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ABSTRACT OF THE DISSERTATION

Generalized geometry and pluriclosed flow

By

Joshua Pierce Jordan

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Jeffrey Streets, Chair

This dissertation will show the ways in which generalized geometry elucidates the study of

pluriclosed flow. In their 2009 paper [37], Streets and Tian introduce pluriclosed flow – a

parabolic flow of pluriclosed metrics – and classify some static solutions. In 2018 [34], Streets

expanded this into a geometrization conjecture for compact, complex surfaces. The author

is able to use these tools to show an equivalence between pluriclosed flow and a non-linear,

coupled Hermitian-Yang-Mills type flow. From there, the author is able to more geometri-

cally prove a result of Streets and Warren – an Evans-Krylov theorem for pluriclosed flow.

The author is also able to use this equivalence to prove long-time existence and convergence

of the flow on Bismut-flat manifolds and surfaces of non-negative Kodaira dimension.
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Chapter 1

Introduction

1.1 Overview

Since the founding of Riemannian geometry in 1854, the question of canonical geometric

structures has been of central importance. Questions of “canonical coordinates”, “canoni-

cal mappings”, and “canonical metrics” are ubiquitous in the literature. In the following

dissertation, we will focus specifically on canonical metrics.

Riemannian geometry was born from the study of surfaces embedded in R3. Even at this

early point, the question of canonical metrics was raised. Gauss noticed that the embeddings

of a surface (and thus metrics induced by embeddings) are highly rigid with respect to Gauss

curvature. As his Theorema Egregium puts it (in modern language), the Gauss curvature of

the induced metric is diffeomorphism-invariant. This makes the question of distinguishing

between two embedded surfaces into a question on metrics with specific curvature properties.

In particular, one could ask “which surfaces admit metrics of constant Gauss curvature?”
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It was known to Gauss that the only spaces having constant curvature metrics were quotients

of the sphere, the plane, and the hyperbolic plane. However, in 1907, Poincaré and Koebe

were able to prove an astounding converse.

Theorem 1.1. Every connected Riemann surface (Σ2, g) admits a complete metric of con-

stant curvature.

Proving that, in fact, every connected Riemann surface is diffeomorphic to such a quotient.

More in the context of the problem as we originally posed it, a constant scalar curvature

metrics corresponds to a distinguished embedding within a fixed diffeo-type. There are

different methods for proving this theorem, but my favorite involves using a flow equation

to construct the metric in question, thereby developing a tool with which to distinguish the

diffeo-types of embedded surfaces.

The Poincaré-Koebe theorem and the flow approach to its proof suggest that curvature

conditions are a natural way to approach the question of canonical metrics in dimensions

larger than two and that one might be able to use curvature flows to construct these metrics.

However, the rigidity of constant sectional curvature (the higher-dimensional analogue of

Gauss curvature) proves to be too restrictive in higher-dimensional settings. Some spaces –

as simple as products of spheres – cannot be covered by a na ive higher-dimensional extension

of the Poincaré-Koebe theorem, since they are not even homeomorphic to a space of constant

sectional curvature. One is then forced to consider weaker curvature conditions.

If (Mn, g) is a Riemannian manifold and Πp is a plane in TpM , then we can denote the

sectional curvature of the plane by K(Πp). Notice that a sectional curvature constraint is

very strong; it constrains values on all planes at all points. Two tensorial quantities derived

from K admitting weaker constraints are the Ricci curvature (denoted Ric) and the scalar

2



curvature.

vp ∈ Sn−1
p M, Ric(vp, vp) =

∑
Πp∋vp

K(Πp), Scal =
∑
Πp

K(Πp) = trg Ric

As it happens, constant scalar curvature is too loose a condition. A result of Kazdan and

Warner shows that every smooth manifold of dimension at least three admits negative scalar

curvature metrics [24], so it would seem that this condition cannot easily be used to tell the

difference between manifolds. This seems to suggest that constant Ricci curvature sits in

just the right gap to be more rigid than constant scalar but less rigid than constant sectional,

making it a promising candidate for a higher-dimensional Uniformization Theorem. In terms

of equations, constant Ricci is also known as the Einstein equation.

Ric = λg (1.1)

Formulated in terms of flows, we obtain the Ricci flow.

∂

∂t
g = −2Ric (1.2)

The hope is to use Ricci flow – like the flow in the proof of Poincaré-Koebe – to deform the

initial geometry into one of our uniformizers – in this case, Einstein manifolds.

These equations are very difficult to study in general; they are degenerate elliptic / parabolic,

quasilinear systems of equations without an obvious convexity. Such equations do not typ-

ically have good regularity properties (c.f. [5]). The standard method of dealing with such

situations in geometry is to condition the initial data in a way that is respected by the

equation im the hopes of introducing some kind of reduction or stronger regularity property.

In this case, as the Einstein and Ricci flow equations respect the Kähler condition on Her-

mitian manifolds, one can restrict the equations to Kähler-Einstein and Kähler-Ricci flow.

Kähler manifolds have a wealth of structure that generic smooth manifolds lack, includ-
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ing cohomology classes defined by metrics and Ricci forms, Chern classes, and holomorphic

structures.

In his 1978 paper [46], Yau was able to use this structure to show the existence of Kähler-

Einstein metrics on manifolds with c1 ≤ 0. Cao gave a related proof for the Kähler-Ricci flow;

proving long-time existence and exponential convergence to Kähler-Einstein for c1 ≤ 0 [4].

However, the resulting theorem, the Calabi-Yau theorem, finds a comfortable home not only

in differential geometry and partial differential equations, but also mathematical physics.

In superstring theory, one understands spacetime as a product R4 ×M6 where M6 is a 6-

dimensional, compact, Hermitian manifold satisfying the Hull-Strominger system [21, 41].

Calabi-Yau 6-manifolds are an especially nice class of these string compactifications, but the

Hull-Strominger system also suggests the existence of internal dimensions beyond the Kähler

setting – providing natural hypotheses for generalizations of the Calabi-Yau condition.

The first difficulty that one confronts in trying to construct these new canonical geometries

and extend the Calabi-Yau theorem to a broader class of manifolds is that there is a lack of

cohomological data associated to metrics and Ricci foms on non-Kähler Hermitian manifolds.

To recover these notions requires us to institute some kind of integrability condition on the

metric which will be preserved by the flow. A theorem of Gauduchon [11] (see also Theorem

2.6) suggests the condition

√
−1∂∂ω = 0. (1.3)

Every compact, complex surface admits such a metric and we get cohomological data from

the metric in the form of [ω] ∈ H1,1
Aep and [∂ω] ∈ H2,1

∂
.

A second difficulty is that there is no longer an obvious choice of connection. The Levi-Civita

connection is Hermitian if and only if the metric is Kähler, so the Levi-Civita connection

will never be a good choice for a non-Kähler metric. This forces us view as natural an often
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overlooked class of connections, those with torsion! Once we do this, there are infinitely

many Hermitian connections on a non-Kähler manifold [13]! One of these connections –

independently discovered in the contexts of string theory [41] and of the topology of complex

manifolds [3] — is called the Bismut connection. It is the unique Hermitian connection D+

with totally antisymmetric torsion (see Lemma 2.8) and can be defined in terms of the

Levi-Civita connection ∇LC via

D+ = ∇LC − 1

2
g−1dcω. (1.4)

It is this connection and its metric-compatible non-Hermitian counterpart

D− = ∇LC +
1

2
g−1dcω (1.5)

which will play fundamental roles in defining the Bismut Hermitian-Einstein equation and

pluriclosed flow (see §2.2.2), this dissertation’s primary focus for candidate non-Kähler ex-

tensions of the Kähler-Einstein equation and Kähler-Ricci flow.

A third difficulty is that, whereas the Kähler-Einstein equation and Kähler-Ricci flow can

be reduced to a complex Monge-Ampére equation (a fact which was crucial to Yau’s 1978

work), the Bismut Hermitian-Einstein equation cannot, in general, be reduced to a scalar

equation. There is a reduction in the setting of generalized Kähler manifolds of commuting

type [10, Proposition 9.40], but in this situations the reduction is non-concave. Many of the

most important results in the elliptic theory are known to fail in such situations (see [29, 5]).

For these reasons, the following questions are of general interest and this dissertation will

attempt to present some of the author’s results as early steps towards an answer.

Problem 1.1.1. Under what topological conditions does a complex manifold admit a solution

to the Bismut Hermitian-Einstein equation?
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Problem 1.1.2. Under what topological conditions does a solution to pluriclosed flow exist

for all time and converge to a Bismut Hermitian-Einstein metric?

These questions have been addressed by various authors. Jeffrey Streets has addressed some

related apriori estimates on manifolds with globally generated bundles, generalized Kähler

manifolds with split tangent bundle, non-positive Chern bisectional curvature, rank one

tangent bundle with c1 < 0, and torus fibrations with torus-invariant metric [33, 35, 40, 32,

31].

1.2 Statement of Results

We will prove several results over the course of this dissertation. These results represent

some of the most comprehensive existence and convergence results for pluriclosed flow to-

date. We begin by using generalized geometric tools to prove an identity dating back to

Bismut which will allow us to construct the first counter-examples to a naive generalization

of the Calabi-Yau theorem, i.e. vanishing first Chern class is not sufficient to guarantee

existence of a Bismut Hermitian-Einstein metric.

Theorem 1.2. In every dimension there exist infinitely many complex manifolds with van-

ishing first Chern class which do not admit a Bismut Hermitian-Einstein metric.

These same tools will then be used to prove a localized higher-regularity theorem for pluri-

closed flow using an argument similar to that of Yau [46], giving a fully geometric proof of

an extension of a theorem due to Streets [32] (see also [40]).

Theorem 1.3. Given (M2n, J), fix (ω, β) a solution to pluriclosed flow (4.1) on [0, τ), τ ≤ 1,

with associated generalized metric G. Fix a background generalized metric G̃(g̃, β̃) such that

Λ−1G̃ ≤ G ≤ ΛG̃. There exists R > 0 depending on g̃ such that for all 0 < r < R, and
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k ∈ N, there exists a constant C = C(k,Λ, G̃) such that

max
B r

2
(p)×{t}

k∑
i=0

|∇iΥ|
2

i+1 ≤ C(r−4 +
1

t
).

This higher-regularity theorem reduces the question of long-time existence to an estimate

on the metric and β-field, which can be made by way of Bochner formulas provided the

background curvature tensor is simple. Two cases are especially clear, that of Bismut-flat

and non-negative Kodaira dimension.

Theorem 1.4. Let (M2n, ωF , J) be a compact Bismut-flat manifold. Given ω0 a pluriclosed

metric so that [∂ω0] = [∂ωF ] ∈ H2,1

∂
, the solution to pluriclosed flow with initial data ω0

exists on [0,∞) and converges to a Bismut-flat metric ω∞.

A corollary in the low-dimensional setting is existence and convergence on diagonal Hopf

surfaces.

Corollary 1.5. Given any initial data on a standard Hopf surface, the pluriclosed flow exists

for all time and converges to a positive multiple of the Hopf/Boothby metric.

By a theorem of Gauduchon and Ivanov [14], this resolves the question of Bismut Hermitian-

Einstein metrics for compact, complex surfaces. This is also one of the first instances of a

non-Kähler metric as an attractor for a for a geometric flow with arbitrary initial data.

The situation for non-negative Kodaira dimension is interesting as these manifolds are pre-

cisely of the type used for Theorem 1.2 and admit no Bismut Hermitian-Einstein metric.

Theorem 1.6. Let (M4, J) be a minimal non-Kähler surface of Kodaira dimension κ ≥ 0.

Given ω0 a pluriclosed metric on M , the solution to pluriclosed flow with initial condition

ω0 exists on [0,∞).
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These will doubtless prove to be useful for studying the kinds of collapsing behavior associ-

ated to pluriclosed flow.
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Chapter 2

Background & Notation

In this chapter, we introduce some background: Schauder theory, Hermitian geometry, and

generalized geometry. In §2.1, we will present the Schauder interior regularity theory, which

plays a central role in apriori estimates for the nonlinear elliptic and parabolic PDE in which

this dissertation deals. The author will present a proof of X.J. Wang [44] that extends the

well-known blow-up proof of L. Simon to Dini continuous functions.

We will then discuss some relevant geometric background in §2.2. As this dissertation is

primarily concerned with non-Kähler geometry, it will be important to discuss integrability

conditions, connections, and curvature. We will spend some time here to emphasize the

disjuncture between the complex and Riemannian geometry that arises in this setting.

Finally, we will introduce the basic material of generalized complex geometry in §2.3. This

material is central to both the statement and proof of all of the major results in this paper.

Later in this paper (see §3.2), we will see that generalized complex geometry encodes the

data of a pluriclosed structure on the complexified tangent bundle very elegantly, tying the

discussion here to §2.2.
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2.1 PDE Theory

2.1.1 Elliptic Regularity

An important role in the following work is played by the elliptic regularity theory. In

particular, the Schauder theory is indispensable. This is a family of results establishing a

priori estimates for smooth, uniformly elliptic operators by perturbative means. The theory

hinges on proving an estimate relating the Laplacian to the Hessian of a function. We will

follow work of Xu Jia Wang for the proof [44]. We will first require a minor lemma known as

the Cauchy estimates. The following notation will be useful Br(x0) = {x ∈ Rn| |x−x0| < r},

B+
r (x0) = Br(x0) ∩ {xn > 0}.

Lemma 2.1 ([15, Theorem 3.9]). Suppose u ∈ C∞(B1) and ∆u = 0 in B1. Then

|Dku(0)| ≤ Cn,k sup
B1

|u|.

Proof. Consider the functions ϕ, ψ : B
+

1 → R defined as follows.

ϕ(x′, xn) =
1

2
[u(x′, xn)− u(x′,−xn)]

ψ(x′, xn) = ∥u∥L∞ [|x′|2 + xn(n− (n− 1)xn)]

The functions have several useful properties.

� They are harmonic in B+
1 .

∆ϕ ≡ 0, ∆ψ ≡ 0

� They have convenient data along the flat boundary.

ϕ|{xn=0} ≡ 0, ψ|{xn=0} ≡ 0

10



� They are well-behaved along the curved boundary.

|ϕ|∂B+
1 \{xn=0}| ≤ ∥u∥L∞ , ψ|∂B+

1 \{xn=0} ≥ ∥u∥L∞

But this means that ψ ± ϕ is harmonic in B+
1 and non-negative on the boundary ∂B+

1 . So

by the maximum principle, ψ ± ϕ ≥ 0 in B
+

1 . Letting x
′ = 0 and xn ↘ 0, we find

|Dnu(0)| ≤ n∥u∥L∞ .

The same argument works for the other directions and the higher order estimates follow by

differentiating the equation.

We will prove the Schauder estimate using Lemma 2.1 by solving approximating problems on

smaller and smaller scales. The continuity hypotheses then allow us to conclude convergence

with a certain amount of rate-control.

Theorem 2.2 ([44, Theorem 1]). Suppose u ∈ C2 and

aij(x)uij(x) = f(x) (2.1)

in B1(0) and f is Dini continuous, then there exists a universal constant C = C(n,Λ) such

that for any x, y ∈ B 1
2
(0)

|D2u(x)−D2u(y)| ≤ Cn

[
d sup

B1

|u|+ (

∫ d

0

ωf (r)

r
dr + d

∫ 1

d

ωf (r)

r2
dr)

]
+ Cn sup

B1

|∂2xu|
[∫ d

0

ωa(r)

r
dr + d

∫ 1

d

ωa(r)

r2
dr

]

where d = |x− y|.
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Proof. For the sake of simplicity, we prove the result for aij = δij. Without loss of generality,

we can suppose that f(0) = 0. We define a decreasing family of balls, Bk = B2−k(0) for

k ∈ N. On each ball, we can define uk : Bk → R solving approximating problems on smaller

and smaller balls, i.e. 
∆uk(x) = 0, x ∈ Bk

uk(x) = u(x), x ∈ ∂Bk

The difference vk = u − uk then solves a Poisson equation on Bk with vanishing boundary

data. 
∆vk = f

vk|∂Bk
= 0

By the Maximum Principle for Poisson equations, we know

∥u− uk∥L∞(Bk) ≤ C4−k(∥f∥L∞(Bk)) ≤ C4−k ωf (2
−k). (2.2)

This allows us to estimate uk − uk+1 in Bk+1.

∥uk − uk+1∥L∞(Bk+1) ≤ ∥uk − u∥L∞(Bk) + ∥u− uk+1∥L∞(Bk+1)

≤ C4−k ωf (2
−k)

Further, since uk−uk+1 is harmonic inBk+1, we can apply the Cauchy estimates and Equation

2.2 to get further estimates.

∥Duk −Duk+1∥L∞(Bk+2) ≤ C2k∥uk − uk+1∥L∞(Bk+1) (2.3)

≤ C2−k ωf (2
−k) (2.4)

∥D2uk −D2uk+1∥L∞(Bk+2) ≤ C4k∥uk − uk+1∥L∞(Bk+1) (2.5)

≤ C ωf (2
−k) (2.6)
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Now, we define the 2nd order approximation of u about 0

Q(x) = u(0) + ui(0)x
i +

1

2
uij(0)x

ixj.

