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Accurate iterative analytic solution of the Kapchinskij-Vladimirskij equations
for the case of a matched beam

Oscar A. Anderson
Lawrence Berkeley National Laboratory

University of California, Berkeley,
California 94720, USA
(Dated: October 6, 2006)

The well-known Kapchinskij-Vladimirskij (KV) equations are difficult to solve in general, but
the problem is simplified for the matched-beam case with sufficient symmetry. We show that the
interdependence of the two KV equations is eliminated, so that only one needs to be solved—a
great simplification. We present an iterative method of solution which can potentially yield any
desired level of accuracy. The lowest level, the well-known smooth approximation, yields simple,
explicit results with good accuracy for weak or moderate focusing fields. The next level improves the
accuracy for high fields; we previously showed [Part. Accel. 52, 133 (1996)] how to maintain a simple
explicit format for the results. That paper used expansion in a small parameter to obtain results of
second-level accuracy. The present paper, using straightforward iteration, obtains equations of first,
second, and third levels of accuracy. For a periodic lattice with beam matched to lattice, we use the
lattice and beam parameters as input and solve for phase advances and envelope functions. We find
excellent agreement with numerical solutions over a wide range of beam emittances and intensities.

I. INTRODUCTION

This paper analyzes matched beams in alternating-
gradient (A-G) focusing systems. Such beams have
smaller excursions than mismatched beams, thus requir-
ing smaller transport apertures, and are the starting
point for analysis of mismatched beams. Designers and
experimenters who work with A-G systems need simple,
accurate ways to predict the performance of matched
beams. One usually begins with the coupled Kapchinskij-
Vladimirskij (KV) equations [1]. For weak focusing
fields, solution by the smooth approximation [2], [3], [4]
is reasonably accurate. Methods of solution for strong
fields [5], [6], [7] have tended to be indirect or complex.
Lee, using a double expansion in focus strength and emit-
tance, demonstrated high accuracy for a special case [8].
Our previous paper [9] presented general results in a sim-
ple explicit format, but with only moderate accuracy.

The present paper, which was summarized in Ref. [10],
uses a convenient iteration method to obtain explicit re-
sults. High accuracy is demonstrated for a wide range
of parameters, which are: the A-G field strength; beam
emittance; and beam charge or current. These would
be small parameters if normalized (cf. App. J), but we
use physical units throughout. We assume the lattice to
be periodic with the beam matched to the lattice, i.e.,
having the same periodicity. The lattice is assumed sym-
metric. (Asymmetric cases are treated with a novel nu-
merical technique by Lund et al. in Ref. [11].)

We solve explicitly for average radius [Eq. (30)], peak
radius [Eq. (36)], and the phase advances [Eqs. (40) and
(43)]. We give these results for three levels of accuracy
and complexity. All these formulas apply to arbitrary
symmetric lattices. They require at most the 3rd and
5th harmonics of the lattice profile, becoming simpler for
smooth profiles (App. G). Envelope functions are given
in Appendix E and illustrated in Fig. 2.

Summary: We begin with the coupled KV equations
and show in Sec. III that the matching assumption decou-
ples them so that only one equation has to be solved. (Al-
though the required symmetry Eq. (3f) has been noted
before [8], [11], we are not aware that it has been used in
obtaining a solution.) Section IV expands the a(z) enve-
lope about its mean and then splits the resulting equa-
tion into its average part A and periodic part ρ. The
differential equation for ρ(z) is solved (Sec. V) by itera-
tion. These results are combined to obtain a matching
equation for the average radius A. This equation is writ-
ten to various orders of accuracy; our special definition
of “order” is given in Sec. V. The results (Sec. VI) are
compared to the results of numerical solution of the full
KV equations. The first-order case is usually called the
smooth approximation. Second- and third-order terms
increasingly improve the accuracy. Over a wide range
of parameters, our third-order versions provide a great
improvement over those previously published [2]–[6].

Section VII combines results from Secs. V and VI to
give the maximum and minimum radii. The phase ad-
vances σ and σ0 are given in Sec. VIII. There is a useful
approximation for σ0 in Sec. IX. Appendices F, G, and H
discuss the use of Fourier analysis of the A-G focusing
function to facilitate the solution. Some exact formulas
for the FODO case are given in Appendix I.

II. THE KV EQUATIONS AND SYMMETRIC
LATTICE MODEL

The KV equations for envelopes a(z) and b(z) are [1]

a(z)′′ = −K(z)a +
∈2

a3
+

2Q

a + b
(1)

b(z)′′ = +K(z)b +
∈2

b3
+

2Q

a + b
(2)
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with dimensionless perveance Q, emittance ∈, and lat-
tice focus-strength function K(z). The latter is peri-
odic over the lattice cell length, defined as 2L, so that
K(z + 2L) = K(z). In practice, the lattice cell has one
or two symmetries. The double symmetry occurs if the
focus drift spaces are equal in length. In this paper we
assume that the function K(z) has odd symmetry at the
center of the drift spaces and even symmetry at mid-
electrode points. These symmetry points necessarily al-
ternate at intervals L/2. It is convenient in what follows
to choose one of the even points for the z origin. (The
odd choice is appropriate for the case of unequal drift
lengths; that case is not discussed in the present paper.)
Then the double symmetry is expressed as

K(L− z) = K(L + z), (3a)
K(L/2− z) = −K(L/2 + z). (3b)

It follows that K(z) is anti-symmetric about 3L/2 and
that K(z) obeys the shift relations

K(z + L) = −K(z), (3c)
K(z + 2L) = +K(z). (3d)

It also follows that
K(−z) = K(z). (3e)

Equation (3d) confirms the lattice periodicity which was
assumed above. Equations (3a) and (3b) indicate that
K(z) can be expanded as a cosine series containing only
odd-numbered harmonics.

In this paper we solve Eqs. (1) and (2) for the beam
envelopes in the special case where the beam is matched,
i.e., a(z) and b(z) have the same periodicity as the lattice.
The initial conditions with the symmetry of Eq. (3e) are
a′(0) = 0, b′(0) = 0, a(0) = a0, b(0) = b0.

