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Abstract
In this work, we develop a new complexity metric for an important class of low-rank
matrix optimization problems in both symmetric and asymmetric cases,where themet-
ric aims to quantify the complexity of the nonconvex optimization landscape of each
problem and the success of local search methods in solving the problem. The existing
literature has focused on two recovery guarantees. The RIP constant is commonly used
to characterize the complexity ofmatrix sensing problems. On the other hand, the inco-
herence and the sampling rate are used when analyzing matrix completion problems.
The proposed complexity metric has the potential to generalize these two notions and
also applies to a much larger class of problems. To mathematically study the prop-
erties of this metric, we focus on the rank-1 generalized matrix completion problem
and illustrate the usefulness of the new complexity metric on three types of instances,
namely, instances with the RIP condition, instances obeying the Bernoulli sampling

We note that a similar complexity metric based on a special case of instances in Sect. 3.3 was proposed in
our conference paper [56]. However, the complexity metric in this work has a different form and is proved
to work on a broader set of applications. In addition, we prove several theoretical properties of the metric
in this work, which are not included in [56].
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228 H. Zhang et al.

model, and a synthetic example. We show that the complexity metric exhibits a con-
sistent behavior in the three cases, even when other existing conditions fail to provide
theoretical guarantees. These observations provide a strong implication that the new
complexity metric has the potential to generalize various conditions of optimization
complexity proposed for different applications. Furthermore, we establish theoretical
results to provide sufficient conditions and necessary conditions for the existence of
spurious solutions in terms of the proposed complexity metric. This contrasts with the
RIP and incoherence conditions that fail to provide any necessary condition.

Keywords Matrix completion · Complexity metric · Nonconvex optimization ·
Global convergence

Mathematics Subject Classification 05C90 · 65F55 · 90C26

1 Introduction

A variety of modern signal processing andmachine learning applications require solv-
ing optimization problems that involve a low-rank matrix variable. More specifically,
givenmeasurements to some unknown ground truthmatrixM∗ ∈ R

n×n of rank r � n,
the low-rank matrix optimization problem can be formulated as

minM∈Rn×n f (M; M∗) s. t. M � 0, rank(M) ≤ r , (1.1)

where f (·; M∗) is the loss function that penalizes the mismatch between the input
matrix and M∗. The goal is to recover the matrix M∗ via (1.1). Examples of this
problem include matrix sensing [43, 59, 62], matrix completion [12, 13, 25], phase
retrieval [10, 19, 48] and robust principle component analysis [9, 24]; see the review
papers [17, 22] for more applications. The asymmetric version of problem (1.1) elim-
inates the condition M � 0 and allows M to be a non-square matrix. To deal with the
nonconvex rank constraint, there have been several works on the convex relaxations
of problem (1.1). More concretely, one may replace the rank constraint with a nuclear
norm regularizer [9, 12, 13, 35, 43]. The convex relaxation approach is proven to
achieve the optimal sampling complexity for various statistical models. In the special
case when f (·; M∗) is a linear function, the sketching method [58] can be applied
to accelerate the computation. However, for most applications of problem (1.1), the
convex relaxation approach needs to update a matrix variable in each iteration, which
relies on the Singular Value Decomposition (SVD) of the matrix variable. This will
lead to an O(n3) computational complexity in each iteration and an O(n2) space
complexity, which are prohibitively high for large-scale problems; see the numerical
comparison in [63].

To improve the computational efficiency, an alternative approach was proposed by
Burer andMonteiro [8], which is named as the Burer-Monteiro factorization approach.
The factorization approach is based on the fact that the mapping U �→ UUT is
surjective onto the manifold of positive semi-definite matrices of rank at most r ,
where U ∈ R

n×r . Therefore, problem (1.1) is equivalent to

123



Complexity metric for matrix completion 229

minU∈Rn×r f
(
UUT ; M∗) , (1.2)

which is an unconstrained nonconvex problem. A major difficulty about nonconvex
optimization problems is the existence of spurious local minima.1 In general, com-
mon local search methods are only able to guarantee a point approximately satisfying
the first-order and the second-order necessary optimality conditions. Therefore, local
search methods with a random initialization will likely be stuck at spurious local min-
ima andunable to converge to the global solution.However, despite the aforementioned
issue of nonconvex optimization problems, simple iterative algorithms such as gradient
descent and alternating minimization have achieved empirical success in a wide range
of applications. In recent years, substantial progress has been made on the theoretical
understandings of these algorithms,which generally focused on proving the absence of
spurious local minima. For example, the alternating minimization algorithm was first
studied in [31, 41, 42]. The (stochastic) gradient descent algorithm, which is generally
easier to implement than the alternating minimization algorithm, was analyzed in [10,
17, 19, 53, 57]. Besides algorithmic analysis, a critical geometric property named the
strict-saddle property [48] was established in [25, 48, 59, 64], which can guarantee
the polynomial-time global convergence of various saddle-escaping algorithms [5, 14,
33].

Complexity metrics are useful to characterize the behavior of local search methods
for problem (1.2). A small complexity metric implies that the landscape of problem
(1.2) is benign and thus, local search methods with random initialization converge
to global solutions with high probability. Otherwise, if the complexity metric takes
a large value, problem (1.2) may have spurious local minima, which will imply the
failure of most local search methods. However, the existing so-called “complexity
metrics” for problem (1.2) are only able to guarantee a benign landscape when the
complexity is small and fail to prove the existence of spurious local minima when
the complexity is large. To differentiate with true complexity metrics, we use the
term recovery guarantees to reflect such weaker properties. In addition, the existing
recovery guarantees were designed separately for different applications. As a result,
several different bounds were proposed to characterize the optimization complexity of
problem (1.2). For example, in the context of matrix sensing problems, the following
Restrict Isometry Property (RIP) is usually assumed:

Definition 1.1 ([43, 64]) Given natural numbers r and s, the function f (·; M∗) is said
to satisfy the Restricted Isometry Property (RIP) of rank (2r , 2s) for a constant
δ ∈ [0, 1), denoted as δ-RIP2r ,2s , if

(1 − δ)‖K‖2F ≤
[
∇2 f (M; M∗)

]
(K , K ) ≤ (1 + δ)‖K‖2F (1.3)

holds for all matrices M, K ∈ R
n×n such that rank(M) ≤ 2r , rank(K ) ≤ 2s, where[∇2 f (M; M∗)

]
(·, ·) is the curvature of the Hessian at point M .

1 A pointU0 is called a spurious local minimum if it is a local minimum of problem (1.2) andU0
(
U0
)T �=

M∗.
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230 H. Zhang et al.

One important class of matrix sensing problems is the linear matrix sensing problem,
which is induced by linear measurements of the ground truth matrix M∗. If the �2-loss
is used, the linear matrix sensing problem can be formulated as

min
U∈Rn×r

1

m

m∑
i=1

〈
Ai ,UUT − M∗〉2 , (1.4)

where m ∈ N is the number of measurements modeled by the known measurement
matrices Ai ∈ R

n×n for all i ∈ [m]. In the special case when each matrix Ai is an
independently identically distributed Gaussian random matrix, the δ-RIP2r ,2s condi-
tion holds with high probability if m = O

(
nrδ−2

)
[11]. The RIP constant δ plays

a critical role in bounding the optimization complexity of problem (1.2). In [7], the
authors showed that the strict-saddle property holds for problem (1.2) if the δ-RIP2r ,2r
condition holds with δ < 1/2 and the ground truth matrix satisfies rank(M∗) = r . On
the other hand, counterexamples have been constructed in [59, 62] to illustrate that
the strict-saddle property can fail under the δ-RIP2r ,2r condition with δ ≥ 1/2.

Despite these strong theoretical results under theRIP assumption, there exists a large
number of applications that do not satisfy the RIP condition. One of those applications
without the RIP condition is the matrix completion problem. Given a set of indices
� ⊂ [n]× [n], the matrix completion problem aims at recovering the low-rank matrix
M∗ from the available entries M∗

i j for (i, j) ∈ �. With the least squares loss function,
the matrix completion problem can be formulated as

min
U∈Rn×r

∑
(i, j)∈�

[(
UUT

)
i j

− M∗
i j

]2
. (1.5)

The matrix completion problem (1.5) is a special case of the matrix sensing problem
(1.4), where each measurement matrix Ai has exactly one nonzero entry. However,
the RIP2r ,2r condition does not hold for problem (1.5) unless all entries of M∗ are
observed, namely, when � = [n] × [n]. As an alternative to the RIP condition, the
optimization complexity of problem (1.5) is closely related to the incoherence of M∗.

Definition 1.2 ([12]) Given a constant μ ∈ [1, n], the ground truth matrix M∗ is said
to be μ-incoherent if

‖eTi V ∗‖F ≤ √
μr/n, ∀i ∈ [n], (1.6)

where V ∗�∗(V ∗)T is the truncated SVD of M∗ and ei is the i-th standard basis ofRn .

Intuitively, if the ground truth M∗ is highly sparse, it is likely that only zero entries
of M∗ are observed and there is no chance to learn the other entries of the matrix
M∗. A relatively small incoherence of M∗ avoids this extreme case. The most pop-
ular statistical model of the measurements for problem (1.5) is the Bernoulli model,
where each entry of M∗ is observed independently with probability p ∈ (0, 1].
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Complexity metric for matrix completion 231

Assuming the Bernoulli model, the incoherence of M∗ and the sampling proba-
bility p can jointly characterize the complexity of the matrix completion problem.
For example, the scaled gradient descent algorithm with a spectral initialization [50]
converges linearly given the condition p ≥ O

(
μr2κ2 max

(
μκ2, log n

)
/n
)
, where

κ := σ1(M∗)/σr (M∗) is the condition number of M∗. In addition, under the assump-
tion that p ≥ O

(
μ4r6κ6 log n/n

)
, the global convergence was established in [25]

through the strict-saddle property of a regularized version of problem (1.5). We note
that the dependence on the condition number κ may be unnecessary as shown in [28]
and that the condition number is equal to 1 in the rank-1 case. On the other hand,
the information-theoretical lower bound in [12] shows that p ≥ �(μr log(n/δ)/n)

is necessary for the exact completion with probability at least 1 − δ. Therefore, the
complexity of problem (1.5) is closely related to the incoherence of M∗ and the sam-
pling probability p. In the remainder of this work, we refer to the conditions on the
incoherence of M∗ and sampling rate p as incoherence conditions when there is no
confusion in the context.

To be more rigorous, the RIP condition and the incoherence condition may have
a subtle difference in their nature. As a counterpart of the incoherence condition in
other low-rank matrix optimization problems, one should consider conditions in terms
of the sampling complexity. On the other hand, the RIP condition is a deterministic
condition on the loss function and is not related to the underlying random model.
However, there is a wide range of problems that satisfy the RIP condition when the
sample complexity is sufficiently large. By considering the properties of the RIP
condition, we are able to analyze a large number of low-rank matrix optimization
problems simultaneously. Therefore, we use the RIP condition instead of conditions
based on the sample complexity as a notion of the computational complexity for those
problems.

The main issue with the notions of RIP and incoherence is that they require strin-
gent conditions to guarantee the success of local search methods for recovering M∗.
Whenever these conditions are violated, local search methods may still work success-
fully, which questions whether these customized notions designed for special cases
of the problem truly capture the complexity of the problem in general. Hence, it is
natural to ask:

Does there exist a complexity metric with two properties: (i) it is consistent
with existing recovery guarantees designed for different applications, e.g., the
RIP constant δ and the incoherence μ combined with the sampling rate p, (ii)
even when the customized conditions for different applications are violated, it
still quantifies the optimization complexity of the problem in the sense that the
smaller the value of this metric is, the higher the success of local search methods
with random initialization is in finding the ground truth M∗?