This function has several useful properties.

� uk −Q is harmonic for all k

� By definition of second derivative, 4k∥u−Q∥L∞(Bk) = o(1) as k → ∞.

� Letting vk = uk −Q, we can take a limit.

4k∥vk∥L∞(Bk) ≤ 4k∥u− uk∥L∞(Bk) + o(1) ≤ C ωf (2
−k) + o(1) → 0

By harmonicity, we can apply the Cauchy estimates to vk = uk −Q find the following.

|Duk(0)−Du(0)| = |Dvk(0)| ≤ C2k sup
Bk

|vk| → 0

|D2uk(0)−D2u(0)| = |D2vk(0)| ≤ C4k sup
Bk

|vk| → 0

This implies that Duk(0) → Du(0) and D2uk(0) → D2u(0) as k → ∞.

We begin to estimate the modulus of continuity of the second derivatives by fixing z ∈ B 1
16
(0)

and k ≥ 1 s.t. z ∈ Bk+3 \Bk+4. Then

|D2u(z)−D2u(0)| ≤ |D2u(z)−D2uk(z)|+|D2uk(z)−D2uk(0)|+|D2uk(0)−D2u(0)| =: I3+I1+I2.

To estimate I1, consider the functions hj = uj − uj−1 (harmonic in Bj). We can use the

Cauchy Estimates to estimate the second derivatives of the hj’s as follows (where j ≤ k i.e.

13



Bj ⊃ Bk)

|D2hj(z)−D2hj(0)| ≤ ∥D3hj∥L∞(Bj+3)|z|

≤ C8j+3|z| sup
Bj+2

|hj|

≤ C8j|z| sup
Bj

|uj − uj−1|

≤ C2j|z|ωf (2
−j)

We can then exploit these functions for the analysis of I1.

I1 ≤ |D2uk(z)−D2uk(0)|

≤ |D2uk−1(z)−D2uk−1(0)|+ |D2hk(z)−D2hk(0)|

≤ |D2u0(z)−D2u0(0)|+
k∑

j=1

|D2hj(z)−D2hj(0)|

≤ |D2u0(z)−D2u0(0)|+ C|z|
k∑

j=1

2j ωf (2
−j)

≤ C|z|(∥u0∥L∞(B1) +
k∑

j=1

ωf (2
−j)

2−2j
2−j)

≤ C|z|
(
∥u∥L∞(B1) +

∫ 1

|z|

ωf (r)

r2
dr

)

For I2, we refine our estimate a bit.

I2 = |D2uk(0)−D2u(0)|

≤
∞∑
j=k

∥D2uj −D2uj+1∥L∞(Bj+1)

≤ C
∞∑
j=k

ωf (2
−j)

≤ C

∫ |z|

0

ω(r)

r
dr

14



The same argument holds for I3 with a translation, so we will not include it.

This then concludes the proof.

This gives the usual Schauder estimate as a corollary in the following manner.

Corollary 2.3. Suppose further that u solves Equation 2.1 where aij is Λ-uniformly elliptic

for some f ∈ Cα then

∥u∥C2,α(B 1
4
) ≤ C

(
∥u∥L∞(B1) + ∥f∥Cα(B1)

)
Proof. If f ∈ Cα(B1) then ωf (r) ≤ [f ]αr

α for some α ∈ (0, 1) by definition. So we can

evaluate the integrals on the right-hand side of the estimate for a function ω(r) = Crα.

C

∫ d

0

rα

r
dr + Cd

∫ 1

d

rα

r2
dr = C

1

α
dα + C

dα − d

1− α

= dα(
C

α
+ C

1− d1−α

1− α
)

≤ dα
C

α(1− α)

Therefore, in this setting, Theorem 2.2 becomes

|D2u(x)−D2u(y)| ≤ C

[
d∥u∥L∞ +

[f ]α
α(1− α)

dα
]
.

Requiring x, y ∈ B 1
4
(0), suitably rescaling the estimate, and rewriting gives

[D2u]α,B 1
4

≤ C
(
∥u∥L∞(B 1

2
) + [f ]Cα(B 1

2
)

)
. (2.7)
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However, we have the following interpolation inequality for any ϵ > 0 on closed, bounded

domains.

∥u∥C2 ≤ ϵ[D2u]Cα + Cϵ∥u∥L∞

Thus implying,

∥u∥C2,α(B 1
4
) ≤ ∥u∥C2,α(B 1

4
) = ∥u∥C2(B 1

4
) + [D2u]Cα(B 1

4
)

≤ C(∥u∥L∞(B 1
4 )

) + 2[D2u]Cα(B 1
4
))

≤ C(∥u∥L∞(B1)
+ ∥f∥Cα(B1))

But this is the estimate that was sought.

2.1.2 Parabolic Regularity

It is often useful to consider parabolic problems to break the symmetry of geometric problems

on compact manifolds. We present here important theorems for the sequel and omit their

proof because they are either similar to work that has already been presented or too far

afield for this dissertation.

Theorem 2.4 ([26, c.f. Theorem 5.6]). Given the Λ-uniformly elliptic Cauchy-Dirichlet

problem 
( ∂
∂t
− aij(x, t)∂i∂j)u = f(x, t) ∈ Cα(B1)

u(x, 0) = g(x) ∈ Cα(B1)

u|∂B1(x, t) = h(x, t) ∈ Cα(B1)

,

there is an ϵ = ϵ(n, α,Λ, g, h) > 0 s.t. the problem admits a unique solution in u ∈

C2+α,1+α
x,t (B1 × [0, ϵ)).
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The elliptic Schauder estimates have an analogue in the parabolic setting. Let Qr = Br(0)×

(−r2, 0]. In particular,

Theorem 2.5 ([44, Theorem 2]). Let u ∈ C2,1
x,t solving

(
∂

∂t
− aij(x, t)∂i∂j)u = f(x, t).

If aij and f are Dini continuous, then for any points p1 = (x1, t1), p2 = (x2, t2) ∈ Q 1
2
,

|D2
xu(p1)−D2

xu(p1)| ≤ Cn

[
d sup

Q1

|u|+
∫ d

0

ωf (r)

r
+ d

∫ 1

d

ωf (r)

r2

]
+ Cn sup

Q1

|D2
xu|
[∫ d

0

ωa(r)

r
+ d

∫ 1

d

ω1(r)

r2

]
,

where d = |x1 − x2|+
√
|t1 − t2| and ω• is the modulous of continuity of •.

Proof. The proof is similar to Theorem 2.2 but substituting parabolic balls for regular balls

and getting the estimate on ∂tu from the equation.

2.2 Hermitian Geometry

As we are interested in addressing a non-Kähler generalization of the Calabi-Yau theorem, it

will be worth highlighting some important places in which the general theory of Hermitian

manifolds differs from that of Kähler manifolds. We will first embark on a discussion of

metric integrability conditions before proceeding on to connections and curvature.
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2.2.1 Integrability Conditions

On a Hermitian manifold (M2n, J, g), we have several natural conditions on the fundamental

two-form, ω = gJ . The most studied of these conditions is Kähler.

Definition 2.1. A fundamental 2-form (or sometimes the corresponding Riemannian metric)

as above is called Kähler if

dω = 0. (2.8)

This condition is natural for several reasons. First, this is precisely the condition for the

Riemannian-geometric and complex-geometric data to coincide in the sense that the unique

Hermitian connection is the Levi-Civita connection. Second, every compact Riemann surface

admits such a metric.

While these metrics are incredibly important, they are not completely generic. A standard

example of a non-Kähler manifold is provided by Hopf surfaces – complex manifolds diffeo-

morphic to S3 × S1 which admit no Kähler metric. These manifolds do however admit a

metric having a weaker integrability condition – a pluriclosed metric.

Definition 2.2. A fundamental 2-form (or its corresponding metric) as above is called

pluriclosed if

√
−1∂∂ω = 0. (2.9)

In fact, every compact, complex surface admits a metric of this type. This goes back to

a theorem of Gauduchon. This theorem asserts the existence of certain kinds of integrable

metrics called Gauduchon metrics.
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Definition 2.3. On a complex manifold (M2n, J), a fundamental two-form (or its associated

Hermitian metric) is called Gauduchon if

√
−1∂∂ωn−1 = 0.

Notice that when n = 2, Gauduchon is equivalent to pluriclosed, and so the following theorem

is sufficient.

Theorem 2.6. [12, 28] Let (M2n, J, g) be a connected, compact, Hermitian manifold. Then

there exists g̃ in the conformal class of g s.t.

√
−1∂∂ω̃n−1 = 0.

This metric is unique up to positive scalar multiples.

Proof. As we want g̃ in the conformal class of g, it suffices to find u > 0 and smooth s.t.

g̃ = u
1

n−1 g where g̃ is Gauduchon. We define a Lefschetz-type operator Ln−1
g (u) = uωn−1

and a linear elliptic operator on functions

T : Λ0 → Λ0, u 7→
√
−1 ∗g ∂∂(Ln−1

g u).

This reduces the problem to finding a smooth, positive solution of Tu = 0 on M .

We will make use of the Fredholm theorem. To do that, we will need to compute T ∗.

T ∗u =
√
−1L∗∂

∗
∂∗ ∗ u =

√
−1L∗ ∗ ∂ ∗ ∗∂ ∗ ∗u =

√
−1L∗ ∗ ∂∂u
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Now we need to compute the formal adjoint of L, denoted L∗, acting on Im(∗|Λ1,1). For this,

let η ∈ Λ1,1 and v ∈ Λ0. Then

∫
M

vL∗(∗η)dvg =
∫
M

⟨∗η, Lv⟩dvg

=

∫
M

(∗η) ∧ ∗(vωn−1)

= c

∫
M

v(∗η) ∧ ω

= c

∫
M

v(∗(∗η ∧ ω))dvg

= c

∫
M

v(Λη)dvg

This shows that

T ∗ = −
√
−1Λ∂∂ = −∆ω.

Thus we have kerT = cokerT ∗ by the Fredholm alternative. But since T = ∆ω + l.o.t.s

as well, we have that indT = indT ∗ = 0, so dim cokerT ∗ = dimkerT ∗ = 1. Therefore,

dim kerT = 1 and we can choose u, a generator.

By maximum principle, no function in Im(T ∗) has constant sign other than the zero function,

so we may choose u s.t. (u, 1)L2 > 0 as Im(T ∗)⊥ = kerT . It is possible to claim further

that u ≥ 0. Supposing otherwise, we can choose two functions ϕ, ψ ∈ C∞
0 (M) s.t. suppϕ ⊂

suppu+ and suppψ ⊂ u−. These functions have supports with disjoint interiors. Then, we

define the function

Φ =

(∫
M

u−ψdvg

)
ϕ+

(∫
M

u+ϕdvg

)
ψ ∈ C∞(M) ∩ L2(M).

But this function is orthogonal to u.

∫
M

uΦdvg =

∫
M

u−ψdvg

∫
M

u+ϕ+

∫
M

u+ϕdvg

∫
M

(−u−)ϕ = 0
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However, as

ker(T )⊥ = (Im(T ∗)⊥)⊥ = Im(∆)
L2

,

we find that Φ ∈ Im(∆), which is a contradiction as Φ ≥ 0.

Finally, we must show that u never vanishes. However, this follows immediately from the

strong maximum principle and u ≥ 0. As the operator is of the form,

∆u+ ⟨b,∇u⟩+ uf = 0

we will have that if u(p0) = 0 – its minimum – then

∆u(p0) ≤ 0

which is a contradiction if u ̸≡ 0. And the theorem is proved.

2.2.2 Connections & Curvature

Chern Connection on a Hermitian Bundle

On any holomorphic, Hermitian vector bundle (E , g) → (M,J) there is a distinguished

connection – called the Chern connection – that we will denote by ∇ which extends the

∂-operator on E and we will typically denote the matrix of connection one-forms by θ.

Lemma 2.7. There is a unique Hermitian connection on E with the property that π0,1∇ =

∂E.
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Proof. Pick a local trivialization (ei) by holomorphic sections. As ∇ extends ∂, we must

have that θji ∈ Λ1,0. Further, by metric compatibility, we can compute as follows.

dg(ei, ej) = θliglj + θ
l

jgil

Decomposing by type, we find the following as an equation in Λ1,0(M).

∂gij = θliglj

Thus, θ = ∂g · g−1 ∈ Λ1,0( End(E)) completely determines the connection one-forms.

Existence follows by starting at these connection one-forms and showing that the define a

Hermitian connection. This is obvious from the construction.

This connection has a curvature tensor which we will denote Ω ∈ Λ1,1(End(E) (or Ωh when

the metric is not otherwise implied). We call this the Chern curvature. Notice that such a

tensor has two well-defined trace operators.

Λh = trωh
: Λ1,1(End(E)) → Λ0(End(E))

Tr : Λ1,1(End(E)) → Λ1,1(M)

This allows us to define two (generally) different curvature quantities ρC = TrΩ and SC =
√
−1ΛhΩ– the first and second Chern-Ricci curvatures.

Bismut and Hull Connections on Complexified Tangent Bundle

We will also often be considering sections of the complexified tangent bundle TCM . The

natural connection in this setting was discovered by JM Bismut in investigations into index
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theory on complex manifolds, during which he needed to introduce an exotic holomorphic

structure on the complexified tangent bundle [3].

Lemma 2.8. (M, g, J) Hermitian. There is a unique Hermitian connection on TCM with

totally anti-symmetric torsion. We will call this the Bismut connection and denote it by D+.

Proof. Notice that we can define a tensor H = D+ −∇LC ∈ Ω1(End(TCM)). We begin by

compiling a few facts.

1. T+ ∈ Ω2(TCM) is related to H in the following way, as a consequence of the symmetry

of the Levi-Civita connection.

T+(X, Y ) = H(X, Y )−H(Y,X)

2. If we let H(X, Y, Z) = g(H(X, Y ), Z), then metric-compatibility of D+ and ∇LC im-

plies

H(X, Y, Z) = −H(X,Z, Y )

3. As D+ is Hermitian and ∇LC is metric-compatible (and not Hermitian, in general) we

can prove

H(X, JY, Z) +H(X, Y, JZ) = −g((∇LC
X J), X), T+(X, JY, Z) = −T+(X, Y, JZ).
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Using the above identities and clever grouping, one is able to prove

[H(X, JY, Z) +H(X, Y, JZ)] + [H(Z, JX, Y ) +H(Z,X, JY )] + [H(Y, JZ,X) +H(Y, Z, JX)]

= T+(Y, Z, JX)− T+(Z, JX, Y ) + T+(Y, JX,Z).

But T+ ∈ Λ3 by hypothesis, so the formula reduces to

[H(X, JY, Z) +H(X, Y, JZ)] + [H(Z, JX, Y ) +H(Z,X, JY )]+ [H(Y, JZ,X) +H(Y, Z, JX)]

= − T+(JX, Y, Z).

However, we can apply this identity to JX instead of X, from which we obtain

T+(X, Y, Z) = [H(JX, JY, Z) +H(JX, Y, JZ)] + [H(Z, JJX, Y ) +H(Z, JX, JY )]

+ [H(Y, JZ, JX) +H(Y, Z, JJX)]

= − g((∇LC
JXJ)Y, Z)− g((∇LC

Z J)JX, Y )− g((∇LC
Y J)Z, JX).

To simplify further, one must recall the following very useful identity.

dω(X, Y, Z) = g((∇LC
X J)Y, Z)− g((∇LC

Y J)X,Z) + g((∇LC
Z J)X, Y )

Combining these gives the torsion uniquely in terms of the metric and complex structure.

T+(X, Y, Z) = −dω(JX, Y, Z)

It only remains to show that H(X, Y ) = −H(Y,X) to prove the theorem. By polarization,

it suffices to prove that H(X,X,Z) = 0 for any X,Z ∈ TCM . We will use the following
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Koszul formula for a connection D with torsion T .

2g(DXY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

− g([X,Z], Y )− g([Y, Z], X) + g([X, Y ], Z)

− T (X,Z, Y ) + T (Z, Y,X)− T (Y,X,Z)

Notice that for ∇LC , T ≡ 0 and for D+, T+ ∈ Ω3(M). Therefore,

2g(D+
XX,Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

− g([X,Z], Y )− g([Y, Z], X) + g([X, Y ], Z)

= 2g(∇LC
X X,Z).

Or equivalently, H(X,X,Z) = 0 and H ∈ Ω3.

Therefore,

H(X, Y, Z) =
1

2
T+(X, Y, Z) =

1

2
dω(JX, Y, Z).

We can thus define the following connection uniquely and the result is proved.

g(D+
XY, Z) = g(∇LC

X Y, Z)− 1

2
dω(JX, Y, Z).

This suggests the definition of a further connection, the Hull connection.

Definition 2.4. On a pluriclosed Hermitian manifold (M,J, g), we can define a metric-

compatible, non-Hermitian connection for which

g(D−
XY, Z) = g(∇LC

X Y, Z) +
1

2
dω(JX, Y, Z).
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We prove that D− is compatible and non-Hermitian below.

