
UC San Diego
UC San Diego Previously Published Works

Title
Electron cryomicroscopy of biological macromolecules

Permalink
https://escholarship.org/uc/item/9tb0m9b8

ISBN
9780470660782

Authors
Baker, TS
Henderson, R

Publication Date
2023-06-04

DOI
10.1107/97809553602060000872
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tb0m9b8
https://escholarship.org
http://www.cdlib.org/


593

Chapter 19.6. Electron cryomicroscopy of biological macromolecules

T. S. Baker and R. Henderson

19.6.1. Abbreviations used

0D Zero-dimensional (single particles)

1D One-dimensional (helical)

2D Two-dimensional

3D Three-dimensional

EM Electron microscope/microscopy

CryoTEM Transmission electron cryomicroscopy

FEG Field-emission gun

CTF Contrast-transfer function

MTF Modulation transfer function

DQE Detective quantum efficiency

DPR Differential phase residual

FSC Fourier shell correlation

CCD Charge-coupled device (slow-scan TV detector)

19.6.2. Introduction: macromolecular structure determination
using electron microscopy

The two principal methods of macromolecular structure deter-

mination that use scattering techniques are electron microscopy

and X-ray crystallography. The most important difference

between the two is that the scattering cross section is about 105

times greater for electrons than it is for X-rays, so significant

scattering using electrons is obtained for specimens that are 1 to

10 nm thick, whereas scattering or absorption of a similar fraction

of an illuminating X-ray beam requires crystals that are 100 to

500 mm thick, though in recent years smaller crystals, still > 1 mm

thick, have become usable at synchrotron sources. The second

main difference is that electrons are much more easily focused

than X-rays since they are charged particles that can be deflected

by electric or magnetic fields. As a result, electron lenses are

much superior to X-ray lenses and can be used to produce a

magnified image of an object as easily as a diffraction pattern.

This allows the electron microscope to be switched back and

forth instantly between imaging and diffraction modes so that the

image of a single molecule at any magnification can be obtained

as conveniently as the electron-diffraction pattern of a thin

crystal.

In the early years of electron microscopy of macromolecules,

electron micrographs of molecules embedded in a thin film of

heavy-atom stains (Brenner & Horne, 1959; Huxley & Zubay,

1960) were used to produce pictures which were interpreted

directly. Beginning with the work of Klug (Klug & Berger, 1964),

a more rigorous approach to image analysis led first to the

interpretation of the two-dimensional (2D) images as the

projected density summed along the direction of view and then to

the ability to reconstruct the three-dimensional (3D) object from

which the images arose (DeRosier & Klug, 1968; Hoppe et al.,

1968), with subsequent more sophisticated treatment of image

contrast transfer (Erickson & Klug, 1971).

Later, macromolecules were examined by electron diffraction

and imaging without the use of heavy-atom stains by embedding

the specimens in either a thin film of glucose (Unwin &

Henderson, 1975) or in a thin film of rapidly frozen water (Taylor

& Glaeser, 1974; Dubochet et al., 1982, 1988), which required the

specimen to be cooled while it was examined in the electron

microscope. This use of unstained specimens thus led to the

structure determination of the molecules themselves, rather than

the structure of a ‘negative stain’ excluding volume, and has

created the burgeoning field of 3D electron microscopy of

macromolecules.

Many medium-resolution (i.e., 5–15 Å) structures of macro-

molecular assemblies (e.g. ribosomes), spherical and helical

viruses, and larger protein molecules have now been determined

by transmission electron cryomicroscopy (cryoTEM) in ice. A

small number of atomic resolution structures have been obtained

by cryoTEM of thin 2D crystals embedded in glucose, trehalose

or tannic acid (Henderson et al., 1990; Kühlbrandt et al., 1994;

Nogales et al., 1998; Murata et al., 2000; Gonen et al., 2005; Holm

et al., 2006), where specimen cooling reduced the effect of

radiation damage. One of these, the structure of bacterio-

rhodopsin (Henderson et al., 1990) provided the first structure of

a seven-helix membrane protein, and recent studies, particularly

on aquaporins, are providing detailed insights into lipid–protein

interactions (Reichow & Gonen, 2009). During the last few years,

two different helical structures have allowed atomic models to be

constructed from images of ice-embedded specimens (Miyazawa

et al., 2003; Yonekura, Maki-Yonekura & Namba, 2003) and the

resolution of the best icosahedral structures has likewise

improved dramatically to yield atomic models (e.g. Jiang et al.,

2008; Yu, Jin & Zhou, 2008; Zhang et al., 2008; Chen et al., 2009).

Medium-resolution density distributions can often be interpreted

in terms of the chemistry of the structure if a high-resolution

model of one or more of the component pieces has already been

obtained by X-ray, electron microscopy or NMR methods. As a

result, the use of electron microscopy is becoming a powerful

technique for which, in some cases, no alternative approach

is possible. Numerous useful reviews (e.g. Amos et al., 1982;

Dubochet et al., 1988; Baker et al., 1999; van Heel et al., 2000;

Frank, 2002; Henderson, 2004; Chiu et al., 2005) and books

(Frank, 2006b; Glaeser et al., 2007) have been written.

19.6.3. Physics of electron scattering and radiation damage

A schematic overview of scattering and imaging in the electron

microscope is depicted in Fig. 19.6.3.1. The incident electron

beam passes through the specimen and individual electrons are

either unscattered or scattered by the atoms of the specimen. This

scattering occurs either elastically, with no loss of energy and

therefore no energy deposition in the specimen, or inelastically,

with consequent energy loss by the scattered electron and

accompanying energy deposition in the specimen, resulting in

radiation damage. The electrons emerging from the specimen are

then collected by the imaging optics, shown here for simplicity as

a single lens, but in practice consisting of a complex system of five

or six lenses with intermediate images being produced at

successively higher magnification at different positions down

the column. Finally, in the viewing area, either the electron-
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diffraction pattern or the image can be seen directly by eye on

the phosphor screen, or detected by a TV or CCD camera, or

recorded on photographic film.

In practice, the electron flux through the specimen is relatively

low, so that only one electron at a time is in the column inter-

acting with the specimen. This means that the unscattered and

elastically scattered beams are in reality quantum-mechanical

wavefronts, in which a wave function describes the probability

distribution until the electron is actually recorded in the detector

or on film. Where an inelastic event results in energy deposition

and accompanying radiation damage in the specimen, the path of

that electron, as well as its energy, wavelength and probability

distribution, are slightly altered and this degrades the image.

19.6.3.1. Elastic and inelastic scattering

The coherent, elastically scattered electrons contain the high-

resolution information describing the structure of the specimen.

The amplitudes and phases of the scattered electron beams are

directly related to the amplitudes and phases of the Fourier

components of the atomic distribution in the specimen. When the

scattered beams are recombined with the unscattered beam in the

image, they create an interference pattern (the image) which, for

thin specimens, is related approximately linearly to the density

variations in the specimen. Information about the structure of the

specimen can then be retrieved by digitization and computer-

based image processing, as described in Section 19.6.5. The elastic

scattering cross sections for electrons are not as simply related to

the atomic composition as happens with X-rays. With X-ray

diffraction, the scattering factors are simply proportional to the

number of electrons in each atom, normally equal to the atomic

number. Since elastically scattered electrons are in effect

diffracted by the electrical potential inside atoms, the scattering

factor for electrons depends not only on the nuclear charge but

also on the size of the surrounding electron cloud, which screens

the nuclear charge. As a result, electron scattering factors in the

resolution range of interest in macromolecular structure deter-

mination (up to 1
3 Å�1) are very sensitive to the effective radius of

the outer valency electrons and therefore depend sensitively on

the chemistry of bonding. Although this is a fascinating field in

itself with interesting work already carried out by the gas-phase

electron-diffraction community (e.g. Hargittai & Hargittai, 1988),

it is still an area where much work remains to be done. At

present, it is probably adequate to think of the density obtained

in macromolecular structure analysis by electron microscopy as

roughly equivalent to the electron density obtained by X-ray

diffraction but with the contribution from hydrogen atoms being

somewhat greater relative to carbon, nitrogen and oxygen.

Those electrons that are inelastically scattered lose energy to

the specimen by a number of mechanisms. The energy-loss

spectrum for a typical biological specimen is dominated by the

large cross section for plasmon scattering in the energy range 20–

30 eV with a continuum in the distribution which decreases up to

higher energies. At discrete high energies, specific inner electrons

in the K shell of carbon, nitrogen or oxygen can be ejected with

corresponding peaks in the energy-loss spectrum appearing at

200–400 eV. Any of these inelastic interactions produces a

deviation in the direction of the scattered electron and, as a

result, the resolution of any information present in the energy-

loss electron signal is reduced. Chromatic aberration in the

objective lens results in these inelastic electrons contributing to

the image only at relatively low resolution, around 15 Å

(Isaacson et al., 1974). Consequently, the inelastically scattered

electrons are generally considered to contribute little, except

noise, to the images. In the future, once electron cryo-

microscopes with chromatic aberration correctors become

available (expected by 2012), one may be able to obtain

improved energy-loss images. Chromatic-aberration-corrected

electron microscopes are already available for materials science

(Kabius et al., 2009).

