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Abstract

Modeling Genetic Control of Vector-borne Infectious Diseases:
Mechanistic and Machine Learning Approaches

by

Agastya Mondal

Doctor of Philosophy in Epidemiology

University of California, Berkeley

Professor John M. Marshall, Chair

This dissertation presents computational approaches to understand the entomological
and epidemiological dynamics associated with malaria transmission and genetic vector
control. From both mechanistic and deep learning perspectives, this work provides a
computational toolkit to i) estimate the entomological and epidemiological impacts of
novel genetic vector control tools, ii) understand the relationship between genetic pa-
rameters and outcomes of interest, and iii) emulate and calibrate complex mechanistic
models of malaria transmission to external data.

Chapter 1 surveys the current landscape of vector control interventions and provides his-
torical context to this work. Chapter 2 proposes a “decoupled” vector-human mechanistic
model to estimate the impacts on prevalence and clinical incidence of malaria associated
with the deployment of genetic vector control tools in Anopheles mosquitoes. Combining
an entomological model of gene inheritance with an epidemiological model of malaria
transmission via a novel sampling algorithm, this framework provides a modular way to
simulate the impacts of genetic vector control interventions. Chapter 3 uses this frame-
work to quantify the relative importance of various genetic parameters in a CRISPR-Cas9-
based homing gene drive on epidemiological outcomes of interest, parameterized to two
African locations of interest across varying transmission intensities. Finally, Chapter 4
provides a deep learning framework to emulate a complex model of malaria transmis-
sion and use this approach in conjunction with approaches from numerical optimization
to calibrate the model to external data. Taken together, this work contributes to the ad-
vancement of computational modeling in epidemiology and holds potential for the design
and implementation of urgently-needed novel interventions for vector control. Chapter
5 concludes this work by considering its implications and potential future directions.
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tomatic and undetectable by RDT (UH ). Asymptomatic humans can also be
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step: i) the ICL human model samples the force of infection in humans (λH )
from the MGDrivE 3 vector model, ii) the ICL human model increments its
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and Kenya) and three transmission settings (entomological inoculation rates
of 100, 50 and 10 infective bites per person per year). Settings are defined by
their seasonal rainfall profile and coverage of currently-available tools - long-
lasting insecticide-treated nets (LLINs), indoor residual spraying with insec-
ticides (IRS), and artemisinin combination therapy drugs (ACTs). (C) Simu-
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Chapter 1

Introduction

1.1 A brief history of vector control

Parasites and vectors

... With tears and toiling
breath,
I find thy cunning seeds,
O million-murdering Death.

Epidemiologist Ronald Ross wrote these words in 1897 [1], following his groundbreak-
ing discovery that mosquitoes transmit the parasite that cause the deadly disease malaria.
Malaria is one of humanity’s oldest diseases. Mala aria, Italian for “bad air”, was initially
thought to be spread through tainted marshland air (a consequence of the now-debunked
miasma theory of disease transmission). Traces of the malaria parasite were found in
mosquitoes preserved in amber dating over 30 million years ago. Texts from Ancient
Greece, China, and Rome refer to the deadly malarial fevers that plagued their societies.
Though malaria has been around since the earliest humans, advances in clinical science
in the 19th century allowed for a more detailed study of the disease. Building on the work
of Louis Pasteur and Alphonse Laveran, who respectively identified microbes as the cause
of infectious diseases and discovered malaria parasites in patients’ blood, Ross developed
a comprehensive theory of malaria transmission. During his time in the Indian Medical
Service in Secunderabad, Ross discovered the malaria parasite in the stomach tissue of a
mosquito which had previously fed on a patient with malaria. He continued this research
in birds, showing that the mosquito served as an intermediary host for malaria, which
then transmitted the parasite through its salivary glands. For this work, Ross would be
awarded the Nobel Prize for Physiology or Medicine in 1902. Ross’s work ushered in a
new era of malaria research. Notably in 1899, Giovanni Battista Grassi, Amico Bignani,
and Giuseppe Bastianelli were the first to show the reciprocal transmission of Plasmod-
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ium parasites between Anopheles 1 mosquitoes and humans.

Diseases such as yellow fever, dengue, and Zika, spread by the Aedes genus of mosquito,
similarly affect large swathes of the human population. U.S. Army Corps physician Walter
Reed showed in 1901 that yellow fever was indeed spread by a specific type of mosquito,
later confirmed to be the Aedes genus. Reed’s work most notably allowed for proper
vector control measures to be implemented during the construction of the Panama Canal,
whose progress had been severely hampered by widespread vector-borne disease in the
area. Though research into these diseases has been ongoing for decades, their resilience
and severity underscores the urgent need for novel vector control interventions. Though
Aedes-borne diseases are not the focus of this work, it is important to recognize that often
these diseases affect one another [2, 3], and the vector control interventions described
here can be applied to different vectors more broadly.

Vector control and disease management

Though vector control technology has advanced significantly in the last century, the ma-
jority of efforts worldwide center on managing vectors through bed net and pesticide
use alongside managing disease via drugs and vaccines. In his review of mosquito nets,
Okumu [4] states that bed nets are some of the oldest insect control interventions, with
uses dating back to the 5th century BC (though these uses were likely ceremonial or
gnat-related). 1912 saw the introduction of the powerful insecticide dichlorodiphenyl-
trichloroethane (DDT), whose widespread use became the foundation for anti-malaria
campaigns during and after World War II. Due to concerns about its effects on human
health and the environment, DDT was phased out, but bed nets treated with synthetic
insecticide compounds became widespread in the 1980s and 1990s. Beginning in the
2000s, however, challenges of distribution and reported resistance to insecticides led to
the stagnation of bed net use worldwide. Nonetheless, insecticide-treated bed nets re-
main a foundational vector control intervention.

Alongside long-lasting insecticide-treated bed nets (LLINs), indoor residual spraying
(IRS) of pesticides has become a widespread vector control intervention. As most malaria
vectors are endophilic (i.e., they rest indoors after taking a blood meal), indoor residual
spraying can target mosquitoes at a different point in the feeding cycle as compared to
bed nets and therefore can maximize disease prevention when deployed in conjunction.
The World Health Organization (WHO) operational manual on IRS [5] states that

IRS can contribute to the elimination of malaria if rigorously applied. Histor-
ically, malaria was controlled by draining areas of standing water near habi-
tations and using screens to prevent mosquitoes from entering living areas.
But the tremendous accomplishments of malaria programmes in Europe, Asia

1The word Anopheles comes from the Greek for “good-for-nothing.”
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and the Americas, which resulted in hundreds of millions of lives being saved
between the 1940s and the 1980s, was largely due to the addition of IRS as a
vector-control intervention. More recently, the scale-up of IRS in Africa has
contributed, together with LLINs and improved diagnostic testing and treat-
ment, to remarkable declines in malaria burden and all-cause childhood mor-
tality. IRS is highly effective when properly applied, but it requires adequate
national programme capacity, structures and systems.

As with insecticide-treated nets, resistance to IRS is a major driver in its stagnation in the
campaigns to eliminate malaria [6, 7]. Though IRS may be more cost-effective than bed
net distribution [8] in terms of cases prevented, bed nets’ relative ease of use make them
the most widely-used vector control intervention. Between 2008 and 2010, over 290 mil-
lion bed nets were distributed in sub-Saharan Africa, for example.

Management of malaria is multifaceted. While vector control interventions focus pri-
marily on prevention of disease transmission, products targeting the severe morbidity
and mortality associated with malaria infection have been widely deployed. Histori-
cally, quinine and its derivatives were used in the management of acute malaria infection.
However, widespread drug resistance has made these types of drugs less desirable in the
modern day. Artemisinin-based combination therapies generally are recommended in
resistant infections, as widespread resistance to artemisinin has not yet been observed.
Antimalarial drugs target various stages of infection development, and some are prophy-
lactic while others are therapeutic. As with insecticides, resistance to antimalarial drugs
is a major cause for concern and the persistence of malaria infection worldwide. White
[9] details the genetic and epidemiological bases of antimalarial drug resistance. Interest-
ingly, even resistance to detection via rapid diagnostic test has been observed and poses
challenges in the design and development of malaria tests [10]. In 2021, the WHO en-
dorsed the RTS,S vaccine for “broad use” in children, making it the first malaria vaccine
candidate to be rolled out globally. The vaccine had been in development since the 1980s
by scientists from GlaxoSmithKline. It targets towards pediatric cases of malaria in high
endemic regions. As of 2023, over 4.5 million doses of the vaccine had been administered.
While the vaccine is effective in reducing the severity of pediatric malaria, it does not re-
duce overall transmission and therefore should be administered alongside other vector
control interventions.

Here, we have briefly described some traditional vector control and disease management
interventions that are widely used in malaria-endemic regions. The WHO identifies four
major threats to the progress of malaria eradication: vector insecticide resistance, inva-
sive vector species, antimalarial drug efficacy and resistance, and parasite Pfhrp2/3 gene
deletions. These threats require novel approaches to combat the stagnating efficacy of the
interventions described here.
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Epidemiology of vector-borne disease in the modern day

Vector-borne diseases continue to account for significant morbidity and mortality world-
wide, particularly in sub-Saharan Africa and tropical nations. According to the CDC,
malaria accounted for over 600,000 deaths in 2020, despite the widespread rollout of
interventions between 2010-2020 (which are estimated to have reduced global malaria
mortality by 36%) [11]. Because malaria can be a lifelong disease, it presents signifi-
cant strains on local health and economic systems. One study [12] estimated that the
global cost of government, out-of-pocket, prepaid private, healthcare seeking, patient
care, and medication expenditures exceeded $4 billion USD in 2016 alone. Pediatric
cases of malaria are particularly deadly, as children rapidly lose maternal immunity to the
disease but have not yet accumulated enough immunity via exposure. Other neglected
tropical diseases such as dengue, yellow fever, and Zika continue to pose urgent health
challenges. The control of dengue is particularly interesting, as its four serotypes and
varying levels of cross-immunity in human populations have led to its recurrent cycling
and hyper-endemicity in some regions [13]. Despite global commitments and increased
funding, vector-borne diseases continue to levy a significant burden and acutely shape
the priorities of health agencies and NGOs worldwide.

Of particular interest is the role that climate change is expected to play in the epidemiol-
ogy of vector-borne disease. Thomson and Stanberry [14] outline various climate drivers
of disease. For malaria, they say that land-use changes, extreme heat effects on infras-
tructure, and migration has increased the risk of malaria. Work from Mordecai’s group
[15] additionally indicates that the optimal temperature for malaria transmission is much
lower than expected. Arboviruses such as dengue are increasingly appearing in temper-
ate regions [16] due to increased temperatures creating more habitable environments for
the Aedes mosquito. Additionally, Thomson and Stanberry state that extreme flooding
and temperature may change how water is stored, which could in turn create more op-
timal breeding environments for disease-capable mosquitoes. Climate-related drivers of
vector-borne disease will require novel approaches in managing these complex diseases.

1.2 Mathematical models of vector-borne disease
transmission

The Ross-Macdonald model of malaria transmission

Mathematical models have been deployed in various fields, including energy planning,
financial analysis, and genomics [17–23]. Mathematical models of vector-borne disease
transmission have been in use for over a hundred years. Ronald Ross formulated the first
mechanistic model of malaria transmission in 1911, and George Macdonald expanded on
it in 1956 by quantifying the impact of vector control and considering superinfection [24].
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Figure 1.1: Schematic showing a simple Ross-Macdonald-style model of malaria trans-
mission. Humans move between susceptible (S) and infectious (I) states per the level of
infectiousness in the mosquito population (λH ), and similarly mosquitoes move between
susceptible (S), incubating (E), and infectious (I) states depending on the level of infec-
tiousness in the human population (λV ).

This class of models forms the basis of most vector-borne disease transmission models to-
day, and therefore its study is warranted here before considering more complex scenarios.
At its simplest, the Ross-Macdonald model of malaria transmission considers two human
states {SH , IH } representing susceptible and infectious humans, respectively. Reciprocal
transmission of the malaria pathogen occurs when a mosquito feeds on an infected hu-
man, and passes through susceptible, incubating, and infectious states {SV ,EV , IV }. A
schematic for this model is shown in Figure 1.1.

The deterministic version of this model is governed by the set of differential equations:

dSH
dt

= −(
V
H

)a(
IV
V

)bHSH + rIH

dIH
dt
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)a(
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V

)bHSH − rIH
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H

)bV SV −µV SV
dEV

dt
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IH
H

)bV SV −γEV −µVEV

dIV
dt

= γEV −µV IV

The set of parameters governing this model is shown in Table 1.1.
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Symbol Description
V Size of mosquito population
H Size of human population
a Mosquito biting rate
bH Human infection probability
r Human recovery rate
γ Mosquito rate of progression to infectiousness
bV Mosquito infection probability
µV Mosquito birth and death rate

Table 1.1: Parameters of the Ross-Macdonald model of malaria transmission.

The force of infection on humans represents the rate of infection in humans per unit time
and is expressed as:

λH (t) = (
V
H

)a(
IV
V

)bH

Similarly, the rate of infection on mosquitoes per unit time is given by:

λV (t) = a(
IH
H

)bV

While the model described here represents a simplified version of malaria transmission,
it forms the basis for the models subsequently discussed.

Complex models of malaria transmission

Here, we briefly review three complex models of malaria transmission, each of which pro-
vides a more comprehensive understanding of the relationship between vector, host, and
environment. These models have been used extensively in policy planning and quantify-
ing the impact of vector control interventions. First, we discuss the Imperial College Lon-
don (ICL) model of malaria transmission, noting that this model will be discussed in more
depth in Chapter 2. Originally published in 2010 [25], the ICL model is an individual-
based, stochastic model of malaria transmission. The model includes age structure, im-
munity, biting heterogeneity, and three aggregated vector species (An. gambiae s.s., An.
funestus, and An. arabiensis). The initial model was used to fit parameters to prevalence
data from 34 African settings, and project the impact of various intervention packages.
Subsequent analyses using the model included estimating the impact of attractive toxic
sugar-baited mosquito traps [26], RTS,S anti-malaria vaccines [27], mosquito feeding be-
havior [28], among many others. While maintaining relative parsimony, the ICL malaria
transmission model has served as the foundation of a wide range of modeling efforts,
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and captures the key biological processes underpinning malaria transmission. Another
comprehensive transmission model, OpenMalaria [29], was first published in 2007 by
researchers from The Swiss Tropical and Public Health Institute. OpenMalaria is an indi-
vidual, microsimulation-based model of malaria transmission incorporating the dynam-
ics of parasitemia, infection, and transmission in geospatial contexts. The model has been
extended to include the impact of anti-malaria interventions such as vaccines, bednets,
and chemoprevention. Bayesian emulators have also been built on top of OpenMalaria
simulation data [30] in order to calibrate the model to external data in a computation-
ally efficient manner. We take inspiration from this work in designing machine learning-
based emulators of malaria transmission models in later chapters. Finally, we mention the
EMOD model developed by the Institute for Disease Modeling and the Bill and Melinda
Gates Foundation [31–33]. Similar to OpenMalaria, EMOD is an individual-based mech-
anistic model of malaria transmission. EMOD specifies vector biology and within-host
dynamics in great detail, with asexual parasite and gametocyte development tracked in
each host as the infectious process progresses. Various types of immunity to sexual par-
asites are also tracked via genetic parameters. EMOD has been extended to incorporate
spatial dynamics and novel interventions such as gene drive systems [34]. The EMOD
model will be the focus of Chapter 4. While the details of each model have been omitted
here, we have briefly outlined the main malaria transmission models that are used by
researchers to estimate intervention outcomes. More specialized models exist [35, 36] to
address specific interventions or aspects of the transmission cycle.

1.3 Overview of genetic vector control interventions

Given the stagnation in efficacy of traditional vector control tools such as LLINs and IRS
against the mortality and morbidity associated with malaria infection, researchers are
increasingly interested in genetic tools to control disease. Broadly, genetic vector con-
trol refers to a class of interventions that target the vector (i.e., the disease-transmitting
mosquito) at the genetic level to interrupt its ability to transmit a pathogen. In the context
of malaria, this generally refers to modifying Anopheline mosquitoes in a way to prevent
their ability to transmit the Plasmodium pathogen. Genetic interventions have been de-
veloped for other disease vectors, such as Aedes mosquitoes and ticks [37, 38]. These
interventions are attractive because they do not require continuous distribution of ma-
terials or high adherence to be effective. Additionally, interventions based on advances
in CRISPR-Cas9 gene editing allow these interventions to be highly efficacious in their
spread and impact. Here, we briefly describe three classes of genetic vector control tech-
niques: the sterile insect technique (SIT), Wolbachia-based interventions, and gene drive.
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Sterile insect technique (SIT) interventions

SIT interventions have been explored since the 1970s [39]. Broadly, SIT methods involve
the release of large numbers of sterile male insects. When these sterile male insects mate
with wild females, their reproductive potential decreases. The ultimate goal is then the
local elimination or suppression of the pest population. Historically, SIT programs have
succeeded against pests such as the screwworm fly, Mediterranean fruit fly (Medfly), and
the pink bollworm [40]. Due to advances in gene-editing technologies, a better under-
standing of mosquito lifecycle, and a scale-up of agricultural pest management programs,
interest in the deployment of SIT technologies has increased. For example, in recent
years Akbari and colleagues [41–43] have coupled CRISPR-based gene editing with SIT
to develop an efficacious population suppression tool in Drosophila, Aedes, and Anophe-
les termed precision-guided sterile insect technique (pgSIT). pgSIT exploits CRISPR-gene
editing to disrupt genes associated with male viability and female fertility to deliver eggs
which give rise to sterile male insects. Other SIT-like genetic interventions such as re-
lease of insects carrying a dominant lethal (RIDL) target other aspects of the mosquito
lifecycle in order to suppress populations. In this intervention, a genetic modification
renders female mosquitoes flightless. This is effectively lethal as flightless mosquitoes
cannot mate, seek hosts, avoid predators, or transmit disease. While these techniques
have shown promise in the lab, there is inadequate understanding of the ecological im-
plications of eliminating entire mosquito populations, and thus population suppression
techniques such as SIT may be less appealing than other types of genetic vector control
interventions [44].

Wolbachia interventions

Wolbachia is a common bacterium found in over 60% of all insects [45], but interestingly
not found in the Aedes aegypti mosquito, the primary vector for dengue, yellow fever,
Zika, and other diseases. Researchers have found that the dengue virus is unable to
replicate in Aedes mosquitoes in which Wolbachia has been introduced externally. This
finding led to the development of Wolbachia-based interventions against dengue in coun-
tries like Singapore and Indonesia, resulting in a significant decrease in dengue incidence
[46, 47]. Wolbachia-based interventions for malaria control are under active research, but
malaria poses unique challenges. Unlike dengue, malaria can be transmitted by at least
40 different strains of Anopheles mosquitoes [48], so interventions must be more broadly
applicable to different mosquito strains. Additionally, unlike Aedes, some strains of Wol-
bachia are naturally occurring in Anopheles mosquitoes. Therefore, new strains must be
discovered that can provide the same viral replication blocking properties as Wolbachia
in Aedes mosquitoes. Nonetheless, Wolbachia-based interventions for vector control are
promising and continue to be developed and deployed worldwide.
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Gene drive interventions

Finally, we turn our attention to gene drive interventions, which are the primary focus of
this dissertation. Broadly, gene drives refer to selfish genetic elements which are trans-
mitted to progeny in a super-Mendelian (i.e., > 50%) manner [49]. While these types
of genetic elements occur naturally [50–54], their properties can be exploited due to
advances in CRISPR-Cas9 gene editing technologies. These synthetic gene drives have
proven to be highly efficacious in laboratory settings. In the context of vector control,
the goal is to rapidly spread a disease-refractory gene through a mosquito population.
These genes can be related to fitness, transmission potential, lifespan, and host-seeking
behavior, among others. Here, we briefly review two paradigms of gene drive technology
and illustrate some examples of each. Generally, gene drive interventions fall into one of
two categories: population suppression and population modification/replacement.

Population suppression refers to a gene drive technique in which harmful genes are
forced into a vector population in order to diminish or crash them, thus leading to fewer
disease-transmitting vectors. Homing gene drives (gene drives in which CRISPR-Cas9
induce a targeted double-stranded break in order to convert a wild allele to a drive allele)
have shown suppression efficacy in Anopheles [55]. Products have targeted female fertil-
ity through the doublesex gene to bias sex ratios and reduce the number of viable females
[56]. The main challenges of widespread deployment of suppression drives includes the
accumulation of resistant, nonfunctional alleles and the potential unintended ecological
consequences of eliminating an entire species [57]. In contrast, population modification
(or replacement) strategies do not intend to crash wild mosquito populations. Instead,
they aim to drive transmission-blocking effector genes into mosquito populations and
therefore “replace” wild mosquitoes with those that cannot transmit disease. While these
approaches may be more robust to unintended ecological consequences and neighbor-
ing species invasion, their deployment has their own set of challenges. Primarily, the
relative fitness of transgenic mosquitoes and the accumulation of resistant alleles pose
barriers to achieving complete replacement. Nonetheless, advanced genetic techniques
alongside robust modeling is an active area of research, with new constructs and models
illuminating the necessary characteristics required of a population replacement program
to achieve a desired epidemiological impact [58].