In this work, we provide a partial answer to the question by developing a powerful
complexity metric. To analyze the usefulness of this new metric, we focus on the
rank-1 generalized matrix completion problem

min
u∈Rn

∑
i, j∈[n]Ci j

(
uiu j − M∗

i j

)2
, (1.7)
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232 H. Zhang et al.

where the ground truth M∗ is symmetric and has rank at most 1. The weights are
Ci j ≥ 0 for all i, j ∈ [n]. Without loss of generality, we can assume that the matrix
C := (Ci j )i, j∈[n] is symmetric since otherwise one can replace C with

(
C + CT

)
/2,

which will not change the optimization landscape. We use MC (C, u∗) to denote
the instance of problem (1.7) with the weight matrix C and the ground truth M∗ =
u∗ (u∗)T , for all C ∈ R

n×n and u∗ ∈ R
n . The matrix completion problem (1.5) is a

special case of the generalized matrix completion problem (1.7), where Ci j = 1 if
(i, j) ∈ � and Ci j = 0 otherwise.

Moreover, problem (1.7) is a special case of thematrix sensing problem (1.4), where
each measurement only captures one entry of M∗. However, the problem (1.7) still
contains difficult instances of the matrix sensing problem from the perspective of the
RIP condition. In Sect. 3.3, we show that there exists an instance of problem (1.7) that
satisfies the 1/2-RIP2,2 condition but has spurious local minima. This counterexample
implies that the optimal RIP bound in [59, 62] still holds for problem (1.7) and thus,
problem (1.7) contains difficult instances of the matrix sensing problem. Moreover,
we show in Sect. 3.1 that some of the results to be developed for problem (1.7) can be
extended to the general matrix sensing problem (1.4).

Now, we provide an intuition into the design of our complexity metric for problem
(1.7). For a given problem instance of (1.7), if there exist global solutions u1, u2 such

that u1
(
u1
)T �= u2

(
u2
)T

, it is impossible to decidewhich global solution corresponds
to M∗ from the observations. Intuitively, no matter what optimization algorithm we
choose and how much computational effort is exerted, there is a chance that we could
not recover M∗ by solving problem (1.7). This observation motivates us to define the
complexity metric to be the inverse of the infimum of the distance between any given
instance and the set of instances with multiple global solutions. Since problem (1.7)
is parameterized by the weight matrix C and the global solution M∗, we are able to
define the metric through norms in Euclidean spaces and their Cartesian products.
In addition, in the rank-1 case, (random) graph theory serves as an important tool in
characterizing the solvability of problem (1.7). These two advantages enable a more
thorough analysis of the new complexity metric. The formal definition of the metric is
provided in Sect. 2. In this work, we exhibit several pieces of evidence to show that the
proposed metric can serve as an alternative to the RIP constant and the incoherence,
which are summarized below:

1. For problem instances that satisfy the δ-RIP2,2 condition, we provide an upper
bound on the complexity metric. The upper bound is tightened with extra infor-
mation about the incoherence of M∗. Similarly, for matrix completion problems
obeying the Bernoulli sampling model, an upper bound on the complexity metric
in terms of the incoherence of M∗ is derived.

2. We then construct a class of parameterized instances of problem (1.7), where the
RIP condition fails to provide useful guarantees. A lower bound on the complexity
metric is developed to prove that instances whose complexity metric is larger than
the lower bound have an exponential number of spurious local minima. In addition,
an upper bound that is consistent with the aforementioned two upper bounds is
established to guarantee the absence of spurious local minima if the complexity
metric is below this bound. The consistency of the upper bounds between different
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Complexity metric for matrix completion 233

types of models provides strong evidence that the new complexity metric is able
to provide theoretical guarantees for different applications, even when the RIP
condition or the incoherence condition fails.

3. We prove the existence of a non-trivial upper bound on the complexity metric. For
all problem instances whose complexity metric is below this upper bound, problem
(1.7) has no spurious local minima and M∗ can be successfully found via local
search methods with random initialization. In addition, under a standard bounded-
away-from-zero assumption, we show that all instances with a larger complexity
metric will possess spurious local minima.

4. We extend all results for the symmetric generalized matrix completion problem
to the asymmetric case, where the low-rank matrix is decomposed into UV T for
some U ∈ R

m×r and V ∈ R
n×r in problem (1.2).

Based on the aforementioned results, we make some key conjectures and discuss the
potential extensions of the proposed metric to more general cases of the low-rank
matrix optimization problem (1.1).

1.1 Related works

Following the famous Netflix prize, the theoretical analysis of problem (1.1) has
attracted a lot of attention in recent years; see the review papers [18, 22]. Early attempts
mainly focused on the construction of convex relaxations to rank-constrained prob-
lems [9, 12, 13, 43], where the RIP condition and the incoherence condition were
introduced. Recently, several modified RIP conditions were proposed to better char-
acterize the landscapes of other classes of problems, e.g., the �1/�2-RIP condition [36],
the sign-RIP condition [39], and the approximation and sharpness condition [15].

Although the convex relaxation is usually guaranteed to recover the exact ground
truth with almost the optimal sample complexity, the associated algorithms operate
in the space of matrix variables and, thus, are computationally inefficient for large-
scale problems [63]. Similar issues are observed for algorithms based on the Singular
Value Projection [30] and Riemannian optimization algorithms [2, 29, 38, 54, 55]. The
analysis of the convex relaxation approach in the noisy case is recently conducted by
bridging the convex and the nonconvex approaches [20, 21].

To deal with the difficulties in solving large-scale problems, an efficient alternative
model (1.2) using the Burer–Monteiro factorization is considered. Despite the non-
convexity, a growing number of works demonstrated that problem (1.2) has benign
landscapes and, therefore, is amenable to efficient optimization. Theoretical analysis
stems from the alternatingminimizationmethod [1, 27, 28, 31, 41, 42]. The alternating
minimization method has the advantage that the number of iterations has only loga-
rithmic dependence on the condition number of the ground truth [28]. More recently,
this advantage is also achieved by the scaled (sub)gradient descent algorithm [50–52,
61].

The gradient descent algorithm has also gained significant attention due to its sim-
plicity in implementation. In general, there are two ways to apply the gradient descent
algorithm. First, the gradient descent algorithm can serve as the local refinement

123



234 H. Zhang et al.

method after a suitable initialization [4, 10, 17, 49, 53, 57]. On the other hand, the gra-
dient descent algorithm is proved to converge globally for the phase retrieval problem
[19]. More generally, under the strict-saddle property, a number of saddle-escaping
algorithms [5, 14, 33] converge to the global solution in polynomial time; see e.g.,
[6, 7, 16, 25, 26, 40, 47, 48, 59, 62, 64]. Moreover, the gradient descent algorithm is
proved to have the implicit regularization phenomenon in the over-parameterization
case [23, 37, 46].

1.2 Notation

The number of elements in a finite set S is denoted as |S|. We use S to denote
the closure of a set S ⊂ R

n . The index set {1, . . . , n} is denoted as [n] for all
n ∈ N. The entry-wise �1-norm and the Frobenius norm of a matrix M are denoted
as ‖M‖1 and ‖M‖F , respectively. The unit sphere of matrices with non-negative

entries, denoted as Sn
2−1

+,1 , is the set of all symmetric matrices X ∈ R
n×n such that

‖X‖1 = 1 and Xi j ≥ 0 for all i, j ∈ [n]. Similarly, the unit sphere of vectors,
Sn−1
1 , is the set of all vectors x ∈ R

n such that ‖x‖1 = 1. For every symmetric
matrix M ∈ R

n×n , the minimum eigenvalue is denoted as λmin(M). The n-by-
n identity matrix is denoted as In . The notation M � 0 means that the matrix
M is symmetric and positive semi-definite. The sub-matrix Ri : j,k:� consists of the
i-th to the j-th rows and the k-th to the �-th columns of matrix R. For every vec-
tor x ∈ R

n , the sets of indices corresponding to zero and nonzero components
of x are denoted as I0(x) and I1(x), respectively. For every instance MC (C, u∗),
we use G (C, u∗) = [

V (C, u∗) ,E (C, u∗) ,W (C, u∗)
]
to denote the associated

weighted graph, which is defined in Sect. 2. The unweighted undirected graph G

with node set V and edge set E is denoted as G = (V,E). The objective function of

an instance MC (C, u∗) is shown as g (u;C, u∗) := ∑
i, j∈[n] Ci j

(
uiu j − u∗

i u
∗
j

)2
.

We use
[∇2 g (M;C, u∗)

]
(K , L) := ∑

i, j,k,�

[∇2 g (M;C, u∗)
]
i, j,k,� Ki, j Lk,� to

denote the action of the Hessian ∇2g (M;C, u∗) on any two matrices K and L . The
notations an = O(bn) and an = �(bn) mean that there exist constants c1, c2 > 0
such that an ≤ c2bn and c1bn ≤ an ≤ c2bn hold for all n ∈ Z, respectively.

1.3 Organization

In the remainder of this paper,wefirst define the proposed complexitymetric andderive
basic properties of themetric in Sect. 2. In Sect. 3, we analyze thismetric under existing
conditions, including the RIP condition and the incoherence condition. Section4 is
devoted to the theoretical guarantees provided by the new complexity metric on the
general instances of problem (1.7). The results for the rank-1 asymmetric generalized
matrix completion problem are essentially the same as those for the symmetric case,
and therefore they are provided only in the online version [60]. Finally, we conclude
the paper in Sect. 5.
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2 New complexity metric and basic properties

In this section, we first provide the formal definition of the new complexity metric and
investigate the properties of the proposed metric. More specifically, we show that we
are able to utilize the graph theory to estimate the complexity metric and calculate the
minimum possible value of the proposed complexity metric in closed form. Before
proceeding to the definitions, we note that the problem (1.7) is “scale-free” in the
sense that the instance MC (η1C, η2u∗) has the same landscape as MC (C, u∗) up
to a scaling, where C ∈ R

n×n , u∗ ∈ R
n and η1, η2 > 0 are constants. Therefore, we

may normalize the parameters C and u∗ without loss of generality, as follows:

Assumption 2.1 Assume that C ∈ S
n2−1
+,1 and u∗ ∈ S

n−1
1 , i.e., ‖C‖1 = ‖u∗‖1 = 1.

The above assumption excludes the degenerate cases when C = 0 or M∗ = 0.
If C = 0, the objective function is always 0 and it is impossible to recover the
ground truth. For the case when M∗ = 0, we can prove that either u = 0 is the only
stationary point or the instance MC(C, 0) has multiple different global solutions.
In the first situation, the results in [34] imply that the randomly initialized gradient
descent algorithm will converge to 0 with probability 1. In the second situation, the
instance is information-theoretically unsolvable. We provide a more detailed analysis
in the appendix and assume that Assumption 2.1 holds in the remainder of the paper.

The definition of the complexity metric is closely related to the set of instances
with multiple “essentially different” global solutions. More specifically, the set of
degenerate instances is defined as

D :=
{ (

C, u∗) | C ∈ S
n2−1
+,1 , u∗ ∈ S

n−1
1 ,

∃u ∈ R
n s. t. g

(
u;C, u∗) = 0, uuT �= u∗ (u∗)T

}
.

Since there exist multiple global solutions to problem (1.7) if (C, u∗) ∈ D, it is
information-theoretically impossible to find the ground truth for any instance in D.
Intuitively, we say that the optimization complexity of all instances in D is infinity.
Motivated by the above observation, we introduce the new complexity metric.

