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Abstract

Properties of Classes of Linear Transformations in the Semidefinite Linear
Complementarity Problem

by

Xianzhi Wang

Doctor of Philosophy in Engineering-Industrial Engineering and Operations Research

University of California, Berkeley

Professor Ilan Alder, Chair

The semidefinite linear complementarity problem (SDLCP) is a generalization of the
linear complementarity problem (LCP) in which linear transformations replace matrices and
the cone of positive semidefinite matrices replaces the nonnegative orthant. We study a
number of linear transformation classes (some of which are introduced for the first time)
and extend several known results in LCP theory to the SDLCPs, and in particular, results
which are related to the key properties of uniqueness, feasibility and convexity. Finally, we
introduce some new characterizations related to the class of matrices E∗ and the uniqueness
of the LCPs.
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Chapter 1

Introduction

1.1 Introduction

The goal of the linear complementarity problem (LCP) is to find a real vector of finite di-
mension that satisfies a system of linear inequalities with an additional quadratic constraint.
Specifically, given a vector q ∈ Rn and a square matrix M ∈ Rn×n, it is to find a vector
z ∈ Rn such that

z ≥ 0, (1.1)

q + Mz ≥ 0, (1.2)

zT (q + Mz) = 0, (1.3)

or to show no such vector z exists.
Extensive coverage of linear complementarity problem theory is available in the mono-

graphs (Cottle et al., 1992; Murty, 1988) and the research articles in their reference lists.
One of the interesting aspects of LCPs is its range of applications, from well understood
and relatively easy problems such as linear and convex quadratic programming problems, to
NP-hard problems.

Besides covering several important classes of mathematical programming problem such as
linear programming (Cottle and Dantzig, 1968a), convex quadratic programming (Hildreth,
1954, 1957; Frank and Wolfe, 1956b), Nash equilibrium points for nonzero sum games (Lemke
and Howson, 1964; Hansen and Scarf, 1974), several economic equilibrium problems (Manne,
1985) and the knapsack problem (Chung, 1989), LCP is also used to model many applications
such as the contact problem (Conry and Seirge, 1971), which studies the situation in which
one deformable body comes in contact with another, and how loads are delivered to the
structure and how the structure are supported to sustain loads; the porous flow problem
(Oden and Kikuchi, 1986), which analyzes the seepage through porous media in the presence
of a free surface; the obstacle problem (Cottle and Coheen, 1978; Moré and Toraldo, 1991),
which finds the equilibrium position of an elastic membrane whose boundary is held fixed,
and which is constrained to lie above a given obstacle; the journal bearing problem (Goenka,
1984), which analyzes dynamically loaded journal bearings; and many other free boundary
problems (Cryer, 1977).

A great deal of research effort was devoted to classifying LCP problems according to
the type of matrices that appear in the formulation. Typically, these classifications were
investigated in two major directions: The first one was related to the intrinstic properties of
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the matrix itself (e.g. positive semidefinite matrices); the second one was related to properties
of the corresponding LCP solution set (e.g. the matrices that yield convex solution sets).
The ultimate goal was to find the connections between the two sets of characterizations, that
is, to find the intrinstic properties of the classes of matrices that leads to a specific properties
of the solution set.

Many classes were identified over the years with some major results related to uniqueness,
feasibility and convexity. (Some of these results are discussed throughout this dissertation.)
These studies provided crucial information and insight for the development and analysis of
specific algorithms.

Motivated by the generalization of linear programming to semideinite programming that
was introduced by Bellman and Fan (Bellman and Fan, 1963), similiar generalization of
the LCP was first introduced by Kojima, Shindoh, and Hara (Kojima et al., 1997). In
the following we present an equivalent, but slightly different, form that was introduced by
(Gowda and Song, 2000), and is the focus of this dissertation.

• In (1.1), we replace z ∈ Rn with X ∈ Sn, where Sn denotes the set of the all real
symmetric n× n matrices. Then we replace z ≥ 0 with

X º 0, (1.4)

where X º 0 means that X is positive semidefinite (that is, yT Xy ≥ 0 for every real
n-vector y).

• In (1.2), we replace Mz with a linear transformation L(X) from Sn to Sn, that is, for
any X, Y ∈ Sn and α, β ∈ R, L satisfies L(αX + βY ) = αL(X) + βL(Y ). Similarly
to (1.4), we replace Mz + q ≥ 0 with

L(X) + Q º 0, (1.5)

where Q is a given matrix in Sn. Notice that the linear transformation L(X) is
very general and does not have simple form of expression. For example, the Lyapunov
transformation LA(X) := AX+XAT (see e.g. Horn and Johnson, 1985), only represent
an explicit kind of linear transformation.

• In (1.6), we replace zT (Mz + q) = 0 with

X(L(X) + Q) = 0. (1.6)

Note that since the operation of product of matrices is not necessarily commutative,
it is not clear in (1.6) whether to require X(L(X) + Q) = 0 or (L(X) + Q)X = 0.
However, given (1.4) and (1.5), it can be easily shown (see e.g. Horn and Johnson, 1985)
that X(L(X)+Q) = 0 iff (L(X)+Q)X = 0. Moreover, in this case X(L(X)+Q) = 0
iff trace(X(L(X) + Q)) = 01, thus it is customary to write (1.6) as

〈X,L(X) + Q〉 = 0, (1.7)

where for A, B ∈ Rn×n, 〈A,B〉 denotes trace(AT B).

1For any A ∈ Rn×n, trace(A) =
∑n

i=1 Aii, where Aij is (i, j) element of matrices A. Notice that for any
X, Y ∈ Rn×n, trace(XY ) = trace(Y X).
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To summarize, this problem, which is called the Semidefinite Linear Complementarity
Problem (SDLCP), is to find X ∈ Sn such that

X º 0, (1.8)

L(X) + Q º 0, (1.9)

〈X,L(X) + Q〉 = 0, (1.10)

or to show that no such matrix X exists, where L : Sn → Sn is a given linear transformation,
and Q is a given real symmetric matrix (i.e., Q ∈ Sn).

It is well known (see e.g. Ferris and Pang, 1997) that LCP is a special case of the
semidefinite linear complementarity problem. Specifically, when the matrix Q is a real
diagonal matrix, and the linear transformation L is a mapping from the set of all real
diagonal matrices to itself, the semidefinite linear complementarity problem becomes a linear
complementarity problem.

It should also be noted that the semidefinite linear complementarity problem is a spe-
cial case of the cone complementarity problem (Isac, 1992) and also a special case of the
variational inequality (VI) problem (Harker and Pang, 1990). Though general results on
the cone complementarity problem and the variational inequality problem are applicable to
SDLCPs, with the additional structural conditions as of the SDLCP it is possible to get
stronger results.

Given the many results concerning the classifications of LCPs through properties related
to their matrices M , it is natural to investigate the possibility of generalizing these classifi-
cations to SDLCPs. The goal of this dissertation is to investigate some of these possibilities
with respect to classes of linear transformations. We also look into the relationships among
different classes of linear transformations in SDLCPs.

The materials in this dissertation are organized as follows: After introducing notations
and preliminary results in the next section, we study in Chapter 2 conditions for uniqueness
of the solution to the SDLCP. In particular, we first introduce the classes of matrices that
are related to the uniqueness of the solution of the LCP in general as well as for specific
sets of q (q ≥ 0 and q > 0). In addition, we consider the class of matrices which yield
unique solution for LCPs with 0 6= q ≥ 0 and develop several new results with respect to it.
We then review some known results on several classes of linear transformations related to
the uniqueness of the solution of SDLCPs. Finally, we characterize linear transformations
that lead to unique solutions to SDLCPs with Q º 0, Q Â 0 and 0 6= Q º 0. In Chapter
3, we study issues related to the convexity of the solution set of the SDLCP. In particular,
following the introduction of some known results related to LCPs, we generalize three known
classes of matrices in LCPs which are related to convexity to corresponding three classes of
linear transformations for SDLCPs, and present necessary and sufficient condition for linear
transformations to be of those classes. Finally in Chapter 4, we review some known results
regarding the relationships among property classes of linear transformations in the context
of the SDLCP and then establish several more relationships.

1.2 Preliminaries

We denote the LCP (1.1)-(1.3) with parameters q and M by LCP(q, M). A vector z is
called feasible if it satisfies (1.1) and (1.2). The set of all feasible vectors z is the feasible
region of LCP(q, M) and is denoted by FEA(q, M). LCP(q, M) is said to be feasible if it
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has a nonempty feasible region. A feasible vector z which also satisfies (1.3) is called a
solution to LCP(q, M). The set of all solutions to LCP(q, M) is called the solution set of
LCP(q, M) and is denoted by SOL(q, M). We say that LCP(q, M) is solvable if its solution
set is nonempty.

For the SDLCP, we adopt a similar terminology. We denote the SDLCP (1.8)-(1.10) with
parameters Q and L by SDLCP(L,Q). A matrix X is feasible if it satisfies (1.8) and (1.9).
The set of all feasible matrices X is called the feasible region of the SDLCP(L,Q) and is
denoted by FEA(L,Q). SDLCP(L,Q) is said to be feasible if it has a nonempty feasible
region. A feasible matrix X which also satisfies (1.10) is called a solution to SDLCP(L,Q).
The set of all solutions to SDLCP(L,Q) is the solution set of SDLCP(L,Q), and is denoted
by SOL(L,Q). We say that SDLCP(L,Q) is solvable if its solution set is nonempty.

The following notations are used throughout this dissertation:

• I denotes the identity matrix.

• Given an index set α ⊂ {1, · · · , n}, we denote the principal submatrix Mαα :=
(Mij)i,j∈α.

• X º 0 means X ∈ Sn is positive semidefinite, (that is, yT Xy ≥ 0 for any read n-vector
y).

• X Â 0 means X ∈ Sn is positive definite, (that is, yT Xy > 0 for any nonzero read
n-vector y).

• X ¹ 0 means −X º 0, (similarly, X ≺ 0 means −X Â 0).

• For a ∈ R, we denote a+ := max{a, 0} and a− := a+ − a.

• D = diag(d1, d2, . . . , dn) denotes a diagonal matrix in Rn×n whose diagonal elements
are d1, d2, . . . , dn.

• For D = diag(d1, d2, . . . , dn), we denote D+ := diag(d+
1 , d+

2 , . . . , d+
n ) and

D− := diag(d−1 , d−2 , . . . , d−n ).

• For x ∈ Rn, supp(x) denotes the index set of all the nonzero elements in x.

The following matrix theoretic properties are used in this dissertation (see e.g. Horn and
Johnson, 1985):

• X ∈ Sn, X º 0 ⇒ UXUT º 0 for any orthogonal matrix2 U ∈ Rn×n.

• X, Y ∈ Sn, X º 0, Y º 0 ⇒ 〈X,Y 〉 ≥ 0.

• X, Y ∈ Sn, X º 0, Y º 0, 〈X,Y 〉 = 0 ⇒ XY = Y X = 0.

• X ∈ Sn, 〈X,Y 〉 ≥ 0, ∀ Y º 0 ⇒ X º 0. (i.e., the cone Sn
+ = {X ∈ Sn | X º 0} is

self dual.)