Gene drives hold great promise in reducing the burden of vector-borne disease. Along-
side the challenges of developing a genetic construct in the lab, the deployment of gene
drive organisms will require buy-in from a wide variety of stakeholders including na-
tional vector control programs, community implementation groups, funders, modelers,
and genetic scientists. In 2020, a group of scientists published a set of commitments re-
quired to successfully deploy a gene drive program [57]. These commitments include fair
partnership, transparency, product safety, efficacy, regulatory evaluation, risk/benefit as-
sessments, monitoring, and mitigation. While these categories are purposefully broad,
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they represent important policy implications of developing a gene drive program beyond
the genetics alone. As these products leave the lab and enter field trials, these overarch-
ing commitments are paramount in ensuring that these interventions are deployed in an
equitable and safe way.

1.4 Model-informed target product profiles

Here, we will discuss the application of a policy tool known as a target product pro-
file (TPP) to the development of gene drive products. TPPs are planning tools that pro-
vide a list of preferred characteristics and minimum criteria products must satisfy as
they progress through the development pipeline. TPPs for gene drive mosquitoes are
becoming increasingly relevant as the technology matures and moves closer to release.
A draft TPP for a population modification gene drive product has been proposed [59],
and a workshop hosted by the Foundation for the National Institutes of Health (FNIH)
discussed TPPs for gene drive products at length [57]. A common theme from these pub-
lications is that, while TPPs should be based as much as possible on empirical studies,
rigorous modeling will be needed where empirical data is not available. Key outcomes
for vector control tools are entomological (i.e., effects on mosquito populations) and epi-
demiological (i.e., effects on human health outcomes) and can only be observed following
a release, meaning that the initial decision to release will be based on model predictions.

Fortunately, there has been a growth in malaria modeling over the last 10–15 years, with
several detailed models being published that concisely describe malaria transmission dy-
namics in the mosquito vector and human host. These include OpenMalaria [60] and
the Imperial College London malaria model [25, 61]. Over this same period, other novel
malaria control tools have also been developed and advanced through stages of laboratory
and field-testing - most recently and visibly, attractive targeted sugar baits (ATSBs) [62]
and malaria vaccines [63]. These provide case studies for the application of mathemat-
ical models to TPPs, and we draw from these previous analyses to explore the role that
mathematical models should play in informing TPPs for mosquito gene drive products.

Model-informed target product profiles for other malaria control tools

As the goals of TPPs are product-focused, much of the modeling work in this area does
not feature in academic journals. We therefore focus on a handful of published modeling
analyses, each conducted by a different research group, that have supported TPP spec-
ification for ATSBs [26], odor-baited traps [64], and long-acting injectable drugs (LAIs)
for seasonal malaria prevention [65]. We summarize these analyses, and additional TPP
modeling analyses for malaria vaccines [63] and vector control pesticides [66, 67], in Fig-
ure 1.2.
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Figure 1.2: Model-informed target product profiles for malaria and vector control
tools.

Lessons from attractive targeted sugar baits

ATSBs were proposed as an outdoor vector control strategy to complement existing in-
door tools such as LLINs and indoor residual spraying with insecticides (IRS), and work
by attracting mosquitoes to the fruity or flowery scent of a bait laced with a combination
of sugar and an oral toxin [68]. In 2008, a field study demonstrated that ATSBs were
capable of reducing Anopheles gambiae mosquito populations by 90% in Bandiagara, a
semi-arid area of Mali [69]. Then in 2017, a randomized controlled trial (RCT) involving
14 villages in Mali demonstrated that ATSBs were capable of significantly reducing An.
gambiae populations, including sporozoite-infected females, when LLINs were already
present [62]. Both studies had focused on entomological outcomes (i.e., mosquito density
and sporozoite infection), and a mathematical model was used to estimate the expected
epidemiological impact based on the RCT results [26] prior to planning epidemiological
RCTs.

Predicting outcomes, especially epidemiological ones, based on product parameters em-
bodies the primary role that mathematical models play in informing TPPs. For ATSBs,
the key product parameter is the excess daily mosquito mortality rate caused by the in-
tervention, which was estimated to be 0.09 per mosquito per day from the Mali RCT [26].
In this study, the Imperial College London malaria model [25, 61] was used to predict
all-ages malaria prevalence and clinical incidence following intervention with ATSBs in
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a range of transmission settings (baseline malaria prevalence ranging from 10-50% with
varying degrees of seasonal transmission). This malaria model includes acquired and
maternal human immunity, symptomatic and asymptomatic infection, human age struc-
ture, mosquito biting heterogeneity, and antimalarial drug therapy and prophylaxis [25].
A detailed mosquito life history model is also included, incorporating vector control tools
such as LLINs and IRS [28, 70]. Predictions from this model suggest that the RCT-inferred
excess mosquito mortality rate due to ATSBs should result in reductions in malaria preva-
lence exceeding 30% and reductions in clinical incidence exceeding 50% for the range of
transmission settings considered [26].

This analysis addressed questions directly informative of a TPP for ATSBs. An excess
mortality rate due to ATSBs of ∼ 0.05 per mosquito per day or higher was predicted to
result in a > 30% reduction in clinical incidence in a range of settings, and an excess
mortality rate of ∼ 0.1 per mosquito per day or higher was found to result in a > 30%
reduction in malaria prevalence [26]. Depending on the target outcome, either of these
excess mortality rates could be considered a minimum criterion that would enable ap-
proval of an epidemiological field trial. An important caveat to note is that the excess
mortality rate is expected to vary by environmental setting. For instance, in lush settings
with an abundance of alternative sugar sources, the excess mortality rate due to ATSBs
is expected to be lower. The key product parameter is therefore location-specific, and an
environmental assay, such as the feeding rate on attractive sugar baits marked with dyes,
would be needed to assess TPP alignment in a new location. That said; the analysis clearly
demonstrates the strength of mathematical models in predicting target epidemiological
outcomes for a given product parameter in a range of transmission settings.

Lessons from odor-baited traps

Odor-baited traps have long been discussed as a form of vector control [71], although
their use to date has been limited to mosquito monitoring [72]. In 2010, a series of pa-
pers were published detailing odor-baited traps that are more attractive to mosquitoes
than humans [64, 73], and a deterministic model describing mosquito host-seeking and
ovipositing behavior [74] was adapted to model vector control with odor-baited traps in
addition to LLINs [75]. One of the motivations for this mathematical analysis was to in-
form a TPP for odor-baited traps, as a prototype version, while potentially effective, was
considered too expensive for a community-scale trial. The modeling analysis considered
the entomological inoculation rate (EIR) - the rate at which people are exposed to infec-
tious mosquito bites - as the outcome of interest, and calibrated the model to a baseline
EIR greater than 200 infective bites per person per year, representing locations in Africa
where transmission is consistently high.

To produce a TPP for odor-baited traps, key intervention parameters were explored - the
attractiveness of traps to mosquitoes, and the number of traps per 1000 people that would
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produce a reduction in EIR equivalent to that achieved by 50% coverage with LLINs (a
level of coverage considered generally attainable throughout Africa). Given the number
of traps required, a corresponding maximum cost per trap was calculated in order for
the traps to be at least as cost-effective as LLINs. The analysis concluded that the traps
should be more attractive than humans, and that 20–130 traps per 1000 people would
be needed to produce the target EIR reduction. This equated to a maximum cost per
trap of $4 to $27, which includes costs of production, transport, installation, operation
and maintenance [75]. An interesting point raised by this and many TPP analyses is that
target product characteristics can be traded off against each other - i.e., a more attrac-
tive trap can afford to be more expensive as fewer traps are required. The analysis also
emphasized the importance of a comparative cost analysis, and this was influential in
preventing these odor-baited traps from being adopted at scale.

Lessons from long-acting injectable drugs for seasonal malaria prevention

LAIs have been proposed as an alternative to monthly seasonal malaria chemoprevention
(SMC) with oral anti-malarials in the hope that longer-lasting injectable drugs can rem-
edy the spread of drug-resistance and the low adherence rates and high deployment costs
of SMC [76]. In order for LAIs to be implemented, they must be shown to be non-inferior
to existing interventions, and in lieu of clinical studies, a preliminary modeling analy-
sis was conducted [65]. In this study, the OpenMalaria model [60] was used to predict
clinical malaria cases averted by LAIs compared to SMC in the intervention age group
(children 0–5 years of age). Simulations were conducted for settings that resemble Mali
and Senegal in terms of seasonality, mosquito species and interventions, with these two
countries being chosen because they are locations where SMC is implemented and clini-
cal trials are frequently conducted [65]. The OpenMalaria model is an individual-based
simulation of malaria in humans, including heterogeneity in mosquito biting, human im-
munity and disease susceptibility, and is linked to a deterministic model of mosquito life
history [60, 77].

Key product parameters that were varied in this analysis describe initial LAI protective
efficacy (i.e., the chance that a malaria case is prevented upon treatment with a LAI) and
the shape and half-life of decay in protective efficacy. LAI coverage (i.e., the proportion of
the intervention age group receiving the LAI at the beginning of a transmission season)
was also varied. Results suggest that the shape of decay in protective efficacy is key, with
protective efficacy profiles that remain high for an extended period (e.g. sigmoidal effi-
cacy profiles) being essential to establish non-inferiority of LAIs. The required half-life
of protective efficacy mirrored the duration of seasonal transmission in each setting, and
a trade-off was observed between protective efficacy and coverage. Given the importance
of decay in LAI protective efficacy, it was recommended that studying this phenomenon
be prioritized in potential clinical studies [65]. Another interesting aspect of this anal-
ysis was the use of machine learning to infer non-inferior tool profiles and parameter
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Figure 1.3: Schematic representation of the role of mathematical models in informing
target product profiles (TPPs) for gene drive mosquitoes. Stakeholder input follows a
gradient with scientists and developers providing primary input on product parameters
and the wider stakeholder community providing primary input on outcomes of interest.
The flowchart applies to both population modification and population suppression gene
drive systems, although the product parameter for efficacy of transmission blocking only
applies to population modification systems.

sensitivities based on a database of TPP malaria model simulations [78].

Special considerations for mosquito gene drive products

For mosquito gene drive products, reliable predictions from mathematical models will
be required to inform TPPs prior to the first field release, as any release could potentially
be irreversible. This elevates the need for rigorous modeling analyses, as accurate pre-
dictions of safety and efficacy will be required in the absence of field-testing. Here, we
describe some of the special considerations that apply to mosquito gene drive products
when developing model-informed TPPs, in particular concerning product parameters,
target outcomes, biosafety and cost (Figure 1.3).
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Product parameters

Gene drive mosquito products can be described by many parameters. The FNIH work-
shop on TPPs, for instance, listed homing rate, rate of functional resistance allele genera-
tion, male mating competitiveness, female fecundity, and the development and mortality
rates of each life stage all as important product parameters [57]. Additionally, interven-
tion parameters such as the number and size of releases require specification. In order to
provide meaningful criteria for each parameter, consultation with molecular biologists
and field ecologists will be essential to narrow the space of parameter exploration, and a
machine learning approach will likely assist in exploring the refined parameter space, as
it did for LAIs [78]. Previous modeling studies can also help to refine parameter space
[79]. For example, the EMOD individual-based model of mosquito population dynamics
[31] was used to determine the homing rate, resistance allele generation rate and female
fecundity parameters required for persistent reduction of disease-competent mosquitoes
in sub-Saharan African settings [80]. Fitness parameters consistently emerge as highly
influential on gene drive model outcomes, and given the inaccuracy of estimating these
prior to a field release, a conservative approach would be to focus on their lower bounds
when generating criteria for other parameters.

Target outcomes

Ongoing discussions will likely be needed to define target outcomes for gene drive mosquito
products. Epidemiological outcomes, such as reductions in clinical incidence and preva-
lence, are likely to be required by stakeholders such as the World Health Organization,
with questions remaining over exactly what the target reduction should be. TPPs are
blunt instruments, and any target reduction decided upon will likely represent a compro-
mise between demonstrating significant public health benefit, and having an achievable
goal that will enable the technology to progress along the product development pipeline.
The precedent from the ATSB analysis is a 30% reduction in clinical malaria incidence
or prevalence [26], while at the FNIH workshop on TPPs, a 20-50% reduction in clinical
malaria incidence was discussed [57]. Such target decisions should involve a wider range
of stakeholders as the technology gets closer to field release, and should include consid-
eration of national malaria control targets, and recent and current interventions used.

Key decisions also need to be made regarding the modeled transmission settings, as these
will have a significant influence on TPP specification. The LAI analysis presents an in-
teresting case study by selecting two locations where comparable interventions and field
studies have been conducted [65]. For gene drive mosquito projects, similar reasoning
would support modeling population suppression products in Mali, Burkina Faso, Kenya
or Uganda (field sites of the Target Malaria project), and population modification prod-
ucts in São Tomé and Prı́ncipe or the Union of the Comoros (field sites of the UC Irvine
Malaria Initiative). Models in these settings should take into account seasonal malaria



16

transmission profiles alongside current interventions being implemented. If the scale
of gene drive interventions grows, then TPPs should consider a representative range of
settings, spanning a diversity of local vector ecologies, and malaria transmission and in-
tervention profiles.

For settings with more than one malaria vector present, entomological outcomes may be
more suitable than epidemiological ones. To illustrate this, an alternative malaria vec-
tor could hypothetically prevent elimination of a target vector species from resulting in a
20-50% reduction in clinical malaria incidence due to the nonlinear relationship between
the EIR and malaria incidence [81]. To remedy this, the target outcome could be specified
as an inferred 20-50% reduction in malaria incidence due to the target species, calculated
in terms of a reduction in species-specific vectorial capacity commensurate with the epi-
demiological goal. Other target outcomes are also important, and may include a rate of
spread expected to produce the desired epidemiological impact within the time frame of
a field trial (perhaps two years), and a minimum duration of effect of perhaps three years
[26].

Biosafety and cost considerations

Finally, modeling may play a role in assessing some of the biosafety and cost dimensions
of gene drive mosquito TPPs. One aspect of biosafety is the availability of products and
strategies to remediate gene drive-modified organisms from the environment in the event
of unwanted consequences or a shift in public opinion. The need and capability to reme-
diate gene drive organisms is still being discussed [82, 83]; however, in the absence of
extensive field data, modeling can provide insights to determine minimum criteria and
capabilities for insecticide-based campaigns or genetic systems such as ERACR (element
reversing the autocatalytic chain reaction) [84, 85] in order to achieve a defined level of
transgene confinement or removal.

Some aspects of a model-informed TPP may overlap with risk assessment. For instance,
whether there is a tolerable mosquito biting rate that would not be expected to en-
hance transmission of target and non-target pathogens [44]. Lastly, as demonstrated by
case studies of odor-baited traps and LAIs, costing is another important dimension of
TPPs that modeling may help to inform. Analyses focusing on deployment costs suggest
that, due to their self-propagating nature, highly effective gene drives are expected to be
more cost-effective than currently-available tools [86]; however, similarly detailed anal-
yses have yet to be conducted for monitoring requirements, which are expected to be a
cost driver for the technology [87]. That said; gene drives occupy a distinct niche in the
malaria control toolkit due to their ability to spread and be effective despite compliance
rates; therefore, costs may be best assessed against potentially available funds rather than
the costs of other interventions.
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1.5 Organization of this dissertation

Thus far, we have presented the preliminaries that form the basis of this dissertation;
namely, the history of vector control, the epidemiology of vector-borne disease in the
modern day, genetic interventions, and the role of mathematical modeling in the design
of vector control products. Drawing from each of these facets, this dissertation presents
three novel computational applications of gene drive modeling. Chapter 2 proposes a
modeling framework to link the release of gene drive interventions in Anopheles gambiae
to fine-scale epidemiological outcomes such as clinical incidence and prevalence. This
modeling framework utilizes a sampling algorithm to link two disparate mathematical
formulations (in this case, vector and human models), allowing them to communicate.
This sampling algorithm can be generalized to other vector-host disease systems. Chap-
ter 3 uses this model to develop a target product profile (TPP) for a population replace-
ment gene drive system. By sampling thousands of biologically feasible parameter sets
for product characteristics relevant to population replacement gene drive systems, we
are able to statistically interrogate the relationship between genetic parameters and their
expected epidemiological impact in two sub-Saharan African settings. With this analy-
sis, we can develop “operational ranges” of each genetic parameter and evaluate them
against TPP criteria for epidemiological impact. Finally, Chapter 4 presents a deep learn-
ing methodology to emulate and calibrate a complex model of malaria transmission to
external data. As mathematical models become more complex and computationally de-
manding, model emulators can serve as important tools to reduce their computational
footprint. In addition, models will need to be continually updated with estimates from
field trials, and emulators can be used to align model parameters with external data. We
show that, by drawing from the deep machine learning literature, we can design compu-
tationally efficient emulators of malaria transmission models and use them to calibrate
the original model to field data. We hope that, taken together, this work can provide
the designers of urgently-needed vector control interventions with a set of computational
tools to evaluate their products and push them closer to deployment.
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Chapter 2

MGDrivE 3: A decoupled vector-human
framework for epidemiological
simulation of mosquito genetic control
tools and their surveillance

2.1 Introduction

Since the advent of CRISPR-based gene-editing, mosquito genetic control technology has
been advancing at a rapid pace, with a plethora of novel genetic constructs being devel-
oped in the lab and the prospect of field releases being discussed in earnest. For malaria
vectors, recent constructs include a suppression gene drive targeting the doublesex gene
in Anopheles gambiae [56], a replacement gene drive linked to dual antimalarial effector
genes in both An. gambiae and Anopheles coluzzii [88], and a genetic version of the sterile
insect technique engineered in An. gambiae [41]. As the prospect of environmental re-
leases of constructs like these nears, there is a need for increasingly detailed mathematical
models to predict the spread of genes through populations, as well as their epidemiolog-
ical and biosafety implications [58].

Disease transmission is a key area requiring further development in mosquito genetic
control models. Models thus far have tended to emphasize entomological properties and
outcomes, such as changes in allele frequencies over time and geographical spread [79,
80, 89, 90]., and while epidemiological dynamics have sometimes been incorporated,
models have tended to utilize simple representations of vector-borne disease transmis-
sion, such as the Ross-Macdonald model of malaria transmission, with some exceptions
[34]. Meanwhile, detailed models of malaria transmission have been developed by several
groups [25, 60, 91] incorporating symptomatic and asymptomatic infection, variable par-
asite density in humans, age structure, mosquito biting heterogeneity, and interventions
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such as vector control utilizing long-lasting insecticide-treated nets (LLINs) and indoor
residual spraying with insecticides (IRS), and antimalarial drug therapy. Incorporating
this level of epidemiological detail into mosquito genetic control models would be of
great utility considering that genetic control tools will likely be implemented alongside
other interventions, expected epidemiological impacts should be a focus in developing
these products [58], and initial field trials are expected to have a measured entomological
outcome alongside a modeled epidemiological one [57].

Surveillance is another key area requiring inclusion in mosquito genetic control models.
Models thus far have tended to record allele frequencies and population densities directly
from model output, while incorporating traps explicitly within models would allow ques-
tions related to the optimal density and placement of traps to be explored. This would
be useful to assess monitoring requirements to both: i) accurately measure effectiveness
of genetic control (e.g., establishment and persistence of alleles at future field sites), and
ii) detect unintended spread of transgenes beyond the testing or trial site [87]. This latter
concern is of particular importance for non-localized gene drive mosquito projects, which
have potential to spread on a wide, potentially regional, scale. Efficient, model-informed
surveillance programs are therefore essential, as surveillance is expected to be a major
cost driver for this technology.

Previously, our group developed MGDrivE (Mosquito Gene Drive Explorer) [89] to model
the spatial population dynamics of a variety of mosquito genetic control systems, and
MGDrivE 2 [92], incorporating simple models of malaria and arbovirus transmission,
seasonality in mosquito populations, and a novel formulation of mosquito and human
state space utilizing stochastic Petri nets (SPNs). Here, we present MGDrivE 3, a new ver-
sion of MGDrivE 2 that incorporates three major developments: i) a decoupled sampling
algorithm allowing the vector and human portions of the model to be readily modular-
ized, and hence for the mosquito portion of MGDrivE to be paired with a more-detailed
epidemiological framework, ii) a version of the Imperial College London (ICL) malaria
transmission model [25, 91], which incorporates age structure, various forms of immu-
nity, human and vector interventions, and more meaningful disease outcomes, and iii)
surveillance functionality that tracks mosquitoes captured by traps throughout the sim-
ulation. As such, parasite transmission can now be modeled according to mosquito geno-
type, genetic control interventions can now be modeled alongside other interventions
(such as LLINs, IRS and antimalarial drugs), and the dynamical and surveillance impli-
cations of mosquito traps can now be modeled.

In this chapter, we describe the new features implemented in MGDrivE 3. Additionally,
we present an example applying the framework to a hypothetical release of a CRISPR-
based homing gene drive system linked to dual disease-refractory genes and their impli-
cations for malaria transmission in a low-transmission island setting. Simulations are also
presented demonstrating surveillance of a similar drive system by a network of mosquito
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traps. We conclude with a discussion of future directions and applications of MGDrivE 3
to the development and application of mosquito genetic control tools towards the goal of
vector-borne disease control.

2.2 Design and implementation

As with the MGDrivE 2 framework [92], MGDrivE 3 incorporates modules for inheri-
tance (the distribution of offspring genotypes for given maternal and paternal genotypes),
mosquito life history (development from egg to larva to pupa to adult), landscape (the
distribution and movement of mosquitoes through a metapopulation), and epidemiol-
ogy (reciprocal pathogen transmission between mosquitoes and humans). MGDrivE 3
offers three substantial improvements beyond the functionality included in MGDrivE 2
- a sampling algorithm that allows decoupling of the mosquito and human model com-
ponents, incorporation of a more detailed malaria transmission model, and inclusion of
mosquito traps - each described in depth below. The software was developed using the R
programming language, and retains the SPN formulation of the MGDrivE 2 package.

