
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Robust and Efficient Deep Learning for Multimedia Generation and Recognition

Permalink
https://escholarship.org/uc/item/9tb3096r

Author
Hussain, Shehzeen Samarah

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tb3096r
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Robust and Efficient Deep Learning for Multimedia Generation and Recognition

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Shehzeen Samarah Hussain

Committee in charge:

Professor Farinaz Koushanfar, Chair
Professor Shlomo Dubnov
Professor Tara Javidi
Professor Ryan Kastner

2023



Copyright

Shehzeen Samarah Hussain, 2023

All rights reserved.



The Dissertation of Shehzeen Samarah Hussain is approved, and it is acceptable

in quality and form for publication on microfilm and electronically.

University of California San Diego

2023

iii



DEDICATION

To my dearest friends and family.

iv



EPIGRAPH

The future depends on some graduate student who is deeply suspicious of everything I have said.

— Geoffrey Hinton.

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Robustness of Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Vulnerabilities of Deep Learning Models to Adversarial Attacks . . . . . . . 4
1.1.2 Defenses for Mitigating Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Compute Efficient Design for Neural Media Synthesis . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Data Efficient Training for Neural Media Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 7

Part I Robust Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Vulnerabilities of DL to Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Vulnerabilities of DL based Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 ReFace: Adversarial Transformation Networks for Real-time Attacks on
Face Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 ReFace Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.6 Vulnerabilities of Public Face Recognition APIs . . . . . . . . . . . . . . . . . . . . 35
2.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Vulnerabilities of DL based Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Universal Adversarial Perturbations for Real-time Attacks on Speech

Recognition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



2.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 3 Vulnerabilities of DL to Adversarial Reprogramming . . . . . . . . . . . . . . . . . . 50
3.1 Vulnerabilities of DL based Text Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Adversarial Reprogramming of Text Classification Neural Networks . . . 52
3.1.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Cross-modal Adversarial Reprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 4 WaveGuard: Understanding and Mitigating Audio Adversarial Examples . . 86
4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Adversarial Attacks in the Audio Domain . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.2 Principles of Defense and Adaptive Attacks in the Image Domain . . . . . 93
4.1.3 Defenses in the Audio Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 WaveGuard Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 WaveGuard Defense Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Input-transformation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.1 Quantization-Dequantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Down-sampling and Up-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.4 Mel Spectrogram Extraction and Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.5 Linear Predictive Coding (LPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.1 Dataset and Attack Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Evaluation against Non Adaptive Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.1 Attack Detection Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5.2 Analysis of undefended and defended transcriptions . . . . . . . . . . . . . . . . . 107
4.5.3 ROC for Detection under Non-Adaptive Attacks . . . . . . . . . . . . . . . . . . . . 109
4.5.4 Timing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5.5 Thresholds for Attack Detection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Adaptive Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6.1 Gradient Estimation for Adaptive Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vii



4.6.2 Adaptive Attack Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.3 Adaptive Attack Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7 Evaluation of Transfer Attacks from an Undefended Model . . . . . . . . . . . . . . . . . 120
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.10 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Part II Efficient Neural Media Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 5 Compute Efficient Design for Neural Media Synthesis . . . . . . . . . . . . . . . . . 124
5.1 FastWave: Accelerating Autoregressive Convolutional Neural Networks . . . . . . . 127
5.2 Prior Work on Accelerating DNNs for FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.1 1D Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.2 Autoregressive CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Fast Inference Algorithm for Autoregressive CNNs . . . . . . . . . . . . . . . . . . 132

5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.1 Model Architecture and Training on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 Optimizing the Design for Different FPGAs . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.3 Accelerator Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Optimization of Dilated Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.2 Cyclic Queue Buffer Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.3 Optimization of Fully-connected Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5.4 Optimization with Matrix Multiplication Engine . . . . . . . . . . . . . . . . . . . . 141
5.5.5 Optimization of Embedding Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.6 Network Description Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Results and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.6.2 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6.3 Design Modifications for Text Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6.4 Design Optimization for smaller FPGA Platforms . . . . . . . . . . . . . . . . . . . 150
5.6.5 Performance and Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Chapter 6 Data Efficient Training for Neural Speech Synthesis . . . . . . . . . . . . . . . . . . . 154
6.1 Expressive Neural Voice Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.1 Voice Cloning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.1.2 Cloning Techniques: Zero-Shot and Model Adaptation . . . . . . . . . . . . . . . 161
6.1.3 Experiments on Expressive Voice Cloning . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Voice Conversion Using Iterative Self-Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.2 Voice Conversion Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

viii



6.2.3 Synthesizer Training: Iterative Refinement using Self Transforms . . . . . . 174
6.2.4 Experiments on Voice Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.4 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Part III Robust and Efficient Media Authentication and Recognition . 182

Chapter 7 Deepfake Detection and Their Vulnerability to Adversarial Attacks . . . . . . . 183
7.1 Deepfake Detection Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2 Deepfake Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2.1 Per-frame Deepfake Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2.2 Sequence-based Deepfake Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.2.3 Understanding Deepfake detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3 Adversarial attacks on Deepfake detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.2 Simple White-box attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.3 Robust and Transferable attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.3.4 Query based Black-box Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.3.5 Query based Robust Black-box Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.3.6 Universal attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4.1 Dataset and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5.1 Evaluation on FaceForensics++ dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.5.2 Transferability of adversarial attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.5.3 Universal attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.5.4 Evaluation on Sequence Based Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Chapter 8 Media Authentication using DL based Proactive Watermarking . . . . . . . . . . 213
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.1.1 Digital Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.1.2 FPGA Accelerated Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.1.3 Countering Media Forgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.2 FastStamp Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.2.1 Training Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.2.2 Message encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.2.3 Model Architecture and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8.3 Accelerator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.3.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

ix



8.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.4.3 Training and Architecture Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.4.4 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.4.5 Performance and Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

x



LIST OF FIGURES

Figure 1.1. Research Overview: My research investigates robust and efficient deep
learning techniques for multimedia generation and recognition. . . . . . . . . . 4

Figure 2.1. (a) First order attack achieved by following the gradient direction (ma-
genta arrow) across the boundary into low density region. (b) Multi-step
second-order attacks (black arrows) can still generate successful adversarial
samples against robust models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.2. Real-time ReFace attack on a face recognition model operating on a live
video stream. ReFace uses an Adversarial Transformation Network to
inject adversarial perturbations into the video frames causing the face
recognition model to mis-predict the identity of the subject in the video. . 14

Figure 2.3. Overview of ReFace adversarial perturbation generator (top) and attack
application on face verification and identification systems (bottom). . . . . . 17