19.6.3.2. Radiation damage

The most important consequence of inelastic scattering is the

deposition of energy into the specimen. This is initially trans-

ferred to secondary electrons, which have an average energy

(20 eV) that is five or ten times greater than the valence bond

energies. These secondary electrons interact with other compo-

nents of the specimen and produce numerous reactive chemical

species, including free radicals. In ice-embedded samples, these

would be predominantly highly reactive hydroxyl free radicals

that arise from the frozen water molecules. In turn, these react

with the embedded macromolecules and create a great variety of

radiation products such as modified side chains, cleaved poly-

     

Figure 19.6.3.1
Schematic diagram showing the principle of image formation and
diffraction in the transmission electron microscope. The incident beam,
I0, illuminates the specimen. Scattered and unscattered electrons are
collected by the objective lens and focused back to form first an electron-
diffraction pattern and then an image. For a 2D or 3D crystal, the
electron-diffraction pattern would show a lattice of spots, each of whose
intensity is a small fraction of that of the incident beam. In practice, an
in-focus image has virtually no contrast, so images are recorded with the
objective lens underfocused to take advantage of the out-of-focus phase-
contrast mechanism. Higher electron doses than indicated can be used at
lower resolution. The given dose of 5 e Å�2 applies for high-resolution
(~4 Å) structural features.
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peptide backbones and a host of molecular fragments. From

radiation-chemistry studies, it is known that thiol or disulfide

groups react more quickly than aliphatic groups and that

aromatic groups, including nucleic acid bases, are the most

resistant (Burmeister, 2000; Weik et al., 2000; Meents et al., 2010).

Nevertheless, the end effect of the inelastic scattering is the

degradation of the specimen to produce a cascade of hetero-

geneous products, some of which resemble the starting structure

more closely than others. Some of the secondary electrons also

escape from the surface of the specimen, causing it to charge up

during the exposure. As a rough rule, for 100 kV electrons the

dose that can be used to produce an image in which the starting

structure at high resolution is still recognizable is about 1 e Å�2

for organic or biological materials at room temperature, 5 e Å�2

for a specimen near liquid-nitrogen temperature (�170 �C) and

10 e Å�2 for a specimen near liquid-helium temperature (4–8 K).

However, individual experimenters will often exceed these doses

if they wish to enhance the low-resolution information in the

images, which is less sensitive to radiation damage. The effects of

radiation damage owing to electron irradiation are essentially

identical to those from X-ray or neutron irradiation for biological

macromolecules except for the amount of energy deposition per

useful coherent elastically scattered event (Henderson, 1995).

For electrons scattered by biological structures at all electron

energies of interest, the number of inelastic events exceeds the

number of elastic events by a factor of three to four, so that 60 to

80 eV of energy is deposited for each elastically scattered elec-

tron. This limits the amount of information in an image of a single

biological macromolecule. Consequently, the 3D atomic structure

cannot be determined from a single molecule but requires the

averaging of the information from a few thousand molecules in

theory, and even more in practice (Henderson, 1995; Rosenthal &

Henderson, 2003; Glaeser, 2008b; Cheng & Walz, 2009). Crystals

used for X-ray or neutron diffraction contain many orders of

magnitude more molecules.

It is possible to collect both the elastically and the inelastically

scattered electrons simultaneously with an energy analyser and,

if a fine electron beam is scanned over the specimen, then a

scanning transmission electron micrograph displaying different

properties of the specimen can be obtained (e.g. Tichelaar et al.,

1980; Crewe, 1983; Muller et al., 2008). Alternatively, conven-

tional transmission electron microscopes to which an energy filter

has been added can be used to select out a certain energy band of

the electrons from the image (e.g. Yonekura et al., 2006; Maki-

Yonekura & Yonekura, 2008). Both these types of microscopy

can contribute in other ways to the knowledge of structure, but

in this article we concentrate on high-voltage phase-contrast

electron microscopy of unstained macromolecules most often

embedded in ice, because this is the method of widest impact in

structural biology.

19.6.3.3. Required properties of the illuminating electron beam

The important properties of the image in terms of defocus,

astigmatism, and the presence and effect of amplitude or phase

contrast are discussed in Section 19.6.5. Microscopes with field

emission guns (FEGs) produce the best-quality incident electron

beams. This is because the electrons from a FEG are emitted

from a very small volume at the tip, which is the apparent source

size. Once these electrons have been collected by the condenser

lens and used to produce the illuminating beam, that beam of

electrons is then very parallel (divergence of ~10�2 mrad) and

therefore spatially coherent. Similarly, because the emitting tip of

a FEG is not heated as much as a conventional thermionic

tungsten source, the thermal-energy spread of the electrons is

relatively small (0.5 to 1.0 eV) and the illuminating beam is

closer to being monochromatic. Electron beams can also be

produced by a normal heated tungsten source, which gives a less

parallel beam with a larger energy spread, but is nevertheless

adequate for cryoTEM if the highest resolution images are not

required.

19.6.4. Three-dimensional electron cryomicroscopy of
macromolecules

The determination of 3D structures by cryoTEM methods follows

a common scheme for all macromolecules (Fig. 19.6.4.1). A more

detailed discussion of the individual steps as applied to different

classes of macromolecules appears in subsequent sections.

Briefly, each specimen must be prepared in a relatively homo-

geneous aqueous form (1D or 2D crystals or a suspension of

single particles in a limited number of states) at relatively high

concentration, rapidly frozen (vitrified) as a thin film, transferred

into the electron microscope and imaged using low-dose selection

and focusing procedures. The resulting images are more

frequently being recorded using an electronic detector. Alter-

natively, if recorded on film, they must then be digitized. Digi-

tized images are then processed using computer programs that

allow different views of the specimen to be combined into a 3D

reconstruction that can be interpreted in terms of other available

structural, biochemical and molecular data.

19.6.4.1. Overview of conceptual steps

Radiation damage by the illuminating electron beam generally

allows only one good picture (micrograph) to be obtained from

     

Figure 19.6.4.1
Flow diagram showing common procedures involved in cryoTEM from
sample preparation to map interpretation.
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each molecule or macromolecular assembly. In this micrograph,

the signal-to-noise ratio of the 2D projection image is normally

too small to determine the projected structure accurately. This

implies firstly that it is necessary to average many images

of different molecules taken from essentially the same

viewpoint to increase the signal-to-noise ratio, and secondly

that many of these averaged projections, taken from different

directions, must be combined to build up the information

necessary to determine the 3D structure of the molecule.

Thus, the two key concepts are: (1) averaging to a greater or

lesser extent depending on resolution, particle size and

symmetry to increase the signal-to-noise ratio; and (2) the

combination of different projections to build a 3D map of the

structure.

In addition, there are various technical corrections that must

be made to the image data to allow an unbiased model of the

structure to be obtained. These include correction for the phase

contrast-transfer function (CTF) of the microscope and, at high

resolution, for the effects of beam tilt. For crystals, it is also

possible to combine electron-diffraction amplitudes with image

phases to produce a more accurate structure (Unwin & Hen-

derson, 1975), or to use new electron-diffraction data to improve

a previous model (Gonen et al., 2005), and in general to correct

for loss of high-resolution contrast for any reason by ‘sharpening’

the data by application of a negative temperature factor

(Havelka et al., 1995; Rosenthal & Henderson, 2003; Fernandez et

al., 2008).

The idea of increasing the signal-to-noise ratio in electron

images of unstained biological macromolecules by averaging was

discussed in 1971 (Glaeser, 1971) and demonstrated in 1975

(Henderson & Unwin, 1975; Unwin & Henderson, 1975), though

earlier work on stained specimens had shown the value of aver-

aging to increase the signal-to-noise ratio (Klug & DeRosier,

1966). The improvement obtained, as in all repeated measure-

ments, gives a factor of N1=2 improvement in signal-to-noise ratio,

where N is the number of times the measurement is made. The

effect of averaging to produce an improvement in signal-to-noise

ratio is seen most clearly in the processing of images from 2D

crystals. For example, Fig. 19.6.4.2 shows the results of applying a

sequence of corrections, beginning with averaging, to 2D crystals

of bacteriorhodopsin in 2D space group p3. The panels show: (a)

raw, digitized image, (b, c) 2D averaging, (d) correction for the

microscope CTF, and (e) threefold crystallographic symmetry

averaging of the phases and combination with electron-

diffraction amplitudes. At each stage, the projected picture of the

molecules gets clearer. The final stage results in a virtually noise-

free projected structure for the molecule at near-atomic (3 Å)

resolution.

The earliest successful application of the idea of combining

projections to reconstruct the 3D structure of a biological

assembly was made by DeRosier & Klug (1968). The idea is

that each 2D projection corresponds after Fourier transformation

to a central section of the 3D transform of the assembly. If

enough independent projections are obtained, then the 3D

transform will have been fully sampled and the structure can then

be obtained by back-transformation of the averaged, inter-

polated and smoothed 3D transform. This procedure is shown

schematically for a 3D object in the shape of a duck, which

represents the molecule whose structure is being determined

(Fig. 19.6.4.3).

In practice, the implementation of these concepts has been

carried out in a variety of ways, since the experimental strategy

and type of computer analysis used depends on the type of

specimen, especially the molecular mass of the individual mole-

cule, its symmetry and whether or not it assembles into an

aggregate with 1D, 2D or 3D periodic order.