Decoupled vector-host sampling framework

Decoupling the vector and host portions of the modeling framework is a major contri-
bution of MGDrivE 3. Vector-borne disease models describe the reciprocal transmission
of pathogens between vectors and hosts. Prior models have represented the vector and
host state space as compartmental models represented by ordinary [24] or partial differ-
ential equations (PDEs) [25, 91], or as individual-based models [93, 94]. In each of these
models, vectors and hosts have the same state space and mathematical representation. In
MGDrivE 3, the vector model is formulated as a SPN with a discrete state space, so we
developed a sampling framework to allow the vector and host models to communicate,
even if they have different representations.

Decoupling of vector-borne disease models is facilitated by the fact that all the vector
model needs to know about the host model is the density and level of infectiousness in
hosts, and vice versa. Communicating between the two model portions can therefore be
accomplished by exchanging two composite parameters: i) the force of infection on hosts
(λH ), i.e., the probability that a host is infected per unit time, and ii) the force of infection
on vectors (λV ), i.e., the probability that a vector is infected per unit time. For malaria, λH
is equal to the entomological inoculation rate (EIR, the number of infectious mosquitoes
per human multiplied by their human biting rate) multiplied by the probability of the
human becoming infected given an infectious bite. Similarly, λV is proportional to the
human biting rate multiplied by the proportion of humans that are infectious multiplied
by the probability of the mosquito becoming infected [24].

https://www.r-project.org/
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A schematic of an inter-model sampling algorithm for malaria, which we implement in
this paper, is depicted in Figure 2.1. At each model iteration: i) the host model samples
λH from the vector model, ii) the host model increments its infectious states for a time
equal to one time step, iii) the vector model samples λV from the host model, and iv)
the vector model increments its infectious states for one time step. While the MGDrivE
3 vector model is represented as an SPN with discrete state space, it is agnostic to how
the host model is represented, which in this case is a system of PDEs with continuous
state space [25, 91]. Additional considerations in implementing this algorithm include:
i) choosing a time step appropriate to both models, ii) ensuring the MGDrivE 3 vector
model produces output consistent with the vector model within the host model that it
replaces, and iii) validating the EIR produced by the combined model framework. While
a specific use case is presented in Figure 2.1, this inter-model sampling framework applies
generally - it could equally be applied to models of arboviruses transmitted by Aedes
aegypti [95], or to models of citrus greening disease transmitted by Diaphorina citri [96],
provided the appropriate model adjustments are made.
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Figure 2.1: Schematic of decoupled vector-host sampling algorithm for malaria. MG-
DrivE 3 uses a stochastic Petri net framework to model progression of adult female
mosquitoes from susceptible (SV ) to exposed/latently infected (EV ) to infectious for
malaria (IV ). This framework is linked to an adapted version of the Imperial College Lon-
don (ICL) malaria model, which is represented as a set of partial differential equations. In
the ICL model, humans progress from susceptible (SH ) to either symptomatic or asymp-
tomatic infection. Humans who develop a symptomatic infection and are either treated
(TH ) or diseased and untreated (DH ). Treated humans advance to a prophylactic protec-
tion state (PH ) and eventually become susceptible again. Untreated symptomatic humans
develop successively lower-density infections, from symptomatic to asymptomatic but
detectable by rapid diagnostic test (RDT) (AH ) to asymptomatic and undetectable by RDT
(UH ). Asymptomatic humans can also be super-infected. To allow the two frameworks to
communicate, at each time step: i) the ICL human model samples the force of infection
in humans (λH ) from the MGDrivE 3 vector model, ii) the ICL human model increments
its infectious states for a time equal to one time step, iii) the MGDrivE 3 vector model
samples the force of infection in vectors (λV ) from the ICL human model, and iv) the
MGDrivE 3 vector model increments its infectious states for one time step.

Malaria transmission model

Given the decoupled sampling algorithm, we incorporated an adapted version of the
malaria model developed by the ICL malaria modeling group [25, 91] into MGDrivE
3. The MGDrivE 3 vector framework may be linked to several published malaria models;
however, the ICL model represents a suitable level of parsimony for the current stage of
development, as it can be described by a succinct set of PDEs while incorporating several
important features of malaria epidemiology, and has been fitted to extensive malaria data
sets throughout sub-Saharan Africa [25, 91]. Important epidemiological details captured
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in this model include symptomatic and asymptomatic infection, variable parasite density
and superinfection in humans, human age structure, mosquito biting heterogeneity, and
antimalarial drug therapy and prophylaxis. The model also includes several forms of im-
munity: i) pre-erythrocytic immunity reduces the probability of infection if bitten by an
infectious mosquito; ii) acquired and maternal clinical immunity represent the effects of
blood stage immunity on reducing the probability of developing clinical symptoms and
severe illness; and iii) detection immunity represents the effects of blood stage immunity
on reducing the detectability of an infection and onward transmission to mosquitoes.

The state space is modeled as a set of partial differential equations (PDEs). The infec-
tion states are: susceptible (S), treated symptomatic disease (T), untreated symptomatic
disease (D), asymptomatic infection that is detectable by rapid diagnostic test (RDT) (A),
sub-patent infection that is undetectable by RDT (U), and post-treatment prophylaxis (P).
The force of infection on humans (which depends on the EIR) is denoted Λ, the probabil-
ity that symptoms develop after an infectious challenge is denoted Φ , and the fraction of
clinical cases that receive effective treatment is denoted fT . The set of human state PDEs
is shown below, with a representing age and t representing time.

∂S
∂t

+
∂S
∂a

= −ΛS +
P
dP

+
U
dU

∂T
∂t

+
∂T
∂a

= ΦfTΛ(S +A+U )− T
dT

∂D
∂t

+
∂D
∂a

= Φ(1− fT )Λ(S +A+U )− D
dD

∂A
∂t

+
∂A
∂a

= (1−Φ)Λ(S +U ) +
D
dD
−ΦΛA− A

dA
∂U
∂t

+
∂U
∂a

=
A
dA
− U
dU
−ΛU

∂P
∂t

+
∂P
∂a

=
T
dT
− P
dP

Here, di indicates the mean duration of state i. Additionally, the model includes four
forms of population-level immunity:

• Pre-erythrocytic immunity, IB, reduces the probability of infection if bitten by an
infectious mosquito;

• Acquired and maternal clinical immunity, ICA and ICM , represent the effects of
blood stage immunity in reducing the probability of developing clinical symptoms;
and
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• Detection immunity, ID , represents the effect of blood stage immunity in reducing
the detectability of an infection and onward transmission to mosquitoes.

The PDEs describing immunity are below. Note that ε represents the EIR, ui limits the
rate at which immunity can be boosted at high exposure for immunity state i, and di
determines the duration of immunity for immunity state i.

∂IB
∂t

+
∂IB
∂a

=
ε

εuB + 1
− IB
dB

∂ICA
∂t

+
∂ICA
∂a

=
Λ

Λuc + 1
− ICA
dCA

∂ICM
∂t

+
∂ICM
∂a

=
−ICM
dCM

∂ID
∂t

+
∂ID
∂a

=
Λ

Λud + 1
− ID
dD

Each immunity function is transformed to a reduction in the appropriate infection prob-
ability via a Hill function.

Instead of numerically solving the PDEs directly, we first discretize the model by age cat-
egory and biting heterogeneity. To discretize by age, we augment each infection state by
an age category. For example, if we had two age categories 0-10 years and 10-100 years,
then we would have susceptible compartments S1 and S2, where S1 contains the people
in the 0-10 year category and S2 contains the people in the 10-100 year category. This
would apply for all infection states. In addition, each compartment contains a rate at
which people age and therefore move between age compartments.

Then, each PDE becomes a discrete ODE representing an age compartment. For example,

dSi
dt

= −ΛSi +
Pi
dP

+
Ui

dU
− ηiSi + ηi−1Si−1

gives the rate equation for the susceptible (S) state for age category i where ηi gives the
aging rate from Si −→ Si+1 and similarly ηi−1 gives the aging rate from Si−1 −→ Si . For the
youngest age group, the ηi−1Si−1 term would be left out, and for the oldest age group, the
ηiSi term would be left out.

One implementation note is that the model assumes a fixed latent period of 12 days af-
ter an infectious challenge from a mosquito, after which either symptoms develop or an
asymptomatic infection proceeds. Because of this fixed delay, the equations are techni-
cally formulated as “delay differential equations,” where the current state depends on the
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previous state.

To initialize the distribution of disease and immunity states, the model takes as input
the baseline EIR, the age structure of the population, the proportion of treated cases, and
baseline entomological parameters. Some of the mosquito life cycle parameters will vary
in the presence of interventions, which will be described in the next section.

In incorporating certain genetic vector control tools - e.g., gene drive systems intended
to spread disease-refractory genes into mosquito populations [88, 97] - an important ad-
dition to the epidemiological framework is transmission parameters that are mosquito
genotype-specific. In the ICL malaria model, the force of infection on humans, λH (a, t),
is dependent on both age, a, and time, t, and is a product of the EIR, ε(a, t), and the
transmission probability, b, i.e.:

λH (a, t) = ε(a, t)b

A given human could be bitten by a mosquito having any genotype, g, from the set of all
genotypes, G, proportional to its time-varying frequency in the population, pg(t). For an
effector gene that blocks mosquito-to-human transmission, the transmission probability,
bg , will be genotype-specific, and so the expected transmission probability is equal to the
time-varying weighted average:

b(t) =
∑
g∈G

pg(t)bg

Incorporating more epidemiological detail into the model of transmission dynamics also
allows more nuanced epidemiological outcomes to be calculated. As the ICL malaria
model is age-stratified, both malaria prevalence and incidence can be calculated accord-
ing to age group. Prevalence is calculated across all infectious human compartments -
treated and untreated symptomatic disease, asymptomatic but detectable by rapid di-
agnostic test (RDT), and asymptomatic but undetectable by RDT - since each of these
compartments contributes to onwards transmission of malaria to mosquitoes. Clinical
incidence refers to new clinical malaria cases within a defined time interval, and is of
particular relevance to the healthcare system. One commonly reported metric is malaria
prevalence among children aged 2-10 years [98], as pediatric cases of malaria tend to
be the most severe. Mathematically, we define PfPr as the sum of all individuals in in-
fectious disease states: symptomatic and treated (T), symptomatic and untreated (D),
asymptomatic patent infection (A), and asymptomatic subpatent infection (U). Therefore,
the all-ages (often denoted by the subscript 0-99 to denote the entire lifespan in years)
pathogen prevalence at a given time point, t, is given by:

P f P r[0−99](t) =
∑
a∈A

(Aa(t) +Ua(t) +Da(t) + Ta(t))
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where A is the set of all age compartments. Similarly, the 0-2 years PfPr is given by:

P f P r[0−2](t) = A[0−2](t) +U[0−2](t) +D[0−2](t) + T[0−2](t)

As for clinical incidence, we first define some parameters:

• φ: the probability of acquiring clinical disease upon infection (proportional to im-
munity levels via a Hill function);

• λH : the force of infection on humans (linearly proportional to the EIR, ε); and

• Y : the sum of non-clinical disease states, susceptible (S), asymptomatic patent in-
fection (A), and subpatent infection (U).

Then we can define the all-ages clinical incidence as:

CI[0−99](t) =
∑
a∈A

φa(t)λH,a(t)Ya(t)

and the 0-2 years clinical incidence as:

CI[0−2](t) = φ[0−2](t)λH,[0−2](t)Y[0−2](t)

Generally, we are interested in these outcomes with respect to their baseline or pre-
intervention values. In our analyses, we will calculate the reduction in prevalence and
clinical incidence as our outcomes of interest. As we will be running many stochastic
repetitions of the simulation for a given parameter set, the mean reduction over the rep-
etition set and simulation timespan will be used.

Additional interventions and seasonality

Additional functionality has been included in both the vector and host portions of the
MGDrivE 3 framework to incorporate currently-available interventions that genetic con-
trol tools would likely be implemented in conjunction with. While a range of novel vector
control tools are currently under development [99]; the mainstay of malaria interventions
for the last two decades has been a combination of LLINs, IRS and antimalarial drugs -
largely artemisinin-combination therapy (ACT). Some combination of these interventions
will invariably be present when a genetic control intervention is implemented, and it is
important to characterize their implications for both vector population dynamics and
vector-borne disease transmission. We model the impact of LLINs and IRS on mosquito
life history parameters according to the elaborated feeding cycle model developed by Le
Menach et al. [70] and adapted by Griffin et al. [25, 91]. Within this framework, LLINs
and IRS increase the mortality rate and decrease the biting rate of adult mosquitoes, and
also decrease the egg-laying rate by virtue of extending the gonotrophic cycle. The pro-
portion of symptomatic malaria cases that receive antimalarial drug therapy is included
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within the ICL malaria model [25, 91].

First, we assume that, at baseline, we have three proportions of active vector control in-
terventions, {χIRS ,χLLIN ,χACT }, which represent the proportion of humans in the model
covered by the given intervention. Then, χACT corresponds to the proportion of symp-
tomatically infected humans that are treated upon infection, fT .

Then, {χIRS ,χLLIN } jointly modify various mosquito life cycle parameters. First, we model
the impact of LLINs and IRS on the length of the mosquito gonotrophic cycle (i.e., the
time taken for a mosquito to take a blood meal and lay eggs before seeking its next blood
meal). This time can be divided into τ1 (the time spent foraging) and τ2 (the time spent
ovipositing and resting). Then, the length of the gonotrophic cycle in the presence of
vector control is given by:

1
δc

=
τ1(0,0)

1− z
+ τ2

where τ1(0,0) represents the time spent foraging with LLIN and IRS coverages of zero,
and:

z = Q0cLLINθBrLLIN +Q0cIRSθIrIRS+
Q0cLLIN,IRS(θI −θB)rIRS+

Q0cLLIN,IRSθBrIRS,LLIN

Here, Q0 represents the human blood index, θB represents the proportion of bites taken
on a person in bed, θI represents the proportion of bites taken on a person outdoors,
rIRS represents the probability of repeating a feeding attempt in the presence of IRS,
rIRS,LLIN represents the probability of repeating a feeding attempt in the presence of IRS
and LLINs, and:

cLLIN = χLLIN −χLLINχIRS

cIRS = χIRS −χLLINχIRS

cLLIN,IRS = χLLINχIRS

c0 = 1−χLLIN −χIRS +χLLINχIRS

Then, with the modified gonotrophic cycle calculated (δC), we can model the impact of
LLINs and IRS on the adult mosquito death rate. We express the mortality rate in the
presence of vector control as:

µV ,C = − logp(χIRS ,χLLIN )

where p represents the probability of an adult mosquito surviving one day. Then we can
break down p into two components p1 (the probability of surviving the mosquito stage)
and p2 (the probability of surviving the blood meal stage):

p(χIRS ,χLLIN ) = (p1(χIRS ,χLLIN )p2)δc



28

where:

p1(χIRS ,χLLIN ) =
p1(0,0)w

1− zp1(0,0)

z is the same as above and w gives the probability that a mosquito successfully feeds and
survives a single feeding attempt:

w = 1−Q0 +Q0c0 +Q0cLLIN (1−θB +θBsLLIN )+
Q0cIRS(1−θI +θIsIRS)+

Q0cIRS,LLIN ((θB −θI )sIRS + 1−θI +θBsLLIN,IRS)

Here, sLLIN and sIRS represent the probability of feeding and surviving in the presence of
LLINs and IRS, respectively. The non-intervention survival probabilities are given by:

p1(0,0) = e−µV τ1(0,0)

p2 = e−µV τ2

Now, we have mathematical expressions for the gonotrophic cycle length and adult mor-
tality rate (δc and µV ,c respectively). We can finally model the impact of LLINs and IRS
on the egg laying rate of the adult female mosquito. In the absence of vector control, the
egg laying rate is given by:

β =
εµV

e
µV
δ − 1

where ε is the number of viable eggs laid per oviposition cycle. Then, with the previously
defined parameters, the egg laying rate in the presence of vector control interventions is
simply:

βc =
εµV ,c

e
µV ,c
δc − 1

Finally, we can modify the human biting rate per mosquito in the presence of LLINs and
IRS. In the absence of interventions, the biting rate is given by:

aV = δQ0

The biting index under intervention is given by:

Qc = 1− 1−Q0

w

where w is the calculated probability from above. Then, using the modified gonotrophic
cycle length previously derived (δc), the modified biting rate is thus:

aV ,c = δcQc

With these definitions in place, we have fully specified the impact of vector control inter-
ventions on mosquito life cycle parameters.
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MGDrivE 3 also includes updated functionality for incorporating seasonal weather pat-
terns. While MGDrivE 2 allows mosquito life history parameters, such as adult and larval
development and mortality rates, to vary with time in response to environmental vari-
ables such as temperature and rainfall [92], the new framework utilizes environmental
data to generate seasonal profiles to modulate these parameters. Rather than using raw
daily rainfall data, which varies from year to year, the Umbrella R package [100] is used
to fit a mixture of sinusoids to the rainfall data. This provides a more general character-
ization of the seasonal trends at a given location, and facilitates comparison across other
locations with similar seasonal patterns. As with MGDrivE 2, development times are
Erlang-distributed, and the model of White et al. [92] is used to modulate larval carry-
ing capacity and hence density-dependent mortality in response to recent rainfall - a key
driver for Anopheles population dynamics.

Traps and spatial surveillance

In MGDrivE 3, the landscape module of MGDrivE 2 has been extended to accommodate
traps as part of the mosquito metapopulation. In MGDrivE and MGDrivE 2, the land-
scape module describes the distribution of mosquitoes across discrete, randomly-mixing
population nodes, with movement between them quantified by a dispersal kernel [89,
92]. MGDrivE 3 additionally accommodates “trap nodes” in one of two ways: i) traps
are placed within a subset of population nodes, and are associated with a probability of
trapping for mosquitoes within the corresponding population node per unit time, and ii)
traps are assigned their own nodes, and are associated with coordinates and an attrac-
tiveness kernel, which includes an amplitude, mean distance of attractiveness, and other
parameters as required by the kernel function. The former case is appropriate for ap-
plications on a larger spatial scale (e.g., where population nodes represent villages that
traps may be placed in), while the latter is appropriate for applications on a finer spatial
scale (e.g., where nodes represent blood, sugar or water sources that traps are placed rel-
ative to). In both cases, the landscape including traps may be generated using MGSurvE
(Mosquito Gene Surveillance) [101]. Here, the number and locations of traps may be user-
specified, along with their trapping probabilities (for the former case) or attractiveness
kernel parameters (for the latter case), which should be chosen according to the types of
traps being modeled. Data analysis functions are provided to visualize the distribution
of mosquitoes having certain genotypes that are captured by each trap over time.

2.3 Results

To demonstrate how MGDrivE 3 can be used to simulate releases of gene drive-modified
mosquitoes, including implications for epidemiological outcomes and surveillance, we
have provided examples and information on GitHub. In the first example, we model
the release of a full gene drive system designed to drive malaria-refractory genes into

https://github.com/amondal2/MGDrivE3-Examples/tree/main/examples
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an An. coluzzii mosquito population with seasonal population dynamics, pre-existing
interventions and transmission intensity calibrated to a setting resembling the island
of São Tomé, São Tomé and Prı́ncipe. The full gene drive system resembles one en-
gineered in An. coluzzii [88], which includes dual linked effector genes targeting the
malaria pathogen, and is one of the most promising population replacement systems in
a mosquito vector to date. While we model this system in a setting chosen largely for its
isolation [102], we note that regulatory and biosafety issues must be considered seriously
for self-propagating systems with the potential to spread beyond their release site [103].

Four alleles are considered at the gene drive locus: an intact drive allele containing
disease-refractory genes (denoted by “H”), a wild-type allele (denoted by “W”), a func-
tional, cost-free resistant allele (denoted by “R”), and a non-functional or otherwise costly
resistant allele (denoted by “B”). The inheritance dynamics of this system were fitted to
laboratory cage data and are provided in Carballar-Lejarazú et al. [88] with model pa-
rameters summarized in Table. Notably, we considered a 10% fitness cost associated with
mosquitoes carrying either one or two copies of the intact drive allele, as there were no
major fitness loads inferred in the An. coluzzii cage experiments [88]; however, fitness
costs due to integration and expression of the gene drive system could become apparent
in the field. Additionally, we assume that mosquitoes carrying either one or two copies of
the H allele confer complete mosquito-to-human transmission blocking, consistent with
data from Carballar-Lejarazú et al. [88] for sporozoite thresholds ≥ 7,500.

The life history module is parameterized with typical bionomic parameters for An. coluzzii
[28, 104], with incorporation of a generalized seasonal profile that modulates certain life
history parameters. In MGDrivE 3, as in MGDrivE 2, the carrying capacity of the envi-
ronment for larvae is a function of recent rainfall, and a mathematical relationship from
White et al. [28] is used to translate local rainfall data to larval carrying capacity; how-
ever, in this example, we capture broad variations in the rainfall profile of São Tomé and
Prı́ncipe using the umbrella [100] package in R, using a shapefile of the national adminis-
trative boundary and a three-year timeframe for rainfall data (Figure 2.2). Otherwise, the
life history module mirrors that of MGDrivE 2, including mean-variance relationships
describing development times of the juvenile life stages [105]. For the purpose of this
demonstration, and to emphasize the novel epidemiological component of MGDrivE 3,
the island of São Tomé was treated as a single randomly mixing population.
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Figure 2.2: Seasonal rainfall profile for São Tomé and Prı́ncipe. Points represent mean
daily rainfall measurements (in mm) for the three years between January 1st, 2017 and
December 31st, 2019. The solid line represents the seasonal rainfall profile, fitted using
the umbrella [100] package in R, used to calculate the time-varying environmental carry-
ing capacity for larvae in the life history module of MGDrivE 3.