Lemma 2.9. The following defines a metric-compatible connection on TCM which is Her-

mitian iff it is Kähler.

Proof.

(D−
Xg)(Y, Z) = Xg(Y, Z)− g(D−

XY, Z)− g(Y,D−
XZ)

= − 1

2
dω(JX, Y, Z)− 1

2
dω(JX,Z, Y )

= 0.

To see that this connection is generally non-Hermitian, notice that

g((D−
X −D+

X)Y, Z) = dω(JX, Y, Z).

But we can further compute the action on J .

g((D−
XJ)Y, Z) = g([(D−

X −D+
X)J ]Y, Z)

= g((D−
X −D+

X)[JY ]− J(D−
X −D+

X)Y, Z)

= dω(JX, JY, Z) + dω(JX, Y, JZ)

This vanishes iff dω = 0.

We will denote the respective curvature tensors of D± by R±. It is worth noting that since

both are metric-compatible R± ∈ Λ2×Λ2. Since D+ is Hermitian, it has further symmetries,

i.e., R+ ∈ Λ2×Λ1,1. Then using the identity R+(X, Y, Z,W ) = R−(Z,W,X, Y ) (see Lemma

2.10), we find that R− ∈ Λ1,1 × Λ2, i.e. (D−)0,1 defines a Dolbeault operator on TCM . We

will prove a slightly more general statement.
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Lemma 2.10. Let H ∈ Λ3 with dH = 0 and D± = ∇LC ±H. Then,

RH(X, Y, Z,W ) = R−H(Z,W,X, Y ).

Proof. We compute the following.

RH(X, Y, Z,W ) = g([D+
X , D

+
Y ]Z −D+

[X,Y ]Z,W )

= g([∇LC
X + iXH,∇LC

Y + iYH]Z −∇LC
[X,Y ]Z −H([X, Y ], Z),W )

= g(W, [∇LC
X ,∇LC

Y ]Z + [iXH,∇LC
Y ]Z + [∇LC

X , iYH]Z + [iXH, iYH]Z

∇LC
[X,Y ]Z −H([X, Y ], Z))

= RLC(X, Y, Z,W ) + g([iXH,∇LC
Y ]Z + [∇LC

X , iYH]Z + [iXH, iYH]Z,W )

−H([X, Y ], Z,W )

= RLC(X, Y, Z,W ) + (∇LC
X H)(Y, Z,W )− (∇LC

Y H)(X,Z,W )

+ g(H(Y,W ), H(X,Z))− g(H(X,W ), H(Y, Z))

Notice then that by symmetries of RLC and the quadratic terms, we find

RH(X, Y, Z,W )−R−H(Z,W,X, Y ) =

(∇LC
X H)(Y, Z,W )− (∇LC

Y H)(X,Z,W )− (∇LC
Z H)(X, Y,W ) + (∇LC

W H)(X, Y, Z).

But it is easy to check that dH is simply the antisymmetric part of ∇LCH (the result is

obvious in normal coordinates). Thus,

RH(X, Y, Z,W )−R−H(Z,W,X, Y ) = dH(X, Y, Z,W ) = 0.
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It is also worthwhile to note that the Bismut curvature of the tangent bundle can be computed

in terms of the Chern, offering us a bridge to a more familiar tensor. To start, we derive

a basic relationship between the Chern and Bismut curvatures of an arbitrary Hermitian

metric.

Lemma 2.11. Given (M2n, g, J) a Hermitian manifold, then in any local complex coordinate

chart one has

∂Tijkl = − Ωikjl + (R+)jlik + Tjαkg
βαT lβi,

where T = −
√
−1∂ω is the torsion of the Chern connection.

Proof. Fix some local holomorphic coordinates, and let Γ denote the associated Chern con-

nection coefficients. It follows from Lemma 2.8 that

D+
i ∂j = Γl

ji∂l, D+
i
∂j = T ikjg

kl∂l. (2.10)

Using this, we derive and identity relating the Λ1,1 ⊗ Λ1,1 part of the Bismut curvature and

the Chern curvature:

(R+)ijkl = g(D+
i D

+
j
∂k −D+

j
D+

i ∂k, ∂l)

= Ωkjil +∇iT jlk + T p
ikT jlp − Tiplg

qpT jqk

= Ωkjil + Ωilkj − Ωijkl + T p
ikT jlp − Tiplg

qpT jqk.

28



Using this we furthermore obtain

∂Tijkl = ∂kTijl − ∂lTijk

= gjl,ik − gil,jk − gjk,il + gik,jl

= − Ωikjl + Ωjkil + Ωiljk − Ωjlik

+ gqpgjq,igpl,k − gqpgiq,jgpl,k − gqpgjq,igpk,l + gqpgiq,jgpk,l

= − Ωikjl + Ωjkil + Ωiljk − Ωjlik + T
q

klTijq

= − Ωikjl + (R+)jlik − Tα
jiT lkα + Tjαkg

βαT lβi + T
q

klTijq

= − Ωikjl + (R+)jlik + Tjαkg
βαT lβi,

as required.

Proposition 2.1. Given (M2n, g, J) pluriclosed, one has

(R+)ijkl = (Ω)klij − Tiplg
qpT jqk.

Proof. This follows from Lemma 2.11, using that ∂T = 0 since g is pluriclosed.

Next we compute the Λ2,0 ⊗ Λ1,1 component of the Bismut curvature.

Proposition 2.2. Given (M2n, g, J) pluriclosed, one has

(R+)ijkl = ∇C
k Tijl.

Proof. We first note that as a consequence of the Bianchi identities for a general Hermitian

metric one has

(R+)ijkl = ∇C
i Tkjl −∇C

j Tkil + T λ
ijTkλl − T λ

ikTjλl + T λ
jkTiλl.
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Since we know that the Chern torsion is given by T = −
√
−1∂ω, we have the identity

∂Tijkl = 0.

This can be rewritten in terms of the Chern connection as

∇C
i Tjkl −∇C

j Tikl +∇C
k Tijl + T p

ijTpkl + T p
jkTpil − T p

ikTpjl = 0.

Combining this with the first equation of the proof then yields the claim.

2.3 Generalized Geometry

Generalized geometry is typically used to refer to the study of Courant algebroids. These

were introduced by Liu, Weinstein, and Xu in 1997 [27] and their study was stimulated in

2003 when Nigel Hitchin proposed them as a natural setting for a generalization of Calabi-

Yau manifolds [19]. Marco Gualtieri’s 2003 PhD thesis [17] and Mario Garcia-Fernandez and

Jeff Streets’ book [10] are standard references. Much of what follows will be patterned on

their expositions, but with an eye towards working definitions.

2.3.1 Courant Algebroids

We will begin by discussing Courant algebroids in the smooth category before moving to the

holomorphic category, in which we will most often work.
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Smooth Courant Algebroids

The catchphrase of Courant algebroids, “treating T and T ∗ on the same footing”, is encoded

in the following definition.

Definition 2.5 ([17]). A Courant algebroid is a vector bundle E →M equipped with

1. a non-degenerate, symmetric bilinear form ⟨, ⟩,

2. a Jacobian (non-skew-symmetric) bracket [, ] of sections, and

3. a smooth bundle map ρ : E → TM .

These pieces of data must satisfy the following compatibility conditions where A,B,C,D ∈

Γ(E).

1. ρ[A,B] = [ρA, ρB]

2. [A,B] + [B,A] = D⟨A,B⟩

3. [A, fB] = f [A,B] + ρ(A)fB

4. ρ(A)⟨B,C⟩ = ⟨[A,B], C⟩+ ⟨B, [A,C]⟩

Here, D : C∞(M) → Γ(E) is defined by by

⟨Df, A⟩ = df ◦ ρ(A).

This definition can be made more concrete by considering a couple examples.

Example 2.1. Consider the vector bundle TM = TM ⊕ T ∗M with ρ : TM → TM given

by the first factor projection and neutral product ⟨, ⟩ can be defined

⟨X + ξ, Y + η⟩ = 1

2
(ξ(Y ) + η(X)).
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To define the bracket, let H ∈ Λ3
cl. Then [, ]H will be given by

[X + ξ, Y + η]H = [X, Y ]Lie + LXη − iY dξ + iY iXH.

We denote such a Courant algebroid by (M,H).

It turns out that (M,H) is actually, up to isomorphism, the only sort of Courant algebroid

of the following type.

Definition 2.6. A Courant algebroid E →M is called exact if it fits into an exact sequence

of vector bundles.

0 → T ∗ ρ∗−→ E∗ ∼= E
ρ−→ T → 0

To see this, we present the following theorem and an argument following [10].

Proposition 2.3 ([10, Proposition 2.10]). Given an exact Courant algebroid E with isotropic

splitting σ, the map F : TM → E defined by

F (X + ξ) = σX + π∗ξ

is an isomorphism of orthogonal bundles where TM is equipped with the neutral product ⟨, ⟩.

Further, there is a unique H ∈ Λ3T ∗M s.t. F is an isomorphism of Courant algebroids

between E and the H-twisted Courant algebroid structure (see Example 2.1) on TM .

Proof. We first prove that F is an isomorphism of orthogonal bundles.

⟨F (X + ξ), F (X + ξ)⟩ = ⟨σX, σX⟩+ π∗ξ(σX) + ⟨π∗ξ, π∗ξ⟩ = ξ(X) = ⟨X + ξ,X + ξ⟩

Notice that the isotropy of σ is used for ⟨σX, σX⟩ = 0 and ker π = Imπ∗ gives ⟨π∗ξ, π∗ξ⟩ = 0.

We can also pull-back a lot of the Courant algebroid data fairly easily.
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� πTM = π ◦ F which satisfies the anchor map axioms (as σ is a section of π)

� D = π∗DE = d defines a differential operator C∞(M) → Γ(TM)

� We get the Dorfman bracket by imposing naturality.

F [X + ξ, Y + η]TM = [F (X + ξ), X(Y + η)]E

Using this, we can embark on the a more detailed calculation.

F [X + ξ, Y + η]TM = [σX, σY ] + [σX, π∗η] + [π∗ξ, σY ] + [π∗ξ, π∗η]

Using the axioms, note that

π[π∗ξ, π∗η] = [0, 0] = 0

so it suffices to compute for arbitrary Z ∈ TM

⟨[π∗ξ, π∗η], σZ⟩ = π(π∗ξ)⟨π∗η, σZ⟩ − ⟨π∗η, [π∗ξ, σZ]⟩ = −⟨η, π[π∗ξ, σX]⟩ = 0.

As the second term is also in the kernel of π, we compute similarly.

⟨[σX, π∗η], σZ⟩ = π(σX)⟨π∗η, σZ⟩ − ⟨π∗η, [σX, σZ]⟩

= X(
1

2
η(Z))− 1

2
η([X,Z])

=
1

2
(dη(X,Z) + Z(η(X))

Notice also that

⟨F (LXη), σZ⟩ = ⟨F (iXdη + d(η(X))), σZ⟨= 1

2
(dη(X,Z) + Z(η(X))).
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Therefore, F (LXη) = [σX, π∗η].

We also compute the third term.

⟨[π∗ξ, σY ], σZ⟩ = ⟨(−[σY, π∗ξ] +DE⟨π∗ξ, σY ⟩), σZ⟩

= − 1

2
(dξ(Y, Z) + Z(ξ(Y ))) +

1

2
Z(ξ(Y ))

= − 1

2
(dξ(Y, Z))

Therefore, F (−iY dη) = [π∗ξ, σY ].

We can now embark on a computation of the first term. Notice that the tangent part

is immediate from the axioms π[σX, σY ] = [X, Y ]. The co-tangent piece can be found

by taking the neutral product with σZ like usual, yielding a tensor H ∈ Λ3:

H(X, Y, Z) = ⟨[σX, σY ], σZ⟩.

We will show C∞-linearity in the Y variable from the axioms, Z is trivial and X is

similar to Y .

H(X, fY, Z) = ⟨f [σX, σY ]+X(fσY ), σZ⟩ = fH(X, Y, Z)+(Xf)⟨σY, σZ⟩ = fH(X, Y, Z)

To see total anti-symmetry, we compute H(X,X,Z) and H(X,Z, Z).

H(X,X,Z) = ⟨[σX, σX], σZ⟩ = ⟨1
2
DE⟨σX, σX⟩, σZ⟩ = 0
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The last equality follows from the isotropy.

H(X,Z, Z) = ⟨[σX, σZ], σZ⟩

= − ⟨[σZ, σX], σZ⟩+ ⟨DE⟨σX, σZ⟩, σZ⟩

= − Z⟨σX, σZ⟩+H(Z,Z,X)

= 0.

Again, the isotropy plays a crucial role. Putting everything together, we recover the

bracket on (M,H) exactly.

Finally, we must check that dH = 0. This is a fairly intensive application of the Jacobi

identity for the Dorfman bracket, so we will not include it.

As F pulls all of the Courant algebroid data of E back to TM yielding exactly the data of

the H-twisted Courant algebroid on the generalized tangent bundle (M,H), we have proved

the theorem.

Holomorphic Courant Algebroids

A holomorphic Courant algebroid is a Courant algebroid in the holomorphic category. These

algebroids can be thought of as complexified smooth Courant algebroids with extra holomor-

phic data playing the role of a Dolbeault structure. In this way, we get can get moduli of

holomorphic structures over a smooth Courant algebroid. To study this, it will be convenient

to introduce the notion of liftings of T 0,1M .

Definition 2.7. Let E be a smooth exact Courant algebroid over a complex manifold (M,J).

A lifting of T 0,1 to E ⊗ C is an isotropic, involutive subbundle ℓ ⊂ E ⊗ C mapping isomor-

phically to T 0,1 under the C-linear extension of the anchor map π : E ⊗ C → T ⊗ C.
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A lifting relates to the complex Courant algebroid E ⊗ C as a Dolbeault operator relates

to a smooth complex vector bundle, in the sense that it enable us to construct a Courant

algebroid in the holomorphic category out of E⊗C. More precisely, following [18] we consider

the reduction of E ⊗ C by ℓ given by the orthogonal bundle

Qℓ := ℓ⊥/ℓ,

where ℓ⊥ is the orthogonal complement of ℓ with respect to the symmetric pairing on E⊗C.

Since ℓ is a lifting of T 0,1 the kernel of π|ℓ⊥ is T ∗
1,0, and therefore Qℓ is an extension of the

form

T ∗
1,0

π∗
−→ Q π−→ T 1,0. (2.11)

The Dolbeault operator on Qℓ can be defined as follows: given s a smooth section of Qℓ, we

define

∂
ℓ

Xs = [X̃, s̃] mod ℓ

where X ∈ T 0,1, X̃ is the unique lift of X to ℓ, and s̃ is any lift of s to a section of ℓ⊥. The

Jacobi identity for the Dorfman bracket on E⊗C implies that ∂
ℓ ◦∂ℓ = 0 and that it induces

a Dorfman bracket on the holomorphic sections of Qℓ.

Our next goal is to make the previous construction more explicit by choosing an isotropic

splitting of E. For a proof of the next result we refer to [10].

Lemma 2.12 ([10, c.f. Theorem 7.56]). Let (M,J) be a complex manifold. Given H0 ∈ Λ3

a closed real three-form, dH0 = 0, consider the exact Courant algebroid (M,H0) as above

(Example 2.1). Then, a lifting

ℓ ⊂ (T ⊕ T ∗)⊗ C
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of T 0,1 is equivalent to a pair (ω, b), where ω ∈ Λ1,1
R and b ∈ Λ2, satisfying

H0 = −dcω − db. (2.12)

More explicitly, given (ω, b) satisfying (2.12) the lifting is

ℓ = ℓ(ω, b) := {eb+
√
−1ω(X0,1), X0,1 ∈ T 0,1}, (2.13)

and, conversely, any lifting is uniquely expressed in this way.

We will now define a prototypical holomorphic Courant algebroid which will also prove to

be the generic holomorphic Courant algebroid associated to a lifting ℓ(ω, b).

Definition 2.8. Let (M,J) be a complex manifold. Given τ ∈ Λ3,0+2,1, dτ = 0, we denote

by

Qτ = T 1,0 ⊕ T ∗
1,0

the exact holomorphic Courant algebroid with Dolbeault operator

∂
τ
(X + ξ) = ∂X + ∂ξ − iXτ

2,1,

symmetric bilinear form

⟨X + ξ,X + ξ⟩ = ξ(X), (2.14)

bracket on holomorphic sections given by

[X + ξ, Y + η]τ = [X, Y ] + ∂(η(X)) + iX∂η − iY ∂ξ + iY iXτ
3,0,
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and anchor map π(X + ξ) = X. It is not difficult to check that Qτ so defined satisfies the

axioms in Definition 2.5 in the holomorphic category.

Now for the lemma giving the structure of these objects up to isomorphism is stated as

follows.

