameshift mutations 
in ASXL1, TET2, and TP53 and copy number alterations affect-
ing one or more cell-cycle regulators (5–9). However, BPDCN 
frequently arises in the context of a preexisting or concurrent 
myeloid malignancy, such as MDS or chronic myelomono-
cytic leukemia (CMML; refs. 10–12), but most of the prior 
genetic landscape studies of BPDCN analyzed unsorted bone 
marrow or skin biopsy specimens with heterogeneous compo-
sition. Those biopsy specimens likely included hematopoietic 
cells, possibly neoplastic, of other lineages and nonhemat-
opoietic cells. Therefore, one goal of this project was to define 
the genetic alterations and transcriptional changes present in 
highly purified BPDCN cells separated from any background 
clonal hematopoietic disorder and to link these to patient sex. 
We found that loss-of-function mutations in the RNA splic-
ing factor ZRSR2, encoded on chromosome X, are enriched in 
BPDCN and associated with a significant fraction of the male 
predominance of the disease.

ABSTRACT Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive leukemia 
of plasmacytoid dendritic cells (pDC). BPDCN occurs at least three times more 

frequently in men than in women, but the reasons for this sex bias are unknown. Here, studying genom-
ics of primary BPDCN and modeling disease-associated mutations, we link acquired alterations in RNA 
splicing to abnormal pDC development and inflammatory response through Toll-like receptors. Loss-of-
function mutations in ZRSR2, an X chromosome gene encoding a splicing factor, are enriched in BPDCN, 
and nearly all mutations occur in males. ZRSR2 mutation impairs pDC activation and apoptosis after 
inflammatory stimuli, associated with intron retention and inability to upregulate the transcription fac-
tor IRF7. In vivo, BPDCN-associated mutations promote pDC expansion and signatures of decreased 
activation. These data support a model in which male-biased mutations in hematopoietic progenitors 
alter pDC function and confer protection from apoptosis, which may impair immunity and predispose 
to leukemic transformation.

SIGNIFICANCE: Sex bias in cancer is well recognized, but the underlying mechanisms are incompletely 
defined. We connect X chromosome mutations in ZRSR2 to an extremely male-predominant leukemia. 
Aberrant RNA splicing induced by ZRSR2 mutation impairs dendritic cell inflammatory signaling, inter-
feron production, and apoptosis, revealing a sex- and lineage-related tumor suppressor pathway.
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BPDCN is thought to develop from plasmacytoid dendritic 
cells (pDC) or their precursors, based primarily on similarities 
in gene expression and cellular function (13–15). However, 
mechanisms of how genetic alterations promote leukemic 
transformation in the dendritic cell lineage are unclear. Fur-
thermore, studies have not linked the myeloid neoplasm–
associated mutations described in BPDCN to consequences 
on pDC development, growth, or function. Thus, a second 
goal of this work was to connect genes mutated in BPDCN 
to dendritic cell transformation via interrogation of their 
effects specifically in pDCs, myeloid/dendritic progenitors, 
and BPDCN cells. We found that ZRSR2 mutations impair 
pDC activation and apoptosis in the setting of inflammatory 
stimuli, at least in part via misregulation of the interferon 
regulatory factor IRF7, downstream of Toll-like receptor 
(TLR) signaling.

RESULTS
BPDCN Has Male-Biased ZRSR2 Mutations and a 
UV-Associated Signature

We performed whole-exome sequencing (WES) on sorted 
BPDCN (CD45+ CD4+ CD56+ CD123+ BDCA4+ CD3−; n = 11 
patients) from blood or bone marrow and on paired CD3+ 
cells to identify acquired mutations in the malignant cells. 
We also performed targeted sequencing using a 95-gene 
panel in an extended set of bone marrow from patients with 
BPDCN (n = 27; ref. 16). The most frequently mutated genes 
across all BPDCN were TET2, ASXL1, and genes involved in 
RNA splicing, including ZRSR2, SRSF2, U2AF1, and SF3B1 
(Fig.  1A; Supplementary Table  S1). Additional mutations 
included genes recurrently altered in other myeloid malig-
nancies, such as TP53, NRAS, KRAS, and GNB1. Of potential 
clinical relevance, we found an oncogenic IDH2 mutation 
in 4 of 38 cases (∼11%), which we previously reported was 
associated with sensitivity to the IDH2 inhibitor enasidenib 
in a patient with BPDCN (3). TET2 and IDH2 mutations were 
mutually exclusive, as has been reported in acute myeloid 
leukemia (AML; ref. 17). In contrast, other common myeloid 
malignancy–associated mutations were absent or rare, such 
as in DNMT3A, NPM1, or FLT3-ITD (FMS-like tyrosine kinase 
3, internal tandem duplication). One BPDCN harbored a 
single-nucleotide variant (SNV) that encodes an IRF8R404W 
missense mutation. Although the functional consequence 
of this specific variant is unknown, IRF8 is important for 
pDC development and function (18, 19). WES also identified 
a small number of recurrently mutated genes in this set of 
BPDCN that have not been previously identified as mutated 
in other cancers or in prior BPDCN sequencing (Supplemen-
tary Table  S2). Some of these variants are in homopolymer 
tracts that are at risk for sequencing errors or are in genes 
that are not expressed in BPDCN or pDCs, and thus their 
contribution to the BPDCN phenotype is not clear.

In the BPDCN studied by WES, the distribution of vari-
ant allele frequency (VAF) for all somatic mutations allowed 
us to define their clonal structure (Fig.  1B). Most cases 
harbored known hematologic malignancy–associated genes 
in a single dominant clone (clustered around VAF  ∼50% 
for presumed heterozygous mutations), which included 
all of the variants in the most frequently mutated genes: 

TET2, ASXL1, and spliceosome components. Some muta-
tions were detected at nearly 100% VAF, including in ZRSR2 
and BCORL1, which reside on the X chromosome and were 
mutated nearly exclusively in males in this cohort, and in the 
autosomal genes ETV6, IDH2, and TP53, which likely repre-
sent loss-of-heterozygosity events.

Given that many genes mutated in BPDCN were shared 
with other myeloid malignancies, we asked if the global muta-
tion pattern might indicate unique BPDCN-specific features. 
We performed a mutation analysis on all somatic alterations 
and their surrounding nucleotide context using signatures 
previously defined in the Catalog of Somatic Mutations in 
Cancer (COSMIC; ref. 20). We found that BPDCN harbored 
an age-associated pattern (signature 1), which is detected in 
most cancers in COSMIC (Fig. 1C; Supplementary Fig. S1). 
However, we also detected a strong association with UV-
induced mutation signatures in most BPDCN (signature 
score >0.25 in 6/11 or 55%; Fig. 1C). In contrast, there was no 
UV signature associated with AML (0/101 cases, P < 0.0001 by 
Fisher exact test), even though AML shares many recurrently 
mutated genes with BPDCN and may arise from a similar 
myeloid progenitor. For comparison, melanoma harbors a 
uniformly high UV signature in most tumors (Fig. 1C). The 
BPDCN cells we analyzed were harvested from bone marrow 
or blood and not directly from UV-exposed tissue (i.e., skin), 
suggesting that at least some leukemic BPDCN cells main-
tain a UV signature presumably acquired during a prior skin 
phase of malignant evolution.

Sequencing purified BPDCN cells rather than bulk mar-
row or skin samples also allowed us to determine DNA copy 
number variants (CNV) that were more confidently BPDCN- 
associated. Some of the chromosome and arm-level CNVs 
were similar to those described previously in BPDCN (Fig. 2A; 
refs. 7, 21). These included loss of 7p (which harbors IKZF1), 
9p (CDKN2A, CDKN2B), 12p (CDKN1B, ETV6), 13q (RB1), and 
17p (TP53; Supplementary Fig.  S2). Copy number analysis 
also clarified the disease genetics for patients 2 and 10, who 
did not have any SNVs in known blood cancer–associated 
genes from WES (Fig.  1A). In those patients, we detected 
deletions in IKZF1 and RB1 (patient 2) and TET2, RB1, and 
ZRSR2 (patient 10), which supports that analysis of CNVs 
in addition to point mutations/indels can detect additional 
relevant driver events. Integrated analysis of SNVs/indels and 
copy loss highlighted four putative BPDCN tumor suppres-
sors targeted by both types of alteration: ZRSR2, TET2, TP53, 
and SETD2 (Fig.  2B). PCR confirmed the WES finding that 
chromosome Xp22.2 copy loss in patient 10, a male, resulted 
in complete absence of ZRSR2 DNA in tumor but not in 
germline cells (Fig. 2C).