The ICL malaria model is parameterized according to published intervention coverage
and transmission levels for São Tomé and Prı́ncipe - an LLIN coverage of 62%, IRS cov-
erage of 66.5%, 2% of symptomatic malaria cases being treated with antimalarial drugs,
and an all-ages P. falciparum prevalence of 2%, according to the World Health Organi-
zation Global Health Observatory (https://www.who.int/data/gho). The LLIN and IRS
coverage parameters modify vector parameters in the life history module, while the anti-
malarial treatment parameter is input directly into the ICL model. Output from the ICL
malaria model is then calibrated to all-ages malaria prevalence in the context of inter-
ventions and the seasonal rainfall profile by multiplying the carrying capacity for larvae
by a constant. Other parameters of the ICL malaria model describe heterogeneity, hu-
man infectious periods, various types of immunity and treatment, and are as described
in the original model [25, 91]. Finally, we note that these simulations are intended to
demonstrate the software’s capabilities and that, while the simulations are calibrated to
data from São Tomé, they are not intended to provide an accurate forecast of gene drive
dynamics on the island, or to imply approval of the intervention by the local population
and regulatory agencies.

Simulation workflow

The code for running this simulation is available here. We begin by loading the MG-
DrivE and MGDrivE 2 packages in R to gain access to the inheritance cubes, mosquito
life history and malaria modeling functionality required for the simulation. Next, we
load the inheritance cube for the TP13 population replacement gene drive system in An.
coluzzii [88]. This specifies the inheritance-biasing properties of the system, as well as
its malaria transmission-blocking effect. Note that there are a variety of other inheritance

https://www.who.int/data/gho
https://github.com/amondal2/MGDrivE3-Examples/blob/main/examples/stp_local.R
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cubes available in the MGDrivE software - e.g., Wolbachia [106], release of insects carrying
a dominant-lethal gene (RIDL) [107], precision-guided sterile insect technique (pgSIT)
[41], population suppression gene drive [56], and remediation systems such as ERACR
(element for reversal of the autocatalytic chain reaction) [85] - and users are also able to
design their own inheritance cubes. Next, we specify general simulation parameters, such
as the simulation length, the timestep of the stochastic model, and the timestep at which
data is output (daily). Fitted reproductive fitness parameters for the TP13 construct in
An. coluzzii [88] are loaded, and a 10% fitness load on male mating competitiveness and
female fecundity is implemented, as described earlier.

Next, we specify details of the epidemiology module - baseline malaria prevalence, hu-
man population size, human age stratification, and coverage levels of LLINs, IRS and
antimalarial drugs. Following this, as with MGDrivE 2, the “places” and “transitions” of
the SPN formulation are set up using the “spn P epi decoupled node()” and
“spn T epi decoupled node()” functions. Equilibrium values of states in the mosquito
and human models are calculated using the “equilibrium Imperial decoupled()” func-
tion, and as the ICL malaria model requires the annual EIR to calculate the state distri-
bution at equilibrium, a function is provided to convert malaria prevalence to EIR. Next,
the seasonal rainfall profile used to calculate the larval carrying capacity time-series (de-
scribed above) is used to calculate time-varying hazard rates for density-independent lar-
val mortality. Custom time-varying hazard functions for larval mortality are provided,
and hazard functions are provided for the mosquito life history and ICL malaria trans-
mission models. The MGDrivE 2 vignette, “Simulation of Time-inhomogeneous Stochas-
tic Processes,” provides instructions for writing user-specified time-varying hazard func-
tions. Finally, we specify the release scheme - genotypes, size and timing of releases -
using an “events” dataframe.

With all model components specified, we call the “sim trajectory R decoupled()” func-
tion to simulate model trajectories. This implements a tau-leaping algorithm to sample
stochastic trajectories, and records daily output to an R dataframe. For further analysis
external to R, we provide functionality to write simulation output to CSV files.

Entomological dynamics

In Figure 2.3, we display a potential visualization scheme for the entomological and epi-
demiological outcomes of the simulated gene drive mosquito release described above.
This figure was generated in Python and is available here. We note that MGDrivE 3 is not
dependent on Python, and the MGDrivE 3 R package provides basic plotting and analysis
functions for model output visualization. In this case, we generated data for 15 stochastic
model repetitions, and the dynamics displayed in Figure 2.3 depict the mean output of
these repetitions. Figure 2.3(A) depicts allele frequencies for adult female mosquitoes
over the simulation period. After eight consecutive releases of 20,000 male mosquitoes

https://github.com/amondal2/MGDrivE3-Examples/tree/main/viz
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homozygous for the TP13 construct (H), the H allele rapidly spreads through the popu-
lation, reaching near-fixation within a few months. This is a result of the high accurate
homing rate, as determined by laboratory experiments [88], relatively low fitness costs
(estimated), and low rate of resistance allele generation. Homing-susceptible wild-type
alleles (W) are quickly eliminated, although a few in-frame and out-of-frame resistance
alleles (R and B, respectively) accumulate since, although they are generated infrequently,
they slightly outcompete the H alleles in terms of fitness. Note that while these dynamics
represent a potential outcome of TP13 gene drive mosquito releases, the dynamics are
highly dependent on the relative fitness of H and R/B allele-carrying mosquitoes, while
are difficult to accurately quantify outside the field.
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Figure 2.3: Example MGDrivE 3 simulations for a full gene drive system designed to
drive dual malaria-refractory genes into an An. coluzzii mosquito population with
seasonal population dynamics, transmission intensity and interventions calibrated to
a setting resembling the island of São Tomé, São Tomé and Prı́ncipe. The gene drive
system resembles one recently engineered in An. coluzzii [88] in which all drive compo-
nents - the Cas9, guide RNA and effector genes - are all present at the same locus. Four
alleles are considered: an intact drive allele (denoted by “H”), a wild-type allele (denoted
by “W”), a functional, cost-free resistant allele (denoted by “R”), and a non-functional or
otherwise costly resistant allele (denoted by “B”). (A) Allele frequencies for adult female
mosquitoes over the simulation period. Grey vertical bars beginning at year two denote
eight consecutive weekly releases of 20,000 male mosquitoes homozygous for both the
gene drive construct. The high efficiency of the drive system and low rate of resistance
allele generation mean that almost no disease-competent An. coluzzii mosquitoes remain
five months after the release. (B) Daily clinical malaria incidence per 100,000 people
partitioned according to age group. Reductions in human incidence within five months
of the release parallel spread of the drive construct in the mosquito population. (C) P.
falciparum malaria prevalence partitioned according to age group. As humans recover
from infection and few develop new infections, the P. falciparum parasite rate declines
until it reaches near undetectable levels by year five.

Epidemiological dynamics

Here, we demonstrate the refined epidemiological outcomes obtained by linking the hu-
man portion of the ICL malaria transmission model to the vector portion of MGDrivE 3.
We depict age-stratified clinical incidence in Figure 2.3(B) and age-stratified prevalence
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in Figure 2.3(C). The rapid spread of the gene drive allele through the An. coluzzii pop-
ulation, and its strong modeled transmission-blocking effect, mean that humans are no
longer exposed to new infectious mosquito bites five months after the beginning of the
release schedule, and hence clinical incidence also falls to zero on this timescale. No-
tably, clinical incidence includes symptomatic cases that are either treated or untreated
(i.e., the TH and DH compartments in the ICL malaria model depicted in Figure 2.1), and
does not include asymptomatic cases that are either detectable or undetectable by RDTs
(i.e., the AH and UH compartments depicted in Figure 2.1). Stochastic variation in clinical
incidence is pronounced due to the small number of incident cases relative to the total
population.

São Tomé is a low-transmission setting with little acquired immunity, so incidence and
prevalence are lower in younger age groups (0-5 and 5-17 years old) due to maternal
immunity and the lesser skin surface area available for mosquito bites. P. falciparum
prevalence includes all diseased states - i.e., symptomatic disease, whether treated or
untreated (TH and DH , respectively), and asymptomatic disease, whether detectable or
undetectable by RDTs (AH and UH , respectively). Prevalence in the human population
takes much longer to decline than incidence, as an individual can harbor P. falciparum
parasites for 1-2 years if left untreated [108], which is common for asymptomatic infec-
tions. These predictions highlight the transformative promise of gene drive interventions
for malaria control; however, we caution that there are several limitations - notably, treat-
ment of São Tomé as a panmictic population of humans and mosquitoes, calibration to
malaria prevalence data that is likely underreported [109], and lack of knowledge of the
fitness and transmission parameters of gene drive mosquitoes in the field, including their
evolution over several years - which preclude the confidence with which such predictions
can be made.

Spatial surveillance

Finally, we demonstrate the capability of MGDrivE 3 to simulate surveillance of mosquitoes
via traps placed throughout a landscape. The code for this example is available here. We
used the MGSurvE framework [101] to optimize the placement of five traps across a spa-
tial network resembling the southern portion of São Tomé, São Tomé and Prı́ncipe. This
landscape is described by Sánchez C. et al. [101] - namely, nodes were sourced from the
São Tomé and Prı́ncipe census and aligned with coordinates from Google Maps. Daily
mosquito movement probabilities were derived using an ecology-motivated algorithm
[110], with model output calibrated to mark-release-recapture experiments on An. gam-
biae sensu lato [111, 112]. Traps were placed within population nodes to represent place-
ment within selected villages, and trapping probabilities were specified, along with the
rest of the landscape, in MGSurvE.

https://github.com/amondal2/MGDrivE3-Examples/blob/main/examples/traps.R
https://projectsportal.afdb.org/dataportal/VProject/show/P-ST-KF0-001
https://www.google.com/maps
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We consider a release in the southernmost population node of the island and monitor
the progression of gene drive phenotypes for trapped mosquitoes over time. As for the
epidemiological simulation, we consider eight weekly releases of male An. coluzzii ho-
mozygous for the gene drive system. We consider a simplified version of the TP13 gene
drive construct [88] with only a single resistance (R) allele. The cutting frequency at the
target site for this construct is 1.0, and the rate of accurate homology-directed repair is
0.99. The inheritance cube is flexible to specify genotype-specific mating fitness, multi-
pliers on adult mortality, male and female pupatory success, and reductions in fertility,
but we do not modify them in this example. We model mosquitoes as accumulating in
traps over the course of a week, after which they are counted and the traps are “reset.”
We also tally gene drive phenotypes when trapped mosquitoes are counted, considering
a marker allele associated with both the intact drive allele (H) and the wild-type target
allele (W) [88]. This allows us to distinguish the following genotypes: HH/HR, WW/WR,
HW, and RR. Figure 2.4 depicts the time-series of gene drive marker phenotypes in each
trap by week, with the time of first detection of a transgenic mosquito indicated by a ver-
tical line for each trap. Output like this will be useful to model surveillance strategies for
the progression of field trials and interventions, and the emergence of alternative alleles
that could interfere with intervention effectiveness [87].
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Figure 2.4: Example MGDrivE 3 simulations for spatial surveillance of a full gene
drive system on the island of São Tomé, São Tomé and Prı́ncipe. Mosquito popula-
tion nodes represent villages and suburbs of comparable size with mosquito movement
probabilities between localities derived from an ecology-motivated algorithm [110] and
calibrated to mark-release-recapture data [111, 112]. Simulation was restricted to the
southern portion of the island, with population nodes including traps depicted in pink
and other population nodes depicted in blue. Traps were placed using the MGSurvE
framework [101]. Eight weekly releases of a full gene drive system (cutting rate of 1.0
and homology-directed repair rate of 0.99) were simulated in the southernmost popula-
tion node of the island, and the phenotype distribution of trapped mosquitoes is depicted
for the five trap nodes in panels a-e. Vertical lines denote the time of first transgene de-
tection for each trap.

2.4 Availability and future directions

MGDrivE 3 is available on CRAN as version 2.1.0 of the MGDrivE 2 package, due to
naming conventions. The source code is under the GPL3 License and is free for other
groups to modify and extend as needed. Mathematical details of the model formulation
are available in the S1 Text. Examples for running MGDrivE 3 simulations are available

https://cran.r-project.org/package=MGDrivE2
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on GitHub, and documentation for MGDrivE 3 functions are available at the MGDrivE 2
project website. To run the software, we recommend using R version 3.1.0 or higher.

We are continuing development of the MGDrivE 3 software package and welcome sug-
gestions and requests from the research community regarding future directions. As gene
drive mosquito projects advance from the lab to the field, we intend our software to ad-
dress the evolving modeling needs of the technology [83] - from contributing to TPPs
[58] and environmental risk assessments [47], to planning field trials, interventions [79,
80] and surveillance programs [87]. The epidemiological extensions offered in MGDrivE
3 will enable more accurate predictions of implications of mosquito genetic control for
disease transmission, which are relevant as an outcome for TPPs, and field trial and in-
tervention planning. This will also enable prediction of the impact of genetic control
interventions alongside other currently-implemented interventions such as LLINs, IRS
and ACTs. The surveillance extensions included in MGDrivE 3 will enable assessment of
mosquito trapping schemes to both: i) measure the effectiveness of genetic control strate-
gies in the field, and ii) detect unintended spread of gene drive alleles beyond field sites,
and the emergence of alternative alleles broadly [87].

Logistical modeling questions are invariably associated with larger state spaces - more
genotypes to keep track of, more human and mosquito disease states, and larger metapop-
ulation networks - which quickly approach the computational limits of the modeling
framework. To address this, we are exploring numerical sampling algorithms to in-
crease computational efficiency and speed, and the use of lower-level programming lan-
guages such as C++. We are also interested in linking the vector portion of MGDrivE 3
to other epidemiological models that capture human transmission dynamics more com-
prehensively - e.g., dengue models that incorporate multiple serotypes with temporary
cross-protective immunity and complications related to antibody-dependent enhance-
ment [95], and individual-based malaria transmission models that allow sources of het-
erogeneity to be incorporated more comprehensively and for infection history to be di-
rectly associated with immune status [25, 91]. There are also opportunities to adapt the
framework to species of relevance to agriculture and conservation - e.g., enhanced epi-
demiological capabilities could be applied to citrus greening disease transmitted by D.
citri [96], and surveillance functionality could be suitable for models of invasive rodents
on islands [113].

https://github.com/amondal2/MGDrivE3-Examples/tree/main/examples
https://marshalllab.github.io/MGDrivE/docs_v2/index.html
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Chapter 3

Model-informed target product profiles
of population modification gene drive
for malaria control

3.1 Introduction

Malaria continues to pose a major public health burden throughout much of the world,
especially in sub-Saharan Africa, where over 90% of the cases and deaths occur [5].
Despite the wide-scale distribution of insecticide-based interventions and antimalarial
drugs beginning in 2000, malaria persists at an unacceptably high level [114], and it is
clear that new tools will be needed for continued reductions in disease incidence and
mortality. Two of the most promising novel tools at present are malaria vaccines and
gene drive-modified mosquitoes. Gene drive approaches bias inheritance in favor of an
introduced allele intended to spread through the mosquito population, and fall into two
main categories: i) “population suppression,” whereby the introduced allele induces a
fitness load or sex bias, reducing mosquito numbers, and ii) “population modification,”
whereby the introduced allele disrupts pathogen transmission, reducing mosquito vec-
tor competence [37]. Candidate constructs for both approaches have been developed in
the laboratory - most notably: i) a CRISPR-based system that targets the doublesex gene
in Anopheles gambiae, the main African malaria vector, causing sterility in female ho-
mozygotes and inducing collapse of cage populations [56], and ii) CRISPR-based systems
carrying dual antimalarial effector genes in An. gambiae and Anopheles coluzzii, demon-
strating rapid spread through cage populations [88]. Discussions regarding field trials of
these systems are currently underway [115].

In order for gene drive mosquitoes to advance from the laboratory to environmental re-
lease, their characteristics will be assessed against target product profiles (TPPs) - plan-
ning tools that provide a list of preferred characteristics and minimum criteria products
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must satisfy as they progress through the development pipeline. TPPs have recently been
developed for a range of new malaria and vector control tools - including attractive tar-
geted sugar baits (ATSBs) [26], long-acting injectable drugs [65], and malaria vaccines
[63]. For mosquitoes engineered with low-threshold gene drive systems, developing and
satisfying TPP criteria is particularly important given the potential for transgenes to be-
come established in local mosquito populations following a release, and the expected
difficulty of remediation efforts in the event of undesired outcomes or a shift in public
opinion [103]. A draft TPP has been proposed for population modification gene drive
products [59], and a workshop hosted by the Foundation for the National Institutes of
Health (FNIH) discussed TPPs for gene drive products at length [57]. These preliminary
discussions suggest a 20-50% reduction in clinical malaria incidence as a target outcome
for a gene drive release, alongside a rate of spread that would produce this impact within
the time frame of a field trial (less than a year), and a duration of impact of at least three
years. These target outcomes are subject to change pending wider stakeholder input.

Mathematical models will necessarily inform TPP criteria for gene drive mosquitoes,
as key target outcomes are primarily epidemiological (e.g., reductions in clinical inci-
dence of malaria) and can only be observed following a release [58]. Models are therefore
needed to infer target parameter values for gene drive mosquito products, such as rates
of homing and resistance allele generation, based on target epidemiological outcomes in
the context of a given release scheme and setting of interest. Fortunately, over the last
15 years, there has been a growth in the field of malaria modeling, with several detailed
models being developed that concisely describe malaria transmission dynamics in the
mosquito vector and human host [25, 31, 77]. Concurrently, and particularly since the
advent of CRISPR-based gene editing, several modeling frameworks have been developed
to describe the population dynamics of mosquito genetic biocontrol tools [79, 89, 116].
Most relevant to TPPs, Leung et al. [34] used the EMOD malaria model to infer parameter
values for population modification gene drive systems expected to eliminate malaria in
low-to-moderate transmission settings in the Sahel, West Africa. The Imperial College
London (ICL) malaria model has also been used to model epidemiological outcomes of
population suppression and modification gene drives [117, 118].

Here, we investigate parameter values for population modification gene drives that sat-
isfy the epidemiological target outcomes outlined by James et al. [57] - namely, a 50%
reduction in clinical malaria incidence for a duration of at least three years, and a time
to impact of less than a year. These outcomes represent the most demanding criteria
specified by James et al. [57] to reflect the fact that models, as a simplified representa-
tion of the real world, may potentially overestimate the success of a tool that has not yet
been field tested. To seed the population with the gene drive system, we simulate eight
consecutive weekly releases of gene drive-modified An. gambiae, and consider this along-
side existing interventions - long-lasting insecticide-treated nets (LLINs), indoor residual
spraying with insecticides (IRS), and artemisinin combination therapy drugs (ACTs). We
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consider two African settings where gene drive mosquitoes are being actively researched,
representing distinct seasonality and intervention profiles - Burkina Faso and Kenya -
and consider three transmission settings at each (high, medium and low). To character-
ize the gene drive construct, we consider parameters describing homing and resistance
allele generation rates, the efficacy of the antimalarial effector gene, and fitness costs of
gene drive and resistance alleles. We sample plausible ranges for each parameter and use
the MGDrivE 3 model of mosquito genetic biocontrol [117], which incorporates a version
of the ICL malaria transmission model [25, 61], to calculate epidemiological outcomes.
Through analyzing the main drivers of target outcomes, we provide an assessment of
gene drive parameter values expected to satisfy TPP criteria, and discuss implications for
future development efforts and field measurements.

3.2 Methods

The impact of a population modification gene drive mosquito on malaria transmission
will depend on both its product parameters and release setting. With this in mind, we
explored the performance of a gene drive at reducing malaria transmission for a range
of parameters (rates of homing and resistance allele generation, transmission-blocking
efficacy, and fitness effects, Figure 3.1A) in six distinct settings (sites resembling Burkina
Faso and Kenya in terms of seasonal rainfall profile and intervention coverage, with three
transmission intensities for each, Figure 3.1B). By randomly sampling a set of gene drive
parameters for each setting, a set of simulations were defined and run (Figure 3.1C-D)
and outcomes of interest were extracted from the simulation output (Figure 3.1E). An
emulator was then trained with data from the simulation bank to predict disease out-
comes given input parameters [78]. Finally, the emulator was employed to conduct a
sensitivity analysis and determine gene drive parameter ranges that satisfy TPP criteria
(Figure 3.1F).
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Figure 3.1: Workflow to assess target product profile of gene drive-modified
mosquitoes. (A) We consider a population modification gene drive system linked to
an antimalarial effector gene with a defined transmission-blocking efficacy (bH ). When
present in a heterozygote, the gene drive allele (H) cleaves a wild-type allele in the germ
line, either converting it into an H allele through homology-directed repair (at a defined
homing rate, h), or into a resistance allele that is either in-frame/cost-free (R, with prob-
ability pR), or out-of-frame/otherwise costly (B). Fitness costs are defined for H and B
alleles (sH and sB, respectively). For each gene drive parameter, a distribution of values
are defined and sampled. (B) Simulations are performed for two settings (Burkina Faso
and Kenya) and three transmission settings (entomological inoculation rates of 100, 50
and 10 infective bites per person per year). Settings are defined by their seasonal rainfall
profile and coverage of currently-available tools - long-lasting insecticide-treated nets
(LLINs), indoor residual spraying with insecticides (IRS), and artemisinin combination
therapy drugs (ACTs). (C) Simulations are run using the MGDrivE 3 modeling frame-
work [117], which includes modules for gene drive inheritance, mosquito life history and
malaria epidemiology. (D) Malaria transmission is modeled according to the Imperial
College London malaria model [25, 26]. (E) For each sampled parameter set and setting,
gene drive allele frequencies and clinical malaria incidence are recorded for six years.
Window of protection (WOP, the duration for which clinical incidence is below 50% its
seasonal mean) and time to impact (TTI, the time from initial release to clinical malaria
incidence falling to 50% its seasonal mean) are recorded as outcomes of interest. (F) Neu-
ral network emulators are trained using gene drive parameter values (bH , h, pR, sH and
sB) and outcomes (WOP and TTI) for each setting. Emulators are then used to calculate
the importance of each parameter in predicting WOP and TTI, and to infer regions of
gene drive parameter space that satisfy WOP greater than three years and TTI less than
one year.
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Gene drive and malaria transmission model

We used the MGDrivE 3 framework [117] to simulate releases of An. gambiae mosquitoes
engineered with a population modification gene drive system and linked antimalarial
effector gene. MGDrivE 3 is a stochastic, population-based model that simulates the pop-
ulation dynamics of mosquito genetic control tools and their entomological and epidemi-
ological implications. The framework includes: i) an inheritance module that describes
the distribution of offspring genotypes for given maternal and paternal genotypes, ii)
a life history module that describes the development of mosquitoes from egg to larva
to pupa to adult (Figure 3.1C), and iii) an epidemiology module that describes recipro-
cal pathogen transmission between mosquitoes and humans (Figure 3.1D). A landscape
module that describes the distribution and movement of mosquitoes through a metapop-
ulation is also included, but was not utilized for this analysis. Seasonality in mosquito
density is incorporated through time-dependent mosquito bionomic parameters, which
are responsive to environmental data. In the present analysis, data on recent rainfall (Fig-
ure 3.1B) modulates the carrying capacity of the environment for larvae, which in turn
impacts adult mosquito density and malaria transmission.