2A matrix U ∈ Rn×n is orthogonal if UT U = UUT = I.
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• For X ∈ Sn, the diagonal decomposition of X is denoted by X = UDUT with an
orthogonal matrix U and a diagonal matrix D := diag(X(1), X(2), . . . , X(n)), where
D is uniquely determined up to ordering of the diagonal entries. We denote X+ :=
UD+UT and X− := UD−UT , and call U the decomposition matrix of X. In addition,
if X,Y ∈ Sn with XY = Y X, there exists a decomposittion matrix U , and diagonal
matrices D, E such that X = UDUT and Y = UEUT .

Unlike the operation of Hadamard product3 which is closed on the n-dimensional vector
space (e.g. for any x ∈ Rn, y ∈ Rn, x∗y ∈ Rn), the operation of matrix product is not closed
on the real symmetric matrix space (e.g. for arbitrary X, Y ∈ Sn, XY is not necessarily
in Sn). Since in SDLCPs, the variables are symmetric real matrix, the commutativity of
matrix products is often required in order to get meaningful results. In particular, we shall
frequently use a particular commutativity assumption called the cross commutativity, which
is defined below.

Definition 1.2.1. A linear transformation L : Sn → Sn is said to have the cross commu-
tative property if for every Q ∈ Sn, any two solutions X1 and X2 of SDLCP(L,Q) satisfy
X1Y2 = Y2X1 and X2Y1 = Y1X2, where Yi = L(Xi) + Q, i = 1, 2.

In LCP theory, matrix transpose is frequently used. To generalize matrix transpose to
linear transformation, we define the transpose of a linear transformation as follows:

Definition 1.2.2. Given a linear transformation L : Sn → Sn, its transpose LT : Sn → Sn

is defined by
〈LT (Y ), X〉 = 〈Y, L(X)〉, ∀ X ∈ Sn.

Since the transpose of a linear transformation is not explicitly given in the above defini-
tion, we need to show that it is properly defined as a linear transformation. This is exhibited
in the following theorem.

Theorem 1.2.1. The transpose LT defined in Definition 1.2.2 is uniquely defined and is a
linear transformation.

Proof We first prove that LT is a function. Suppose that for Y ∈ Sn, 〈L(X), Y 〉 = 〈X,Z1〉 =
〈X,Z2〉, where Z1, Z2 ∈ Sn. Then 〈X,Z1 − Z2〉 = 0, for every X ∈ Sn. Thus, Z1 − Z2 = 0,
i.e., for each Y ∈ Sn, there is only one LT (Y ) corresponding it.

Next, we prove that LT is linear. For any α, β ∈ Rn and Y1, Y2 ∈ Sn, we have

〈X,LT (αY1 + βY2)〉 = 〈L(X), αY1 + βY2〉 = α〈L(X), Y1〉+ β〈L(X), Y2〉

= α〈X,LT (Y1)〉+ β〈X,LT (Y2)〉 = 〈X,αLT (Y1) + βLT (Y2)〉.
Thus, LT (αY1 + βY2) = αLT (Y1) + βLT (Y2), i.e., LT is linear. These complete the proof. ¤

3The Hadamard product which is denoted by ∗ is defined as follows: for x, y ∈ Rn, z = x ∗ y means
zi = xiyi, i = 1, · · · , n.
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Chapter 2

Uniqueness of the Solution

In this chapter, we study issues regarding the uniqueness of the solution to both the
linear complementarity problem and the semidefinite linear complementarity problem. In
Section 2.1, We survey some of the known results in the linear complementarity problems
(Cottle, 2009; Cottle et al., 1992). In addition, in Section 2.1.3, we introduce some new
results regarding the E∗ matrix class as related to uniqueness of the solution to the LCP. In
Section 2.2, we discuss the generalization of these LCP results to the SDLCP.

2.1 The Linear Complementarity Problem

2.1.1 The Class of P Matrices

One of the earliest results about the linear complementarity problem is related to the
class of P-matrices which includes the positive definite matrices as a special case.

A matrix M ∈ Rn×n is said to be a P-matrix if all its principal minors are positive.
The class of such matrices is denoted by P. Obviously, if M is a P-matrix, so are all of its
principal submatrices as well as its transpose. A real symmetric matrix is positive definite if
and only if it belongs to P, yet the class of P-matries is not equivalent to the class of positive
definite matrices when the assumption of symmetry is dropped (see e.g. Cottle et al., 1992,
p.147). There are other characterizations for the class of P-matrices, which are summarized
in the following proposition (see e.g. Cottle et al., 1992, Theorem 3.3.4).

Proposition 2.1.1. Given M ∈ Rn×n. The following statements are equivalent:

1. M ∈ P.

2. M reverses the sign of no nonzero vectors, i.e.,

[zi(Mz)i ≤ 0 for all i] ⇒ [z = 0].

3. All real eigenvalues of M and its principal submatrices are positive.

The importance of the class of P-matrices to LCP theory is expressed in the following
proposition (see e.g. Cottle et al., 1992, Theorem 3.3.7).

Proposition 2.1.2. A matrix M ∈ Rn×n is a P-matrix if and only if LCP(q, M) has a
unique solution for all vectors q ∈ Rn.
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2.1.2 The Classes of E and E0 Matrices

Relaxing somewhat the characterization of P-matrices as in Proposition 2.1.1 (2), leads
to two new classes of matrices, E0 and E, which have a unique solution for any vector q in
the nonnegative and positive orthant, respectively.

A matrix M ∈ Rn×n is said to be semimonotone if

[0 6= x ≥ 0] ⇒ [xk > 0 and (Mx)k ≥ 0 for some index k].

The class of such matrices is denoted by E0, and its elements are called E0-matrices.
Note that, as follows directly from the preceding definition, every principal submatrix of

an E0-matrix is also an E0-matrix.
There are several ways to characterize further the class of E0-matrices, one of which is

through the uniqueness of the solution to the corresponding LCPs with positive vector q (see
e.g. Cottle et al., 1992, Theorem 3.9.3).

Proposition 2.1.3. Given M ∈ Rn×n, the following statements are equivalent:

1. M ∈ E0.

2. LCP(q, M) has a unique solution for every q > 0.

3. For every index set α ⊆ {1, · · · , n}, the system

Mααxα < 0, xα ≥ 0

has no solution.

A natural subclass of E0 is the following: A matrix M ∈ Rn×n is said to be strictly
semimonotone if

[0 6= x ≥ 0] ⇒ [xk > 0 and (Mx)k > 0 for some index k].

The class of such matrices is denoted by E, and its elements are called E-matrices.
As it is shown in the next proposition, the results of Proposition 2.1.3 are extended to

the class of E-matrices . In particular, the proposition states that a matrix is an E-matrix if
and only if there is a unique solution for all LCPs with nonnegative q (see e.g. Cottle et al.,
1992, Theorem 3.9.11).

Proposition 2.1.4. Let M ∈ Rn×n. The following statements are equivalent:

1. M ∈ E.

2. LCP(q, M) has a unique solution for every q ≥ 0.

3. For every index set α ⊆ {1, · · · , n}, the system

Mααxα ≤ 0, 0 6= xα ≥ 0

has no solution.
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2.1.3 The Class of E∗ Matrices

A proper subclass of E0 which properly contains E is the class of E∗-matrices which is
defined as follows:

A matrix M ∈ Rn×n is said to be an E∗-matrix if LCP(q, M) has a unique solution for
every 0 6= q ≥ 0. The class of such matrices is denoted by E∗. Note that this definition
implies that for M ∈ E∗ and 0 6= q ≥ 0, SOL(q, M) = {0}.

This class of matrices was presented and discussed in (Danao, 1993, 1997), but no alter-
native characterizations in term of intrinsic properties of the matrices was ever introduced.
Such characterizations (in the spirit of Proposition 2.1.3 and 2.1.4) are offered in the next
theorem.

Theorem 2.1.1. Given M ∈ Rn×n. The following three statements are equivalent:

1. M ∈ E∗.

2. (a) For every index set α ⊂ {1, · · · , n}, Mαα ∈ E;
(b) The linear system {

0 6= Mx ≤ 0
x ≥ 0

has no solution.

3. [0 6= x ≥ 0, xi(Mx)i ≤ 0, ∀ i] ⇒ [Mx = 0, x > 0].

Proof of Theorem 2.1.1
[1 ⇒ 2] (a) Assume that for some nonempty index set α ⊂ {1, · · · , n}, Mαα 6∈ E, which
means that there exists a vector x ∈ Rn, a nonempty index set α ⊂ {1, · · · , n} and a vector
qα ∈ R|α| such that LCP(qα,Mα) has a nonzero solution xα. Denote ᾱ = {1, · · · , n} \α. Set

x =

(
xα

xᾱ

)(
xα

0

)
6= 0

and

q =

(
qα

qᾱ

)
,

where

qα = −Mααxα ≥ 0,

qi = max{0,−(Mᾱαxα)i}+ 1 > 0, for i ∈ ᾱ.

Then, 0 6= q ≥ 0, and x is a nonzero solution for LCP(q, M). Since LCP(q, M) also has the
zero vector as another solution, this contradicts the fact that M ∈ E∗ by its definition.
(b) Now assume that the linear system

{
0 6= Mx ≤ 0

x ≥ 0

has a solution x̄. Then,
Mx̄ 6= 0 ⇒ x̄ 6= 0.
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Let q̄ = −Mx̄. Then, 0 6= q̄ ≥ 0. It is easy to see that x̄ is a nonzero solution to LCP(q̄, M),
and again since LCP(q̄, M) also the zero vector as its solution, this contradicts the fact that
M ∈ E∗.
[2 ⇒ 3] We prove it by contradiction. Assume that 0 6= x ≥ 0 and xi(Mx)i ≤ 0, ∀ i.
Assume that either Mx 6= 0 or x 6> 0. By part (b) of 2, Mx = 0. Assume x 6> 0. Let
α = supp{x}, ᾱ = {1, · · · , n} \ α. Then

x 6> 0 ⇒ ᾱ 6= ∅.

Moreover, we have,
xα > 0,

(xα)i(Mααxα)i ≤ 0, ∀ i ∈ α,

which contradicts the fact that Mαα ∈ E.
[3 ⇒ 1] It is obvious that the zero vector is a solution to LCP(q, M), ∀ 0 6= q ≥ 0. Now
assume there is also a nonzero solution x to LCP(q, M). Then, 0 6= x ≥ 0, Mx + q ≥ 0 and
xT (Mx + q) = 0. Since

0 6= x ≥ 0, xiqi ≥ 0, and xi(Mx)i ≥ 0, ∀ i,

we have
Mx = 0 and x > 0,

then by 0 6= q ≥ 0, 0 6= Mx + q ≥ 0, we get the conclusion that xT (Mx + q) 6= 0, a con-
tradiction. Thus, LCP(q.M) has no nonzero solutions. Therefore, LCP(q, M) has a unique
solution, ∀ 0 6= q ≥ 0. ¤

To prove the next result, we will need the following well-known version of the so-called
Theorem of the Alternatives (see e.g. Cottle et al., 1992, p.109-111):

Lemma 2.1.1. (Theorem of the Alternatives)

1. The system

{
0 6= x ≥ 0
Mx ≤ 0

has no solution. ⇔ The system

{
MT y > 0
y > 0

has a solution.