     

Figure 19.6.4.2
A display of the results at different stages of image processing of a
digitized micrograph of a 2D crystal of bacteriorhodopsin. The left panel
(a) shows an area of the raw digitized micrograph in which only electron
noise is visible. The lower right panel (b) shows the results of the
averaging of unit cells from the whole picture by unbending in real space
and filtering in reciprocal space. The scale of the density in (b) is the
same as that in the original micrograph, showing that the signal is very
much weaker than the noise. Panel (c) shows the same density as in (b)
but with contrast increased tenfold to show that the signal in the original
picture is approximately 10� below the noise level. Panel (d) shows the
density after correction for the contrast-transfer function (CTF) due in
this case to a defocus of 6000 Å. Panel (e) shows the density after further
threefold crystallographic averaging (the space group is p3 with a cell
dimension of 62.5 Å) and replacement of image amplitudes by electron-
diffraction amplitudes. Panel (e) therefore shows an almost perfect
atomic resolution image of the projected structure of bacteriorhodopsin.
The trimeric rings of molecules are centred on the crystallographic
threefold axes and the internal structure shows �-helical segments in the
protein.
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19.6.4.2. Classification of macromolecules

The symmetry of a macromolecule or supramolecular complex

is the primary determinant of how specimen preparation,

microscopy and 3D image reconstruction are performed

(Sections 19.6.4.3, 19.6.4.4 and 19.6.5). The classification of

molecules according to their level of periodic order and

symmetry (Table 19.6.4.1) provides a logical and convenient way

to consider the means by which specimens are studied in 3D by

microscopy.

Each type of specimen offers a unique set of challenges in

obtaining 3D structural information at the highest possible

resolution. The best resolutions achieved by 3D EM methods to

date, at about 2–4 Å, have been obtained with several thin 2D

crystals, in large part due to their excellent order, with helical

arrays and icosahedral single particles now crossing the 4 Å

barrier (Cheng & Walz, 2009).

With the exception of true 3D crystals, which must be

sectioned to make them thin enough to study by transmission

electron microscopy, the resolution obtained with biological

specimens is generally dictated by the preservation of periodic

order, and the symmetry and complexity of the object. Hence,

studies for example of 2D crystals of the aquaporin membrane

channel (Gonen et al., 2005), helical acetylcholine receptor tubes

(Miyazawa et al., 2003) and bacterial flagella (Yonekura, Maki-

Yonekura & Namba, 2003), three icosahedral virus capsids (Yu,

Jin & Zhou, 2008; Zhang et al., 2008; Chen et al., 2009), the 70S E.

coli ribosome (LeBarron et al., 2008), and HIV trimers obtained

by sub-tomogram averaging (Liu, Bartesaghi et al., 2008), have

yielded 3D density maps at resolutions of 1.9, 4.0, 4.0, 4.0, 3.8, 3.8,

6.7 and 19 Å, respectively.

If high resolution were the sole objective of EM, it would be

necessary, given the capabilities of existing technology, to try to

form well ordered 2D crystals, helical assemblies or icosahedral

particles of each macromolecule of interest. Indeed, a number of

different crystallization techniques have been devised (e.g.

Yoshimura et al., 1990; Kornberg & Darst, 1991; Jap et al., 1992;

Kubalek et al., 1994; Hasler et al., 1998; Wilson-Kubalek et al.,

1998; Dang et al., 2005; Schmidt-Krey, 2007) and some of these

have yielded new structural information about otherwise recal-

citrant molecules like RNA polymerase (Polyakov et al., 1998).

However, despite the obvious technological advantages of having

a molecule present in a highly ordered form, most macro-

molecules function not as highly ordered crystals or helices but

instead as single particles (e.g. many enzymes) or, more likely, in

concert with other macromolecules as occurs in supramolecular

assemblies. Also, crystallization tends to constrain the number of

conformational states a molecule can adopt and the crystal

conformation might not be functionally relevant. Hence, though

resolution may be restricted to less than that realized in the bulk

of current X-ray crystallographic studies, cryoTEM methods

provide a powerful means to study molecules that resist crystal-

lization in 1D, 2D or 3D. These methods allow one to explore the

dynamic events, different conformational states (as induced, for

example, by altering the microenvironment of the specimen) and

macromolecular interactions that are the key to understanding

how each macromolecule functions.

19.6.4.3. Specimen preparation

The goal in preparing specimens for cryoTEM is to keep the

biological sample in its native state as closely as possible in order

to preserve the structure to atomic or near-atomic resolution in

the microscope and during microscopy. The methods by which

numerous types of macromolecules and macromolecular com-

plexes have been prepared for cryoTEM studies are now well

established (Adrian et al., 1984; Bellare et al., 1988; Dubochet et

al., 1988; Grassucci et al., 2007). Most such methods involve

cooling samples at a rate fast enough to permit vitrification (to a

solid glass-like state) rather than crystallization of the bulk water.

Noncrystalline biological macromolecules are typically vitrified

by applying a small (often <5 ml) aliquot of a purified ~0.2–

5 mg ml�1 suspension of sample to an EM grid coated with a

carbon or holey carbon support film. The grid, secured with a pair

of forceps and suspended over a container of ethane or propane

cryogen slush (maintained near its freezing point by a reservoir of

liquid nitrogen), is blotted nearly dry with a piece of filter paper.

The grid is then plunged into the cryogen, and the sample, if thin

     

Figure 19.6.4.3
Schematic diagram to illustrate the principle of 3D reconstruction. Each
2D projected image, as recorded on the micrograph and after CTF
correction, represents a section through the 3D Fourier transform. This is
called the projection theorem. After accumulation of enough informa-
tion from enough different views, a 3D map of the structure can be
calculated by Fourier inversion.
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enough (�0.2 mm or less), is vitrified in millisecond or shorter

time periods (Mayer & Astl, 1992; Berriman & Unwin, 1994;

White et al., 1998; Kasas et al., 2003).

The ability to freeze samples on a timescale of milliseconds

affords cryoTEM one of its unique and perhaps still under-

utilized advantages: capturing and visualizing dynamic structural

events that occur over time periods of a few milliseconds or

longer. Several devices that allow samples to be perturbed in a

variety of ways as they are plunged into a cryogen have been

described (e.g. Subramaniam et al., 1993; Berriman & Unwin,

1994; Siegel et al., 1994; Trachtenberg, 1998; White et al., 1998,

2003; Shaikh et al., 2009), and there are now commercially

     

Table 19.6.4.1
Classification of macromolecules according to periodic order and symmetry

Periodic
order Type Symmetry Example macromolecule/complex Representative reference

0D Point group C1 70S ribosome (bacterial) Villa et al. (2009)
C1 80S ribosome (mammalian) Chandramouli et al. (2008)
C1 Centriole Kenney et al. (1997)
C1 ATP synthase (mitochondrial) Rubinstein et al. (2003)
C1 ATP synthase (yeast) Lau et al. (2008)
C1 Yeast RNA polymerase III Fernandez-Tornero et al. (2007)
C1 P-ATPase (E. coli) Heitkamp et al. (2009)
C1 V-ATPase (bovine brain) Gregorini et al. (2007)
C1 V-ATPase (Manduca sexta) Muench et al. (2009)
C1 Bacteriophage ’29 virion/ghost Tang et al. (2008)
C2 Transferrin–transferrin-receptor complex Cheng et al. (2004)
C2 Gp130–receptor complex Matadeen et al. (2007)
C2 Voltage-gated calcium channel Wang et al. (2004)
C3 Mg-chelatase ID complex Elmlund et al. (2008)
C4 Ryanodine receptor channel Ludtke et al. (2005)
C4 CLIC2–ryanodine-receptor complex Meng et al. (2009)
C5 Bacteriophage ’29 head Tao et al. (1998)
C5 Hemocyanin (Nautilus pompilius) Gatsogiannis et al. (2007)
C6 Plant plasma membrane H+-ATPase Ottmann et al. (2007)
C7 GroEL–GroES complexes Ranson et al. (2006)
C7 Cytolysin (Vibrio cholerae) He & Olson (2010)
C8 Outer membrane protein Wza (E. coli) Ford et al. (2009)
C12 Bacteriophage T7 connector Agirrezabala et al. (2005)
C17 TMV disc Bloomer et al. (1978)
C20 Type III secretion injectisome Marlovits et al. (2006)
D2 Phosphorylase kinase holoenzyme Venien-Bryan et al. (2009)
D5 Hemocyanin (Rapana thomasiana) Cheng et al. (2006)
D6 Clathrin coats Fotin et al. (2004)
D6 Haemoglobin (Lumbricus terrestris) Schatz et al. (1995)
D7 GroEL Ludtke et al. (2008)
D7 20S proteosome Rabl et al. (2008)
D8 Double aptosome Yu et al. (2006)
D48 Recombinant ribonucleoprotein vault Mikyas et al. (2004)
T Dps protein Grant et al. (1998)
O Pyruvate dehydrogenase core Mattevi et al. (1992)
I COPII coat assembly Stagg et al. (2008)
I Human PDC E2 and tE2 cores Yu, Hiromasa et al. (2008)
I Tricorn protease Walz et al. (1997)
I Icosahedral viruses Baker et al. (1999)

1D Screw axis (helical)† F-actin–fimbrin/plastin ABD2 complex Galkin et al. (2008)
Acto-myosin filament Milligan (1996)
Acetylcholine receptor tubes Miyazawa et al. (2003)
Bacterial flagella Yonekura, Maki-Yonekura & Namba (2003)
Bacterial ParM filament Orlova et al. (2007)
Bacterial type IV pilus Craig et al. (2006)
Bacteriophage fd Wang et al. (2006)
F-BAR membrane tubule Frost et al. (2008)
Microtubule Li et al. (2002)
P-type ATPases Pomfret et al. (2007)
Tobacco mosaic virus Sachse et al. (2007)

2D 2D space group (2D crystal) p121 Tubulin sheet Nogales et al. (1998)
p22121 Prostaglandin E synthase Jegerschold et al. (2008)
p22121; p6 Microsomal glutathione transferase 1 Holm et al. (2006)
p3 Bacteriorhodopsin membrane Henderson et al. (1990)
p321 Light-harvesting complex II Kühlbrandt et al. (1994)
p4212 Aquaporin AQPO membrane Gonen et al. (2005)
p6 Gap junction membrane Fleishman et al. (2004)

3D 3D space group (3D crystal) P212121 Myosin S1 protein crystal Winkelmann et al. (1991)
P65 or P64 Insect flight muscle Liu et al. (2006)

† The symmetry of a helical structure is defined by an nm screw axis, which combines a rotation of 2�/n radians about an axis followed by a translation of m/n of the repeat distance. Because many
helical structures are polymorphic, a different nm symmetry is needed to specify each polymorph. This designation can be confusing: for example, for tobacco mosaic virus nm ¼ 16:3330:333,
because the helical translational repeat consists of 49 subunits in three turns of the basic helix.
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available freeze-plungers (e.g. Iancu et al., 2006; Melanson, 2009).