Figure 2.4. Visualizing the optimum solution to our attack objective: Our attack ob-
jective pushes the originally predicted embedding vectors to the opposite
end of the unit sphere thereby hampering the performance of the face-
recognition model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.5. Residual U-net architecture: We replace the strided convolutions and
transposed convolutions in the U-Net architecture with residual blocks.
Each residual block contains multiple convolutions (in the encoder) or
transposed convolution (in the decoder) layers. . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.6. Comparison of PGD and ATN based attacks. (a) compares white-box
attacks on the single RN-SF-1 model. (b) compares transfer attacks opti-
mized on the six RN-SF-6 models and evaluated on two different models. 30

Figure 2.7. Sample adversarial images generated by ReFace attack at ε = 0.03 and
their benign counterparts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.8. Threat Model: We aim to find a single perturbation which when added to
any arbitrary audio signal, will most likely cause an error in transcription
by a victim Speech Recognition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 2.9. (a) Attack Success Rate on the test set vs. the number of audio files in
the training set X (b) Success Rate vs ∥v∥∞ of universal and random
perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



Figure 3.1. Example of Adversarial Reprogramming for Sequence Classification. We
aim to design and train the adversarial reprogramming function fθ , such
that it can be used to repurpose a pre-trained classifier C, for a desired
adversarial task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.2. Adversarial Reprogramming Function and Training Procedures. Left:
White-box Adversarial Reprogramming using gumbel softmax distribu-
tions. Right: Black-box Adversarial Reprogramming using REINFORCE
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.3. (a) Adversarial sequences generated by our adversarial program for Names-
5 Classification (adversarial task), when targeting CNN trained for Ques-
tion Classification (original task). (b) Accuracy vs Context size (k) plots
for 3 classification models on 2 different adversarial reprogramming tasks. 66

Figure 3.4. Schematic overview of cross-modal adversarial reprogramming method. . 69

Figure 3.5. Example outputs of our adversarial reprogramming function in both un-
bounded (top) and bounded (bottom) attack settings while reprogramming
two different pre-trained image classifiers for a DNA sequence classifica-
tion task (H3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.1. Depiction of an undefended ASR system and an ASR system defended
by WaveGuard in the presence of a malicious adversary. The ASR system
defended by WaveGuard detects the adversarial input and alerts the user. . 88

Figure 4.2. In the targeted attack setting the adversary solves a data-dependent opti-
mization problem to find an additive perturbation, such that a victim ASR
model transcribes the adversarial input audio to a target phrase as desired
by the adversary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.3. In untargeted universal attacks the adversary computes a single universal
perturbation which when added to any arbitrary audio signal, will likely
cause errors in transcription by a victim ASR. . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.4. WaveGuard Defense Framework: Input audio x is processed using an audio
transformation function g to obtain g(x). Next, ASR transcriptions or x and
g(x) are compared. An input is classified as adversarial if the difference
between the transcriptions of x and g(x) exceeds a particular threshold. . . 96

Figure 4.5. Steps involved in the Mel extraction and inversion transform (Section 4.3.4). 99

Figure 4.6. Model for linear predictive analysis of speech signals. . . . . . . . . . . . . . . . . . 101

xii



Figure 4.7. Detection AUC Scores against Carlini attack at varying compression levels
for the following transforms: (a) Quantization - Dequantization; (b) Down-
sampling - Upsampling; (c) Linear Predictive Coding (LPC); and (d) Mel
Spectrogram Extraction- Inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 4.8. Mean Character Error Rate (CER) is measured between ASR transcrip-
tions of un-transformed (x) and transformed (g(x)) audio for original and
adversarial pairs crafted using various attacks. . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.9. Detection ROC curves for different transformation functions against three
attacks (Carlini [1], Universal [2], Qin-I [3]) in the non-adaptive attack
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 4.10. Detection ROC curves for different transformation functions against adap-
tive attacks (Section 4.6.3) with various magnitudes of adversarial pertur-
bation (|δ |∞). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 4.11. Mean CER between the ASR transcriptions of un-transformed (x) and
transformed (g(x)) audio for adaptive attacks with an initial distortion
ε∞ = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 5.1. a. (Left) Stacked causal convolution layers without any dilations. b. (Right)
Stacked causal 1-d convolution layers with increasing dilation. Figures
from WaveNet paper [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 5.2. Basic queue operations (Push and Pop) performed in Fast inference algo-
rithm to achieve linear time in audio generation. . . . . . . . . . . . . . . . . . . . . . . 133

Figure 5.3. Acceleration Methodology for Autoregressive CNN synthesizing audio
and text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 5.4. (a) Schematic representation of the matrix multiplication engine and the
corresponding parallelization factors. (b) Realization of the tree-based
vector reduction algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 5.5. Log-Spectrograms of the 2-second audio generated from the TensorFlow
implementation (top) and FPGA FixedPointMME design implementation
(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 5.6. Design space exploration for the audio synthesis model on the Xilinx
XCVU13P FPGA. A: Throughput (Number of Samples generated per sec-
ond) of different designs. B: Normalized Resource Utilization of different
designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xiii



Figure 6.1. Expressive Voice Cloning Model: Tacotron-2 TTS model conditioned on
speaker and style characteristics derived from the target audio of a given
text. At inference time, the model can be provided independent references
for style and speaker encodings to achieve expressive voice cloning. . . . . . 157

Figure 6.2. Speaker similarity evaluation of each cloning technique for different voice
cloning tasks in terms of Speaker Classification Accuracy and Speaker
Verification Equal Error Rate (SV-EER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 6.3. Voice Conversion Approach Overview: The synthesis model is trained to
reconstruct the mel-spectrogram from SSL-based content representation of
a transformed audio (heuristic or self-transformed) and speaker embedding
of the original audio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure 6.4. (a) The feature extractor derives the duration augmented content infor-
mation from an SSL model, pitch information using PYin algorithm and
speaker embedding from a speaker verification model. (b) The synthesizer
reconstructs the mel-spectrogram from the derived features. . . . . . . . . . . . . 173

Figure 6.5. Left: SV-EER of voice-converted speech generated by Synth (SelfTrans-
form) using different amounts of target speaker data. Right: TSNE visual-
ization of speaker embeddings of generated (using Synth (SelfTransform))
and ground-truth audio. Each color represents a different speaker. . . . . . . . 180

Figure 7.1. Per-frame Deepfake Classification Models typically follow a two-step
pipeline: Face detection followed by binary classification. . . . . . . . . . . . . . . 188

Figure 7.2. Gradient saliency maps obtained on Deepfake videos using guided back-
propogation on a CNN-based detector [5]. The highlighted areas indicate
the image regions that strongly influence the detector’s predictions. . . . . . . 190