The MGDrivE 3 framework is linked to an adapted version of the Imperial College Lon-
don (ICL) malaria transmission model [25, 26] (Figure 3.1D). The ICL malaria model
has been fitted to extensive data sets throughout sub-Saharan Africa and captures impor-
tant details of malaria transmission, including symptomatic and asymptomatic infection,
variable parasite density and superinfection in humans, human age structure, mosquito
biting heterogeneity, several forms of immunity, and antimalarial drug therapy and pro-
phylaxis. Treatment coverage with ACTs is captured within the ICL malaria model, while
coverage with vector control interventions, such as LLINs and IRS, is captured within the
mosquito life history module of MGDrivE 3. Here, mosquito life history parameters are
modified to reflect the fact that LLINs and IRS increase the mortality rate and decrease
the biting rate of adult mosquitoes, and also decrease the egg-laying rate by virtue of
extending the gonotrophic cycle [25, 70]. Gene drive interventions are therefore mod-
eled in the context of existing coverage with ACTs, LLINs and IRS (Figure 3.1B). The ICL
malaria model permits monitoring a variety of health outcomes - e.g., clinical disease in-
cidence, prevalence and mortality by age group. We focused on all-ages clinical incidence
of malaria for this analysis.

Gene drive product parameters and release scheme

MGDrivE 3 allows for flexible specification of genetic constructs and release schemes.
To model a generic population modification gene drive, we consider an inheritance cube
involving a homing allele (H), wild-type allele (W), and two varieties of homing-resistant
alleles - one that is in-frame and cost free (R), and another that is out-of-frame or oth-
erwise costly (B) (Figure 3.1A). Inheritance cubes were introduced in the first version of
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MGDrivE [89] and describe the distribution of offspring genotypes given parental geno-
types. This inheritance cube has been used to model population modification gene drives
in Anopheles stephensi [119], An. gambiae sensu lato [117, 120], and other species [121,
122]. In this cube, Mendelian inheritance rules apply at the gene drive locus, with the
exception that, for adults heterozygous for the H and W alleles, a proportion, c, of W al-
leles are cleaved, while a proportion, 1− c, remain as W alleles. Of those that are cleaved,
a proportion, h, are subject to accurate homology-directed repair (HDR) and become H
alleles, while a proportion, 1 − h, become resistance alleles. Of those that become resis-
tance alleles, a proportion, pR, become R alleles, while the remainder, 1 − pR, become B
alleles. Each of these parameters may differ depending on the sex of the HW individual;
however, to reduce dimensionality, we did not consider sex-specific parameters in this
analysis. Fitness effects may be associated with any genotype, however, to reduce dimen-
sionality, we considered just two fitness parameters - sH , which represents reductions in
female fecundity and male mating competitiveness associated with being homozygous
for the H allele, and sB, which represents the same costs associated with being homozy-
gous for the B allele. Fitness costs are assumed to be additive. Finally, the H allele is
assumed to be linked to an antimalarial effector gene, and bH represents the probability
of mosquito-to-human infection for a mosquito having at least one copy of the H allele.

For each gene drive parameter, a distribution of values are defined and sampled from to
inform the TPP analysis (Figure 3.2). Given perfect or near-perfect cleavage of W alleles
in HW heterozygotes for recent An. gambiae gene drive constructs [88, 123], we assume
a cleavage rate, c, of 1, removing the need to explore this parameter. Probabilities of
accurate HDR, h, tend to be high for Anopheles gene drives - e.g., ∼ 0.98 for AcTP13 in An.
coluzzii females and males [88], and 0.96 and 0.98 for AgNosCd-1 in An. gambiae females
and males, respectively [123]. We explore a wider range of homing rates between 0.8 and
1.0 for this TPP analysis, to explore whether smaller rates than those observed may also be
acceptable. The proportion of resistance alleles that are in-frame/cost-free (R), pR, varies
depending on the construct, and whether the resistance allele is formed in the gametocyte
(e.g., via non-homologous end-joining) or embryo (following maternal deposition of Cas)
[124]. For AsMCRkh2 in An. stephensi, models fitted to data were consistent with 0.005
of generated resistance alleles being R in gametocytes and 0.22 being R in embryos [125].
For Reckh in An. stephensi, fitted models suggested the proportion of R resistance alleles
to be 0.17 in both gametocytes and embryos [119]. These estimates are consistent with
about a third of mutations preserving the reading frame, and some fraction of those being
cost-free (i.e., R). We define an exponential distribution for pR with a mean of 0.11 to
reflect 86% of values being between 0 and 0.22. To reduce dimensionality, we ignore
maternal deposition of Cas in this analysis, as model analyses of the AgTP13 and AcTP13
constructs suggest gene drive outcomes are insensitive to the stage of resistance allele
generation [88].
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Figure 3.2: Gene drive and setting parameters used for implementation experiments.

Fitness costs corresponding to gene drive alleles are somewhat hypothetical at present as
they are yet to be estimated in the field, and laboratory estimates are of limited relevance.
For AcTP13 in An. coluzzii, for instance, laboratory studies suggest that the H allele has
a fitness advantage over the W allele [88], which is unlikely to be realized in the field.
In other cases, laboratory studies reveal approaches to minimize fitness costs - for AsM-
CRkh2 in An. stephensi, fitted models were consistent with a fitness cost on H of 0.08
per allele, and a fitness cost on B of 0.18 per allele [125], but when the target kynurenine
hydroxylase gene was recoded in the Reckh construct, fitted models suggested a fitness
cost on H was no longer present [119]. Given the uncertainty surrounding fitness costs
in the field, we consider additive fitness costs between 0 and 0.2 per allele for both H
and B alleles; or equivalently, homozygous fitness costs, sH and sB, between 0 and 0.4
for HH and BB individuals, respectively. The transmission-blocking efficacy of potential
antimalarial transgenes is also quite hypothetical at present, as measurements have been
made of parasite life stages in the vector; but not of onward transmission to human hosts
[88, 126]. The probability of mosquito-to-human infection for a wild-type mosquito, b,
is estimated at 0.55 [127]. Antimalarial effectors in the AgTP13 and AcTP13 constructs



46

reduce sporozoite density in mosquito salivary glands and, under various assumptions
about sporozoite densities required for infection, produce mosquito-to-human infection
probabilities, bH , between 0 and 0.32 [88]. We define an exponential distribution for bH
with a mean of 0.16 to reflect 86% of values being between 0 and 0.32.

Finally, we consider a release scheme consisting of eight consecutive weekly releases of
20,000 HH male An. gambiae released at the beginning of the rainy season in each setting.
In Burkina Faso, these releases represent an initial population frequency of 0.16 (low
EIR), 0.011 (medium EIR) or 0.0024 (high EIR), and in Kenya of 0.28 (low EIR), 0.017
(medium EIR) or 0.0045 (high EIR) as the seasonal rains begin.

Simulated settings, seasonality and other interventions

Using MGDrivE 3, which incorporates the ICL malaria model, we simulate two African
settings where gene drive mosquitoes are being actively researched - Burkina Faso and
Kenya - and consider three transmission settings for each. Rainfall is a major driver of
An. gambiae population dynamics, and these two countries have distinct seasonal rain-
fall patterns - Burkina Faso has a single rainy season from May through September, while
Kenya has a “long rains” season from March through May and a “short rains” season
from October through December. Figure 3.1B depicts smoothed rainfall profiles for each
country derived using the “umbrella” R package [100]. This package fits a mixture of
sinusoids to daily rainfall data from the CHIRPS (Climate Hazards Group Infrared Pre-
cipitation with Station) database, here representing the three years between January 1st,
2017 and December 31st, 2019. In MGDrivE 3, recent rainfall modulates the carrying
capacity of the environment for larvae via a mathematical relationship from White et al.
[28]. To maintain a persistent An. gambiae population throughout the year, we assume
larval carrying capacity in the dry season is 5% that of the peak rainy season, qualitatively
consistent with entomological data from Burkina Faso [128] and Kenya [129] suggesting
vector breeding sites are substantially less abundant during the dry season.

The simulated settings are also characterized by their coverage of existing interventions -
LLINs, IRS and ACTs - which are modeled alongside gene drive releases. Country-specific
coverage levels for these interventions were obtained from the Malaria Atlas Project [130]
and are included in Figure 3.2. Coverage levels with LLINs and IRS modify the mortality,
biting and egg-laying rates of adult mosquitoes based on the model of Le Menach et al.
[70]. Finally, we consider three transmission intensities for each setting - EIRs (entomo-
logical inoculation rates) of 100 (high), 50 (medium), and 10 (low) infectious bites per
person per year. Time-varying mosquito density was scaled to produce each EIR prior to
the gene drive release, accounting for seasonal rainfall profiles and coverage with exist-
ing interventions. Simulations were run for a human population size of 1,000, consistent
with a medium-sized Burkinabe or Kenyan village.
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Target outcomes and metrics

The primary metric for this TPP analysis is model-predicted all-ages clinical incidence of
malaria, i.e., the number of new symptomatic malaria cases per day across all age groups.
For each simulation, this is generated as a time-series, and two target outcomes are de-
rived: i) window of protection (WOP), which measures the duration for which clinical
incidence is below 50% its seasonal mean, and ii) time to impact (TTI), which measures
the time from initial release to clinical malaria incidence falling to 50% its seasonal mean
(Figure 3.1E). Calculation of clinical incidence at time t, Inc(t), follows from the ICL
malaria model [25, 26],

Inc(t) =
∑
a∈A

λH,a(t)ϕa(t)(Sa(t) +Aa(t) +Ua(t))

Here, λH,a(t) represents the force of infection on humans (probability of infection per
person per unit time) for age group a at time t, ϕa(t) represents the probability of acquir-
ing clinical disease upon infection for age group a at time t (this depends on age-specific
immunity levels in the population), and Sa(t), Aa(t) and Ua(t) represent the number of
people in age group a who are either susceptible, asymptomatic but detectable by rapid
diagnostic test (RDT), or asymptomatic and undetectable by RDT, respectively, at time t.

As secondary metrics for the TPP analysis, we also calculated all-ages malaria prevalence
and malaria-induced mortality over time, calculating WOP and TTI outcomes for each.
Malaria prevalence, also referred to as the Plasmodium falciparum parasite rate (PfPR),
refers to the proportion of the human population that harbors the malaria pathogen,
regardless of symptoms or treatment status. For the ICL malaria model [25, 26], this is
given by,

P f P R(t) =
∑
a∈A

(Aa(t) +Ua(t) + Ta(t) +Da(t))/NH

Here, NH represents the total human population size, Aa(t) and Ua(t) are as previously
defined, and Ta(t) and Da(t) represent the number of people in age group a who are symp-
tomatically infected and either treated or untreated (diseased), respectively, at time t.
Finally, for the ICL model [25, 26], malaria-induced mortality is proportional to the inci-
dence of severe malaria at time t, and is given by,

µ(t) = v
∑
a∈A

λH,a(t)θa(t)(Sa(t) +Aa(t) +Ua(t))

Here, θa(t) represents the probability of acquiring severe disease upon infection for age
group a at time t (this depends on age-specific immunity levels in the population), and
v represents the probability of death for a case of severe disease. The derivation and
parameterization of this formula is provided in Griffin et al. [91].
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Neural network emulator to predict epidemiological impact

In order to rapidly search gene drive parameter space to infer the impact of product
parameters on epidemiological target outcomes, we used a database of MGDrivE 3 simu-
lations to train a neural network emulator for each EIR and country setting. To generate
the simulation database, we sampled 3,000 gene drive parameter sets per setting/EIR
using a Latin hypercube sampling scheme and the parameter distributions specified in
Figure 3.2. This provided a total of 18,000 simulations (3,000 parameter sets x 2 settings
x 3 EIRs). Each simulation was run ten times, with the mean outcome being recorded,
to avoid outliers given the stochastic nature of the model. Input parameters to the neu-
ral network for each setting/EIR are those listed in Figure 3.2, i.e.: i) the homing rate, ii)
proportion of resistance alleles that are in-frame/cost-free, iii) fitness cost on HH individ-
uals, iv) fitness cost on BB individuals, and v) probability of mosquito-to-human trans-
mission for mosquitoes having the effector gene. Output parameters were the WOP and
TTI for the three outcome metrics described in the previous section - clinical incidence of
malaria, malaria prevalence, and malaria-induced mortality. The emulators were trained
on 90% of the simulation data and evaluated on a 10% hold-out test set. Python pack-
ages “tensorflow” and “keras” were used to build each emulator. The emulation utilized
a simple feed-forward architecture with {32, 32} nodes in each fully-connected, hidden
layer and rectified linear unit activation functions between each hidden layer.

Feature importance and target product profile

To assess the relative importance of each gene drive product parameter on the WOP and
TTI target outcomes, we calculated their “feature importance” using the permutation
feature importance method (Figure 3.1F). Permutation feature importance measures the
decrease in a model score when a single feature value is shuffled, decoupling it from its
outcome. The decrease in model score conveys the relative importance of the shuffled
feature on the model’s outcome on a 0-1 scale. We used the Python package “scikit-learn”
to calculate feature importance scores. Having identified the most important gene drive
product parameters, we next used the emulator to identify regions of parameter space
that satisfy TPP criteria - i.e., a WOP greater than three years, and a TTI less than one year.
TPP criteria were identified for each setting/EIR combination, and for each of the three
outcome metrics - clinical malaria incidence, malaria prevalence and malaria-induced
mortality.
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3.3 Results

Target outcomes are most influenced by gene drive allele fitness cost
and probability of mosquito-to-human infection

We found a consistent ordering of gene drive product parameters when assessing feature
importance for both WOP and TTI outcomes for the clinical malaria incidence metric,
regardless of country setting, EIR or target outcome (Figure 3.3). The most influential
parameter in all cases was the fitness cost associated with the intact gene drive allele,
sH . Following this was the mosquito-to-human infection probability, bH , for mosquitoes
having the gene drive allele and hence effector gene(s). Notably, the homing rate, h, or
rate of accurate HDR given cleavage, was consistently the least influential of all product
parameters explored. This is likely due to the high inheritance bias associated with the
gene drive allele for the full range of homing rates explored - i.e., from 0.8 to 1 - despite
the lower bound of this range being substantially lower than values published for recently
engineered population modification gene drives in Anopheles species [56, 88, 119, 123,
125]. Of moderate influence were resistance allele parameters - the fitness cost associated
with out-of-frame or otherwise costly resistance B alleles, sB, followed by the proportion
of generated resistance alleles that are in-frame and cost-free, pR.
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Figure 3.3: Feature importance of gene drive product parameters. Permutation fea-
ture importance values are depicted for gene drive product parameters for two country
settings (Burkina Faso and Kenya), three transmission intensities (entomological inocula-
tion rates of 100, 50 and 10 per person per year), and two target outcomes - (A) window
of production (i.e., the duration for which clinical incidence is below 50% its seasonal
mean), and (B) time to impact (i.e., the time from initial release to clinical malaria in-
cidence falling to 50% its seasonal mean). Parameters explored include: i) the fitness
cost associated with being homozygous for the gene drive (H) allele, ii) the probability
of mosquito-to-human transmission for mosquitoes having the H allele with linked an-
timalarial effector gene(s), iii) the fitness cost associated with being homozygous for the
out-of-frame or otherwise costly B resistance allele, iv) the proportion of generated resis-
tance alleles that are in-frame and cost-free (R), and v) the homing rate, or rate of accurate
homology-directed repair given cleavage. Permutation feature importance is calculated
on a 0-1 scale.
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While the ordering of gene drive product parameters with respect to feature importance
is consistent, their relative magnitudes vary depending on country setting, EIR and tar-
get outcome (Figure 3.3). H allele fitness cost, for instance, has more than double the
feature importance magnitude than the next most influential parameter when consider-
ing the WOP outcome for clinical malaria incidence, regardless of country setting or EIR;
however for the TTI outcome, mosquito-to-human infection probability is a close second
in feature importance for high EIRs in both countries and medium EIRs in Kenya. For
the TTI outcome, there is also a consistent increase in magnitude of feature importance
for resistance allele parameters (B allele fitness cost and proportion of R resistance alle-
les) with declining EIR; however for the WOP outcome, the feature importance of these
parameters remains small across all country settings and EIRs. WOP and TTI feature im-
portance plots for all-ages malaria prevalence and malaria-induced mortality outcomes
are shown in Figure 3.4 and Figure 3.5, respectively.
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Figure 3.4: Feature importance of gene drive product parameters. Permutation fea-
ture importance values are depicted for gene drive product parameters for two country
settings (Burkina Faso and Kenya), three transmission intensities (entomological inocula-
tion rates of 100, 50 and 10 per person per year), and two target outcomes - (A) window
of production (i.e., the duration for which malaria prevalence is below 50% its seasonal
mean), and (B) time to impact (i.e., the time from initial release to malaria prevalence
falling to 50% its seasonal mean).
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Figure 3.5: Feature importance of gene drive product parameters. Permutation fea-
ture importance values are depicted for gene drive product parameters for two country
settings (Burkina Faso and Kenya), three transmission intensities (entomological inocula-
tion rates of 100, 50 and 10 per person per year), and two target outcomes - (A) window of
production (i.e., the duration for which malaria-induced mortality is below 50% its sea-
sonal mean), and (B) time to impact (i.e., the time from initial release to malaria-induced
mortality falling to 50% its seasonal mean).
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Trade-offs between gene drive allele fitness cost and probability of
mosquito-to-human infection

To characterize regions of gene drive parameter space that satisfy TPP outcome criteria,
we visualize WOP for a > 50% reduction in clinical malaria incidence as it varies with the
four most influential product parameters - sH , bH , sB and pR - for both country settings
and three EIRs for each (Figure 3.6). We dropped the homing rate parameter, h, from
this analysis since all proposed outcome criteria were found to be insensitive to its value
within the range 0.8 to 1. We set the default value for h to be 0.95, as this is a relatively
high homing rate that is exceeded for all constructs, in both female and male lines, that
are currently being considered for malaria vector control [56, 88, 119].

Results in Figure 3.6 suggest a trade-off between gene drive allele fitness cost, sH , and
effector gene efficacy, bH , for satisfying clinical malaria incidence WOP criteria. For most
settings (country and EIR), there are scenarios in which the WOP exceeds three years
for an infection probability of bH ≤ 0.3 in the absence of a gene drive fitness cost, and
for an infection probability bH ≤ 0.1 in the presence of a fitness cost of sH ≤ 0.1. If the
target outcome is relaxed to a WOP exceeding two years, for most settings (country and
EIR), there are scenarios in which this outcome is satisfied for an infection probability of
bH ≤ 0.3 in the absence of a gene drive fitness cost, for an infection probability bH ≤ 0.2
in the presence of a fitness cost of sH ≤ 0.1, and for perfect transmission-blocking in the
presence of a fitness cost of sH ≤ 0.2. That is, higher gene drive allele fitness costs can
be tolerated for lower infection probabilities (i.e., higher effector gene efficacies). Results
for moderate-to-high EIRs (50-100 infective bites per person per year) are relatively con-
sistent; however, for low-to-moderate EIRs (10-50 infective bites per person per year),
slightly higher infection probabilities can be tolerated for the same gene drive allele fit-
ness cost.