ZRSR2 mutations in BPDCN are of particular interest for 
several reasons. First, although other splicing factors are 
mutated across many solid and blood cancers, ZRSR2 is nearly 
exclusively associated with myeloid disorders, such as MDS, 
CMML, and AML. However, in contrast to MDS, in which 
SRSF2, SF3B1, and U2AF1 mutations are more common, 
ZRSR2 was the most frequently mutated spliceosome gene in 
this BPDCN cohort. To confirm this finding in a larger and 
more geographically diverse cohort, we examined BPDCN 
DNA from three separate groups (from France, Italy, and 
MD Anderson Cancer Center) and found ZRSR2 mutations  
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Figure 1.  Recurrently mutated genes and UV light–induced global mutation signature in BPDCN. A, Comutation plot of SNVs and indels in BPDCN sam-
ples among genes recurrently mutated in other hematologic malignancies. Each column represents an individual patient; genes are in rows and mutation 
types are annotated by color. Percentages of patients with a given gene altered are plotted to the left. Samples are annotated by gender and sequencing 
method (WES). B, VAF of all somatic mutations (including synonymous) with VAF ≥0.1 detected by WES in 11 BPDCN plotted as gray dots. VAFs of known 
hematologic malignancy-related genes from A are annotated in red (autosomes) or blue (X chromosome). C, Global somatic mutational signatures in 
BPDCN, AML, and melanoma plotted as fraction of samples (x-axis) having a specific signature with the mean signature score in those patients (y-axis). 
The color of the circle represents a specific signature, and the size of the circle represents the strength of association as a combined measure of the 
fraction of patients having a signature and the contribution score.

in 24 of 93 patients (26%; Fig. 2D). This is significantly higher 
than the incidence of ZRSR2 mutations in MDS, in which 
the gene was mutated in only 13 of 288 patients in one large 
cohort (4.5%; P < 0.0001 by Fisher exact test; ref. 22).

Second, nearly all ZRSR2 mutations in our cohort were 
in males (mutated in 23 of 72 males vs. 1 of 21 females, 
P  =  0.011 by Fisher exact test; Fig.  2E). The mutational 
pattern is consistent with loss of function, with most vari-
ants predicting inactivating events (nonsense, frameshift, 
deletion), which implicates ZRSR2 as a male-biased X chro-
mosome tumor suppressor gene. In fact, strictly defined 
inactivating mutations in our cohort were exclusively in 
males (16 of 72 males vs. 0 of 21 females, P = 0.019; Fig. 2E). 
This is similar to MDS, in which loss-of-function mutations 
in ZRSR2 are almost always restricted to males (22). ZRSR2 
belongs to the minor subset of X chromosome genes that 
escape X inactivation silencing and is biallelically expressed in 
female cells (23). The finding that ZRSR2 is also preferentially 
mutated in BPDCN and MDS from males strongly suggests 

that ZRSR2 is an escape from X inactivation tumor suppres-
sor (EXITS) gene (24). As we previously described for other 
EXITS genes across a range of cancers, females are relatively 
protected from BPDCN because they have two active ZRSR2 
alleles and therefore require two mutations to eliminate func-
tion, whereas males require only one. The degree of sex bias 
in BPDCN incidence linked to ZRSR2 can be expressed as the 
number of excess ZRSR2 mutations in males per excess case of 
BPDCN in males (24). Using that calculation, in this cohort, 
43% of the excess male risk of BPDCN is associated with a 
ZRSR2 mutation.

Unique Transcriptomic Features of  
Spliceosome-Mutated BPDCN

Next, we asked how BPDCN transcriptomes relate to their 
genetics. We performed RNA sequencing (RNA-seq) on the 
same sorted BPDCN samples that we had profiled by WES. 
Peripheral blood pDCs (CD45+ CD123+ BDCA2+ CD3−) from 
healthy donors were analyzed in parallel for comparison 
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(Supplementary Table  S3). Differentially expressed genes 
between BPDCN and pDCs were similar to those we previ-
ously defined that distinguished BPDCN from normal den-
dritic cells using single-cell RNA-seq (Fig. 3A; ref. 14). We also 
observed differences in individual oncogenes and tumor sup-
pressors (BCL2, MYB, IRF4, and MAP3K1) known to be dysreg-
ulated in BPDCN (Fig. 3B). Furthermore, gene set enrichment 
analysis (GSEA) identified oncogene-associated signatures in 
BPDCN, including in both splicing factor mutated or wild-
type compared with normal pDCs, such as overexpression of 
MYC and E2F targets, and of PI3K/AKT/MTORC1 signaling 
pathway genes (Fig. 3C). In addition to these expected gene 
expression changes, we also found that BPDCNs had upreg-
ulation of RNA splicing machinery and associated genes 
compared with normal pDCs (Fig. 3D). Furthermore, within 
BPDCN, splicing factor mutant cases showed upregulation of 
RNA splicing genes and were enriched for markers of active 
nonsense-mediated decay (NMD) RNA catabolism compared 
with BPDCN without ZRSR2, SRSF2, SF3B1, or U2AF1 muta-
tions (Fig.  3D), consistent with what has been observed in 
other spliceosome-mutant cancers (25, 26). This was of par-
ticular interest given that ZRSR2 loss promotes intron reten-
tion (IR; ref. 27), which is known to trigger NMD activation 
and cause altered myelopoiesis (28).

Next, we analyzed RNA splicing in splicing factor–mutated 
BPDCN compared with normal pDCs and with BPDCN with-
out any splicing factor mutation. BPDCN with splicing factor 
mutations showed several types of abnormal splicing, includ-
ing IR, cryptic 3′ splice site usage, and exon skipping (Supple-
mentary Table S4). ZRSR2, SRSF2, SF3B1, and U2AF1 are all 
involved in U2 intron splicing (99.7% of introns in the human 
genome). In contrast, ZRSR2 is uniquely necessary for proper 
splicing of U12 introns (0.3% of human introns), an evolu-
tionarily conserved genomic feature with distinct branch 
and splice site sequences (29, 30). In MDS, ZRSR2 mutations 
promote aberrant IR with a bias toward retention of U12-type 
introns (31). Similarly, we found that BPDCNs with ZRSR2 
mutation or loss had increased IR compared with those with-
out spliceosome mutations (Fig. 4A). Both U2- and U12-type 
introns were affected, but IR was markedly weighted toward 
U12-type introns in BPDCN with ZRSR2 mutation (Fig. 4B). 
Consistent with possible activation of NMD, genes with an 
IR event in ZRSR2-mutant BPDCN had decreased expres-
sion compared with splicing factor wild-type BPDCN, albeit 
modestly across all IR events, versus genes without IR events 
(Supplementary Fig. S3A). We also detected some of the ste-
reotypical missplicing patterns associated with specific splic-
ing factor mutations in other cancers (31). These included 
preferential exon inclusion or exclusion related to CCNG/
GGNG exonic splicing enhancer motifs in BPDCN with 
SRSF2 mutation (32) and alternative 3′ splice site usage with 

SF3B1 mutation (Supplementary Fig. S3B and S3C; ref. 33). 
To confirm ZRSR2-associated splicing changes in a separate 
set of BPDCN, we analyzed patient-derived xenografts (PDX; 
ref.  34). We performed RNA-seq on six BPDCN PDXs, two 
with ZRSR2 mutations and four without. Similar to what we 
observed in patient cells, PDXs with ZRSR2 mutations had 
increased IR events that were biased toward aberrant reten-
tion of U12-type introns (Fig. 4B and C).

