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WHAT GOODS DO COUNTRIES TRADE?
NEW RICARDIAN PREDICTIONS

ARNAUD COSTINOT AND IVANA KOMUNJER

Abstract. Though one of the pillars of the theory of international trade, the extreme

predictions of the Ricardian model have made it unsuitable for empirical purposes. A sem-

inal contribution of Eaton and Kortum (2002) is to demonstrate that random productivity

shocks are su¢ cient to make the Ricardian model empirically relevant. While successful at

explaining trade volumes, their model remains silent with regards to one important ques-

tion: What goods do countries trade? Our main contribution is to generalize their approach

and provide an empirically meaningful answer to this question.
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1. Introduction

Though one of the pillars of the theory of international trade, the extreme predictions

of the Ricardian model have made it unsuitable for empirical purposes. As Leamer and

Levinsohn (1995) point out: �The Ricardian link between trade patterns and relative labor

costs is much too sharp to be found in any real data set.�

A seminal contribution of Eaton and Kortum (2002) is to demonstrate that random pro-

ductivity shocks are su¢ cient to make the Ricardian model empirically relevant. When

drawn from an extreme value distribution, these shocks imply a gravity-like equation in a

Ricardian framework with a continuum of goods, transport costs, and more than two coun-

tries. While successful at explaining trade volumes, their model remains silent with regards

to one important question: What goods do countries trade? Our main contribution is to

generalize their approach and provide an empirically meaningful answer to this question.

Section 2 describes the model. We consider an economy with one factor of production,

labor, and multiple products, each available in many varieties. There are constant returns

to scale in the production of each variety. The key assumption of our model is that labor

productivity may be separated into: a deterministic component, which is country and indus-

try speci�c; and a stochastic component, randomly drawn across countries, industries, and

varieties. The former captures factors such as climate, infrastructure, and institutions that

a¤ect the productivity of all producers in a given country and industry,1 whereas the latter

re�ects idiosyncratic di¤erences in technological know-how across varieties.

Section 3 derives our predictions on the pattern of trade. Because of random productivity

shocks, we can no longer predict trade �ows in each variety. Yet, by assuming that each prod-

uct comes in a large number of varieties, we generate sharp predictions at the industry level.

In particular, we show that for any pair of exporters, the (�rst-order stochastic dominance)

ranking of their relative labor productivity fully determines their relative export performance

across industries. Compared to the standard Ricardian model� see e.g. Dornbusch, Fischer,

and Samuelson (1977)� our predictions hold under fairly general assumptions on transport

1Acemoglu, Antras, and Helpman (2006), Costinot (2005), Cuñat and Melitz (2006), Levchenko (2004),

Matsuyama (2005), Nunn (2005), and Vogel (2004) explicitly model the impact of various institutional

features� e.g. labor market �exibility, the quality of contract enforcement, or credit market imperfections�

on labor productivity across countries and industries.
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costs, the number of industries, and the number of countries.2 Moreover, they do not imply

the full specialization of countries in a given set of industries.

Section 4 investigates how well our model squares with the empirical evidence. We consider

linear regressions tightly connected to our theoretical framework. Using OECD trade and

labor productivity data from 1988 to 2003, we �nd strong support for our new Ricardian

predictions: countries do tend to export relatively more (towards any importing country) in

sectors where they are relatively more productive.

Our paper contributes to the previous trade literature in two ways. First, it contributes to

the theory of comparative advantage. Our model generates clear predictions on the pattern

of trade in environments� with both multiple countries and industries� where the stan-

dard Ricardian model loses most of its intuitive content; see e.g. Jones (1961) and Wilson

(1980). Our approach mirrors Deardor¤ (1980) who shows how the law of comparative ad-

vantage may remain valid, under standard assumptions, when stated in terms of correlations

between vectors of trade and autarky prices. In this paper, we weaken the standard Ricar-

dian assumptions� the �chain of comparative advantage�only holds in terms of �rst-order

stochastic dominance� and derive a deterministic relationship between exports and labor

productivity across industries.

Second, our paper contributes to the empirical literature on international specialization,

including the previous �tests� of the Ricardian model; see e.g. MacDougall (1951), Stern

(1962), Balassa (1963), and more recently Golub and Hsieh (2000). While empirically suc-

cessful, these tests have long been criticized for their lack of theoretical foundations; see

Bhagwati (1964). Our model provides such foundations. Since it does not predict full inter-

national specialization, we do not have to focus on ad-hoc measures of export performance.

Instead, we may use the theory to pin down explicitly what the dependent variable in cross-

industry regressions ought to be.

As we discuss in our concluding remarks, our model may also provide an alternative

theoretical underpinning of cross-industry regressions when labor is not the only factor of

production. The validity of these regressions usually depends on strong assumptions on either

demand� see e.g. Petri (1980) and the voluminous gravity literature based on Armington�s

2Deardor¤ (2005) reviews the failures of simple models of comparative advantage at predicting the pattern

of trade in economies with more than two goods and two countries.
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preferences� or the structure of transport costs� see e.g. Harrigan (1997) and Romalis

(2004). Our paper suggests that many of these assumptions may be relaxed, as long as there

are stochastic productivity di¤erences within each industry.

2. The Model

We consider a world economy comprising i = 1; :::; I countries and one factor of production�

labor. There are j = 1; :::; J products and constant returns to scale in the production of each

product. Labor is perfectly mobile across industries and immobile across countries. The wage

of workers in country i is denoted wi. Up to this point, this is a standard Ricardian model.

We generalize this model by introducing random productivity shocks. Following Eaton and

Kortum (2002), we assume that each product j may come in Nj varieties ! = 1; :::; Nj, and

denote aij(!) the constant unit labor requirements for the production of the !th variety of

product j in country i. Our �rst assumption is that:

A1. For all countries i, products j, and their varieties !

(1) ln aij(!) = ln aij + uij(!);

where aij > 0 and uij(!) is a random variable drawn independently for each triplet (i; j; !)

from a continuous distribution F (�) such that: E[uij(!)] = 0.

We interpret aij as a measure of the fundamental productivity of country i in sector j and

uij(!) as a random productivity shock. The former, which can be estimated using aggre-

gate data, captures cross-country and cross-industry heterogeneity. It re�ects factors such

as climate, infrastructure, and institutions that a¤ect the productivity of all producers in

a given country and industry. Random productivity shocks, on the other hand, capture

intra-industry heterogeneity. They re�ect idiosyncratic di¤erences in technological know-

how across varieties, which are assumed to be drawn independently from a unique distrib-

ution F (�). In our setup, cross-country and cross-industry variations in the distribution of
productivity levels derive from variations in a single parameter: aij.