Lemma 2.13 ([10, Lemma 7.55]). Let (M,J) be a complex manifold endowed with an exact

Courant algebroid (M,H0) as above. Let ℓ(ω, b) be a lifting of T 0,1 as in Lemma 2.12. Then,

using the notation in Definition 2.8, there is a canonical isomorphism

Qℓ(ω,b)
∼= Q2

√
−1∂ω.

Proof. We have

ℓ(ω, b)⊥ = eb+
√
−1ω(T 1,0)⊕ T ∗

1,0 ⊕ ℓ

and therefore there is a smooth bundle isomorphism

Qℓ(ω,b) → T 1,0 ⊕ T ∗
1,0

[eb+
√
−1ωY + η] 7→ Y + η.

(2.15)

The agreement of the pairing and the anchor map with the ones on Q2
√
−1∂ω is straightfor-

ward. Let us now express the Dolbeault operator in terms of (2.15). Given X ∈ T 0,1 and

Y + η ∈ T 1,0 ⊕ T ∗
1,0, we have

[eb+
√
−1ωX, eb+

√
−1ωY + η]

= eb+
√
−1ω[X, Y ]1,0 + LXη + iY iX(H0 + db+

√
−1dω) mod ℓ

= eb+
√
−1ω∂XY + iX∂η − iXiY (2

√
−1∂ω), mod ℓ
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which recovers the Dolbeault operator in Definition 2.8 when τ = 2
√
−1∂ω. Similarly, for

X + ξ, Y + η holomorphic sections of T 1,0 ⊕ T ∗
1,0, we find

[eb+
√
−1ωX + ξ, eb+

√
−1ωY + η] = eb+

√
−1ω[X, Y ] + LXη − iY dξ + iY iX(2

√
−1∂ω)

= eb+
√
−1ω[X, Y ] + LXη − iY dξ + iY ∂ξ

= eb+
√
−1ω[X, Y ] + ∂(η(X)) + iX∂η − iX∂ξ

as claimed.

2.3.2 Generalized Metrics

We introduce next a new ingredient, namely, generalized metrics, which will lead us naturally

to the study of Hermitian metrics on exact holomorphic Courant algebroids. Recall that

a generalized metric on a smooth exact Courant algebroid E is given by an orthogonal

decomposition

E = V+ ⊕ V−

such that the restriction of the neutral inner product to V+ (resp. V−) is positive definite

(resp. negative definite). Recall also that a generalized metric determines uniquely a Rie-

mann metric g on M and an isotropic splitting of E. In particular, it has an associated

isomorphism E ∼= (T ⊕ T ∗, ⟨, ⟩ , [, ]H , π) for a uniquely determined closed three-form H (see

Proposition 2.3), such that

V± = {X ± g(X), X ∈ T}. (2.16)

The basic interaction between generalized metrics and complex geometry is provided by the

following definition.
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Definition 2.9. Let (M,J) be a complex manifold endowed with a smooth exact Courant

algebroid E. We say that a generalized metric E = V+ ⊕ V− is compatible with J if

ℓ = {e ∈ V+ ⊗ C, π(e) ∈ T 0,1} ⊂ E ⊗ C

is a lifting of T 0,1.

Using the splitting of E determined by the generalized metric, it is not difficult to see that

Definition 2.9 implies that g is Hermitian and furthermore

ℓ = e
√
−1ωT 0,1

where ω = gJ is the associated fundamental two-form. Applying now Lemma 2.12 we obtain

the following.

Lemma 2.14. Let (M,J) be a complex manifold endowed with a smooth exact Courant

algebroid E. A generalized metric E = V+ ⊕ V− is compatible with J if and only if the

associated Riemannian metric g is Hermitian and furthermore

H = −dcω. (2.17)

In particular g is pluriclosed.

Given a compatible generalized metric, we can find an alternative presentation of the asso-

ciated holomorphic Courant algebroid Qℓ
∼= Q2

√
−1∂ω (see Lemma 2.13) which will naturally

endow this bundle with a Hermitian metric. To see this, note that V ⊥
+ = V− implies that

ℓ⊥ = (V− ⊗ C)⊕ ℓ.
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Therefore, as a smooth orthogonal bundle Qℓ is canonically isomorphic to

Qℓ := ℓ⊥/ℓ ∼= V− ⊗ C.

Definition 2.10. Let (M,J) be a complex manifold endowed with a smooth exact Courant

algebroid E and a compatible generalized metric E = V+⊕V−. Then, the induced generalized

Hermitian metric G on Qℓ is defined by

G([s1], [s2]) = −2 ⟨π−s1, π−s2⟩

for [sj] ∈ ℓ⊥/ℓ and π− : ℓ
⊥ → V− ⊗ C the orthogonal projection.

We are ready to prove the main result of this section, where we calculate the Chern connec-

tion of the induced generalized Hermitian metric G in terms of the connection D− associated

to the underlying pluriclosed structure (see Proposition 3.2). This result provides an inter-

pretation of [3, Theorem 2.9] in the language of holomorphic Courant algebroids.

Proposition 2.4. Let (M,J) be a complex manifold endowed with a smooth exact Courant

algebroid E and a compatible generalized metric E = V+ ⊕ V−. Then, the Chern connection

of the associated generalized Hermitian metric G on Qℓ is given by

iX∇Gs = π−[σ+X, π−s] (2.18)

via the isomorphism Qℓ
∼= V−⊗C. Here, σ+X = X+g(X) is the inverse of the isomorphism

π|V+ : V+ → T . More explcitly, via the identification V− ∼= T , the Chern connection is given

by

D−
XY = ∇XY + 1

2
g−1dcω(X, Y, ·). (2.19)
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Proof. Observe that the right hand side of (2.18) defines an orthogonal connection on V−,

which can be identified with ∇− via the isomorphism π|V− : V− → T (see e.g. [10, Proposition

3.14]). Therefore, ∇− extends C-linearly to a G-unitary connection on V− ⊗ C. By the

abstract definition of the Dolbeault operator onQℓ, we inmediately see that (∇−)0,1 coincides

with ∂
ℓ
.

In our next result we calculate an explicit formula for the generalized Hermitian metric G

in terms of the isomorphism Qℓ
∼= Q2

√
−1∂ω in Lemma 2.13.

Lemma 2.15. Let (M,J) be a complex manifold endowed with a smooth exact Courant alge-

broid E and a compatible generalized metric E = V+⊕V−. Then, the orthogonal isomorphism

ψ : Q2
√
−1∂ω → V− ⊗ C induced by Lemma 2.13 is given by

ψ(X + ξ) = e
√
−1ωX − 1

2
e−

√
−1ωg−1ξ.

Consequently,

ψ∗G(X + ξ,X + ξ) = 2g(X,X) + (2g)−1(ξ, ξ).

Proof. The first part follows from

ψ(X + ξ) = e
√
−1ωX + π−ξ = e

√
−1ωX + 1

2
(ξ − g−1ξ) = e

√
−1ωX − 1

2
e−

√
−1ωg−1ξ.

The second part is a straightforward calculation and is left to the reader.

For our applications it will be convenient to fix a background exact holomorphic Courant

algebroid and generalized Hermitian metric. This motivates the following definition, which

is inspired by [8, 9].
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Definition 2.11. Let (M,J) be a complex manifold endowed with an exact holomorphic

Courant algebroid Q. A generalized Hermitian metric on Q is given by a triple (E, V+, φ),

where

1. E is an exact Courant algebroid over M ,

2. V+ ⊂ E is a generalized metric compatible with J ,

3. φ : Qℓ → Q is an isomorphism of holomorphic Courant algebroids inducing the identity

on M .

Observe that a generalized Hermitian metric (E, V+, φ) on Q induces a generalized Hermi-

tian metric G′ on Qℓ as in Definition 2.10. Therefore, via the isomorphism φ we obtain a

Hermitian metric

G = φ∗G
′

on Q compatible with the orthogonal structure. By abuse of notation, we will also call G a

generalized Hermitian metric. We next unravel the previous definition in terms of the model

in Definition 2.8.

Lemma 2.16. Let (M,J) be a complex manifold, and τ0 ∈ Λ3,0+2,1, dτ0 = 0. Then, there

is a one to one correspondence between the set of generalized Hermitian metrics on Q2
√
−1τ0

and

{
ω + β | ω > 0, dβ = τ0 − ∂ω

}
⊂ Λ1,1

R ⊕ Λ2,0.

Furthermore, the generalized Hermitian metric G = φ∗G
′ is given by

G(X + ξ,X + ξ) = 2g(X,X) + (2g)−1(ξ + 2
√
−1β(X), ξ − 2

√
−1β(X)). (2.20)
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Proof. The pair (E, V+) determines ω > 0 and an isomorphism E ∼= (T ⊕ T ∗, ⟨, ⟩ , [, ]H) for

H = −dcω. By Lemma 2.13, Qℓ
∼= Q2

√
−1∂ω and the isomorphism φ : Qℓ → Qτ0 corresponds

to

φ = e−2
√
−1β : T 1,0 ⊕ T ∗

1,0 → T 1,0 ⊕ T ∗
1,0

for β ∈ Λ2,0 satisfying 2
√
−1dβ = 2

√
−1τ0 − 2

√
−1∂ω. The last part of the statement is

now straightforward from Lemma 2.15.

Remark 2.5. For our applications to the pluriclosed flow, we will need to fix an initial

pluriclosed Hermitian metric g and a background pluriclosed metric g′. We will not require

that the associated holomorphic Courant algebroids Q2
√
−1∂ω and Q2

√
−1∂ω′ are isomorphic,

but the weaker condition of being isomorphic as holomorphic orthogonal bundles. In practice,

this boils down to the explicit condition

∂β = ∂ω′ − ∂ω (2.21)

for some β ∈ Λ2,0 or, equivalently,

[∂ω] = [∂ω′] ∈ H2,1

∂
(X).

One can easily see that a pair (ω, β) as in (2.21) defines a generalized Hermitian metric in

the exact holomorphic Courant algebroid Q2
√
−1∂ω′+2

√
−1∂β, that is, the twisting of Q2

√
−1∂ω′

by the d-closed (3, 0)-form 2
√
−1∂β (see Definition 2.8).
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Chapter 3

Obstructions & Counter-Examples

This chapter will deal with obstructions to the existence of Bismut Hermitian-Einstein met-

rics which can be used to construct some examples of c1 = 0 manifolds which do not admit

such metrics. Broadly speaking, generalized geometry (see §2.3) will provide a correspon-

dence between Bismut Hermitian-Einstein metrics and a coupled Hermitian Yang-Mills sys-

tem on an associated holomorphic Courant algebroid. This will allow us to invoke the

necessity of slope stability from the Kobayashi-Hitchin correspondence.

The sections of the chapter will go as follows. In §3.1, the author will discuss the relevant

pieces of the Kobayashi-Hitchin correspondence following Lubke-Teleman [28]. In §3.2, the

author will re-prove a result of Bismut [3] using the language of holomorphic Courant al-

gebroids (see §2.3.1) which serves to relate these elliptic systems. In §3.3 we derive some

corollaries which make possible the construction of counter-examples.
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3.1 Kobayashi-Hitchin Correspondence

To begin, we will define a notion of Ricci curvature that arises naturally in the study of

Hermitian Yang-Mills connections.

Definition 3.1. Let (M2n, g, J) be a Hermitian manifold and suppose (E , h) → M denote

a holomorphic vector bundle with Hermitian metric h and associated Chern connection ∇h.

The second Ricci curvature is

Sh
g :=

√
−1ΛωΩ

h ∈ End(E).

Furthermore, we will call the Hermitian metric h g-Hermitian-Einstein if there exists γh ∈ C

s.t.

Sh
g = γh IdE .

The existence of Hermitian-Einstein metrics, is goverened by slope stability criteria as in

the Donaldson-Uhlenbeck-Yau Theorem [6] and its extensions to Hermitian manifolds – the

Kobayashi-Hitchin correspondence (see [28]). To state the precise result which we will use,

let us recall first some basic definitions. Given a coherent sheaf F of OM -modules over M ,

the determinant detF := (ΛrF)∗∗, where r denotes the rank of F , is a holomorphic line

bundle over M . Given now an Aeppli class a ∈ Hn−1,n−1
A , we can define the slope of F by

µa(F) =
c1(detF) · a

r
.

46



where c1(detF) ∈ H1,1
BC(M) is the first Chern class of detF , regarded an element in the

Bott-Chern cohomology of M . Here we use the standard duality pairing

H1,1
BC ⊗Hn−1,n−1

A → C

(α, β) 7→
∫
M

α ∧ β

.

Definition 3.2. Let (M,J) be a compact complex manifold endowed with an Aeppli class

a ∈ Hn−1,n−1
A . A holomorphic vector bundle E over M is a-semistable if for any subsheaf

F ⊂ E one has

µa(F) ≤ µa(E).

We say that E is a-stable if the inequality is strict and a-polystable if it is a direct sum of

a-stable bundles all having the same slope.

The relation between slope stability and the Hermitian-Einstein equation is provided by the

following important result (cf [28]):

Theorem 3.1 (Kobayahsi-Hitchin Correspondence). Let (M,J) be a compact complex man-

ifold. Let ω̃ be a Gauduchon Hermitian metric on M with Aeppli class a = [ω̃n−1] ∈

Hn−1,n−1
A . A holomorphic vector bundle E over (M,J) admits a Hermitian metric h solving

the Hermitian-Einstein equation

Sh
g = γh IdE

for some γh ∈ C if and only if E is a-polystable.

The full strength of Theorem 3.1 will not be made use of because, as we will see, the Bis-

mut Hermitian-Einstein condition is equivalent only to a certain coupled Hermitian-Einstein

equation. Thus, we can only make use of the necessity portion in the sequel. We will prove

this following the book of Lübke and Teleman [28].
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Theorem 3.2 ([28, Theorem 2.3.2]). Given (Mn, g, J) with g Gauduchon, having associated

Aeppli class a = [ωn−1
g ], and E → M a holomorphic vector bundle admitting a Hermitian-

Einstein metric h, then E is a-semistable. If E is not a-stable, then it must be a a-polystable

with the induced metric on each subbundle being Hermitian-Einstein and having the same

constant.

To prove this, we will require four intermediate results which we state and prove now.

Lemma 3.3 ([28, Lemma 2.1.8]). If g is Gauduchon with Aeppli class a and h a g-Hermitian-

Einstein metric on E = (E, ∂), then its Einstein factor γh is proportional to the g-slope of

E:

γh =
2π

(n− 1)! Volg(M)
µa(E).

Proof. First, recall that by definition Sh
g =

√
−1ΛgΩ

h. Also, recall that if α ∈ Λ1,1 then

α ∧ ωn−1
g = (n− 1)!α ∧ ⋆gωg = (n− 1)!Λω(α)dvolg.

Then we can compute as follows.

µa(E) =
1

rk E

∫
M

c1(det E) ∧ ωn−1
g =

√
−1

2π rk(E)

∫
M

tr Ωh ∧ ωn−1
g

=
(n− 1)!

2π rk(E)

∫
M

tr(
√
−1ΛgΩ

h) ∧ ωn−1
g =

γh(n− 1)! Volg(M)

2π

Lemma 3.4 ([28, Lemma 2.1.4]). If E (resp. F) are holomorphic vector bundles admitting

g-Hermitian-Einstein metrics h′ (resp. h′′) with Einstein factors γ′ (resp. γ′′), then

� E∗ is g-Hermitian-Einstein with constant −γ′

� E ⊗ F is g-Hermitian-Einstein with factor γ′ + γ′′
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� ΛpE is g-Hermitian-Einstein with factor pγ′

Proof. Notice that by Lemma 3.3 all of these statements reduce to statements about g-slope.

For example, to prove γ(E∗) = −γ′, it will suffice to prove µg(E∗) = −µg(E). However, this

would be immediate provided c1(E∗) = −c1(E) (modulo ∂∂-exact terms). This can be proved

relatively simply, though, as (h′)−1 defines a metric on E∗.

√
−1

2π
ρC((h′)−1) = −

√
−1

2π
∂∂ log det(h′)−1 = −

√
−1

2π
∂∂ log(det(h′))−1 = −

√
−1

2π
ρC(h′)

However, both [
√
−1
2π
ρC((h′)−1)] = c1(E∗) and [

√
−1
2π
ρC(h′)] = c1(E) proving the result.

The second statement follows from the fact that h′ ⊗ h′′ is a metric on E ⊗ F and a similar

argument on Chern-Ricci forms.

ρC(h′⊗h′′) = −∂∂ log det(h′⊗h′′) = −∂∂
(
log(deth′)rk(F) + log(deth′′)rk(E)

)
= rk(F)ρC(h′)+rk(E)ρC(h′′)

This implies that µa(E ⊗ F) = µa(E) + µa(F) from which the result follows.

The result on wedge products can be proved similarly.

Lemma 3.5 ([28, Corollary 2.1.6]). Every line bundle L on a compact, Hermitian manifold

(M2n, J, g) admits a g-Hermitian-Einstein metric, which is unique up to a constant positive

factor.

Proof. Notice that given two metrics h′, h′′ on L, we must have that hf = e
f
nh′ for some f .

This means that the following identity holds between the second Ricci curvatures.