2. The system

{
x ≥ 0
0 6= Mx ≤ 0

has no solution. ⇔ The system

{
MT y ≥ 0
y > 0

has a solu-

tion.

Corollary 2.1.1. Given M ∈ Rn×n. The following two statements are equivalent:

1 M ∈ E∗.

2 For every index set α ⊂ {1, · · · , n}, Mαα ∈ E, and the linear system

{
MT y ≥ 0

y > 0

has a solution.
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The proof of the preceding corollary follows directly from the second characterization of
E∗-matrices in Theorem 2.1.1 and from Lemma 2.1.1.

In Cottle’s recent paper (Cottle, 2009), several structural properties (complete, full, re-
flective and sign-change invariance) are defined and then their existence (or lack of) are
discussed for many matrix classes.

A matrix M belonging to a class Y is said to be completely-Y if every principal submatrix
of M also belongs to Y . The class of all completely-Y matrices is denoted by Y c. To say
that Y is a complete class means that Y = Y c.

The classes of P, E0 and E matrices are all complete classes (see e.g. Cottle et al., 1992,
Corollary 3.9.7 and 3.9.11).

Consider the specific system of linear equations

w = q + Mz, (2.1)

where q ∈ Rn and M ∈ Rn×n. Let α be a subset of the index set {1, · · · , n} and suppose
Mαα is nonsingular. Let ᾱ = {1, · · · , n} \ α. Then,

M ′ =
(

M ′
αα M ′

αᾱ

M ′
ᾱα M ′

ᾱᾱ

)
(2.2)

is called a principal pivotal transform of M with respect to the index set α (and the nonsin-
gular principal submatrix Mαα), where

M ′
αα = M−1

αα , M ′
αᾱ = −M−1

αα Mαᾱ, (2.3)

M ′
ᾱα = MᾱαM−1

αα , M ′
ᾱᾱ = Mᾱᾱ −MᾱαM−1

αα Mαᾱ. (2.4)

A matrix M belonging to a class Y is said to be fully-Y if for every nonsingular principal
submatrix of M the associated principal pivotal transform of M also belongs to Y . The
class of all fully-Y matrices is denoted by Y f . To say that Y is a full class means that
Y = Y f .

The class of P-matrices is full (see e.g. Cottle et al., 1992, Theorem 6.6.9). The classes
of E0 and E matrices are not full classes (see e.g. Cottle et al., 1992, Theorem 6.6.6).

A matrix M belonging to a class Y is said to be reflectively-Y if MT ∈ Y . The class of
all reflectively-Y matrices is denoted by Y r. To say that Y is a reflective class means that
Y = Y r.

The classes of P, E0 and E matrices are all reflective (Cottle, 2009).
A matrix M belonging to a class Y is said to be sign-change invariant-Y if SMS ∈ Y for

every diagonal matrix S such that S2 = I. The class of all sign-change invariant-Y matrices
is denote by Y s. To say that Y is a sign-change invariant class means that Y = Y s.

It can be shown that the class of P-matrices is sign-change invariant, while the classes
of E0 and E matrices are not sign-change invariant (Cottle, 2009).

Here we study the structural properties shown above for the E∗ class as well.
The completeness of the E∗ matrix class can be easily derived as a corollary of Theorem

2.1.1.

Corollary 2.1.2. The E∗ class is complete.

The proof follows directly from the second definition of the E∗ matrix class in Theorem
2.1.1, and the fact that E ⊆ E∗.

The E∗ matrix class is not full as shown in the following example.
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Example 2.1.1. Consider the matrix

M =




1 −2 0
0 1 2
2 0 1


 .

It is an E-matrix, thus it is also an E∗-matrix. Let α = {1, 2}. The principal pivotal
transform of M with respect to the nonsingular matrix Mαα is

M ′ =




1 −2 −4
0 1 −2
2 4 −7


 .

M ′ is not an E∗-matrix, since its principal submatrix

(
1 −2
4 −7

)

is not an E-matrix, thus, M ′ is not an E∗-matrix. Therefore, the E∗ class is not full. ♦

The following theorem shows that the E∗ class is reflective.

Theorem 2.1.2. M ∈ E∗ ⇔ MT ∈ E∗

Proof
Since (MT )T = M , it is enough to prove that M ∈ E∗ ⇒ MT ∈ E∗. We will use the second
characterization of E∗-matrices in Theorem 2.1.1 to prove the result.

We prove part (a) of the characterization by induction on |α|.1 where α is a nonempty
index set of {1, · · · , n}. When |α| = 1, if the linear system

{
0 6= xα ≥ 0
Mααxα ≤ 0

has no solution, then obviously since Mαα = MT
αα, the linear system

{
0 6= xα ≥ 0
MT

ααxα ≤ 0

has no solution as well.
Now consider any index set α with |α| = k, 1 < k < n. Suppose that for all the index

sets α̃ with 1 ≤ |α̃| ≤ k − 1, the linear system

{
0 6= xα̃ ≥ 0
MT

α̃α̃xα̃ ≤ 0

has no solution.
Assume on the contrary, that the linear system

{
0 6= xα ≥ 0
MT

ααxα ≤ 0

1For a set S of finite elements, |S| denotes the number of elements in S.
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has a solution xα. Assume that xα 6> 0, then letting β = supp(xα) ⊂ α, (so 1 ≤ |β| ≤ k−1),
we have {

xβ > 0
MT

ββxβ ≤ 0,

which contradicts the assumption in the induction, so xα > 0.
Since M ∈ E∗, the linear system

{
yα > 0
MT

ααyα > 0

has a solution.
Then, there exists a scalar λ > 0 such that xα−λyα ≥ 0, xα−λyα 6> 0 and xα−λyα 6= 0.

Also 0 6= MT
αα(xα − λyα) ≤ 0.

Let γ = supp(xα − λyα), then γ ⊂ α and

{
(xα − λyα)γ > 0
MT

γγ(xα − λyα)γ ≤ 0,

this again contradicts the induction assumption.
Therefore, for all index sets α for which 1 ≤ |α| ≤ n− 1, the linear system

{
0 6= xα ≥ 0
MT

ααxα ≤ 0

has no solution.
Again, we prove part (b) of the characterization by contradiction. Assume that the linear

system {
x ≥ 0
0 6= MT x ≤ 0

has a solution x.
Suppose x 6> 0. Set α = supp{x} and α ⊂ {1, · · · , n}. Then we have

{
xα > 0
MT

ααxα ≤ 0,

which contradicts part (a). Thus, x > 0.
Since M ∈ E∗, the linear system

{
y > 0
MT y ≥ 0

has a solution. Then, there exists a scalar λ > 0 such that x − λy ≥ 0, x − λy 6> 0 and
x− λy 6= 0. Set β = supp{x− λy} ⊂ {1, · · · , n}. Then

{
(x− λy)β > 0
MT

ββ(x− λy)β ≤ 0,

which also contradicts part (a).
Thus, the linear system {

x ≥ 0
0 6= MT x ≤ 0
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has no solution.

Combining part (a) and (b) of the characterization, we conclude that MT ∈ E∗. ¤

As we mentioned earlier, neither the E class nor the E0 class is sign-changing invariance.
We show that the class of E∗-matrices is not sign-changing invariance as well.

Example 2.1.2. Consider the matrix

M =




1 −2 0
0 1 2
2 0 1


 ,

and consider the following sign-changing matrix

S =




1 0 0
0 1 0
0 0 −1


 .

Then

SMS =




1 −2 0
0 1 −2
−2 0 1


 ,

which is not an E∗-matrix. Therefore, the class of E∗-matrices is not sign-change invariance.
♦

Next, we turn our attention to the L = E0 ∩ E1 matrix class (where the E1 class is
defined below) which was introduced in (Eaves, 1971) and is a well-studied class in LCP
theory.

A matrix M ∈ Rn×n is said to be an E1-matrix if for every 0 6= z ∈ SOL(0,M), there
exist nonnegative diagonal matrices D1 and D2 such that D2z 6= 0 and (D1M +MT D2)z = 0.
The class of such matrices is denoted by E1.

It has been established that E ⊆ E1 (see e.g. Cottle et al., 1992, p.192).

We show, through the corollary of the following theorem, that the class of E∗-matrices
belongs to the class of L-matrices, which in turn (see e.g. Cottle et al., 1992, Corollary 3.9.19)
belongs to the class of Q0-matrices, where Q0-matrix is a matrix for which the related LCP
is solvable whenever feasible. It should be noted, as detailed in Section 3.1.1, that the Q0

class is a particularly interesting class.

Theorem 2.1.3. E∗ ⊆ E1.

Proof Let M ∈ E∗. Suppose that z ∈ SOL(0,M) \ {0}, then

0 6= z ≥ 0,

Mz ≥ 0,

zT Mz = 0.

Thus, z satisfies
0 6= z ≥ 0 and zi(Mz)i ≤ 0, ∀ i = 1, · · · , n
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Since M ∈ E∗, by its definition, Mz = 0 and z > 0 ⇒ M /∈ E ⇒ MT /∈ E. Moreover,
by Theorem 2.1.2, MT ∈ E∗. So, MT ∈ E∗ \ E. Thus, there exists 0 6= x ≥ 0 such that
MT x = 0. Set

D2 = diag(
x1

z1

,
x2

z2

, · · · ,
xn

zn

) º 0,

and let D1 = 0, then we have

(D1M + MT D2)z = MT (D2z) = MT x = 0

Therefore, since D2z 6= 0, by definition, we have that M is a E1-matrix. ¤

As a corollary of the above theorem, we have that the class of E∗-matrices belongs to
the class of L-matrices.

Corollary 2.1.3. E∗ ⊆ L.

The proof directly follows from Theorem 2.1.3 and from the definition of L as E0 ∩ E1,
and the fact that E∗ ⊆ E0.

2.2 The Semidefinite Linear Complementarity Prob-

lem

In this section, we extend some of the results regarding the uniqueness of the solution in
LCPs as presented in the previous section to semidefinite linear complementarity problems
(SDLCPs). Unlike the case of the Hadamard product of vectors in which x ∗ y = y ∗ x,
for any x, y ∈ Rn; we do not necessarily have commutativity for product of matrices (that
is, for any X,Y ∈ Sn, we do not necessarily have that XY = Y X). This (as will be
shown later) necessitates somewhat more restricted results for the SDLCP. In the definitions
introduced later, whenever X and L(X) commute, we consider the decompositions of X
and L(X) with the same orthogonal matrix U , i.e., X = UT diag(X(1), · · · , X(n))U and
L(X) = UT diag(L(X)(1), · · · , L(X)(n))U .

2.2.1 The Linear Transformation Class of P

Motivated by the results that relate P-matrices and uniqueness of the solution to the
corresponding LCPs, Gowda and Song (Gowda and Song, 2000) introduced an analogous
property for the linear transformation L of the SDLCP as follows:

Definition 2.2.1. A linear transformation L : Sn → Sn has the P-property if

[X 6= 0] ⇒ [if X and L(X) commute, ∃ i such that X(i)× L(X)(i) > 0].

The class of linear transformations having such property is denoted by P.