Figure 7.3. An overview of our attack pipeline to generate Adversarial Deepfakes. We
generate an adversarial example for each frame in the given fake video and
combine them together to create an adversarially modified fake video. . . . . 192

Figure 7.4. Attack success rate vs Quantization factor used for compression in H264
codec for robust white box attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Figure 7.5. Randomly selected frames of adversarial videos from attacks on the DFDC
detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Figure 7.6. Visualization of universal adversarial perturbations trained on different
Deepfake detection models at ε = 0.156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

xiv



Figure 7.7. Left: Visualization of the perturbed images using different magnitudes
(ε) of universal adversarial perturbations trained on EN-B7 NLab. Right:
Attack success rates of the universal attacks (Section 7.3.6) on different
victim models and their transferability to unseen detectors (test models). . 210

Figure 8.1. Schematic diagram of FastStamp watermarking pipeline. The pipeline
is divided into two steps: watermark insertion using a DNN encoder on
FPGA (top) and watermark extraction using a DNN decoder on a cloud
server (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Figure 8.2. FastStamp Encoder-Decoder Training: In both robust and semi-fragile
schemes, the encoder model encourages retrieval from the decoder model
under benign transforms. In the semi-fragile scheme, it maximizes message
retrieval error under tampered/malicious transforms. . . . . . . . . . . . . . . . . . . 219

Figure 8.3. An example of optimized secret message upsampling using linear layer
projection followed by nearest neighbor 2D upsampling. . . . . . . . . . . . . . . . 222

Figure 8.4. FastStamp Encoder Architecture. Our encoder network takes as input
an image x and the output of the secret message upsampler sprojM and
generates the watermarked image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Figure 8.5. Design overview of FastStamp Accelerator Platform. . . . . . . . . . . . . . . . . . . 225

Figure 8.6. Watermarking success metrics for different fixed-point representations. A
high value for both BRA and PSNR is desirable for accurate message
recovery and imperceptibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Figure 8.7. Sample image outputs of FastStamp optimized design and PyTorch imple-
mentation with the original image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

xv



LIST OF TABLES

Table 2.1. Victim model sets used for conducting our attack evaluations. Experiments
are conducted on both single and ensemble model sets. The verification and
identification metrics are averages over the whole model set reported on the
clean unperturbed VGGFace2 test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2.2. White-box and transfer attack results of ATN attack at ε = 0.03. A lower
value for all three metrics indicates a more successful attack. The diagonal
entries in each of the three tables represents a white-box attack while all
other entries represent a transfer (black-box) attack. . . . . . . . . . . . . . . . . . . . . 29

Table 2.3. Average Wall-Clock time in seconds required for generating a single adver-
sarial image on GPU (Nvidia Titan X) and CPU platforms using different
attacks. Time for RN-SF-1 process indicates the forward pass computation
time for a single ResNet Face Recognition model. . . . . . . . . . . . . . . . . . . . . . 33

Table 2.4. Model size, inference time and attack effectiveness comparison for different
architectures of the ATN model. Inference time is reported as the average
wall clock time for a single image on a single Nvidia Titan X GPU and CPU.
Attack effectiveness is reported at ε = 0.03. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 2.5. ATN attack results at ε = 0.03 on AWS and Azure face recognition APIs.
The ATN was trained jointly on RN-SF-6 and IN-SF-4. Recall(%) indicates
the verification accuracy on only the positive pairs in the evaluation set. For
verification, we use the default match threshold 0.5 for both AWS and Azure. 36

Table 2.6. Results of our algorithm for different allowed magnitude of universal adver-
sarial perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 2.7. Results of the same universal adversarial perturbation on two victim models:
Wavenet and Mozilla DeepSpeech. The universal perturbation was trained
on the DeepSpeech model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 3.1. Summary of datasets. |V | denotes the vocabulary size of each dataset. . . . . . 61

Table 3.2. Test accuracy of various classification models. We use character-level
models for Names-5 and Names-18 and word-level models for all other
tasks. 1-CNN is a single layer CNN model with filter width 5. . . . . . . . . . . 62

Table 3.3. Adversarial Reprogramming Experiments: The accuracies of white-box and
black-box reprogramming experiments on different combinations of original
task, adversarial task and model. White-box on Random Network column
presents results of the white-box attack on an untrained neural network. . . . 63

xvi



Table 3.4. Victim image classification networks used for adversarial reprogramming
experiments. We include the number of parameters of each model and also
the Top-1 and Top-5 test accuracy achieved on the ImageNet benchmark. . . 77

Table 3.5. Statistics of the datasets used for reprogramming tasks. We also include the
test accuracy of both neural network based and TF-IDF based benchmark
classifiers trained from scratch on the train set. . . . . . . . . . . . . . . . . . . . . . . . 77

Table 3.6. Results (% Accuracy on the test set) of adversarial reprogramming experi-
ments targeting four image classification models for six sequence classifica-
tion tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 3.7. Results of adversarial reprogramming when the target task has more labels
than the original task. The access of the adversary is constrained to class-
probabilities of q labels of the original (ImageNet) task. This evaluation is
done on pre-trained networks in an unbounded attack setting. . . . . . . . . . . . . 84

Table 4.1. Adversarial commands used for constructing targeted adversarial examples. 104

Table 4.2. Evaluations for each input transformation defense against various non-
adaptive attacks. We use two objective metrics: AUC score and Attack
Detection Accuracy for evaluation (higher values are better for both metrics). 104

Table 4.3. Sample transcriptions of un-transformed(x) and transformed audio(g(x)) for
both benign and adversarial examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 4.4. Average Wall-Clock time in seconds required for transcription of audio by
ASR models and each transformation function on Intel Xeon CPU platform.
The Wall-Clock time is averaged over the entire test set. . . . . . . . . . . . . . . . . 109

Table 4.5. Detection Threshold when using each transformation function in WaveG-
uard framework for DeepSpeech and Lingvo ASR systems. . . . . . . . . . . . . . 111

Table 4.6. Adaptive attack evaluations against different transformation functions. ε∞ is
the initial L∞ bound used and δ∞ is the mean L∞ norm of the perturbations
obtained after applying the adaptive attack algorithm. Bolded values indicate
the δ∞ required to completely break a particular defense. . . . . . . . . . . . . . . . 115

Table 4.7. Evaluation of LPC transform against straight-through gradient estimator. . 120

Table 4.8. Evaluation of Mel Extraction - Inversion and LPC transform defense against
perturbations targeting an undefended DeepSpeech ASR model at different
levels of magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xvii