Examples of the use of such devices include spraying acetyl-

choline onto its receptor to cause the receptor channel to open

(Unwin, 1995), lowering the pH of an enveloped virus sample to

initiate early events of viral fusion (Fuller et al., 1995), inducing a

temperature jump with a flash-tube system to study phase tran-

sitions in liposomes (Siegel & Epand, 1997), or mixing myosin S1

fragments with F-actin to examine the geometry of the cross-

bridge powerstroke in muscle (Walker et al., 1999).

Crystalline (2D) samples can fortunately often be prepared for

cryoTEM by means of simpler procedures, and vitrification of the

bulk water is not always essential to achieve success (Cyrklaff &

Kühlbrandt, 1994). Such specimens may be applied to the carbon

film on an EM grid by normal adhesion methods, washed with

1–2% solutions of solutes like glucose, trehalose or tannic acid,

blotted gently with filter paper to remove excess solution, air

dried, loaded into a cold holder, inserted into the microscope,

and, finally, cooled to liquid-nitrogen temperature.

19.6.4.4. Microscopy

Once the vitrified specimen is inserted into the microscope and

sufficient time is allowed (�15 min) for the specimen stage to

stabilize to minimize drift and vibration, microscopy is performed

to generate a set of images that, with suitable processing proce-

dures, can later be used to produce a reliable 3D reconstruction

of the specimen at the highest possible resolution. To achieve this

goal, imaging must be performed at an electron dose that

minimizes beam-induced radiation damage to the specimen, with

the objective lens of the microscope defocused to enhance

phase contrast from the weakly scattering, unstained biological

specimen, and under conditions that keep the specimen below

the devitrification temperature (~�140 �C) and minimize its

contamination.

The microscopist locates specimen areas suitable for

image recording by searching the EM grid at very low magnifi-

cation (�3000�) to keep the irradiation level quite low

(<0.05 e Å�2 s�1) while assessing sample quality. In microscopes

operated at 200 keV or higher, where image contrast is very

weak, it is helpful to perform the search procedure with the

assistance of a CCD camera or a video-rate TV-intensified

camera system. Indeed, these are now much more sensitive than

looking at a phosphor screen by eye. For some specimens, like

thin 2D crystals, searching is conveniently performed while

viewing the low-magnification high-contrast image produced by

using the diffraction lens to give a slightly defocused electron-

diffraction pattern. Electronic detectors also have automatic

histogram expansion settings that allow amplification of small

contrast differences on a display monitor. These become more-

or-less essential when using high-voltage (300 keV) microscopes.

After a desired specimen area is identified, the microscope is

switched to high-magnification mode for focusing and astigma-

tism correction. These adjustments are typically performed in a

region �2–5 mm away from the chosen area at the same or higher

magnification than that used for final image recording. The choice

of magnification, defocus level, accelerating voltage, beam

coherence, electron dose and other operating conditions is

dictated by several factors. The most significant ones are the size

of the particle or crystal unit cell being studied, the anticipated

resolution of the images and the requirements of the image

processing needed to compute a 3D reconstruction to the desired

resolution. For most specimens at required resolutions from 3 to

30 Å, images are typically recorded at 25 000–50 000� magnifi-

cation with an electron dose of between 5 and 20 e Å�2. These

conditions yield micrographs of sufficient optical density (film

OD 0.2–1.5) or dynamic range (CCD detector) and image reso-

lution for subsequent image-processing steps (Section 19.6.5). All

modern EMs provide some mode of low-dose operation for

imaging beam-sensitive, vitrified biological specimens.

The intrinsic low contrast of unstained specimens makes it

impossible to observe and focus on specimen details directly as is

routine with stained or metal-shadowed specimens. Focusing,

aimed to enhance phase contrast in the recorded images while

minimizing beam damage to the desired area, is achieved by

judicious defocusing on a region that is adjacent to the region to

be photographed and preferably situated on the microscope tilt

axis. The appropriate focus level is set by adjusting the appear-

ance of either the Fresnel fringes that occur at the edges of holes

in the carbon film or the ‘phase granularity’ from the carbon

support film.

Unfortunately, electron images do not give a direct rendering

of the specimen density distribution. The relationship between

image and specimen is described by the CTF which is char-

acteristic of the particular microscope used, the specimen and the

conditions of imaging. The microscope CTF arises from the

objective-lens focal setting and from the spherical aberration

present in all electromagnetic lenses, and varies with the defocus

and accelerating voltage according to equation (19.6.4.1), an

expression that includes both phase and amplitude contrast

components. First, however, it is useful to consider briefly the

essentials of amplitude contrast and phase contrast, two concepts

carried over from optical microscopy. Amplitude contrast refers

to the nature of the contrast in an image of an object that absorbs

the incident illumination or scatters it in any other way so that a

portion of it is lost. As a result, the image appears darker where

greater absorption occurs. Phase contrast is required if an object

is transparent (i.e. it is a pure phase object) and does not absorb

but only scatters the incident illumination. Biological specimens

for cryoTEM are almost pure phase objects and the scattering is

relatively weak. Hence, the simple theory of image formation by

a weak phase object applies (Reimer & Kohl, 2008; Spence,

2009). An exactly in-focus image of a phase object has no contrast

variation since all the scattered illumination is focused back to

equivalent points in the image of the object from which it was

scattered. In optical microscopy, the use of a quarter wave plate

can retard the phase of the direct unscattered beam, so that an in-

focus image of a phase object has very high ‘Zernicke’ phase

contrast (Glaeser, 2008a). However, there is as yet no simple

quarter wave plate for electrons, so instead phase contrast is

created by introducing phase shifts into the diffracted beams by

adjustment of the excitation of the objective lens so that the

image is slightly defocused. In addition, since all matter is

composed of atoms and the electric potential inside each atom is

very high near the nucleus, even the electron-scattering beha-

viour of the light atoms found in biological molecules deviates

from that of a weak phase object. For a more in-depth discussion

of this the reader should refer to Reimer & Kohl (2008) or

Spence (2009). In practice, the proportion of ‘amplitude’ contrast

is about 7% at 100 kV, 5% at 200 kV and 4% at 300 kV for low-

dose images of protein molecules embedded in ice.

The overall dependence of the CTF on resolution, wavelength,

defocus and spherical aberration is

CTFð�Þ ¼ � 1 � F2
amp

� �1=2
sin � �ð Þ½ � þ Famp cos � �ð Þ½ �

n o
;

ð19:6:4:1Þ
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where � �ð Þ ¼ ���2 �f � 0:5Cs�
2�2ð Þ, � is the spatial frequency

(in Å�1), Famp is the fraction of amplitude contrast, �
is the electron wavelength (in Å), where � =

12:3
�
ðV þ 0:000000978V2Þ

1=2 (= 0.037, 0.025 and 0.020 Å for 100,

200 and 300 keV electrons, respectively), V is the voltage (in

volts), �f is the underfocus (in Å) and Cs is the spherical aber-

ration of the objective lens of the microscope (in Å).

In addition, the CTF is attenuated by an envelope or damping

function that depends upon the spatial and temporal coherence

of the beam, specimen drift and other factors (Erickson & Klug,

1971; Wade & Frank, 1977; Wade, 1992). Representative CTFs for

different amounts of defocus on a conventional tungsten and a

FEG microscope are illustrated in Fig. 19.6.4.4. For a particular

defocus setting of the objective lens, phase contrast in the elec-

tron image is positive and maximal only at a few specific spatial

frequencies. Contrast is either lower than maximal, completely

absent or it is opposite (inverted or reversed) from that at other

frequencies. Hence, as the objective lens is focused, the electron

microscopist selectively accentuates image details of a particular

size.

Images are typically recorded 0.8–3.0 mm underfocus to

enhance specimen features in the 20–40 Å size range and thereby

facilitate phase-origin and specimen-orientation search proce-

dures carried out in the image-processing steps (Section 19.6.5).

However, this level of underfocus also enhances contrast in

lower-resolution maps, which may help in interpretation. To

obtain results at sub-nanometre (<10 Å) resolution, it is normal

to record, process and combine data from several micrographs

that span a range of defocus levels (e.g. Unwin & Henderson,

1975; Böttcher et al., 1997). This strategy assures good informa-

tion transfer at all spatial frequencies up to the limiting resolution

but requires careful compensation for the effects of the micro-

scope CTF during image processing. Also, the recording of image

focal pairs or focal series from a given specimen area can be

beneficial in determining origin and orientation parameters for

processing of images of single particles (e.g. Cheng et al., 1992;

Conway & Steven, 1999).