Next, we asked if the splicing abnormalities observed were 
directly related to loss of ZRSR2. The predominant nonsense 
and frameshift ZRSR2 mutations we detected in BPDCN 
(Fig. 2D and E) are predicted to result in absence of a mature 
protein, which is what we observed by Western blotting 
in mutated compared with nonmutated BPDCN (Fig.  4D). 
Therefore, we used engineered knockdown or knockout cell 
line models to study ZRSR2 mutations in BPDCN cells. First, 
we generated CAL1 BPDCN cell lines harboring doxycycline-
inducible short hairpin RNAs (shRNA) targeting ZRSR2 to 
model protein loss and facilitate time-dependent analysis 
of ZRSR2 depletion effects on splicing (Fig. 4E). Seven days 
after induction of knockdown, IR was the most prominent 
acquired aberrant splicing event in shZRSR2 compared with 
shControl cells (Fig.  4F). Both U2- and U12-type IR events 
were increased in ZRSR2 knockdown cells (Fig. 4G), and IR 
events detected by RNA-seq could be confirmed by RT-PCR 
(Fig.  4H). Knockdown of the NMD factor UPF1 in ZRSR2-
deficient cells led to increased DERL3 RNA, one of the U12 
genes consistently retained across BPDCN and cell lines with 
ZRSR2 alterations, suggesting misspliced DERL3 is subject 
to NMD (Supplementary Fig.  S3D). Together, these experi-
ments showed that U2- and U12-type IR is a consequence of 
ZRSR2 depletion on RNA splicing in human BPDCN cells.

ZRSR2 Mutation Impairs pDC Activation and 
Apoptosis Induced by Inflammatory Stimuli

Genes that were misspliced in primary BPDCN with 
ZRSR2, SRSF2, or SF3B1 mutations included several that are 
important in dendritic cell development and/or function, 
including CSF2RB, IRF4, IRF7, IRF8, and LILRB4 (Supplemen-
tary Table S4). Therefore, to connect missplicing with cellular 
phenotype, we asked how ZRSR2 mutations affect pDC func-
tion. ZRSR2 knockdown was inversely correlated with expres-
sion of genes normally upregulated in TLR7 agonist (R848; 
resiquimod)–treated dendritic cells (Fig.  5A). This was of 
particular interest because studies have reported that primary 
BPDCN cells are less responsive to TLR/infectious stimu-
lation than normal pDCs or have signatures of decreased 
activation, but the mechanisms are unknown (13, 35). To 
test if complete loss of ZRSR2, as we saw in patient samples, 
was sufficient to impair pDC activation, we stimulated CAL1 
cells harboring CRISPR/Cas9 knockout of ZRSR2 with TLR 

Figure 2.  ZRSR2 mutations and their association with BPDCN sex bias. A, Somatic DNA copy number changes in 11 BPDCN identified by WES shown 
from blue (copy loss) to red (gain). B, Venn diagram showing the four genes with overlap of copy number variations (among 347 protein coding genes 
observed in at least two patients with VAF ≥0.2) and SNVs (among 54 targeted panel genes or protein coding gene mutations observed in at least two 
patients by WES). C, Sequencing read traces in the ZRSR2 locus from WES and PCR of exon 10 DNA in tumor/germline pairs from representative BPDCN 
in males with intact or somatic copy number loss of ZRSR2. D, Schematic of the ZRSR2 protein with amino acid locations and specific mutations (n = 24) 
detected in BPDCN (n = 93). E, ZRSR2 mutations are male-biased. Twenty-three of 72 male BPDCN had ZRSR2 mutations vs. 1 of 21 female BPDCN 
(P = 0.011 by Fisher exact test). When restricted to obvious loss-of-function (LOF) mutations (nonsense, frameshift, deletion; marked in red), 16 of 72 
male BPDCN had ZRSR2 LOF mutations vs. 0 of 21 female BPDCN (P = 0.019).
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Figure 3.  BPDCN transcriptomes have alterations in oncogene, dendritic cell development, and RNA processing genes. A, GSEA showing association 
of a previously defined gene signature from single-cell RNA-seq that differentiated BPDCN from normal human dendritic cell subtypes (14) in BPDCN 
(n = 11) compared with normal pDCs (n = 4) from the current cohort. Heat maps of the same genes plotted as low (blue) to high (red) relative expression. 
B, RNA expression of the indicated genes in BPDCN (n = 11) compared with normal pDCs (n = 4), with groups compared by t test. FPKM, fragments per 
kilobase of transcript per million mapped reads. C, GSEA comparing BPDCN with normal pDCs showing enrichment of the indicated hallmarks of cancer 
gene sets (MSigDB collection “H”) in BPDCN.  D, GSEA as in A for the indicated RNA splicing and nonsense-mediated decay gene sets with heat maps of 
the top 20 leading-edge genes plotted as low (blue) to red (high) relative expression. In the indicated plots, BPDCN are separated by whether (Splicing 
Mut) or not (Splicing WT) they harbor a mutation in a splicing factor (SF3B1, SRSF2, U2AF1, or ZRSR2). ES, enrichment score; FDR, false discovery rate; 
NES, normalized enrichment score; WT, wild-type.
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agonists (Fig.  5B). Upregulation of the activation marker 
CD80 after stimulation with lipopolysaccharide (LPS; TLR4 
agonist) or R848 (TLR7) was markedly reduced in cells with 
knockout of ZRSR2 (Fig. 5C). Next, we assessed the same phe-
notype in primary human BPDCN and pDCs. BPDCN, across 
genotypes, had decreased induction of CD80 compared with 
pDCs after R848 stimulation (Fig. 5D). Knockdown of ZRSR2 
in otherwise normal primary pDCs also impaired the R848 
response (Fig.  5E). These data suggest that loss of ZRSR2 
is one, but not necessarily the only, mechanism by which 
BPDCN cells are rendered hyporesponsive to TLR activation.

TLR stimulation of normal pDCs induces secretion of 
numerous inflammatory cytokines, including type 1 inter-
ferons (IFNα and IFNβ). In contrast, CAL1 cells with ZRSR2 
knockout had defective secretion of several cytokines (e.g., 
IFNα, IFNβ, IL6, TNFα) after LPS or R848 stimulation com-
pared with controls (Fig.  5F). We also found similar defec-
tive cytokine production in primary BPDCN cells compared 
with normal pDCs upon stimulation with R848 (Fig. 5F). Of 
note, ZRSR2 loss did not simply cause a complete block in 
TLR signaling or protein secretion because other cytokines 
were produced equivalently in ZRSR2-mutant cells and 
BPDCN cultures after stimulation (e.g., TRAILR1). Together, 
these data suggest that ZRSR2 mutations in BPDCN cells 
cause defective activation and impaired secretion of specific 
cytokines, including type 1 interferons, in the setting of 
TLR stimulation.

After activation, normal pDCs undergo apoptotic cell 
death as part of a negative feedback process that limits the 
inflammatory response (36). We hypothesized that BPDCN-
associated alterations might protect pDCs from apoptosis in 
the setting of TLR stimulation, and this could be a mechanis-
tic link between spliceosome mutations and malignant trans-
formation. Consistent with this model, we observed that gene 
expression changes in R848-stimulated primary BPDCNs 
compared with normal pDCs were enriched for decreased 
type 1 interferon and decreased apoptosis signatures (Fig. 5G 
and H; Supplementary Fig. S4A).

Next, we asked if loss of ZRSR2 conferred protection from 
apoptosis in the setting of inflammation. We stimulated 
CAL1 cells with LPS or R848 and found that both initiated 
apoptosis as measured by activation of caspases 3 and 7 
(Fig.  6A). Knockout of ZRSR2 conferred relative protection 
from LPS- or R848-induced apoptosis (Fig. 6B). The growth 

rate of CAL1 cells at steady state was not changed by ZRSR2 
mutation. In contrast, although growth of wild-type cells was 
inhibited by LPS, ZRSR2 knockout cells were protected from 
LPS-induced growth arrest (Fig. 6C).

We confirmed the specificity of CRISPR knockout and that 
loss of ZRSR2 was necessary for protection from apoptosis 
by demonstrating that reexpression of wild-type ZRSR2 in 
mutant cells partially rescued the ability of LPS to induce 
apoptosis and impair growth (Fig. 6C and D). Finally, we con-
firmed that ZRSR2-mutant CAL1 cells had not simply lost the 
ability to undergo cell death. A downstream consequence of 
pDC stimulation is production of TRAIL, a TNF-family pro-
apoptotic cytokine, which promotes autocrine and paracrine 
apoptosis (37, 38). Treatment with exogenous TRAIL pro-
moted apoptosis equivalently in control and ZRSR2-mutant 
CAL1 cells, as well as in normal pDCs and BPDCN, demon-
strating that the cell death response downstream of TRAIL 
was intact (Fig. 6D; Supplementary Fig. S4B). Furthermore, 
although ZRSR2-mutant CAL1 cells had decreased surface 
expression of the TRAIL receptor DR5 after exogenous TRAIL 
treatment, a known consequence of receptor internalization 
after ligand binding, they did not after LPS or R848 treat-
ment, consistent with a lack of autocrine TRAIL production 
and stimulation (Supplementary Fig. S4C).