We assume that trade barriers take the form of �iceberg�transport costs:
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A2. For every unit of commodity j shipped from country i to country n, only 1=dnij units

arrive, where:

(2)

(
dnij = d

n
i � dnj � 1, if i 6= n,

dnij = 1, otherwise.

The indices i and n refer to the exporting and importing countries, respectively. The �rst

parameter dni measures the trade barriers which are speci�c to countries i and n. It includes

factors such as: physical distance, existence of colonial ties, use of a common language, or

participation in a monetary union. The second parameter dnj measures the policy barriers

imposed by country n on product j, such as import tari¤s and standards. In line with �the

most-favored-nation�clause of the World Trade Organization, these impediments may not

vary by country of origin.

We assume that markets are perfectly competitive.3 Together with constant returns to

scale in production, perfect competition implies:

A3. In any country n, the price pnj (!) paid by buyers of variety ! of product j is

(3) pnj (!) = min
1�i�I

�
cnij(!)

�
;

where cnij(!) = d
n
ij� wi � aij(!) is the cost of producing and delivering one unit of this variety

from country i to country n.

For each variety ! of product j, buyers in country n are �shopping around the world�

for the best price available. Here, random productivity shocks lead to random costs of

production cnij(!) and in turn, to random prices pnj (!). In what follows, we let c
n
ij = dnij�

wi � aij > 0.
On the demand side, we assume that consumers have a two-level utility function with CES

preferences across varieties. This implies:

A4(i). In any country n, the total spending on variety ! of product j is

(4) xnj (!) =
�
pnj (!)=p

n
j

�1��
knj ;

where knj > 0, � > 1 and p
n
j = [

PNj
!0=1 p

n
j (!

0)1��]1=(1��).

3The case of Bertrand competition is discussed in details in Appendix B.
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The above expenditure function is a standard feature of the �new trade�literature; see e.g.

Helpman and Krugman (1985). knj is an endogenous variable that represents total spending

on product j in country n. It depends on the upper tier utility function in this country

and the equilibrium prices. pnj is the CES price index, and � is the elasticity of substitution

between varieties. It is worth emphasizing that while the elasticity of substitution � is

assumed to be constant, total spending, and hence demand conditions, may vary across

countries and industries: knj is a function of n and j.

Finally, we assume that:

A4(ii). In any country n, the elasticity of substitution � between two varieties of product j

is such that E
�
pnj (!)

1��� <1:
Assumption A4(ii) is a technical assumption that guarantees the existence of a well de�ned

price index. Whether or not A4(ii) is satis�ed ultimately depends on the shape of the

distribution F (�).4

In the rest of the paper, we let xnij =
PNj

!=1 x
n
ij(!) denote the value of exports from country

i to country n in sector j, where total spending on each variety xnij(!) is given by:

(5)

8<: xnij(!) = x
n
j (!), if cnij(!) = min

1�i0�I
cni0j(!),

xnij(!) = 0, otherwise.

4Suppose, for example, that uij(!)�s are drawn from a (negative) exponential distribution with mean

zero: F (u) = exp[�u � 1] for �1 < u � 1=� and � > 0. This corresponds to the case where labor

productivity zij(!) � 1=aij(!) is drawn from a Pareto distribution: Gij(z) = 1 � (bij=z)� for 0 < bij � z

and bij � a�1ij exp(��
�1), as assumed in various applications and extensions of Melitz�s (2003) model; see e.g.

Helpman, Melitz, and Yeaple (2004), Antras and Helpman (2004), Ghironi and Melitz (2005) and Bernard,

Redding, and Schott (2006). Then, our assumption A4(ii) holds if the elasticity of substitution � < 1 + �.

Alternatively, suppose that uij(!)�s are distributed as a (negative) Gumbel random variable with mean zero:

F (u) = 1� exp[� exp(�u� e)] for u 2 R and � > 0, where e is Euler�s constant e ' 0:577. This corresponds
to the case where labor productivity zij(!) is drawn from a Fréchet distribution: Gij(z) = exp(�bijz��) for
z � 0 and bij � a��ij exp(�e), as assumed, for example, in Eaton and Kortum (2002) and Bernard, Eaton,

Jensen, and Kortum (2003). Then, like in the Pareto case, A4(ii) holds if � < 1 + �.
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Similarly, we denote �nij(!) the probability that country i exports a variety ! of product j

to country n:

(6) �nij(!) = Pr

�
cnij(!) = min

1�i0�I
[cni0j(!)]

�
:

By Assumption A1, the probabilities �nij(!) remain the same across all varieties ! of product

j, so we can let �nij(!) = �
n
ij in Equation (6).

3. The Pattern of Trade

We now describe the restrictions that Assumptions A1�A4 impose on the pattern of trade;

and how they relate to those of the standard Ricardian model.

3.1. Predictions. In order to make predictions on the pattern of trade, we follow a two-

step approach. First, we relate total exports xnij to the expected value of exports coming

from country i, using the law of large numbers. Second, we derive a log-linear relationship

between this expected value and the fundamental productivity level aij, using a �rst-order

Taylor series development around a symmetric situation where costs are identical across

exporters,
�
cn1j = ::: = c

n
Ij

�
. While our approximation admittedly lacks the elegance of Eaton

and Kortum�s (2002) closed form solution, it presents one important advantage: it remains

valid irrespectively of the distribution of random productivity shocks F (�).
Our main result can be stated as follows.

Theorem 1. Suppose that Assumptions A1-A4 hold. In addition, assume that the number

of varieties Nj of any product j is large, and that technological di¤erences across exporters

are small: cn1j ' ::: ' cnIj. Then, for any exporter i, any importer n 6= i, and any product j,

(7) lnxnij ' �ni + �nj + 
 ln aij:

where 
 < 0.

The proof can be found in Appendix A. The �rst term �ni is importer and exporter speci�c;

it re�ects wages wi in the exporting country and trade barriers dni between countries i and

n. The second term �nj is importer and industry speci�c; it re�ects the policy barriers d
n
j

imposed by country n on product j and demand di¤erences knj across countries and industries.

The main insight of Theorem 1 comes from the third term 
 ln aij, in which the parameter
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 is constant across countries and industries. Since 
 < 0, Theorem 1 predicts that lnxnij
should be decreasing in ln aij: ceteris paribus, countries should export less in sectors where

their �rms are, on average, less e¢ cient.

It is worth emphasizing that Theorem 1 cannot be used for comparative static analysis. If

the fundamental productivity level goes up in a given country and industry, this will a¤ect

wages and, in turn, exports in other countries and industries through general equilibrium

e¤ects. In other words, changes in aij also lead to changes in the country and industry

�xed e¤ects, �ni and �
n
j . By contrast, Theorem 1 can be used to analyze the cross-sectional

variations of bilateral exports, as we shall further explore in Section 4.