Definition 2.1 (ComplexityMetric)Given arbitrary parametersC ∈ S
n2−1
+,1 , u∗ ∈ S

n−1
1

and α ∈ [0, 1], the complexity of the instance MC (C, u∗) is defined as

Dα

(
C, u∗) :=

[
inf

(C̃,ũ∗)∈D
α‖C − C̃‖1 + (1 − α)‖u∗ − ũ∗‖1

]−1

. (2.1)

Since the set D is bounded, the infimum in the definition is finite. The term inside the
inverse operation can be viewed as a weighted distance between the point (C, u∗) and
the setD. In addition, we take the convention that 1/0 = +∞ and thus,Dα (C, u∗) =
+∞ for all (C, u∗) ∈ D. In this work, we choose the entry-wise �1-norm in (2.1) for
the simplicity of calculations. We believe that a similar theory can still be derived for
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other choices of the norm. We note that a similar complexity was proposed in [44,
45] for conic optimization and to the best of authors’ knowledge, there is no similar
complexity metric for nonconvex optimization problems.

For the parameter α, we will discuss two potential choices in this section, namely
α∗ and α�. In the case when α = α∗, the range of the complexity metric has the
largest size. Intuitively, by choosing α = α∗, the difference between the complexities
of two instances will be maximized and thus, it is easier to compare the complexities
of different instances. On the other hand, when we choose α = α�, the complexity
metric attains its minimum possible value if and only if the 0-RIP2,2 condition holds.
This is consistent with the intuition that instances with the RIP constant 0 are the
easiest to solve. We note that both α∗ and α� satisfy 1 − α = �(1/n). Moreover, in
Sect. 3, we show that the parameter α strikes a balance between the RIP constant of the
instance and the incoherence of the ground truth. It is still an open question what the
optimal choice of parameter α is, which may depend on the class of problems under
consideration. It may be needed to jointly consider the complexity metric with several
different choices of α to determine the solvability of the instance.

2.1 Basic properties of the new complexity metric

We first provide a more concrete characterization of the set D. In the rank-1 case, we
are able to exactly describe the set D using graph-theoretic notations. We introduce
the associated graphs of any instance of the problem. Given an instanceMC (C, u∗),
the weighted graph G (C, u∗) = [

V (C, u∗) ,E (C, u∗) ,W (C, u∗)
]
is defined by

V
(
C, u∗) := [n], E

(
C, u∗) := {{i, j} | Ci j > 0, i, j ∈ [n]} ,[

W
(
C, u∗)]

i j := Ci j , ∀i, j ∈ [n] s. t. {i, j} ∈ E
(
C, u∗) .

To include the information of u∗, we define

I1
(
C, u∗) := {

i ∈ [n] | u∗
i �= 0

}
, I0

(
C, u∗) := [n]\I1

(
C, u∗) ,

I00
(
C, u∗) := {

i ∈ I0
(
C, u∗) | {i, j} /∈ E

(
C, u∗) , ∀ j ∈ I1

(
C, u∗)} .

Intuitively, the sets I1 (C, u∗) and I0 (C, u∗) contain the locations of the nonzero
and zero components of u∗. The subset I00 (C, u∗) corresponds to indices in
I0 (C, u∗) that are not connected to any index in I1 (C, u∗). We denote the
subgraph of G (C, u∗) induced by the index set I1 (C, u∗) as G1 (C, u∗) =
[I1 (C, u∗) ,E1 (C, u∗) ,W1 (C, u∗)], where E1 (C, u∗) andW1 (C, u∗) are the edge
set and weight set of this subgraph. The following theorem provides an equivalent
definition of D in terms of I00 (C, u∗) and G1 (C, u∗).

Theorem 2.2 Given C ∈ S
n2−1
+,1 and u∗ ∈ S

n−1
1 , it holds that (C, u∗) /∈ D if and only

if

1. G1 (C, u∗) is connected and not bipartite;
2. {i, i} ∈ E (C, u∗) for all i ∈ I00 (C, u∗).
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Proof We first construct counterexamples for the necessity part and then prove the
uniqueness of the global minimum (up to a sign flip) for the sufficiency part in the
online version [60]. For the notational simplicity, we fix the point (C, u∗) and omit
them in the notations.

Necessity. In this part, our goal is to construct a solution u ∈ R
n such that

uiu j = u∗
i u

∗
j , ∀{i, j} ∈ E; uuT �= u∗(u∗)T .

We denote M∗ := u∗(u∗)T and analyze three different cases below.
Case I. First, we consider the case whenG1 is disconnected, whichmeans that there

exist two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i ∈ I, ∀ j ∈ J .

We define the vector u ∈ R
n as

ui := 0, ∀i ∈ I0; ui = u∗
i , ∀i ∈ I; ui = −u∗

i , ∀i ∈ J .

The above definition leads to

uiu j =
{

−M∗
i j if i ∈ I and j ∈ J

M∗
i j otherwise.

Since u∗
i �= 0 for all i ∈ I1, it follows that uiu j = −M∗

i j �= M∗
i j for all {i, j} such

that i ∈ I and j ∈ J .
Case II. Next, we consider the case when G1 is bipartite, which means that there

exist two non-empty subsets I and J such that

I ∪ J = I1, I ∩ J = ∅; {i, j} /∈ E1, ∀i, j ∈ I1 s. t. i, j ∈ I or i, j ∈ J .

In this case, we define the vector u ∈ R
n as

ui := 0, ∀i ∈ I0; ui := u∗
i /2, ∀i ∈ I; ui := 2u∗

i , ∀i ∈ J .

Now, we have

uiu j =

⎧⎪⎨
⎪⎩

M∗
i j/4 if i, j ∈ I

4M∗
i j if i, j ∈ J

M∗
i j otherwise.

Since M∗
i j �= 0 for all i, j ∈ J , we have that uiu j = 4M∗

i j �= M∗
i j for all i, j ∈ J .

Case III. Finally, we check the case when there exists a node i0 ∈ I00 such that
{i0, i0} /∈ E. In this case, we define the vector u ∈ R

n as

ui0 := 1, ui := u∗
i , ∀i ∈ [n]\{i0}.
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Now, we have

ui0ui0 = 1 �= 0 = M∗
i0i0 , uiu j = M∗

i j , ∀{i, j} ∈ E.

Combining the above three cases completes the proof of the necessity part. ��
Since the set D is bounded, the infimum in the definition (2.1) can be attained by

using the closure of D, namely

Dα

(
C, u∗) =

[
min

(C̃,ũ∗)∈D
α‖C − C̃‖1 + (1 − α)‖u∗ − ũ∗‖1

]−1

. (2.2)

The alternative Definition (2.2) simplifies the verification of parameters that attain the
infimum. In addition, with the help of Theorem 2.2, we can exactly characterize the
closure D, which has a slightly simpler form than D.

Theorem 2.3 We have the following relation:

D =
{(
C, u∗) | C ∈ S

n2−1
+,1 , u∗ ∈ S

n−1
1 ,G1

(
C, u∗) is disconnected or bipartite

}

∪
{(
C, u∗) | C ∈ S

n2−1
+,1 , u∗ ∈ S

n−1
1 , I00

(
C, u∗) is not empty

}
.

Let the set in the right-hand side of the above equation be called D′. The proof
of Theorem 2.3 is based on a standard technique that first shows D̄ ⊂ D′ and then
shows D′ ⊂ D̄. The details can be found in the online version [60]. Using the results
in Theorems 2.2 and 2.3, we provide an estimate on the scale of the new metric. Since
D is a bounded set, there exists an upper bound on the minimum possible value of the
complexity metric, which is defined below:

D
min
α := min

C∈Sn2−1
+,1 ,u∗∈Sn−1

1

Dα

(
C, u∗) .

The next theorem provides the expression of Dmin
α .

Theorem 2.4 Suppose that n ≥ 5. Then, it holds that

D
min
α =

⎧⎪⎨
⎪⎩

n
4α if α ≤ n2−5n+4

n2−3n−2
n2

2(1−α)(n−2)n+4α if n
n+2 ≤ α ≤ n

n+1
n(n+1)

2(1−α)(n−2)(n+1)+4 if α ≥ n
n+1 .

In the regime n2−5n+4
n2−3n−2

≤ α ≤ n/(n + 2), we have the estimate

D
min
α ∈

[
n

4α
,

n2

4α(n − 1)

]
.
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Fig. 1 Comparison of Dmin
α for n = 20, 50, 100. The red “×” sign refers to the value at α∗. In the right

plot, the complexity metric is scaled by n−1

The proof of Theorem2.4 can be found inAppendixA.1. The results of Theorem2.4
imply that in the regimewhereα ≥ �(1) and1−α ≥ �

(
n−1

)
,wehaveDmin

α = O (n).
This suggests that n−1

Dα (C, u∗) may be a dimension-free complexity metric; see
more examples supporting this claim in Sect. 3. In addition, the minimum possible
value of the complexity is attained at

α∗ :=
(
n2 − 5n + 4

)
/
(
n2 − 3n − 2

)
.

Hence, the set of possible values of the complexity metric attains the maximum size
by choosing α = α∗. This observation hints that α∗ may be the optimal choice of α

since it may enable the metric to differentiate instances with different complexities to
the maximum degree. Using the exact formulation of g(α, c) in Lemma A.1, we plot
the minimum possible value of the complexity metric both without scaling and after
scaling by n−1 in Fig. 1.

From the numerical results, we can see that the complexity scales with n if α is
smaller than α∗, which is consistent with Theorem 2.4. If α is larger than α∗, the
complexity metric for different values of n approximately lies on the same curve.

In the following theorem, we show that if α = α∗, the instances that attain the
minimum value of the complexity metric are unique up to sign flips to components of
the global solution.

Theorem 2.5 Suppose that n ≥ 5 and the instance MC (C, u∗) satisfies

Dα∗
(
C, u∗) = n/(4α∗).

Then, it holds that

|u∗
i | = 1/n, Cii = 0, ∀i ∈ [n]; Ci j = 1/[n(n − 1)], ∀i, j ∈ [n], i �= j .

The proof of Theorem 2.5 can be found in the online version [60]. The above
theorem states that if we choose the weight α = α∗, the “easiest” instance is unique
up to a change in the signs of the components of the global solution u∗. In the next
theorem, we show that a similar property as α∗ holds if we set α to be
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α� := n/(n + 2).

Theorem 2.6 Suppose that n ≥ 5 and the instance MC (C, u∗) satisfies

Dα�
(
C, u∗) = D

min
α = n(n + 2)/[4(n − 1)].

Then, it holds that

|u∗
i | = 1/n, ∀i ∈ [n]; C = n−2 In .

Since the proof is similar to that of Theorem 2.5, we omit it for brevity. The above
theorem implies that the weight matrix C of the “easiest” instances is a constant
multiple of the identity matrix In , which satisfies the δ-RIP2,2 condition with δ = 0.
This is consistent with the common sense that the RIP constant δ being 0 is the
optimal situation. Hence, Theorem 2.6 suggests that the choice α� = n/(n + 2) may
potentially be the optimal choice of α. Moreover, we will prove in Sect. 4.1 that the
“easiest” instances in Theorems 2.5 and 2.6 all have a benign landscape in the sense
that they satisfy the strict-saddle property [48], which guarantees the polynomial-time
global convergence of various algorithms. If the weight α is different from α∗ and
α�, there may exist multiple “essentially” different instances attaining the minimum
complexity.

3 Connections to existing results

In this section, we provide estimates of the proposed complexity metric on two well-
studied problem instances and a synthetic problem. More specifically, we consider
matrix sensing problems satisfying the RIP condition andmatrix completion problems
under the Bernoulli sampling model. In addition, we construct a class of instances
parameterized by a single parameter. We estimate the threshold of the parameter that
separates instances with a desirable optimization landscape from those with a bad
landscape. The results in the synthetic example show that our proposed complexity
metric has the potential to provide guarantees on the optimization landscape when the
RIP condition fails.