Collectively, these data suggested that ZRSR2 mutation 
perturbs specific pathways downstream of TLRs that result 
in impaired activation-induced cell death. Although it is 
likely that multiple effects of splicing mutations contribute 
to BPDCN, we asked if any common targets across BPDCN 
might be involved in the hypoactivation phenotype. When 
we analyzed aberrant splicing across BPDCN harboring any 
splicing factor mutation, IRF7 was among the overlapping 
candidates. The IRF7 gene encodes a transcription factor, 
interferon regulatory factor 7, that is activated by TLR sig-
naling and is important for induction of downstream genes, 
including type 1 interferons and TRAIL (39, 40). Interestingly, 
the IRF7 mRNA transcript is not classified as having U12-type 
introns, but it does contain a similarly behaving so-called 
weak intron (intron 4) that is known to be subject to intron 
retention and NMD in normal dendritic cells during activa-
tion (41). Rate-limiting splicing is also a feature of U12-type 
introns and more generally of a group of genes (with either 
U2 or U12 introns) that participate in “programmed delayed 
splicing” associated with inflammatory response regulation 

Figure 5.  pDC activation by TLR stimulation is impaired by loss of ZRSR2 and in BPDCN. A, GSEA of RNA-seq showing decreased enrichment of TLR7 
(R848) stimulated genes in ZRSR2 knockdown cells (shZRSR2 versus shControl CAL1 cells, each after 7 days of doxycycline shRNA induction; n = 3 per 
condition). Heat map shows expression levels of the leading-edge genes in GSEA from blue (low) to red (high). B, Western blot for ZRSR2 and β-actin in 
control or ZRSR2 knockout CAL1 cells. NTG1 and NTG2 are independent nontargeting sgRNAs, and Sg1, Sg2, and Sg3 are independent ZRSR2-targeted 
sgRNAs, each assessed in biological triplicate samples. C, Mean fluorescence intensity (MFI) of cell surface CD80 on control or ZRSR2 knockout CAL1 
cells is shown after stimulation with either LPS or R848 (n = 3 biological replicates of each sgRNA, groups compared by t test). D, CD80 upregulation 
(ΔMFI; MFI stimulated-unstimulated) 24 hours after R848 stimulation in three sets of independent normal donor-purified pDCs and in 11 primary BPDCN 
PDXs, with groups compared by t test. E, Top, Western blot for ZRSR2 and β-actin in parental CAL1 cells and in CAL1 cells with CRISPR knockout (ZRSR2 
KO) or transient knockdown (siZRSR2) of ZRSR2. Bottom, CD80 upregulation after R848 treatment in primary pDCs from three independent healthy 
donors (pDC_1–3) each with seven to nine biological replicates each transfected with control or ZRSR2 siRNAs, with groups compared by t test. F, Heat 
maps showing protein quantitation of the indicated cytokines in supernatants of control or ZRSR2 knockout CAL1 cells (n = 3 independent biological 
replicates of each sgRNA, nontargeting or ZRSR2 targeting) and normal pDCs or BPDCN PDXs (each column is from an independent individual donor or 
PDX) after stimulation with LPS or R848. BPDCN genotypes, left to right: splicing factor wild-type, splicing factor wild-type, ZRSR2 mutant. G, GSEA of 
RNA-seq from R848-stimulated normal human pDCs or primary BPDCN PDXs that were ZRSR2 mutated (ZRSR2 Mut), any splicing factor mutated (SF 
Mut), or without known splicing factor mutation (SF WT). H, Bubble plot of enrichment scores from gene set variation analysis (GSVA) for the indicated 
type 1 interferon and apoptosis signatures from RNA-seq in normal pDCs (yellow) and BPDCN PDXs (blue, splicing factor mutated; purple, splicing factor 
wild-type) after treatment with R848.
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at the level of RNA processing (42, 43). IRF7 intron 4 was 
aberrantly retained in ZRSR2-mutant BPDCN (2 of 2), and 
the same intron–exon region was also misspliced in SRSF2-
mutated (4 of 4) and SF3B1-mutated (1 of 1) cases but not in 
splicing factor wild-type BPDCN or in normal pDCs (Sup-
plementary Table S4).

Therefore, we hypothesized that TLR stimulation of 
BPDCN with a ZRSR2 mutation would result in impairment 
of IRF7 induction and downstream gene activation, includ-
ing proapoptotic pathways. Indeed, whereas the baseline 
IRF7 protein levels were minimally affected by ZRSR2 muta-
tion, mutant CAL1 cells had impaired ability to increase 
IRF7 protein after LPS stimulation (Fig.  6E). Spliced IRF7 
RNA increased, as expected, after stimulation in both control 
and mutant cells, whereas IRF7 intron 4 expression was selec-
tively increased in mutant cells (Supplementary Fig. S5A and 
S5B), which supports that the impairment of IRF7 protein 
induction by LPS is associated with IR. Induction of TRAIL 
was also impaired in ZRSR2-mutant cells, as expected for 
an IRF7 target gene (Fig.  6E). IRF7 and TRAIL induction 
by LPS were partially rescued in ZRSR2-mutant cells by 
overexpression of wild-type ZRSR2 (Fig.  6E). Furthermore, 
expression of an intronless, constitutively active IRF7 (44) 
impaired growth of both wild-type and ZRSR2-mutant cells 
(Supplementary Fig. S5C). This suggested that loss of ZRSR2 
affected the induction of IRF7 protein after LPS stimulation, 
but function downstream of activated IRF7 remained intact.

We also generated ZRSR2-deficient CAL1 cells with an 
intronless wild-type or transcriptionally inactive IRF7 
cassette knocked into the IRF7 endogenous locus. Wild-
type intronless IRF7, which would not require ZRSR2 for 
splicing, restored LPS-induced growth arrest in ZRSR2-
mutant cells, whereas inactive IRF7 did not (Supplementary 
Fig.  S5D). Finally, we asked if impaired IRF7 upregula-
tion after TLR stimulation was seen in primary BPDCN 
cells. In contrast to normal pDCs, ZRSR2-, SRSF2-, and 
SF3B1-mutant BPDCN failed to upregulate IRF7 protein 
after stimulation (Fig.  6F). Two splicing factor wild-type 
BPDCN had normal IRF7 upregulation after TLR stimula-
tion, which is consistent with the RNA splicing analysis 
in which IRF7 was affected in all splicing factor mutant 
compared with nonmutant BPDCN. Together, these data 
support a model in which ZRSR2 mutations provide a 
growth advantage in the setting of TLR activation, at 
least in part by impairing IRF7 induction and activation-
induced apoptosis (Fig. 6G). Given that impaired activation 
is observed in malignant cells across several genotypes, 

other disease-associated alterations may also contribute to 
this general feature of BPDCN.

BPDCN-Associated Zrsr2 and Tet2 Mutations 
Promote Aberrant pDC Phenotypes In Vivo

To evaluate the contribution of BPDCN-associated muta-
tions to pDC development and function in vivo, we generated 
bone marrow chimeras with hematopoietic cells harboring 
mutations in Zrsr2, Tet2, or both. Tet2 was chosen because it 
is the most frequently mutated gene in BPDCN and is the 
most commonly co-occurring mutated gene in BPDCN with 
mutated ZRSR2 (Fig. 1A). We harvested c-kit+ bone marrow 
cells from Rosa-Cas9 knock-in animals, transduced with 
lentiviruses encoding single-guide RNAs (sgRNA) target-
ing Zrsr2, Tet2, or control nontargeting guides in pairwise 
fashion, each coexpressing GFP or tagRFP. Eight weeks 
after transplantation of transduced marrow into lethally 
irradiated wild-type recipients, we observed approximately 
equivalent single- and double-positive GFP/tagRFP cells in 
the bone marrow across genotypes (Fig. 7A). We confirmed 
CRISPR indel events at sgRNA target sites qualitatively and 
quantitatively using a T7 endonuclease assay and by bar-
coded pooled sequencing (Supplementary Fig. S6A and S6B).