For given Q and ∈ and given lattice parameters, the
beam will only be matched for specific values of a0 and
b0, which we denote by am and bm. Then the initial
conditions for a matched beam are

a′(0) = 0, b′(0) = 0, a(0) = am, b(0) = bm,

with a(2L) = am and b(2L) = bm. If we substitute
aL(z) ≡ a(z + L) and bL(z) ≡ b(z + L) in Eqs. (1) and
(2) and use Eq. (3c), we find that aL(z) and bL(z) also
satisfy the KV equations with transposed initial condi-
tions: aL(0) = bm, bL(0) = am. We deduce that for a
matched beam

b(z) = a(z + L), (3f)

so that the denominator of the last term in Eq. (1) can be
written a(z)+b(z) = a(z)+a(z+L). Then b(z) does not
appear and Eq. (1) is decoupled. In Sec. III and App. A
we find an expression for the function [a(z)+a(z +L)]−1

in terms of integrals involving the given lattice function
K(z). After that, Eq. (2) is not needed for our matched-
beam case. The main work of this paper will be to find
am and bm—see Secs. IV through VII. First we introduce
some definitions.

Operators, Functions, Parameters, Derived Quantities

To aid the solution of Eqs. (1) and (2), we de-
fine in Table I the operators 〈. . . 〉 , {. . . } ,

∫
,

∫∫

which operate on even, periodic functions; the func-
tions h(z), g(z), δ(z), ρ(z); and the constants
k, α, β, q, A, Keff ,Φ, and ρm. In Eq. (19), h1 is the
first Fourier coefficient of h(z)—cf. App. F.

TABLE I: Collection of definitions to be used in this paper

˙
f

¸
≡ (1/2L)

R 2L

0
f(z) dz, (4)

{f} ≡ f −
˙
f

¸
. (5)

For even ψ(z)#〈ψ〉=0:
R
ψ ≡

Rz

0
ψ(z′)dz′ (6)

and
RR

ψ ≡
˘Rz

0
dz′

Rz′

0
ψ(z′′)dz′′

¯
. (7)

k ≡ K(0), (8)

h(z) ≡ K(z)/k, (9)

g ≡
RR

h, (10)

δ(z) ≡
RR
{hg} , (11)

A ≡
˙
a(z)

¸
, (12)

ρ(z) ≡
`
a(z)−A

´‹
A, (13)

α ≡ 3∈2‹A4, (14)

β ≡ αL2‹π2, (15)

q ≡ Q
‹
A2, (16)

Keff ≡ k2˙
[
R
h]2

¸
, (17)

Φ ≡ 3k2˙
g2¸

, (18)

ρm ≡ h1kL2‹π2. (19)

In Table I, the operator 〈. . . 〉 performs an average
over a cell length 2L. The operator {. . . } removes the
average part of a periodic function: e.g., 2

{
cos2 x

}
=

{1 + cos 2x} = cos 2x. The operator
∫∫

operates on even
periodic functions that have zero average. It gives the re-
peated indefinite integral and removes the average part,
if any, of the result. This removal can be implemented by
constructing a suitable lower limit for the outer integral.
To illustrate, Eq. (10) can be written

g ≡
∫ z

L/2
dz′

∫ z′

0
h(z′′) dz′′,

which subtracts the value at L/2, so that g(L/2) = 0.
Alternatively, one can start both integrals at zero and
then apply the operator {. . . }, as in Eq. (7). For example,∫∫

cos z = {sin z} = {1− cos z} = − cos z. Note that,
from Eq. (9), h(0) = 1.
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III. DECOUPLING THE KV EQUATIONS FOR
SYMMETRIC MATCHED-BEAM INITIAL

CONDITIONS

For a matched beam with the symmetries of Eq. (3),
we showed in Sec. II that b(z) = a(z + L), implying that
Eqs. (1) and (2) are decoupled and that 〈a〉 = 〈b〉 ≡ A.
We write

a(z) ≡ A
(
1 + ρ(z)

)
, b(z) ≡ A

(
1 + ρ(z + L)

)
, (20)

with ρ(z) > −1 for all z. Then the Q term in Eq. (1) can
be written

2Q

a + b
=

Q

A

(
1− F (h(z))

)
, (21)

where F is obtained from an expansion and iterations.
All terms consist of integrations of the focus-strength
profile h(z) [Appendix A]:

F (h(z)) = k2
∫∫{

h
∫∫

h
}

+ · · · ≡ δ(z) + · · · . (22)

Additional terms are shown in the appendix. With the
lattice symmetries of Eq. (3), all the series terms for
F (z), including δ(z), have only even-numbered cosine
harmonics—in contrast to h(z), which has only odd ones.

Equations (1) and (2) are decoupled to all orders so
that Eq. (2) is superfluous from here on. Equations (1)
and (2) are replaced by

a(z)′′ = −K(z)a +
∈2

a3
+

Q

A

(
1− k2δ(z) + · · ·

)
, (1*)

b(z) = a(z + L). (2*)

IV. EXPANDING AND DECOMPOSING INTO
AVERAGE AND PERIODIC PARTS

Substituting a = A
(
1+ρ(z)

)
in the first three terms of

Eq. (1), expanding 1/a3, dividing by A, and using (22)
and (14), Eq. (1*) is equivalent to

ρ(z)′′ = −kh(z)− kh(z)ρ +
α

3
(
1− 3ρ + 6ρ2−10ρ3+ 15ρ4 · · ·

)
+ q

(
1− k2δ(z)+ · · ·

)
.

(23)

To solve for the ripple ρ(z) and for the mean radius A
(which appears in the definition of α and q), we de-
compose Eq. (23) into a pair of equations. Averaging
Eq. (23),

0 = −k〈hρ〉+α

3
+ 2α

〈
ρ2

〉
− 10

3
α
〈
ρ3

〉
+ 5α

〈
ρ4

〉
+ · · · + q.

(24)
Subtracting Eq. (24) from (23),

ρ′′ = −kh(z)− k{hρ}− αρ + 2α
{
ρ2

}

− 10
3

α
{
ρ3

}
+ 5α

{
ρ4

}
+ · · ·− qk2δ(z) + · · · , (25)

with the {· · · } operator defined by Eq. (5). There are
now two equations, each containing ρ(z) and A—the lat-
ter represented by α. These represent the KV equa-
tions (1) and (2) for our matched beam. We will obtain
A and ρ(z) to good accuracy in Secs. IV–VI and App. E.