Most high-resolution cryoTEM studies are now performed

with microscopes operated at 200 keV or higher and with FEG

electron sources (e.g. Zemlin, 1992; Zhou & Chiu, 1993; Ludtke

et al., 2008; Yu, Jin & Zhou, 2008; Zhang et al., 2008). The

high coherence of a FEG source ensures that phase contrast in

the images remains strong out to high spatial frequencies

(>1=3:5 Å
�1

) even for highly defocused images. The use of higher

voltages provides potentially higher resolution (greater depth of

field – i.e. less curvature of the Ewald sphere – owing to the

smaller electron-beam wavelength), better beam penetration

(less multiple scattering), reduced problems with specimen

charging that plague microscopy of unstained or uncoated vitri-

fied specimens (Brink et al., 1998) and reduced phase shifts

associated with beam tilt.

Images are recorded on photographic film or on an electronic

camera with either flood-beam or spot-scan procedures. Film,

with its advantages of low cost, large field of view and high

resolution (�10 mm), has remained the primary image-recording

medium for most high-resolution cryoTEM applications, despite

disadvantages of high background fog and need for chemical

development and digitization. Electronic (usually phosphor/fibre

optic/CCD) cameras provide image data directly in digital form

and with very low background noise, but suffer from higher cost,

limited field of view, limited spatial resolution caused by poor

point-spread characteristics and a fixed pixel size (typically

between 14 and 24 mm). They are useful, for example, for precise

focusing and adjustment of astigmatism (e.g. Krivanek &

Mooney, 1993; Sherman et al., 1996) and are increasingly used to

acquire image data for 3D reconstruction studies (e.g. Booth et

al., 2004; Sander et al., 2005; Booth et al., 2006; Chen et al., 2008).

There is a useful comparison of the MTF and DQE at different

spatial frequencies between film and several electronic detectors

(McMullan, Chen et al., 2009). In summary, at present, all image

recording is better at low (e.g. 120 kV) voltage with little to

choose between different recording media, but film, in 2009, is

still best at 300 keV.

For studies in which specimens must be tilted to collect 3D

data, such as with 2D crystals, single particles that adopt

preferred orientations on the EM grid or specimens requiring

tomography, microscopy is performed in essentially the same

way as described above. However, the limited tilt range (�60–

70�) of most microscope goniometers can lead to non-isotropic

resolution in the 3D reconstructions (the ‘missing wedge’ or

missing cone’ problem), and tilting generates a constantly varying

defocus across the field of view in a direction normal to the tilt

axis. The effects caused by this varying defocus level must be

corrected in high-resolution applications (Henderson et al., 1990).

     

Figure 19.6.4.4
Representative plots of the microscope CTF as a function of spatial
frequency, for two different defocus settings (0.7 and 4.0 mm underfocus)
and for a field-emission (light curve) or tungsten (dark curve) electron
source. All plots correspond to electron images formed in an electron
microscope operated at 200 kV with objective-lens aberration coeffi-
cients Cs ¼ Cc ¼ 2:0 mm and assuming amplitude contrast of 4.8%
(Toyoshima et al., 1993). The spatial coherence, which is related to the
electron source size and expressed as �, the half-angle of illumination,
for tungsten and FEG electron sources was fixed at 0.3 and 0.015 mrad,
respectively. Likewise, the temporal coherence (expressed as �E, the
energy spread) was fixed at 1.6 and 0.5 eV for tungsten and FEG sources.
The combined effects of the poorer spatial and temporal coherence of
the tungsten source leads to a significant dampening, and hence loss of
contrast, of the CTF at progressively higher resolutions compared with
that observed in FEG-equipped microscopes. The greater number of
contrast reversals with higher defocus arises because of the greater out-
of-focus phase shifts.



601

19.6. ELECTRON CRYOMICROSCOPY

19.6.4.5. Selection and preprocessing of digitized images

Before any image analysis or classification of the molecular

images can be done, a certain amount of preliminary checking

and normalization is required to ensure there is a reasonable

chance that a homogeneous population of molecular images has

been obtained. First, good-quality micrographs are selected in

which the electron exposure is correct, there is negligible image

drift or blurring, and there is minimal astigmatism and a

reasonable amount of defocus to produce good phase contrast.

This is usually done by visual examination and optical diffraction

or examination of the computed diffraction pattern.

Once the best micrographs have been chosen, if they are on

film they must be scanned and digitized on a suitable densit-

ometer. The sizes of the steps between digitization of optical

density, and the size of the sample aperture over which the optical

density is averaged by the densitometer, must be sufficiently

small to sample the detail present in the image at fine enough

intervals (DeRosier & Moore, 1970). Normally, a circular (or

square) sample aperture of diameter (or length of side) equal to

the step between digitization is used. This avoids digitizing

overlapping points, without missing any of the information

recorded in the image. The size of the sample aperture and

digitization step depends on the magnification selected and the

resolution required. A value of one-quarter to one-third of the

required limit of resolution (measured in mm on the emulsion) is

normally ideal, since it avoids having too many data points (and

therefore wasting computer resources) without losing anything

during the measurement procedure. For a 40 000� image, on

which a resolution of 10 Å at the specimen is required, a step size

of 10 mm [= (1/4)(10 Å � 40 000/10 000 Å mm�1)] would be

suitable.

The best area of an image of a helical or 2D crystal specimen

can then be boxed off using a soft-edged mask. For images of

single particles, a small, often circular region surrounding each

particle is selected to create a stack of many individual particles.

In the later steps of image processing, because the orientation

and position of each particle are refined by comparing the

amplitudes and phases of their Fourier components, it is impor-

tant to remove spurious features around the edge of each particle

and to make sure the different particle images are on the same

scale. This is normally done by masking off a circular area centred

on each particle and floating the density so that the average

around the perimeter becomes zero (DeRosier & Moore, 1970).

The edge of the mask is apodized by applying a soft cosine bell

shape to the original densities so they taper towards the back-

ground level. Finally, to compensate for variations in the expo-

sure due to ice thickness or electron dose, most people normalize

the stack of individual particle images so that the mean density

and mean density variation over the field of view are set to the

same values for all particles (Carrascosa & Steven, 1978).

Once some good particles or crystalline areas for 1D or 2D

crystals have been selected, digitized and masked and their

intensity values have been normalized, true image processing can

begin.

19.6.5. Image processing and 3D reconstruction

Although the general concepts of signal averaging, together with

combining different views to reconstruct the 3D structure, are

common to the different computer-based procedures that have

been implemented, it is important to emphasize one or two

preliminary points. First, a homogeneous set of particles must be

selected for inclusion in the 3D reconstruction. This selection

may be made by eye to eliminate obviously damaged particles or

impurities, or by the use of multivariate statistical analysis (van

Heel & Frank, 1981) or some other classification scheme, such as

local cross-correlation (Roseman, 2003). This allows a subset of

the particle images to be used to determine the structure of a

better-defined entity. All image-processing procedures require

the determination of the same parameters that are needed to

specify unambiguously how to combine the information from

each micrograph or particle. These parameters are: the magnifi-

cation, defocus, astigmatism and, at high resolution, the beam

tilt for each micrograph; the electron wavelength used (i.e.

accelerating voltage of the microscope); the spherical aberration

coefficient, Cs, of the objective lens; and the orientation and

phase origin for each particle or unit cell of the 1D, 2D or 3D

crystal. There are 13 parameters for each particle, eight of which

may be common to each micrograph and two or three (Cs,

accelerating voltage, magnification) to each microscope. The

different general approaches that have been used in practice to

determine the 3D structure of different classes of macro-

molecular assemblies from one or more electron micrographs are

listed in Table 19.6.5.1.

The precise way in which each general approach codes and

determines the particle or unit-cell parameters varies greatly and

is not described in detail. Much of the computer software used in

image-reconstruction studies is relatively specialized compared

with that used in the more mature field of macromolecular X-ray

crystallography. In part, this may be attributed to the large

diversity of specimen types amenable to cryoTEM and recon-

struction methods. As a consequence, image-reconstruction

software is still evolving quite rapidly, and references to software

packages cited in Table 19.6.5.1 are likely to become quickly

outdated. Extensive discussion of algorithms and software

packages may be found in several special issues of Journal of

Structural Biology [Vol. 116, pp. 1–249 (1996); Vol. 120, pp. 207–

396 (1997); Vol. 125, pp. 95–254 (1999); Vol. 133, pp. 89–266

(2001); Vol. 138, pp. 1–155 (2002); Vol. 144, pp. 1–252 (2003); Vol.

145, pp. 1–180 (2004); Vol. 157, pp. 1–296 (2007); Vol. 160, pp.

263-404 (2007); and Vol. 161, pp. 219–480 (2008)]. Tomography is

the topic of Volumes 120, 138 and 161, single-particle cryoTEM is

covered in Volume 133, particle-picking algorithms are covered

in Volume 145 and electron crystallography of membrane

proteins is covered in Volume 160.