We compared the GFP/tagRFP double-positive popu-
lations in each of the four recipient groups (sgControl/
sgControl, sgZrsr2/sgControl, sgControl/sgTet2, and sgZrsr2/
sgTet2). We focused on dendritic cells and their precursors, 
but we also analyzed other hematopoietic stem and pro-
genitor cell (HSPC) populations. Zrsr2 and Tet2 targeting 
was associated with relative expansion of lineage–negative, 
Sca1+, c-kit+ (LSK) HSPCs; common myeloid progenitors; 
and megakaryocyte–erythroid progenitors in the bone mar-
row (Supplementary Figs. S7, S8A and S8B). In dendritic cell 
development, common dendritic progenitors (CDP) differ-
entiate into conventional dendritic cells (cDC) and pDCs. In 
recipients of transduced and transplanted bone marrow, CDP 
and cDC percentage and absolute number were not different 
in Zrsr2, Tet2, or Zrsr2/Tet2 double mutants compared with 
controls. In contrast, pDCs were modestly expanded, par-
ticularly in Tet2 and Zrsr2/Tet2 double-mutant bone marrow 
(Fig. 7B; Supplementary Fig. S8A and S8B).

We assessed the transcriptome of mutant cells by sorting 
pDCs from bone marrow and performing RNA-seq. GSEA 
in mutant pDCs was negatively correlated with gene sets 
associated with DC activation and positively correlated with 
signatures of IFNα receptor knockout dendritic cells exposed 
to viral infection (Fig. 7C). This suggests that mutant mouse 

Figure 6.  ZRSR2 mutation impairs pDC apoptosis following TLR stimulation, associated with blunted IRF7 and TRAIL induction. A, Caspase 3/7 
activity in parental CAL1 cells after treatment with LPS or R848 compared with vehicle control. B, Caspase 3/7 activity in control or ZRSR2 knockout 
cells after stimulation with LPS or R848 compared with control sgRNA-expressing cells. C, Relative growth of control and ZRSR2 knockout cells, with 
wild-type ZRSR2 reexpression or empty vector control, is shown in normal medium (left) or in medium containing LPS (right). D, Caspase 3/7 activity in 
control and ZRSR2 knockout (KO) cells, with wild-type ZRSR2 reexpression or empty vector control, is shown after treatment with LPS or TRAIL. In A 
to D, n = 3 biologically independent replicates, groups compared by t test. E, Western blot for IRF7, TRAIL, ZRSR2, and β-actin in parental, nontarget-
ing control, and ZRSR2 knockout CAL1 cells, with or without ZRSR2 reexpression, 24 hours after stimulation with LPS or vehicle. F, Western blot for 
IRF7, ZRSR2, and β-actin in wild-type or ZRSR2 knockout CAL1 cells, BPDCN PDXs of the indicated genotypes, or normal pDCs, with and without LPS 
(CAL1) or R848 (BPDCN and normal pDCs) treatment. G, Model for BPDCN-associated mutations’ contribution to disease pathogenesis. Normal pDCs 
respond to inflammation via TLR signaling to IRF proteins, such as IRF7, which causes production of inflammatory mediators, such as type 1 interferons 
and TRAIL, and promotion of a feedback loop that leads to activation-induced apoptosis. pDCs with ZRSR2 mutations and likely also in the presence of 
other BPDCN-associated alterations are relatively protected from activation-induced apoptosis because they have impaired upregulation of IRF7 and 
downstream inflammatory mediators.
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pDCs, similar to ZRSR2-mutant BPDCN cells, harbored sig-
natures of decreased pDC activation and impaired type 1 
interferon–dependent signaling. We also detected a higher 
frequency of missplicing events in the presence of Zrsr2, 
Tet2, and Zrsr2/Tet2 mutation. Similar to what we observed 
in BPDCN, pDCs harboring these mutations accumulated 
several types of aberrant splicing (Fig.  7D). Comparison of 
each group revealed genotype-specific patterns, such as Zrsr2 
mutation associated with a bias toward U12-type IR events, as 
we observed in human BPDCN cells with ZRSR2 mutations 
(Supplementary Fig. S8C). Mutation of Tet2 alone was asso-
ciated with splicing abnormalities, including both U2 and 
U12 IR, and in some genes we observed additivity between 
Tet2 and Zrsr2 mutations to promote increased IR (Fig. 7E). 
These data are consistent with existing evidence that muta-
tions in TET2 and other epigenetic modifiers can themselves 
promote splicing abnormalities and, in concert with splicing 
factor mutations, produce cooperative effects on splicing 
and hematopoiesis (33, 45–47). In vivo, Zrsr2/Tet2-mutant 
pDCs had impaired activation after systemic exposure to 
R848 (Fig. 7F). In vitro differentiation of dendritic cells from 
gene-edited multipotent HSPCs yielded Zrsr2-, Tet2-, or Zrsr2/
Tet2-mutant pDCs that had hypoactivation and a relative 
growth advantage, particularly in double-mutant cells after 
R848 treatment (Fig. 7G). Together, these data support our 
findings from human cells that ZRSR2 and TET2 loss (genes 
comutated in nearly all ZRSR2-mutant BPDCN) promote 
specific transcriptome changes and provide a clonal advan-
tage to pDCs associated with impaired activation.

DISCUSSION
Our findings contribute to understanding how acquired 

mutations in hematopoietic cells drive dendritic cell trans-
formation. By sorting tumor cells, we are confident that the 
somatic mutations detected are not simply passengers of 
concomitant myeloid malignancies but indeed are present in 
the BPDCN cells. Furthermore, these data provide evidence 
that specific mutations, particularly in RNA splicing fac-
tors and TET2, may have cell type–specific effects on pDCs, 
impairing their activation and apoptosis in response to TLR 
stimulation. We propose that innate immune signaling via 
the TLR–IRF pathway functions as a tumor suppressor in 
the pDC lineage to prevent malignant transformation. Fur-
ther work will be required to determine if and how other 

mutations in BPDCN affect this pathway and contribute to 
similar phenotypes.

The high frequency of ZRSR2 loss-of-function mutations 
in BPDCN, exclusively in male patients, nominates it as a lin-
eage-specific EXITS gene. By conservative estimation includ-
ing only unambiguously inactivating alterations, ZRSR2 
mutations are associated with nearly half the male bias of 
BPDCN. We did not identify ZRSR2 as an EXITS gene in our 
prior study (24) because it is most often mutated in BPDCN, 
MDS, and other myeloid neoplasms such as CMML, cancers 
that were not included in large-scale sequencing efforts such 
as The Cancer Genome Atlas. Therefore, this suggests that 
additional sex-biased cancer genes remain discoverable in 
understudied diseases. These data also illustrate how identi-
fying functional consequences of a sex-biased mutation may 
uncover more generalized tumor biology that is relevant even 
in cases without the specific mutation. For example, sex bias 
in nonmalignant pDC function has been reported previously, 
specifically that females have more robust pDC activation 
and type 1 interferon production than males. This has been 
attributed to higher female expression of X chromosome 
(e.g., TLR7; ref.  48) or autosomal (e.g., IRF5; ref.  49) genes. 
Our data nominate ZRSR2 as another candidate gene that, 
particularly because of its X inactivation escape and higher 
basal expression in female cells, might render male pDCs less 
susceptible to activation-induced cell death and could con-
tribute to transformation even in the absence of a mutation.

The effect of ZRSR2 loss was much more dramatic in 
TLR-stimulated cells than at baseline. The fact that IRF7 is 
regulated by delayed splicing during inflammation (42) again 
points to the TLR–IRF pathway as a common node that may 
contribute to BPDCN. We previously found that IRF7 was 
among the key pDC genes downregulated in BPDCN using 
single-cell RNA-seq, suggesting that suppression of this path-
way might be a common feature of pDC transformation even 
in the absence of a splicing factor mutation (14). Distinct 
acquired alterations in pDCs may converge on TLR signaling 
to confer a clonal advantage by evasion of activation-induced 
apoptosis, which could explain why we observed decreased 
activation after TLR stimulation across BPDCN genotypes. 
This also suggests that optimal modeling of transformation 
by BPDCN-associated mutations may need to be performed 
in the presence of inflammation.