3.1 Matrix sensing problem: RIP condition

We first consider instances of problem (1.7) that satisfy the δ-RIP2,2 condition, where

δ ∈ [0, 1) is the RIP constant. However, the constraint that C ∈ S
n2−1
+,1 is inconsistent

with the RIP condition (1.3) in the sense that the entries of C are averagely on the
scale of n−2, but the RIP condition requires that the entries of C be on the scale of
O(1). Therefore, we generalize the definition of the RIP condition to deal with the
inconsistent scaling:

Definition 3.1 Given natural numbers r and s, the function f (·; M∗) is said to satisfy
the Restricted Isometry Property (RIP) of rank (2r , 2s) for a constant δ ∈ [0, 1),
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denoted as δ-RIP2r ,2s , if there exist constants c1, c2 ≥ 0 such that c2/c1 = (1 +
δ)/(1 − δ) and

c1‖K‖2F ≤
[
∇2 f (M; M∗)

]
(K , K ) ≤ c2‖K‖2F (3.1)

holds for all matrices M, K ∈ R
n×n such that rank(M) ≤ 2r , rank(K ) ≤ 2s.

The above definition of the RIP condition is scale-free in the sense that for any constant
c > 0, the function c f (·; M∗) satisfies the δ-RIP2r ,2s condition if and only if f (·; M∗)
satisfies the same condition.

Since the instances satisfying the RIP condition have a benign optimization land-
scape, we expect that the complexity metric is upper-bounded for those instances. By
suitably generalizing the definitions of Dα (C, u∗) andD, we provide an upper bound
for problem (1.2) under the RIP condition. Note that the ground truth M∗ is not nec-
essarily rank-1 in this part. Instead, we assume that M∗ = U∗(U∗)T is rank-r , where
U∗ belongs to R

n×r . For problem (1.2), each instance is defined by the loss function
f (·; ·) and the ground truth M∗. We assume that the M∗ is a global optimum of the
loss function, namely,

f (M∗; M∗) = min
K∈Rn×n

f (K ; M∗), ∀M∗ ∈ R
n×n s. t. M∗ � 0, rank(M∗) = r .

(3.2)

In the special case when f (·; ·) is the weighted �2-loss function in (1.7), the above
condition implies thatCi j ≥ 0 for all i, j ∈ [n]. Similar to the normalization constraint

C ∈ S
n2−1
+,1 , we assume that objective function f (·; M∗) is normalized in the sense

that

∑
i, j∈[n]

[
f
(
M∗ + Ei j ; M∗)− f

(
M∗; M∗)] = 1. (3.3)

For the normalization constraint u∗ ∈ S
n−1
1 , we assume that the global truth M∗

satisfies

‖U∗‖1 = 1. (3.4)

The set of degenerate instances is given by

D :=
{
( f , M∗)

∣∣∣∣ f (·; ·) and M∗ satisfy(3.2) − (3.4),

∃M �= M∗s. t. f (M; M∗) = f (M∗; M∗), M∗ � 0, rank(M∗) = r

}
.

The “entry-wise �1-norm” between two arbitrary functions h1(·) and h2(·) with the
domain R

n×n is defined as the restricted �∞-Lipschitz constant of h1 − h2. Namely,
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we define ‖h1 − h2‖1 to be

‖h1 − h2‖1 := sup
K ,L∈Rn×n

∣∣(h1(K ) − h2(K )
)− (

h1(L) − h2(L)
)∣∣

maxi, j∈[n](Ki j − Li j )2

s. t. K �= L, rank(K − L) ≤ 2r .

For every constantα ∈ [0, 1], the distancebetween two instances ( f , M∗) and ( f̃ , M̃∗)
is defined as

distα
[
( f , M∗), ( f̃ , M̃∗)

]
:= α‖ f (·; M∗) − f̃ (·; M̃∗)‖1 + (1 − α)‖U∗ − Ũ∗‖1,

where U∗, Ũ∗ ∈ R
n×r satisfy U∗(U∗)T = M∗ and Ũ∗(Ũ∗)T = M̃∗. Finally, the

complexity metric is given by

Dα( f , M∗) :=
[

inf
( f̃ ,M̃∗)∈D

distα
[
( f , M∗), ( f̃ , M̃∗)

]]−1

. (3.5)

We note that the definitions ofD andDα( f , M∗) are consistent with those of instance
(1.7). The following theorem provides an upper bound on the complexity metric of
any instance satisfying the RIP2r ,2r condition.

Theorem 3.1 Let α ∈ [0, 1] and δ ∈ [0, 1) be two constants. Suppose that the function
f (·; M∗) satisfies the δ-RIP2r ,2r condition and the normalization constraint (3.3),
where r is the rank of M∗. Then, it holds that

Dα

(
f , M∗) ≤ n2(1 + δ)

α(1 − δ)

Proof We fix the instance ( f , M∗) and assume that
(
f̃ , M̃∗

)
∈ D. Suppose that the

matrix M �= M̃∗ satisfies

f̃
(
M; M̃∗) = f̃

(
M̃∗; M̃∗) .

We first consider the case when M �= M∗. In this case, we can estimate that

‖ f
(·; M∗)− f̃

(
·; M̃∗) ‖1

≥
∣∣∣
[
f (M; M∗) − f̃

(
M; M̃∗

)]
−
[
f (M∗; M∗) − f̃

(
M∗; M̃∗

)]∣∣∣

maxi, j∈[n]
(
Mi j − M∗

i j

)2

=
∣∣∣[ f (M; M∗) − f (M∗; M∗)

]+
[
f̃
(
M∗; M̃∗

)
− f̃

(
M; M̃∗

)]∣∣∣

maxi, j∈[n]
(
Mi j − M∗

i j

)2
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=
∣∣∣[ f (M; M∗) − f (M∗; M∗)

]+
[
f̃
(
M∗; M̃∗

)
− f̃

(
M̃∗; M̃∗

)]∣∣∣

maxi, j∈[n]
(
Mi j − M∗

i j

)2

≥ f (M; M∗) − f (M∗; M∗)

maxi, j∈[n]
(
Mi j − M∗

i j

)2 ≥ (c1/2) · ‖M − M∗‖2F
maxi, j∈[n]

(
Mi j − M∗

i j

)2 ≥ c1
2

, (3.6)

where c1 is the constant in the RIP condition of f (·; M∗). The second inequality is
due to

f (M; M∗) − f
(
M∗; M∗) ≥ 0, f̃

(
M∗; M̃∗)− f̃

(
M̃∗; M̃∗) ≥ 0.

The second last inequality follows from the global optimality of M∗ and the second
inequality after inequality (12) in [59], namely,

f
(
M; M∗) ≥ f

(
M∗; M∗)+ c1

2
‖M − M∗‖2F , ∀M ∈ R

n×n, rank(M) ≤ r .

Now, we provide a lower bound on c1. Using the normalization constraint (3.3) and
the stationarity of M∗, it holds that

1 =
∑

i, j∈[n]

[
f
(
M∗ + Ei j ; M∗)− f

(
M∗; M∗)] ≤ c2

2
·
∑

i, j∈[n]
‖Ei j‖2F = c2n2

2
,

which implies that c2 ≥ 2n−2. Using the relation c2/c1 = (1+ δ)/(1− δ), we obtain
that

c1 ≥ 2(1 − δ)

n2(1 + δ)
.

By substituting into inequality (3.6), it follows that

‖ f (·; M∗) − f̃ (·; M̃∗)‖1 ≥ 1 − δ

n2(1 + δ)
.

which leads to distα
[
( f , M∗),

(
f̃ , M̃∗

)]
≥ α(1− δ)/

[
n2(1 + δ)

]
. Now, the desired

bound on Dα( f , M∗) follows from taking the inverse. In the case when M = M∗, we
can replace M with M̃∗ and the proof can be done in the same way. ��

We note that the upper bound on Dα (C, u∗) is increasing in δ, which is consistent
with the intuition that a smaller δwill lead to a better optimization landscape.Moreover,
in the case when α(1−δ) = �(1), the upper bound is on the order of O

(
n2
)
, which is

O(n) larger than the minimum possible complexity metric in Theorem 2.4. Now, we
provide a remedy to the aforementioned issue for problem (1.7). With the knowledge
about the incoherence of the global solution, we can improve the upper bound on the
complexity metric.
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Theorem 3.2 Suppose that the instance MC (C, u∗) satisfies the δ-RIP2,2 condition
and u∗ has incoherence μ. Then, it holds that

Dα

(
C, u∗) ≤ max

{
n(1 + δ)

4α(1 − δ)
,

1

2(1 − α)μ

}
× min

{(
1

μ
− 1

n

)−1

, 3μ

}
.

The proof of Theorem 3.2 can be found in Appendix B.1. From the above theorem,
we can use the weight α to control the balance between the RIP constant δ and the
incoherence μ. If we choose 1 − α = �(n−1), then the complexity can be upper-
bounded by

Dα

(
C, u∗) = μn · max

{
O

(
1 + δ

1 − δ

)
, O

(
1

μ

)}
= O

(
μn · 1 + δ

1 − δ

)
.

In addition, if it holds that μ = O(1) and (1 − δ)−1 = O(1), then the complexity is
upper-boundedbyO(n),whichmatches theminimumpossible complexity inTheorem
2.4 up to a constant. Although the complexity metric may have a large value for
extreme instances (i.e., instances with a large incoherence), the complexity of regular
instances achieves the optimal value up to a constant. Furthermore, we conjecture in
Sect. 4 that the conditionDα (C, u∗) = O(nμ/α) is sufficient to guarantee the success
of local search methods. Assuming that this conjecture is true, then the condition
(1 − δ)−1 = O(1) alone is sufficient to guarantee that the optimization landscapes
are benign regardless of the value of the incoherence μ. This is consistent with the
existing results on the RIP condition. We conclude the discussion of instances with
the RIP condition by showing that the dependence of δ in Theorem 3.2 is tight up to
a constant.

Theorem 3.3 Suppose that n ≥ 4, α ∈ [0, 1], μ ∈ [1, n] and δ ∈ [0, 1). Let � :=
�n/μ�. Then, there exists an instanceMC (C, u∗) such thatMC (C, u∗) satisfies the
δ-RIP2,2 condition, u∗ has incoherence μ and

Dα

(
C, u∗) ≥ n(1 + δ)

4α(1 − δ)
· min

{
nμ

μ� − μ
,μ

}
.

The proof of Theorem 3.3 is similar to that of Theorem 3.2 and can be found in the
online version [60].

3.2 Matrix completion problem: Bernoulli model and incoherence condition

Next, we consider instancesMC (C, u∗) of problem (1.7) where the global solution u∗
is μ-incoherent and the random weight matrix C obeys the Bernoulli model. Similar
to the RIP condition, we need to generalize the definition of the Bernoulli model under
the normalization constraint.
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Definition 3.2 Given the sampling rate p ∈ (0, 1], a random matrix C ∈ S
n2−1
+,1 is said

to obey the Bernoulli model if

Ci j = δi j∑
k,�∈[n] δk�

, ∀i, j ∈ [n],

where {δk�|k, � ∈ [n]} are independent Bernoulli random variables with the parameter
p.

We note that the above model is well defined only when
∑

i, j δi j > 0, which happens

with probability 1− (1− p)n
2 ≥ 1−exp(−n2 p). This probability is sufficiently large

if n2 p � 1. In [13], the authors showed that p ≥ �(μ log n/n) is necessary and
under this condition, the success probability is at least 1 − O(n−μn). Therefore, we
only focus on the case when the event

∑
i, j δi j > 0 happens. In the existing literature

[12, 17, 26], the instances obeying the Bernoulli model are proven to have no spurious
local minima. We show that our complexity metric is able to characterize this property
by proving an upper bound on the complexity metric.

Theorem 3.4 Givenμ ∈ [1, n] and p ∈ (0, 1], suppose that the weight matrix C obeys
the Bernoulli model with the parameter p and that u∗ has incoherence μ. If η > 2 is
a constant and the sampling rate satisfies

p ≥ min

{
1,

16(1 + ημ) log n + 16

n

}
,

it holds with probability at least 1 − 3n−η/2+1 that

Dα

(
C, u∗) ≤ max

{
3n

4α
,

1

2(1 − α)μ

}
× min

{(
1

μ
− 1

n

)−1

, 3μ

}
.