The above definition for the P-property is equivalent though slightly different from the
one in (Gowda and Song, 2000, Definition 2). We choose this definition to facilitate our
proofs. Note that the additional assumption of the commutativity of L(X) and X in the
definition of the P property is necessary to obtain uniqueness properties for the SDLCP.
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This additional commutativity assumption will be part of most of the definitions of classes
of linear transformations to be introduced in the rest of this dissertation.

As discussed in the introduction, most of the results regarding extending properties of
matrices in LCP theory to linear transformations in SDLCP theory require the additional
assumption of cross commutativity (see Definition 1.2.1). To facilitate the presentation, we
introduce the following convention:
Let Y denote a (fixed) class of linear transformations L : Sn → Sn. The class of linear
transformations that belong to Y and have the cross commutative property is denoted by
Ŷ .

We start by quoting the results in (Gowda and Song, 2000, Theorem 7) regarding the
class P and the uniqueness of solution in the SDLCP.

Proposition 2.2.1. Given a linear transformation L : Sn → Sn, the following three state-
ments are equivalent:

1. For all Q ∈ Sn, SDLCP(L,Q) has at most one solution.

2. L ∈ P̂.

3. For all Q ∈ Sn, SDLCP(L,Q) has a unique solution.

2.2.2 The Linear Transformation Classes of E and E0

Motivated by Gowda and Song’s result regarding the P class of linear transformations,
we will extend the known LCP uniqueness results related to vectors q in the nonnegative
orthant (as presented in Section 2.1.2) to the SDLCP.

Definition 2.2.2. A linear transformation L : Sn → Sn is said to have the E0-property if

[0 6= X º 0] ⇒ [if X and L(X) commute, ∃ i such that X(i) > 0 and L(X)(i) ≥ 0].

The class of linear transformations having such property is denoted by E0.

Definition 2.2.3. A linear transformation L : Sn → Sn is said to have the E-property if

[0 6= X º 0] ⇒ [if X and L(X) commute, ∃ i such that X(i) > 0 and L(X)(i) > 0].

The class of linear transformations having such property is denoted by E.

Next, we extend the results of Propositions 2.1.3 and 2.1.4 to the linear transformation
classes E0 and E with respect to the SDLCP.

Theorem 2.2.1. Given a linear transformation L : Sn → Sn, we have:

1. If SDLCP(L,Q) has a unique solution for all Q Â 0, then L ∈ E0.

2. If L ∈ Ê0, then SDLCP(L,Q) has a unique solution for all Q Â 0.

Proof We prove these results by contradiction.
1. Suppose on the contrary, that L 6∈ E0. Then there exists a matrix X ∈ Sn such that

0 6= X º 0, X and L(X) commute
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And we can decompose X and L(X) with the same decomposition matrix U :

X := UT DU and L(X) := UT EU,

where D = diag(d1, · · · , dn) and E = diag(e1, · · · , en). Since L 6∈ E0, for all the index k
such that dk > 0, we have ek < 0.

Now set Q := UT GU , where G = diag(g1, · · · , gn) with

gi =

{
1, if ei ≥ 0
−ei, if ei < 0.

Then, Q Â 0 and X(L(X) + Q) = 0, and also L(X) + Q º 0. Therefore, X 6= 0 is a solution
to SDLCP(L,Q), with Q Â 0. Since the zero matrix is another solution to SDLCP(L,Q),
this contradicts the assumption that SDLCP(L,Q) has a unique solution.
2. Suppose that on the contrary, for some positive definite matrix Q, SDLCP(L,Q) does not
have a unique solution. Since it is clear that the zero matrix is a solution to SDLCP(L,Q),
there exists an X 6= 0 such that X ∈ SOL(L,Q). Then, X º 0, L(X) + Q º 0 and
X(L(X) + Q) = 0. Therefore, X and L(X) + Q commute. By the cross commutative
property of L, and because the zero matrix and X are both solutions to SDLCP(L,Q), we
have that X and L(0) + Q = Q commute. Therefore, X and L(X) commute as well. Then,
since Q Â 0,

X(L(X) + Q) = 0 ⇒ XL(X) = −XQ ≺ 0.

It contradicts the assumption that L ∈ E0. Therefore, there exists no nonzero solution to
SDLCP(L,Q), for all matrix Q Â 0. i.e., SDLCP(L,Q) has a unique solution, for all Q Â 0.
¤

Unlike the result for the class P in Proposition 2.2.1, for the class E0, the uniqueness of
the solution for all the positive definite matrix Q does not lead to the cross commutativity
property. This is also true with respect to the class E (see Theorem 2.2.2).

The following example shows that the cross commutative property is indeed necessary
in Theorem 2.2.1 part 2. In the example below, L ∈ E0, but SDLCP(L,Q) has no unique
solution for a positive definite matrix Q.

Example 2.2.1. Consider the linear transformation

L :

(
a b
b c

)
→

(
b 0
0 0

)
.

Then for any matrix X =

(
a b
b c

)
º 0, we have a ≥ 0, c ≥ 0, ac ≥ b2. Since

XL(X) =

(
ab 0
b2 0

)
,

X and L(X) commute if and only if b = 0. Thus, it is easy to see that L ∈ E0.
Now set

Q =

(
2 1
1 1

)
Â 0.
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Then

X =

(
1 −1
−1 1

)
º 0,

L(X) + Q =

(
1 1
1 1

)
º 0,

〈X,L(X) + Q〉 = 0.

Therefore, X 6= 0 is another solution to SDLCP(L,Q), so SDLCP(L,Q) has no unique
solution even though Q Â 0. ♦

In addition, it is possible to have a linear transformation L that guarantees uniqueness
of the solution to SDLCP(L,Q) for any positive definite matrix Q without having the cross
commutative property.

Example 2.2.2. Consider the linear transformation

L :

(
x y
y z

)
→

(
z y
y x

)
.

Next we show SDLCP(L,Q) has a unique solution for all Q Â 0.
Consider any positive definite matrix

Q =

(
a b
b c

)
,

with a > 0, c > 0, ac > b2. Assume that

X̄ =

(
x̄ ȳ
ȳ z̄

)
º 0

is a solution to SDLCP(L,Q). Then,

〈X̄, L(X̄) + Q〉 = 2x̄z̄ + 2ȳ2 + x̄a + z̄c + 2ȳb = 0.

But
(2ȳb)2 = 4ȳ2b2 ≤ 4(x̄z̄)(ac) ≤ (ax̄ + cz̄)2,

with both equalities hold only when x̄ = ȳ = z̄ = 0. Therefore, X̄ = 0, i.e., SDLCP(L,Q)
has a unique solution, namely the zero matrix, for any positive definite matrix Q.

Now set

Q =

(
0 −1
−1 0

)
.

Then, both

X1 =

(
1
2

1
2

1
2

1
2

)

and

X2 =

(
1 1

2
1
2

1
4

)

are solutions to SDLCP(L,Q). But

X1(L(X2) + Q) =

(
1
2

1
2

1
2

1
2

)(
1
4

−1
2

−1
2

1

)
=

( −1
8

1
4

−1
8

1
4

)

is not symmetric, i.e., X1 and L(X2) + Q do not commute. Thus, L doesn’t have the cross
commutative property. ♦
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Following similar arguments as in Theorem 2.2.1, the following results can be proved:

Theorem 2.2.2. Given a linear transformation L : Sn → Sn, we have the following impli-
cations:

1. If SDLCP(L,Q) has a unique solution, for all Q º 0, then L ∈ E;

2. If L ∈ Ê, then SDLCP(L,Q) has a unique solution, for all Q º 0.

In the next example we show that the requirement of cross commutativity in the second
part of the preceding theorem is necessary. In particular, we exhibit a linear transformation
L in which L ∈ E but L 6∈ Ê and shows that for a certain Q º 0, the corresponding
SDLCP(L,Q) has multiple solutions.

Example 2.2.3. Consider the linear transformation L(X) = AX + XAT , where

A =

( −1 2
2 2

)
.

It can be shown that L ∈ E and L ∈ E0. (In fact, L ∈ P as well).
Set

Q =

(
2 2
2 4

)
º 0.

Then, both

X1 =

(
0 0
0 0

)

and

X2 =

(
1 0
0 0

)

are solutions to SDLCP(L,Q). Thus, SDLCP(L,Q) has multiple solutions for the positive
semidefinite matrix Q. ♦

2.2.3 The Linear Transformation Class of E∗

We also generalize the E∗ matrix class to the corresponding class of linear transforma-
tions.

Definition 2.2.4. A linear transformation L : Sn → Sn is said to have the E∗-property if

[0 6= X º 0, X and L(X) commute, XL(X) ¹ 0]

⇒ [L(X) = 0, X Â 0]

The class of linear transformations having such property is denoted by E∗.

As in the LCP result in Theorem 2.1.1, the E∗ class of linear transformations is also
related to the uniqueness of the solution to the SDLCPs:

Theorem 2.2.3. Given a linear transformation L : Sn → Sn:

1. If SDLCP(L,Q) has a unique solution for all 0 6= Q º 0, then L ∈ E∗;
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2. If L ∈ Ê∗, then SDLCP(L,Q) has a unique solution for all 0 6= Q º 0.

Proof
1. Consider any matrix 0 6= X º 0, such that X and L(X) commute, and also XL(X) ¹ 0.
We can decompose X and L(X) with the same decomposition matrix U :

X := UT DU,

L(X) := UT EU,

where D = diag(d1, · · · , dn), E = diag(e1, · · · , en). Note that XL(X) ¹ 0 ⇒ diei ≤ 0. We
now study two cases:
Case 1: L(X) 6= 0.

Set
Q := UT FU,

where F = diag(f1, · · · , fn) and

fi =

{
max{−ei, 1}, if ei = 0
−ei if ei > 0.

Then, 0 6= Q º 0, and X 6= 0 is another solution to SDLCP(L,Q), which contradicts the
fact that SDLCP(L,Q) has a unique solution for all the nonzero positive semidefinite matrix
Q.
Case 2: L(X) = 0 but X 6Â 0.

Since X º 0, there exists an index j such that dj = 0. Set Q := UT FU , where F =
diag(f1, · · · , fn) and

fi =

{
1, if i = j
0, otherwise.

Thus, we have 0 6= Q º 0. Thus X 6= 0 is another solution to SDLCP(L,Q) (besides X = 0),
which again contradicts the fact that SDLCP(L,Q) has a unique solution for all the nonzero
positive semidefinite matrix Q.

From the two cases above, we conclude that L(X) = 0 and X º 0.

2. Suppose on the contrary, there exists a matrix 0 6= Q º 0 such that SDLCP(L,Q) has
more than one solution. Let X be a nonzero solution to SDLCP(L,Q), then

0 6= X º 0,

L(X) + Q º 0,

〈X,L(X) + Q〉 = 0.

Since X and the zero matrix are two distinct solutions to SDLCP(L,Q), by the cross com-
mutative property of the linear transformation L, we can conclude that X and Q commute.
Then, since X º 0 and Q º 0.,

X(L(X) + Q) = 0 ⇒ XL(X) = −XQ ¹ 0.