Table 5.1. Audio synthesis model architecture: This model uses 2 blocks of dilated
convolutional layers with 14 layers each. The column Queue Size denotes
the number of floating point numbers stored in each queue and is equal to
QueueLength× InputChannels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 5.2. Text synthesis model architecture: The column Queue Size denotes the
number of floating point numbers stored in each queue and is equal to
QueueLength× InputChannels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Table 5.3. Design space exploration on Xilinx XCVU13P FPGA. We report the re-
source utilization of each of our designs. The percentages reported indicate
percentage of resources utilized by the design. . . . . . . . . . . . . . . . . . . . . . . . . 143

Table 5.4. Design space exploration on Xilinx XCVU13P FPGA. We report the perfor-
mance and correctness of each of our designs. MSE and LSD are measured
by comparing the generated audio from FPGA against corresponding GPU
implementations. Acc. indicates the prediction accuracy for text synthesis . 144

Table 5.5. Accelerator results on Xilinx Virtex UltraScale VCU108 FPGA (Smaller
board). We report the resource utilization for each design implementation.
The percentages reported indicate percentage of resources utilized by the
design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Table 5.6. Accelerator results on Xilinx Virtex UltraScale VCU108 FPGA (Smaller
board). We report performance and measured error in generation for each
design implementation. MSE and LSD are measured by comparing the
generated audio from FPGA against corresponding GPU implementations. 149

Table 5.7. Power Consumption and Wall-Clock time required when generating 1-
second audio for different implementations on different hardware platforms.
FPGA 1 refers to Xilinx XCVU13P and FPGA 2 refers to Xilinx Virtex
UltraScale VCU108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Table 5.8. Power Consumption and Wall-Clock time for networks required when
generating 16000 characters using our text synthesis network on different
hardware platforms. FPGA 1 refers to Xilinx XCVU13P and FPGA 2 refers
to Xilinx Virtex UltraScale VCU108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 6.1. Style similarity evaluations for the imitation and style transfer tasks. We use
three objective error metrics (lower values are better). For the style transfer
task we present the mean opinion scores on style similarity (Style-MOS)
with 95% confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Table 6.2. Mean Opinion Score (MOS) for speech naturalness with 95% confidence
intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xviii



Table 6.3. Reconstruction evaluation: The resynthesized speech from different synthe-
sizers is evaluated for intelligibility (CER), speaker similarity (SV-EER) and
prosodic similarity (GPE). Lower values are desirable for all three metrics. 178

Table 6.4. Comparison of different voice-conversion techniques. Lower values for SV-
EER and CER are desirable for higher speaker similarity and intelligibility
respectively. Higher MOS (reported with 95% confidence interval) indicates
more natural-sounding speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Table 6.5. Results on cross-lingual voice conversion task in three scenarios considering
different languages for source utterance and target speaker. Lower SV-EER
is desirable for higher speaker similarity and lower CER is desirable for
more intelligible speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Table 7.1. Accuracy of Deepfake detectors on the FaceForensics++ HQ Dataset as
reported in [6]. The results are for the entire high-quality compressed test
set of Deepfakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Table 7.2. Different Deepfake detection systems studied in our work with their respec-
tive classification models, face detection models and detection AUC scores
on the DFDC test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Table 7.3. Evaluation of various attacks on the two models XceptionNet and MesoNet
on the FaceForensics++ dataset. We report the average L∞ distortion be-
tween the adversarial and original frames and the attack success rate on
uncompressed (SR-U) and compressed (SR-C) videos. . . . . . . . . . . . . . . . . . 204

Table 7.4. Search distribution of hyper-parameters of different transformations used
for our Robust White box attack. During training, we sample three functions
from each of the transforms to estimate the gradient of our expectation over
transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Table 7.5. Attack success rates (SR-U) of the white-box (Section 7.3.2) and robust and
transferable attacks (Section 7.3.3) on different victim models and their
transferability to seen and unseen detectors (test models). . . . . . . . . . . . . . . . 207

Table 7.6. Attack success rates (SR-U) of the universal attacks (Section 7.3.6) on
different victim models and their transferability to unseen detectors (test
models). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Table 7.7. Evaluation of different attacks on a sequence based detector on the DFDC
validation dataset. The first row indicates the performance of the classifier
on benign (non adversarial) videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xix



Table 8.1. Capacity, imperceptibility, and BRA metrics of different watermarking
systems for images of size H ×W . High BRA is desirable for benign
transforms in both robust and semi-fragile systems. In semi-fragile systems,
a low BRA is desirable for tampering transforms. . . . . . . . . . . . . . . . . . . . . . . 228

Table 8.2. Design-space exploration for FPGA implementation of FastStamp on Xilinx
XCVU13P FPGA board. Our optimized 16-bit fixed point implementations
fit within the available resources while maintaining the same correctness
metrics as the 32-bit implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Table 8.3. Power consumption and wall-clock time (in milliseconds) required to gener-
ate a single watermarked image per implementation. . . . . . . . . . . . . . . . . . . . 233

xx



ACKNOWLEDGEMENTS

I would like to begin by expressing my deepest and most sincere gratitude to my PhD

advisor and committee chair Professor Farinaz Koushanfar. Her resolute guidance, profound

wisdom, and innovative ideas have been nothing short of invaluable throughout every step of

my doctoral journey. I consider myself incredibly fortunate to have had the privilege of being

mentored by such a remarkable and steadfast female researcher, whose dedication and support

have been the very cornerstone of my academic achievement. Under her tutelage, I have not only

grown academically but have also been inspired to embrace challenges and push the boundaries

of knowledge in my field. Professor Koushanfar’s unwavering belief in my potential has instilled

in me a newfound confidence and determination to pursue excellence in research, and I will carry

the lessons she imparted with me throughout my professional journey.

I am truly indebted to the remarkable community of professors I had the privilege of

meeting during my time at UCSD. My heartfelt appreciation goes to Professor Shlomo Dubnov

and Professor Julain McAuley for their invaluable feedback and collaboration on numerous

research projects. Their expertise and guidance have been instrumental in shaping the quality and

direction of my work, and I am immensely grateful for the opportunity to learn from them. I am

equally thankful to Professor Ryan Kastner, whose collaboration on my research and presence

on my committee have been of immense value. I would also like to thank Professor Gary Cottrell

for his constructive feedback on my research and Professor Tara Javidi for her support by serving

on my PhD committee.