S
hf
g = −∆g(log det(e

f
nh′)) = −∆gf + Sh′

g
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However, since Sh′
g is a smooth function in this setting, we can use the Fredholm alternative

for the g-Chern Laplacian (as in Theorem 2.6) to find a unique ϕ and λ ∈ R s.t.

Sh′

g = ∆gϕ+ λ.

This then implies that

S
hϕ
g = λ · 1.

Proposition 3.1 ([28, Theorem 2.2.1]). Let (M,J, g) be Gauduchon and E = (E, ∂) be a

holomorphic vector bundle admitting a g-Hermitian-Einstein metric h with Einstein factor

γh. Then:

� γh < 0 implies E has no non-trivial holomorphic sections.

� γh = 0 implies that every global holomorphic section of E is h-Chern-parallel.

Proof. Recall the Bochner formula for holomorphic sections s.

∆|s|2h = |∇hs|2g,h − ⟨Sh
g s, s⟩h

But by the Hermitian-Einstein condition, this becomes

∆|s|2h = |∇hs|2g,h − γh|s|2h.

Then, we can integrate this relation to get

γh∥s∥2L2(M) = ∥∇hs∥2L2(M).
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From this, it is immediately clear that γh ≥ 0 whenever a holomorphic section exists. Further,

it is also immediately clear that if γh = 0, we get ∇hs ≡ 0.

Lemma 3.6 ([28, Proposition 2.3.1]). Over a complex manifold (M,J), suppose we have a

short exact sequence of holomorphic vector bundles

0 → E ′ i→ E j→ E ′′ → 0

where E admits g-Hermitian-Einstein metric h. Then,

Λgc1(E ′, h′)

rk E ′ ≤ Λgc1(E , h)
rk E

(3.1)

with equality iff the short exact sequence splits holomorphically orthogonally and the induced

metrics on E ′ and E ′′ are g-Hermitian-Einstein with the same constant as E.

Proof. Recall that for any holomorphic, Hermitian vector bundle, the Chern-Ricci form is a

representative of the first Chern class. We will then go ahead and compute the curvature in

a local frame in terms of the curvatures of E ′ and E ′′. First, notice that we already know

that, as smooth bundles,

E = E ′ ⊕ (E ′)⊥.

Further, since the sequence is exact, j : (E ′)⊥ → E ′′ is an isomorphism. So we can fix an

adapted local unitary frame (ei) for E s.t. e1, ..., es is a unitary frame for E ′ and es+1, ..., es+r

is an adapted local unitary frame for E ′′. Then if θ, θ′, θ′′ are the connection matrices of the

Chern connections on E , E ′, E ′′ respectively, we get a decomposition in terms of the second

fundamental form A

θ =

 θ′ A

A† θ′′

 .
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Cartan’s second structural equation then gives

Ω =

Ω′ − A ∧ A† ∗

∗ Ω′′ − A† ∧ A

 . (3.2)

But this means that

ρC(h) =
r+s∑
i=1

Ωii

ρC(h′) =
s∑

i=1

Ωii + tr(A ∧ A†)

. When
√
−1ΛΩ = γ Id, we can use this to compute

Λgc1(E)
rk E

=

√
−1

2π rk E
Λg

r+s∑
i=1

Ωii =
γ

2π

Λgc1(E ′)

rk E ′ =
γ

2π
+

√
−1

2π
Λg tr(A ∧ A†)

But since A must be skew (metric-compatible connection matrices are skew in unitary

frames), it must be that A† = −A∗ so that

γ

2π
+

√
−1

2π
Λg tr(A ∧ A†) =

γ

2π
− 1

2π
||A|2 ≤ γ.

This is exactly (3.1).

Finally, (3.1) is saturated iff A ≡ 0, but this is the case iff E ′′ ∼= (E ′)⊥ holomorphically and

orthogonally. That all the bundles have the same Einstein factor then follows from (3.2) and

Lemma 3.3, proving the theorem.

We now prove the main result of this section.
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Proof of Theorem 3.2. Let F be a coherent subsheaf of E of rank 0 < s < r, then we have

an inclusion.

i : F ↪→ E

This induces a morphism

det i : detF → ΛsE .

This morphism is injective as a morphism of a sheaves because it is injective as a morphism

of subbundles off a closed analytic set of codimension no-smaller than 1 (see [25, Theorem

5.5.8]). If we tensor in detF∗, we get a holomorphic section

η : OX ↪→ ΛsE ⊗ detF∗.

Theorem 3.1 then tells us that

γ(ΛsE ⊗ detF∗) ≥ 0.

By Lemma 3.4, this means that

γ(ΛsE ⊗ detF) = sγ(E)− γ(detF) ≥ 0 (3.3)

with equality iff η is parallel. But by Lemma 3.3 and the fact that determinants of sheaves

have rank one, we can deduce the inequality of g-slopes sµa(E) ≥ µa(detF) = sµa(F). This

is precisely the g-semistability of E .

Assuming that E is not stable, we get that there is a choice of reflexive subsheaf F (see [28,

Proposition 1.4.5.ii]) s.t. µa(F) = µa(E). But by (3.3), we find that off Σ, a closed analytic

set of codimension no smaller than 1,

γ(ΛsE ⊗ detF) = 0
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and η is g-Chern-parallel. Thus, detF is a parallel subbundle of ΛsE off Σ. Thus, the

Hermitian-Einstein metric we chose on detF is just the restriction of the induced metric on

ΛsE .

We also note that det i is injective as a map of bundles gives us that i is injective as a map

of bundles off Σ. By Lemma 3.6, as we have the following short exact sequence

0 → F|M\Σ → E|M\Σ → E/F|M\Σ → 0,

we have that E|M\Σsplits holomorphically and orthogonally and all the involved bundles are

Hermitian-Einstein with the same constant.

By a sheaf theoretic argument, the splitting can be extended to a global splitting of sheaves.

If any component of the splitting is not g-stable, we simply replace E with that bundle a

re-run the splitting argument. This will terminate after no more that rk E <∞ steps leaving

a sum of stable bundles.

3.2 Bismut’s Identity

To make use of these preliminaries, we introduce an isomorphism between TMC and Q√
−1∂ω.

This isomorphism is very simple. It is just the lowering of the (0, 1) piece of a complexified

tangent vector into a (1, 0)-form. However, it is a holomorphic isomorphism! This gives us

a way of identifying the usual Chern data on the Courant algebroid with the Chern data of

an exotic holomorphic structure on the complexified tangent bundle!
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Lemma 3.7. On a pluriclosed manifold (M,J, g) the map given by

ψg : TM ⊗ C → T 1,0 ⊕ T ∗
1,0

X = X1,0 +X0,1 7→ X1,0 − g(X0,1)

induces an isomorphism of Hermitian, holomorphic vector bundles

ψg : (TM ⊗ C, g, (D−)0,1) → (Q√
−1∂ω, G)

where G is the generalized metric given by

G =

g 0

0 g−1

 .

Proof. We note first that ψg is obviously a complex isometry. Then, using the definitions of

Bismut and Chern connections one can show that

〈
D+

XY, Z
〉
= ⟨∇XY, Z⟩+ 1

2
dω(JX, Y, Z) + 1

2
dω(JX, JY, JZ),

which in turn implies

D−
X0,1Y = ∇X0,1Y −

√
−1g−1∂ω(X0,1, Y 0,1, ·).

Therefore, using that the Chern connection is metric compatible, we obtain

ψg(D
−
X0,1ψ

−1
g (Y 1,0 + ξ1,0)) = ∇X0,1(Y 1,0 + ξ1,0) +

√
−1∂ω(X0,1, Y 1,0, ·),

which corresponds to the Dolbeault operator in Definition 2.8 for τ =
√
−1∂ω.
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Lemma 3.7 gives as an immediate corollary an identity of Bismut [3] which says that the

Chern curvature on the Courant algebroid is completely determined by the Hull connection

on the complexified tangent bundle. This is especially interesting because the Hull connection

is metric-compatible, but neither torsionfree nor Hermitian.

Proposition 3.2 (Bismut’s Identity [3]). Let (M, g, J) be a pluriclosed Hermitian mani-

fold. Consider the associated holomorphic orthogonal bundle Q√
−1∂ω, as in Definition 2.8,

endowed with the Hermitian metric G′. Then, the Chern connection ∇G′
of G′ satisfies

∇G′
= (ψg)∗D

−, ΩG′
= (ψg)∗R

−

Proof. Notice first that D− is the Hull connection and also the Chern connection preserving

the exotic holomorphic structure (D−)0,1. The result is then immediate upon invocation of

Lemma 3.7 and the fact that Chern connections pull-back to Chern connections.

However, Proposition 3.2 can be combined with Lemma 2.10 to give the second Chern-

Ricci tensor on the Courant algebroid purely in terms of the Bismut-Ricci form on the base

manifold.

Proposition 3.3. Let (M, g0, J) be a pluriclosed manifold. Consider the associated Hermi-

tian holomorphic vector bundle Q = Q√
−1∂ω0

as in Definition 2.8. Consider a generalized

Hermitian metric G = G(ω, β) as in Proposition 2.16. Then the Chern connection ∇G of

the Hermitian metric G, defined as in (2.20) satisfies

SG
g =

√
−1(e

√
−1β)∗

−g−1ρ1,1B g−1ρ0,2B g−1

ρ2,0B −ρ1,1B g−1

 .

Consequently, g is Bismut Hermitian-Einstein if and only if G is Hermitian-Einstein with

respect to g, that is, if and only if

SG
g = 0.

56



Proof. This follows from Proposition 3.2, since

SG
g =

√
−1ΛωΩ

C
G

=
√
−1(e

√
−1β)∗ψ∗ΛωR

−

= −
√
−1(e

√
−1β)∗ψ∗g

−1ρB,

where for the last identity we have used Proposition 2.10 to conclude

(ΛωR
−)X = 1

2

2n∑
j=1

R−(ei, Jei)X = −1
2

2n∑
j=1

g−1R+(X, ·, Jei, ei) = −g−1ρB(X).

Finally, given X + ξ ∈ T 1,0 ⊕ T ∗
1,0, we calculate

(ψ∗g
−1ρB)(X) = ψ(g−1ρB(X)) = g−1ρ1,1B (X)− ρ2,0B (X)

(ψ∗g
−1ρB)(ξ) = −ψ(g−1ρBg

−1ξ) = ρ1,1B g−1ξ − g−1ρ0,2B g−1ξ.

3.3 Slope Stability & Consequences

We now apply Theorem 3.2 to the Bismut Hermitian-Einstein equation via Proposition 3.3,

deriving the following necessary condition to the existence of pluriclosed Bismut Hermitian-

Einstein metrics.

Corollary 3.8. Let (M, g, J) be a pluriclosed Hermitian manifold. Denote by a = [ω̃n−1] ∈

Hn−1,n−1
A the Aeppli class of the unique Gauduchon metric ω̃ in the conformal class of ω,

such that
∫
X
ω̃n =

∫
X
ωn. Consider the associated orthogonal holomorphic vector bundle

Q = Q√
−1∂ω as in Definition 2.8. Assume that the metric g is Bismut Hermitian-Einstein.

57



Then, for any subsheaf F ⊂ Q one has

µa(F) ≤ 0, (3.4)

with equality only if Q splits holomorphically.

Proof. The proof is an easy consequence of Proposition 3.2 and Theorem 3.1, after noting

that Q satisfies c1(Q) = 0 ∈ H1,1
BC(M), since detQ admits a canonical holomorphic trivial-

ization induced by the holomorphic pairing.

In general, the stability condition depends in a intricate way on the Bismut Hermitian-

Einstein pluriclosed metric. This is due to the fact that the map

ω 7→ a = [ω̃n−1] ∈ Hn−1,n−1
A (M)

is typically a complicated function in the space of pluriclosed metrics. In the special case of

complex surfaces n = 2, this map only depends on the Aeppli class [ω] ∈ H1,1
A , and is just

the identity map.

We can obtain even more concrete implications of Corollary 3.8 for the existence of pluri-

closed Bismut Hermitian-Einstein metrics. In particular, our next result provides a clean

obstruction to the existence of such metrics on a compact, complex manifold. For this,

we exploit the fact that any exact holomorphic Courant algebroid has a canonical isotropic

subsheaf, given by the holomorphic cotangent bundle

T ∗
1,0

π∗
−→ Q.

We will say that an Aeppli class a ∈ Hn−1,n−1
A (M) is positive if a = [ω̃n−1], for some

Gauduchon metric ω̃ on M .
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Theorem 3.9. Let (M,J) be a compact connected complex manifold. Assume thatM admits

a pluriclosed Hermitian metric g which is Bismut Hermitian-Einstein. Then, there exists a

positive Aeppli class a ∈ Hn−1,n−1
A (M) such that, for any complex manifold Z and any

holomorphic map f : M → Z such that df is surjective at one point, one has

f ∗c1(Z) · a ≥ 0

Furthermore, for Z = (M,J) and f = Id, c1(M) · a > 0 unless g is Kähler.

Proof. Let g as in the statement and consider the holomorphic Courant algebroid Q :=

Q√
−1∂ω. Let a = [ω̃n−1] be the Aeppli class of the associated (normalized) Gauduchon

metric ω̃. By Corollary 3.8, the holomorphic vector bundle underlying Q is a-polystable.

Let f : M → Z be as in the statement. Then, the differential df : T 1,0M → T 1,0Z induces a

morphism

f ∗T ∗
1,0Z −→ T ∗

1,0
π∗
−→ Q.

Since df is surjective at one point, by Sard’s Theorem there exists a dense open subset R ⊂ Z

of regular values of f . Using that M is connected and that f is holomorphic, it follows that

f−1(R) ⊂ M is also dense (in fact, the complement is an analytic subspace of codimension

≥ 1). Hence, the previous morphism induces a subsheaf

f ∗T ∗
1,0Z ↪→ Q.

The inequality of slopes (3.4) now gives

0 ≥ c1(f
∗T ∗Z) · a = −f ∗c1(Z) · a.
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As for the last part, if c1(M) · a = 0 then by Proposition 3.2 and Corollary 3.8 we have a

holomorphic splitting Q = T 1,0 ⊕ T ∗
1,0 and hence ∂ω = 0.

We next obtain a more concrete criterion derived from Theorem 3.9.

Corollary 3.10. Let f : (M,J) → Z be a holomorphic map of compact, connected, complex

manifolds. Assume that df is surjective at some point and that Z is Kähler with c1(Z) < 0.

Then M does not admit a Bismut Hermitian-Einstein pluriclosed metric.

Proof. By Aubin-Yau’s Theorem [2, 46] there exists a Kähler-Einstein metric ωZ on Z with

negative scalar curvature, that is, such that ρZ = −ωZ . Let a = [ω̃n−1] ∈ Hn−1,n−1
A (M) be a

positive Aeppli class on M . Then

f ∗c1(Z) · a = −
∫
X

f ∗ωZ ∧ ω̃n−1.

By hypothesis there exists x ∈M such that f is a submersion, and hence, arguing as in the

proof of Theorem 3.9, the preimage of the set of regular values is open and dense. On this

locus f ∗ωZ ∧ ω̃n−1 > 0, and hence f ∗c1(Z) · a < 0.

3.3.1 Counter-examples

As a consequence of Corollary 3.10 we obtain examples of compact pluriclosed manifolds

(M2n, J) with c1(M) = 0 ∈ H2(M,Z) which do not admit a Bismut Hermitian-Einstein

metric. To the knowledge of the author, this is the first class of such examples in the

literature for dimension n ≥ 3 (the case n = 2 is settled by [14]). In order to present our

examples we start with some general discussion of principal bundles over complex manifolds.

Let Z be a Kähler manifold. Let T = Cn/Λ be an n-dimensional complex torus. Let

δ : H1(T,Z) → H2(Z,Z)

60



be a homomorphism of Z-modules such that c1(Z) ∈ Im δ. We can identify δ with c ∈

H2(Z,Z)⊗Λ, and hence it determines a topologically non-trivial principal T -bundle π : M →

Z with characteristic class c. Assuming further that Im δ ⊂ H1,1(Z),M can be endowed with

a holomorphic structure. The first Chern class satisfies c1(M) = π∗c1(Z) ∈ H2(M,Z) and

hence it vanishes because c1(Z) ∈ Im δ [20]. Furthermore, M is non-Kähler by Blanchard’s

Theorem.

Example 3.1. Consider the case that Z is a compact connected Riemann surface with genus

≥ 2, and hence c1(Z) < 0. Let π : M → Z be a non-trivial principal T -bundle over M . For

dimensional reasons, the condition c1(Z) ∈ Im δ ⊂ H1,1(Z) is always satisfied, and hence

c1(M) = 0 ∈ H2(M,Z). Choose a principal connection θ = (θ1, . . . , θ2n) on M and define a

T -invariant complex structure on M by Jθ2j−1 = θ2j. Choose a Kähler metric ωZ on Z and

consider the Hermitian form

ω = π∗ωZ +
n∑

j=1

θ2j−1 ∧ θ2j.