The proof of Theorem 3.4 is similar to that of Theorem 3.2. By Theorem 3.4, if
1 − α = �

(
n−1μ−1

)
, then the complexity of instances obeying the Bernoulli model

is on the order of �
[
n2μ/(n − μ)

]
. If the incoherence μ = O(1), the complexity

is on the order of O(n), which matches the minimum possible complexity up to a
constant. Therefore, the proposed metric can also serve as a good indicator for the
matrix completion problem with the Bernoulli model. Finally, we note that the bound
p ≥ �(μ log n/n) is optimal up to a constant [13]; see also the discussions inAppendix
E of [24].

Finally, we note that problem (1.7) may still have spurious local minima when the
sampling probability p and the incoherence μ satisfy the condition in Theorem 3.4.
In the existing literature, the global convergence of randomly initialized local search
methods is established for problem (1.7) only under an extra regularizer or an extra
constraint on the incoherence of u. That being said, our proposed complexity metric
correctly reflects the common sense that the matrix completion problem is generally
easier to solve when the incoherence is small or when the sampling rate p is large.
When the complexity is small, it is possible to apply local search methods to find the
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ground truth. The local search methods may be different for different classes of low-
rank matrix optimization problems. In addition, the new complexity metric has the
advantage that it is able to simultaneously capture the RIP condition, the incoherence
condition, and potentially other existing complexity metrics.

3.3 One-parameter class of instances

In Sects. 3.1 and 3.2, we provided several upper bounds on the complexity metric. In
this part, we consider a class of instances that are parameterized by a single param-
eter ε ∈ [0, 1]. Intuitively, when the parameter grows from 0 to 1, the optimization
landscape of the instance becomes more benign. Unlike the previous results in this
section, the analysis of the small parameter case provides necessary conditions for the
existence of spurious local minima. More specifically, we fix G = (V,E) to be an
unweighted undirected graph without self-loops, where the node set is V = [n]. We
consider the maximal independent set of G, which is defined as follows:

Definition 3.3 For an undirected graphG = (V,E), a set S ⊂ V is called an indepen-
dent set if no two nodes in S are adjacent. The set S is called a maximal independent
set if it is an independent set with the maximum number of nodes.2

Suppose that S ⊂ [n] is a maximal independent set of G. For every ε ∈ [0, 1], the
instance MC(Cε, u∗) is defined by

Cε
i j := ε/Zε, ∀i, j ∈ S s. t. i �= j; Cε

i j := 1/Zε, if {i, j} ∈ E;
Cε
i i := 1/Zε, ∀i ∈ [n], Cε

i j := 0, otherwise,

u∗
i := 1/m, ∀i ∈ S; u∗

i := 0, ∀i /∈ S, (3.7)

where m := |S| and Zε := 2|E| + n + m(m − 1)ε is the normalization constant. In
the remainder of this subsection, we assume without loss of generality that S = [m].

First, we study for what values of ε the instanceMC(Cε, u∗) has benign landscape
or has spurious local minima. The following theorem guarantees that the threshold
ε = �

(
m−1

) = �(μ/n) separates the regimes where the instance possesses and
does not possess spurious local minima, where μ := n/m denotes the incoherence of
u∗.

Theorem 3.5 If ε ≥ �(m−1), the instance MC(Cε, u∗) does not have spurious
second-order critical points3 (SSCPs), namely, all second-order critical points are
global minima associated with the ground truth solution M∗. If ε = O

(
m−1

)
, the

instance MC(Cε, u∗) has at least O
(
2m/2

)
spurious local minima.

The proof of Theorem 3.5 can be found in Appendix B.3. In the case when m = 2,
the proof of Theorem 3.5 (more specifically, Theorem B.2) states that the instance

2 We note that this definition is different from the common definition of a maximum independent set, which
only requires that a maximum independent set is not a proper subset of an independent set.
3 A point u ∈ R

n is called a spurious second-order critical point if it satisfies the first-order and the
second-order necessary optimality conditions and uuT �= u∗(u∗)T .
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Fig. 2 The left plot shows the transitions of the success rate of the gradient descent algorithm when
n = 100, 125, 150, 175. The red “×” sign refers to the transition threshold, i.e., the smallest value of η

that attains 100% success rate. In the right plot, the transition thresholds of η are compared with the curves
y = 1 and y = 1 − 1.7(n + 1)−2/3

MC(Cε, u∗) has spurious local minima if ε < 1/3. The condition ε = 1/3 corre-
sponds to the δ-RIP2,2 condition holding with δ = 1/2. Therefore, the RIP constant
δ < 1/2 is necessary for the instance MC(Cε, u∗) to have no spurious local min-
ima. Combined with the results in [7, 59], we can see that the one-parameter group
MC(Cε, u∗) also contains difficult instances of the general problem (1.2).

Furthermore, we note that the constants in the proof of Theorem 3.5 are not optimal.
We conjecture that the instance MC(Cε, u∗) has spurious solutions if ε < (m +
1)−1 + o(m−1) and does not have spurious solutions if ε > (m + 1)−1 + o(m−1).
We numerically verify this conjecture in the special case when m = n. In numerical
examples, we consider the scaled parameter η := (n + 1)ε. For each instance, we
implement the randomly initialized gradient descent algorithm for 200 times and
check the number of implements for which the distance between the last iterate and
±u∗ has Frobenius norm at most 10−5. The results are plotted in Fig. 2.

In the left plot, we can see that in most cases, the success rate grows with the
parameter η, which is proportional to ε. This indicates that the optimization landscape
becomes more benign when ε is larger. In addition, the transition thresholds of η are
very close to 1 (to be more accurate, the thresholds of η are between 0.95 and 1.05).
This observation is consistent with our conjecture. In the right plot, we compare the
transition thresholds of η against the constant number 1.We observe that the thresholds
are approximately located between 1 and 1 − 1.7(n + 1)−2/3, which implies that the
original thresholds of ε are between (n+1)−1 and (n+1)−1−1.7(n+1)−5/3. Hence,
the thresholds become close to (n + 1)−1 when n is large, which is also consistent
with our conjecture. Moreover, we can see that the threshold of η is not monotone in
n and is slightly smaller when n is odd.

Finally, we transform the estimates on the parameter ε to the complexity metric.

Theorem 3.6 Suppose that n ≥ m ≥ 36, α ∈ [0, 1] and ε ∈ [0, 1]. Then, the following
statements hold true:

1. If

Dα(Cε, u∗) ≤
[
36α

n2
+ min

{
72α · m

n2
, 2(1 − α)

}]−1

,
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then the instance MC(Cε, u∗) has no spurious local minima;
2. If

Dα(Cε, u∗) ≥ 18

17
max

{
13n2

2α
,

1

2(1 − α)

}
,

then the instance MC(Cε, u∗) has spurious local minima.
The proof of Theorem 3.6 can be found in Appendix B.4. In the case when 1 −

α ≥ �(m/n2), the upper bound on Dα(Cε, u∗) is on the order of O(nμ/α), where
μ := n/m is the incoherence of u∗. This result is consistent with the upper bounds
in Sects. 3.1 and 3.2. In addition, the RIP constant is 1 − O(1/m) if ε = O(1/m),
which shows that the proposed complexity metric can provide better guarantees on the
optimization complexities than the RIP constant. On the other hand, the lower bound
in Theorem 3.6 is on the order of O(n2/α) in the case when 1 − α ≥ �(n−2).

In summary, we have provided a consistent upper bound on the complexity metric
that is on the order of �(nμ/α) for all three examples (�[nμ/α · (1 + δ)/(1 − δ)]
for the RIP case) if we choose 1 − α = O(n−1). These theoretical results provide
strong evidence that our proposed complexity metric is able to capture the properties
of the optimization landscape for several different models, even when other existing
conditions fail to provide theoretical guarantees; see the comparison of the condition
and our complexity metric in Sect. 3.3. In Sect. 4, we make some conjectures based on
these observations and provide a partial theoretical explanation.

4 Theoretical results for general instances

In this section, we provide a theoretical analysis for the proposed complexity metric
(2.2) on the general problem (1.7). Intuitively, we expect the problem (1.7) to have a
benign landscape when the complexity metric is small and vice versa. We first prove
that the proposed complexity metric is able to provide a sufficient condition on the
absence of SSCPs of problem (1.7). Then, we construct another complexity metric
that lower-bounds the metric (2.1) and show that the alternative complexity metric is
able to provide necessary conditions on the absence of SSCPs.

Recalling the analysis in Sect. 3, one might have the following questions: Suppose
that 1 − α ≥ �(n−1) and the solution u∗ is μ-incoherent. Can we find two constants
δ,
 > 0 such that

1. If Dα (C, u∗) ≤ δμn/α, the instance MC (C, u∗) has no SSCPs;
2. If Dα (C, u∗) ≥ 
n2/α, the instance MC (C, u∗) has SSCPs?

Suppose that the first property in the above question holds. The results in Sect. 3.1
imply that the proposed complexity metric guarantees the absence of SSCPs when
the RIP constant is O[(δ − 1)/(δ + 1)], which is independent of μ. In addition,
the matrix completion problem under the Bernoulli model does not have SSCPs
when p ≥ O(μ log n/n), which matches the lower bound in [13]. In Sect. 4.1, we
prove a weaker version of the first property in the case when α is equal to α∗ or α�,
which are defined in Sect. 2. We note that both α∗ and α� satisfy the condition that
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1 − α = �(n−1). On the other hand, in Sect. 4.2, we refute the second property in
the above question by constructing counterexamples. This observation implies that
similar to the RIP constant and the incoherence, the proposed complexity metric can-
not provide necessary conditions on the absence of spurious local solutions. However,
if we substitute the degenerate set D with a slightly smaller set, we prove that the
complexity metric is able to provide a necessary condition.

4.1 Small complexity case

We first consider instances with a small complexity metric. In the case when α is
equal to α∗ or α�, we prove that Dα (C, u∗) ≤ δn/α serves as a sufficient condition
for the absence of SSCPs, where δ > 0 is an absolute constant. Since the incoherence
μ is at least 1, the aforementioned condition is weaker than the first property in
the aforementioned question. By Theorem 2.4, the minimum possible value of the
complexity metric is on the order of O(n/α). In this subsection, we show that the
constant δ can be chosen such that δn/α is strictly larger than the minimum possible
complexity. The following theorem deals with the case when α = α∗.

Theorem 4.1 Suppose that n ≥ 5 and α = α∗. Then, there exists a constant δ > 1/4
such that for every instance MC (C, u∗) satisfying

Dα∗
(
C, u∗) ≤ δn/α∗,

the instance MC (C, u∗) does not have any SSCPs.

Since theminimum possible complexity metric is n/(4α∗), the upper bound in The-
orem 4.1 is non-trivial in the sense that there exist instances satisfying the inequality.
ByTheorem2.5, theminimumcomplexitymetric n/(4α∗) is only attained by instances
inM, where

M :=
{ (

C, u∗)
∣∣∣∣ |u∗

i | = 1

n
, Cii = 0, ∀i ∈ [n], Ci j = 1

n(n − 1)
, ∀i, j ∈ [n], i �= j

}
.

In the next lemma,we prove the strict-saddle property [48] of the �1-norm for instances
inM, which can be viewed as a robust version of the absence of SSCPs.

Lemma 4.1 Suppose that n ≥ 2 and
(
C0, u0

) ∈ M. Then, there exist a positive
constant η0 and two positive-valued functions β(η) and γ (η) such that for all η ∈
(0, η0] and u ∈ R

n, at least one of the following properties holds:

1. min{‖u − u∗‖1, ‖u + u∗‖1} ≤ η;
2. ‖∇g(u;C, u∗)‖∞ ≥ β(η);
3. λmin[∇2g(u;C, u∗)] ≤ −γ (η).