Gene drive parameter values that satisfy WOP criteria for malaria-induced mortality re-
flect those for clinical malaria incidence, partly due to the fact that malaria-induced mor-
tality is calculated as a proportion of the incidence of severe malaria, which differs from
the incidence of clinical malaria by only one term. That said; WOP criteria for malaria-
induced mortality are satisfied for a slightly wider range of gene drive allele fitness and
infection probability parameters, possibly due to the fact that reductions in severe dis-
ease occur more quickly than reductions in clinical disease following an intervention-
induced reduction in transmission. WOP criteria based on the malaria prevalence metric
are more restrictive on gene drive parameter space, likely due to the fact that untreated
malaria infections can last for months to years [108], meaning that the greatest reduction
in prevalence may not be seen until intervention impact begins to wane due to resistance
allele spread in some cases.
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Figure 3.6: Gene drive parameter space satisfying a > 50% reduction in clinical malaria
incidence for defined durations (i.e., window of protection, or WOP). WOPs are de-
picted for two country settings (Burkina Faso and Kenya, defined by their seasonal profile
in Figure 3.1B and intervention coverage profile) and three transmission settings (ento-
mological inoculation rates, or EIRs, of 100, 50 and 10 infective bites per person per year).
Gene drive parameters explored include: i) the fitness cost associated with being homozy-
gous for the gene drive (H) allele, ii) the probability of mosquito-to-human transmission
for mosquitoes having the H allele, iii) the fitness cost associated with being homozygous
for the out-of-frame or otherwise costly B resistance allele, and iv) the proportion of gen-
erated resistance alleles that are in-frame and cost-free (R). The homing rate parameter
is fixed at 0.95, since proposed outcome criteria were found to be insensitive to its value
within a feasible range.
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Gene drive products are favored that generate fewer cost-free R
resistance alleles and B resistance alleles that are more costly

The potential of a gene drive system to persist in a population for a sustained period of
time, once most available wild-type alleles have been cleaved, is dependent on its ability
to compete with drive-resistant alleles. In this sense, resistance allele parameters have a
large impact on WOP criteria. To illustrate this, Figure 3.7 depicts threshold values of sH
and bH below which the clinical malaria incidence WOP exceeds three years, and above
which it does not, for distinct sets of resistance allele parameters - sB and pR. Diagonal
straight lines on this plot represent the trade-off between gene drive allele fitness cost
and probability of mosquito-to-human infection in satisfying the WOP criterion. The
movement of these lines upwards with decreasing values of the proportion of R alleles
and/or increasing values B allele fitness costs implies that, as cost-free resistance alleles
are generated less frequently and as costly resistance alleles are associated with greater
costs, greater drive allele fitness costs can be tolerated and/or lower effector gene effica-
cies.
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Figure 3.7: Threshold gene drive parameter values satisfying clinical malaria inci-
dence window of protection greater than three years. Lines depict values of sH (H allele
fitness cost) and bH (mosquito-to-human infection probability for mosquitoes having the
H allele) below which the clinical malaria incidence window of protection exceeds three
years, and above which it does not. Each line depicts a distinct set of resistance allele
parameters - i.e., sB (B resistance allele fitness cost) and pR (proportion of R resistance
alleles). The homing rate parameter, h, is fixed at 0.95. Threshold parameter values are
depicted for two country settings (Burkina Faso and Kenya, defined by their seasonal
profile in Figure 3.1B and intervention coverage profile) and three transmission settings
(entomological inoculation rates, or EIRs, of 100, 50 and 10 infective bites per person per
year).

The same trends in higher tolerable sH and bH values for smaller pR values and higher
sB values are seen for the alternative outcome metrics - malaria-induced mortality and
malaria prevalence. Threshold parameter values satisfying the malaria-induced mor-
tality WOP criterion closely reflect thresholds for the clinical malaria incidence met-
ric, likely due to the similarity in how mortality (a fraction of severe malaria incidence)
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and clinical malaria incidence are calculated. Threshold parameter values satisfying the
malaria prevalence WOP criterion are more restrictive, especially for EIRs of 50-100 in-
fective bites per person per year. This is again due to the delay in prevalence reductions
being observed as a result of long-lasting untreated malaria infections.

Target gene drive parameter values are interdependent

Our results demonstrate that target gene drive parameter values are interdependent - i.e.,
the value of one parameter required to achieve a target outcome depends on the values
of others. We therefore consider a range of assumptions and design options for potential
gene drive constructs, and consider target parameters for each (Figure 3.8). Given the in-
sensitivity of target outcome criteria to the homing rate, h, we set this parameter to 0.95,
reflecting constructs currently being considered for malaria vector control [56, 88, 119].
Second, given uncertainty surrounding fitness costs in the field, and especially regarding
resistance alleles, we consider three scenarios for B allele fitness costs, sB: 0.1, 0.2 and 0.4.
Third, for the proportion of resistance alleles that are in-frame/cost-free, pR, we consider
a default value of 1

6 . This is consistent with the estimated value for the Reckh construct
in An. stephensi [119], and also with the ballpark estimate that about a third of mutations
preserve the reading frame, and about half of those are cost-free. We also consider po-
tential reductions in the value of pR achieved through guide RNA multiplexing - i.e., if
multiple guide RNAs (gRNAs) within a drive construct target multiple nearby sequences
within the target site, then the chance of generating in-frame/cost-free resistance alleles
could be reduced multiplicatively [124, 131]. We consider additional values of pR of 1

6
2

and 1
6

3
representing constructs having two and three gRNAs, respectively. Fourth, given

the promise of current malaria-refractory effector genes available for An. gambiae [88,
126], we consider mosquito-to-human infection probabilities, bH , of 0.01, 0.05 and 0.10.
The probability of mosquito-to-human infection for a wild-type mosquito is estimated
at 0.55 [127], so these represent infection-blocking efficacies of 99%, 91% and 82%, re-
spectively. Finally, we determine threshold parameter values for the H allele fitness cost,
sH , that satisfy the target outcome of a clinical malaria incidence WOP exceeding three
years. Similar thresholds for malaria-induced mortality and all-ages malaria prevalence
are shown in Figure 3.9.
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Figure 3.8: Threshold gene drive allele fitness cost (sH) satisfying clinical malaria
incidence window of protection greater than three years. Results are depicted for the
most conservative setting (Kenya) and EIR (100 infective bites per person per year), and
a homing rate, h, of 0.95.
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Figure 3.9: Threshold gene drive allele fitness cost (sH) satisfying malaria-induced
mortality and all-ages malaria prevalence window of protection greater than three
years. Results are depicted for the most conservative setting (Kenya) and EIR (100 infec-
tive bites per person per year), and a homing rate, h, of 0.95.

3.4 Discussion

Model-informed TPPs for gene drive mosquito products are especially important given
that the epidemiological target outcomes of interest can only be observed following a re-
lease [58], and such a release may be difficult to remediate [103]. Through modeling, we
simulated a broad range of gene drive product parameters for releases in two country set-
tings and at three malaria transmission levels. This allowed us to characterize regions of
gene drive parameter space expected to satisfy target outcome criteria: a 50% reduction
in clinical malaria incidence, a rate of spread that would produce this impact in less than
a year, and a duration of impact of at least three years. We found that the TTI criterion
was automatically satisfied in all cases where the WOP criterion was satisfied, allowing
us to focus on the latter - i.e., a 50% reduction in clinical malaria incidence for a pe-
riod of at least three years. We also explored alternative outcome metrics - reductions
in malaria-induced mortality and prevalence. Reductions in malaria-induced mortality
mirrored those for clinical incidence, while the prevalence metric led to overly restrictive
outcome criteria due to delays in reductions in prevalence resulting from enduring un-
treated infections.
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Regarding gene drive product parameters, we explored rates of homing and resistance
allele generation, fitness costs associated with the gene drive and out-of-frame/costly
resistance alleles, and the efficacy of the effector gene at reducing the probability of
mosquito-to-human infection. Simulations suggest that, for feasible parameter ranges,
target outcomes are notably least influenced by the homing rate, and are most influenced
by fitness costs associated with the gene drive allele, and the efficacy of the effector gene
at reducing transmission. A trade-off between homing allele fitness cost and effector gene
efficacy is apparent in which, for high effector gene efficacies, larger homing allele fitness
costs can be accommodated, and vice versa. Resistance allele parameters are also highly
influential on target outcomes, as they determine how long the gene drive allele per-
sists in the population after most available wild-type alleles have been cleaved. If fewer
in-frame/cost-free resistance alleles are generated, and if out-of-frame/otherwise costly
resistance alleles have larger fitness costs, then a wider range of effector gene efficacies
and home allele fitness costs can be accommodated. Since target parameter values are
interdependent, it is not possible to specify a single TPP threshold for each. We therefore
discuss criteria for each in the following paragraphs.

Fitness of gene drive and resistance alleles are highly influential on
outcome criteria, but difficult to measure prior to a release

In the interests of parsimony, we considered just two fitness parameters in our analy-
sis - sH and sB, which represent fitness costs associated with being homozygous for the
H and B alleles, respectively. Fitness costs were assumed to be additive. Outcomes of
interest, including both TTI and WOP for all three outcome metrics, were found to be
most sensitive to sH , while sB was found to be the third most important parameter. This
presents a conundrum for assessing product readiness according to a TPP because, while
the performance of a gene drive product is highly dependent on these parameters, fitness
is difficult, if not impossible, to measure prior to a field release. Nevertheless, this pro-
vides an incentive for gene drive developers to focus engineering efforts on minimizing
likely gene drive fitness costs, while maximizing likely costs on non-functional resistance
alleles. One approach that seeks to address both criteria is to have the gRNA target site
be an essential gene, while including a copy of this gene within the drive construct. This
approach was employed for the Reckh construct in An. stephensi, for which BB females
were rendered unviable, while lab measurements indicated no fitness cost on the H al-
lele [119]. It has also been employed in Drosophila, described as the home-and-rescue
(HomeR) design, with a similar lab fitness profile [121]. Other approaches to minimizing
H allele fitness cost include using promoters that restrict Cas9 expression to the germline,
hence having little effect on somatic tissue, and choosing gRNA target sites having min-
imal fitness consequences, although this latter approach would also reduce the fitness
costs associated with B alleles.
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As a ballpark, we recommend an H allele fitness cost, sH ,≤ 0.10 for and a B allele fitness
cost, sB,≥ 0.20 for homozygotes which, given our assumptions, implies ≤ 0.05 for H allele
heterozygotes and ≥ 0.10 for B allele heterozygotes. Higher H allele costs and lower B
allele costs are tolerable under permissive values of bH and pR in our model; however,
these thresholds allow other parameters to also vary within a reasonable range while still
satisfying the TPP criteria. Importantly, these should be interpreted as fitness costs sev-
eral generations after a release, by which time these alleles will have introgressed into the
wild genetic background and shed fitness effects associated with the genetic background
of the release strain. This post-introgression fitness should reflect the competition dy-
namics between drive and drive-resistant alleles once the majority of wild-type alleles in
the population have been cleaved, while higher release strain fitness costs prior to intro-
gression may be offset through supplemental releases.

Efficacy of malaria-refractory effector gene is highly influential and
can be measured by proxy

Our results indicate that the efficacy of the malaria-refractory effector gene, bH , is highly
influential on the TTI and WOP outcomes of interest. While this value can be difficult
to measure directly in the field due to lack of resources and adequate field trial control
arms, biological proxies can shed some light onto this parameter. For example, Carballar-
Lejarazú et al. measured sporozoite loads in the salivary glands of TP13 mosquitoes,
and models used these data to infer the reduction in infection potential as compared
to wildtype mosquitoes [88]. Other studies have measured delays in sporozoite devel-
opment, which correlates with reduced proportions of sporozoites that develop within
the mosquito lifetime, and hence the proportion of mosquitoes that become infectious.
Hoermann et al. [126] for example developed an effector mechanism which hampers par-
asite sporogonic development and delays the emergence of infectious sporozoites via a
mitochondria-interrupting gene. This paradigm also conferred a reduction in the lifes-
pan of modified female mosquitoes, thereby reducing infection potential from two angles
[126]. Our results broadly suggest that a focus on robust effector genes is a means by
which replacement gene drive products can achieve TPP criteria in a range of settings.

Rates of homing and resistance allele generation are measurable but
less influential

With respect to the rate of homing, h, and the rate of resistance allele generation, pR, our
models suggest that these values are less influential in achieving WOP and TTI criteria.
These values are, however, more easily measured in a lab setting as compared to fitness
and infection blocking properties. Anopheles gene drive constructs have demonstrated
very high rates of successful homing [88, 123], and therefore may not require additional
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focus by product developers. Similarly, the proportion of resistance alleles varies de-
pending on the construct. For AsMCRkh2 in An. stephensi and Reckh in An. stephensi,
model estimates are consistent with about a third of mutations preserving the reading
frame, and some fraction of those being cost-free (i.e., R). WOP threshold calculations do
suggest that lower rates of resistance allele generation allow for higher fitness cost values
on the H allele, but broadly these gains are minor as compared to reductions in fitness
cost and infection probability.

Modeling framework and limitations

The modeling presented here has provided a quantitative evaluation of gene drive pa-
rameters against conservative TPP criteria, in order to better understand the relationship
between genetic parameters, environment, and expected performance. Our study should
be interpreted within the context of its limitations. In order to maintain parsimony, we
opted to model country-level, single node dynamics. Unlike other work incorporating
fine-scale spatial resolution [34, 79], we only broadly estimate the expected impact of
gene drive releases for a given seasonality and intervention profile. While these models
serve as a useful starting point to understand the epidemiological dynamics associated
with a gene drive’s parameter set, they do not take into account spatial spread, human
mobility, and additional climate drivers of transmission. Understanding spatial dynamics
are important in understanding the extent of a gene drive’s spread and should be consid-
ered for purposes of monitoring and potential remediation in advance of a field trial [47].
Additionally, we are considering the primary malaria vector An. gambiae in these analy-
ses, but there are several malaria vectors such as An. coluzzii and An. stephensi, for which
gene drives have been developed [88, 97, 119]. An understanding of the local vector pop-
ulation in potential field sites can help to further improve model-based estimates of a
gene drive program.

As interest in gene drive products grows, we hope that models can inform the next gen-
eration of these critically important vector control interventions. We continue to refine
our models to suit different constructs, such as suppression-based sterile insect technique
(SIT) [41–43]. TPPs, when deployed carefully, can serve as useful policy planning tools.
As the efficacy of other vector control interventions stagnates [132], we hope that this
work can bolster the dialogue between lab scientists, field trial designers, and commu-
nity stakeholders as gene drive products mature toward the field.
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Chapter 4

Multitask deep learning for the
emulation and calibration of an
agent-based malaria transmission model

4.1 Introduction

Despite progress in recent decades, the burden of malaria remains unacceptably high,
especially in sub-Saharan Africa [133]. Due to numerous factors including seasonal het-
erogeneity, complex immune landscapes, and the spatial distribution of vectors and inter-
ventions, designing effective malaria control strategies is difficult. Mathematical models
of disease transmission can aid in the design of these programs by parameterizing the
scientific processes that underlie transmission in a given setting. For novel interventions
such as genetic vector control tools and updated vaccines [58, 65], for which field data do
not yet exist, mathematical models can bridge the gap between expected outcomes and
intervention parameters. Epidemiological models have been widely employed for uses of
policy planning, prediction, and etiology [25, 27, 33, 91, 117]. These models generally
provide a mechanistic framework by which to understand the progression of a disease
from biological to socio-demographic facets. For vector-borne diseases such as malaria,
the progression of disease represents a complex relationship between vector, host, and
environment. Though simple models of malaria transmission have been used for over a
century [24], in recent years, more complex models have been developed. These mod-
els explicitly parameterize the development of the pathogen in the vector and can take
into account heterogeneity in transmission such as age structure, immunity, species, and
spatial landscape. While these models can accurately describe the processes involved in
disease progression, they tend to require large amounts of computational resources to
estimate parameters for a wide range of outcomes and settings. Additionally, calibrating
(i.e., aligning model parameters) to external field data can be challenging, as exploring
multidimensional parameter spaces can quickly become intractable. Traditionally, tech-
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niques such as Bayesian Markov chain Monte Carlo, sequential Monte Carlo, and approx-
imate Bayesian computation have been employed to fit mechanistic models to data [134–
137]. However, with large parameter and state spaces, these techniques demand large
amounts of computational resources.

Recent literature has proposed the development of machine learning (ML) model “sur-
rogates” or “emulators” to complex disease transmission models [78, 138, 139]. These
models allow for the computationally efficient evaluation and prediction of disease dy-
namics as compared to the original model. While there are many techniques to develop
an emulator model (e.g., long short-term memory networks [140], bidirectional neural
networks [141], and Gaussian processes [142]) we focus here on the application of deep
learning as an emulator for a complex model of malaria transmission. Mathematically,
we are interested in training a deep neural network (DNN) to infer a function mapping a
vector of parameters x to a set of time series outputs yi(t), for i ∈ [1,n] outputs and time
t, where the inputs and outputs correspond to realizations of the original mechanistic
model:

f : x 7→ {y1(t), ..., yn(t)}

Each input parameter set will map to multiple time series outputs simultaneously, lever-
aging methods from multitask learning. In this framework, one neural network predicts
multiple outcomes, allowing the network to learn shared patterns in the simulation data
and eliminate the need to train several emulators separately [143].

With respect to calibration, the trained emulator can be used to rapidly search param-
eter space to identify inputs whose outputs align with reference data, as the evaluation
of trained DNNs is orders of magnitude faster than the underlying mechanistic model.
We develop three separate calibration techniques (drawing on Bayesian and numerical
optimization methodologies) to identify site-agnostic sets of immune parameters whose
simulated outputs align with field data. Finally, as we are interested in the universality of
these biological parameters across study sites, we test the emulator-calibrated parameter
sets against outputs from study sites not seen during training. Thus, in this work, we
show that i) deep learning techniques can act as emulators to complex epidemiological
models, ii) these deep learning emulators can be used to calibrate the underlying mech-
anistic model to field data, and iii) biological parameters identified by the emulator can
capture immune dynamics in study sites not previously seen during training.

4.2 Methods

Malaria transmission model and parameter space

Simulations were conducted using the EMOD framework [31, 32]. EMOD is an agent-
based, stochastic mechanistic model of malaria transmission and incorporates within-



66

host parasite and immune dynamics alongside vector life cycle and human demogra-
phy. Here, we are interested in calibrating parameters associated with adaptive immu-
nity within the host that are stimulated by blood-stage malaria infection. Our ultimate
goal in this study is to identify a universal set of immune factors across eight sub-Saharan
African study sites which closely align with collected parasite density and epidemiolog-
ical outcome data. As such, in order to build a suite of simulations on which the DNN
is trained, we generate 2000 Latin hypercube-sampled parameter sets per site, with 10
stochastic repetitions per set, resulting in 160000 (8 sites x 2000 parameter sets x 10
stochastic repetitions) total simulations. Descriptions of the immune parameters and
their biologically relevant ranges are given in Table 4.1. Following the methodology in
Selvaraj et al. [144], each study site has its own set of vector lifecycle, transmission,
antimalarial intervention, and case management parameters, which remain unchanged
across simulations for a given site. As outputs, we track four channels corresponding
to available reference data: annual clinical incidence by age group, annual P. falciparum
prevalence by age group, asexual parasite density by age group by month, and gameto-
cyte density by age group by month. Each site’s reference data corresponds to a unique set
of age and density bins, and each simulation set outputs the associated outcomes, binned
in alignment with the reference data.
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Parameter Description Range

Antigen switch rate The antigenic switching rate per infected
red blood cell per asexual cycle.

[10−9,1]

Falciparum MSP variants The number of distinct merozoite surface
protein variants for P. falciparum malaria
in the overall parasite population in the
simulation, not necessarily in an individ-
ual.

[1,500]

Falciparum nonspecific types The number of distinct non-specific types
of P. falciparum malaria.

[1,500]

Falciparum PfEMP1 variants The number of distinct Plasmodium fal-
ciparum erythrocyte membrane protein
1 (PfEMP1) variants for P. falciparum
malaria in the overall parasite population
in the simulation.

[1,10000]

Max individual infections The limit on the number of infections that
an individual can have simultaneously.

[6,12]

MSP merozoite kill fraction The fraction of merozoites inhibited from
invading new erythrocytes when MSP1-
specific antibody level is 1.

[0.01,1]

Nonspecific antigenicity factor The nonspecific antigenicity factor that
adjusts antibody iRBC kill rate to account
for iRBCs caused by antibody responses
to antigenically weak surface proteins.

[10−9,1]

Table 4.1: Overview of immune parameters used to generate Latin hypercube samples
with which to simulate.

Data sources

In order to validate the ability of the model emulator to produce epidemiologically rele-
vant outputs, we calibrate the emulator against field data from eight African sites. The
Garki project [145] was a multi-year study in the 1970s. Its goal was to understand the
feasibility of malaria elimination in a sub-Saharan African setting (Nigeria), collecting
parasitology data to supplement epidemiological measurements. Additional field data
from Senegal, Tanzania, and Burkina Faso were used to evaluate the emulator [146–148].
Each reference site recorded data in a structure unique to the site’s resources. The Garki
sites (Matsari, Rafin Marke, and Sugungum) recorded month and age-binned asexual
parasite density, the Senegal (Ndiop and Dielmo) sites recorded age-binned annual clin-
ical malaria incidence, the Burkina Faso sites (Dapelogo and Laye) recorded month and
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age-binned asexual parasite and gametocyte density, and the Tanazania site (Namawala)
recorded age-binned malaria prevalence. With respect to data collection, parasite density
data from the Garki and Burkina Faso sites were collected via microscopy and real-time
quantitative nucleic acid sequence-based amplification (QT-NASBA) respectively [145],
Giemsa stains were used to ascertain malaria prevalence in the Tanzania site [146], and
active surveillance was used to ascertain clinical malaria incidence in the Senegal sites
[147]. Our simulations however record all of these outcomes for each site-specific simu-
lation. In a simulation, we are able to export fine-grained data for a range of outcomes
and aggregate them to match the study site reference data. Then, despite a small ref-
erence dataset, we can train our emulator on multiple outcomes such that it can infer
patterns between the input parameters and each outcome. In the calibration step, when
comparing the emulator’s outputs to the reference data for a site, only the relevant out-
puts are selected and compared. Table 4.2 shows an overview of the associated data for
each study site.