Then, we have

ddcω = −dc
(

n∑
j=1

π∗Fθ2j−1
∧ θ2j − θ2j−1 ∧ p∗Fθ2j

)
= 0

by dimensional reasons, where Fθj denotes the curvature of θj. Therefore, M is a pluriclosed

manifold with vanishing first Chern class. Applying Corollary 3.10, we now conclude that

M does not admit a Bismut Hermitian-Einstein metric.

Example 3.2. Let Z be an algebraic complex surface with c1(Z) < 0 and let T = C/Λ.

By the Aubin-Yau Theorem we have ωZ a Kähler-Einstein metric on Z with negative scalar

curvature and [ωZ ] ∈ H2(Z,Z). Choose α a primitive (1, 1)-form with [α] ∈ H2(Z,Z), and

define δ so that its image is spanned by

δ1 = −[ωZ ] = c1(Z), δ2 = [α].
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On the corresponding T -bundle we can choose a connection θ = (θ1, θ2) with curvature

√
−1

2π
Fθ = (−ωZ , α),

and a T -invariant complex structure such that Jθ1 = θ2. For any u ∈ C∞(Z) we define the

Hermitian metric ω = π∗euωZ + θ1 ∧ θ2. Then, a direct calculation shows that [16]

ddcω = π∗(∆(eu)ω2
Z − α2 − ω2

Z),

and hence the existence of a pluriclosed metric reduces to solve

[ωZ ]
2 = −[α] · [α] ∈ N.

Taking ι : Z ↪→ P3 a degree d ≥ 5 projective hypersurface, we have c1(Z) = (4− d)ι∗H, for

H the hyperplane class, and we obtain the condition

(d− 4)2 = −[α] · [α]

for a primitive (1, 1)-class [α]. We have H2(Z,Z) ∼= Zd(d(d−4)+6)−2 and, assuming that d is

odd, the intersection pairing is given by the standard symmetric bilinear form with signature

−(d− 2)d(d+2)/3. Using Hirzebruch’s formula for the Hodge numbers of projective hyper-

surfaces to calculate h1,1(M), one can prove that such a class always exists. For example,

taking d = 5 one has H2(Z,Z) ∼= Z53, h1,1(M) = 45, and signature −35. Therefore, there

exists a 36-dimensional subspace of primitive (1, 1)-classes, and hence there is a primitive

(1, 1)-class [α] with [α] · [α] = −1.
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Chapter 4

Higher Regularity

A common technique in the regularity theory of fully nonlinear parabolic and elliptic partial

differential equations is “bootstrapping”. This refers to a technique in which one obtains

C∞-estimates by inductively controlling higher Ck-norms by lower Ck-norms. For example,

for smooth, semilinear elliptic or parabolic equations with some structural assumptions, the

Schauder estimate implies that control on the Cα-norm suffices to control all Ck norms.

In the case of smooth, fully non-linear equations, the bootstrapping process becomes some-

what more complicated because the coefficients of the linearized equation also depend on

the unknown function. This process is usually simplified by the Evans-Krylov theorem for

concave, uniformly elliptic / parabolic equations, but we are primarily interested in operators

which either have no definite convexity or are not uniformly elliptic / parabolic. We will

begin in §4.1 with a discussion of a well-known – non-potential theoretic – apriori estimate

in the setting of Kähler-Ricci flow which makes bootstrapping possible. Then we will prove

a similar result for pluriclosed flow – without potentials by necessity this time – in §4.2

following prior work of the author and Streets [23].
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4.1 Kähler-Ricci Flow

In order to clarify the more general situation of pluriclosed flow, we will begin with some

related apriori estimates for Kähler-Ricci flow due to Yau [46] and Cao [4]. To start, we

define Käher-Ricci flow; it is simply the restriction of Ricci flow to Kähler initial conditions.

Definition 4.1. On a complex manifold (M,J), a family of metrics ωt is said to be a solution

to Kähler-Ricci flow on [0, T ) provided ω0 is Kähler and

∂

∂t
ωt = −ρ(ωt), ∀t ∈ (0, T ).

As a quick aside, this flow preserves the Kähler condition and is reduceable to a parabolic

complex Monge-Amperé equation on Kähler manifolds.

∂

∂t
ϕ = log

(ω0 +
√
−1∂∂ϕ)n

ωn
0

In order to apply make contact with the Schauder theory and prove solvability of this equa-

tion by the continuity method, Yau and Cao needed to show that estimates on the metric

implied C2,α-estimates on the potential. In essence, they needed to show that a C2-estimate

on the potential implied a C2,α-estimate. The central insight of the proof of the estimate

in the parabolic setting is the application of the rough heat operator of the time-evolving

metric to the time-evolving norm of the difference of time-evolving and initial Levi-Civita

connections. It turns out that this quantity has a maximum principle whenever the initial

geometry is bounded. We state the ultimate estimate below and we present the crucial

evolution equation in the following subsection.

Theorem 4.1. (cf. [4]) Suppose that (M2n, g) is a Kähler manifold with c1(M) = 0 and

h = h(t) is a smooth Kähler-Ricci flow on [0, T ) with h(0) = g. Then, if there is a universal
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Λ > 0 s.t. Λ−1g ≤ h ≤ Λg on [0, T ), then h is Cα for t ∈ [0, T ) with an estimate.

∥h∥Cα ≤ C(Λ, n, α, g)

To prove the estimate, we consider the evolution of Υ = ∇ − ∇0 ∈ Λ1(EndT 1,0M) the

difference of Levi-Civita connections. We will use the index convention Υk
ij = dzk(∇i∂j −

∇0
i∂j).

Proposition 4.1. Let (M,J, g) be Kähler and h = ht be a Kähler-Ricci flow with h0 = g.

Then the norm of the difference of Levi-Civita connections Υ = ∇−∇0 satisfies the following

evolution equation.

(
∂

∂t
−∆)|Υ|2h = −|∇Υ|2 − |∇Υ|2 +Υ ∗Υ ∗ ∇Υ+Υ ∗Υ ∗ Rm0+Υ ∗Υ ∗ Ric0+Υ ∗ ∇0Ric0

Proof. We begin computing in Kähler coordinates for h centered at (p, t). In this case, we

have the following.

∂

∂t
Υk

ij =
∂

∂t
dzk(∇i∂j) =

∂

∂t
(hmkhim,j) = hmkḣim,j = hpk∇jḣip = −∇j Ric

k
i

It will also be useful to know how the rough h-Laplacian acts on Υ.

(∆hΥ)kij = ∂p∂p[dz
k(∇i∂j −∇0

i∂j)]

= ∂pdz
k[∇p∇i∂j −∇p∇0

i∂j]

= ∂pdz
k[−Rml

ipj ∂l −∇0

p∇0
i∂j]

= (Rm0)lipj,p − Rml
ipj,p

= ∇0
p(Rm

0)lipj −∇pRm
l
ipj +Υ ∗ Rm0

= ∇0
i (Rc

0)kj −∇i Rc
k
j +Υ ∗ Rm0
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The conjugated rough h-Laplacian will also be useful to know.

∆Υ = ∆Υ+ (∆−∆)Υ

= ∆Υ+ (∇p∇p −∇p∇p)Υ
k
ij

= ∆Υ+∇p(Υ
k
ij,p − υkλjΓ

λ
pi −Υk

iλΓ
λ
pj +Υλ

ijΓ
k
pλ)−Υk

ij,pp

= ∆Υ−Υk
λjΓ

λ
pi,p −Υk

iλΓ
λ
pj,p +Υλ

ijΓ
k
pλ,p

= ∆Υ−Υk
λjΥ

λ
pi,p −Υk

iλΥ
λ
pj,p +Υλ

ijΥ
k
pλ,p +Υ ∗ Rc0

= ∆Υ+Υ ∗ ∇Υ+Υ ∗ Ric0

Notice that, in particular, this yields the following rough heat equation.

(
∂

∂t
−∆h)Υ = Υ ∗ Rm0−∇0Rc0

We can now use this to compute the heat operator acting on |Υ|2.

(
∂

∂t
−∆)|Υ|2 = 2ℜ(h(Υ̇,Υ)) +

∂

∂t
(hiphjqhkr)Υ

k
ijΥ

r

pq

− (2ℜh(∆Υ,Υ) + |∇Υ|2 + |∇Υ|2 +Υ ∗Υ ∗ Ric0+Υ ∗Υ ∗ ∇Υ)

= − |∇Υ|2 − |∇Υ|2 + 2ℜh(Υ,Υ ∗ Rm0−∇0Ric0) + Υ ∗Υ ∗ Ric0+Υ ∗Υ ∗ ∇Υ

= − |∇Υ|2 − |∇Υ|2 +Υ ∗Υ ∗ ∇Υ+Υ ∗Υ ∗ Rm0+Υ ∗Υ ∗ Ric0+Υ ∗ ∇0Ric0

This estimate can be combined with the Bochner formula to prove a smoothing inequality

of the form |Υ| = O(t−
1
2 ) where the constants only depend on background geometry. Notice

that |Υ| controls the size of third-derivatives of the form ϕijk and from here we can make

contact with the Schauder theory via the scalar reduction.
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4.2 Pluriclosed Flow

We begin by defining pluriclosed flow. It will look very similar to Kähler-Ricci flow except

it will be necessary to consider pluriclosed metrics, the Bismut connection, and an auxiliary

(2, 0)-form β.

Definition 4.2. On a pluriclosed manifold (M,J, g), a family of pairs (ω(t), β(t)) ∈ Λ1,1
R ⊕

Λ2,0 with ω(0) = g is said to be a solution of pluriclosed flow on [0, T ) provided

∂

∂t
ω = −ρ1,1B ,

∂

∂t
β = − ρ2,0B . (4.1)

For pluriclosed flow, we run into a couple difficulties that are not present in the Kähler-Ricci

flow setting. The two that are most pressing are (1) we are forced to consider connections

with torsion and (2) we can no longer use Kähler coordinates to simplify computations.

In this section, we will begin by showing in §4.2.2 the analogue of Proposition 4.1. We will

then need to discuss a Bochner formula and metric-trace evolution in §4.2.3 before proving

the smoothing estimate and bootstrapping in detail in §4.2.4 & 4.2.5.

4.2.1 Generalized Metric Evolution

Proposition 4.2. Given (M2n, J) and (ω, β) a solution to pluriclosed flow (4.1), the asso-

ciated generalized metric G satisfies

∂

∂t
G = − S. (4.2)

Proof. We will use the following equations

ρ1,1B = Sg − T 2 ρ2,0B = ∂∂
∗
ω
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These can be derived in using the Bianchi identity for the Chern curvature and type decom-

posing the identity ρB − ρC = dd∗ω (cf. [22]).

Furthermore, we can without loss of generality compute at a space-time point where β

vanishes.

∂

∂t
G

ZiZ
j =

∂

∂t
gij +

∂

∂t
(βikβjlg

lk)

=− (ρ1,1B )ij −
(
(ρ2,0B )ikβjl + βik(ρ

2,0
B )jl

)
glk + βikβjl(ρ

1,1
B )µνg

lµgνk

=− (Sg

ij
− T 2

ij
)

=− S
ZiZ

j .

Also,

∂

∂t
G

ZiW
j =

∂

∂t
(βipg

jp)

= gjp
∂

∂t
βip − βipg

jmgnp
∂

∂t
gmn

= − gjp(ρ2,0B )ip

= − gjp(∂∂
∗
ωip)

= gjp∆gβip

= − S
ZiW

j .
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Further,

∂

∂t
G

W iW
j =

∂

∂t
gji

= gjmgni(ρ1,1B )mn

= gjmgni(Sg
mn − T 2

mn)

= − SG

W iW
j .

4.2.2 Connection Evolution

In this section, we will typically be working over the smooth vector bundle Q underlying

Q√
−1∂ω. It is easy to see that Q ∼= T 1,0 ⊕ Λ1,0 because Q is an exact holomorphic Courant

algebroid. As such, we mention that upper-case indices range over all directions of Q whereas

lower-case indices range only over T 1,0 directions with conjugation acting as one would

expect. We will also find it necessary in some places to distinguish between Sg and SG the

second Ricci curvatures of T 1,0 and Q respectively.

Proposition 4.3. Fix (M2n, ωt, βt, J) a solution to pluriclosed flow, with Gt the associated

family of generalized metrics on Q√
−1∂ω. Given G̃ a Hermitian metric on Q√

−1∂ω, we have

(
∂

∂t
−∆

)
|Υ(G, G̃)|2g,G−1,G = − |∇Υ|2g,G−1,G − |∇Υ+ T ·Υ|2g,G−1,G

+ T ∗Υ ∗ ΩG̃ +Υg ∗Υ ∗ ΩG̃ +Υ ∗ ∇G̃ΩG̃,

where

(
T ·Υ

)B
ijA

= gklT ikjΥ
B
lA.
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Proof. A general calculation for the variation of the Chern connection associated to a Her-

mitian metric yields

∂

∂t
ΥB

iA = ∇i
∂

∂t
GB

A.

Specializing this result using Proposition 4.2 we thus have

∂

∂t
ΥB

iA = −∇iS
B
A . (4.3)

Using this and the differential Bianchi identity with torsion, we compute

∆ΥB
iA = gkl∇l∇kΥ

B
iA

= gkl∇l

(
ΩB

kiA
− Ω̃B

kiA

)
= gkl∇iΩ

B
klA

+ gklT p
ilΩ

B
kpA

+ gkl∇lΩ̃
B
ikA

= ∂tΥ
B
iA − gklT p

ilΩ
B
pkA

+ gkl∇̃lΩ̃
B
ikA

+ gkl
(
Υq

liΩ̃
B
qkA

+ΥD
lAΩ̃

B
ikD

−ΥB
lDΩ̃

D
ikA

)
.

(4.4)

Next we observe the commutation formula

∆Υ
B

jA = glk∇l∇kΥ
B

jA

= glk
[
∇k∇lΥ

B

jA − (Ωg)q
klj
Υ

B

qA − ΩC
klA

Υ
B

jC + ΩB
klC

Υ
C

jA

]
= ∆Υ

B

jA − (Sg)q
j
Υ

B

qA − SC
A
Υ

B

jC + SB
C
Υ

C

jA.

(4.5)
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Combining (4.3)-(4.5), the evolution equations of Proposition 4.2 and the pluriclosed flow

equation we obtain

∂

∂t
|Υ|2g−1,G−1,G =

∂

∂t

[
gjiGCAGBDΥ

B
iAΥ

D

jC

]
= − gjk

(
−Sg

kl
+ T 2

kl

)
gliGCAGBDΥ

B
iAΥ

D

jC − gjiGCM
(
−SG

ML

)
GLAΥB

iAΥ
D

jC

+ gjiGCA
(
−SG

BD

)
ΥB

iAΥ
D

jC + gjiGCAGBD

(
∆ΥB

iA + gkl(T g)pilΩ
B
pkA

−gkl∇̃lΩ̃
B
ikA

− gkl
[
Υq

liΩ̃
B
qkA

+ΥM
lAΩ̃

B
ikM

−ΥB
lM Ω̃M

ikA

])
Υ

D

jC

+ gjiGCAGBDΥ
B
iA

(
∆Υ

D

jC − gkl(T
g
)q
kj
ΩD

lqC
+ gkl∇̃kΩ̃

D
ljC

−gkl
[
Υ

q

kjΩ̃
D
qlC

+Υ
L

kCΩ̃
D
jlL

−Υ
D

kLΩ̃
L
jlC

])
.

We furthermore compute

∆|Υ|2g−1,G−1,G = gklgjiGCAGBD∇l∇k(Υ
B
iAΥ

D

jC)

= ⟨∆Υ,Υ⟩+ ⟨Υ,∆Υ⟩+ |∇Υ|2 + |∇Υ|2

= (Sg)q
j
Υ

D

qCΥ
B
iAg

jiGCAGBD + SΛ
C
Υ

D

jΛΥ
B
iAg

jiGCAGBD

− SD
Λ
Υ

Λ

jCΥ
B
iAg

jiGCAGBD + ⟨∆Υ,Υ⟩+ ⟨Υ,∆Υ⟩+ |∇Υ|2 + |∇Υ|2.

Subtracting the two equations above yields

(
∂

∂t
−∆

)
|Υ|2 = − |∇Υ|2 − |∇Υ|2

+ gjigklGCAGBD

(
−(T 2)ikΥ

B
lAΥ

D

jC + T p
ilΩ

B
pkA

Υ
D

jC − T
q

kjΩ
D
lqC

ΥB
iA

+ΥB
iA∇̃kΩ̃

D
ljC

−Υ
D

jC∇̃lΩ̃
B
ikA

−Υq
liΥ

D

jCΩ̃
B
qkA

−ΥM
lAΥ

D

jCΩ̃
B
ikM

+ΥB
lMΥ

D

jCΩ̃
M
ikA

−ΥB
iAΥ

q

kjΩ̃
D
qlC

−ΥB
iAΥ

L

kCΩ̃
D
jlL

+ΥB
iAΥ

D

kLΩ̃
L
jlC

)
.
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Then, observing that the second through fifth terms above form a perfect square we arrive

at

(
∂

∂t
−∆

)
|Υ|2 = −|∇Υ|2 − |∇Υ+ T ·Υ|2 + T ∗Υ ∗ Ω̃ + Υg ∗Υ ∗ Ω̃ + Υ ∗ ∇̃Ω̃,

as claimed.