We then show that after a sufficiently small perturbation to any point
(
C0, u0

) ∈ M,
the new instance does not have any SSCPs.
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Lemma 4.2 Suppose that n ≥ 3. There exists a small positive constant ε such that for
every pair (C0, u0) ∈ M and (C̃, ũ∗) satisfying

α∗‖C̃ − C0‖1 + (1 − α∗)‖ũ∗ − u0‖1 < ε,

the instance MC(C̃, ũ∗) does not have SSCPs.

The proofs of the last two lemmas involve several standard calculations and can be
found in the online version [60]. Now, we prove the existence of a non-trivial upper
bound on the metric.

Proof of Theorem 4.1 Let ε be the constant in Lemma 4.2. We consider the compact
set

C :=
{ (

C, u∗)
∣∣∣∣ ‖C‖1 = ‖u∗‖1 = 1,

α∗‖C − C0‖1 + (1 − α∗)‖u∗ − u0‖1 ≥ ε, ∀
(
C0, u0

)
∈ M

}
.

Since the minimum possible complexity metric n/(4α∗) is only attained by points in
M, it holds that

Dα∗(C) := max
(C,u∗)∈C

Dα∗
(
C, u∗) > n/(4α∗).

Therefore, choosing

δ := (α∗/n) · Dα∗(C) > 1/4,

we have

Dα∗
(
C, u∗) ≤ δn/α∗ �⇒ (

C, u∗) /∈ C �⇒ the instance MC (C, u∗) has no SSCPs.

This completes the proof. ��
The case when α = α� can be analyzed in a similar way. We note that the strict-

saddle property of the instances in Theorem 2.6 has been established in [32]. Hence,
we present the results in the following theorem and omit the proof.

Theorem 4.2 Suppose that n ≥ 5 and α = α�. Then, there exists a constant δ > 1/4
such that for every pair (C, u∗) satisfying

Dα�
(
C, u∗) ≤ δn(n + 2)/(n + 1),

the instance MC (C, u∗) does not have any SSCPs.

Similar to Theorem 4.1, since the minimum possible complexity metric is attained
with δ = 1/4, the upper bound in Theorem 4.2 is non-trivial.
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4.2 Large complexity case

In this subsection, we first refute the second property in the question that we asked at
the beginning of Sect. 4 and then refine its statement to make it hold true. We note that
the RIP condition and the incoherence condition cannot provide necessary conditions
for the absence of SSCPs either. Namely, there exist instances that satisfy the δ-RIP2,2
condition with δ as high as 1 which do not have SSCPs. Similarly, in the case when
the incoherence of the global solution is n, it is still possible to have an instance of the
matrix completion problem without any SSCPs. In other words, although small values
for theRIP constant and incoherence guarantee the absence of spurious solutions, these
notions cannot capture the complexity of the problem since there are low-complexity
problems with large values for these parameters. We first show that our new metric
suffers from the same shortcoming, but we then propose a simple refinement to address
this issue.

Example 1 Suppose that the weight matrix and the ground truth are

Cδ := 1

1 + 3δ

[
1 δ

δ δ

]
, u∗ :=

[
1
0

]
,

where δ ≥ 0 is a constant. One can verify that ±u∗ are the only local minima to the
instance MC(Cδ, u∗) for all δ > 0. However, in the case when δ = 0, the instance
MC(C0, u∗) has the set of global solutions

±
[
1
c

]
, ∀c ∈ R.

Moreover, we consider the case when both components of u∗ are measured, where the
instance MC(C̃ε, ũε) is defined by

C̃ε := 1

1 + ε

[
1 0
0 ε

]
, ũε := 1

1 + ε

[
1
ε

]
,

where ε is a positive constant. One can verify that the pair (C̃ε, ũε) belongs to D
for all ε > 0. Setting δ and ε to be small enough, the instances MC(Cδ, u∗) and
MC(C̃ε, ũε) can be arbitrarily close to each other in the sense that

α‖Cδ − C̃ε‖1 + (1 − α)‖u∗ − ũε‖1 = O(αδ + ε).

Therefore, the complexitymetric ofMC(Cδ, u∗) can be arbitrarily large. This example
shows that instances without SSCPs can be arbitrarily close to those inD, which have
non-unique global solutions.

Nevertheless, we derive a lower bound on the complexity metric (2.2) by con-
structing a subset of D, which allows obtaining a necessary condition. Intuitively, if
an instance has multiple global minima, these global minima are still locally optimal
after a sufficiently small perturbation to the instance. To ensure the “robustness” of
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the local optimality, we require the positive-definiteness of the Hessian matrix. For
each instance MC (C, u∗), let G1k (C, u∗) for all k ∈ [n1] be the connected compo-
nents ofG1 (C, u∗), where n1 is the number of connected components. Moreover, we
use I1k (C, u∗) to denote the node set of G1k (C, u∗) for all k ∈ [n1]. We define the
following subset of D:

SD := {(C, u∗) ∈ D | G1k
(
C, u∗) is not bipartite for all k ∈ [n1],

G1
(
C, u∗) is disconnected, I00

(
C, u∗) = ∅}.

The following theorem provides a characterization of the Hessian matrix at global
solutions for pairs in SD.

Theorem 4.3 Suppose that (C, u∗) ∈ SD. Then, theHessianmatrix is positive definite
at all global solutions of the instance MC (C, u∗).

The proof of Theorem 4.3 can be found in the appendix. Using the positive-
definiteness of the Hessian matrix, we are able to apply the implicit function theorem
to guarantee the existence of spurious local minima in a neighborhood of each instance
in SD; see Appendix C.2 for more details. The global guarantee can be established by
considering closed subsets of SD. For every constant ε ≥ 0, we consider the closed
subset SDε , which is defined as

SDε := { (
C, u∗) ∈ SD | Ci j ∈ {0} ∪ [ε, 1], ∀i, j ∈ [n],

|u∗
i | ∈ {0} ∪ [ε, 1], ∀i ∈ [n]}.

Basically, the extra condition in the definition of SDε requires that the nonzero com-
ponents of C and u∗ be at least ε. We can verify that the set SDε is a compact set and
for every εn → 0, it holds that

limn→∞ ∪n
i=1 SDεi = SD0 = SD.

Now, we define the alternative complexity metric

Dα,ε

(
C, u∗) :=

[
min

(C̃,ũ∗)∈SDε

α‖C − C̃‖1 + (1 − α)‖u∗ − ũ∗‖1
]−1

. (4.1)

Since SDε is a subset of D, it holds that

Dα,ε

(
C, u∗) ≤ Dα

(
C, u∗) .

Similar to Theorem 2.3, we can prove the following relation:

SD =
{(
C, u∗) | C ∈ S

n2−1
+,1 , u∗ ∈ S

n−1
1 ,G1

(
C, u∗) is disconnected

}

∪
{(
C, u∗) | C ∈ S

n2−1
+,1 , u∗ ∈ S

n−1
1 , I00

(
C, u∗) is not empty

}
.
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Hence, the closure of SD is a proper subset of D. Combining with the fact that SDε

is a subset of SD, the metric Dα,ε (C, u∗) is not equivalent to Dα (C, u∗). Using the
compactness of SDε , the following theorem provides a necessary condition for the
existence of spurious local minima.

Theorem 4.4 Suppose that ε > 0 is a constant. Then, there exists a large constant

(ε) > 0 such that for every instance MC (C, u∗) satisfying

Dα,ε

(
C, u∗) ≥ 
(ε),

the instance MC (C, u∗) has spurious local minima.

Proof For every pair (C, u∗) ∈ SDε , Lemma C.3 implies that there exists an open
neighborhood of (C, u∗) such that the desired properties hold. Now, we consider the
union of such open neighborhoods over all points (C, u∗) ∈ SDε , which is an open
cover ofSDε . Using theHeine-Borel covering theorem, there exists an open sub-cover
of SDε . Therefore, we obtain the existence of 
(ε). ��

We note that the maximum possible value ofDα,ε (C, u∗) is+∞, which is attained
by instances in SDε . Therefore, there exist instances satisfying the condition of The-
orem 4.4 and the lower bound is non-trivial. Using Theorem 4.4, the slightly modified
complexity metric is able to provide a necessary condition on the absence of SSCPs.
This result implies that our complexity metric is able to provide conditions that are
much better than the RIP condition and the incoherence condition that fail to provide
necessary conditions.

Finally, we conjecture that the second property in the question we asked at the
beginning of the section holds for any fixed weight matrix. More specifically, we
define

DC (u∗) :=
(

min
(C,ũ∗)∈D

‖u∗ − ũ∗‖1
)−1

. (4.2)

We have the following conjecture:

Conjecture 1 Suppose that ε ∈ [0, 1]. Then, there exists a large constant �(ε) > 0
such that for every instance MC (C, u∗) satisfying

Ci j ∈ {0} ∪ [ε, 1], DC (u∗) ≥ �(ε),

the instance MC (C, u∗) has spurious local minima.
We note that the metric DC (u∗) is equal to 0 if MC (C, u∗) satisfies the δ-RIP2,2
condition with δ ∈ [0, 1).

5 Conclusions

In this work, we propose a new complexity metric for an important class of the low-
rankmatrix optimizationproblems,whichhas the potential to generalizemajor existing
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recovery guarantees and is applicable to amuch broader set of problems. The proposed
complexity metric aims to measure the complexity of the non-convex optimization
landscape of each problem and quantifies the likelihood of local search methods in
successfully solving each instance of the problem under a random initialization. We
focus on the rank-1 generalized matrix completion problem (1.7) to mathematically
prove the usefulness of the new metric from three aspects. Namely, we show that
the complexity metric has a small value if the instance satisfies the RIP condition
or the incoherence condition. The results in these two scenarios are consistent with
the existing results on the RIP condition and the incoherence condition. In addition,
we analyze a one-parameter class of instances to illustrate that the proposed metric
captures the true complexity of this class as the parameter varies and has consistent
behavior with the aforementioned two scenarios. This consistency implies that our
proposed complexity metric is able to characterize the optimization landscapes of
different applications, which the RIP condition and the incoherence condition fail
to capture. Finally, we provide strong theoretical results on the generalized matrix
completion problem by showing that a small value for the proposed complexity met-
ric guarantees the absence of spurious solutions, whereas a large value for a slightly
modified complexity metric guarantees the existence of spurious solutions. This also
shows the superiority of this metric over the RIP condition and the incoherence con-
dition since those notions cannot offer any necessary conditions for having spurious
solutions.

Acknowledgements This work was supported by grants from ARO, AFOSR, ONR and NSF.

A Proofs in Sect. 2

A.1 Proof of Theorem 2.4

The proof of Theorem 2.4 relies on the following two lemmas, which transform the
computation of Dmin

α into a one-dimensional optimization problem. The first lemma
upper-bounds the maximum possible distance.

Lemma A.1 Suppose that n ≥ 2. It holds that

(
D
min
α

)−1 ≤ max
c∈
[
0, 1

n(n−1)

] g(α, c),

where the function g(α, c) is defined by

g(α, c) := min

{
2(1 − α) · n − 2

n
+ 4αc, 4α(n − 1)c,

2(1 − α) · n − 4

n
+ 2α

(
4

n
− 4(n − 2)c

)
,

2(1 − α) · n − 3

n
+ 2α

(
3

n
− (3n − 5)c

)
,
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2(1 − α) · n − 2

n
+ 2α

(
2

n
− 2(n − 1)c

)
,

2(1 − α) · n − 1

n
+ 2α

(
1

n
− (n − 1)c

)}
.

We denote gi (α, c) be the i-th term in the above minimization for all i ∈ {1, . . . , 6}.
The next lemma proves the other direction.