In practice, attempts to determine or refine some parameters

may be affected by the inability to determine accurately one of

the other parameters. The solution of the structure is therefore an

iterative procedure in which reliable knowledge of the para-

meters that describe each image is gradually built up to produce a

more and more accurate structure until no more information can

be squeezed out of the micrographs. At this point, if any of the

origins or orientations are wrongly assigned, there will be a loss

of detail and a decrease in signal-to-noise ratio in the map. If a

better-determined or higher-resolution structure is required, it

would then be necessary to record images on a better microscope

or to prepare new specimens and record better pictures.

The reliability and resolution of the final reconstruction can be

measured using a variety of indices. For example, the DPR

(Frank et al., 1981), the FSC (van Heel, 1987b) and the Q factor

(van Heel & Hollenberg, 1980) are three such measures. The

DPR is the mean phase difference, as a function of resolution,

between the structure factors from two independent recon-

structions, often calculated by splitting the image data into two

halves. The FSC is a similar calculation of the mean correlation
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coefficient between the complex structure factors of the two

halves of the data as a function of resolution. The Q factor is the

mean ratio of the vector sum of the individual structure factors

from each image divided by the sum of their moduli, again

calculated as a function of resolution. Perfectly accurate

measurements would have values of the DPR, FSC and Q factor

of 0�, 1.0 and 1.0, respectively, whereas random data containing

no information would have values of 90�, 0.0 and 0.0. The spectral

signal-to-noise ratio (SSNR) criterion has been advocated as the

best of all (Unser et al., 1989): it effectively measures, as a

function of resolution, the overall signal-to-noise ratio (squared)

of the whole of the image data. It is calculated by taking into

consideration how well all the contributing image data agree

internally.

     

Table 19.6.5.1
Methods of three-dimensional image reconstruction

Structure type (symmetry) Method Reference(s) to technical/theoretical details

Asymmetric Random conical tilt Radermacher et al. (1987); Radermacher (1988)
(point group C1) (software packages) Frank et al. (1996); Baxter et al. (2007); Shaikh et al.

(2008)
Angular reconstitution van Heel (1987a); Schatz et al. (1995)

(software package) van Heel et al. (1996)
Weighted back-projection Radermacher (1991, 1992)
Radon transform alignment Radermacher (1994); Ludtke et al. (1999); Tang et al.

(2007)
Reference-based alignment Penczek et al. (1994)
Reference-free alignment Schatz & van Heel (1990); Penczek et al. (1992)
Simulated-annealing alignment Ogura & Sato (2006)
Cross-correlation of common lines Hall et al. (2007)
Ab initio maximum likelihood Prust et al. (2009)
Maximum-likelihood multi-reference refinement Scheres et al. (2005)
Fourier reconstruction and alignment Grigorieff (1998, 2007)
Orthogonal tilt reconstruction Leschziner & Nogales (2006)
Tomographic tilt series and remote control of

microscope†
Olins et al. (1983); Fung et al. (1996); Ziese et al. (2002,

2003); Zheng et al. (2004); Mastronarde (2005);
Nickell et al. (2005); Zheng et al. (2007)

Symmetric Angular reconstitution van Heel (1987a); Schatz et al. (1995)
(point groups Cn;Dn; n> 1) (software package) van Heel et al. (1996)

Fourier–Bessel synthesis Tao et al. (1998)
Reference-based alignment and weighted

back-projection
Beuron et al. (1998); Ludtke et al. (1999); Grigorieff

(2007); Tang et al. (2007)

Icosahedral (point group I) Fourier–Bessel synthesis (common lines) Crowther (1971); Fuller et al. (1996); Mancini et al.
(1997); Thuman-Commike & Chiu (1997)

Reference-based alignment Crowther et al. (1994); Baker & Cheng (1996); Castón
et al. (1999); Grigorieff (2007); Yan, Dryden et al.
(2007)

(software packages) Crowther et al. (1996); Lawton & Prasad (1996); Zhou
et al. (1998); Jiang, Li et al. (2001); Liang et al. (2002);
Yan, Sinkovits & Baker (2007)

Angular reconsitution van Heel (1987a); Stewart et al. (1997)
Model-free reconstruction Cantele et al. (2003); Navaza (2003)
Multi-path simulated annealing Liu et al. (2007)
Symmetry-adapted spherical harmonics Liu, Cheng et al. (2008)
Tomographic tilt series Walz et al. (1997)

Helical Fourier–Bessel synthesis DeRosier & Klug (1968); DeRosier & Moore (1970);
Stewart (1988); Toyoshima & Unwin (1990); Morgan
& DeRosier (1992); Unwin (1993); Beroukhim &
Unwin (1997); Miyazawa et al. (1999); Wang &
Nogales (2005)

(software packages and filament straightening
routines)

Egelman (1986); Whittaker et al. (1995); Carragher et
al. (1996); Crowther et al. (1996); Owen et al. (1996);
Beroukhim & Unwin (1997); Yonekura, Toyoshima
et al. (2003); Metlagel et al. (2007)

Iterative helical real-space reconstruction Egelman (2000, 2007a); Ramey et al. (2009)

2D crystal Random azimuthal tilt Henderson & Unwin (1975); Amos et al. (1982);
Henderson et al. (1986); Baldwin et al. (1988);
Henderson et al. (1990)

(software packages) Crowther et al. (1996); Hardt et al. (1996); Gipson,
Zeng & Stahlberg (2007); Gipson, Zeng, Zhang &
Stahlberg (2007)

Single-particle refinement Koeck et al. (2007)

3D crystal Oblique section reconstruction Crowther & Luther (1984); Winkler & Taylor (1994);
Taylor et al. (1997)

(software package) Winkler & Taylor (1996)
Sectioned 3D crystal Winkelmann et al. (1991)

† Electron tomography is the subject of several recent reviews (Jonic et al., 2008; McEwen et al., 2008; Morris & Jensen, 2008; Steven & Baumeister, 2008; Bárcena & Koster, 2009; Bartesaghi &
Subramaniam, 2009; Hoenger & McIntosh, 2009; Leis et al., 2009; Li & Jensen, 2009), three special issues of Journal of Structural Biology [Vol. 120, pp. 207–395 (1997); Vol. 138, pp. 1–155 (2002);
and Vol. 161, pp. 219–480 (2008)] and a book edited by Frank (2006a).
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An example of a strategy for determination of the 3D structure

of a new and unknown molecule without any symmetry and

which does not crystallize might be as follows:

(1) Record a single-axis tilt series of particles embedded in

negative stain, with a tilt range from �60� to +60�.

(2) Calculate 3D structures for each of several different

particles using an R-weighted back-projection algorithm

(Radermacher, 1992).

(3) Average 3D data for several particles in real or reciprocal

space to get a reasonably good 3D model of the stain-

excluding region of the particle.

(4) Record a number of micrographs of the particles embedded

in vitreous ice.

(5) Use the 3D negative-stain model obtained in (3) with

inverted contrast to determine the rough alignment para-

meters of the particle in the ice images.

(6) Calculate a preliminary 3D model of the average ice-

embedded structure.

(7) Use the preliminary 3D model to determine more accurate

alignment parameters for the particles in the ice images.

(8) Calculate a better 3D model.

(9) Determine defocus and astigmatism for each micrograph to

allow CTF calculation and correct 3D model so that it

represents the structure at high resolution.

(10) Keep adding images at different defocus levels to get an

accurate structure at as high a resolution as possible.

(11) Correct the final structure for resolution-dependent con-

trast loss and apply a damping factor dependent on signal-

to-noise ratio (Rosenthal & Henderson, 2003).

For large single particles with no symmetry, particles with

higher symmetry or crystalline arrays, it should be possible to

omit the negative-staining steps (1)–(3) and go straight to

alignment of particle images from ice embedding, because the

particle or crystal tilt angles can be determined internally from

comparison of phases along common lines in reciprocal space or

from the lattice or helix parameters from a 2D or 1D crystal.

The following discussion briefly outlines for a few specific

classes of macromolecule the general strategy for carrying out

image processing and 3D reconstruction.

19.6.5.1. 2D crystals

For 2D crystals, the general 3D reconstruction approach

consists of the following steps. First, a series of micrographs of

single 2D crystals are recorded at different tilt angles, with

random azimuthal orientations. Each crystal is then unbent using

cross-correlation techniques to identify the precise position of

each unit cell (Henderson et al., 1986), and amplitudes and phases

of the Fourier components of the average of that particular view

of the structure are obtained for the transform of the unbent

crystal. The reference image used in the cross-correlation calcu-

lation can either be a part of the whole image masked off after a

preliminary round of averaging by reciprocal-space filtering of

the regions surrounding the diffraction spots in the transform, or

it can be a reference image calculated from a previously deter-

mined 3D model. The amplitudes and phases from each image

are then corrected for the CTF and beam tilt (Henderson et al.,

1986, 1990; Kunji et al., 2000) and merged with data from many

other crystals by scaling and origin refinement, taking into

account the proper symmetry of the 2D space group of the crystal

(Landsberg & Hankamer, 2007). Finally, the whole data set is

fitted by least squares to constrained amplitudes and phases

along the lattice lines (Agard, 1983) prior to calculating a 3D map

of the structure. The initial determination of the 2D space group

can be carried out by a statistical test of the phase relationships in

one or two images of untilted specimens (Valpuesta et al., 1994).

The absolute hand of the structure is automatically correct since

the 3D structure is calculated from images whose tilt axes and tilt

angles are known. Nevertheless, care must be taken not to make

any of a number of trivial mistakes that would invert the hand.