V. ITERATIVE SOLUTION: ARBITRARY
SYMMETRIC FOCUSING PROFILE

On the right-hand side of Eq. (25), the kh(z) term
dominates the terms involving the unknown function
ρ(z). Therefore, we use only kh(z) in the initial inte-
grations which give ρ(0). Then we insert ρ(0) into (25)
and integrate again to obtain ρ(1). (A miniscule term,
qk2δ(z), in ρ(0) is omitted.) This process is repeated to
get ρ(2):

ρ(0) = −kg, (26a)

ρ(1) = ρ(0) + αk
∫∫

g + k2δ +
10
3

αk3
∫∫

g3, (26b)

ρ(2) = ρ(1) − α2k
∫∫∫∫

g − k3
∫∫

hδ − 4αk3
∫∫

gδ. (26c)

In (26c),
∫∫∫∫

stands for two applications of the operator
∫∫

defined by Eq. (7).
To complete the approximate solution of the KV equa-

tions, ρ(z) from Eq. (26) is put into the matching equa-
tion (24). In Eq. (26) we included no items

(
e.g.,

2αk2
∫∫

{g}2) that would give terms in (24) higher than
third power in the parameters k2, α, and q. That is, we
go no higher than third order as defined below.

Some terms vanish by orthogonality, since h(z), g(z),
g3, etc., possess only odd harmonics while δ(z),

{
g2

}
,{

g4
}

have only even ones for symmetric quadrupoles.
A term not shown, qk2

∫∫
δ(z), involves multiple integra-

tions of an already small function and would contribute
< 0.04% to the maximum radius amax even at σ0 = 120◦
and affect A by less than 2 parts in 10,000. This is much
smaller than the two parts per thousand criterion used
for significant terms in Appendix E.

Order: We reckon the order of a term in the match-
ing equation by counting the number of factors k2, α,
and q. These would become small parameters in a non-
dimensional formalism (Appendix J). We prefer to re-
tain physical units for quantities such as the axial coor-
dinate z. Note that Lee [8] defines order using k and
∈ so that our third order corresponds approximately to
his fifth order. Appendix B evaluates the combination
of Eqs. (24) and (26). The result, in simplified form, is
shown in the next section.

VI. MATCHING EQUATION TO VARIOUS
ORDERS FOR AN ARBITRARY SYMMETRIC

LATTICE

Third Order: Inserting Eq. (26) into Eq. (24) yields
seven terms [App. B, Eq. (B7)]. Some terms combine,
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FIG. 1: Illustration of results for special case of FODO lattice, compared with simulation results. (a) Accuracy of mean radius,
from Eqs. (30), (32), (33). (b) Accuracy of maximum radius, from Eqs. (36), (37), (38).

Input quantities: Q, ∈, and quad voltage VQ(∝K). Other parameters: see Table II. VQ, fixed at 20 kV, gives phase advance
σ0 of 83.37◦; ∈ and Q are varied so that depressed tune σ ranges between 0◦ and 76.5◦; exact σ0 and σ are obtained numerically.

TABLE II: Parameters used in Figs. 1a and 1b, based on the actual MFE ESQ accelerator [12].

Quad cell length 20 cm Quad voltage (Figs. 1, 3a) 20 kV

Occupancy factor 0.5 Quad voltage (Fig. 2) 25 kV

Quad radius (aQ) 1.75 cm Beam current (Fig. 2) 0.5 Amp

Beam energy 200 KeV Norm emittance (Fig. 2) 1.55 π mrad-cm

Beam particles H− ions

resulting in (Appendix C)

Keff
† − ∈III

2

AIII
4 −

Q

AIII
2 = 0, (27)

where
Keff

† ≡
〈[∫

K(z)
]2〉

[
1 +

1
24

Φ
(

1 +
20
27

c3

)]
; (28)

∈III
2 ≡ ∈2

[
1 + Φ

(
1 +

1
2
Φ + 3βI

)]
. (29)

In Eq. (28), c3 is of order unity (see Apps. G, H); in
Eq. (29), βI is defined by Eq. (35). Roman-numeral sub-
scripts on A and ∈ signify the order of approximation—
third order in this case. The subscript on β ∼ A−4 indi-
cates that AI [Eq. (33)] is used to approximate A. The
matching equation (27) is in the standard form of the
smooth approximation, Eq. (33), and can be solved to
find the third-order A:

AIII
2 =

Q

2Keff
†

+

[(
Q

2Keff
†

)2

+
∈III

2

Keff
†

]1/2

. (30)

If the input quantity is the mean radius Ainp, then
Eq. (27) gives the allowable Q to third order,

QIII = Ainp
2 Keff

† − ∈III
2

Ainp
2 .

Second Order: Eq. (B7) has two second-order terms.
One yields the correction to Keff seen in Eq. (28). The
other term is αk2

〈
g2

〉
, or, using definition (18), αΦ/3.

We define
∈II

2 ≡ ∈2(1 + Φ), (31)
and get

Keff
† − ∈II

2

AII
4 −

Q

AII
2 = 0. (32)

Eq. (32) can be solved for AII or QII in the same way
as for the third order, giving useful approximations when
K(z) and ∈ produce σ0 and σ less than about 80◦.

First Order: In Eq. (B7), the three terms of lowest
order in α, q, k2 produce what is called the first-order
matching equation in this paper (Ref. [9] used another
terminology). This is the classic smooth approximation.
These terms give k2

〈
[
∫
h]2

〉
= α/3 + q, or, using the

definitions (14), (16), and (17),

Keff − ∈2

AI
4 −

Q

AI
2 = 0. (33)

The equations derived in this paper apply to arbitrary
focusing profiles satisfying Eq. (3), such as the smooth
profiles in Appendix G, but for illustration (Figs. 1, 2,
and 3), we use the FODO model (Appendix H) with pa-
rameters from Table II. First-, second-, and third-order
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results for A, from (33), (32) and (30), are plotted in
Fig. 1a for FODO. The smooth approximation is seen to
be relatively inaccurate except near the point where its
error curve crosses the 0% line.