Site name Country Data type

Matsari Nigeria Asexual parasite density by age by month
Rafin Marke Nigeria Asexual parasite density by age by month
Sugungum Nigeria Asexual parasite density by age by month
Ndiop Senegal Clinical incidence by age
Dielmo Senegal Clinical incidence by age
Dapelogo Burkina Faso Asexual parasite, gametocyte density by age by month
Laye Burkina Faso Asexual parasite, gametocyte density by age by month
Namawala Tanzania Malaria prevalence by age

Table 4.2: Overview of study sites and reference data to which the model emulator is
calibrated.

Deep learning architecture

Once the simulation suite had been run, a DNN was trained on top of simulation out-
puts. As stated, our goal is to learn a function f that maps the input space (the immune
parameters and the study site) to the time series for each of the n outcomes:

f : x 7→ {y1(t), ..., yn(t)}

We model f as a feed-forward, multitask neural network with six fully-connected shared,
hidden layers and five fully-connected task-specific layers. Rectified linear units (ReLU)
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were used to introduce nonlinearity into the network, and dropout and batch normal-
ization were used to prevent overfitting. Figure 4.1 shows the architecture of the neural
network. Input features were standardized using min-max scaling and outputs were nor-
malized between 0-1. This allowed us to use a sigmoid activation function to bound the
outputs of the neural network to biologically plausible values:

σ (x) =
1

1 + e−x

y1(t)

yn(t)
...

x

Figure 4.1: Sample architecture for a multitask neural network emulator. Input param-
eters x (i.e., immune parameters described in Table 4.1 are mapped via hidden shared and
task-specific layers simultaneously to time series for epidemiological simulation outputs
{y1(t), ..., yn(t)} described in Table 4.2.

Model training and hyperparameter tuning

Training a neural network involves iteratively optimizing the model’s “weights” (i.e., the
strengths of connection between different layers in the neural network) in order to mini-
mize the discrepancy between model output and training data. Then, the model is eval-
uated on a previously-unseen data subset to evaluate its performance on new values. We
define the loss function as the numerical discrepancy between the neural network’s output
and the training data. While there are many loss functions for different modeling goals, a
widely-used loss function is the ℓ2 loss, corresponding to the mean squared error between
model outputs f (θ⃗) and training data y(θ⃗) for a given set of input parameters θ⃗ and N
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data samples:

L(y(θ⃗), f (θ⃗)) =
1
N

N∑
i=0

(f (θ⃗)i − y(θ⃗)i)
2

In a multitask learning framework, we further segment this loss function per task, such
that the overall goal of training is to minimize the joint loss across n tasks:

L(y(θ⃗), f (θ⃗)) =
∑
i∈n
Li(yi(θ⃗), fi(θ⃗))

Because our emulator is relatively simple, we employ uniform loss weighting, but for
more complex networks, the relative importance of each task’s loss becomes important
[149]. Many methods have been proposed to address balancing the losses between tasks
to ensure the model jointly learns each output type. We use the Adam stochastic gradient
descent algorithm [150] to optimize the emulator’s weights and minimize the multitask
loss function.

A final component of model specification involves the selection of hyperparameters. In
contrast to model weights, which are learned during the optimization process, hyper-
parameters are fixed attributes of the model that are selected prior to training. These
include parameters associated with network architecture (number of hidden layers, num-
ber of neurons per layer), training (learning rate, batch size), and regularization (dropout
probability, weight decay). In order to select hyperparameters for our model, we ran-
domly sampled 100 hyperparameter sets and used the ASHA [151] algorithm to effi-
ciently select the sets that minimized the joint loss on a hold-out data subset after train-
ing. Once the neural network was trained, we were able to evaluate its ability to calibrate
the underlying model to reference data.

Calibration workflow

To assess the emulator’s ability to calibrate the underlying mechanistic model, three cal-
ibration methodologies were tested. These methods involve using the emulator to search
parameter space and compare the output to the field data. Stochastic gradient descent,
Bayesian likelihood maximization, and nearest neighbors approaches were used. Fig-
ure 4.2 shows a schematic workflow of the emulation and calibration process.
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Figure 4.2: Emulation and calibration workflow. First, immune parameters are sam-
pled, and site-specific parameters are specified. Then, the malaria transmission model
(EMOD) is run for all sampled parameter sets. A neural network emulator is trained on
the simulation data. Finally, calibration proceeds by comparing emulated output to field
data.

Stochastic gradient descent

The first calibration approach used numerical optimization techniques to allow the em-
ulator to explore regions of parameter space efficiently and outside the bounds on which
the emulator was trained. At a high level, the algorithm proceeds as follows: 1) first, we
randomly sampled 1000 initial parameter sets, 2) for each parameter set, we evaluated a
loss function comparing the emulated outcomes for the parameter set against the refer-
ence, 3) we updated the parameter sets based on gradient descent (i.e., in the direction
of the gradient of the loss function with respect to the parameters), 4) we iteratively con-
tinued steps 1-3 until a convergence criterion was met. Additionally, parameter values
during optimization were constrained to their biologically plausible values (i.e., integer
parameters were rounded, and all parameters were constrained to be positive). Finally,
we selected the optimized parameter set which leads to the smallest loss value. The key
component of gradient descent is its iterative updating. For a parameter set θ⃗ at iteration
t, its update rule is given by:

θ⃗t+1 = θ⃗t −γ∇L(θ⃗t)

for a learning rate γ and loss function L. This allowed us to explore regions of parameter
space that the emulator was not explicitly trained on. As before, we use the joint ℓ2 loss
function: ∑

s∈S
MSEθ⃗(s, f (θ⃗),ds)),
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where

MSEθ⃗(s, f (θ⃗),ds)) =
1
Ns

N∑
i=0

(f (θ⃗)i − ds,i)2

for sites s ∈ S , emulated outcomes f (θ⃗), and reference data for site ds. We used the Adam
[150] variant of the stochastic gradient descent algorithm to efficiently search parameter
space. We additionally tested different learning rates to ensure the optimization did not
terminate in local extrema.

Bayesian likelihood maximization

Next, we used a Bayesian likelihood-based approach to find the parameter set which max-
imized the joint likelihood across sites as compared to the reference data. This approach,
previously detailed [144, 152, 153], is described briefly here. For each data type, an
initial uniform prior is updated by the simulated (or emulated) outcomes. Then, a likeli-
hood is calculated against the reference data by marginalizing over the true parameter of
the prior distribution. Incidence is modeled as a gamma-Poisson conjugate distribution,
prevalence is modeled as a beta-binomial distribution, and parasite/gametocyte density
is modeled as a Dirichlet-multinomial distribution. For the latter, we show the derivation
of the likelihood, adapted from Gerardin et al. [152]. The likelihood of the parameter set
θ⃗ given the reference data d (which consists of nd total measurements, and k⃗d counts in
each density and age bin) is initially modeled as a symmetric Dirichlet distribution with
multinomial probability p⃗. Then the simulated (or emulated) distribution of counts k⃗s is
used to inform the posterior distribution:

Dir(p⃗ | 1⃗)→Dir(p⃗ | 1⃗ + k⃗s)

Then, the likelihood of the parameter set is approximated by marginalizing over the prob-
ability vector p⃗:

L(θ⃗ | d) = P (d | θ⃗)

=
∫

P (d | p⃗)P (p⃗ | θ⃗)dp⃗

=
∫

Mult(k⃗d | nd , p⃗)Dir(p⃗ | 1⃗ + k⃗s)dp⃗

= DirMult(k⃗d | nd ,1 + k⃗s)

The joint likelihood is the product of likelihoods for each age group, month, study site,
and parasite bin, which is also multiplied with the likelihoods from prevalence and inci-
dence outcomes to obtain the total likelihood of the parameter set. That is, for all sites
s ∈ S , and associated likelihood function Ls(θ⃗|ds) (with site-specific reference data ds), we
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aim to find:
max
θ⃗

∏
s∈S
Ls(θ⃗|ds)

Nearest neighbors

Finally, we tested finding the parameter set which minimized the ℓ2 distance between
emulated outcomes and the reference data across sites, in order to find the parameter set
whose emulated outcomes are nearest to the reference data. As stated previously, the ℓ2
distance is the represents the mean squared numerical discrepancy between two vectors.
Here, the goal is to minimize the total ℓ2 distance given by:

min
θ⃗

∑
s∈S

MSEθ⃗(s, f (θ⃗),ds)),

where

MSEθ⃗(s, f (θ⃗),ds)) =
1
Ns

N∑
i=0

(f (θ⃗)i − ds,i)2

for sites s ∈ S , emulated outcomes f (θ⃗), and reference data for site ds.

New site inference

In addition to evaluating the emulator’s ability to capture epidemiological dynamics
across study sites, we are interested in assessing i) the relationship between site-specific
data and emulator performance, and ii) how applicable chosen parameter sets are to new
study sites. Assessing emulator performance in the context of new field data will be im-
portant in understanding whether an emulator can capture patterns in simulation data
without the need to retrain the entire system. In order to evaluate the inference ability
of the emulator to unseen sites, we train eight emulators on all simulation data except
from an excluded site. We additionally augment the training data with site-specific epi-
demiological parameters such as monthly transmission rates and intervention coverages.
Then, for each study site, we use the emulator not trained on that site to calibrate the
remaining sites. Finally, we compare the simulation outputs corresponding to the cali-
brated parameter set on the site excluded during training. As models are reevaluated as
new field data are obtained, this workflow will allow for an assessment of the emulator’s
ability to capture dynamics in new sites, given sufficient site-specific data are included in
the emulator’s training.

Sensitivity analysis

An area of concern for the developers of emulator models will be the size of the train-
ing dataset. As running complex epidemiological simulations can take long periods of
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time and demand large amounts of computational resources, it will be important to un-
derstand the relationship between the size of the underlying simulation suite and the
performance of the emulator and calibration. To test this, we run the emulation and cali-
bration workflow for various subsets of the full training data and assess the performance
for each subset. 50 replicates were run to understand the variance in performance. Our
goal is to learn the smallest data subset before the emulator performance degrades. For
this initial exploration, we purposefully ran a very large simulation suite, but we hope
that this sensitivity analysis can shed light onto the size of simulation sets required to
minimize computational resources require for future analyses.

4.3 Results

Emulator performance

First, we show the ability of the emulator to capture simulated model dynamics. After
hyperparameter tuning, the final model parameters (shown in Table 4.3) were used to
construct the neural network. Similarly, Table 4.4 shows the final task-specific ℓ2 losses
on a holdout, previously-unseen data subset.

Parameter Description Value

n1 Number of neurons in first shared layer 256
n2 Number of neurons in second shared layer 128
n3 Number of neurons in third shared layer 64
n4 Number of neurons in fourth shared layer 128
n5 Number of neurons in fifth shared layer 256
n6 Number of neurons in sixth shared layer 16
n7 Number of neurons in first task-specific layer 32
n8 Number of neurons in second task-specific layer 32
n9 Number of neurons in third task-specific layer 16
n10 Number of neurons in fourth task-specific layer 256
n11 Number of neurons in fifth task-specific layer 128
γ Learning rate 0.0014
b Batch size 32
p Dropout probability 0.007
λ Weight decay 1.42e − 5

Table 4.3: Overview of final neural network hyperparameters.
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Task Test set loss

Annual clinical incidence by age bin 0.036
Annual P. falciparum prevalence by age bin 0.010
Gametocytemia by age bin by month 0.013
Parasitemia by age bin by month (Matsari, Rafin Marke, Sugungum) 0.013
Parasitemia by age bin by month (Dapelogo, Laye) 0.014

Table 4.4: Overview of task-specific losses of trained emulator.

Calibration

Here, we show the ability of the emulator to calibrate the underlying transmission model
to field (reference) data. Three calibration methodologies were compared: stochastic gra-
dient descent, likelihood, and nearest neighbors. We also show the biological parameters
for each calibration methodology that led to the best-fit to the reference data. We reiter-
ate here that the goal is to find a single set of parameters that results in the best fit to the
reference data across all study sites, comparing the emulator output to the reference.

Stochastic gradient descent

First, we show the calibrated parameter set for the stochastic gradient descent (SGD)
method. As mentioned, this calibration methodology allows us to explore parameter sets
on which the emulator was not explicitly trained. We used the SGD method to find the
parameter set leading to the lowest discrepancy (loss), comparing emulated outputs to
reference data. Then, we ran the original simulation model with the selected parameters
to see the relationship between the selected parameter set, the underlying simulation,
the emulated outcomes, and the reference data. Figure 4.3 shows the calibrated simu-
lation, emulator, and reference data for the Dielmo, Ndiop, and Namawala study sites,
corresponding to the annual incidence and prevalence outcomes, respectively. Figure 4.4
shows the calibrated simulation, emulator, and reference data for the Dapelogo and Laye
study sites, corresponding to density and age-binned, monthly parasitemia and gameto-
cytemia outcomes. Figure 4.5 shows the calibrated simulation, emulator, and reference
data for the Matsari, Rafin Marke, and Sugungum study sites, corresponding to density
and age-binned, monthly parasitemia outcomes. Table 4.5 shows the calibrated parame-
ter set giving rise to the best-fit outcomes.
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Figure 4.3: SGD calibration plots for Dielmo, Ndiop, and Namawala sites. These plots
show the simulation, emulator, and reference data for the study sites corresponding to the
annual clinical incidence and malaria prevalence outcomes, calibrated via the stochastic
gradient descent method.

Parameter Value

Antigen switch rate 6.9e − 04
Falciparum MSP variants 5
Falciparum nonspecific types 160
Falciparum PfEMP1 variants 2663
Max individual infections 11
MSP merozoite kill fraction 0.11
Nonspecific antigenicity factor 0.54

Table 4.5: Best fit immune parameters from SGD calibration.
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Figure 4.4: SGD calibration plots for Dapelogo and Laye sites. These plots show the
simulation, emulator, and reference data for the study sites corresponding to the par-
asitemia and gametocytemia outcomes, calibrated via the stochastic gradient descent
method.
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Figure 4.5: SGD calibration plots for Matsari, Rafin Marke and Sugungum sites. These
plots show the simulation, emulator, and reference data for the study sites corresponding
to the parasitemia outcomes, calibrated via the stochastic gradient descent method.
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Likelihood

Next, we show the calibrated parameter set for the likelihood-based approach to aligning
simulation data with reference data. Figure 4.6 shows the calibrated simulation, emula-
tor, and reference data for the Dielmo, Ndiop, and Namawala study sites, correspond-
ing to the annual incidence and prevalence outcomes, respectively. Figure 4.7 shows
the calibrated simulation, emulator, and reference data for the Dapelogo and Laye study
sites, corresponding to density and age-binned, monthly parasitemia and gametocytemia
outcomes. Figure 4.8 shows the calibrated simulation, emulator, and reference data for
the Matsari, Rafin Marke, and Sugungum study sites, corresponding to density and age-
binned, monthly parasitemia outcomes. Table 4.6 shows the calibrated parameter set
giving rise to the best-fit outcomes.

Figure 4.6: Likelihood calibration plots for Dielmo, Ndiop, and Namawala sites. These
plots show the simulation, emulator, and reference data for the study sites correspond-
ing to the annual clinical incidence and malaria prevalence outcomes, calibrated via the
likelihood method.
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Figure 4.7: Likelihood calibration plots for Dapelogo and Laye sites. These plots show
the simulation, emulator, and reference data for the study sites corresponding to the par-
asitemia and gametocytemia outcomes, calibrated via the likelihood method.
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Figure 4.8: Likelihood calibration plots for Matsari, Rafin Marke and Sugungum sites.
These plots show the simulation, emulator, and reference data for the study sites corre-
sponding to the parasitemia outcomes, calibrated via the likelihood method.
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Parameter Value

Antigen switch rate 0.18
Falciparum MSP variants 154
Falciparum nonspecific types 305
Falciparum PfEMP1 variants 3651
Max individual infections 9
MSP merozoite kill fraction 0.83
Nonspecific antigenicity factor 0.46

Table 4.6: Best fit immune parameters from likelihood calibration.

Nearest neighbors

Finally, we tested was a nearest neighbors approach to calibration. Here we show the pa-
rameter set whose emulated outputs were nearest to the reference data with respect to the
ℓ2 loss criterion. Figure 4.9 shows the calibrated simulation, emulator, and reference data
for the Dielmo, Ndiop, and Namawala study sites, corresponding to the annual incidence
and prevalence outcomes, respectively. Figure 4.10 shows the calibrated simulation, em-
ulator, and reference data for the Dapelogo and Laye study sites, corresponding to density
and age-binned, monthly parasitemia and gametocytemia outcomes. Figure 4.11 shows
the calibrated simulation, emulator, and reference data for the Matsari, Rafin Marke, and
Sugungum study sites, corresponding to density and age-binned, monthly parasitemia
outcomes. Table 4.7 shows the calibrated parameter set giving rise to the best-fit out-
comes.

Figure 4.9: Nearest neighbor calibration plots for Dielmo, Ndiop, and Namawala sites.
These plots show the simulation, emulator, and reference data for the study sites corre-
sponding to the annual clinical incidence and malaria prevalence outcomes, calibrated
via the nearest neighbors method.
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Figure 4.10: Nearest neighbor calibration plots for Dapelogo and Laye sites. These
plots show the simulation, emulator, and reference data for the study sites corresponding
to the parasitemia and gametocytemia outcomes, calibrated via the nearest neighbors
method.
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Figure 4.11: Nearest neighbor calibration plots for Matsari, Rafin Marke and Sug-
ungum sites. These plots show the simulation, emulator, and reference data for the
study sites corresponding to the parasitemia outcomes, calibrated via the nearest neigh-
bors method.



85

Parameter Value

Antigen switch rate 4.6e − 06
Falciparum MSP variants 6
Falciparum nonspecific types 300
Falciparum PfEMP1 variants 1739
Max individual infections 9
MSP merozoite kill fraction 0.67
Nonspecific antigenicity factor 9.4e − 06

Table 4.7: Best fit immune parameters from nearest neighbors calibration.

Sensitivity analysis

Figure 4.12 shows the relationship between the size of the dataset on which the emulator
was trained versus its ability to predict outcomes in a previously-unseen simulation data
subset. Training of ML models is generally the most computationally expensive step in
the inference pipeline, and therefore there is a tradeoff between training models on more
data and resource usage. For more simple models, such as the feed-forward network used
to emulate EMOD, we see that the emulator can learn patterns in the simulation data
even when trained on smaller data subsets. However, for more complex models such as
vision or large language models [154, 155], the size of the training data is more relevant.
Additionally, we see that providing the model with too much training data leads to an
increase in the variance of loss for the unseen data subset, indicating that the model has
overfit (i.e., the model learns noise in the training data and is unable to extrapolate on
unseen data).
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Figure 4.12: Sensitivity analysis for emulator training dataset size.

New site inference

For each study site, an emulator was trained on all simulation data, excluding the data
for the site. Inputs were augmented with site-specific data such as monthly transmis-
sion rates and interventions. Calibration were conducted across all sites (excluding the
new site), and the underlying simulation was run with the calibrated parameters for
all sites. The subsequent figures show results for stochastic gradient descent calibra-
tions. Figure 4.13 shows the calibrated simulation, emulator, and reference data for the
Dielmo, Ndiop, and Namawala study sites, corresponding to the annual incidence and
prevalence outcomes, respectively. Figure 4.14 shows the calibrated simulation, emula-
tor, and reference data for the Dapelogo and Laye study sites, corresponding to density
and age-binned, monthly parasitemia and gametocytemia outcomes. Figure 4.15 shows
the calibrated simulation, emulator, and reference data for the Matsari, Rafin Marke, and
Sugungum study sites, corresponding to density and age-binned, monthly parasitemia
outcomes.
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Figure 4.13: Site-excluded SGD calibration plots for Dielmo, Ndiop, and Namawala
sites. These plots show the simulation, emulator, and reference data for the study sites
corresponding to the annual clinical incidence and malaria prevalence outcomes, cali-
brated via the stochastic gradient descent method, using emulators not explicitly trained
on data from these sites.
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Figure 4.14: Site-excluded SGD calibration plots for Dapelogo and Laye sites. These
plots show the simulation, emulator, and reference data for the study sites corresponding
to the parasitemia and gametocytemia outcomes, calibrated via the stochastic gradient
descent method, using emulators not explicitly trained on data from these sites.
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Figure 4.15: Site-excluded SGD calibration plots for Matsari, Rafin Marke and Su-
gungum sites. These plots show the simulation, emulator, and reference data for the
study sites corresponding to the parasitemia outcomes, calibrated via the stochastic gra-
dient descent method, using emulators not explicitly trained on data from these sites.
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4.4 Discussion and future directions

Here, we have described a workflow to 1) emulate a complex malaria transmission model
using deep neural networks, 2) calibrate the underlying model to reference data using the
emulator, and 3) assess the emulator’s ability to predict outputs for study sites not seen
during training. Through careful sampling of the underlying parameter space, calibra-
tion methodology, and neural network architecture, we have shown that machine learn-
ing alternatives to traditional model calibration techniques (e.g., Markov chain Monte
Carlo, particle filters) can be used to rapidly search parameter space and align mechanis-
tic models to field data. In terms of model architecture, we employed a multitask, feed-
forward neural network mapping the input parameters (in this case, parameters associ-
ated with immunological dynamics of malaria transmission) to age and density-binned
epidemiological outcomes. While more complex architectures exist (e.g., recurrent or
transformer-based models) for time series inference, these models require more resources
to train properly. The multitask architecture allowed for simultaneous inference of dif-
ferent outcomes across study sites, to easily align with site-specific reference data. Three
calibration methodologies were tested: loss minimization (nearest neighbors), likelihood
maximization, and constrained optimization (stochastic gradient descent), allowing ex-
ploration of parameter space both within and outside the region on which the emulator
was trained.