Though the assumptions of Theorem 1 may seem unreasonably strong� in particular,

technological di¤erences across all exporters are unlikely to be small� its predictions hold

more generally. Suppose that, for each product and each importing country, exporters can

be separated into two groups: small exporters, whose costs are very large (formally, close to

in�nity), and large exporters, whose costs of production are small and of similar magnitude.

Then, small exporters export with probability close to zero and the results of Theorem 1

still apply to the group of large exporters.5

If we impose more structure on the distribution of random productivity shocks, we can

further weaken the assumptions of Theorem 1. Suppose that the distribution F (�) of uij(!)
is Gumbel as in Eaton and Kortum (2002). Then, it can be shown that the property in

Equation (7) holds exactly for any
�
cn1j; :::; c

n
Ij

�
. In other words, if Eaton and Kortum�s (2002)

distributional assumption is satis�ed, then our local results become global; they extend to

environments where technological di¤erences across all countries are large; see Appendix C

for details.6

5In other words, our theory does not require Gambia and Japan to have similar costs of producing and

delivering cars in the United States. It simply requires that Japan and Germany do.
6If F (�) is Gumbel, one can further show that �ni , �

n
j , and 
 do not depend on the elasticity of substitution

�. In this case, the predictions of Theorem 1 still hold if we relax Assumption A4(i), so that the elasticity

of substitution may vary across countries and industries: � � �nj . This derives from a key property of the

Gumbel distribution: conditional on exporting a given variety to country n, the expected value of exports

has to be identical across countries. Hence, transport costs, wages and fundamental productivity levels only

a¤ect the extensive margin� how many varieties are being exported� not the intensive margin� how much of

each variety is being exported. Unfortunately, this property does not easily generalize to other distributions;

see Appendix C.
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In order to prepare the comparison between our results and those of the standard Ricardian

model, we conclude this section by o¤ering a Corollary to Theorem 1. Consider an arbitrary

pair of exporters i1 and i2, an importer n 6= i1; i2 and an arbitrary pair of goods j1 and

j2. Taking the di¤erences-in-di¤erences in Equation (7) we get that (lnxni1j1 � lnxni1j2) �
(lnxni2j1� lnxni2j2) ' 
 [(ln ai1j1 � ln ai1j2)� (ln ai2j1 � ln ai2j2)], for Nj1 and Nj2 large enough.
Since 
 < 0, we then obtain that

(8)
ai1j1
ai2j1

>
ai1j2
ai2j2

)
xni1j1
xni2j1

<
xni1j2
xni2j2

:

Still considering the pair of exporters i1 and i2 and generalizing the above reasoning to all

J products, we derive the following Corollary:

Corollary 2. Suppose that the assumptions of Theorem 2 hold. Then, the ranking of relative

unit labor requirements determines the ranking of relative exports:�
ai11
ai21

> :::: >
ai1j
ai2j

> ::: >
ai1J
ai2J

�
)
�
xni11
xni21

< :::: <
xni1j
xni2j

< ::: <
xni1J
xni2J

�
:

3.2. Relation to the standard Ricardian model. Note that we can always index the J

products so that:

(9)
ai11
ai21

> :::: >
ai1j
ai2j

> ::: >
ai1J
ai2J

:

Ranking (9) is at the heart of the standard Ricardian model; see e.g. Dornbusch, Fischer,

and Samuelson (1977). When there are no random productivity shocks, Ranking (9) merely

states that country i1 has a comparative advantage in (all varieties of) the high j products.

If there only are two countries, the pattern of trade follows: i1 produces and exports the

high j products, while i2 produces and exports the low j products. If there are more than

two countries, however, the pattern of pairwise comparative advantage no longer determines

the pattern of trade. In this case, the standard Ricardian model loses most of its intuitive

content; see e.g. Jones (1961) and Wilson (1980).

When there are stochastic productivity di¤erences at the industry level, Assumption A1

and Ranking (9) further imply:

(10)
ai11(!)

ai21(!)
� :::: � ai1j(!)

ai2j(!)
� ::: � ai1J(!)

ai2J(!)
;
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where � denotes the �rst-order stochastic dominance order among distributions.7 In other

words, Ranking (10) is just a stochastic� hence weaker� version of the ordering of fundamen-

tal costs aij, which is at the heart of the Ricardian theory. Like its deterministic counterpart

in (9), Ranking (10) captures the idea that country i1 is relatively better at producing the

high j products. But whatever j is, country i2 may still have lower costs of production on

some of its varieties.

According to Corollary 2, Ranking (10) does not imply that country i1 should only produce

and export the high j products, but instead that it should produce and export relatively more

of these products. This is true irrespective of the number of countries in the economy. Unlike

the standard Ricardian model, our stochastic theory of comparative advantage generates a

clear and intuitive correspondence between labor productivity and exports. In our model,

the pattern of comparative advantage for any pair of exporters fully determines their relative

export performance across industries.

This may seem paradoxical. As we have just mentioned, Ranking (10) is a weaker version

of the ordering at the heart of the standard theory. If so, how does our stochastic theory

lead to �ner predictions? The answer is simple: it does not. While the standard Ricardian

model is concerned with trade �ows in each variety of each product, we only are concerned

with the total trade �ows in each product. Unlike the standard model, we recognize that

random shocks� whose origins remain outside the scope of our model� may a¤ect the costs

of production of any variety. Yet, by assuming that these shocks are identically distributed

across a large number of varieties, we manage to generate sharp predictions at the industry

level.

4. Empirical Evidence

We now investigate whether the predictions of Theorem 1 are consistent with the data.

7To see this, note that for any A 2 R+ we have Pr fai1j(!)=ai2j(!) � Ag = Prfui1j(!) � ui2j(!) �
lnA� ln ai1j + ln ai2jg . Since for any j < j0, ui1j(!)� ui2j(!) and ui1j0(!)� ui2j0(!) are drawn from the

same distribution by A1, Ranking (9) implies:

Pr

�
ai1j(!)

ai2j(!)
� A

�
< Pr

�
ai1j0(!)

ai2j0(!)
� A

�
, ai1j(!)

ai2j(!)
� ai1j0(!)

ai2j0(!)
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4.1. Data description. We use yearly data from the OECD Structural Analysis (STAN)

Databases from 1988 to 2003. Our sample includes 25 exporters, all OECD countries, and

49 importers, both OECD and non-OECD countries. It covers 21 manufacturing sectors

aggregated (roughly) at the 2-digit ISIC rev 3 level. To the best of our knowledge, it

corresponds to the largest data set available with both bilateral trade data and comparable

labor productivity data. See Table 1 for details.