VII. EXPLICIT THIRD-ORDER RESULT FOR
amax

Knowing the matched mean radius A, one can com-
plete the solution for the beam envelope a(z) = A

(
1 +

ρ(z)
)

using ρ(z) from Eq. (26); b(z) can be found by
changing the sign of the terms that contain odd powers
of k.

Some terms of Eq. (26) can be written in exact form
[Appendix I] for models such as FODO, but Fourier ex-
pansion is more useful in general:

h(z) = h1

[
cos

πz

L
+

c3

3
cos

3πz

L
+

c5

5
cos

5πz

L
+ · · ·

]
.

(34)
Values (usually of order unity) of h1 and cn for both
smooth and FODO profiles are given in Appendices G
and H. With the definition

βI ≡ αI
L2

π2
= 3

L2

π2

∈2

AI
4 , (35)

we have

amax
III = AIII

[
1 + ρm

(
1 +

c3

27
+

c5

125

)
+

1
8
ρm

2
(
1 +

25 c3

54

)
+ βIρm

(
1 +

5
2
ρm

2 + βI

)]
(36)

using results from Appendix E. The accuracy of Eq. (36)
(applied to the special case of FODO model) is shown in
Fig. 1b, along with that of the truncations

amax
II = AII

[
1 + ρm

(
1 +

1
27

c3 +
1

125
c5

)
+ βIρm

]
(37)

and (the smooth approximation)

amax
I = AI

(
1 + ρm

)
. (38)

The time dependence of Eq. (36), from App. E, is plotted
in Fig. 2

VIII. PHASE ADVANCES: ARBITRARY
SYMMETRIC FOCUSING FUNCTIONS

From the well-known phase-amplitude result [13], the
phase advance per quadrupole cell of length 2L is

σ = ∈
∫ 2L

0

dz

a2
= 2L∈ 〈

a−2
〉
.

We approximate a(z) by AIII[1 + ρ(z)] with AIII from
Eq. (30) and ρ(z) to third order from Eq. (26). Subscripts

1.5

1.0

0.0

0.5

 0 0.5 L L 1.5 L 2 L

R
ad

iu
s 

/A
v
er

ag
e 

R
ad

iu
s

Axial Distance

a(z) /A b(z) /A

Exact

Third Order

First Order

FIG. 2: Illustration of matched envelopes a(z) and b(z) for
special case of FODO model. Parameters from Table II,
giving tunes σ0 = 112.2◦ and σ = 86.9◦. Exact envelopes
(solid curves) were obtained numerically. Third-order results
[Eqs. (E6)–(E10)] give an amax error of −2.37%. The smooth
approximation error [Eq. (E6) only] is −13.0%. Amplitude of
half-period ripple is 5.6% of amplitude of full-period ripple.

are omitted for brevity. Expanding a−2 and taking the
average gives

σ = 2L
∈

AIII
2

[
1 + 3

〈
ρ2

〉
− 4

〈
ρ3

〉
+ 5

〈
ρ4

〉
− · · ·

]
. (39)

(The 2ρ term has zero average by definition.) Ap-
pendix D shows that to third-order accuracy

σIII = 2L
∈

AIII
2

[
1 + Φ

(
1 +

3
4
Φ + 2βI

)]
. (40)

for arbitrary symmetric A-G lattice functions. Errors
with respect to exact values from simulations are illus-
trated in Fig. 3a for the particular case of a FODO lattice.
Useful accuracy is retained after dropping two terms and
using lower-order AII from Eq. (32):

σII = 2L
∈

AII
2 (1 + Φ). (41)

Figure 3a shows large errors for the first-order result
(smooth approximation):

σI = 2L
∈

AI
2 . (42)

The undepressed tune σ0 for arbitrary symmetric fo-
cusing profiles is found by setting Q = 0 in Eq. (27), then
eliminating ∈ from Eq. (40). Details are in Appendix D.
The third-order result is

σ0 III = 2L
(
Keff

†

)1/2
[
1 +

1
2
Φ +

7
8
Φ2

]
(43)
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FIG. 3: Phase advances for special case of FODO model with parameters from Table II.
(a) Accuracy of depressed tune σ from Eqs. (40)–(42). VQ is fixed at 20 kV as in Fig. 1.
(b) Accuracy of phase advance σ0 from Eqs. (43)–(45). VQ ranges from 5 kV to 22 kV.

for arbitrary symmetric focusing functions. To second-
order,

σ0 II = 2L
(
Keff

†

)1/2
[
1 +

1
2
Φ

]
. (44)

The smooth approximation is

σ0 I = 2L
(
Keff

)1/2
. (45)

Figure 3 compares the accuracy of Eqs. (43), (44), and
(45) for the special case of FODO focusing (with occu-
pancy η = 0.5), but gives an idea of the relative accuracy
for arbitrary cases. At σ0 = 100◦, the smooth approx-
imation is off by 12%; this is improved to 1% for third
order.

IX. UNDEPRESSED TUNE: A SIMPLE,
ACCURATE APPROXIMATION

For the symmetric FODO case, σ0, obtained by multi-
plying transfer matrices [2], is given exactly by:

σ0 = cos−1
[
cos κ coshκ + (1− η)K1/2L(cos κ sinhκ

− sinκ coshκ)− 1
2
(1− η)2KL2(sinκ sinhκ)

]
, (46)

where κ = ηK1/2L. Equation (46) applies to cases where
σ0 < 180◦.

This exact solution can be expanded to give the accu-
rate approximation

σ0 ∼ 2 sin−1
[
L

(
Keff

)1/2
]
, (47)

where for FODO, Keff = 1
12η2(3 − 2η)k2L2. Equa-

tion (47) resembles Eq. (45), the smooth approximation,
but (for η = 0.5, σ0 = 100◦) the error is reduced from
12% to 0.41%. This is actually better accuracy than
given by Eq. (43) (see Fig. 3).

For non-FODO cases, such as the examples in App. G,
Keff in Eq. (47) would be calculated from Eq. (17) or
(F10). It would be interesting to compare the accuracies
of Eqs. (43) and (47) for such cases.