By the definition of the E∗-property, L(X) = 0 and X Â 0. Thus,

0 = XL(X) = −XQ ≺ 0,

a contradiction. Therefore, SDLCP(L,Q) has a unique solution for all 0 6= Q º 0. ¤
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Chapter 3

Convexity and the Class of Sufficient
Linear Transformations

In this chapter, we discuss the properties of LCPs as well as SDLCPs with respect to
convexity. In Section 3.1, we recall and discuss several well-known results regarding three
classes of matrices which have properties related to the convexity of the solution sets of
LCPs. In Section 3.2, we extend these results to classes of linear transformations related to
SDLCPs.

3.1 The Linear Complementarity Problem

In this section, we show several known results on the classes of Q0, column sufficient
and row sufficient matrices (will be defined later in the section), and their properties with
respect to the convexity of the solution sets of LCPs.

3.1.1 The Classes of Q and Q0 Matrices

The solvability of a linear complementarity problem is often the first question asked
when analyzing the problem. A matrix M ∈ Rn×n is called a Q0-matrix if the LCP(q, M)
is solvable whenever it is feasible1. The class of such matrices is denoted by Q0.

From its definition, we can see that Q0 is an important class of matrices: if M is a
Q0-matrix, we can check the solvability of LCP(q, M) by checking the solvability of only the
first two linear inequalities (1.1) and (1.2), which greatly simplifies the problem, and in fact
can be done in polynomial time (Khachian, 1979). However, there is no known polynomial
algorithm to examine whether a matrix belongs to Q0. The following is a key convexity
result that characterizes the class of Q0-matrices (see e.g. Cottle et al., 1992, Proposition
3.2.1):

Proposition 3.1.1. Given M ∈ Rn×n. The following statements are equivalent:

1. M ∈ Q0.

2. K(M) = {q | SOL(q, M) 6= ∅} is convex.

1Recall that a LCP(q, M) is feasible if there exists a vector z such that (1.1) and (1.2) are satisfied and
is solvable if (1.3) is satisfied as well.
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A natural subclass of Q0 is Q, which is the class of matrices M ∈ Rn×n such that
LCP(q, M) is solvable for all vector q. The elements in this class are called Q-matrices.

As in the case of the Q0 class, there is no known easily checked characterization for the
Q-matrices. But again, some well studied classes of matrices are proved to belong to Q. In
particular, the E class (that contains the P class) belongs to Q (see e.g. Cottle, 2009).

3.1.2 The Classes of Column and Row Sufficient Matrices

Convexity plays an important role in analyzing properties of linear complementarity
problems. A slight generalization of the class P leads to the so-called column sufficient class
of matrices which is further characterized as the class of matrices for which the solution set
(if not empty) is convex for all possible vectors q.

A matrix M ∈ Rn×n is said to be column sufficient if it satisfies

[zi(Mz)i ≤ 0 for all i] ⇒ [zi(Mz)i = 0 for all i].

The class of column sufficient matrices is denoted by CS, and its elements are called CS-
matrices. As mentioned above, the class of column sufficient matrices contains all the ma-
trices for which the solution set (if not empty) is convex for all possible vector q (see e.g.
Cottle et al., 1992, Theorem 3.5.8).

Proposition 3.1.2. Given M ∈ Rn×n. The following statements are equivalent:

1. M ∈ CS.

2. For every q ∈ Rn, SOL(q, M) (if not empty) is convex.

As is well known (Cottle, 2009), the class of column sufficient matrices is not reflective.
The class of all matrices whose transpose belong to CS is (naturally) called row sufficient.
In particular, a matrix M is said to be row sufficient if its transpose is column sufficient.
The class of such matrices is denoted by RS, and its elements are called RS-matrices. A
matrix M is said to be sufficient if it is both column and row sufficient. The row sufficient
matrices have shown to have an important property with respect to the Karush-Kuhn-Tucker
conditions of the following quadratic programming problem derived from LCP(q, M):

min zT (q + Mz)

s.t. q + Mz ≥ 0 (3.1)

z ≥ 0.

Note that the constraints in (3.1) are the same as the first two linear inequalities (1.1) and
(1.2) of LCP(q, M). Clearly, LCP(q, M) has a solution if and only if there exists an optimal
solution to (3.1) whose objective function value is equal to 0.

We say that (z, u) is a Karush-Kuhn-Tucker(KKT) pair associated with (3.1) if it satisfies

z ≥ 0, u ≥ 0 (3.2)

q + Mz ≥ 0 (3.3)

q + (M + MT )z −MT u ≥ 0 (3.4)

zT (q + (M + MT )z −MT u) = 0 (3.5)

uT (q + Mz) = 0 (3.6)
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The system (3.2)-(3.6) is called the Karush-Kuhn-Tucker (KKT) conditions associated with
the quadratic programming problem (3.1).

It is well known (see e.g. Boyd and Vandenberghe, 2004) that if z is a local optimal
solution to the quadratic program (3.1), then there exists a vector u ∈ Rn such that the
pair (z, u) satisfies the KKT conditions. In general, a nonlinear minimization program is
called convex if it has a convex objective function and a convex feasible region. In this case,
the KKT conditions are known to be both necessary and sufficient for global optimality.
In particular, in LCP(q, M), if M is positive semidefinite, then the KKT conditions are
sufficient for global optimality, i.e., if (z, u) satisfies the KKT conditions, then z is a global
optimal solution for the quadratic program (3.1).

The following key result holds for the class of RS-matrices (see e.g. Cottle et al., 1992,
Theorem 3.5.4):

Proposition 3.1.3. Given M ∈ Rn×n. The following statements are equivalent:

1. M ∈ RS.

2. For every q ∈ Rn, if (z, u) is a KKT pair for the quadratic program (3.1), then z solves
LCP(q, M).

From the above proposition, we can not conclude that if M is row sufficient, then
LCP(q, M) is necessarily solvable for all q ∈ Rn. This is because there is no guarantee
that a KKT pair will exist for all LCPs for which q ∈ Rn. However, if the quadratic pro-
gramming (3.1) is feasible, then by Frank-Wolfe Thoerem (Frank and Wolfe, 1956a) there
exists a KKT pair for (3.1), and a solution to LCP(q, M). That is, the row sufficient class
belongs to the class of Q0-matrices (see e.g. Cottle et al., 1992, Corollary 3.5.5).

3.2 The Semidefinite Linear Complementarity Prob-

lem

In this section, we extend some of the results in the previous section regarding linear com-
plementarity problems to semidefinite linear complementarity problems. As in the previous
chapter, cross commutativity is assumed for most of the results.

3.2.1 The Linear Transformation Classes of Q and Q0

The Q and Q0 classes of matrices can be straight forwardly generalized to linear trans-
formations for SDLCPs as follows.

Definition 3.2.1. We say that a linear transformation L : Sn → Sn has the Q-property if
for any matrix Q ∈ Sn, SDLCP(L,Q) has a solution. The class of linear transformations
having such property is denoted by Q.

Similarly, we define the class Q0 of linear transformations for SDLCPs.

Definition 3.2.2. A linear transformation L : Sn → Sn is said to have the Q0-property if
SDLCP(L,Q) is solvable whenever it is feasible. The class of linear transformations having
such property is denoted by Q0.
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As in the LCP case, Q0 is characterized as the class of linear transformations L with the
following property: the set of symmetric matrices Q for which SDLCP(L,Q) has a solution
forms a convex set.

Theorem 3.2.1. Given a linear transformation L : Sn → Sn, the following two statements
are equivalent:

1. L ∈ Q0;

2. K(L) = {Q ∈ Sn | SOL(L,Q) 6= ∅} is convex.

Proof
We can write K(L) as

K(L) = {Y − L(X) | Y º 0, X º 0, XY = 0}.
Denote

H(L) = {Y − L(X) | Y º 0, X º 0}.
Then, L ∈ Q0 ⇔ K(L) = H(L).
[1 ⇒ 2] Since the semidefinite matrix cone is convex, we have H(L) is convex. In addition,
since L ∈ Q0 ⇒ K(L) = H(L), we have K(L) convex.
[2 ⇒ 1] It is easy to see that K(L) ⊆ H(L), and H(L) is convex. In addition, for any X,Y º
0, (X,Y ) = 1

2
(2X, 0) + 1

2
(0, 2Y ) and (2X)× 0 = 0× (2Y ) = 0, thus, H(L) ⊆ conv(K(L)).2

Moreover, since K(L) is convex, i.e., K(L) = conv(K(L)), therefore, K(L) = H(L), i.e.,
L ∈ Q0. ¤

3.2.2 The Linear Transformation Classes of Column and Row Suf-
ficient

In this section, we generalize the sufficient classes of matrices in LCP theory to the
corresponding classes of linear transformations in SDLCP theory. Again, because of the
noncommutativity and nonpolyhedrality of the symmetric positive semidefinite matrix cone,
the additional assumption of cross commutativity is necessary.

Definition 3.2.3. A linear transformation L : Sn → Sn is said to have the column sufficient
property if

∀ X ∈ Sn, X and L(X) commute, XL(X) ¹ 0 ⇒ XL(X) = 0.

The class of linear transformations having such property is denoted by CS.

It was shown by Gowda and Song (Gowda and Song, 2000, Theorem 6) that if a linear
transformation L : Sn → Sn is monotone, i.e.,

X ∈ Sn ⇒ 〈X,L(X)〉 ≥ 0,

then for every Q ∈ Sn, the solution set (if not empty) of SDLCP(L,Q) is convex. Next we
show that linear transformations L for which SDLCP(L,Q) has a convex solution set consist
a larger class of linear transformations. The result is a generalization of Theorem 3.1.2 and
it was also recently proved in (Qin et al., 2009).

2For any set S, conv(S) denote the convex hull of S.
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Theorem 3.2.2. Given a linear transformation L : Sn → Sn, the following two statements
are equivalent:

1. L ∈ ĈS.3

2. For every Q ∈ Sn, the solution set (possibly empty) of SDLCP(L,Q) is convex.

Proof
[1 ⇒ 2] Consider any Q ∈ Sn. If SDLCP(L,Q) has only one solution, then its solution set is
trivially convex. Thus, assume that SDLCP(L,Q) has more than one solution. Let X1 and
X2 be any two solutions to SDLCP(L,Q). Denote Y1 := L(X1) + Q and Y2 := L(X2) + Q.
Then we have X1 º 0, X2 º 0, Y1 º 0, Y2 º 0 and

〈X1, Y1〉 = 0, 〈X2, Y2〉 = 0.

Therefore, X1Y1 = 0 and X2Y2 = 0. Now, since

X1 º 0, X2 º 0, Y1 º 0, Y2 º 0,

and since X1 and Y2 commute, X2 and Y1 commute, we have

X1Y2 = Y2X1 º 0, X2Y1 = Y1X2 º 0.

Therefore,

(X1 −X2)L(X1 −X2) = (X1 −X2)(Y1 − Y2)

= X1Y1 −X1Y2 −X2Y1 + X2Y2

= −X1Y2 −X2Y1 ¹ 0.

Thus, by the definition of the column sufficient property, we have (X1−X2)L(X1−X2) = 0,
which (because (X1 −X2)(Y1 − Y2) = 0) leads to

X1Y2 = 0, X2Y1 = 0.