4.2.3 Bochner Formula and Metric-trace Evolution

In this section we prove various useful formulae derived from the Bochner formula for sections

of a holomorphic vector bundle. Let W be a holomorphic vector bundle over a complex

manifold (M,J). We fix a Hermitian metric g on M and define the Chern Laplacian on

functions f ∈ C∞(M) by

∆f :=
√
−1Λω∂∂f.

Given a holomorphic section w ∈ H0(M,W), the classical Bochner formula states that

∆|w|2h = |∇hw|2g,h −
〈
Sh
gw,w

〉
h

(4.6)

for any choice of Hermitian metric h on W with Chern connection ∇h. Note that |∇hw|2g,h is

calculated using the background Hermitian metric g jointly with the given Hermitian metric

on the bundle.

We are interested in the application of formula (4.6) to the following general setup: Let

πE : E → M and πF : F → N denote holomorphic vector bundles over complex manifolds

M and N respectively. Suppose Φ : E → F is a morphism of holomorphic vector bundles
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covering ϕ :M → N , i.e. there is a commutative diagram

E F

M N.

Φ

πE πF

ϕ

Given such a map, there is a tautological holomorphic section of E∗ ⊗ ϕ∗F which, by abuse

of notation, we denote also

Φ ∈ H0(M, E∗ ⊗ ϕ∗F).

Furthermore, any pair of Hermitian metrics G and G̃ on E and F , respectively, induce a

Hermitian metric G = G−1 ⊗ ϕ∗G̃ on E∗ ⊗ ϕ∗F . Observe that, for any choice of frames on E

and F , one has

|Φ|2G = (ϕ∗G̃αγ)Φ
α
j Φ

γ
kG

jk.

Furthermore, the induced Chern connection ∇C,G−1,G̃ acts on Φ, defining a tensor A(G, G̃,Φ)

by

A(e) = (∇GΦ)(e) = ϕ∗∇G̃(Φe)− Φ(∇Ge). (4.7)

for any smooth section e of E . As a direct application of (4.6) we obtain the following:

Lemma 4.2. Let E → M and F → N denote holomorphic vector bundles over complex

manifolds M and N respectively, and suppose Φ : E → F is a holomorphic map of vector

bundles covering ϕ :M → N . Given g a Hermitian metric on M , G a Hermitian metric on

E and G̃ a metric on F , one has

∆|Φ|2G = |A|2
g,G−1,G̃

+
〈
Φ ◦ SG

g − ϕ∗SG̃
g ◦ Φ,Φ

〉
G
.

We next apply next Lemma 4.2 to various situations of our interest. The simplest case is

to apply it to the identity map of a fixed holomorphic vector bundle. We note that in this
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case the tensor A = ∇GΦ is the difference of two Chern connections, and we use some more

common notation for this:

Definition 4.3. Given G, G̃ Hermitian metrics on a holomorphic vector bundle E over M ,

let

Υ(G, G̃) := ∇G −∇G̃ ∈ T ∗
1,0 ⊗ End(E).

denote the difference of the associated Chern connections. When taking the norm of Υ, we

require a metric on T ∗
1,0 as well as one on E and E∗. These choices will be denoted explicitly

as subscripts, using possibly a given metric and its inverse on both E and E∗ if it is not

explicitly indicated.

Lemma 4.3. Let E →M be a holomorphic vector bundle over a complex manifoldM . Given

g a Hermitian metric on M and G and G̃ Hermitian metrics on E, one has that

∆(trG G̃) = |Υ(G, G̃)|2
g,G−1,G̃

+ trG

〈(
SG
g − SG̃

g

)
·, ·
〉
G̃
.

Proof. It follows from Lemma 4.2, setting M = N , E = F , and Φ = Id.

We next consider specifically the case of generalized Hermitian metrics on exact holomorphic

Courant algebroids, as in Proposition 2.16.

Lemma 4.4. ([7, Lemma 5.4], [45, c.f.]) Let (M, g0, J) be a pluriclosed manifold. Consider

the associated orthogonal holomorphic vector bundle Q = Q√
−1∂ω0

as in Definition 2.8, and

a generalized Hermitian metric G = G(ω, β) as in Proposition 2.16. Choose an arbitrary

Hermitian metric G̃ on Q. Then, one has that

∆(trG G̃) = |Υ(G, G̃)|2
g,G−1,G̃

+ trG

〈(
SG
g − SG̃

g

)
·, ·
〉
G̃
.
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Furthermore, provided that we take G̃ = G(ω0, 0), one also has that

ψ−1
g0

◦Υ(G, G̃) ◦ ψg = (φg0,g,β) ·D−
g −D−

g0

trG G̃ = trG̃G = trg g0 + trg0 g + |β|2g,g0

where ψg, ψg0 are as in Section 3.2, and (φg0,g,β) · D−
g denotes the action on D−

g of the

complex gauge transformation φg0,g,β ∈ End(TM ⊗ C), given by

φg0,g,β(X) = X1,0 + g−1
0 (gX0,1 +

√
−1βX1,0).

Proof. The first part of the statement is a special case of Lemma 4.3. Assuming now G̃ =

G(ω0, 0) and setting G′ = G(ω, 0), one has that

trG G̃ = |e−
√
−1β|2

G′−1,G̃
= (g0)jkg

jk + gjkg
jk
0 + glm0 gjkβjlβkm = trg g0 + trg0 g + |β|2g,g0 .

Finally, using Proposition 2.16, one has that

Υ(G, G̃) = (e
√
−1β)∗∇G′ −∇G̃

= (e−
√
−1β ◦ ψg)∗D

−
g − (ψg0)∗D

−
g0

= ψg0 ◦ ((ψ−1
g0

◦ e−
√
−1β ◦ ψg) ·D−

g −D−
g0
) ◦ ψ−1

g0

and also that

ψ−1
g0

◦ e−
√
−1β ◦ ψg(X) = ψ−1

g0
◦ e−

√
−1β(X1,0 − gX0,1)

= ψ−1
g0
(X1,0 − gX0,1 −

√
−1βX1,0)

= X1,0 + g−1
0 (gX0,1 +

√
−1βX1,0).
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We can then apply Lemma 4.4 to a solution of pluriclosed flow to get the following evolution

of the metric-trace.

Proposition 4.4. ([7, Lemma 5.6]) Fix (M2n, ωt, βt, J) a solution to pluriclosed flow, with

Gt the associated family of generalized Hermitian metrics on Q√
−1∂ω0

. Given G̃ a Hermitian

metric on Q√
−1∂ω0

, we have

(
∂

∂t
−∆

)
trG G̃ = − |Υ(G̃, G)|2

g,G−1,G̃
+ trG

〈
SG̃
g ·, ·

〉
G̃
.

4.2.4 Smoothing Estimate

It is fairly easy to spot that – for bounded geometry background data – the unsigned terms

in Proposition 4.3 are controlled by a multiple of the negative term in Proposition 4.4,

which suggests that a careful combination (along with some assumptions on the background

geometry) should be a sub-solution to the heat equation. This turns out to be the case and

the allows us to show that the metric gets smoother over time. We begin with an algebraic

to ease some later computations.

Lemma 4.5. Suppose (M2n, J) is a complex manifold, and suppose (ω, β) and (ω̃, β̃) are

pluriclosed metrics on M such that the associated generalized Hermitian metrics G and G̃

are defined on the same holomorphic Courant algebroid Q and satisfy

Λ−1G̃ ≤ G ≤ ΛG̃, |Υ(G, G̃)|g,G < Λ.

Then there exists a constant A = A(n,Λ) such that

A−1g̃ ≤ g ≤ Ag̃, |β|g̃ ≤ A, |Υ(g, g̃)|g̃ ≤ A.
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Proof. By the assumed uniform equivalence of G and G̃ and their explicit expressions from

Proposition 2.16, it follows that for ξ ∈ Λ1,0 we have

Λ−1g̃−1(ξ, ξ) = Λ−1G̃(ξ, ξ) ≤ G(ξ, ξ) = g−1(ξ, ξ) ≤ ΛG̃(ξ, ξ) = Λg̃−1(ξ, ξ).

This implies the claimed uniform equivalence of g and g̃. A similar argument using sections

of the tangent bundle then yields the upper bound for |β|g̃.

To estimate the connection, we compute the tangent-cotangent connection coefficients.

(ΥG)Z
b

iWa = gcbgqaT qci − g̃cbg̃qaT̃ qci.

Taking norms and using the uniform equivalence of g and g̃ and the estimate for Υ(G, G̃)

we obtain

|T |g̃ ≤ C.

Now turning to the tangent-tangent components, we find

(Υg)bia = (ΥG)Z
b

iZa −
√
−1gcbgqpβapT qci +

√
−1g̃cbg̃qpβ̃apT̃ qci.

We have estimated all terms on the right hand side of this equation, thus the estimate for

Υ(g, g̃) follows.

Proposition 4.5. Given (M2n, J) compact, fix (ω, β) a solution to pluriclosed flow (4.1),

with associated generalized metric G. Fix a background metric generalized metric G̃(g̃, β̃)

such that Λ−1G̃ ≤ G ≤ ΛG̃, then

max
M×{t}

|Υ|2 ≤ C(1 +
1

t
).
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Proof. Notice that Φ satisfies the following evolution equation.

(
∂

∂t
−∆

)
Φ = |Υ|2 + t

(
∂

∂t
−∆

)
|Υ|2 + A

(
∂

∂t
−∆

)
trG G̃

≤ (1− A)|Υ|2 + t(T ∗Υ ∗ Ω̃ + Υg ∗Υ ∗ Ω̃ + Υ ∗ ∇̃Ω̃) + A trG⟨SG̃
g ·, ·⟩G̃

≤ (1− A+ C)|Υ|2 + CA+ C.

Thus, by taking A sufficiently large, we find

(
∂

∂t
−∆

)
Φ ≤ C.

This then implies

max
M×{t}

Φ ≤ C(1 + t).

But then we can simply reorganize to find

max
M×{t}

|Υ|2 ≤ C

(
1 +

1

t

)
.

It is worth mentioning that this argument admits localization by way of a smooth cut off

function, in which case the estimate becomes

max
B r

2
(p)×{t}

|Υ|2 ≤ C(r−4 +
1

t
).

The proof proceeds similarly, but becomes more technical and is for that reason omitted.

The interested reader can find the proof of the localized estimate here [23].
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4.2.5 Proof of Theorem 1.3

As a generalized metric G coming from a solution to pluriclosed flow satisfies the quasilinear

equation

∂

∂t
GAB = gijGAB,ij + ∂G ∗ ∂G(= −SAB), (4.8)

it will suffice to get a C1,α-estimate on G to make contact with the Schauder theory. We

can now use the smoothing estimate, Lemma 4.4, and a blow-up argument to reach C1,α and

break through the bootstrapping threshold.

Proof of Theorem 1.3. The case k = 0 is established in Proposition 4.5. We now consider a

function related to the C2-norm of G.

f := |Υ|2 + |∇Υ|

We want to show that f = O
(
1 + 1

t

)
. Suppose to the contrary that there are ti ↗ 1 and

points pi ∈M so that

sup
M×[0,ti)

tf(p, t)

1 + t
=
tif(pi, ti)

1 + ti
=↗ ∞.

Let σi = f(pi, ti) ↗ ∞ and define rescaled metrics Gi on B1(0) × [−1, 0] for i sufficiently

large.

Gi(x, t) = G(pi +
x

√
σi
, ti +

t

σi
)

Define G̃i similarly. These metrics are so constructed that

∂

∂t
Gi = −Si.
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For this family of flows, we can define f -functions as well. So, define

fi = |Υ(Gi, G̃i)|2 + |∇GiΥ(Gi, G̃i)|.

By the homogeneity of these quantities, we find that

fi(x, t) =
1

σi
f(pi +

x
√
σi
, ti +

t

σi
).

In particular, fi(0, 0) = 1.

However, provided that tiσi ≥ 2 we have that

ti +
t

σi
≥ ti

2
, ∀t ∈ [−1, 0].

But at such points, we may estimate as follows.

tifi(x, t)

2(1 + ti)
≤

(
ti +

t
σi

)
fi(x, t)

1 +
(
ti +

t
σi

)
≤ ti

1 + ti
fi(0, 0)

Thus, fi ≤ 2 on B1(0)× [−1, 0] when i is sufficiently large.

However, this is a C1,α′
-estimate for Gi uniform in i. But applying the Schauder estimates

to Equation 4.8 upgrades our uniform C1,α′
-estimates to uniform C2,α′

-estimates on B 1
2
(0)×

[−1
2
, 0]. Then, by Arzela-Ascoli we obtain a C2,α′′

-limit G∞. The strength of this convergence

implies fi → f∞ uniformly on B 1
2
(0)× [−1

2
, 0] where f∞ is the f -function associated to G∞.

Therefore, in particular

f∞(0, 0) = lim
i→∞

fi(0, 0) = 1.
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However, we also have Proposition 4.5 which implies that

|Υ(Gi, G̃i)|2(x, t) ≤
1

σi
|Υ(G, G̃)|2(pi +

x
√
σi
, ti +

t

σi
) ≤ C

σi
→ 0.

Thus, where they exist, it must be that G∞ and G̃∞ must have the same connections.

However, G̃∞ is flat (as it is the blow-up of a bounded geometry metric), so G∞ must be

flat as well. Therefore, f∞(0, 0) = 0, which is a contradiction.

This proves f = O(1 + 1
t
) on [0, T ). To see that this applies for derivative estimates of all

orders, one need only differentiate Equation 4.8 and apply the Schauder estimates.

Much like Proposition 4.5, this theorem may be localized as well and one ends up with

max
B r

2
(p)×{t}

k∑
i=0

|∇iΥ|
2

i+1 ≤ C(r−4 +
1

t
).
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Chapter 5

Long-time Existence

For several reasons that have already been discussed, the long-time existence theory of

pluriclosed flow is incredibly delicate. Before 2021, the long-time existence and convergence

even on the Hopf surface was unknown and all known long-time existence results relied on

specific ansatz or potential-theoretic formulations of the flow (c.f. [35, 39]). The results that

follow can be found in [7].

5.1 Bismut-Flat Manifolds

Referring back to Propositions 4.4 & 4.3 we see that the evolution equations for the metric-

trace and Chern connection of a generalized metric simplify substantially on Bismut-flat

backgrounds, due to Bismut’s Identity (Proposition 3.2). In fact, these quantities become

subsolutions of rough heat equations – improving our previous estimates substantially.

Proof of Theorem 1.4. Let ωF denote the given Bismut-flat metric, and let Q√
−1∂ωF

denote

the holomorphic Courant algebroid associated to [∂ωF ]. Furthermore, let GF denote the
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Hermitian metric on Q√
−1∂ωF

associated to ωF via Proposition 2.16. Now given ω0 another

pluriclosed metric satisfying [∂ω0] = [∂ωF ] ∈ H2,1

∂
, we can choose β ∈ Λ2,0 such that

∂β = ∂ωF − ∂ω0.

Let G0 denote the metric associated to (ω0, β0) as in Proposition 2.16. By [38], there exists

ϵ > 0 and a solution Gt to pluriclosed flow with initial data G0 on [0, ϵ). Since ωF is Bismut-

flat, it follows from Proposition 3.2 that the Chern curvature of GF vanishes, and thus we

obtain from Proposition 4.4 the evolution equations

(
∂

∂t
−∆

)
trGGF = − |Υ(GF , G)|2g,G−1,GF

. (5.1)

It follows from the maximum principle that, for any interval [0, T ] on which the solution

exists,

sup
M×[0,T ]

trGGF ≤ sup
M×{0}

trGGF .

We note that for two generalized Hermitian metrics G, G̃ on a fixed holomorphic Courant

algebroid it follows that trG G̃ = trG̃G (see Lemma 4.4). Thus there exists a uniform constant

Λ > 0 so that for any time t one has

Λ−1GF ≤ Gt ≤ ΛGF . (5.2)

Furthermore, let Υ = Υ(Gt, GF ) as in Definition 4.3. Again using that the Chern curvature

of GF vanishes, It follows from Proposition 4.3 that

(
∂

∂t
−∆

)
|Υ|2g,G = − |∇Υ|2g,G − |∇Υ+ T ·Υ|2g,G. (5.3)
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It follows from the maximum principle that for any interval [0, T ] on which the solution

exists,

sup
M×[0,T ]

|Υ(G,GF )|2g,G ≤ sup
M×{0}

|Υ(G,GF )|2g,G.

Using Lemma 4.5 we thus obtain uniform equivalence and a C1 bound for the classical objects

(ωt, βt). We can now argue as in §4.2.5, there are uniform C∞ estimates for Gt and gt for all

times. Thus the flow exists for all time, finishing the claim of long-time existence.