The value of exports xnij by exporting country i, importing country n, and industry j is

directly available (in thousands of US dollars, at current prices) in the STAN Bilateral Trade

Database. The unit labor requirement aij in country i and industry j is measured as total

employment divided by value added (in millions or billions of national currency, at current

prices), which can both be found in the STAN Industry Database.8

4.2. Speci�cation. The main testable implication derived in Theorem 1 is that:

(11) (@ lnxnij)= (@ ln aij) = 
 < 0

In other words, the elasticity of exports with respect to the average unit labor requirement

should be negative (and constant across importers, exporters, and industries). Accordingly,

we shall consider a linear regression model of the form

(12) lnxnij = �
n
i + �

n
j + 
 ln aij + "

n
ij;

where �ni and �
n
j are treated as importer�exporter and importer�industry �xed e¤ects, re-

spectively, and "nij is an error term.

There are (at least) two possible interpretations of the error term "nij. First, we can think

of "nij as a measurement error in trade �ows. This is the standard approach in the gravity

literature; see e.g. Anderson and Wincoop (2003). Alternatively, we can think of "nij as

representing the impact of unobserved trade barriers, not accounted for in Assumption A2.

Indeed, we can generalize A2 as ln dnij = ln d
n
i + ln d

n
j + e"nij. Then, setting "nij = 
e"nij� and

using the expressions of �ni and �
n
j provided in the proof of Theorem 1� immediately leads

8Any di¤erence in units of account across countries shall be treated as an exporter �xed e¤ect in our

regression (12). Hence, we do not need to convert our measures of aij into a common currency. Similarly,

we do not correct for the number of hours worked per person and per year, which only is available for a very

small fraction of our sample. But it should be clear that cross-country di¤erences in hours worked will also

be captured by our exporter �xed e¤ect.
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Years 1988­2003

Exporters:

Importers:

ISIC Rev. 3

15­16
17­19
20
21­22
23
243
25
26
271
272+2732
28
29
30
31
32
33
34
351
353
352+359
36­37

Pharmaceuticals
Rubber and plastics products

Exporters + Five OECD Countries (Iceland, Mexico, New Zealand, Switzerland, Turkey)
+ Others (Argentina, Brazil, Chile, China, Cyprus, Estonia, Hong Kong, India, Indonisia,
Latvia, Lithuania, Malaysia, Malta, Phillipines, Russian Federation, Singapore, Slovenia,
South Africa,  Thailand)

Wood and products of wood and cork
Pulp, paper, paper products, printing and publishing
Coke, refined petroleum products and nuclear fuel

Table 1:  Data Set Description

Industry:

Twenty­five OECD countries (Australia, Austria, Belgium, Canada, Czech Republic,
Danemark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Korea,
Luxembourg, Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden,
United Kingdom, United States)

Textiles, textile products, leather and footwear
Food products, beverages and tobacco

Iron and steel
Non­ferrous metals

Electrical machinery and apparatus, n.e.c.
Office, accounting and computing machinery
Machinery and equipment, n.e.c.
Fabricated metal products, except machinery and equipment

Aircraft and spacecraft
Railroad equipment and transport equipment n.e.c.
Manufacturing n.e.c.

Source:  OECD Structural Analysis (STAN) Databases

Product Classification System: The industrial breakdown presented for the STAN indicators
database is based upon the International Standard Industrial Classification (ISIC) Revision 3.

Radio, television and communication equipment
Medical, precision and optical instruments, watches and clocks
Motor vehicles, trailers and semi­trailers
Building and repairing of ships and boats

Other non­metallic mineral products

to Equation (12). This is the approach followed by Eaton and Kortum (2002) and Helpman,

Melitz, and Rubinstein (2005). Under either interpretation, we shall assume that "nij is

independent across countries i and n as well as across industries j; that "nij is heteroskedastic

conditional on i, n and j; and that "nij is uncorrelated with ln aij.

Note that our orthogonality condition rules out situations where country n tends to dis-

criminate relatively more against a given country i in sectors where i is relatively more

productive. Were these situations prevalent in practice, due to endogenous trade protection,
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Variable 2003 2002 2001 2000 1999 1998 1997 1996
ln a ­0.78 ­0.67 ­0.91 ­0.80 ­0.71 ­0.89 ­0.95 ­0.73

(­10.31)*** (­12.74)*** (­16.47)*** (­15.91)*** (­12.87)*** (­13.72)*** (­14.16)*** (­10.69)***
Exporter­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 8778 15051 18167 18597 18805 18187 18233 17780
R2 0.805 0.794 0.793 0.787 0.792 0.792 0.789 0.785

Variable 1995 1994 1993 1992 1991 1990 1989 1988
ln a ­0.79 ­0.75 ­0.53 ­0.50 ­0.42 ­0.37 ­0.39 ­0.08

(­12.22)*** (­9.79)*** (­7.74)*** (­7.03)*** (­5.60)*** (­5.05)*** (­5.77)*** (­1.06)
Exporter­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 17423 14245 13489 12755 11827 11655 11606 10672
R2 0.7849 0.7877 0.7936 0.7936 0.783 0.780 0.779 0.776
Note: Absolute value of t­statistics in parentheses, calculated from heteroskedasticity­consistent (White) standard errors
*   Significant at 10% confidence level
**  Significant at 5% confidence level
***  Significant at 1% confidence level

Table 2:  Year­by­Year OLS Regressions
(Dependent Variable: lnx)

our OLS estimates of 
 would be biased (upward) towards zero.9 Similarly, our orthogonal-

ity condition rules out any potential errors in the measurement of labor productivity at the

industry level, which obviously is a very strong assumption. The presence of measurement

errors in the data should further bias our OLS estimates of 
 (upward) towards zero.

4.3. Estimation Results. Table 2 reports the OLS estimates of the regression parameter


 obtained independently for each year 1988-2003. In line with our theory� and in spite

of the potential upward biases discussed above� we �nd that the regression parameter 
 is

9Formally, suppose that trade barriers, dnij , and exports, x
n
ij , are simultaneously determined according to8<: ln dnij = ln d

n
i + ln d

n
j + � lnx

n
ij

lnxnij = �̂
n
i + �̂

n

j + 
 ln aij + 
 ln d
n
ij

where � > 0 captures the fact that higher levels of import penetration lead to higher levels of protection.