Words fail to express the depth of my gratitude to Paarth Neekhara, whose collaboration

throughout my PhD journey has been an invaluable source of inspiration and strength. This

research was made possible by many brainstorming sessions, brimming with his brilliant ideas

and unwavering support. My heartfelt thanks go to him for being an exceptional partner in this

research endeavor.

I would like to express my sincere appreciation to the following researchers across

academia and industry, whose contribution was crucial to the research included in this dissertation:

xxi



Javier Duarte, Mojan Javaheripi, Xinqiao Zhang, Nojan Sheybani, Malhar Jere, Jinglong Du,

Brian Dolhansky, Joanna Bitton, Cristian Canton Ferrer, Van Nguyen, Shuhua Zhang, Erik

Visser, Jocelyn Huang, Jason Li, Boris Ginsburg. I am also grateful for the privilege of meeting

some remarkable scholars and colleagues at UCSD, who shared the same passion for knowledge

and discovery: Lorraine Hossain, Siam Hussain, Huili Chen, Mohammad Samragh, Sadegh

Riazi, Jung-woo Chang, Ruisi Zhang, Nasimeh Heydaribeni, Zahra Ghodsi, Seira Hidano,

Soheil Shabgahi, Shashank Balla, Yaman Jandali, Rishabh Ranjan and Angelique Taylor. Their

presence and shared enthusiasm fostered a supportive and inspiring environment, that nurtured

both personal growth and learning. Additionally, I would like to extend my sincerest gratitude

to the UCSD ECE graduate student affairs department, particularly Teresa Chiu for creating a

welcoming and supportive environment for me, where I always felt comfortable approaching her

with any concerns or challenges I faced.

Finally, I would like to acknowledge the unwavering support and understanding of my

friends and family throughout this challenging yet rewarding journey. My parents Zakia Sultana,

Zahid Hussain, brother Saquib Hussain and friends Risana Nahreen Malik, Shehtaz Huq, Salwa

Hoque, Omid Meh, Navin Rahman, Ruha Aziz, Prakhar Pandey, Palash Agarwal, Soham Shah,

Mathew Sam, Erik Seetao, Barsha Dash, Safwan Haque, Safwan Saif, Chitula Chipimo, Jialei

Xu, Hannah Rosen and Frida Moller. Their encouragement, patience, and belief in my abilities

have sustained me during moments of self-doubt and have given me the strength to persevere.

Chapter 2 contains material found in the following two papers (1) ReFace: Adversarial

Transformation Networks for Real-time Attacks on Face Recognition Systems. IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks, 2023. Hussain, Shehzeen; Huster,

Todd; Mesterharm, Chris; Neekhara, Paarth; Koushanfar, Farinaz. (2) Universal Adversarial

Perturbations for Speech Recognition Systems. Interspeech, 2019. Neekhara, Paarth; Hussain,

Shehzeen; Pandey, Prakhar; Dubnov, Shlomo; McAuley, Julian; Koushanfar, Farinaz. The

dissertation author was the primary investigator and author of paper (1). The dissertation author

and Paarth Neekhara made equal contributions to the work done in paper (2).

xxii



Chapter 3 is a reprint of the material as it appears in two papers (1) Adversarial Repro-

gramming of Text Classification Neural Networks. Empirical Methods in Natural Language

Processing, 2019. Neekhara, Paarth; Hussain, Shehzeen; Dubnov, Shlomo; Koushanfar, Farinaz.

(2) Cross-modal Adversarial Reprogramming. IEEE Winter Conference on Applications of

Computer Vision, 2022. Neekhara, Paarth; Hussain, Shehzeen; Du, Jinglong; Dubnov, Shlomo;

Koushanfar, Farinaz; McAuley, Julian. The dissertation author and Paarth Neekhara made equal

contributions to this work.

Chapter 4 is a reprint of the material as it appears in WaveGuard: Understanding

and Mitigating Audio Adversarial Examples. USENIX Security Symposium, 2021. Hussain,

Shehzeen; Neekhara, Paarth; Dubnov, Shlomo; McAuley, Julian; Koushanfar, Farinaz. The

dissertation author was the primary investigator and author of this paper.

Chapter 5 is a partial reprint of the material as it appears in FastWave: Accelerating

Autoregressive Convolutional Neural Networks on FPGA. IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), 2019. Hussain, Shehzeen; Javaheripi, Mojan; Neekhara,

Paarth; Kastner, Ryan; Koushanfar, Farinaz. The dissertation author was the primary investigator

and author of this paper.

Chapter 6 contains material found in the following two papers. (1) Expressive Neural

Voice Cloning. Neekhara, Paarth; Hussain, Shehzeen; Dubnov, Shlomo; Koushanfar, Farinaz;

McAuley, Julian. Asian Conference on Machine Learning 2021. (2) Controllable Speech Syn-

thesis with Iterative Refinement using Self Transformations. 2023. Neekhara, Paarth; Hussain,

Shehzeen; Ranjan, Rishabh; Dubnov, Shlomo; Koushanfar, Farinaz; McAuley, Julian. Cur-

rently under review for publication. The dissertation author and Paarth Neekhara made equal

contributions to this work.

Chapter 7 contains material found in the following two papers. (1) Adversarial Deepfakes:

Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples. Hussain, Shehzeen;

Neekhara, Paarth; Jere, Malhar; Koushanfar, Farinaz; McAuley, Julian. IEEE Winter Conference

on Applications of Computer Vision, 2021. (2) Exposing Vulnerabilities of Deepfake Detection

xxiii



Systems with Robust Attacks. Hussain, Shehzeen; Neekhara, Paarth; Dolhansky, Brian; Bitton,

Joanna; Canton, Cristian; McAuley, Julian; Koushanfar, Farinaz. ACM Journal on Digital

Threats: Research and Practice, Vol 3, 2022. The dissertation author was the primary investigator

and author of these papers.

Chapter 8 is a reprint of the material as it appears in FastStamp: Accelerating Neural

Steganography and Digital Watermarking of Images on FPGAs. IEEE/ACM International

Conference on Computer-Aided Design, 2022. Hussain, Shehzeen; Sheybani, Nojan; Neekhara,

Paarth; Zhang, Xinqiao; Duarte, Javier; Koushanfar, Farinaz. The dissertation author was the

primary investigator and author of this paper.