APPENDIX A: DECOUPLING a AND b IN THE
KV EQUATIONS

This appendix calculates a(z) + b(z) for the Q-term
denominators in the KV equations. Dividing Eq. (1) by
A and expanding gives

ρ(z)′′ = −kh(z)− kh(z)ρ +
∈2

A4
(1− 3ρ + · · · )

+
Q

A2
(1−R(z) + R2(z)− · · · ), (A1)

where
R(z) ≡ ρ(z) + ρ(z + L)

2
. (A2)

We will find that only lowest order results are needed
and drop the R2 term, etc. We subtract the average of
Eq. (A1), using definitions from Table I, and obtain

ρ′′ = −kh(z)− k {hρ}− αρ− qR(z) + · · · , (A3)

which we solve by iteration. In the initial step, the only
known quantity is kh(z), so that

ρ′′(0) = −kh, ρ(0) = −kg. (A4)
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Substituting −kg for ρ in the previous equation,

ρ′′(1) = −kh + k2 {hg} + αkg; (A5)

ρ(1)(z) = −k + k2δ + αk
∫∫

g, (A6)

where we used the definition of δ. Using the shift
Eq. (3c),

ρ(1)(z + L) = +k + k2δ − αk
∫∫

g. (A7)

Then Eqs. (A2), (A6) and (A7) give

R(z) = k2δ, (A8)

resulting in Eq. (1*) in Sec. III.
The expansion and iteration could be extended to pro-

duce more terms [all derived from h(z)] but these would
give even smaller corrections to our results.

APPENDIX B: DETAILS OF DERIVATION OF
THE MATCHING EQUATION

Rearranging Eq. (24) slightly gives

k〈hρ〉 = α

[
1
3

+ 2
〈
ρ2

〉
− 10

3
〈
ρ3

〉
+ 5

〈
ρ4

〉
+ · · ·

]
+ q.

(B1)
Inserting ρ from Eq. (26), the left-hand side of this equa-
tion is

k 〈hρ〉 = k2

[
−〈hg〉+ a

〈
h
∫∫

g
〉

+
10
3
− α2k2

〈
h
∫∫

g3
〉

− a2
〈
h
∫∫∫∫

g
〉
− k2

〈
h
∫∫

hδ
〉
− 2αk2

〈
h
∫∫

gδ
〉

+ · · ·
]

where we have dropped the subscript on ρ. The orthogo-
nal k2δ term is absent. We simplify by changing the order
of integrations, using the h(z) symmetries [Eq. (3)]. For
example, −

〈
h
∫∫∫∫

g
〉

= −
〈
g
∫∫

g
〉

= +
〈
[
∫
g]2

〉
. Applying

this technique throughout gives

k 〈hρ〉 = +k2

[〈
[
∫
h]2

〉
+ α

〈
g2

〉
+ α2

〈
[
∫
g]2

〉]
+

k4

[〈
[
∫
{hg}]2

〉
+

10
3

α
〈
g4

〉
+ 2α

〈
g2δ

〉
+ · · ·

]
. (B2)

For the right-hand side of (B1),
〈
ρ2

〉
= k2

〈
g2

〉
− 2αk2

{
g
∫∫

g
}

+ 2k4
〈
g
∫∫

hδ
〉

+ · · · ,

(B3)
〈
ρ3

〉
= 3k4

〈
g2δ

〉
+ · · · , (B4)

〈
ρ4

〉
= k4

〈
g4

〉
+ · · · . (B5)

The very small k4
〈
δ2

〉
term was omitted from

〈
ρ2

〉
.

Again changing the order of integrations, the right-hand

side of (B1) becomes

rhs = α

[
1
3

+ k2
(
2

〈
g2

〉
+ 4α

〈
[
∫
g]2

〉)
+

k4
(
4

〈
g
∫∫

hδ
〉
− 10

〈
g2δ

〉
+ 5

〈
g4

〉)]
+ q + · · · . (B6)

Four of the terms of (B6) combine with terms of (B2), so
that

k2
〈
[
∫
h]2

〉
+ k4

〈
[
∫
{hg}]2

〉
=

α

[
1
3

+ k2
(〈

g2
〉

+ 3αk2
〈
[
∫
g]2

〉)
+

k4

(
4

〈
g
∫∫

hδ
〉
− 12

〈
g2δ

〉
+

5
3

〈
g4

〉)
+ · · ·

]
+ q, (B7)

the matching equation from Eq. (B1). Each term (except
α/3 and q) involves averages of functions of the focusing
profile h(z). Given any h(z)—obtained from a model
such as FODO or measured on an actual quadrupole
cell—these averages can be calculated once and for all,
being constant coefficients of the terms in α and k. Ap-
pendix C shows how to write Eq. (B7) in simple form
[Eq. (C9)].

APPENDIX C: SIMPLIFICATION OF THE
MATCHING EQUATION

It is convenient to write the Fourier representation in
the form

h(z) = h1

[
cos

πz

L
+

1
3
c3 cos 3

πz

L
+

1
5
c5 cos 5

πz

L
· · ·

]
.

(C1)
The axial profile of the quadrupole gradient determines
h1 and cn. Tables III and IV show that h1 remains
of the order of unity while c3 and c5 can change sign
as the profile is varied. For the hard-edge quadrupole
model (FODO) with occupancy η = 0.5, Table IV shows
that c3 = 1. Because of multiple integrations, terms
containing c5 are usually negligible.

Right side of Eq. (B7): By definition, k2
〈
g2

〉
= Φ/3.

For the factor
〈
[
∫
g]2

〉
=

〈
[
∫∫∫

h]2
〉
, the third and higher

harmonics make very small contributions because of
the multiple integrations. Comparing leading terms for〈
[
∫
g]2

〉
and

〈
g2

〉
gives

3k2
〈
[
∫
g]2

〉
≈ L2

π2
3k2

〈
g2

〉
=

L2

π2
Φ. (C2)
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The three k4 terms on the rhs of Eq. (B7) are:

4
〈
g
∫∫

hδ
〉

=
1
2

〈
g2

〉2
(

1 +
19
27

c3 + · · ·
)

, (C3)

−12
〈
g2δ

〉
= −3

2
〈
g2

〉2
(

1 +
4
9
c3 + · · ·

)
, (C4)

5
3

〈
g4

〉
=

5
2

〈
g2

〉2
(

1 +
4
81

c3 + · · ·
)

. (C5)

Adding (C3) through (C5) gives 3
2

〈
g2

〉2 (1 +
(29/243)c3 + · · · ), where the small c3 correction can be
neglected since it corrects a term which is already third
order. Using all these results along with definition (14),
the right-hand side of (B7) (without the q term) becomes

∈2

(
1 + Φ +

1
2
Φ2 +

9
π2

∈2L2

AI
4 Φ

)
=

∈2

(
1 + Φ +

1
2
Φ2 + 3βIΦ

)
≡ ∈III

2, (C6)

as in the main text. In the last term,

βI ≡ 3
L2

π2

∈2

AI
4 (C7)

uses the lowest-order value for A because this term is
already of the highest order that we retain.