Lemma A.2 Suppose that n ≥ 2. It holds that

(
D
min
α

)−1 ≥ max
c∈
[
0, 1

n(n−1)

] g(α, c),

where the function g(α, c) is defined in Lemma A.1.

The proof of Lemmas A.1 and A.2 can be found in the online version [60].

Proof of Theorem 2.4 By the results of Lemmas A.1 and A.2, we only need to compute
max

c∈
[
0, 1

n(n−1)

] g(α, c). Let κ := (1 − α)/α ∈ [0,+∞]. We study three cases below.

Case 1.We first consider the case when κ ≥ 2(n−3)/[(n−4)(n−1)]. We prove that
g(α, c) = g2(α, c). Since g2(α, c) has a larger gradient than g1(α, c) and the function
gi (α, c) is decreasing in c for i = 3, 4, 5, 6, we only need to show that

gi

(
α,

1

n(n − 1)

)
≥ g2

(
α,

1

n(n − 1)

)
, ∀i ∈ {1, 3, 4, 5, 6}. (A.1)

The above inequality with i = 1 is equivalent to κ ≥ 2/(n−1), which is guaranteed by
the assumption that κ ≥ 2(n− 3)/[(n− 4)(n− 1)]. For i ∈ {3, 4, 5, 6}, the inequality
(A.1) is equivalent to

κ ≥ max

{
2(n − 3)

(n − 1)(n − 4)
,

2(n − 2)

(n − 1)(n − 3)
,

2

n − 2
,

2

n − 1

}
= 2(n − 3)

(n − 1)(n − 4)
.

Therefore, it holds that

g(α, c) = g2(α, c) = 4α(n − 1)c.

whose maximum is attained at c = [n(n − 1)]−1 and

max
C,u∗ Tα

(
C, u∗) = g2

(
α,

1

n(n − 1)

)
= 4α

n
.

The other two cases can be proved in the same way and the proof can be found in
the online version [60]. ��
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B Proofs in Sect. 3

B.1 Proof of Theorem 3.2

Before proving the estimation of the complexity metric, we prove two properties of
μ-incoherent vectors.

Lemma B.1 Given any constant μ ∈ [1, n], suppose that u∗ has incoherence μ and
‖u∗‖1 = 1. Then, the following properties hold:

1. u∗ has at least n/μ nonzero components;
2. |u∗

i | ≤ μ/n for all i ∈ [n].
The following lemma lower-bounds the perturbation of the weight matrix C .

Lemma B.2 Suppose that the instanceMC (C, u∗) satisfies the δ-RIP2,2 condition and

the weight matrix C̃ ∈ S
n2−1
+,1 has N zero entries, where δ ∈ [0, 1) andN ⊂ [n]× [n].

Then, it holds that

‖C − C̃‖1 ≥ 2
∑

(i, j)∈N
Ci j ≥ 2(1 − δ)N

(1 + δ)n2 − 2δN
,

where N is the set of indices of zero entries of C̃.

The proofs of Lemmas B.1 and B.2 are direct calculations and can be found in the
online version [60]. Now, we prove the main theorem.

Proof of Theorem 3.2 Suppose that MC(C̃, ũ∗) ∈ D is the instance such that

[
Dα

(
C, u∗)]−1 = α‖C − C̃‖1 + (1 − α)‖u∗ − ũ∗‖1.

In the following, we split the proof into two steps.
Step I.We first fix ũ∗ and consider the closest matrix C̃ to C such that (C̃, ũ∗) ∈ D.

Let k := |I1(C̃, ũ∗)|. Without loss of generality, we assume that

I1(C̃, ũ∗) = {1, . . . , k}, I0(C̃, ũ∗) = {k + 1, . . . , n}.

We first consider the case when k ≥ 2. IfG1(C̃, ũ∗) is disconnected, at least 2(k − 1)
entries of C̃ are 0. If G1(C̃, ũ∗) are bipartite, at least k2/2 ≥ 2(k − 1) entries of C̃
are 0. If I00(C̃, ũ∗) is non-empty, at least 2k entries of C̃ are 0. Otherwise if k = 1,
at least one entry of C̃ should be 0 to make G1(C̃, ũ∗) bipartite. In summary, at least
N (k) entries of C̃ are 0, where

N (k) := max{2(k − 1), 1}.

Using the results in Lemma B.2, the distance between C and C̃ is at least

‖C − C̃‖1 ≥ 2(1 − δ)N (k)

(1 + δ)n2 − 2δN (k)
. (B.1)
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We note that the distance is monotonously increasing as a function of k.
Step II. Now, we consider the optimal choice of ũ∗ based on the lower bound in

(B.1). Let

� := |I1
(
C, u∗) |, k := |I1(C̃, ũ∗)|.

Since the distance between C and C̃ is a monotonously increasing function of k,
the minimum distance between (C, u∗) and (C̃, ũ∗) cannot be attained by k > �.
Therefore, we focus on the case when k ≤ �. Without loss of generality, we assume
that

|u∗
1| ≥ |u∗

2| ≥ · · · ≥ |u∗
� | > 0; |u∗

i | = 0, ∀i ≥ � + 1.

Then, the distance between u∗ and ũ∗ satisfies

‖u∗ − ũ∗‖1 ≥ 2
�∑

i=k+1

|u∗
i |. (B.2)

Denote the distance between (C, u∗) and (C̃, ũ∗) by

dα := α‖C − C̃‖1 + (1 − α)‖u∗ − ũ∗‖1.
Step II-1.We first consider the case when μ ≤ 2n/3. Combining inequalities (B.1)

and (B.2), we obtain a lower bound on dα:

dα ≥ min
k∈[�]

[
2α(1 − δ)N (k)

n2(1 + δ) − 2δN (k)
+ 2(1 − α)

�∑
i=k+1

|u∗
i |
]

.

For every k ∈ [�], the term inside the above minimization can be lower-bounded by

2α(1 − δ)N (k)

n2(1 + δ) − 2δN (k)
+ 2(1 − α)

�∑
i=k+1

|u∗
i |

≥ 2α(1 − δ) · 2(k − 1)

n2(1 + δ)
+ 2(1 − α)

�∑
i=k+1

|u∗
i |

= 4α(1 − δ)

n2(1 + δ)
· (k − 1) + 2(1 − α)

�∑
i=k+1

|u∗
i |.

The minimum of the right-hand side over k ∈ [�] can be solved in closed form and is
equal to

�∑
i=2

min

{
4α(1 − δ)

n2(1 + δ)
, 2(1 − α)|u∗

i |
}

.
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Using the second property in Lemma B.1, we have

min

{
4α(1 − δ)

n2(1 + δ)
, 2(1 − α)|u∗

i |
}

≥ min

{
4α(1 − δ)

n2(1 + δ)
· n|u∗

i |
μ

, 2(1 − α)|u∗
i |
}

= min

{
4α(1 − δ)

μn(1 + δ)
, 2(1 − α)

}
· |u∗

i |.

Taking the summation over k ∈ {2, . . . , �}, we can conclude that

dα ≥
�∑

k=2
min

{
4α(1−δ)
μn(1+δ)

, 2(1 − α)
}

· |u∗
i |

= min
{
4α(1−δ)
μn(1+δ)

, 2(1 − α)
}

·
�∑

k=2
|u∗

i |. (B.3)

Using the second property in Lemma B.1 and ‖u∗‖1 = 1, it follows that

�∑
k=2

|u∗
i | ≥ 1 − μ

n
.

Substituting back into inequality (B.3), we have

dα ≥ min

{
4α(1 − δ)

μn(1 + δ)
, 2(1 − α)

}
·
(
1 − μ

n

)
.

Step II-2.Next, we consider the case whenμ ≥ 2n/3. By Theorem 3.1, the distance
is at least

dα ≥ 2α(1 − δ)

n2(1 + δ) − 2δ
≥ 2α(1 − δ)

(3/2)μ · n(1 + δ)
≥ min

{
4α(1 − δ)

μn(1 + δ)
, 2(1 − α)

}
· 1
3
,

where the second inequality is due to the assumption that μ ≥ 2n/3.
By combining Steps II-1 and II-2, the distance is lower-bounded by

dα ≥ min

{
4α(1 − δ)

μn(1 + δ)
, 2(1 − α)

}
× max

{
1 − μ

n
,
1

3

}

= min

{
4α(1 − δ)

n(1 + δ)
, 2(1 − α)μ

}
× max

{
1

μ
− 1

n
,
1

3μ

}

The proof is completed by using the relation between dα and Tα (C, u∗). ��

B.2 Reduction of problem (3.7)

Before discussing the properties of problem instances in Sect. 3.3, we prove that the
SSCPs of the instanceMC(Cε, u∗) are closely related to those of the m-dimensional
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problem

min
x∈Rm

∑
i∈[m]

(
x2i − 1

)2 + ε
∑

i, j∈[m],i �= j

(xi x j − 1)2. (B.4)

Lemma B.3 If problem (B.4) has no SSCPs, then the instance MC(Cε, u∗) has no
SSCPs. In addition, given a number N ∈ N, suppose that problem (B.4) has N SSCPs
with nonzero components atwhich the objective function has a positive definiteHessian
matrix. Then, the instance MC(Cε, u∗) has at least N spurious local minima.

The proof of Lemma B.3 is a direct calculation and can be found in the online
version [60].

B.3 Proof of Theorem 3.5

To simplify the notations in the following proofs, we denote the gradient and the
Hessian matrix of the objective function of problem (B.4) by

gi (x; ε) := 4

⎡
⎣x3i − xi + ε

∑
j �=i

x j (xi x j − 1)

⎤
⎦ , ∀i ∈ [m];

Hii (x; ε) := 4

⎡
⎣3x2i − 1 + ε

∑
j �=i

x2j

⎤
⎦ , ∀i ∈ [m];

Hi j (x; ε) := 4ε(2xi x j − 1), ∀i, j ∈ [m] s.t. i �= j .

The following theorem guarantees that the instance MC(Cε, u∗) does not have
spurious local minima when ε ≥ O(m−1).

Theorem B.1 If ε > 18/m, the instance MC(Cε, u∗) does not have SSCPs, namely,
all second-order critical points are global minima associated with the ground truth
solution M∗.

The proof of TheoremB.1 can be found in the online version [60]. Then,we consider
the regime of ε where the instanceMC(Cε, u∗) has spurious solutions. The following
theorem studies the case when m is an even number.

Theorem B.2 Suppose that m is an even number. If ε < 1/(m + 1), then the instance
MC(Cε, u∗) has at least 2m/2 spurious local minima.

Proof By Lemma B.3, we only need to show that problem (B.4) has at least
( m
m/2

)
SSCPswhose associatedHessianmatrices are positive definite andwhose components
are nonzero. We consider a point x0 ∈ R

m such that

(
x0i

)2 = 1 − ε

1 + (m − 1)ε
> 0, ∀i ∈ [m];

∑
i∈[m]

x0i = 0.
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The above equations have a solution sincem is an even number. By a direct calculation,
we can verify that the gradient g(x0; ε) is equal to 0. We only need to show that the
Hessian matrix H(x0; ε) is positive definite, namely

cT H(x0; ε)c > 0, ∀c ∈ R
m\{0}.

The above condition is equivalent to

[
(3 + (m − 3)ε)

(
x01

)2 − 1 + ε

] ∑
i∈[m]

c2i − ε

⎛
⎝∑

i∈[m]
ci

⎞
⎠

2

+ 2ε
(
x01

)2
⎛
⎝∑

i∈[m]
sign

(
x01

)
ci

⎞
⎠

2

> 0, ∀c ∈ R
n\{0}.

Under the normalization constraint ‖c‖2 = 1, the Cauchy inequality implies that the
minimum of the left-hand side is attained by

c1 = · · · = cm = 1/
√
m.