This dissertation was supported, in parts, by the Charles Lee Powell Foundation Fellow-

ship, NSF TILOS AI institute award number 2112665, NSF-CNS award number 2016737, ARO

(W911NF1910317), ARO MURI (W911NF20S0009), SRC-Auto (2019-AU-2899), DoD UCR

W911NF2020267 (MCA S-001364), Defense Advanced Research Projects Agency (DARPA)

contract HR00112090093, and in part, by the U.S. Government.

xxiv



VITA

2014 B.A. in Physics, Mount Holyoke College

2015 B.S. in Electrical Engineering, University of Massachusetts Amherst

2019 M.S. in Electrical Engineering (Computer Engineering), University of California
San Diego

2023 Ph.D in Electrical Engineering (Computer Engineering), University of California
San Diego

PUBLICATIONS

Shehzeen Hussain, Todd Huster, Chris Mesterharm, Paarth Neekhara, Farinaz Koushanfar
“ReFace: Adversarial Transformation Networks for Real-time Attacks on Face Recognition
Systems”, to appear in Proceedings of IEEE International Conference on Dependable Systems
and Networks (DSN), 2023

Shehzeen Hussain*, Paarth Neekhara*, Jocelyn Huang, Jason Li, Boris Ginsburg “ACE-VC:
Adaptive and Controllable Voice Conversion using Explicitly Disentangled Self-supervised
Speech Representations”, to appear in Proceedings of IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 2023

Jung-Woo Chang, Nojan Sheybani, Shehzeen Hussain, Mojan Javaheripi, Seira Hidano, Farinaz
Koushanfar “NetFlick: Adversarial Flickering Attacks on Deep Learning Based Video Com-
pression”, in Proceedings of International Conference on Learning Representations (ICLR)
Workshop on ML4IoT, 2023

Shehzeen Hussain*, Nojan Sheybani*, Paarth Neekhara*, Xinqiao Zhang, Javier Duarte, Fari-
naz Koushanfar “FastStamp: Accelerating Neural Steganography and Digital Watermarking of
Images on FPGAs”, in Proceedings of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2022

Shehzeen Hussain*, Paarth Neekhara*, Brian Dolhansky, Joanna Bitton, Cristian Canton
Ferrer, Julian McAuley, Farinaz Koushanfar “Exposing Vulnerabilities of Deepfake Detection
Systems with Robust Attacks”, in Proceedings of ACM Journal on Digital Threats Research and
Practices (DTRAP), 2022

Shehzeen Hussain, Van Nguyen, Shuhua Zhang, Erik Visser “Multi-task Voice Activated
Framework using Self-supervised Learning”, to appear in Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022

xxv



Paarth Neekhara*, Shehzeen Hussain*, Jinglong Du, Shlomo Dubnov, Farinaz Koushanfar,
Julian McAuley “Cross-modal Adversarial Reprogramming”, in Proceedings of IEEE Winter
Conference on Applications of Computer Vision (WACV), 2022

Paarth Neekhara*, Shehzeen Hussain*, Shlomo Dubnov, Farinaz Koushanfar, Julian McAuley
“Expressive Neural Voice Cloning”, in Proceedings of Asian Conference on Machine Learning
(ACML), 2021

Shehzeen Hussain*, Paarth Neekhara*, Shlomo Dubnov, Julian McAuley, Farinaz Koushanfar
“WaveGuard: Understanding and mitigating audio adversarial examples”, in Proceedings of
USENIX Security (USENIX), 2021

Shehzeen Hussain*, Paarth Neekhara*, Malhar Jere, Julian McAuley, Farinaz Koushanfar
“Adversarial DeepFakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Exam-
ples”, in Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV),
2021

Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov, Farinaz Koushanfar “Adversarial Repro-
gramming of Text Classification Neural Networks”, in Proceedings of Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2019

Paarth Neekhara*, Shehzeen Hussain*, Prakhar Pandey, Shlomo Dubnov, Julian McAuley,
Farinaz Koushanfar “Universal Adversarial Perturbations for Speech Recognition Systems”, in
Proceedings of Interspeech 2019

Shehzeen Hussain, Mojan Javaheripi, Paarth Neekhara, Ryan Kastner, Farinaz Koushanfar
“FastWave: Accelerating Autoregressive Convolutional Neural Networks on FPGA”, in Proceed-
ings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2019

xxvi



ABSTRACT OF THE DISSERTATION

Robust and Efficient Deep Learning for Multimedia Generation and Recognition

by

Shehzeen Samarah Hussain

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2023

Professor Farinaz Koushanfar, Chair

Deep Neural Networks (DNNs) have transformed the field of multimedia generation and

recognition by replacing traditional hand-engineered systems in domains like vision, speech

and text. This is because DNNs can operate end-to-end and model complex dependencies

yielding state-of-the-art results on several generation and recognition benchmarks. However,

there are three key challenges that need to be addressed for the practical, secure and reliable

deployment of DNN-based media processing systems: 1) Robustness: DNNs are vulnerable to

adversarial attacks, 2) Data-Requirement: DNNs often require large amounts of labelled data, 3)

Compute-Efficiency: DNNs require extensive compute and resources.

My research focuses on addressing the above three challenges of DNN based multimedia

xxvii



generation and recognition systems. On the robustness side, I first analyze practical vulnerabilities

of DNN-based recognition systems and then propose a robust defense framework that can

reliably identify adversarial inputs using perceptually informed input transformations. To address

the challenge of data-requirement, I develop training frameworks that can effectively adapt

foundation models trained using self-supervised learning for recognition and synthesis tasks

in a data-efficient manner. Finally, to address the challenge of compute-efficiency, I propose

acceleration methods using hardware-software codesign that significantly reduce the latency and

resource-requirement while preserving the synthesis quality of DNN generators.

xxviii



Chapter 1

Introduction

Multimedia recognition and multimedia synthesis are two interconnected yet distinct

fields within the domain of multimedia processing. While both involve the analysis and under-

standing of multimedia data, they differ in their primary objectives and methodologies. Multi-

media recognition focuses on the task of automatically identifying and categorizing different

types of media content. It involves the development of algorithms and models that can accurately

recognize and classify images, videos, audio, and textual information. For instance, in image

recognition, the goal is to determine the content of an image, such as identifying objects, scenes,

or specific visual patterns. Similarly, in speech recognition, the aim is to transcribe spoken words

in an audio signal into written text, enabling applications like voice assistants or transcription

services. Other examples of multimedia recognition include video action recognition, sentiment

analysis in text, or music genre classification.

On the other hand, multimedia synthesis involves the generation or creation of new

multimedia content based on given inputs or desired specifications. It encompasses algorithms

and techniques for generating realistic or novel media content, such as images, videos, audio, and

text. For instance, in image synthesis, generative models like generative adversarial networks

(GANs) [7] can generate realistic images that resemble a given style or set of attributes. Text-

to-speech synthesis algorithms can convert written text into natural-sounding speech. Video

synthesis techniques can be used to generate new videos by altering existing footage or creating

1



entirely new visual sequences. These examples highlight the creative aspect of multimedia

synthesis, enabling applications like virtual reality, content generation, or artistic expression.