To show convergence we first note that by putting together (5.1) and (5.3), and using the

uniform equivalence estimate of (5.2), it follows that

(
∂

∂t
−∆

)(
t|Υ(G,GF )|2g,G + trGF

G
)
≤ 0.

It follows from the maximum principle that for any time t > 0 one has

sup
M×{t}

|Υ(G,GF )|2g,G ≤
supM×{0} trGF

G

t
. (5.4)

Using the uniform C∞ estimates for Gt, every sequence of times tj → ∞ contains a subse-

quence which converges to a limiting metric G∞. By (5.4) it follows that Υ(G∞, GF ) = 0,

and thus G∞ is Chern-flat. Choosing such a flat limit G∞, we can repeat the above analysis

with GF replaced by G∞. In particular, for a large time t such that |Gt − G∞|G∞ ≤ ϵ, we

have

2n ≤ sup
M×{t}

trG∞ G ≤ 2n+ Cϵ

for some uniform constant C. These inequalities will be preserved for all times larger than

t by (5.1), and then the convergence to G∞ follows.
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5.1.1 Hopf Surface

As an immediate application of Theorem 1.4, we can now show long-time existence on Hopf

surfaces. To get a concrete limit, we will makes use of our knowledge of the cohomology of

such surfaces. We will begin by recalling the construction of Hopf surfaces.

Definition 5.1. Given complex numbers α, β satisfying |α| ≤ |β| < 1, we obtain a Hopf

surface via

Mαβ = C2\{0}/ ⟨(z1, z2) → (αz1, βz2)⟩ .

For any α, β this is a complex manifold diffeomorphic to S3×S1. We will call such a surface

standard if |α| = |β|. Standard Hopf surfaces admit a natural metric which is pluriclosed

with respect to the complex structure induced by the quotient structure, known as the

Hopf/Boothby metric.

ωHB =
1

|z|2
ωEuc

This metric is the unique (up to scaling) bi-invariant Hermitian metric for S3×S1 ∼= SU(2)×

U(1).

The standard Hopf surfaces equipped with their natural metrics are Bismut-flat. We check

this for completeness.

Lemma 5.1. The Hopf/Boothby metric is Bismut-flat.

Proof. We can compute the coefficients Γk
ij of the Chern connection the usual way. The only

non-zero coefficients are the following.

Γ1
11 = Γ2

12 = − z1

|z|2
, Γ2

22 = Γ1
21 = − z2

|z|2

85



Then we can compute the non-zero Chern curvatures

Ω1211 = Ω1222 = −z
1z2

|z|6
.

The torsion can then be computed using Tijk = (Γp
ij − Γp

ji)gpk.

T121 =
z2

|z|4
, T122 = − z1

|z|4
.

Applying Lemma 2.11 and the computation of T gives

R+
11ij

= Ωij11 − T12jg
22T 12i.

Thus, R+
1111

= R+
1122

= 0 obviously. Also,

R+
1112

= Ω1211 − T122g
22T 121 = −z

1z2

|z|6
+
z1z2

|z|6
= 0.

A similar calculation will give R+
22ij

= 0. In addition,

R+
12ij

= Ωij12 − T1αjg
αβT 2βi = 0.

Thus R+
ij
= 0.

Now we consider terms of the form

R+

ijkl
= ∇kTijl.

Using the computation of T , we get that the only terms not obviously vanishing are

R+
12k1

= ∇kT121, R+
12k2

= ∇kT122.
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Thus, we can compute using the terms of T and the coefficients of ∇

R+
1211

= T121,1 − T121Γ
1
11 − T121Γ

2
12

= − 2
z1z2

|z|6
− z2

|z|4

(
−2

z1

|z|2

)
= 0.

Similar computations hold for the other components of R+
12. Thus, R

+ ≡ 0.

Proof of Corollary 1.5. Recall that h1,1A (Mαβ) = 1 (see the proof of [1, Theorem 3.3]) and

that the Aeppli class of a pluriclosed Hermitian metric on a compact complex surface is non-

zero (see e.g. [30]). Therefore, given any pluriclosed metric ω on Mαβ one has [ω] = λ[ωHopf]

for 0 < λ ∈ R, where the positivity of λ follows e.g. by integration on a holomorphic curve

(cf. below). Using now that [∂ω] ∈ H2,1

∂
factorizes through the natural map

H1,1
A → H2,1

∂
: [ω] 7→ [∂ω],

we have that Theorem 1.4 applies giving convergence of the pluriclosed flow to a Bismut-flat

structure for any initial data. Due to the classification by Gauduchon-Ivanov [14] (cf. also

[10, Theorem 8.26]), it follows that ωHopf is the unique Bismut-flat metric in its Aeppli class,

thus the limiting metric is a scalar multiple of the Hopf metric.

5.2 Non-negative Kodaira dimension

In this subsection we prove Theorem 1.6. A key point is to find a background metric with

certain curvature properties for every choice of Q. To begin, we show that every class in H1,1
BC

is represented by an invariant form. We build on an observation of Teleman, which gives an

explicit characterization of the failure of the ∂∂-lemma on compact complex surfaces.
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Lemma 5.2 ([42]). Let (M4, J) be a compact complex surface, and let

B1,1
R = {µ ∈ Λ1,1

R | ∃a ∈ Λ1
R = da}.

Then there exists an exact sequence

0 →
√
−1∂∂Λ0

R → B1,1
R → R,

where the final map is the L2 inner product with a pluriclosed metric.

Lemma 5.3. Let (M4, J) be a compact complex surface which is the total space of a holo-

morphic principal T 2-bundle. Given ω a pluriclosed metric on M there exists a T 2-invariant

metric in [ω] ∈ H1,1
A .

Proof. First choose ω̂ a T 2-invariant pluriclosed metric on M , which always exists by aver-

aging an arbitrary pluriclosed metric over the T 2-action. We first use this to show that every

class in H1,1
BC admits T 2-invariant representatives. Now fix [ϕ] ∈ H1,1

BC . We can define

ϕ̂ :=

∫
g∈T 2

g∗ϕ.

The form ϕ̂ is T 2-invariant, and to show that [ϕ̂] = [ϕ] ∈ H1,1
BC , it suffices by a standard

chain-homotopy argument to show that for X any vector field tangent to the T 2-action, one

has LXϕ ∈
√
−1∂∂Λ0

R. By Lemma 5.2, it suffices to show that the L2 inner product with ω̂

vanishes. Using Stokes Theorem and the Cartan formula we compute

⟨LXϕ, ω̂⟩ω̂ =

∫
M

LXϕ ∧ ω̂ =

∫
M

LX (ϕ ∧ ω̂) =
∫
M

diX (ϕ ∧ ω̂) = 0,

as required. Now knowing this, we assume that ω̂ is the average of ω over the T 2-action, and

show that [ω̂] = [ω] ∈ H1,1
A . It suffices to prove that the infinitesimal action preserves Aeppli

cohomology classes, and for this we use that integration gives a perfect pairing between H1,1
A
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and H1,1
BC . Thus we fix [ϕ] ∈ H1,1

BC with a T 2-invariant representative ϕ̂, and integrate by

parts to conclude

∫
M

LXω ∧ ϕ̂ = −
∫
M

ω ∧ d(iX ϕ̂) = −
∫
M

ω ∧ LX ϕ̂ = 0,

as required.

Next we record a key lemma computing the Bismut curvature tensor of a T 2-invariant pluri-

closed metric. Such invariant metrics are described by the Kaluza-Klein ansatz (cf. [36,

Definition 5.1]), and the curvature computation below is implicit in [36, Proposition 5.12].

Lemma 5.4. Let (M4, J) be a compact complex surface which is the total space of a holomor-

phic principal T 2-bundle over a Riemann surface Σ. Let ω denote a T 2-invariant pluriclosed

metric on M , expressed as

ω = π∗ωΣ + trh µ ∧ Jµ,

where ωΣ is a metric on Σ, µ+ Jµ is a Hermitian connection, and h is an inner product on

t2. Then

ΩB = 1
2

(
RωΣ

− |Fµ|2gΣ,h
)
π∗ωΣ ⊗ π∗ωΣ + h (d trωΣ

Fµ, ·)⊗ π∗ωΣ.

Proof. We begin by computing the Levi-Civita connection coefficients in a co-frame {ϕ1, ϕ2 =

Jϕ1, ϕ3, ϕ4 = Jϕ2} s.t.

1. π∗ωΣ = ϕ1 ∧ ϕ2,

2. trh(µ ∧ Jµ) = ϕ3 ∧ ϕ4,

3. π1 = π∗ψ1 and ϕ2 = π∗ψ2 with ψ2 = JΣψ
1, ψi ∈ Λ1Σ,
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4. µ((ϕ1)♭) = µ((ϕ2)♭) = 0, and

5. π∗((ϕ
3)♭) = π∗((ϕ

4)♭) = 0.

We adopt the convention that uppercase indices are in {1, 2, 3, 4}, lowercase Latin indices

are in {1, 2}, and lowercase Greek in {3, 4}. Then, by the naturality of the Lie bracket, we

have the following identities.

π∗[eα, eA] = µ[ei, eA] = 0

We also have

Fij = −µ([ei, ej]).

Finally, by the fact that T2 is abelian,

[eα, eβ] = 0.

Then, we can compute the Levi-Civita connection coefficients η using the Koszul formula

and our choice of frame.

g(∇LC
A eB, eC) = −1

2
(g([eA, eB], eC)− g([eA, eC ], eB) + g([eB, eC ], eA))

We find that if α is the Levi-Civita connection coefficient of Σ, then

η =

π∗α + 1
2
F 1

2
F

−1
2
F 0

 .

Afterwards, we can compute dω.

dcωABC = −ω([eA, eB], eC) + ω([eA, eC ], eB)− ω([eB, eC ], eA)
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In particular, dωijk = dωiαβ − dωαβγ = 0 (first and last for dimensional reasons, second for

brackets). The only non-vanishing term is

dωijα = −ω(µ−1Fij, eα) = − trh(Fij ∧ Jµ(eα)) = −Fijα

Thus,

dcωijα = −Fijα.

But this means that

g−1dcω =

−F F

−F 0

 .

Putting this together, we find that the connection forms A of the Bismut connection are

A = η − 1

2
g−1dcω =

π∗α− F 0

0 0

 .

Then the structure equations yield

ΩB =

Rm+dF − π∗α ∧ F − F ∧ π∗α 0

0 0

 =

Rm+d∇ΣF

0 0

 .

Further, we can break d∇ΣF j
i into pieces. First, consider the horizontal part. Since we

consider F j
i ∈ Λ1(V ∗),

d∇ΣF j
i (ek, el) = dF j

i (ek, el) = −F ([ek, el]V )ji = Fα
klF

j
αi = Fα

ijF
α
kl.

Then the mixed part, is the following

d∇ΣF j
i (ek, eλ) = F λ

ij,k − αp
kiF

λ
pj + αj

kpF
λ
ip.
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Finally, the vertical part is

d∇ΣF (eβ, eλ)
j
i = dF j

i (eβ, eλ) = F λ
ij,β − F β

ij,λ.

But notice that due to the low-dimensionality and anti-symmetry, the non-vanishing block

is completely determined by its i = 1, j = 2 component. Thus, we know

Rm2
1 =

1

2
RΣϕ

2 ∧ ϕ1.

We also find that

d∇ΣF 2
1 = |F |2ϕ1 ∧ ϕ2 + d(trωΣ

F )αϕα.

Putting this all together gives

(ΩB)21 =
1

2
(RΣ − |F |2)ϕ2 ∧ ϕ1 + h(d trωΣ

F, ·)

from which the result follows.

Proof of Theorem 1.6. Fix (M4, J) a minimal compact complex non-Kähler surface of Ko-

daira dimension κ ≥ 0. It follows from the Kodaira classification of surfaces (cf. [43] §7)

that M must be an elliptic fibration, with only multiple fibers. In particular, it follows

that there exists a finite cover of M which admits a holomorphic principal T 2 action, and it

suffices to show global existence on such manifolds. In particular we suppose π :M4 → Σ is

a holomorphic T 2-bundle over a compact Riemann surface Σ where χ(Σ) < 0 if κ = 1 and

χ(Σ) = 0 if κ = 0.

Fix ω0 a pluriclosed metric on M . By Lemma 5.3, there exists a T 2-invariant metric ω̂ =

π∗ωΣ+trh µ∧Jµ ∈ [ω0]. We can modify the metric on Σ so that RΣ is constant, and by Hodge
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theory further modify the principal connection µ to assume that trωΣ
Fµ is constant. These

changes preserve the associated Aeppli cohomology class onM and so we assume without loss

of generality that ω̂ satisfies these conditions. The metric ω̂ defines a holomorphic Courant

algebroid Q√
−1∂ω̂ together with a generalized Hermitian metric Ĝ. Now by construction we

can choose β ∈ Λ2,0 such that

∂β = ∂ω̂ − ∂ω0.

Let G0 denote the metric associated to (ω0, β0) as in Proposition 2.16. By [38], there exists

ϵ > 0 and a solution Gt to pluriclosed flow with initial data G0 on [0, ϵ).

We first obtain a partial estimate on the metric using the fibration structure and the Schwarz

Lemma. The holomorphic Courant algebroid Q comes equipped with a natural holomorphic

projection map onto T 1,0
M which we denote πQ. We furthermore obtain from the fibration

structure the holomorphic map dπ : T 1,0
M → T 1,0

Σ . Composing these yields the holomorphic

map of vector bundles Φ = dπ ◦ πQ : Q → T 1,0
Σ . It follows from the construction and

Proposition 2.16 that

|Φ|2G,gΣ
= trω π

∗ωΣ.

Furthermore, using Lemma 4.2 (where A = A(G, gΣ,Φ) is defined by (4.7)) we obtain

∂

∂t
trω π

∗ωΣ =
∂

∂t
|Φ|2G,gΣ

=
〈
Φ ◦ SG

g ,Φ
〉
G−1,gΣ

= ∆g|Φ|2G−1,gΣ
− |A|2g,G−1,gΣ

+
〈
SgΣ
g ◦ Φ,Φ

〉
G−1,gΣ

= ∆g trω π
∗ωΣ − |A|2g,G−1,gΣ

+ 1
2
RΣ (trω π

∗ωΣ)
2 .
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Note that by construction RΣ is constant, either −2 or 0 depending on whether κ = 1 or 0.

By the maximum principle we conclude for any smooth existence time T > 0 the estimate

sup
M×{T}

trω π
∗ωΣ ≤

(
C + 1

2
|RΣ|T

)−1
. (5.5)

We next establish the uniform equivalence of the metrics Gt along the flow. Combining

Proposition 4.4 with Proposition 3.2, the curvature computation of Lemma 5.4, and the

estimate (5.5) we obtain for a topological constant λ,

(
∂

∂t
−∆

)
trG Ĝ = − |Υ(G, Ĝ)|2

g,G−1,Ĝ
+ trG

〈
SG̃
g ·, ·

〉
G̃

= − |Υ(G, Ĝ)|2
g,G−1,Ĝ

+ trG ⟨trg (λπ∗ωΣ ⊗ ψ∗π
∗ωΣ) ·, ·⟩Ĝ

≤ C (trg π
∗ωΣ) trG Ĝ

≤ C trG Ĝ.

By the maximum principle we conclude

sup
M×{T}

trG Ĝ ≤ eCT .

This implies that Gt and Ĝ are uniformly equivalent on any compact time interval, and from

Proposition 4.3 we conclude

(
∂

∂t
−∆

)
|Υ(G, Ĝ)|2g,G−1,G ≤ C

(
1 + |Υ(G, Ĝ)|2g,G−1,G

)
.

By the maximum principle we obtain a uniform estimate for |Υ(G, Ĝ)|2g,G−1,G on any finite

time interval, and the proof of long-time existence now concludes as in Theorem 1.4.
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C.R.A.S. Paris, 283A(119), 1976.

[3] J. Bismut. A local index theorem for non-Kähler manifolds. Math. Ann., 284:681 – 699,
1989.

[4] H.-D. Cao. Deformation of Kähler metrics to Kähler-eisntein metrics on compact Kähler
manifolds. Invent. Math., 81:359 – 372, 1985.

[5] E. De Giorgi. Un esempio di estremali discontinue per un problema variazionale di tip
ellittico. Boll. Un. Math. Ital., 4(1):135 – 137, 1968.

[6] S. Donaldson. Anti-self dual Yang-Mills connections over complex algebraic surfaces
and stable vector bundles. Proc. London Math. Soc., 3(50):1 – 26, 1985.

[7] M. Garcia-Fernandez, J. Jordan, and J. Streets. Non-Kähler Calabi-Yau geometry and
pluriclosed flow, 2021.

[8] M. Garcia-Fernandez, R. Rubio, C. S. Shahbazi, and C. Tipler. Canonical metrics on
holomorphic Courant algebroids. arXiv:1803.01873.

[9] M. Garcia-Fernandez, R. Rubio, and C. Tipler. Gauge theory for string algebroids.
arXiv:2004.11399.

[10] M. Garcia-Fernandez and J. Streets. Generalized Ricci flow. Am. Math. Soc., 2021.
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