Now since the cone of positive semidefinite matrices is convex, we have,

αX1 + (1− α)X2 º 0

αY1 + (1− α)Y2 º 0,

for any scalar α ∈ [0, 1]. Moreover,

(αX1 + (1− α)X2)(L(αX1 + (1− α)X2) + Q) = (αX1 + (1− α)X2)(αY1 + (1− α)Y2) = 0.

Therefore, αX1 +(1−α)X2 is also a solution to SDLCP(L,Q). Since the above holds for all
α ∈ [0, 1], the solution set of SDLCP(L,Q) is convex.

[2 ⇐ 1] First, we will show that L has the cross commutative property. If SDLCP(L,Q) has
only one solution for all Q ∈ Sn, then the cross commutative property obviously satisfies for

3Recall (as in Section 2.2.1) that ĈS denotes the class of linear transformations having both the column
sufficient property and the cross commutative property.
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L. Thus consider any Q ∈ Sn such that SDLCP(L,Q) has more than one solution. Let X1

and X2 be any two solutions to SDLCP(L,Q). Denote Y1 := L(X1)+Q and Y2 := L(X2)+Q.
Since SOL(L,Q) is convex, we have that for any α ∈ [0, 1], αX1+(1−α)X2 ∈ SOL(L,Q). By
the complementarity condition (1.10), we have X1Y2 + X2Y1 = 0, which by taking the trace
of both side, results in trace(X1Y2) + trace(X2Y1) = 0. Also since X1 º 0, X2 º 0, Y1 º
0, Y2 º 0, we have that trace(X1Y2) ≥ 0, trace(X2Y1) ≥ 0. Therefore, trace(X1Y2) = 0,
trace(X2Y1) = 0. Again, because X1 º 0, X2 º 0, Y1 º 0, Y2 º 0, we have X1Y2 = Y2X1 =
0 and X2Y1 = Y1X2 = 0. i.e., L has the cross commutative property.

To prove L ∈ CS, we assume on the contrary that there exists an X ∈ Sn, such that

X and L(X) commute with XL(X) ¹ 0 and XL(X) 6= 0.

Since X and L(X) commute, X and L(X) can be decomposed with the same decompo-
sition matrix U , that is

X = UDUT and L(X) = UEUT ,

where D and E are diagonal matrices. Denote

D := diag{d1, · · · , dn}, E := diag{e1, · · · , en}.

Also denote
L(X)+ := UE+UT , L(X)− := UE−UT .

Let
Q = L(X)+ − L(X+).

Since 0 6= XL(X) ¹ 0, we have that for ∀ i, diei ≤ 0 and exists an index j such that djej < 0.
Therefore,

〈X+, L(X+) + Q〉 = 〈X+, L(X)+〉 = 0.

Moreover, since
X+ º 0, L(X+) + Q = L(X)+ º 0,

then, X+ is a solution to SDLCP(L,Q).
Since L(X) = L(X)+−L(X)− = L(X+−X−) = L(X+)−L(X−), Q = L(X)+−L(X+) =

L(X)− − L(X−). By the similar argument and using Q = L(X)− − L(X−), it can be easily
shown that X− is another solution to SDLCP(L,Q).

But either d+
j e−j > 0 or d−j e+

j > 0, thus, either 〈X+, L(X−) + Q〉 or 〈X−, L(X+) + Q〉 is
not zero, which contradicts the fact that the solution set of SDLCP(L,Q) is convex. There-
fore, L ∈ CS and this completes the proof. ¤

In the following example, we show that the cross commutative property of linear trans-
formations is necessary for the preceding theorem. Here, we present a linear transformation
L ∈ CS which does not have the cross commutative property, but for a symmetric matrix
Q, the solution set of SDLCP(L,Q) is not convex.

Example 3.2.1. Consider the linear transformation

L :

(
x y
y z

)
→

( −x + 4y −2x + y + 2z
−2x + y + 2z −4y + 4z

)
.

From the definition, it can easily verified that L ∈ CS.
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Set

Q =

(
2 2
2 4

)
,

then both

X1 =

(
0 0
0 0

)

and

X2 =

(
1 0
0 0

)

are solutions to SDLCP(L,Q), but their linear combination

1

2
X1 +

1

2
X2 =

(
1
2

0
0 0

)

is not a solution to SDLCP(L,Q). So SOL(L,Q) is not convex. ♦

To define the row sufficient property for linear transformations in the SDLCPs, we need
to consider the transpose of a linear transformation, which is introduced in Definition 1.2.2.

Definition 3.2.4. A linear transformation L : Sn → Sn is said to have the row sufficient
property if its transpose LT has the column sufficient property. The class of linear transfor-
mations having such property is denoted by RS. We say that a linear transformation L has
the sufficient property if it has both the column sufficient property and the row sufficient
property.

Next, we generalize Proposition 3.1.3 which specifies the relationships between LCPs
and the KKT point of the quadratic programming problem (3.1) to SDLCPs. We start by
presenting the analog to problem (3.1) as applied to SDLCPs. The quadratic semidefinite
programming problem derived from SDLCP(L,Q) is

min 〈X,L(X) + Q〉
subject to X º 0

L(X) + Q º 0.
(3.7)

Obviously, SDLCP(L,M) is solvable if and only if there exists an optimal solution X̄ to
(3.7) satisfying 〈X̄, L(X̄) + Q〉 = 0.

The Karush-Kuhn-Tucker (KKT) conditions for problem (3.7) are

X º 0, U º 0, (3.8)

L(X) + Q º 0, (3.9)

Q + L(X) + LT (X − U) º 0, (3.10)

〈X,Q + L(X) + LT (X − U)〉 = 0, (3.11)

〈U,Q + L(X)〉 = 0. (3.12)

We say that (X,U) is a Karush-Kuhn-Tucker pair of the quadratic semidefinite programming
problem (3.7) if it satisfies the KKT conditions.

It is well known (Boyd and Vandenberghe, 2004) that if the objective function of (3.7) is
convex, i.e., the linear transformation L is monotone, the KKT conditions are both necessary
and sufficient for global optimality, thus, if (X,U) is a KKT pair of (3.7), then X solves
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SDLCP(L,Q).

The following theorem is a generalization of Proposition 3.1.3 to SDLCPs and it was also
recently proved in (Qin et al., 2009).

Theorem 3.2.3. Given a linear transformation L : Sn → Sn, the following two statements
are equivalent:

1. L ∈ RS and for every Q ∈ Sn, if (X,U) is a KKT pair of the quadratic semidefinite
programming problem (3.7), then both X and U commute with LT (X − U);

2. For each Q ∈ Sn, if (X,U) is a KKT pair of the quadratic semidefinite programming
problem (3.7), then X solves SDLCP(L,Q).

Proof
[1 ⇒ 2] First, we prove for a KKT pair of (3.7), (X − U)LT (X − U) ¹ 0.

Since X º 0 and Q + L(X) + LT (X − U) º 0,

〈X,Q + L(X) + LT (X − U)〉 = 0 ⇔ X(Q + L(X) + LT (X − U)) = 0.

Similarly, since U º 0 and L(X) + Q º 0,

〈U,Q + L(X)〉 = 0 ⇔ U(Q + L(X)) = 0.

Now since U and LT (X − U) commute, and from (3.8), (3.9) and (3.12), U and Q + L(X)
commute, thus, U and Q + L(X) + LT (X − U) commute. Since they are both positive
semidefinite, we have

U(Q + L(X) + LT (X − U)) º 0.

Also since U(Q + L(X)) = 0 by (3.12), we have

U(LT (X − U)) º 0.

Finally since X and LT (X − U) commute, by (3.8), (3.10) and (3.11), X and Q + L(X) +
LT (X −U) commute, we have X and Q + L(X) commute. Since X º 0, Q + L(X) º 0, we
have X(Q + L(X)) º 0. Then by (3.11),

X(LT (X − U)) ¹ 0.

Therefore, by the definition of the row sufficient property, we get

(X − U)LT (X − U) ¹ 0 ⇒ (X − U)LT (X − U) = 0.

Thus, X(LT (X − U)) = 0, and by (3.11), we have

X(Q + L(X)) = 0.

This together with (3.8) and (3.9) shows that X solves SDLCP(L,Q).

[2 ⇒ 1] If statement 2 holds, we have X commutes both with Q + L(X) + LT (X − U) and
Q+L(X) commute, then we can decompose X and Q+L(X) using the same decomposition
matrix Λ:

X := ΛT X̃Λ and Q + L(X) := ΛT L̃Λ,
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where X̃, L̃ are diagonal matrices. Define

Ũ := ΛUΛT and P̃ := ΛLT (X − U)ΛT ,

Then, U := ΛT ŨΛ and LT (X − U) := ΛT P̃Λ, Ũ and P̃ are not necessary to be diagonal.

Now we consider X̃ in blocks, where X̃ =

[
X̃1 X̃2

X̃T
2 X̃3

]
. Partition similarly for L̃, Ũ , Q̃

in blocks as well.
Since X̃ is diagonal and positive semidefinite, write

X̃ =

[
0 0

0 X̃3

]
,

where X̃3 Â 0 is a diagonal matrix. Then since X(L(X) + Q) = 0, we write

L̃ =

[
L̃1 0
0 0

]
,

where L̃1 º 0 is a diagonal matrix. Again, since U(L(X) + Q) = 0, we write

Ũ =

[
0 0

0 Ũ3

]
,

where Ũ3 º 0 is not necessary to be a diagonal matrix. And finally write

P̃ =

[
P̃1 P̃2

P̃ T
2 P̃3

]
.

Since X(LT (X − U)) = 0, we have X̃P̃ = 0. Also since X̃3 Â 0, P̃2 = 0 and P̃3 = 0, we
have

Ũ P̃ = 0.

Therefore, Ũ and P̃ commute, thus, U and LT (X − U) commute.

Now Suppose that L 6∈ RS . Then there exists a matrix Y ∈ Sn such that

Y and L(Y ) commute, Y LT (Y ) ¹ 0 and Y LT (Y ) 6= 0.

Since Y and LT (Y ) commute, we can decompose Y and LT (Y ) with the same decomposition
matrix V :

Y = V DV T and LT (Y ) = V EV T ,

where D and E are diagonal matrices.
Let X = V D+V T and U = V D−V T . Set

Q = −L(X) + V E−V T .

It is easy to verify that (X,U) satisfies the KKT conditions (3.8)-(3.12). Also since U and
LT (Y ) = LT (X − U) commute, and U commutes with both LT (U) and LT (X). But

〈X,L(X) + Q〉 = trace(V D+V T )(V E−V T ) > 0,
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this contradicts the assumption that X solves SDLCP(L,Q). Therefore, L ∈ RS, which
completes the proof. ¤

As in the previous case, we next justify the necessity of the additional conditions regarding
the commutativity in Theorem 3.2.3. In particular, we show in the following example the
existence of a linear transformation L ∈ RS and a KKT pair (X,U) for (3.7) for which X
is not a solution to SDLCP(L,Q). This happens because neither X nor U commute with
LT (X − U).

Example 3.2.2. Consider

L :

(
x y
y z

)
→

(
0 x

2
+ y − z

x
2

+ y − z 0

)
.