Genetically engineered mouse models that develop spon-
taneous BPDCN in vivo are lacking. Clonal hematopoiesis 

Figure 7.  BPDCN-associated mutations in hematopoietic progenitors affect dendritic cell differentiation, RNA splicing, and activation signatures 
in vivo. A, Schematic of the in vivo experiment. sgRNA-transduced Cas9 knock-in bone marrow c-kit+ progenitors were injected into lethally irradiated 
wild-type recipient mice. Each guide was marked with either GFP or tagRFP. The percentage of double-positive cells in recipient bone marrow 8 weeks 
after transplantation is shown. B, Flow cytometry analysis of dendritic progenitor and mature pDCs in sgRNA-positive marrow cells, with groups com-
pared by t test. C, GSEA of RNA-seq in control (NTG) and Zrsr2/Tet2-targeted (DKO) pDCs showing changes in signatures related to DC activation and 
IFNα receptor-dependent gene expression in the setting of viral infection. Heat map shows expression of the leading-edge genes in GSEA from low (blue) 
to high (red). MCMV, murine cytomegalovirus. D, Missplicing events in Zrsr2-, Tet2-, and Zrsr2/Tet2-targeted (DKO) pDCs. Events in each condition were 
calculated by pairwise comparisons between control knockout (n = 3) and Zrsr2-targeted (n = 2), Tet2-targeted (n = 3), and Zrsr2/Tet2-targeted (DKO; 
n = 3) biologically independent replicates. The number (and percentage) of events in each condition is shown in a single bar. The colors indicate different 
event types, intron retention (red), cryptic splice site (green), and exon skip (blue). E, Representative RNA-seq reads in Zrsr2-, Tet2-, and Zrsr2/Tet2-
targeted (DKO) pDCs visualized on the same scale for Cecr5 (intron retention associated with Zrsr2 loss) and Adam19 (intron retention in Zrsr2- and 
Tet2-targeted pDCs with additive retention in Zrsr2/Tet2-targeted DKO pDCs). F, CD86 upregulation (ΔMFI) in vivo after systemic treatment with R848 
compared with vehicle in control (NTG) or Zrsr2/Tet2-targeted DKO bone marrow pDCs (n = 3 independent animals/group, compared by t test). G, Left 
two panels, percentage of GFP+/tagRFP+ cells representing the indicated genotypes from in vitro cultures of Cas9 transgenic bone marrow expressing 
the indicated sgRNAs after vehicle or R848 treatment. Right, CD80 upregulation (ΔMFI) on pDCs of the indicated genotypes from R848 compared with 
vehicle-treated cultures. N = 3 independent cultures per genotype, groups compared by t test.
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(CH)–type mutations, such as in TET2 or ZRSR2, on their 
own are unlikely to be sufficient to cause BPDCN. We saw 
no BPDCN or obvious clonal evolution, albeit in relatively 
short-term in vivo experiments with Zrsr2 and/or Tet2 loss. 
Similarly, no overt myeloid or dendritic leukemia was seen 
in two other animal models of Zrsr2 knockout, with or with-
out Tet2 comutation, that were followed at least 1 year (50, 
51). The VAFs of ZRSR2 and TET2 from patients harboring 
both mutations do not clearly indicate the order of acquisi-
tion (Supplementary Table S1), but this could be important 
for disease modeling and warrants additional investigation 
(52). Generating a BPDCN phenotype in mouse models may 
require other cooperating mutations, targeting alterations 
to a specific pDC maturation state or developmental stage, 
the addition of chronic inflammation, or skin UV light 
exposure, all of which will be important future experiments 
to pursue. Another priority is to develop improved methods 
to propagate and study primary human pDCs in vitro and/
or to differentiate human pDCs from gene-edited HSPCs 
or from donor HSPCs that harbor CH mutations. These 
types of experiments are currently limited by normal pDCs 
being postmitotic and sensitive to activation-induced cell 
death caused by lentiviral infection and other transfection 
methods (53).

TET2, ASXL1, and RNA splicing factor mutations are asso-
ciated with CH and myeloid malignancies, such as MDS and 
CMML, that can predate BPDCN (54–56). The pathogenesis 
model proposed here suggests that specific mutations in 
CH/MDS/CMML contribute to a pDC pool that is poised 
for transformation. A testable hypothesis for future clinical 
research is that patients with these precursor conditions who 
develop BPDCN are enriched for having a history of abnormal 
inflammation. These findings also suggest that mutations in 
patients with myeloid malignancies or in individuals with 
age-related clonal hematopoiesis (or clonal hematopoiesis 
of indeterminate potential) may affect pDC response to TLR 
stimulation and thereby contribute to impaired immunity. In 
support of this hypothesis, TET2 regulates Irf7 expression via 
DNA methylation and is important for pDC type 1 interferon 
production and survival during viral infection in a mouse 
model (57). Similarly, defective type 1 interferon production 
by pDCs is linked to deleterious IRF7 variants in patients 
with inferior outcomes during COVID-19/SARS-CoV-2 infec-
tion, a subgroup that is also male-biased and older than the 
general population (58). Our data suggest that age-associated 
CH mutations, such as in TET2 or ZRSR2, might also contrib-
ute to these hypoactive pDC phenotypes.

Finally, there may be therapeutic implications of these 
data. Splicing modulator drugs are in development, and 
malignancies with splicing factor mutations are more sensi-
tive to these agents (59). Patients with BPDCN, stratified 
by the presence of a splicing factor mutation or RNA mis-
splicing pattern, could be included in splicing modulator 
clinical trials. Also, the UV mutational signature enrich-
ment we observed may indicate BPDCN as a candidate for 
immune checkpoint blockade (ICB). ICB is only modestly 
active in other myeloid malignancies (60), but the cancers 
tested (AML, MDS) do not have a UV signature. In contrast, 
UV signatures predict response to checkpoint blockade in 
solid tumors, possibly due to qualitative differences in tumor 

neoantigens (61). PD-L1 protein is expressed in approxi-
mately half of BPDCN (62), which also supports clinical 
evaluation of ICB via PD-1/PD-L1 in the disease. Last, we 
previously found that BPDCN is highly dependent on BCL2 
and sensitive to the BCL2 inhibitor venetoclax (34). We do 
not yet know if this is directly related to splicing mutations 
and impaired activation-induced apoptosis, but the data pre-
sented here provide additional rationale for evaluating BCL2 
inhibition in BPDCN.

Genes mutated in BPDCN are similar to those in MDS 
and AML. However, many clinical characteristics of BPDCN 
and AML are distinct, including epidemiology, clinical pres-
entation, pathology, and response to certain therapies. These 
data suggest a mechanism by which the consequences of 
the same gene mutation (the “seed”; e.g., ZRSR2) could have 
lineage-specific effects based on cell context (the dendritic 
cell “soil”). The TLR-IRF7–type 1 interferon–apoptosis axis 
that is dysfunctional in BPDCN may not be the target of 
the same splicing mutations in other, even closely related, 
malignancies. This highlights the need to study BPDCN 
and other rare cancers as unique entities and to consider the 
importance of cellular milieu when evaluating the function 
of cancer genes.

METHODS
Patient Samples

All studies were approved by local institutional review boards and 
conformed to guidelines for ethical research conduct in the Declara-
tion of Helsinki, and patients provided written informed consent.

Cell Lines
The 293T packaging cells were obtained from ATCC. CAL1 cells, 

a male BPDCN cell line that has a TET2 p.Q481fs* nonsense muta-
tion at 0.97 VAF, were provided by T. Maeda (Nagasaki University). 
Cell line identity was verified by short tandem repeat profiling in the 
Dana-Farber Cancer Institute (DFCI) Molecular Diagnostics Core, 
and cells were verified to be Mycoplasma-free by regular testing at 
least every 6 months. CAL1 cells were cultured in RPMI 1640 supple-
mented with 10% FBS, penicillin–streptomycin (Gibco, 15140122), 
and 1% GlutaMAX (Gibco, 35050061). The 293T packaging cells 
were cultured in DMEM supplemented with 10% FBS and penicillin–
streptomycin. Proliferation and apoptosis were measured at the 
indicated times starting with a concentration of 2  ×  105 cells/mL. 
Proliferation was measured by CellTiter-Glo (Promega, G7572), and 
caspase activity was measured by Caspase-Glo 3/7 (Promega, G8092).