Left side of Eq. (B7): The
〈
[
∫
{hg}]2

〉
term is

〈
[{hg}]2

〉
=

1
8

〈
g2

〉 (
1 +

20
27

c3 +
53
36

c 2
3 + · · ·

) 〈
[
∫
h]2

〉
.

(C8)
Dropping the c 2

3 term in (C8) for simplicity, we define
the LHS of (B7) as

Keff
† = k2

〈
[
∫
h]2

〉 (
1 +

1
24

Φ
(

1 +
20
27

c3

))
. (C9)

Altogether,

Keff
† =

∈III
2

AIII
4 +

Q

AIII
2 (C10)

which is Eq. (27).

APPENDIX D: DEPRESSED AND
UNDEPRESSED TUNES, GENERAL CASE

Here we evaluate the expansion terms in Eq. (39).
From Eqs. (B3-B5) in App. B,

3
〈
ρ2

〉
= 3k2

〈
g2

〉
+ 6αk2

〈
[
∫
g]2

〉
+ 6k4

〈
g
∫∫

hδ
〉

+ · · · , ,

(D1)

−4
〈
ρ3

〉
= −12k4

〈
g2δ

〉
+ · · · , (D2)

5
〈
ρ4

〉
= 5k4

〈
g4

〉
+ . (D3)

From App. C, Eqs. (C2)-(C5),

6αk2
〈
[
∫
g]2

〉
≈ L2

π2
6αk2

〈
g2

〉
= 2βIΦ, (D4)

6k4
〈
g
∫∫

hδ
〉

=
3
4
k4

〈
g2

〉2
(

1 +
19
27

c3 + · · ·
)

, (D5)

−12k4
〈
g2δ

〉
= −3

2
k4

〈
g2

〉 (
1 +

4
9
c3 + · · ·

)
, (D6)

5k4
〈
g4

〉
=

15
2

k4
〈
g2

〉2
(

1 +
4
81

c3 + · · ·
)

. (D7)

When the last three are added, the c3 coefficient is only
25/729. Dropping this and using the definitions gives to
third-order accuracy

σ = 2L
∈

AIII
2

(
1 + Φ

3
4
Φ2 + 2βIΦ

)
. (D8)

Undepressed tune: Setting Q = 0, (27) is

Keff
† =

∈III
2

AIII
4 =

∈2

AIII
4

(
1 + Φ +

1
2
Φ2 + 3βIΦ

)1/2

.

(D9)
The factor ∈2/AI4 in the last term can be replaced by
Keff ≡ k2

〈
[
∫
h]2

〉
, according to Eq. (33) with Q = 0.

Comparing with the definition of Φ and Fourier expand-
ing as before, the last term, to lowest order, is 3Φ2 for
Q = 0. Thus, altogether,

Keff
† =

∈2

AIII
4

(
1 + Φ +

7
2
Φ2 + · · ·

)1/2

. (D10)

Making a similar replacement in Eq. (40) for the case
Q = 0,

σ0 = 2L
∈

AIII
2

(
1 + Φ +

11
2

Φ2 + · · ·
)

. (D11)

Using Eq. (D10) to eliminate ∈/AIII
2,

σ0 = 2L(Keff
† )1/2

(
1 + Φ +

11
2

Φ2 + · · ·
)

×
(

1 + Φ +
7
2
Φ2 + · · ·

)1/2

, (D12)

or, finally, to third order.

σ0 = 2L(Keff
† )1/2

(
1 +

1
2
Φ +

7
8
Φ2 + · · ·

)
(D13)

for arbitrary symmetric A-G profiles. Sometimes it is
convenient to work with the squares of σ0 and σ, which
are for third order

σ0
2 = 4L2Keff

†
(
1 + Φ + 2Φ2

)
(D14)

and

σ2 = 4L2 ∈2

AIII
4

(
1 + 2Φ

(
1 +

5
4
Φ2 + 2βI

))
. (D15)
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APPENDIX E: CALCULATION OF a(z) AND b(z)
FOR GENERAL CASE

Using Fourier expansion, written as in Appendix C,

kh(z) = kh1

[
cos

πz

L
+

1
3
c3 cos 3

πz

L
+

1
5
c5 cos 5

πz

L
· · ·

]
,

and recalling ρm ≡ h1kL2/π2, the terms of Eq. (26) are

− kg(z) = −
∫∫

h = ρm

[
cos

πz

L
+

1
27

c3 cos 3
πz

L

+
1

125
c5 cos 5

πz

L
+ · · ·

]
(E1)

αk
∫∫

g = βρm

[
cos

πz

L
+

1
243

c3 cos 3
πz

L
+ · · ·

]
(E2)

k2δ(z) = k2
∫∫

{hg} =
1
8
ρm

2

[(
1 +

10
27

c3 · · ·
)

cos 2
πz

L

+
5
54

c3 cos 4
πz

L
+ · · ·

]
(E3)

10
3

αk3
∫∫

g3 =
5
2
βρm

3

[(
1 +

1
27

c3 + · · ·
)

cos 2
πz

L

+
1
27

(
2
9
c3 + · · ·

)
cos 3

πz

L
+ · · ·

]
(E4)

−α2k
∫∫∫∫

g = β2ρm cos
πz

L
+ · · · . (E5)

The small final two terms from Eq. (26) have been omit-
ted here for simplicity.