Recent efforts have been devoted to create a user-friendly

interface for image processing of 2D crystals (Gipson, Zeng &

Stahlberg, 2007; Gipson, Zeng, Zhang & Stahlberg, 2007; Zeng et

al., 2007). The entire topic of processing images of 2D crystals

and evaluating the data has been the subject of several publica-

tions and reviews (e.g. Yeager et al., 1999; Unger, 2000; Renault et

al., 2006; Hite et al., 2007; Kovacs et al., 2008).

19.6.5.2. Helical particles

The basic steps involved in processing and 3D reconstruction

of helical specimens include the following. First, record a series of

micrographs of vitrified particles suspended over holes in a

perforated carbon support film. The micrographs are digitized

and Fourier transformed to determine image quality (astigma-

tism, drift, defocus, presence and quality of layer lines, etc.).

Individual particle images are boxed, floated and apodized within

a rectangular mask. The parameters of helical symmetry (number

of subunits per turn and pitch) must be determined by indexing

the computed diffraction patterns. If necessary, simple spline-

fitting procedures may be employed to ‘straighten’ images of

curved particles (Egelman, 1986), and the image data may be

reinterpolated (Owen et al., 1996) to provide more precise

sampling of the layer-line data in the computed transform. Once

a preliminary 3D structure is available, a much more sophisti-

cated refinement of all the helical parameters can be used to

unbend the helices onto a predetermined average helix so that

the contributions of all parts of the image are correctly treated

(Beroukhim & Unwin, 1997). The layer-line data are extracted

from each particle transform and two phase-origin corrections

are made: one to shift the phase origin to the helix axis (at the

centre of the particle image) and the other to correct for effects

caused by having the helix axis tilted out of the plane normal to

the electron beam in the electron microscope. The layer-line data

are separated out into near- and far-side data, corresponding to

contributions from the near and far sides of each particle imaged.

The relative rotations and translations needed to align the

different transforms are determined so the data may be merged

and a 3D reconstruction computed by Fourier–Bessel inversion

procedures (DeRosier & Moore, 1970). Determination of the

absolute hand requires comparison of a pair of images recorded

with a small tilt of the specimen between the views (Finch, 1972).

An iterative, real-space helical reconstruction method that uses

single-particle processing procedures and offers an alternative to

the Fourier–Bessel strategy has recently been developed and

provides clear advantages for studying structures with imperfect

helical symmetry (Egelman 2000, 2007a,b). Back-projection

approaches offer a robust way of dealing with irregular helices or

those with discontinuities or seams (Sosa & Milligan, 1996; Sosa

et al., 1997).

19.6.5.3. Icosahedral particles

The typical strategy for processing and 3D reconstruction of

icosahedral particles consists of the following steps. First, a series

of micrographs of a monodisperse distribution of particles,
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normally suspended over holes in a perforated carbon support

film, is recorded. After digitization of the micrographs, individual

particle images are boxed and floated with a circular mask. The

astigmatism and defocus of each micrograph is measured from

the sum of intensities of the Fourier transforms of all particle

images (Zhou et al., 1996; Mallick et al., 2005), or by a more

automatic procedure applied to the whole micrograph (Mindell

& Grigorieff, 2003). Auto-correlation techniques are then used to

estimate the particle phase origins, which coincide with the centre

of each particle where all rotational symmetry axes intersect

(Olson & Baker, 1989). The view orientation of each particle,

defined by three Eulerian angles, was originally determined by

means of common and cross-common lines techniques (Crowther

et al., 1970; Crowther, 1971; Fuller et al., 1996; Baker et al., 1999;

Thuman-Commike & Chiu, 2000), but is now more commonly

determined with the aid of model-based, template-matching

procedures (e.g. Baker & Cheng, 1996; Castón et al., 1999;

Grigorieff, 2007; Yan, Dryden et al., 2007). Once a set of self-

consistent particle images is available, an initial low-resolution

3D reconstruction is computed by merging these data with

Fourier–Bessel (Crowther, 1971) or Fourier–Cartesian (e.g. Ji et

al., 2006) methods. This reconstruction then serves as a reference

for refining the orientation, origin and CTF parameters of each of

the included particle images, for rejecting ‘bad’ images, and for

increasing the size of the data set by including new particle

images from additional micrographs taken at different defocus

levels. A new reconstruction, computed from the latest set of

images, serves as a new reference and the above refinement

procedure is repeated until no further improvements as

measured by the reliability criteria mentioned above are made.

Determination of the absolute hand of the structure requires the

recording and processing of a pair of images taken with a known,

small relative tilt of the specimen between the two views (Belnap

et al., 1997; Rosenthal & Henderson, 2003). In the past decade,

3D cryoTEM analysis of icosahedral viruses at sub-nanometre

resolution has fully matured and near-atomic level (<4 Å) maps

(e.g. Yu, Jin & Zhou, 2008; Zhang et al., 2008; Zhou, 2008; Chen et

al., 2009) will certainly become more commonplace.

19.6.5.4. Electron cryo-tomography

This section is probably more appropriate to a cell-biology

textbook than to International Tables for Crystallography, but we

include it because of its growing importance and potential in the

field of structural biology. Good reviews are to be found in Frank

(2006a) and in three special issues of Journal of Structural

Biology already mentioned in Table 19.6.5.1. Briefly, a tilt series

of micrographs of the specimen is recorded, typically through an

angular range of �60� or �70�, and this is used, by R-weighted

back projection, to produce a 3D map of the specimen. This can

be further processed, segmented, coloured, rendered and inter-

preted (e.g. Medalia et al., 2002; Nicastro et al., 2005).

Electron cryo-tomography is typically used in two different

ways. First, it is used to describe the structure of a unique, non-

repeating biological sample such as a cell or organelle, possibly to

observe how the structure can change or to explore the diversity

of structures that occur. Second, it is used to produce a 3D map

(tomogram) of a structure that includes many copies of identical

assemblies, such as the trimeric glycoprotein surface spikes on

HIV (e.g. Liu, Bartesaghi et al., 2008). Individual 3D volumes are

then selected from a number of tomograms to give several

hundred or thousand sub-tomogram volumes, each of which

contains a single copy of the object of interest viewed in an

arbitrary direction. By averaging appropriately aligned 3D

volumes, which represent a variety of orientations of presumed,

identical structures, it is then possible to carry out the same type

of averaging as described for all the other specimen types.

Although the resolutions attained in the raw tomograms at

present (~2009) range at best between 4 and 5 nm, and signal-to-

noise considerations (Rosenthal & Henderson, 2003) suggest that

the resolution of raw electron cryo-tomograms can never reach

better than 1.5–2.0 nm, the procedure of sub-tomogram aver-

aging of identical structures or substructures can, in principle,

improve the resolution greatly. This second application of elec-

tron cryo-tomography thus fits perfectly into the context of

International Tables. Examples of this application include the

works by Fernandez et al. (2006), Zanetti et al. (2006), Liu,

Bartesaghi et al. (2008), Zhu et al. (2008) and Zanetti et al.

(2009). In the area of cellular tomography, the use of high-

pressure freezing and cryo-sectioning followed by electron cryo-

tomography is most promising (Zuber et al., 2005, 2008; Salje et

al., 2009).

19.6.6. Visualization, modelling and interpretation of results

The explosive growth in the number of structures of macro-

molecules and complexes that are now being determined at sub-

nanometre resolutions has spawned the development of

numerous tools that enable investigators to visualize, model and

interpret their results. Generally, after assessing a global view of

the gross morphology of a molecule, one quickly zooms in to

explore finer and finer details. A major challenge, especially with

density maps of increasing size (e.g. >512 pixels), is to perform

these operations in real time. Several computer-graphics appli-

cations have emerged that satisfy a variety of requirements

for visualizing cryoTEM maps. Examples of specific programs

include Chimera (Pettersen et al., 2004; Goddard et al., 2005;

Goddard & Ferrin, 2007; Goddard et al., 2007), colorRNA

(LeBarron et al., 2007), MODELLER (Eswar et al., 2007),

Python Molecular Viewer (PMV) (Sanner, 1999; Gillet et al.,

2005), Vision (Sanner, 2005); VMD (Hsin et al., 2008) and

VolRover (Bajaj et al., 2005). Many of these programs as well

as most of the more common, multipurpose reconstruction

programs provide tools for generating animations that can be

used to help simulate data and that are particularly useful in

communicating results to scientific as well as lay audiences

(McGill, 2008). Additional useful tools allow one to produce

space-filling, cartoon-like renderings of molecules that reduce

unnecessary detail and hence are more easily understood

(Goodsell, 2005).

Visualization tools merely provide an entryway to more careful

scrutiny and interpretation of structure. When viewed in the

context of existing biochemical and molecular studies as well as

complementary X-ray crystallographic and other biophysical

measurements, structural results provide a basis for under-

standing how molecules function. Even in the absence of

complementary, high-resolution structural data, since 3D

cryoTEM maps often reach sub-nanometre resolutions, it is

usually possible to recognize characteristic, secondary structural

elements like �-helices and large �-sheets in proteins. Several

programs help identify such elements (Jiang, Baker et al., 2001;

Kong & Ma, 2003; Kong et al., 2004; Baker et al., 2007), and this

then facilitates the process of defining and segmenting molecular

envelopes (e.g. Volkmann, 2002; Baker, Yu et al., 2006) and

elucidating protein folds (Zhou et al., 2001; Chiu et al., 2002;

Kovacs et al., 2007; Lindert, Staritzbichler et al., 2009). When
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complementary data from X-ray crystallography are available for

individual components of a macromolecule, or perhaps even the

entire complex, so-called pseudo-atomic models can be produced

that closely match the cryoTEM map and lead to more accurate

and reliable data interpretation.