The previous system can be rearranged as8<: ln dnij = (1� �
)�1[ln dni + ln dnj + ��̂
n
i + ��̂

n

j + �
 ln aij ]

lnxnij = �
n
i + �

n
j + 
 ln aij + "

n
ij

where �ni = (1 � �
)�1[�̂
n
i + 
 ln d

n
i ], �

n
j = (1 � �
)�1[�̂

n

j + 
 ln d
n
j ], and "

n
ij = �


2(1 � �
)�1 ln aij . This
directly implies E[ln aij"nij ] = �
2(1 � �
)�1E[(ln aij)2] > 0, and in turn, the upward bias in the OLS

estimate of 
.
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negative for every year in the sample. Further, it is signi�cant at the 1% level for 15 out

of 16 years, the only exception being 1988 (which also is the only year for which we do not

have US data).10 Overall, we view these results as strongly supportive of our new Ricardian

predictions.

Is the impact of labor productivity on the pattern of international specialization econom-

ically signi�cant as well? As mentioned in Section 3, we cannot use our estimate of 
 to

predict the changes in levels of exports associated with a given change in labor productivity.

However, we can follow a di¤erence-in-di¤erence approach to predict relative changes in ex-

ports across countries and industries. Consider, for example, two exporters, i1 and i2, and

two industries, j1 and j2, in 2003. If ai1j1 decreases by 10%, then our prediction is that:�
� lnxni1j1 �� lnx

n
i1j2

�
�
�
� lnxni2j1 �� lnx

n
i2j2

�
= �b
2003� ln ai1j1 ' 7:8%:

This is consistent with a scenario where country i1�s exports of good j1 (towards any im-

porter) go up by 5% and those of j2 go down by 2:8%, while they remain unchanged in both

sectors in country i2.

5. Concluding Remarks

The Ricardian model has long been perceived has a useful pedagogical tool with, ulti-

mately, little empirical content. Building on the seminal work of Eaton and Kortum (2002),

we introduce random productivity shocks in a standard Ricardian model with multiple coun-

tries and industries. The predictions that we derive are both intuitive and empirically mean-

ingful: countries should export relatively more (towards any importing country) in sectors

where they are relatively more productive. Using OECD trade and labor productivity data

from 1988 to 2003, we �nd strong support for our new Ricardian predictions.

We believe that the tight connection between the theory and the empirical analysis that

our paper o¤ers is a signi�cant step beyond the existing literature. First, we do not have

to rely on ad-hoc measures of export performance. The theory tells us exactly what the

dependent variable in the cross-industry regressions ought to be: ln(exports), disaggregated

by exporting and importing countries. This allows us to move away from the country-pair

10This may suggest that the good performance of our theory is entirely driven by US data. In Appendix

D, we show that this is not the case; running our regressions without the United States leads to similar

results.
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comparisons inspired by the two-country model, and in turn, to take advantage of a much

richer data set. Second, our clear theoretical foundations make it possible to discuss the

economic origins of the error terms� measurement errors in trade �ows or unobserved trade

barriers� and as a result, the plausibility of our orthogonality conditions.

Another attractive feature of our theoretical approach is that it relies on fairly general

assumptions on preferences, transport costs, and the number of industries and countries.

Hence, we believe that it may be fruitfully applied to more general environments, where

labor is not the only factor of production. The basic idea, already suggested by Bhagwati

(1964), is to reinterpret di¤erences in aij as di¤erences in total factor productivity. With

multiple factors of production, the probability of being an exporter, and in turn the volume of

exports, would be a function of both technological di¤erences, captured by aij, and di¤erences

in relative factor prices. The rest of our analysis would remain unchanged.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1. Fix i 6= n; by the de�nition of total exports xnij and Assumption A4(i),
we have

xnij =

NjX
!=1

xnj (!) � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	
=

knj�
pnj
�1�� NjX

!=1

pnj (!)
1�� � 1I

�
cnij(!) = min1�i0�I c

n
i0j(!)

	

= knj

24 1
Nj

NjX
!0=1

pnj (!
0)1��

35�1 24 1
Nj

NjX
!=1

pnj (!)
1�� � 1I

�
cnij(!) = min1�i0�I c

n
i0j(!)

	35 ;
where the function 1If�g is the standard indicator function, i.e. for any event A, we have
1IfAg = 1 if A true, and 1IfAg = 0 otherwise. By Assumption A1, uij(!) is independent and
identically distributed (i.i.d.) across varieties so same holds for cnij(!). In addition, uij(!) is

i.i.d. across countries so 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	
is i.i.d. across varieties as well. This

implies that pnj (!)
1�� and pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	
are i.i.d. across varieties.

Moreover, by Assumption A4(ii), E
�
pnj (!)

1��� < 1 so we can use the strong law of large

numbers for i.i.d. random variables (e.g. Theorem 22.1 in Billingsley (1995)) to show that

(13)
1

Nj

NjX
!0=1

�
pnj (!

0)
�1�� a:s:! E

�
pnj (!)

1��� ;
as Nj ! 1. Note that aij > 0, dnij � 1 ensure that cnij > 0 whenever wi > 0; hence

E
�
pnj (!)

1��� > 0. Similarly, Assumption A4(ii) implies that
E
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
<1;

so we can again use the strong law of large numbers for i.i.d. random variables (e.g. Theorem

22.1 in Billingsley (1995)) to show that

1

Nj

NjX
!=1

pnj (!)
1�� � 1I

�
cnij(!) = min1�i0�I c

n
i0j(!)

	
(14)

a:s:! E
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
;

as Nj !1. Combining Equations (14) and (13) together with the continuity of the inverse
function x 7! x�1 away from 0, yields by continuous mapping theorem (e.g. Theorem 18.10
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(i) in Davidson (1994))24 1
Nj

NjX
!0=1

pnj (!
0)1��

35�1 24 1
Nj

NjX
!=1

pnj (!)
1�� � 1I

�
cnij(!) = min1�i0�I c

n
i0j(!)

	35(15)

a:s:!
�
E
�
pnj (!)

1���	�1 �E �pnj (!)1�� � 1I�cnij(!) = min1�i0�I cni0j(!)	�	 ;
asNj !1. Note that the quantities in Equation (15) are positive; hence, applying again the
continuous mapping theorem (e.g. Theorem 18.10 (i) in Davidson (1994)) to their logarithm

we get, with probability one,

(16) lnxnij ! ln knj + lnE
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
� lnE

�
pnj (!)