The Significant Terms

We drop small quantities in the above equations. The
criterion is that they contribute less than two parts per
thousand to the final result for a bad-case scenario: large
focusing voltage (giving phase advance of 112◦) and large
β. This leaves

−kg = ρm

[
cos

πz

L
+

1
27

c3 cos 3
πz

L
+

1
125

c5 cos 5
πz

L
· · ·

]

(E6)

αk
∫∫

g = βρm cos π
πz

L
+ · · · (E7)

k2δ(z) =
1
8
ρm

2

[
cos 2

πz

L
+

25
54

c3 cos 4
πz

L
+ · · ·

]
(E8)

10
3

αk3
∫∫

g3 =
5
2
βρm

3 cos
πz

L
(E9)

−α2k
∫∫ ∫∫

g = β2ρm cos
πz

L
+ · · · . (E10)

Adding all these gives ρ(z) to third-order accuracy. A few
small terms were omitted as mentioned before. Setting
z = 0 gives ρmax and amax = A (1+ρmax) as presented in
Section VII. Setting z = L changes the sign of all terms,
except the even term k2δ(z), and yields amin. α and β
are only needed to lowest order, i.e., αI and βI; we omit
the subscripts here.

Results from Eqs. (E6)–(E10) are shown in Fig. 2 in
the main text.

APPENDIX F: FOURIER REPRESENTATION,
ARBITRARY SYMMETRIC CASES

Fourier Coefficients

Recall from Section II that the focusing force K(z) in
the KV equations is written as

K(z) = kh(z) (F1)

with h(0) = 1. Because of the symmetries [Eq. (3)] and
initial conditions, there are only odd harmonics and no
sine terms:

h(z) =
∑

1,3,5,...

hn cos
nπz

L
(F2)

with the condition
∑

1,3,5,...

hn = 1. (F3)

The Fourier coefficients are

hn =
1
L

∫ 2L

0
h(z) cos

nπz

L
dz. (F4)

It is often convenient to define

cn ≡ n
hn

h1
, (F5)

where c1 = 1 by definition and where |c3| usually turns
out to be of order unity—see Tables III and IV. Then
Eq. (F2) is written as

h(z) = h1

∑

1,3,5,...

1
n

cn cos
nπz

L
. (F6)

Solution of Envelope Equation

In the solution for ρ(z), Eq. (26), the largest term is

ρ(0)(z) = −kg(z) = −k

∫ z

L/2
dz′

∫ z′

o
h(′′) dz′′, (F7)

which with Eqs. (F2) and (F5) is

−kg(z) =
kL2

π2
h1

∑

1,3,5,...

cn

n3
cos

nπz

L
. (F8)
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The next largest term is

αk
∫∫

g = α
kL4

π4
h1

∑

1,3,5,...

cn

n5
cos

nπz

L
. (F9)

To achieve 1% accuracy, the first three series elements of
(F8) are usually required, whereas for Eq. (F9), only the
fundamental is needed [cf. Eq. (E2)].

The additional terms of Eq. (26), shown in Eqs. (E3)
and (E4), are found with the help of trigonometric iden-
tities.

The mean square of the integral of Eq. (F2) gives the
effective force

Keff ≡ k2〈[
∫
h]2〉 = h 2

1
k2L2

2π2

∑

1,3,5,...

c 2
n

n4
, (F10)

which is used in the matching equation and for calculat-
ing undepressed phase advance.

The correction term Φ (used in evaluating phase ad-
vances, average radius or transportable current, etc.) is

Φ ≡ 3k2〈g2〉 = 3h 2
1

k4L4

2π4

∑

1,3,5,...

c 2
n

n6
−→ 3h2

1
k4L4

2π4

(F11)
since the harmonics contribute practically nothing. Di-
viding this into Eq. (9), we find

Φ = 3Keff L2

π2

(
1 +

c 2
3

81
+ · · ·

)
, (F12)

which could be useful in certain calculations.

APPENDIX G: SOLUTION FOR SOME SMOOTH
LATTICE PROFILES

All our results apply to an arbitrary symmetric focus-
ing profile once its Fourier coefficients are known. Some
simple but representative smooth models are discussed
here. In each case, we use only the lowest required har-
monics.

Field Model 1: h(z) = cos πz
L .

h1 = 1, c3 = 0.

This is the model used by Lee [8].

Field Model 2: K ′′(0) = 0.

h1 =
9
8
, c3 = −1

3
, (G1)

with all the other coefficients zero except c1, which is
unity by definition. This choice gives a flat field at the
midpoint of the quadrupoles, without the discontinuities

TABLE III: h1 and cn ≡ nhn/h1 and ηequiv for four smooth
models.

Model h1 c1 c3 c5 c7 c9 ηequiv

#1 1 1 — — — — 0.57

#2 9/8 1 -1/3 — — — 0.69

#3 3/4 1 1 — — — 0.40

#4 15/16 1 1/2 -1/2 — — 0.53

of the hard-edge FODO model. From Eqs. (G1), (F9)
and (F10) we get

Keff =
92

82

k2L2

2π2

(
1 +

1
93

)
, (G2)

Φ = 3
92

82

k4L4

2π4

(
1 +

1
94

)
. (G3)

The third-harmonic correction for Φ can be neglected in
most cases.

Field Model 3: K ′(L/2) = 0.

h1 =
3
4
, c3 = 1. (G4)

This model is narrow, peaked at the quadrupole mid-
points, with zero slope at the gap centers. It gives
focusing strength equivalent to FODO [Eq. (I1)] having
about 40% occupancy. The third-harmonic corrections
to Keff and Φ are 1/81 and 1/243 respectively.

Field Model 4: K ′′(0) = 0 and K ′(L/2) = 0.

h1 =
15
16

, c3 =
1
2
, c5 = −1

2
, (G5)

which gives a fairly realistic profile (Fig. 4) and corre-
sponds to FODO with η ∼ 53%. The third- and fifth-
harmonic corrections are well under 1% for this case.

Table III summarizes the above results.

0 L 2L 3L
Axial distance

-1

0

1

Q
u

ad
 s

tr
en

g
th

FIG. 4: Axial profile of normalized quadrupole strength h(z)
for Smooth Field Model #4, which uses only the 3rd and 5th
harmonics. The unit cell length is 2L.
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TABLE IV: h1 and cn ≡ nhn/h1 for FODO case with four
different occupancies.