Then

LT :

(
x y
y z

)
→

(
y y
y −2y

)
.

From the definition, it can be easily verified that L ∈ RS.
Set

Q =

(
3 −5

2

−5
2

3

)
.

Let

X =

(
1 2
2 4

)

and

U =

(
1 1
1 1

)
.

Then

L(X) + Q =

(
3 −3
−3 3

)
,

L(X) + Q + LT (X − U) =

(
4 −2
−2 1

)
,

and (X,U) satisfies the KKT conditions but 〈X,L(X) + Q〉 6= 0. Therefore, X is not a
solution to SDLCP(L,Q). ♦

Since the linear transformation L in the preceding example belongs to CS as well, we see
that even if a linear transformation L is sufficient (that is, L ∈ CS ∩RS), the KKT pair of
(3.7) does not necessarily give a solution to SDLCP(L,Q).

On the other hand, the KKT pair (X,U) that leads to a solution to SDLCP does not
always satisfies the commutativity condition U(LT (X−U)) = (LT (X−U))U . In the example
below, L ∈ RS and (X,U) is a KKT pair of the quadratic semidefinite programming problem
(3.7), yet U and LT (X − U) do not commute.

Example 3.2.3. Consider the linear transformation

LT :

(
x y
y z

)
→

( −8z y
y x

)
.
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By the definition, it can be easily verified that L ∈ RS.
Let

Q =

(
8 4
4 2

)
,

X =

(
0 0
0 0

)

and

U =

(
1 −2
−2 4

)
.

Then, (X,U) is a Karush-Kuhn-Tucker pair of the quadratic semidefinite programming prob-
lem (3.7). But

ULT (X − U) =

( −28 −4
56 8

)
,

which means that U and LT (X)− LT (U) do not commute. ♦

Noncommutativity adds another layer of difficulties in dealing with the transpose of
linear transformations. The problem is that commutativity of a linear transformation does
not necessarily implies commutativity for its transpose. The example below shows that X
and L(X) commute, while X and LT (X) do not.

Example 3.2.4. Consider the linear transformation

L :

(
x y
y z

)
→

(
y 0
0 z

)
.

Then

LT :

(
x y
y z

)
→

(
0 x

2
x
2

z

)
.

Let

X =

(
1 1
1 1

)
.

Then, X and L(X) commute, yet X and LT (X) do not commute. ♦

Considering Proposition 3.1.3 and the Frank-Wolfe theorem (Frank and Wolfe, 1956a),
which states that the quadratic programming problem

min zT (q + Mz)

subject to q + Mx ≥ 0

x ≥ 0

always has a solution, we have that the matrix class RS is in class Q0. Unfortunately, Frank-
Wolfe theorem is not applicable to the quadratic semidefinite programming problem which
was introduced in (3.7). This complicates the analysis of the relationships among the classes
of linear transformations in the context of semidefinite linear complementarity problems. In
the following example we introduce a quadratic semidefinite programming problem which is
feasible and bounded but does not have a minimum point.
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Example 3.2.5. Consider the linear transformation

L :

(
x y
y z

)
→

(
x 0
0 y

)
.

Set

Q =

(
0 0
0 −1

)
.

Then the quadratic semidefinite programming problem (3.7) can be written as

min x2 + z(y − 1)

s.t. xz ≥ y2

x ≥ 0

y ≥ 1

z ≥ 0.

The problem is feasible and the objective value is bounded by zero, yet zero is not the
minimum. Actually, if x = 1

k
, y = 1 and z = k, then f( 1

k
, 1, k) = 1

k2 → 0, as k → +∞. ♦

To analyze the row sufficient class of linear transformations and the Q0 class, we define
a subclass of RS by adding the extra conditions in Theorem 3.2.3 and the requirement for
the existence of a KKT pair to the quadratic semidefinite programming problem (3.7).

Definition 3.2.5. We say that a linear transformation L : Sn → Sn has the row sufficient
plus property, if it has RS-property and for every Q ∈ Sn, if the quadratic semidefinite
programming problem (3.7) is feasible, then there exists a KKT pair for (3.7), with both X
and U commute with LT (X − U). The class of linear transformations having such property
is denoted by RS+.

The class RS+ is properly contained in RS as the following example shows.

Example 3.2.6. Consider the linear transformation

L :

(
x y
y z

)
→

(
x− z 0

0 z − x

)
.

Then

LT :

(
x y
y z

)
→

(
x− z 0

0 z − x

)
.

L ∈ RS. For any matrix Q ∈ Rn×n, if (X,U) is a KKT pair for (3.7), it can be shown that
both X and U commute with LT (X − U).

However, if

Q =

(
0 1
1 2

)
,

SDLCP(L,Q) is feasible, but there exists no KKT pair for (3.7). Therefore, L 6∈ RS+. ♦

While unlike in LCP theory row sufficient linear transformations do not necessarily have
the Q0 property, we show next that RS+ linear transformations do.
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Lemma 3.2.1. RS+ ⊆ Q0.

The proof of the lemma follows directly from the definition of RS+-property and Theorem
3.2.3.

We show in the following example, the restriction of the RS class in Lemma 3.2.1 is
necessary as the RS class does not belong to the Q0 class.

Example 3.1. Consider the linear transformation

L :

(
x y
y z

)
→

(
x− z 0

0 x− z

)
.

Then,

LT :

(
x y
y z

)
→

(
x− z 0

0 x− z

)
.

By the definitions, It can be easily verified that L ∈ RS and also L /∈ RS+.
Set

Q =

(
0 1
1 2

)
.

Then, SDLCP(L,Q) is feasible, since

X̄ =

(
2 0
0 1

)

satisfies X̄ º 0, L(X̄)+Q º 0. Consider any X =

(
x y
y z

)
, L(X)+Q =

(
x− z 1

1 x− z + 2

)
.

If L(X) + Q º 0, then L(X) + Q Â 0. Moreover if X(L(X) + Q) = 0, then X = 0, which
leads to contradiction. Therefore, SDLCP(L,Q) has no solution. Thus, L 6∈ Q0. ♦
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Chapter 4

Relationships between Classes

In LCP theory, the matrix classes relate to each other in a complex manner. Over the
years, many authors have complied lists of matrix classes with special properties related to
the solutions of the corresponding LCPs. Some of the authors have also presented graphs
summarizing the inclusion relationships among matrix classes. A recent comprehensive paper
(Cottle, 2009) presents a detailed graph consisting of over 50 classes of matrices related to
the LCPs.

In this chapter, we present some known inclusion relationships among several classes of
linear transformations. We then prove few more relationships usually motivated by their
counterparts as presented in (Cottle et al., 1992). Finally, we summarize all of these rela-
tionships in a graph which is displayed at the end of the chapter.

In the LCPs, the P and P0 matrix classes are closely related, and this relationship is
preserved when considering the classes P and P0 of linear transformations corresponding
to SDLCPs. Following the definition of the class of P0-matrices in LCPs, we introduce
the P0 class of linear transformations in SDLCPs, which contains the class P of linear
transformations as a special case.

Definition 4.0.6. A linear transformation L : Sn → Sn has the P0-property if

[X 6= 0] ⇒ [if X and L(X) commute, ∃ i such that X(i) 6= 0, X(i)× L(X)(i) ≥ 0].

The class of linear transformations having such property is denoted by P0.

By their definitions, it is clear that the P0 and P classes are closely related. Motivated
by a known results (see e.g. Cottle et al., 1992, Theorem 3.4.2) showing that P0-matrices
arise as a perturbation of P-matrices, we present in the next theorem a similar result for the
analogous linear transformation classes. Here we let I : Sn → Sn denote the identity linear
transformation.

Theorem 4.1. Given a linear transformation L : Sn → Sn, the following statements are
equivalent:

1. L ∈ P0;

2. L + εI ∈ P, ∀ ε > 0.

Proof
[⇒] Assume that L ∈ P0, then by definition, we have,

∀ X 6= 0 such that X and L(X) commute,
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and under the same decomposition matrix U ,

∃ i such that X(i) 6= 0 and X(i)× L(X)(i) ≥ 0.

Since X 6= 0, X and L(X) commute, we have for any ε > 0, X and (L + εI)(X) =
L(X) + εX commute as well, since a matrix always commutes with itself. For the same i as
above, we have

X(i)× (L + εI)(X)(i) = X(i)× L(X)(i) + X(i)× εX(i) > 0.

This shows that L + εI ∈ P, ∀ ε > 0.
[⇐] Assume L + εI ∈ P, ∀ ε > 0. Then for any matrix X 6= 0 satisfying X and (L + εI)(X)
commute, under the same decomposition matrix U ,

∃ i such that X(i)× (L + εI)(X)(i) > 0.

Suppose on the contrary, L 6∈ P0. This means that there exists an X 6= 0 such that X and
L(X) commute, yet under the same decomposition matrix U ,

∀ i with X(i) 6= 0, X(i)× L(X)(i) < 0.

Take

0 < ε0 < min
i:X(i) 6=0

{−L(X)(i)

X(i)
},

then ∀ i with X(i) 6= 0,

X(i)× (L + ε0I)(X)(i) = X(i)× L(X)(i) + ε0X(i)2 < 0.

This contradicts with the fact that L + εI ∈ P, ∀ ε > 0. Therefore, L ∈ P0. ¤

Following similar argument as in Theorem 4.1, it is possible to extend it to the E and
E0 classes of linear transformations in SDLCPs. (This extension is also valid with respect
to the corresponding matrix classes E and E0 (Cottle and Dantzig, 1968b).)

Theorem 4.2. Given a linear transformation L : Sn → Sn, the following statements are
equivalent:

1. L ∈ E0;

2. L + εI ∈ E, ∀ ε > 0.

We omit the proof of Thoerem 4.2 as it can be proved by using similar arguments as in
Theorem 4.1.

Malik and Mohan (Malik and Mohan, 2006) introduced another two classes of linear
transformations analogous to the copositive1 and strictly copositive 2 classes in LCPs as
follows.

1A matrix M ∈ Rn×n is said to be copositive if xT Mx ≥ 0 for all nonnegative n-vector x.
2A matrix M ∈ Rn×n is said to be strictly copositive if xT Mx > 0 for all nonzero nonnegative n-vector

x.
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Definition 4.1. A linear transformation L : Sn → Sn is said to be copositive if

〈X,L(X)〉 ≥ 0, ∀ X º 0.

The class of linear transformations that have such property is denoted by C0.

Definition 4.2. A linear transformation L : Sn → Sn is said to be strictly copositive if

〈X,L(X)〉 > 0, ∀ 0 6= X º 0.

The class of linear transformations that have such property is denoted by C.

Note that since the definitions of C0 and C above use only inner products, there is no
need to add commutativity restriction to obtain results generalizing the LCP case to linear
transformations.

In the same manner as is in Theorems 4.1 and 4.2 and analogous to the LCP results (see
e.g. Cottle et al., 1992), we have

Theorem 4.3. Given a linear transformation L : Sn → Sn, the following statements are
equivalent:

• L ∈ C0;

• L + εI ∈ C, ∀ ε > 0.

We omit the proof of Thoerem 4.3 as it can be proved by using similar arguments as in
Theorem 4.1.