1��� ;
as Nj !1.
Consider Hi(cn1j; :::; c

n
Ij) � E

�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
. Assumptions A1,

A3 and straightforward computations yield

(17) Hi(c
n
1j; :::; c

n
Ij) =

�
cnij
�1�� +1Z

�1

exp [(1� �)u] f(u)
Y
k 6=i

�
1� F (ln cnij � ln cnkj + u)

�
du:

where we let f(u) � F 0(u).
We now approximate ln ~Hi(cn1j; :::; c

n
Ij) � lnHi(c

n
1j; :::; c

n
Ij) � (1 � �) ln cnij obtained from

Equation (17) by its �rst order Taylor series around the symmetric case ln cn1j = ::: =

ln cnIj = ln c. Without loss of generality, we choose units of account in each sector j such

that ln c = 0. We have

(18) ~Hi(c
n
1j; :::; c

n
Ij)
���
(0;:::;0)

=

+1Z
�1

exp [(1� �)u] f(u) [1� F (u)]I�1 du;

(19)
@ ~Hi(c

n
1j; :::; c

n
Ij)

@ ln cnij

�����
(0;:::;0)

= � (I � 1)
+1Z
�1

exp [(1� �)u] f 2(u) [1� F (u)]I�2 du;

and, for i0 6= i,

(20)
@ ~Hi(c

n
1j; :::; c

n
Ij)

@ ln cni0j

�����
(0;:::;0)

=

+1Z
�1

exp [(1� �)u] f 2(u) [1� F (u)]I�2 du:
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Let

� �
+1Z
�1

exp [(1� �)u] f(u) [1� F (u)]I�1 du;

and

� � ��1
24 +1Z
�1

exp [(1� �)u] f 2(u) [1� F (u)]I�2 du

35 :
Combining Equations (18), (19), and (20), we then get

lnHi(c
n
1j; :::; c

n
Ij) = ln�+ (1� �) ln cnij � (I � 1) � ln cnij + �

X
i0 6=i

ln cni0j + o
�

ln cnj 

�

= ln�� (�I + � � 1) ln cnij + �
IX

i0=1

ln cni0j + o
�

ln cnj 

� ;(21)

where


ln cnj 

2 = PI

i0=1

�
ln cni0j

�2
denotes the usual L2-norm, and � > 0 only depends on

f(�), F (�), � and I. Combining Equation (21) with the de�nition of cnij = dnij� wi � aij and
Assumption A2, then gives

(22) lnHi(c
n
1j; :::; c

n
Ij) ' �ni + bnj + 
 ln aij;

where

�ni � ln�� (�I + � � 1) ln(dni � wi)

bnj � �(�I + � � 1) ln dnj + �
IX

i0=1

ln cni0j


 � �(�I + � � 1):

Note that �ni does not depend on the product index j, b
n
j does not depend on the coun-

try index i and 
 < 0 is a negative constant which only depends on f(�), F (�), � and I.
Combining Equations (16) and (22) then yields

lnxnij ' �ni + �nj + 
 ln aij;

for Nj large, where we have let �
n
j � ln knj + bnj � lnE

�
pnj (!)

1���. This completes the proof
of Theorem 1. �
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Appendix B: Bertrand Competition

Instead of Assumption A3, we now consider:

A3�. In any country n, the price pnj (!) paid by buyers of variety ! of product j is

pnj (!) = min

�
min
i0 6=i�

�
cni0j(!)

�
;mcni�j(!)

�
;

where cni�j(!) = min1�i0�I c
n
ij(!) and m = �=(� � 1) is the monopoly markup.

This is in the spirit of Bernard, Eaton, Jensen, and Kortum (2003): the producer with the

minimum cost may either charge the cost of its closest competitor or the monopoly price.

We then have the following result:

Theorem 3. Suppose that Assumptions A1, A2, A3�, and A4 hold. In addition, assume

that the number of varieties Nj of any product j is large, and that technological di¤erences

across exporters are small: cn1j ' ::: ' cnIj. Then, for any exporter i, any importer n 6= i,

and any product j,

(23) lnxnij ' e�ni + e�nj + e
 ln aij:
where e
 < (� � 1)=(I � 1).
Under Bertrand competition, the qualitative insights of Theorem 1 remain valid, albeit

in a weaker form. We obtain new importer�exporter and importer�industry �xed e¤ects,e�ni and e�nj , and a new parameter e
 constant across countries and industries. However, the
restriction e
 < (��1)=(I�1) is less stringent than in the case of perfect competition. When
� ! 1, that is when varieties become perfect substitutes, or when I ! +1, that is when
the number of exporters is very large, this collapses to: e
 � 0.
Proof of Theorem 3. Compared to the proof of Theorem 1, the only di¤erence comes from the

expression of Hi(cn1j; :::; c
n
Ij) = E

�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
. Assumptions
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A1, A3�and straightforward computations now yield

Hi(c
n
1j; :::; c

n
Ij) =

�
cnij
�1�� +1Z

�1

f(u1)du1

+1Z
u1

[min (expu2;m expu1)]
1�� �(24)

X
i0 6=i

( Y
i00 6=i;i0

�
1� F (ln cnij � ln cni00j + u2)

�
f(ln cnij � ln cni0j + u2)

)
du2:

where we let f(u) � F 0(u).
As previously, we approximate ln ~Hi(cn1j; :::; c

n
Ij) � lnHi(cn1j; :::; cnIj)�(1��) ln cnij, obtained

from Equation (24), by its �rst order Taylor series around the symmetric case ln cn1j = ::: =

ln cnIj = 0. We have

~Hi(c
n
1j; :::; c

n
Ij)
���
(0;:::;0)

=

+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� �

(I � 1) [1� F (u2)]I�2 f(u2)du2;(25)

@ ~Hi(c
n
1j; :::; c

n
Ij)

@ ln cnij

�����
(0;:::;0)

= � (I � 1)
+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� �

n
�f 0(u2) [1� F (u2)]I�2 + (I � 2) f 2 (u2) [1� F (u2)]I�3

o
du2;(26)

and, for i0 6= i,

@Hi(c
n
1j; :::; c

n
Ij)

@ ln cni0j

�����
(0;:::;0)

=

+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� �

n
�f 0(u2) [1� F (u2)]I�2 + (I � 2) f 2 (u2) [1� F (u2)]I�3

o
du2:(27)

Let then

(28) � � (I � 1)
+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� [1� F (u2)]I�2 f(u2)du2;
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and

� � ��1
+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� �

n
�f 0(u2) [1� F (u2)]I�2 + (I � 2) f 2 (u2) [1� F (u2)]I�3

o
du2:(29)

Combining Equations (25), (26), and (27), we get

lnHi(c
n
1j; :::; c

n
Ij) = ln�+ (1� �) ln cnij � (I � 1) � ln cnij + �

X
i0 6=i

ln cni0j + o
�

ln cnj 

�

= ln�� (�I + � � 1) ln cnij + �
IX

i0=1

ln cni0j + o
�

ln cnj 

� ;

where


ln cnj 

2 = PI

i0=1

�
ln cni0j

�2
as previously, and � only depends on f(�), F (�), � and I.