Therefore, the Hessian is positive definite if and only if

(3 + (m − 3)ε)
(
x01

)2 − 1 + ε > mε.

By substituting
(
x01
)2 = (1− ε)/[1+ (m − 1)ε], the above condition is equivalent to

2 − (m + 4)ε − (m − 2)(m + 1)ε2 > 0.

Using the condition that (m + 1)ε < 1, we obtain that

2 − (m + 4)ε − (m − 2)(m + 1)ε2 > 1 − 3ε − (m − 2)ε = 1 − (m + 1)ε > 0,

where the first inequality is from the fact that m ≥ 2, which follows from the
assumption that m > 0 is an even number.

To estimate the number of SSCPs, we observe that m/2 components of x0 have a
positive sign and the other m/2 components have a negative sign. Hence, there are at
least

(
m

m/2

)

spurious SSCPs. The estimate on the combinatorial number is in light of the inequality(n
k

) ≥ (n/k)k . ��
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The estimation of the odd number case is similar and we present the result in the
following theorem.

Theorem B.3 Suppose thatm is an odd number. If ε < 1/[13(m+1)], then the instance
MC(Cε, u∗) has at least [2m/(m + 1)](m+1)/2 spurious local minima.

The proof of Theorem B.3 is similar to that of Theorem B.2 and can be found in
the online version [60]. By combining Theorems B.1–B.3, we complete the proof of
Theorem 3.5.

B.4 Proof of Theorem 3.6

The proof of Theorem 3.6 relies on the following lemma, which calculates the com-
plexity metric of the instanceMC(Cε, u∗). The proof of Lemma B.4 is similar to that
of Theorem 2.4.

Lemma B.4 Suppose that n ≥ m ≥ 5, α ∈ [0, 1] and ε ∈ [0, 1]. The complexity
metric Dα(Cε, u∗) has the closed form

[Dα(Cε, u∗)]−1 = min

{
2α

Zε

+ 2(1 − α)(m − 1)

m
,
4αε

Zε

+2(1 − α)(m − 2)

m
,

4α(m − 1)ε

Zε

}
.

Moreover, Dα(Cε, u∗) is strictly decreasing in ε on [0, 1/2].
The proof of Lemma B.4 can be found in the online version [60]. Combining

Theorem 3.5 and Lemma B.4, we are able to estimate the range of the complexity
metric.

Proof of Theorem 3.6 By defining constants δ := 1/26 and 
 := 18, Theorem 3.5
implies that

1. If ε < δ/m, the instance MC(Cε, u∗) has spurious local minima;
2. If ε > 
/m, the instance MC(Cε, u∗) has no spurious local minima.

Then, we study two different cases.

Case I. We first consider the case when mε is large. Since ε < 
/m ≤ 1/2, the
threshold is located in the regime where Dα(Cε, u∗) is strictly decreasing. Hence, it
suffices to show that

[
2α


n2
+ min

{
4α
 · m

n2
, 2(1 − α)

}]−1

is a lower bound on Dα(Cε, u∗) when ε = 
/m. By Lemma B.4, it holds that

[
Dα(Cε, u∗)

]−1
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=min

{
2α

Zε

+ 2(1 − α)(m − 1)

m
,
4αε

Zε

+ 2(1 − α)(m − 2)

m
,
4α(m − 1)ε

Zε

}

≤min

{
4αε

Zε

+ 2(1 − α)(m − 2)

m
,
4α(m − 1)ε

Zε

}

=4αε

Zε

+ (m − 2)min

{
4αε

Zε

,
2(1 − α)

m

}
≤ 4αε

Zε

+ mmin

{
4αε

Zε

,
2(1 − α)

m

}
.

Since the graph G does not contain any independence set with m + 1 nodes, Turán’s
theorem [3] implies that the graph G has at least n2/(2m) edges, namely,

|E| ≥ n2/(2m).

We note that the above bound is asymptotically tight and is attained by the Turán
graph. Hence, we obtain that

Zε = 2|E| + n + m(m − 1)ε ≥ 2|E| ≥ n2/m.

By substituting into the estimate of Dα(Cε, u∗), it follows that

[
Dα(Cε, u∗)

]−1 ≤ 4αε · m
n2

+ mmin

{
4αε · m

n2
,
2(1 − α)

m

}

= 2α


n2
+ min

{
4α
 · m

n2
, 2(1 − α)

}
.

Case II. Next, we consider the case when εm is small. Similar to Case I, it suffices
to show that

18

17
max

{
n2

4αδ
,

1

2(1 − α)

}

is an upper bound for Dα(Cε, u∗) when ε = δ/m. Since δ < 1/2, we have

2α/Zε > 4αε/Zε .

By Lemma B.4, it holds that

[
Dα(Cε, u∗)

]−1

=min

{
2α

Zε

+ 2(1 − α)(m − 1)

m
,
4αε

Zε

+ 2(1 − α)(m − 2)

m
,
4α(m − 1)ε

Zε

}

=min

{
4αε

Zε

+ 2(1 − α)(m − 2)

m
,
4α(m − 1)ε

Zε

}

=4αε

Zε

+ (m − 2)min

{
4αε

Zε

,
2(1 − α)

m

}
≥ 17

18
min

{
4αεm

Zε

, 2(1 − α)

}
,
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where the last inequality is from m ≥ 36. Since ε ≤ 1, the definition of Zε implies
that Zε ≤ n2. By substituting into the estimate of Dα(Cε, u∗), it follows that

[
Dα(Cε, u∗)

]−1 ≥ 17

18
min

{
4αεm

n2
, 2(1 − α)

}
= 17

18
min

{
4αδ

n2
, 2(1 − α)

}
.

By combining Cases I and II, we complete the proof. ��

C Proofs in Sect. 4

C.1 Proof of Theorem 4.3

The proof of Theorem 4.3 directly follows from the next two lemmas.

Lemma C.1 Suppose that (C, u∗) ∈ SD and that u0 is a global solution to
MC (C, u∗). Then, for all k ∈ [n1], it holds that u0i u0j = u∗

i u
∗
j for all i, j ∈ I1k .

In addition, u0i = 0 for all i ∈ I0 (C, u∗).

Proof Denote M∗ := u∗(u∗)T . We first consider nodes in G1k for some k ∈ [n1].
Since the subgraph is not bipartite, there exists a cycle with an odd length 2� + 1,
which we denote as

{i1, . . . , i2�+1}.

Then, we have

(
u0i1

)2 =
∏2�+1

s=1

(
u0is u

0
is+1

)(−1)s−1

=
∏2�+1

s=1

(
M∗

is is+1

)(−1)s−1

=
∏2�+1

s=1

(
u∗
is u

∗
is+1

)(−1)s−1

= (
u∗
i1

)2
,

which implies that the conclusion holds for i = j = i1. Using the connectivity of
G1k (C, u∗), we know

u0i u
0
j = u∗

i u
∗
k , ∀i, j ∈ I1k

(
C, u∗) .

Then, we consider nodes in I0 (C, u∗). Since I00 (C, u∗) is empty, for every node
i ∈ I0 (C, u∗), there exists another node j ∈ I1 (C, u∗) such that Ci j > 0. Hence,
we have

u0i = M∗
i j/u

0
j = 0.

This completes the proof. ��
The following lemma provides a necessary and sufficient condition for instances

with a positive definite Hessian matrix at global solutions, which is stronger than what
Theorem 4.3 requires.
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Lemma C.2 Suppose that u0 ∈ R
n is a global minimizer of the instance MC (C, u∗)

such that the conditions in Lemma C.1 hold. Then, the Hessian matrix is positive
definite at u0 if and only if

1. G1i (C, u∗) is not bipartite for all i ∈ [n1];
2. I00 (C, u∗) = ∅.
Proof We prove the positive definiteness of the Hessian matrix for the sufficiency part
since it is the part used in this manuscript. The necessity part is proved in the online
version [60].

Sufficiency.Now,we consider the sufficiencypart, namely,weprove that theHessian
matrix is positive definite under the two conditions stated in the theorem. Suppose that
there exists a nonzero vector q ∈ R

n such that

[
∇2g

(
u0;C, u∗)] (q, q) = 0.

Then, after straightforward calculations, we arrive at

u0i q j + u0j qi =0, ∀i, j s. t. Ci j > 0, i �= j;[
2
(
u0i

)2 − (
u∗
i

)2]
q2i =

(
u0i qi

)2 =0, ∀i s.t. Cii > 0.

The two conditions can be written compactly as

u0i q j + u0j qi = 0, ∀i, j s.t. Ci j > 0. (C.1)

Consider the index set I1k (C, u∗) for some k ∈ [n1]. The equality (C.1) implies that

qi/u
0
i + q j/u

0
j = 0, ∀i, j ∈ I1k

(
C, u∗) . (C.2)

Since the graph G1k (C, u∗) is not bipartite, there exists a cycle with an odd length
2� + 1, which we denote as

{i1, i2, . . . , i2�+1}.

Denoting i2�+2 := i1, we can calculate that

2
qi1
u0i1

=
2�+1∑
s=1

(−1)s−1

(
qis
u0is

+ qis+1

u0is+1

)
= 0,

which leads to qi1 = 0. Using the connectivity of G1k and the relation (C.2), it follows
that

qi = 0, ∀i ∈ I1k
(
C, u∗) .
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Moreover, the same conclusion holds for all k ∈ [n1] and, thus, we conclude that

qi = 0, ∀i ∈ I1
(
C, u∗) .

Since I00 (C, u∗) = ∅, for every node i ∈ I0 (C, u∗), there exists another node
j ∈ I1 (C, u∗) such that Ci j > 0. Considering the relation (C.2), we obtain that

q j = −u0j qi/u
0
i = 0.

In summary, we have proved that qi = 0 for all i ∈ [n], which contradicts the
assumption that q �= 0. Hence, the Hessian matrix at u0 is positive definite. ��

C.2 Application of the implicit function theorem

Using the positive-definiteness of the Hessian matrix, we are able to apply the implicit
function theorem to certify the existence of spurious local minima.

Lemma C.3 Suppose that α ∈ [0, 1] and consider a pair (C, u∗) ∈ SD. Then,
there exists a small constant δ(C, u∗) > 0 such that for every instance MC(C̃, ũ∗)
satisfying

α‖C̃ − C‖1 + (1 − α)‖ũ∗ − u∗‖1 < δ
(
C, u∗) ,

the instance MC(C̃, ũ∗) has spurious local minima.

Proof By Theorem 4.3, there exists a global solution u0 to the instance MC (C, u∗)
such that

u0(u0)T �= u∗(u∗)T , ∇2g(u0;C, u∗) � 0.

Consider the system of equations:

∇g(u;C, u∗) = 0.

Since the Jacobi matrix of ∇g(u;C, u∗) with respect to u is the Hessian matrix
∇2 g(u;C, u∗) and (u0,C, u∗) is a solution, the implicit function theorem guarantees
that there exists a small constant δ (C, u∗) > 0 such that in the neighborhood

N :=
{
(C̃, ũ∗)

∣∣ α‖C̃ − C‖1 + (1 − α)‖ũ∗ − u∗‖1 < δ
(
C, u∗)} ,

there exists a function u(C̃, ũ∗) : N �→ R
n such that

1. u (C, u∗) = u0;
2. u(·, ·) is a continuous function in N ;
3. ∇g[u(C̃, ũ∗); C̃, ũ∗] = 0.
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Using the continuity of the Hessian matrix and u(·, ·), we can choose δ (C, u∗) to be
small enough such that

u(C̃, ũ∗)[u(C̃, ũ∗)]T �= ũ∗(ũ∗)T , ∇2g
[
u(C̃, ũ∗); C̃, ũ∗] � 0, ∀(C̃, ũ∗) ∈ N .

Therefore, the point u(C̃, ũ∗) is a spurious local minimum of the instanceMC(C̃, ũ∗).
��
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