Pseudo-atomic models were originally constructed by docking

X-ray-derived models manually into cryoTEM density maps

(Wang et al., 1992; Rayment et al., 1993; Stewart et al., 1993).

However, qualitative procedures like these quickly spurred the

development of rigorous, quantitative tools for fitting models into

3D maps as rigid bodies (Volkmann & Hanein, 1999; Wriggers et

al., 1999; Roseman, 2000; Rossmann et al., 2001; Wriggers &

Chacon, 2001; Chacón & Wriggers, 2002; Navaza et al., 2002;

Birmanns & Wriggers, 2003) and several of these methods have

been the subject of review articles (Volkmann & Hanein, 2003;

Fabiola & Chapman, 2005). The limitations inherent in assuming

that vitrified molecules retain the same conformation found in

crystals spawned the evolution of numerous flexible fitting and

refinement methods (e.g. Wriggers & Birmanns, 2001; Gao &

Frank, 2005; Velazquez-Muriel et al., 2006; Tan et al., 2008;

Dimaio et al., 2009). Many of the flexible fitting methods are

based on normal-mode analysis (Tama et al., 2003, 2004a,b; Bahar

& Rader, 2005; Suhre et al., 2006; Gorba et al., 2008) and on

molecular and damped dynamics (Kovacs et al., 2008; Orze-

chowski & Tama, 2008; Trabuco et al., 2008, 2009). When no

X-ray structure is available to guide pseudo-atomic modelling of

the cryoTEM map, it is still feasible to apply hybrid approaches

(e.g. iterative structure-based sequence alignment, fitting and

refinement) and construct a series of homology models (Topf et

al., 2005; Baker, Jiang et al., 2006; Topf et al., 2006; Lindert,

Stewart & Meiler, 2009) that can be assessed to help identify

reliable candidates (Shacham et al., 2007; Velazquez-Muriel &

Carazo, 2007).

19.6.7. Trends

The new generation of intermediate-voltage (�300 kV) FEG

microscopes with stable cold stages is now making it much easier

to obtain higher-resolution images that, by use of larger defocus

values, have good image contrast at both very low and very high

resolution. The greater contrast at low resolution greatly facil-

itates particle-alignment procedures, and the increased contrast

resulting from the high-coherence illumination helps to increase

the signal-to-noise ratio for the structure at high resolution. Cold

stages are constantly being improved, with several liquid-helium

stages developed in the 1990s (Fujiyoshi et al., 1991; Zemlin et al.,

1996). Two such stages are commercially available from JEOL

and FEI.

     

Figure 19.6.7.1
Examples of macromolecules studied by cryoTEM and 3D image reconstruction and the resulting 3D structures (bottom row) after cryoTEM analysis.
All micrographs (top row) are displayed at �170 000� magnification and all models at �1 200 000� magnification. (a) A single particle without
symmetry. The micrograph shows 70S E. coli ribosomes complexed with mRNA and fMet-tRNA. The surface-shaded density map, made by averaging
73 000 ribosome images from 287 micrographs, has a resolution of 11.5 Å. The 50S and 30S subunits and the tRNA are coloured blue, yellow and green,
respectively. The identity of many of the protein and RNA components is known and some RNA double helices are clearly recognizable by their major
and minor grooves (e.g. helix 44 is shown in red). Courtesy of J. Frank, using data from Gabashvili et al. (2000). (b) A single particle with symmetry. The
micrograph shows hepatitis B virus cores. The 3D reconstruction, at a resolution of 7.4 Å, was computed from 6384 particle images taken from 34
micrographs. From Böttcher et al. (1997). (c) A helical filament. The micrograph shows actin filaments decorated with myosin S1 heads containing the
essential light chain. The 3D reconstruction, at a resolution of 30–35 Å, is a composite in which the differently coloured parts are derived from a series
of difference maps that were superimposed on F-actin. The components include: F-actin (blue), myosin heavy-chain motor domain (orange), essential
light chain (purple), regulatory light chain (yellow), tropomyosin (green) and myosin motor domain N-terminal beta-barrel (magenta). Courtesy of A.
Lin, M. Whittaker & R. Milligan (Scripps Research Institute, La Jolla). (d) A 2D crystal: light-harvesting complex LHCII at 3.4 Å resolution. The
model shows the protein backbone and the arrangement of chromophores in a number of trimeric subunits in the crystal lattice. In this example, image
contrast is too low to see any hint of the structure without image processing (see also Fig. 19.6.4.2). Courtesy of W. Kühlbrandt (Max-Planck-Institute
for Biophysics, Frankfurt).
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Finally, some likely trends in the next few years include the

following.

(1) Increased automation including:

(a) specimen loading (Lefman et al., 2007);

(b) the recording of micrographs (Potter et al., 1999; Zhang et

al., 2003; Lei & Frank, 2005; Suloway et al., 2005; Zheng et

al., 2006; Nickell et al., 2007; Yoshioka et al., 2007; Shi et

al., 2008; Suloway et al., 2009; Zhang et al., 2009);

(c) particle picking (Short, 2004; Zhu et al., 2004; Chen &

Grigorieff, 2007; Plaisier et al., 2007; Woolford et al., 2007;

Sorzano et al., 2009; Voss et al., 2009), CTF estimation

(e.g. Huang et al., 2003; Fernando & Fuller, 2007; Jonic et

al., 2007; Sorzano et al., 2007);

(d) 3D reconstructions (e.g. Jiang, Li et al., 2001; Mouche et

al., 2003; Stagg et al., 2006; Yan, Sinkovits & Baker, 2007;

Lander et al., 2009); and

(e) high-performance computing (e.g. Bilbao-Castro et al.,

2006; Castano-Diez et al., 2007; Yang et al., 2007; Castano-

Diez et al., 2008; Fernandez, 2008; Bilbao-Castro et al.,

2009).

(2) Introduction of better electronic cameras including:

(a) lens-coupled CCDs (e.g. Maki-Yonekura & Yonekura,

2008);

(b) complementary metal-oxide semiconductor (CMOS)

sensors, which detect electrons directly. These are based

on a technology used in many digital cameras and are

displacing CCD technology for larger area detectors

(Faruqi et al., 2005; Milazzo et al., 2005; Turchetta et al.,

2006; Xuong et al., 2007; Jin et al., 2008);

(c) back-thinned CMOS sensors (McMullan, Faruqi et al.,

2009); and

(d) silicon pixel detectors (e.g. Faruqi et al., 2003; McMullan

et al., 2007).

(3) Increased use of dose-fractionated, tomographic tilt series to

extend EM studies to the domain of larger supramolecular

and cellular structures (e.g. McEwen et al., 1995; Medalia et

al., 2002; Lucic et al., 2005; Nicastro et al., 2005, 2006; Jensen

& Briegel, 2007; Zheng et al., 2007; Salje et al., 2009).

(4) Evaluation of Cc correctors for cryo-tomography of thicker

specimens (Kabius et al., 2009).

(5) The development and use of phase plates (e.g. Danev &

Nagayama, 2001; Majorovits et al., 2007; Danev & Nagayama,

2008; Nagayama & Danev, 2008; Danev et al., 2009).
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for supplying images used in Fig. 19.6.7.1, which gives some
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Crowther, R. A., Kiselev, N. A., Böttcher, B., Berriman, J. A., Borisova,
G. P., Ose, V. & Pumpens, P. (1994). Three-dimensional structure of
hepatitis B virus core particles determined by electron cryomicroscopy.
Cell, 77, 943–950.

Crowther, R. A. & Luther, P. K. (1984). Three-dimensional reconstruc-
tion from a single oblique section of fish muscle M-band. Nature
(London), 307, 569–570.
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Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of
plant light-harvesting complex by electron crystallography. Nature
(London), 367, 614–621.

Kunji, E. R., von Gronau, S., Oesterhelt, D. & Henderson, R. (2000). The
three-dimensional structure of halorhodopsin to 5 Å by electron
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Mol. Biol. 229, 1101–1124.

Unwin, N. (1995). Acetylcholine receptor channel imaged in the open
state. Nature (London), 373, 37–43.

Unwin, P. N. T. & Henderson, R. (1975). Molecular structure
determination by electron microscopy of unstained crystalline speci-
mens. J. Mol. Biol. 94, 425–440.

     



613

19.6. ELECTRON CRYOMICROSCOPY

Valpuesta, J. M., Carrascosa, J. L. & Henderson, R. (1994). Analysis of
electron microscope images and electron diffraction patterns of thin
crystals of �29 connectors in ice. J. Mol. Biol. 240, 281–287.

Velazquez-Muriel, J. A. & Carazo, J. M. (2007). Flexible fitting in 3D-EM
with incomplete data on superfamily variability. J. Struct. Biol. 158,
165–181.

Velazquez-Muriel, J. A., Valle, M., Santamaria-Pang, A., Kakadiaris, I. A.
& Carazo, J. M. (2006). Flexible fitting in 3D-EM guided by the
structural variability of protein superfamilies. Structure, 14, 1115–1126.

Venien-Bryan, C., Jonic, S., Skamnaki, V., Brown, N., Bischler, N.,
Oikonomakos, N. G., Boisset, N. & Johnson, L. N. (2009). The structure
of phosphorylase kinase holoenzyme at 9.9 Å resolution and location of
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