Let

e
 � �(�I + � � 1):
It remains to be shown that e
 < (� � 1)=(I � 1).
For this, let I(u1) �

R +1
u1

[min (expu2;m expu1)]
1�� f 0(u2) [1� F (u2)]I�2 du2. We can

rearrange I(u1) as

I(u1) =

u1+lnmZ
u1

[expu2]
1�� f 0(u2) [1� F (u2)]I�2 du2(30)

+ [m expu1]
1��

+1Z
u1+lnm

f 0(u2) [1� F (u2)]I�2 du2

= � [expu1]1�� f(u1) [1� F (u1)]I�2

� (1� �)
u1+lnmZ
u1

[expu2]
1�� f(u2) [1� F (u2)]I�2 du2

+ (I � 2)
+1Z
u1

[min (expu2;m expu1)]
1�� f 2(u2) [1� F (u2)]I�3 du2
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where the second equality uses a simple integration by parts. Combining Equations (29) and

(30), we then get

� = ��1
+1Z
�1

f (u1) du1

n
[expu1]

1�� f(u1) [1� F (u1)]I�2

� (� � 1)
u1+lnmZ
u1

[expu2]
1�� f(u2) [1� F (u2)]I�2 du2

o
:(31)

Using Equations (28) and (31), we then have

(I � 1)� + � � 1

= (I � 1)��1
+1Z
�1

[expu1]
1�� f 2(u1) [1� F (u1)]I�2 du1

� (I � 1)(� � 1)��1
+1Z
�1

f (u1) du1

u1+lnmZ
u1

[expu2]
1�� f(u2) [1� F (u2)]I�2 du2

+ (I � 1)(� � 1)��1
+1Z
�1

f (u1) du1

+1Z
u1

[min (expu2;m expu1)]
1�� [1� F (u2)]I�2 f(u2)du2

= (I � 1)��1
+1Z
�1

[expu1]
1�� f 2(u1) [1� F (u1)]I�2 du1

+ (I � 1)(� � 1)��1
+1Z
�1

f (u1) du1

+1Z
u1+lnm

[m expu1]
1�� [1� F (u2)]I�2 f(u2)du2;

which is positive by inspection. Hence, writing e
 = �I(I � 1)�1[(I � 1)� + � � 1] + (I �
1)�1(��1) and using (I�1)�+��1 > 0 yields the desired result: e
 < (I�1)�1(��1). �
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Appendix C: The Wonderful World of Eaton and Kortum (2002)

We now impose more structure on the distribution of random productivity shocks:

A5. For all countries i, products j, and their varieties !, uij(!) is drawn from a (negative)

Gumbel distribution with mean zero:

F (u) = 1� exp[� exp(�u� e)]

where u 2 R, � > � � 1, and e is Euler�s constant e ' 0:577.

Assumption A5 corresponds to the case where labor productivity is drawn from a Fréchet

distribution, as assumed in Eaton and Kortum (2002). We then have the following result:

Theorem 4. Suppose that Assumptions A1-A5 hold. In addition, assume that the number

of varieties Nj of any product j is large. Then, for any exporter i, any importer n 6= i, any
product j, and any vector of costs (cn1j; :::; c

n
Ij)

(32) lnxnij ' �ni + �nj � � ln aij

As mentioned in the main text, Assumption A5 guarantees that the results of Theorem 1

hold globally. Assumption A5 also implies that the elasticity of exports with respect to the

average unit labor requirement is equal to the shape parameter of the Gumbel �. Hence,

changes in the elasticity of substitution � across countries and industries do not a¤ect the

predictions of Theorem 4.

Proof of Theorem 4. Since Assumption A1-A4 hold, the results of Theorem 1 apply. In

particular, we know that, with probability one

lnxnij ! ln knj + lnE
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
� lnE

�
pnj (!)

1��� ;
as Nj ! 1. Using Equation (17) together with the expressions for the (negative) Gumbel
distribution and density, we then have
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E
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
= (cnij)

1��
+1Z
�1

� exp
n
(� + 1� �)u� e�

h
1 +

X
k 6=i
(cnij=c

n
kj)

�
i
exp (�u� e)

o
du

= (cnij)
1�� exp

�
�e� � 1

�

�
�(
� + 1� �

�
)
h
1 +

X
k 6=i
(cnij=c

n
kj)

�
i�(�+1��)=�

= exp

�
�e� � 1

�

�
�(
� + 1� �

�
)

(cnij)
��hXI

k=1
(cnkj)

��
i(�+1��)=� ;(33)

where the second equality uses the change of variable v �
�
1 +

X
k 6=i
(cnij=c

n
kj)

�
�
exp(�u�e),

and where �(�) denotes the Gamma function, �(t) =
R +1
0

vt�1 exp(�v)dv for any t > 0. Note
that

E
�
pnj (!)

1��� = IX
i=1

E
�
pnj (!)

1�� � 1I
�
cnij(!) = min1�i0�I c

n
i0j(!)

	�
;

so that by using Equation (33) we get

E
�
pnj (!)

1��� = exp��e� � 1
�

�
�(
� + 1� �

�
)

1hXI

k=1
(cnkj)

��
i(1��)=� ;

and hence

lnxnij ' ln knj � � ln cnij � ln
�XI

k=1
(cnij)

��
�
:

for Nj large. Combining the above with the de�nition of cnij = d
n
ij� wi � aij and Assumption

A2, then gives

lnxnij ' �ni + �nj � � ln aij;

where we have let �ni � �� ln(dni � wi) and �nj � ln knj � � ln dnj � ln
�XI

k=1
(cnij)

��
�
. �

Theorem 4 crucially relies on the following property of the Gumbel distribution:

(34) Pr
�
pnj (!) � p

	
= Pr

�
pnj (!) � p

��cnij(!) = min1�i0�I cni0j(!)	 ;
for any p > 0 and any 1 � i � I. Property (34) states that the distribution of the price

pnj (!) of a given variety ! of product j in country n is independent of the country of origin i;

see Eaton and Kortum (2002) p1748 for a detailed discussion. Unfortunately, this property

does not easily generalize to other distributions, as we show in the following Theorem.
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Theorem 5. Suppose that Assumptions A1-A4 hold and that f(u) � F 0(u) > 0 for any u
in R. Then, for any p > 0 and any 1 � i � I, we have:

Pr
�
pnj (!) � p

	
= Pr

�
pnj (!) � p

��cnij(!) = min1�i0�I cni0j(!)	, F (�) satis�es A5

Put simply, the only distribution with full support satisfying Property (34) is the Gumbel.