η πh1/2 c1 c3 c5 c7 c9 c11

1/3 1 1 2 1 -1 -2 -1

1/2
√

2 1 1 -1 -1 1 1

2/3
√

3 1 0 -1 1 0 -1

1 2 1 -1 1 -1 1 -1

APPENDIX H: FOURIER SOLUTION FOR THE
SPECIAL CASE OF FODO

In the case of the popular FODO lattice model (Fig. 5),
the Fourier coefficients hn are readily calculated from
Eq. (F4):

hn =
4

nπ
sin

nπη

2
, (H1)

which satisfies Eq. (F3) for occupancy h over the range
0 < η ≤ 1. From Eq. (F5),

cn = n
sin(nπη/2)
sin(πη/2)

(H2)

for FODO. All the results from App. F can be used for
FODO by putting h1 = sin πη

2 . Values of h1 (normalized
with π/2) and cn are shown in Table IV for various η.

APPENDIX I: SOME EXACT FORMULAS FOR
THE SPECIAL CASE OF FODO

Results using truncated Fourier representations for the
hard-edge FODO may be compared with exact results by
integration. (The FODO model is illustrated in Fig. 5.)
Because of the symmetries expressed in Eq. (3), the cal-
culation of averages is simplified, requiring only integra-
tion over one-fourth of a cell. One finds for a specified

-1

0

1

0 L 2L 3L
Axial distance

Q
u

ad
 s

tr
en

g
th

FIG. 5: Normalized quadrupole strength h(z) vs. z for a
FODO lattice having occupancy 0.5. The unit cell length
is 2L.

occupancy η

Keff ≡ k2〈[
∫
h]2〉 =

1
12

η2(3− 2η)k2L2, (I1)

Φ ≡ 3k2〈g2〉 =
1
16

η2

(
1− η2 +

2
5
η3

)
k2L4. (I2)

One can do the integrals in the first two terms of ρ(z),
Eq. (26). For the integrations, we divide the cell into
five zones:

Zone 0: 0 ≤ z ≤ ηL/2
Zone 1: ηL/2 < z ≤ L− ηL/2
Zone 2: L− ηL/2 < z ≤ L + ηL/2
Zone 3: L + ηL/2 < z ≤ 2L− ηL/2
Zone 4: 2L− ηL/2 < z ≤ 2L.

For even-numbered zones, the first integral is

−
∫∫

h = P
(n

2

) 1
2

[
η (2− η)

(
L

2

)2

−
(

z − n
L

2

)2
]

(I3)
with n the zone number. P is defined as follows: for any
integer m,

P(m) ≡
{

+1 if m is even;
−1 if m is odd.

For odd-numbered zones the integral is

−
∫∫

h = P
(

n + 1
2

)
1
2
Lη

(
z − n

L

2

)
. (I4)

As required by the definition of
∫∫

, the average has been
subtracted. The maximum value of ρ(0) (where z = 0,
implying n = 0) is

ρmax
(0) = −k

∫∫
h |0 =

1
8
η(2− η)kL2. (I5)

The next term in Eq. (26) includes the integral
∫∫

g. For
even-numbered zones

∫∫
g = P

(n

2

) [
η

(
1− η2

2
+

η3

8

)(
L

2

)4

−

3
4
η(2− η)

(
L

2

)2(
z − n

L

2

)2

+
1
8

(
z − n

L

2

)4]
, (I6)

and for odd-numbered zones
∫∫

g = P
(

n + 1
2

)
×

[(
3
2
− η2

2

)(
L

2

)3(
z − n

L

2

)
− L

4

(
z − n

L

2

)3]
. (I7)

The maximum value of
∫∫

g is
(

L

2

)4

η

(
1− η2

2
+

η3

8

)
. (I8)

These results, for any value of η, may be compared with
those from Appendices G and H to determine the number
of Fourier terms needed for a given accuracy in each case.
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APPENDIX J: NON-DIMENSIONAL
FORMALISM

As mentioned in Section V, we have chosen in this
paper to use physical units for quantities such as the axial
distance z. The result is that the expansion parameters
k2,α, and q are not necessarily small numbers. To show
that they are nevertheless appropriate parameters, we
replace z by

θ ≡ πz

L
. (J1)

The KV equations become

π2

L2
a(θ)′′ = −K(θ)a +

∈2

a3
+

2Q

a + b
(J2)

π2

L2
b(θ)′′ = +K(θ)b +

∈2

b3
+

2Q

a + b
(J3)

where the primes now indicate differentiation with re-
spect to θ.

In Table I, averages are now defined by

〈f〉 ≡ 1
2π

∫ 2π

0
f(θ) dθ. (J4)

Similarly, the symbols
∫

and
∫∫

refer to integration with
respect to θ, not z. Other replacements in Table I are

h(θ) ≡ K(θ)
K(0)

, (J5)

k ≡ L2

π2
K(0), (J6)

α ≡ 3
L2

π2

∈2

a4
, (J7)

q ≡ L2

π2

Q

A2
, (J8)

Keff ≡ L2

π2
(K(0))2〈[

∫
h]2〉, (J9)

ρm ≡ h1k. (J10)

All these items are now dimensionless. In Eq. (15), the
quantity β is supplanted by α. Equations (35) and (C7)
no longer apply; β must be replaced by α in Eqs. (29),
(36), (37), (40), and (C6) as well as four places in App. D
and six places in App. E. The equations throughout this
paper are otherwise unchanged, and one can verify that
the expansion parameters k2,α, and q are now dimen-
sionless small numbers.

APPENDIX K: ALTERNATIVE MATCHING
AND INITIAL CONDITIONS

Another method of beam matching is convenient for
some simulation studies. The beam is launched at the
midpoint of a quadrupole gap. Using the same lattice
models as before, the matching conditions would become

a(5L/2) = a(L/2), b(5L/2) = b(L/2),
a′(5L/2) = a′(L/2), b′(5L/2) = b(L/2)

(K1)

with initial conditions

a(L/2) = b(L/2), b′(L/2) = −a′(L/2). (K2)

This choice would be essential for the case of unequal
drift spaces (only a single symmetry) but we do not con-
sider this case here.

APPENDIX L: WORK FOR THE FUTURE

It would be useful to investigate the modifications that
would be required to extend the methods of this paper
to non-symmetric A-G profiles, which are often used in
practice.
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