Primary pDC/BPDCN Cell Isolation and Stimulation
Peripheral blood mononuclear cells were isolated by density gra-

dient centrifugation (Ficoll-Paque PLUS, 17-1440-03; GE Health-
care) from healthy donors. Normal pDCs were enriched using 
magnetic beads (130-097-415; Miltenyi Biotec) for transcrip-
tomes. CD123+BDCA2+ cells were sorted for normal pDCs, and 
CD45dimCD123+ cells were sorted for BPDCN PDX tumor cells using 
a FACSAria (BD Biosciences). For stimulation experiments, pDCs 
were collected by negative selection using the EasySep Human Plas-
macytoid DC Isolation Kit (#17977; StemCell Technologies) to avoid 
activation by sorting. In all cases, pDCs and BPDCN (from patient 
and PDX) were >95% pure by flow cytometry. CAL1 cells were seeded at  
2 × 105/mL, and BPDCN tumor cells and normal pDCs were seeded 
at 1 × 105/mL. Cells were stimulated with either 1 μg/mL LPS (L3129; 
Sigma-Aldrich), 1  μg/mL R848 (tlrl-r848; Invitrogen), or 1  μg/mL 
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TRAIL (#752906, 100 ng/mL; BioLegend) for 24 hours. Supernatants 
were collected and cytokines were measured by either Bio-Plex Pro 
(#17AL001M; Bio-Rad) or ProcartaPlex (PPX-24; Thermo Fisher). 
Cells were stained with 7-AAD, Annexin V, anti-CD80, and anti-DR5 
for analysis of viability and activation.

Lentiviral Infections
The 293T cells were transfected with 10.8  μg psPAX2, 2.4  μg 

pVSV-G, and 10.8  μg of a lentiviral expression vector with Lipo-
fectamine 2000 (11668500; Thermo Fisher). Viral supernatant was 
harvested 48 and 72 hours after transfection and concentrated 
by ultracentrifugation at 23,000  ×  g for 2 hours at 4°C. Then, 
2 × 105 cells were infected in the presence of 1.5 mL of viral superna-
tant and 4 μg/mL polybrene (SC-134220; Santa Cruz Biotechnology).

Animal Experiments Including Mouse  
Bone Marrow–Derived pDCs

All animal experiments were performed with approval from the 
DFCI Animal Care and Use Committee. C57BL/6J and Rosa-Cas9 
knock-in mice [B6J.129(Cg)-Gt (ROSA)26Sortm1.1(CAG-cas9*,-EGFP)Fezh/J] 
were purchased from Jackson Laboratory (026179). Cas9 knock-in 
mice were sacrificed and bone marrow cells were harvested from legs, 
iliac bones, and spine for transplantation. CD117/c-kit+ cells were 
sorted by using magnetic beads (#130-094-224; Miltenyi Biotec) after 
red cell lysis. After culture in StemSpan SFEM with 50 ng/mL SCF 
(1320–01; Gold Bio Technology) and 50 ng/mL TPO (1320–06; Gold 
Bio Technology) overnight, CD117/c-kit+ cells were infected with 
virus particles in the presence of 4 μg/mL polybrene. Transduced cells 
were injected into the tail vein of lethally irradiated (5.5 Gy  ×  two 
split doses) C57BL/6J mice with rescue marrow. The experiment was 
performed twice with five mice/group with similar results; in the first 
experiment, donors and recipients were female, and in the second 
experiment, donors and recipients were male. Animals were sacrificed 
8 weeks after the transplantation. Bone marrow and splenocytes were 
harvested for analysis. For generation of bone marrow–derived pDCs, 
transduced cells were cultured in RPMI 1640 supplemented with 
10% FBS, mouse Flt3-ligand (#250–31L, 100 ng/mL; Peprotech), and 
2-mercaptoethanol (M3138, 50  μmol/L; Sigma-Aldrich) for 7 days. 
For in vivo treatment with TLR ligand, mice were injected with R848 
(tlrl-r848, 5 μg in 200 μL PBS; Invitrogen) via the tail vein.

Plasmids for cDNA and shRNA Expression and  
CRISPR/Cas9 Gene Targeting

shRNAs were subcloned into a Tet-on pLKO-puro (#21915; 
Addgene) via AgeI and EcoRI restriction sites. shRNAs were induced 
with 1 μg/mL doxycycline after selecting transduced cells in 1 μg/mL 
puromycin. sgRNAs were subcloned into a lentiviral expression vector 
that coexpresses GFP (pLKO5.sgRNA.EFS.GFP; #57822; Addgene) 
or tagRFP (pLKO5.sgRNA.EFS.tagRFP; #57823; Addgene) via the 
BsmBI restriction site. Cell lines stably expressing the Cas9 nuclease 
were generated by infection with the empty lentiCRISPRv2 lentivirus 
(#52961, not containing an sgRNA guide; Addgene) using standard 
methods (https://www.addgene.org/viral-vectors/lentivirus/lenti- 
guide/). Cells were selected in puromycin, and FLAG-Cas9 expres-
sion was confirmed by Western blot. Cas9-expressing cell lines were 
infected at a density of 2  ×  105 cells in 1.5 mL media in the 
presence of 4  μg/mL polybrene (SC-134220; Santa Cruz Biotech-
nology). sgRNA-resistant human ZRSR2 DNA fragment was synthe-
sized by Twist Bioscience and cloned into pRRL.idTomato. sgRNA, 
shRNA, and sgRNA-resistant ZRSR2 cDNA sequences are in the 
Supplementary Methods.

Primary pDC and Cell Line siRNA Transfection
siZRSR2 (L-006596–02; Dharmacon), siUPF1 (L-011763–00; Dhar-

macon), Non-targeting Control Pool siRNA (D-001810–10; Dhar- 

macon), and siGLO Cyclophilin B control siRNA (D-001610–01; 
Dharmacon) were transfected using N-[1-(2,3-dioleoyloxy)propyl]-
N,N,N-trimethylammonium methyl-sulfate (DOTAP; #11202375001; 
Roche Diagnostics) as in Smith and colleagues (53). Equal volumes 
of siRNA (final concentration 160 nmol/L) and DOTAP were mixed 
and incubated for 15 minutes at room temperature. The mixture was 
added on top of cells. pDCs were seeded at 1  ×  105 cells/100  μL in 
96-well plates, and CAL1 cells were seeded 2 × 105 cells/mL in 6-well 
plates. Cells were incubated at 37°C for 24 hours and then washed 
before performing experiments.

Flow Cytometry
Cells were washed with PBS containing 2% FBS before staining and 

then incubated with the indicated antibodies for 30 minutes in the 
dark at 4°C, followed by a final wash in PBS containing 2% FBS and 
analyzed. In the case of murine samples, we lysed red blood cells prior 
to staining. Flow cytometry was performed using a BD LSR Fortessa 
X-20 and analyzed using FlowJo software, version 10. Antibodies for 
flow cytometry are in Supplementary Table S5. Cell surface markers 
for HSPC populations are in Supplementary Table S6.

Western Blotting
Samples were prepared by lysing in RIPA buffer (BP-115; Bos-

ton BioProducts) with protease inhibitor cocktail (862209; Thermo 
Fisher Scientific) and sonicated before quantification by BCA assay 
(23225; Thermo Fisher Scientific). Samples were prepared with SDS 
sample buffer (BP-110R; Boston BioProducts), boiled for 10 minutes 
at 98°C, and recovered by spinning at 12,000 × g for 5 minutes at 4°C 
before loading onto the gel. The gel was run for 80 minutes at 120 V 
in SDS running buffer (BP-177; Boston BioProducts) before being 
transferred to a polyvinylidene difluoride membrane (7462; Thermo 
Fisher Scientific) for 7 minutes at 20 V using iBlot 2 (Thermo Fisher 
Scientific). Blots were blocked in 5% dried milk (A0830; Appli-
Chem) in Tris-buffered saline (TBS) with 0.1% Tween-20 for 1 hour 
before being incubated overnight in antibodies recognizing ZRSR2 
(kindly provided by Dr. Michael Green, University of Massachusetts 
Medical School, 1:2,000), IRF7 (#4920, 1:1,000; Cell Signaling Tech-
nology), TRAIL (#3219, 1:1,000; Cell Signaling Technology), UPF1 
(#ab109363, 1:10,000; Abcam), or  β-actin (A5441, 1:10,000; Sigma-
Aldrich). The blots were washed three times in TBS with 0.1% Tween-
20 before being incubated with either rabbit (SC-2004; Santa Cruz 
Biotechnology) or mouse (SC-2005; Santa Cruz Biotechnology) sec-
ondary horseradish peroxidase–conjugated antibodies before being 
imaged using ECL substrate (170–5061; Bio-Rad) on an ImageQuant 
LAS-4000 (28–9607–59AB; GE Healthcare).