Gowda and Song (Gowda and Song, 2000) presented several additional relationships
among some classes of linear transformations. In particular, they showed that P ⊆ E ⊆ Q
(Gowda and Song, 2000, p.579), and that E0 ∩R0 ⊆ Q (Gowda and Song, 2000, Theorem
4).3

Also, Malik and Mohan (who introduced the linear transformations C0 and C) showed
that C ⊆ E, and C0 ⊆ E0 (Malik and Mohan, 2006, Theorem 5).

In the following, we establish several more relationships among classes of linear trans-
formations that we have introduced in earlier chapters. We also present and prove some
additional relationships between these newly defined classes and the classes that have been
defined prior to this dissertation.

Like the arguments in Chapter 2 and Chapter 3, the noncommutativity of linear trans-
formations imposes some difficulties in trying to link different classes. Again, the cross
commutative property has to be embraced at times in order to draw meaningful connec-
tions. Moreover, the noncommutativity makes the analysis of innnerconnection between a
linear transformation L and its transpose LT very hard, because first there is no known
implicit expression for LT , and second that for a given linear transformation L, the set
{X ∈ Sn | X and L(X) commute} is not identical to {X ∈ Sn | X and LT (X) commute}.
In general, classes involving transpose of linear transformations and also containing matrix
products in their definitions (e.g., the RS class) are very hard to analyse. In fact, we provide
some examples showing that for these classes, several existing connections among some ma-
trix classes in LCPs are not valid among the corresponding classes of linear transformations
in SDLCPs.

3R0 is the class of linear transformations L : Sn → Sn such that SOL(L, 0) = {0}.
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As was mentioned in Section 2.1.3, the matrix class L = E0 ∩ E1 plays a key role in
LCP theory. To initiate the investigation of its analogue for linear transformation classes,
we begin by extending the definition of the matrix class E1 to linear transformations.

Definition 4.3. A linear transformation L : Sn → Sn is said to have the E1-property if for
any 0 6= Z ∈ SOL(L, 0), there exist linear transformations L1 : Sn → Sn and L2 : Sn → Sn,
that satisfy

(a) ∀ X ∈ Sn, 〈X,Li(X)〉 ≥ 0, and rank(Li(X)) ≤ rank(X), for i = 1, 2.

(b) L2(Z) 6= 0 and L1(L(Z)) + LT (L2(Z)) = 0.

The class of linear transformations having such property is denoted by E1. As in LCP
theorey, we now define L to be the intersection of E0 and E1.

4

It is clear that, as is the case for the corresponding classes of matrices, E1 ⊆ E.

Before proceeding to the main results of this chapter, we present and prove an extension
of the theorem of alternatives (see e.g. Cottle et al., 1992, Theorem 2.7.6) as applied to
linear transformations. This lemma, as in LCP theory, plays an essential role in establishing
relationships among classes of linear transformations.

Lemma 4.1. For X,Y ∈ Sn and a linear transformation L : Sn → Sn.

The system

{
0 6= X º 0
L(X) º 0

⇔ The system

{
Y º 0
LT (Y ) ≺ 0

has no solution. has a solution.

Proof
[⇐] Suppose that there exists X̄, Ȳ ∈ Sn such that

{
0 6= X̄ º 0
L(X̄) º 0

and {
Ȳ º 0
LT (Ȳ ) ≺ 0

.

Then,
0 > 〈X̄, LT (Ȳ )〉 = 〈L(X̄), Ȳ 〉 <≥ 0,

a contradiction.
[⇒] Suppose that both the system

{
0 6= X º 0
L(X) º 0

and the system {
Y º 0
LT (Y ) ≺ 0

has no solution. Consider the two disjoint convex sets:

C1 = {LT (Y ) | Y º 0},
4We use bold font to distinguish the class L from the notation for a generic linear transformation L.
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C2 = {Y | Y ≺ 0}.
Then by the Hahn-Banach Separation Theorem (see e.g. Mangasarian, 1969), and also since
C2 is an open set, there is a hyperplane separate the set C1 and C2, i.e., there exists an
0 6= X ∈ Sn such that

〈X,Z〉 ≥ 0, ∀ Z ∈ C1

〈X,Z〉 < 0, ∀ Z ∈ C2,

which can be written explicitly as

〈X,LT (Y )〉 ≥ 0, ∀ Y º 0 (4.1)

〈X,Y 〉 < 0, ∀ Y ≺ 0. (4.2)

(4.1) gives
〈L(X), Y 〉 ≥ 0, ∀ Y º 0,

thus, L(X) º 0. (4.2) gives
0 6= X º 0.

Therefore, the system {
0 6= X º 0
L(X) ¹ 0

has a solution, which leads to contradiction. ¤

Next, we summarize several relationships among some classes of linear transformations
(several of which that had been introduced for the first time in this dissertation) in the
following theorem.

Theorem 4.4.

1. P0 ⊆ E0;

2. P ⊆ CS ⊆ P0;

3. Ê∗ ⊆ E1;

4. Ê∗ ⊆ L.

Proof
1. Assume that L ∈ P0. Then by definition, for any matrix 0 6= X ∈ Sn, with X and L(X)
commute, and under the same decomposition matrix U ,

∃ i such that X(i) 6= 0 and X(i)× L(X)(i) ≥ 0.

Then for any matrix 0 6= X º 0, with X and L(X) commute, under the same decomposition
matrix U ,

∃ i such that X(i) 6= 0 and X(i)× L(X)(i) ≥ 0.

Since X º 0, we have X(i) > 0 and thus L(X)(i) ≥ 0. Thus, we can conclude that L ∈ E0.

2. The first inclusion can be derived from the definitions straightforwardly.
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We prove the second inclusion relation by contradiction. Suppose on the contrary, that
L ∈ CS, but L 6∈ P0. Then, there exists an X 6= 0, with X and L(X) commute, and under
the same decomposition matrix U , for every the index i such that X(i) 6= 0,

X(i)× L(X)(i) < 0.

This means that X 6= 0 and XL(X) ¹ 0, but XL(X) 6= 0. This contradicts the fact that
L ∈ CS. Therefore, L ∈ P0.

3. Consider a linear transformation L ∈ Ê∗. By Theorem 2.2.3, SDLCP(L,Q) has a unique
solution, ∀ 0 6= Q º 0. Assume that SDLCP(L, 0) has multiple solutions, i.e., there exists a
matrix Z such that 0 6= Z ∈ SOL(L, 0). (If SDLCP(L, 0) has a unique solution, then L ∈ E1

immediately satisfies.) Then

Z º 0, L(Z) º 0,

〈Z, L(Z)〉 = 0.

Thus, Z and L(Z) commute, ZL(Z) ¹ 0, by the definition of the E∗-property,

L(Z) = 0, Z Â 0.

Since SDLCP(L,Q) has a unique solution for all 0 6= Q º 0, The system

{
Y º 0
L(Y ) ≺ 0

has no solution. Then by Lemma 4.1, there exists X̄ such that
{

0 6= X̄ º 0
LT (X̄) º 0

Since Z Â 0 and X̄ º 0, there exist L2(·) satisfies L2(Z) = X̄ and [a], then

LT (L2(Z)) = LT (X̄) º 0.

Since 0 = 〈L(Z), L2(Z)〉 = 〈Z, LT (L2(Z))〉 and Z Â 0, we have

LT (L2(Z)) = 0.

Thus, L ∈ E1.
4. The comes directly from the definition of L class and 3. ¤

In LCP theory, the class of P is reflective, meaning that if a matrix is a P-matrix, then
its transpose is also a P-matrix, which implies that a P-matrix is also a RS-matrix (since
P ⊆ CS by their definitions). This is in general not true for the classes of P and RS
of linear transformations. The following is an example showing the existence of a linear
transformation L ∈ P such that LT 6∈ P, moreover L 6∈ RS.

Example 4.1. Consider the linear transformation

L :

(
x y
y z

)
→

(
x + 4y y

y z + 6y

)
.
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Then

XL(X) =

(
x2 + 4xy + y2 xy + yz + 6y2

xy + yz + 4y2 y2 + z2 + 6yz

)
¹ 0 ⇒ y = 0, x = 0, z = 0.

Thus, L ∈ P. Its transpose is

LT :

(
x y
y z

)
→

(
x 2x + y + 3z

2x + y + 3z z

)
.

Then, LT 6∈ P since

XLT (X) =

(
x2 + 2xy + y2 + 3yz 2x2 + xy + 3xz + yz
x2 + 2xy + yz + 3z2 2xy + y2 + 3yz + z2

)
,

when x = 1, y = −1, z = 1,

XLT (X) =

( −3 3
3 −3

)
¹ 0.

Also, since XLT (X) 6= 0, L 6∈ RS ♦

One of the main reason of the interest in the matrix class L in LCPs is the fact that
L ⊆ Q0. However, as the next example shows, this is not the case for the L class of linear
transformations .

Example 4.2. Consider the linear transformation

L :

(
x y
y z

)
→

(
x− z 0

0 z − x

)
.

Then,

LT :

(
x y
y z

)
→

(
x− z 0

0 z − x

)
.

By the definitions, It can be easily verified that L ∈ E0 ∩ E1 = L.
Set

Q =

( −1 1
1 3

)
.

Then, SDLCP(L,Q) is feasible, since

X =

(
3 0
0 1

)

is a feasible solution to SDLCP(L,Q). Now suppose X =

(
x y
y z

)
∈ SOL(L,Q). Then,

L(X) + Q =

(
x− z − 1 1

1 z − x + 3

)
. Since X(L(X) + Q) = 0 and L(X) + Q 6= 0, we

have
det(X) = 0 ⇒ xz = y2. (4.3)

Similarly, since X(L(X) + Q) = 0 and X 6= 0, we have

det(L(X) + Q) = 0 ⇒ (x− z − 1)(z − x + 3) = 1. (4.4)
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Also, since 〈X,L(X) + Q〉 = 0, we have

x(x− z − 1) + z(z − x + 3) + 2y = 0. (4.5)

Then by (4.3)-(4.5, we have
z(z + 2) = (z + 1)2.

Since no z could satisfy the preceding equation, SDLCP(L,Q) has no solution, i.e., L 6∈ Q0.
♦

The relationships among classes of linear transformations as established in this chapter
are displayed. Because the commutativity does not follow when taking the transpose of
linear transformations, the classes that involve the transpose of linear transformations can
not be related to other classes as their corresponding classes of matrices in LCP theory.

In Figure 4, an arrow from class X to class Y means that X ⊆ Y .

Figure 4.1: The property classes inclusion graph
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Chapter 5

Conclusion

In this thesis, we extended some of the classes of matrices related to LCP to the classes of
linear transformations related to SDLCP. Due to the noncommutativity of matrix products
and the nonpolyhedrality of the positive semidefinite matrix cone, additional conditions
have been introduced to extend some of the known result concerning classes of matrics and
LCPs to classes of linear transformations and SDLCPs. With these additional restrictions
(usually related to the commutativity of the product of certain matrices), we (and other
authors before us) were able to extend some of the key (as well as other) LCP results to the
SDLCPs.

Given the wealth of results for the LCPs that had been developed over the last 40 years
and the importance of SDLCPs in optimization theory and practice, there are still many
challenging open problems.
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