Deep Neural Networks (DNNs) have had a profound impact on the field of multimedia

recognition and synthesis, revolutionizing the way we approach and solve complex problems in

this domain. With their ability to learn and extract intricate patterns and representations from

large amounts of data, neural networks have significantly improved the accuracy and efficiency

of multimedia recognition tasks. They have surpassed traditional hand-engineered approaches

by automatically learning hierarchical features and capturing contextual dependencies, resulting

in state-of-the-art performance in tasks such as image classification, object detection, speech

recognition, and natural language processing. Moreover, neural networks have facilitated

the development of sophisticated multimedia synthesis techniques by enabling the generation

of highly realistic and novel media content. Generative models like GANs and variational

autoencoders (VAEs) have demonstrated remarkable capabilities in image and video synthesis,

speech synthesis, and even text generation. The advent of neural networks has propelled the

field forward, unlocking new possibilities and pushing the boundaries of what can be achieved in

multimedia recognition and synthesis.

Although neural networks have made remarkable contributions and achieved significant

advancements in the field of multimedia recognition and synthesis, they are not without their

limitations. Their main limitations can be categorized into three key challenges: vulnerability to

adversarial examples, large data requirements, and substantial compute and resource demands.

Despite their numerous strengths and successes, it is essential to acknowledge and address these

limitations in order to fully harness the potential of neural networks in multimedia applications.

Challenge 1: Limited Robustness: DNNs are vulnerable to adversarial examples, which

are carefully crafted inputs designed to deceive the network into making incorrect predictions.

These examples contain imperceptible perturbations that can lead to significant changes in the

network’s output. This poses a critical concern for the reliability and robustness of neural

networks, particularly in safety-critical applications. Developing effective defense mechanisms

2



to mitigate the impact of adversarial attacks is crucial to ensure the trustworthiness and security

of neural network-based systems.

Challenge 2: Large Data Requirement: DNNs heavily rely on large amounts of labelled data

for training, in order to achieve state-of-the-art performance on benchmark tasks. Gathering

and annotating extensive datasets can be a resource-intensive and time-consuming process.

Additionally, in domains where labeled data is scarce or expensive to obtain, the reliance on

large-scale labeled datasets becomes a significant limitation.

Challenge 3: Compute and Resource Requirement: The compute and resource requirements

of neural networks are substantial. Training DNNs with millions or even billions of parameters

can be computationally expensive, requiring high-performance hardware and extensive com-

putational resources. Deployment of these models on resource-constrained devices or within

real-time systems can pose significant challenges due to their demanding nature. Developing

efficient model architectures, optimizing algorithms, and exploring hardware accelerators are

crucial for reducing the compute and resource requirements while maintaining or improving

performance.

The research presented in this dissertation provides solutions to addresses the above

challenges and aims to facilitate the practical deployment of deep learning models for multimedia

processing. The subsequent sections detail my research contributions in tackling these three

challenges.

1.1 Robustness of Deep Learning Models

Ensuring the robust and reliable deployment of DNNs has become crucial, particularly

as they are increasingly utilized in safety-critical applications like autonomous vehicles, medical

diagnosis, personal devices and security systems. To address the robustness challenges of deep

learning models to adversarial inputs, in my research, I first assess the vulnerability of DNNs to

adversarial attacks in different threat scenarios and data domains. Having exposed vulnerabilities

3



Figure 1.1. Research Overview: My research investigates robust and efficient deep learning
techniques for multimedia generation and recognition.

and security threats to deep learning models, I then propose novel and robust frameworks to

defend against adversarial attacks.

1.1.1 Vulnerabilities of Deep Learning Models to Adversarial Attacks

While past research has demonstrated that DNNs are vulnerable to adversarial examples,

crafting such inputs often requires an iterative optimization approach thereby introducing sig-

nificant latency. In this dissertation, I present my research on unveiling new real-time threats

against DNNs that can more practically exploit vulnerabilities of these networks leading to

incorrect outputs during inference. In Chapter 2, I describe two such real-time adversarial attack

algorithms that I have developed to study the vulnerabilities of DNN-based face recognition and

speech recognition systems. These attacks are based on input transformation functions that are

either trained as a feed-forward neural network or a universal additive perturbation, such that they

cause the victim model to mis-predict a given input. In Chapter 7, I describe my work Adversarial

Deepfakes which extends real-time adversarial attacks to target DNN based Deepfake media

detection systems. This renders such detection systems obsolete in safety-critical real-world

environments, allowing synthetically-generated media to convincingly bypass detection and

appear as authentic media on surveillance footage or media sharing platforms.

4



In Chapter 3, I describe my work that studies another related DNN vulnerability termed

Adversarial Reprogramming. In adversarial reprogramming, the task of the attacker is to repur-

pose a given DNN for an alternate task using computationally inexpensive input transformation

functions. In this setting, I first develop a method to repurpose sequence classification networks

for alternate sequence classification tasks. Next, I consider a more challenging threat scenario

of cross-domain adversarial reprogramming and demonstrate that image classification models

can be effectively reprogrammed for text and sequence classification tasks using simple input

transformation functions.

1.1.2 Defenses for Mitigating Adversarial Attacks

Having unveiled the above vulnerabilities of DNNs, my research develops two defense

frameworks to guard DNNs against adversarial attacks in the speech and image domain. To

mitigate adversarial attacks in the speech domain, I propose WaveGuard, the first formal defense

framework for protecting automatic speech recognition models against adversarial inputs, even

in challenging adaptive attack settings. Chapter 4 of this dissertation details the WaveGuard

defense framework, which leverages the observation that model predictions for adversarial

inputs are unstable while those for benign inputs are robust to small changes in the input.

Therefore, WaveGuard applies input transformation functions to audio inputs and analyzes the

transcriptions of original and transformed audio to differentiate between adversarial and benign

inputs. WaveGuard achieves state-of-the-art performance in detecting audio adversarial samples,

operates in real-time, and boasts low computational overhead, making it readily deployable to

safeguard real-world automatic speech recognition models.

To mitigate adversarial attacks in the image and video domain, I propose FastStamp

which leverages secure and proactive watermarking to preserve the authenticity of real media.