Proof of Theorem 5. That Assumption A5 is su¢ cient for Equation (34) to hold is a matter

of simple algebra. We now show that it is also necessary: if Equation (34) is satis�ed, then

F (�) is Gumbel. First, note that Equation (34) is equivalent to

Pr
�
pnj (!) � p; cnij(!) = min1�i0�I cni0j(!)

	
Pr
�
cnij(!) = min1�i0�I c

n
i0j(!)

	 = Pr
�
pnj (!) � p

	
;

for all p > 0 and any 1 � i � I, which in turn is equivalent to having
(35)
Pr
�
pnj (!) � p; cni1j(!) = min1�i0�I cni0j(!)

	
Pr
�
cni1j(!) = min1�i0�I c

n
i0j(!)

	 =
Pr
�
pnj (!) � p; cni2j(!) = min1�i0�I cni0j(!)

	
Pr
�
cni2j(!) = min1�i0�I c

n
i0j(!)

	 ;

for all p > 0 and any 1 � i1; i2 � I. Using Assumptions A1 and A3, we have

(36) Pr
�
cni1j(!) = min1�i0�I c

n
i0j(!)

	
=

+1Z
�1

f(u)
Y
k 6=i1

�
1� F (ln cni1j � ln c

n
kj + u)

�
du

and

Pr
�
pnj (!) � p; cni1j(!) = min1�i0�I c

n
i0j(!)

	
=

ln p�ln cni1jZ
�1

f(u)
Y
k 6=i1

�
1� F (ln cni1j � ln c

n
kj + u)

�
du;(37)
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with similar expressions for i2. So the condition in Equation (35) is equivalent to

ln p�ln cni1jR
�1

f(u)
Y
k 6=i1

�
1� F (ln cni1j � ln cnkj + u)

�
du

+1R
�1

f(u)
Y
k 6=i1

�
1� F (ln cni1j � ln cnkj + u)

�
du

=

ln p�ln cni2jR
�1

f(u)
Y
k 6=i2

�
1� F (ln cni2j � ln cnkj + u)

�
du

+1R
�1

f(u)
Y
k 6=i2

�
1� F (ln cni2j � ln cnkj + u)

�
du

;

for all p > 0 and any 1 � i1; i2 � I. Di¤erentiating the above equality with respect to ln p
and using the fact that f(x) > 0 and hence F (x) < 1 for all x 2 R, this in turn implies

f(ln p� ln cni1j)
�
1� F (ln p� ln cni2j)

�
f(ln p� ln cni2j)

�
1� F (ln p� ln cni1j)

� =
+1R
�1

f(u)
Y
k 6=i1

�
1� F (ln cni1j � ln cnkj + u)

�
du

+1R
�1

f(u)
Y
k 6=i2

�
1� F (ln cni2j � ln cnkj + u)

�
du

;

for all p > 0 and any 1 � i1; i2 � I. Since the right-hand side of the above equality does not
depend on p, we necessarily have that

(38)
hF (p=c

n
i1j
)

hF (p=cni2j)
only depends on cni1j; c

n
i2j
;

where hF (�) is a modi�ed hazard function of F (�), i.e. hF (x) � [1�F (lnx)]�1f(lnx) for any
x > 0. We now make use of the following Lemma:

Lemma 6. If for any positive constants c1 and c2, hF (x=c1)=hF (x=c2) only depends on c1; c2,

then necessarily hF (x) is of the form hF (x) = �x
� where � > 0 and � real.



NEW RICARDIAN PREDICTIONS 29

Proof of Lemma 6. Let U(t; x) � hF (tx)=hF (x) for any x > 0 and any t > 0. Consider

t1; t2 > 0: we have

U(t1t2; x) =
hF (t1t2x)

hF (x)

=
hF (t1t2x)

hF (t1x)
� hF (t1x)
hF (x)

= U(t2; t1x) � U(t1; x):(39)

If the assumption of Lemma (6) holds then U(t; x) only depends on its �rst argument t and

we can write it U(t). Hence the Equation (39) becomes

U(t1t2) = U(t2) � U(t1):

So, U(�) solves the Hamel equation on R+� and is of the form U(t) = t� for some real �. This
implies that

(40) hF (xt) = x
�hF (t):

Consider t = 1 and let � � hF (1) > 0; Equation (40) then gives

hX(x) = �x
�;

which completes the proof of Lemma 6. �

(Proof of Theorem 5 continued). The result of Lemma 6 allows us to characterize the class

of distribution functions F (�) that satisfy Property (34). For any u 2 R, we have

(41)
f(u)

1� F (u) = � exp(�u):

Note that when u ! �1 we have f(u); F (u) ! 0 so that necessarily � > 0. We can now

integrate Equation (41) to obtain for any u 2 R

(42) F (u) = 1� exp
h
� exp

�
�u+ ln(

�

�
)
�i

with � > 0 and � > 0;

which belongs to the (negative) Gumbel family. Noting the expected value of the (negative)

Gumbel distribution in Equation (42) equals ���1 (ln(�=�) + e), where e is the Euler�s
constant, we necessarily have, by Assumptions A1 and A4(ii),

F (u) = 1� exp [� exp (�u� e)] with � > � � 1 for any u 2 R;

which completes the proof of Theorem 5. �
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Appendix D: OLS estimates without US data

Variable 2003 2002 2001 2000 1999 1998 1997 1996
ln a ­0.67 ­0.65 ­0.88 ­0.77 ­0.69 ­0.86 ­0.93 ­0.67

(­8.60)*** (­12.23)*** (­15.78)*** (­15.12)*** (­12.37)*** (­13.06)*** (­13.63)*** (­9.76)***
Exporter­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 7749 14024 17319 17570 17777 17181 17225 16774
R2 0.804 0.791 0.788 0.782 0.789 0.789 0.785 0.781

Variable 1995 1994 1993 1992 1991 1990 1989 1988
ln a ­0.76 ­0.71 ­0.47 ­0.47 ­0.37 ­0.34 ­0.37 ­0.08

(­11.45)*** (­9.13)*** (­6.82)*** (­6.52)*** (­4.90)*** (­4.64)*** (­5.36)*** (­1.06)
Exporter­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry­Importer FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 16419 13244 12491 11779 10945 10775 10727 10672
R2 0.7795 0.7823 0.7887 0.7903 0.780 0.778 0.776 0.776
Note: Absolute value of t­statistics in parentheses, calculated from heteroskedasticity­consistent (White) standard errors
*   Significant at 10% confidence level
**  Significant at 5% confidence level
***  Significant at 1% confidence level

Table 3:  Year­by­Year OLS Regressions without US Data
(Dependent Variable: lnx)
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