We have additionally shown that neural network emulator models can predict outcomes
for previously-unseen sites, allowing for more flexibility as more field data are obtained.
Though the emulator performance is slightly degraded due to less training data and ex-
trapolation to new study sites, the fits suggest that the emulator can still narrow down
parameter space to reasonable values, given that the emulator training is augmented with
suitable site-specific data such as transmission rates and intervention coverages. In our
analysis, the structure of the field data matches the simulation data on which the emu-
lator was trained, but future directions could consider updating the final layers of the
neural network to output new data structures, as is done in other domains [156, 157].
This would allow even more flexibility when calibrating new field sites. With respect to
the emulator’s performance and the size of the training data, our study found that smaller
parameter sets can still capture the underlying simulation’s dynamics, albeit with more
variance. This can inform the design of emulators in the context of limited computational
resources.

Interpretability of ML models

A major challenge with the acceptance of ML models is their interpretability [158]. That
is, most traditional ML models are trained by minimizing the loss between the training
data and the predicted outputs; the mechanisms on how they learn these patterns can be
hard to discern, especially as model complexity increases. For some applications, under-
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standing the underlying mechanisms of an ML model may be less of a concern. But for
epidemiological models, the mechanisms of disease transmission are important to under-
standing how interventions are expected to behave on outcomes of interest. Additionally,
in the calibration phase, it is important to ensure that model inputs and outputs corre-
spond to biologically plausible parameter values (for example, by constraining values to
realistic ranges, even if other values improve numerical performance).

An active area of ML research is improving the interpretability of models. Methods in-
clude reinforcement learning with human feedback and mixture of experts, among others
[159, 160]. In the disease modeling realm, trusting inferences from ML models will re-
quire an understanding of the mechanisms by which an inference is made. Fine-tuning
may also be required to ensure the model outputs are aligned with biologically plausible
values. In our work, we have shown that ML emulators can rapidly search parameter
space in order to align model outputs with reference data. Our three calibration methods
however found different parameter sets which minimize this discrepancy. Calibration
outputs should be assessed against domain knowledge to identify which parameter sets
are the most feasible given transmission setting and model dynamics [139]. Recent meth-
ods have been introduced to even incorporate domain knowledge into the training of ML
models [161].

Transfer learning

An active area of ML research is transfer learning or zero-shot learning [156, 157, 162–
166]. In this paradigm, models predict outputs on samples not observed during train-
ing. Through data augmentation or other techniques, transfer learning can allow for
inference on a wide range of outcomes without the need to re-train the model. In the
context of emulation and calibration, an interesting application of transfer learning is
re-calibrating after new field data are obtained. For example, if we augment the training
data with more study-site specific variables (e.g., monthly EIR, anti-malaria intervention
coverages, rainfall, etc.), the surrogate can learn the relationship between these variables
and the epidemiological outcomes. Then, if field data are obtained for a new study, the
calibration process can proceed for the new study site without the need to retrain the
underlying model (the most computationally demanding process in the workflow). The
neural network may need to be modified to accommodate new data formats.

Limitations

This study has several limitations. Mechanistic models of malaria transmission must
be sufficiently complex to capture the seasonal and heterogeneous (by age, species, and
location) nature of the disease. Even with complex models, capturing age-based hetero-
geneity is difficult [133] due to the nature of immune dynamics in children (i.e., children
often experience more severe cases of malaria after maternal immunity has waned, but
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exposure immunity has not yet developed). Our calibration methodology aimed to find
one set of immune parameters that best fit the reference data across age groups, but we
see that the fits for parasite density are markedly worse in juvenile age groups, partic-
ularly for the Garki sites. This finding suggests that 1) one set of immune parameters
may not be fully appropriate across the age spectrum and that juvenile dynamics should
be calibrated separately, and/or 2) the underlying model does not capture the complex-
ity of juvenile transmission dynamics well. Both of these aspects limit the ability of the
calibration workflow to extend to younger age groups. From an intervention planning
perspective, these dynamics should be better understood, as interventions often target
children to reduce the significant morbidity and mortality they face from malaria.

A main challenge with of ML models is the principled development of the emulator.
Many architectures, hyperparameters, and training data sampling schemes must be con-
sidered. While some tools exist to help design these models, many choices must be made
beforehand to ensure the emulator is capturing the dynamics of the transmission model.
We have shown a use case where interpretability is not a primary concern (as we are using
the emulator to search parameter space instead of explaining a phenomenon). For other
use cases where the mechanisms of the ML model are important to understand, careful
attention must be paid to the development of the emulator to ensure it accurately rep-
resents the underlying scientific process [139]. Additionally, the tradeoff between sim-
ulation dataset size and model accuracy must be considered in the context of limited
computational resources. We deliberately sampled a large range of parameter space as a
proof-of-concept, but future studies should explore more deeply the ability of the emula-
tor to learn simulation dynamics with more limited training datasets.

A final concern relates to the validation of the calibration workflow. We have shown that
three different calibration methodologies produce different parameter sets whose outputs
align with the reference data. Biological parameters can be difficult to validate, as most
studies cannot infer these immune parameters directly. Nonetheless, selected parameter
sets should be compared against previous literature and domain knowledge to ensure
that they are biologically feasible, as the emulator itself is agnostic to the underlying
mechanisms. While our constrained optimization limited these values to be within broad
biological ranges, more fine-tuning post hoc can help to explore the parameter space more
realistically. A central challenge in the development of emulator models is the desire to
minimize numerical discrepancy between emulated outcomes and reference data while
maintaining biological feasibility.
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Chapter 5

Conclusion and future directions

5.1 Overview of this work

In this work, we have shown three related, but distinct components of designing com-
putational methods with respect to vector-borne disease transmission and genetic vector
control. In Chapter 2, we outlined a novel mechanistic model to link the entomology
and epidemiology of gene drive interventions. Using a computationally efficient repre-
sentation of a Markov chain entomology model linked to a partial differential equation
model of human disease dynamics, we showed that flexible adaptations of different mod-
eling frameworks can be coalesced to estimate clinical outcomes associated with gene
drive interventions. Additionally, we included a spatial module which is able to simulate
the placement of traps across a geospatial landscape, in order to inform the post-release
monitoring of a gene drive program. In Chapter 3, we used the framework described
in Chapter 2 in order to interrogate the genetic parameters of a population replacement
gene drive system and their expected impacts on epidemiological outcomes (clinical in-
cidence of malaria, prevalence, and mortality) in two hypothetical African settings. We
then 1) identified regions of parameter space that would lead to conservative reductions
in these outcomes, and 2) established the relative importance of each parameter on each
outcome of interest. Due to the absence of reliable field data, modeling analyses can help
to elucidate the relationship between genetic parameters (e.g., fitness, infection block-
ing) and effects on human health in a given population. Due to the flexibility of the
framework, we parametrized the simulations to two settings (Kenya and Burkina Faso)
using environmental and intervention data from these locations. Finally, in an applica-
tion of machine learning, we showed that a deep neural network can be used to emulate
a complex model of malaria transmission and calibrate it to reference (field) data. Com-
pared to more traditional calibration methodologies, using a neural network emulator
can dramatically reduce the time required to fit complex models to external data. Ad-
ditionally, by leveraging methods from multitask learning, we simultaneously emulated
numerous epidemiological outcomes across different EIRs, case management strategies,
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and physical locations. Taken together, this work provides new perspectives on how to
integrate computational models into the design and evaluation of critically-needed gene
drive products for genetic vector control.

5.2 Future directions

Biosafety and remediation

An important consideration of gene drive technology is risk and biosafety. While gene
drive technology holds promise in reducing the burden of vector borne disease, ecologi-
cal and societal risks must be well-understood prior to release. According to Devos et al.
[47], potential risks include eradication (instead of control) of the target species, uncon-
trolled spread, interactions with non-target species, and negative impacts to biodiversity
and health. Among their recommendations, they say that modeling can help “ensure
a dynamic interplay between risk assessment and risk management.” Just as we have
shown that models can shed light on the influence of genetic parameters on epidemiolog-
ical outcomes, models of spread and remediation can help to inform the design of field
trials and surveillance programs. Chennuri et al. [167] reviewed various strategies for
remediating gene drive releases. They include strategies to target specific populations of
a species (synthetic alleles), halt or delete gene drives (reversal drives, anti-drives), regu-
late gene drive propagation (programmable drives), excise gene drive without restoration
of wild-type (chemical controllable gene drives), regulate spatio-temporal gene drive ac-
tivity (inducible gene drives, switchable gene drives), and drive extinction through intro-
gressed resistance (synthetic resistance). Models have been used to estimate the impacts
of reversal drives [85] and “biodegradable” gene drives [168], and can serve as useful
tools in the risk assessment of various gene drive products. Future modeling work could
guide the development of remediation strategies and be tailored to specific constructs,
locations, and demographics.

Field trial design

The design of field trials for gene drive products will be critical to ensuring their safety
and success. Because they can encompass large spatial areas and affect everyone living
in the radius of effect, gene drive trials will look fundamentally different to those for
traditional health interventions such as medication or bednets. Rašić et al. [87] have
identified monitoring priorities for Anopheles gene drive trials such as vector abundance,
environmental drivers of mosquito population, mosquito movement patterns, resistance
to insecticides, biting rates, and prevalence of transgenic mosquitoes (among others). Of
these, models can help to bolster the planning of a field trial by parameterizing environ-
mental conditions, simulating trap placement, and estimating the dispersal of released
mosquitoes. Monitoring and risk/benefit assessments form a part of the core commit-
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ments for field trials of gene drive organisms [169], and thus models should be used to
inform these aspects of gene drive field trials in the absence of field data.

Spatial dynamics

Understanding the spatial dynamics of gene drive releases will be relevant to the design
of small and large-scale trials and interventions. Alongside the need to monitor the phys-
ical distribution of genes [87], an understanding of dispersal and gene flow from a spatial
perspective will help to inform the expected efficacy of a gene drive intervention. From
an epidemiological perspective, models can also help to illustrate the expected impact
on health outcomes as a result of a gene drive intervention from a spatial scale. For ex-
ample, an important question will be the “spillover effect” of a gene drive intervention
on neighboring locations. Some models have been developed to understand the spatial
dynamics of gene drive spread from both entomological [89, 101, 117], genetic [170–
174], and epidemiological [34, 92] perspectives. Of note, as climate change is expected to
fundamentally alter the dynamics of mosquito habitation [15, 175], models incorporat-
ing explicit climactic drivers will be useful in understanding the expected dynamics of a
gene drive program.

Eco-evolutionary considerations

Though the expected timeframe for epidemiological impact of gene drive interventions
is expected to be under ten years [41, 88], nonetheless there are questions around the
long-term ecological and evolutionary behavior of these genetically modified organisms.
Combs et al. [176] proposed using dynamical models from ecology literature to guide
risk assessment for gene drive products. Further, Kim et al. [177] argue that the release
of gene drive organisms may result in strong eco-evolutionary feedbacks. They state that
factors such as population structure, life history, environmental variation, and mode of
selection should be incorporated into gene drive models. Building on prior theoretical
understanding of pathogen virulence and evolution, models could help to understand the
long-term dynamics of genetic resistance, competition between wild-type and transgenic
species, immunity, and virulence [178–180].

Advances in ML/AI modeling

Finally, we briefly touch on the role of machine learning and artificial intelligence (ML/AI)
in epidemiology. The last decade has seen immense progress in the development and de-
ployment of these technologies, ranging from state-of-the-art text generation [181, 182],
computer vision [183], and time series forecasting [184–186]. In the domain of biology
and health, there has been an increased interest in utilizing ML/AI to design proteins
and bio-therapeutics [187–190], as well as tools for diagnostics and clinical decision sup-
port [191–194]. With respect to epidemiological models, we have shown in Chapter 4
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that neural networks can be used as surrogates to emulate complex mechanistic models
and rapidly search the parameter space to calibrate them to external data. Additional
use cases under development include vision models for the classification of mosquito
species [195], causal identification of treatment effects in observational data [196, 197],
and “nowcasting” disease trajectories [198, 199]. As interest in ML/AI technologies (as
well as access to computational resources) continues to grow, epidemiological modelers
will benefit from their ability to understand patterns in large datasets and apply them to
specific use cases.
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informed target product profiles of long-acting-injectables for use as seasonal
malaria prevention,” en, PLOS Glob Public Health, vol. 2, no. 3, C. Boëte, Ed.,
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[88] R. Carballar-Lejarazú et al., “Dual effector population modification gene-drive
strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii,”
en, Proc. Natl. Acad. Sci. U.S.A., vol. 120, no. 29, e2221118120, Jul. 2023, issn:
0027-8424, 1091-6490. doi: 10.1073/pnas.2221118120.

[89] H. M. Sánchez C., S. L. Wu, J. B. Bennett, and J. M. Marshall, “MGDrivE: A mod-
ular simulation framework for the spread of gene drives through spatially ex-
plicit mosquito populations,” en, Methods Ecol Evol, vol. 11, no. 2, N. Golding,
Ed., pp. 229–239, Feb. 2020, issn: 2041-210X, 2041-210X. doi: 10.1111/2041-
210X.13318.

[90] K. Magori et al., “Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool
for Studying Aedes aegypti Population Replacement and Population Suppression
Strategies,” en, PLoS Negl Trop Dis, vol. 3, no. 9, P. Kittayapong, Ed., e508, Sep.
2009, issn: 1935-2735. doi: 10.1371/journal.pntd.0000508.

[91] J. T. Griffin et al., “Potential for reduction of burden and local elimination of
malaria by reducing Plasmodium falciparum malaria transmission: A mathemat-
ical modelling study,” en, The Lancet Infectious Diseases, vol. 16, no. 4, pp. 465–
472, Apr. 2016, issn: 14733099. doi: 10.1016/S1473-3099(15)00423-5.

[92] S. L. Wu, J. B. Bennett, H. M. Sánchez C., A. J. Dolgert, T. M. León, and J. M. Mar-
shall, “MGDrivE 2: A simulation framework for gene drive systems incorporating
seasonality and epidemiological dynamics,” en, PLoS Comput Biol, vol. 17, no. 5,
M. Marz, Ed., e1009030, May 2021, issn: 1553-7358. doi: 10.1371/journal.
pcbi.1009030.

[93] N. R. Smith et al., “Agent-based models of malaria transmission: A systematic
review,” en, Malar J, vol. 17, no. 1, p. 299, Dec. 2018, issn: 1475-2875. doi: 10.
1186/s12936-018-2442-y.

https://doi.org/10.1016/j.molcel.2020.09.003
https://doi.org/10.1111/eva.13331
https://doi.org/10.3389/fgene.2021.780327
https://doi.org/10.1073/pnas.2221118120
https://doi.org/10.1111/2041-210X.13318
https://doi.org/10.1111/2041-210X.13318
https://doi.org/10.1371/journal.pntd.0000508
https://doi.org/10.1016/S1473-3099(15)00423-5
https://doi.org/10.1371/journal.pcbi.1009030
https://doi.org/10.1371/journal.pcbi.1009030
https://doi.org/10.1186/s12936-018-2442-y
https://doi.org/10.1186/s12936-018-2442-y


106

[94] S. L. Wu et al., “Vector bionomics and vectorial capacity as emergent properties of
mosquito behaviors and ecology,” en, PLoS Comput Biol, vol. 16, no. 4, J. Lloyd-
Smith, Ed., e1007446, Apr. 2020, issn: 1553-7358. doi: 10.1371/journal.pcbi.
1007446.

[95] H. J. Wearing and P. Rohani, “Ecological and immunological determinants of dengue
epidemics,” en, Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 31, pp. 11 802–11 807,
Aug. 2006, issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.0602960103.

[96] N. Wang, “The Citrus Huanglongbing Crisis and Potential Solutions,” en, Molecu-
lar Plant, vol. 12, no. 5, pp. 607–609, May 2019, issn: 16742052. doi: 10.1016/j.
molp.2019.03.008.

[97] V. M. Gantz et al., “Highly efficient Cas9-mediated gene drive for population mod-
ification of the malaria vector mosquito Anopheles stephensi,” en, Proc. Natl. Acad.
Sci. U.S.A., vol. 112, no. 49, Dec. 2015, issn: 0027-8424, 1091-6490. doi: 10.1073/
pnas.1521077112.

[98] A. M. Dondorp et al., “The Relationship between Age and the Manifestations of
and Mortality Associated with Severe Malaria,” en, CLIN INFECT DIS, vol. 47,
no. 2, pp. 151–157, Jul. 2008, issn: 1058-4838, 1537-6591. doi: 10.1086/589287.

[99] S. S. Kiware et al., “Attacking the mosquito on multiple fronts: Insights from the
Vector Control Optimization Model (VCOM) for malaria elimination,” en, PLoS
ONE, vol. 12, no. 12, P. L. Oliveira, Ed., e0187680, Dec. 2017, issn: 1932-6203.
doi: 10.1371/journal.pone.0187680.

[100] P. Winskill, Umbrella: Rainfall & seasonality, 2022.

[101] H. M. Sánchez C., D. L. Smith, and J. M. Marshall, “MGSurvE: A framework to op-
timize trap placement for genetic surveillance of mosquito population,” en, Bioin-
formatics, preprint, Jun. 2023. doi: 10.1101/2023.06.26.546301.

[102] G. C. Lanzaro et al., “Selection of sites for field trials of genetically engineered
mosquitoes with gene drive,” en, Evolutionary Applications, vol. 14, no. 9, pp. 2147–
2161, Sep. 2021, issn: 1752-4571, 1752-4571. doi: 10.1111/eva.13283.

[103] S. James et al., “Pathway to Deployment of Gene Drive Mosquitoes as a Potential
Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommen-
dations of a Scientific Working Group †,” en, The American Journal of Tropical
Medicine and Hygiene, vol. 98, no. 6 Suppl, pp. 1–49, Jun. 2018, issn: 0002-9637,
1476-1645. doi: 10.4269/ajtmh.18-0083.

[104] A. S. Yaro et al., “The distribution of hatching time in Anopheles gambiae,” en,
Malar J, vol. 5, no. 1, p. 19, Dec. 2006, issn: 1475-2875. doi: 10.1186/1475-2875-
5-19.

https://doi.org/10.1371/journal.pcbi.1007446
https://doi.org/10.1371/journal.pcbi.1007446
https://doi.org/10.1073/pnas.0602960103
https://doi.org/10.1016/j.molp.2019.03.008
https://doi.org/10.1016/j.molp.2019.03.008
https://doi.org/10.1073/pnas.1521077112
https://doi.org/10.1073/pnas.1521077112
https://doi.org/10.1086/589287
https://doi.org/10.1371/journal.pone.0187680
https://doi.org/10.1101/2023.06.26.546301
https://doi.org/10.1111/eva.13283
https://doi.org/10.4269/ajtmh.18-0083
https://doi.org/10.1186/1475-2875-5-19
https://doi.org/10.1186/1475-2875-5-19


107

[105] M. Bayoh and S. Lindsay, “Effect of temperature on the development of the aquatic
stages of Anopheles gambiae sensu stricto (Diptera: Culicidae),” en, Bull. Entomol.
Res., vol. 93, no. 5, pp. 375–381, Sep. 2003, issn: 0007-4853, 1475-2670. doi: 10.
1079/BER2003259.

[106] A. A. Hoffmann et al., “Successful establishment of Wolbachia in Aedes popula-
tions to suppress dengue transmission,” en, Nature, vol. 476, no. 7361, pp. 454–
457, Aug. 2011, issn: 0028-0836, 1476-4687. doi: 10.1038/nature10356.

[107] D. O. Carvalho et al., “Suppression of a Field Population of Aedes aegypti in Brazil
by Sustained Release of Transgenic Male Mosquitoes,” en, PLoS Negl Trop Dis,
vol. 9, no. 7, K. E. Olson, Ed., e0003864, Jul. 2015, issn: 1935-2735. doi: 10.1371/
journal.pntd.0003864.

[108] E. A. Ashley and N. J. White, “The duration of Plasmodium falciparum infec-
tions,” en, Malar J, vol. 13, no. 1, p. 500, Dec. 2014, issn: 1475-2875. doi: 10.
1186/1475-2875-13-500.

[109] N. A. H. Van Hest, F. Smit, and J. P. Verhave, “Underreporting of malaria inci-
dence in the Netherlands: Results from a capture–recapture study,” en, Epidemiol.
Infect., vol. 129, no. 2, pp. 371–377, Oct. 2002, issn: 0950-2688, 1469-4409. doi:
10.1017/S0950268802007306.

[110] T. Leon, H. M. S. Castellanos, Yoosook Lee, and J. M. Marshall, “New methods
for modeling Anopheles gambiae s.l. movement with environmental and genetic
data,” en, 2020, Publisher: [object Object]. doi: 10.13140/RG.2.2.32130.91845.

[111] C. Taylor et al., “Gene Flow Among Populations of the Malaria Vector, Anopheles
gambiae , in Mali, West Africa,” en, Genetics, vol. 157, no. 2, pp. 743–750, Feb.
2001, issn: 1943-2631. doi: 10.1093/genetics/157.2.743.

[112] M. C. Thomson, S. J. Connor, M. L. Quiñones, M. Jawara, J. Todd, and B. M. Green-
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