T7 Endonuclease (T7E1) Assay
Genomic DNA from mouse bone marrow cells was extracted by 

the DNeasy Blood and Tissue Kit (#69504; Qiagen). The DNA region 
containing sgRNA target sites was amplified by PCR using spe-
cific primers (Zrsr2 Forward, CCCATGGCATCTTTGTCTATAATCT; 
Zrsr2 Reverse, GCTCAGCTAAGCACTTACTCAATG; Tet2_Forward, 
ACATACTCCTCAGACGCAGG; Tet2_Reverse, CTGGCATGTACCTG 
GATTGC). PCR products were purified with NucleoSpin Gel and 
PCR Clean-Up (#740609; Takara Bio). Then, 400 ng of PCR prod-
ucts mixed with NEB buffer 2 was denatured at 95°C for 5 minutes 
and ramped down to 25°C. T7 Endonuclease 1 (M0302; NEB) was 
added to the mixture and incubated at 37°C for 15 minutes. Next, 
0.25 mol/L EDTA was added to stop the reaction, and samples were 
analyzed on 2% agarose gel.

CRISPR/Cas9 Editing Site Sequencing
Genomic DNA was extracted from GFP+/tagRFP+ mouse Lineage− 

c-kit+ bone marrow cells using TRIzol (15596018; Life Technologies). 
PCR was performed spanning the predicted Cas9 cut sites, using 
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the primers as below. Illumina-compatible adapters with unique 
barcodes were ligated onto each sample during library construc-
tion. Libraries were pooled in equimolar concentrations for mul-
tiplexed sequencing on the Illumina MiSeq platform with 2  ×  150 
run parameters. Upon completion of the sequencing run, data were 
demultiplexed and subsequently entered into an automated de novo 
assembly pipeline. Sequencing and analysis were performed by the 
CCIB DNA Core Facility at Massachusetts General Hospital (Tet2 
For, GGGGGTTGGAGCAAGTACAAA; Tet2 Rev, GCCCCTGTAGA 
GACGAAGC; Zrsr2 For, CACACTCCCATCTTCACTGCT; Zrsr2 Rev,  
CAGCTAAGCACTTACTCAATGAACT).

RT-PCR
RNA was extracted from cell lines using TRIzol (15596018; Life 

Technologies) and quantified via NanoDrop. The High-Capacity 
cDNA Reverse Transcriptase Kit (4368814; Thermo Fisher Scien-
tific) was used to generate cDNA. qRT-PCR was performed for 
human IRF7, using GAPDH as the internal control, using the prim-
ers as below, and SYBR Green PCR master mix per the manufac-
turer’s instructions (Thermo Fisher Scientific, 4367659). Relative 
quantification was calculated using the  ΔΔCt method. IRF7 For, 
TACCATCTACCTGGGCTTCG; IRF7 Rev, GAAGA-CACACCCTCA 
CGCTG; IRF7 intron4 For, TGCACCTGGACGGACACTTTAG; IRF7  
intron4 Rev, CCTCCTAATTCTCCAGCTCC; GAPDH For, GCACCGT 
CAAGGCTGAGAAC; GAPDH Rev, TGGTGA-AGACGCCAGTGGA.  
For RT-PCR, the following primers were used: DERL3 For, GGC 
CGACTTCGTCTTCATGTTTC; DERL3 Rev, CAGGTCCACGAGG 
ATGGAGT.

IRF7 Knock-In Cell Line Generation
The FLAG tag of pFETCh_Donor (#63934; Addgene) was replaced 

with a V5 tag via the KasI and the BsrGI restriction sites. Homology 
arm 1 and homology arm 2 were designed for intronless wild-type 
IRF7 and inactive form IRF7 (9A) with Gibson Assembly tails and 
synthesized by Twist Bioscience. Homology arms were subcloned 
into pFETCh_Donor with Gibson Assembly (#E2611; New England 
Biolabs). sgRNAs were subcloned into pXPR_BRD202 via the BsmBI 
restriction site. Then, 12  μg pFETCh, 6  μg of each sgRNA, 60  μL 
Lipofectamine, and 3 mL Opti-MEM (#11058021; Life Technologies) 
were mixed and incubated for 20 minutes at room temperature, then 
added to 1 million Cas9-expressing CAL1 cells in 10 mL media. Cells 
were selected in G418 (#MT61234RG; Fisher Scientific) and V5 tag 
expression was confirmed by Western blot. IRF7 sgRNA and homol-
ogy arm sequences are in the Supplementary Methods.

Whole-Exome Sequencing and Analysis
Tumor and paired germline DNA samples were collected and 

prepared for WES using the Agilent SureSelect Human All Exon V5 
(50 mol/L) capture. Sequencing was performed on the Hiseq4000 
platform with a 150 base pair paired-end protocol targeted to 
100×  mean coverage. The sequences were generated as 90 of 100 
base paired-end reads using Illumina base calling software (version 
1.7). The adapter sequences and low-quality reads were filtered from 
the raw sequencing data, and the “clean data” were aligned by a 
Burrows–Wheeler Aligner (63) with the reference of human genome 
build37 (hg19). The BAM files were validated by steps of fixing mate 
information of the alignment, adding read group information, 
and removing duplicate reads and then applied to variant calling 
analysis using the GATK toolkit (https://gatk.broadinstitute.org/
hc/en-us). The reference (hg19) and germline variant sites were 
used to detect somatic or tumor-specific mutations and copy num-
ber alterations. The details of the methods in the GATK toolkit 
are described elsewhere (64, 65). The identified BPDCN somatic 
mutations were analyzed with those reported for AML and skin 
melanoma (66) for the presence of previously defined global DNA 

mutational signatures in the COSMIC database (20) using the R 
package, “MutationalPatterns” (67).

RNA Sequencing and Analysis
Samples from pDCs, patients with BPDCN, PDXs, CAL1, and 

mouse models were collected for total RNA sequencing using the Arc-
turus PicoPure RNA Isolation Kit (Life Technologies). Libraries were 
prepared using the Ovation kit (#0340; Nugen) using 50 ng input 
total RNA and 20 cycles of amplification. The Illumina Hi-Seq plat-
form was used to generate single or paired-end sequencing results. 
The raw FASTQ data were analyzed by the VIPER pipeline (68), which 
combines STAR (69) alignment (mapped to hg19 or mm10) and gene 
expression analysis such as unsupervised clustering, principal com-
ponent analysis based on Cufflinks (70), and differential expression 
with DESeq2 (71). The expression data were used for pathway enrich-
ment analysis with GSEA and gene set variation analysis (72, 73).

Differential Splicing Analysis
Splicing events were identified as described in Madan and col-

leagues (27). The method calculates a missplicing index (MSI) for 
each splicing event in comparison to the reference genome (human 
hg19 or mouse mm10) and classifies them as IR, exon skip, and incor-
rect splice site usage. The difference in MSI between two samples was 
used for direct comparisons by defining the delta MSI (ΔMSI) as the 
difference in MSI at a given site between two samples. The statistical 
significance of differences in splicing events was evaluated by Fisher 
exact test with adjusted P value for multiple hypothesis testing. Dif-
ferences with ΔMSI >0.2 and P ≤ 0.05 were considered significant.

Data Visualization and Availability
Analysis results were visualized using R 3.5.2 (R Foundation 

for Statistical Computing; ref.  74) and Python. A comutation 
plot was created using the “GenVisR” package in R (75). RNA-seq 
data are deposited in the Gene Expression Omnibus, accession 
number GSE184656.
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