Chapter 8 of this dissertation details the FastStamp encoder-decoder network which is trained

end-to-end to embed a secure and verifiable secret message into images and videos at the time of

their capture from a device and establish media authenticity. The secret watermark is designed to

5



be recoverable when benign transformations such as compression, color and contrast adjustments

are applied. However, if a facial manipulation (e.g. DeepFake) is applied to the image/video, the

watermark should break. By ensuring this selective fragility of the watermark, we can reliably

prove the authenticity of real and original media. FastStamp stands out for its combination of

parameter efficiency and real-time performance, surpassing other neural image watermarking

models in both robust and semi-fragile watermarking, and achieving state-of-the-art results.

1.2 Compute Efficient Design for Neural Media Synthesis

DNNs are computationally expensive and are typically represented by millions of train-

able parameters. The recent advances in deep learning are suggesting a shift towards even larger

neural network architectures which further increases the size and computation requirement for

training and inference of DNNs. Typically these models are deployed on high performance

GPUs, which makes them suitable for only cloud-hosted servers with a GPU grid. To achieve

more efficient deployment of deep learning models in resource constrained settings such as

IoT, personal and edge devices, my research looks into acceleration of neural networks using

hardware-software codesign. I propose solutions to optimize deep learning execution on diverse

hardware platforms, enabling more hardware-friendly DNN model design and accelerating

inference speed by leveraging customizable and reprogrammable platforms.

This dissertation presents two frameworks that accelerate DNN model inference on

programmable hardware platforms such as FPGAs, which allows for more efficient neural

network performance on smaller edge devices and addresses the practical challenge of real-world

neural network deployment. In Chapter 5.3.3, I describe FastWave, a general purpose accelerator

for autoregressive convolutional neural networks (CNNS). Autoregressive CNNs are commonly

used for sequence generation tasks like speech and text synthesis. While such networks can

be trained efficiently using parallel computation, they have high latency during inference due

to their autoregressive nature. FastWave addresses the inference challenges for autoregressive

6



CNNs using hardware-software codesign. We implement an efficient inference algorithm on

FPGA and achieve 66 times faster generation speed compared to CPU implementation and 11

times faster generation speed than GPU implementation for a popular DNN-based autoregressive

speech synthesis model.

In Chapter 8, I describe FastStamp, an acceleration framework for CNN-based U-Net

models. U-Net models are commonly used for image synthesis tasks such as text-to-image

synthesis, image-to-image translation, image watermarking and steganography. In FastStamp,

we propose a parameter-efficient U-Net architecture that matches the performance of much

larger U-Net models for the task of image watermarking, while being significantly faster and

resource efficient. We then design an FPGA-based accelerator framework to further improve

the model throughput and power consumption by leveraging data parallelism and customized

computation paths. Our best design enables real-time image watermarking and achieves 68

times faster inference as compared to GPU implementations of prior DNN based watermarking

encoder, while consuming significantly less power.

1.3 Data Efficient Training for Neural Media Synthesis

Aside from being computationally expensive, DNNs also typically require large amounts

of training data. Therefore, learning to solve tasks which have limited training data is another

common challenge for deep learning researchers. To address this issue of data efficiency, I have

proposed training solutions that leverage self-supervised learning (SSL) for solving tasks with

limited training data. Self-supervised learning methods aim to learn meaningful representations

from large amounts of unlabelled data in various domains including text, speech and vision.

While previous research has shown that SSL representations can be useful for downstream

recognition tasks, the efficacy of such representations for generation tasks had not been explored.

In my research, I propose methods that utilize SSL representations for controllable synthesis

tasks in the speech domain. Particularly, I propose methods for generating natural and expressive

7



speech, that enable creating a digital clone of a new voice in data-limited settings and using

only a few reference audio samples. The techniques I develop using SSL, enable DNNs to

learn meaningful representations of speech in a language-agnostic manner from readily available

unlabeled audios. These DNNs can be fine-tuned on smaller amount of data from unseen target

languages, to generate contextualized representations which are highly effective for synthesizing

speech in the respective target language.

Chapter 6 of this dissertation describes two speech synthesis frameworks which I have

developed that can synthesize natural-sounding speech for a new speaker using just a few

seconds of training data of the given speaker. First, I propose a data-efficient text-to-speech

(TTS) synthesis framework to generate natural-sounding and expressive speech for a new speaker

using zero-shot and few-shot learning methods. To achieve the goal of data-efficient TTS

synthesis, we condition a base text-to-speech synthesizer with speaker embeddings derived

from a speaker verification model and heuristically derived pitch information. Our proposed

method significantly outperforms baseline methods on metrics evaluating speech naturalness and

expressivity for a new speaker using just a few seconds of audio of the target speaker.

In addition to my work on TTS synthesis, I also develop methods for speech-to-speech

voice conversion, where the goal is to convert the voice of a given speech utterance to match

the vocal qualities of a target speaker. To this end, I first propose a multi-task finetuning

strategy to derive speech representations describing content and speaker characteristics from

a pre-trained SSL model. To disentangle content and speaker representations, we propose a

training strategy based on Siamese networks that encourages similarity between the content

representations of the original and pitch-shifted audio. Next, we develop a synthesis model

with pitch and duration predictors that can effectively reconstruct the speech signal from its

decomposed representation. Our framework allows controllable and speaker-adaptive synthesis

to perform zero-shot any-to-any voice conversion.

Finally, I propose a data-efficient speech synthesis system that can be trained in a

completely text-free manner using imperfectly disentangled SSL representations. By removing

8



the dependence on text, we design universal language-independent models that do not require

transcribed speech files for training and is particularly useful for low-resource languages where

we have limited audio data and often without parallel text transcripts. To allow explicit control

over the content and speaker characteristics during synthesis, we develop a training strategy to

iteratively improve the synthesizer, by challenging its capabilities using self-synthesized training

examples. That is, during training, we utilize the current state of the synthesizer to generate

voice-converted variants of a given utterance to be used as inputs for the reconstruction task.

We demonstrate that incorporating such self-synthesized training examples improves model

performance as compared to a model trained solely on heuristically perturbed inputs. Our

framework is trained without any text and is applicable to a range of tasks such as zero-shot

voice conversion, voice conversion across different languages, and controllable speech synthesis

with pitch and pace modifications. Our framework achieves state-of-the-art results in voice

conversion for both seen and unseen speakers, evaluated on naturalness, speaker similarity, and

intelligibility metrics. Such expressive voice cloning systems that operate in real-time are useful

in empowering individuals who have lost their ability to speak. In multilingual settings where

data is generally scarce, my approach enables DNNs to generate more accurate and contextually

relevant speech. Additionally, my work can aid in education and schooling systems to empower

individuals with reading and visual disabilities.

9



Part I

Robust Deep Learning

10



Chapter 2

Vulnerabilities of DL to Adversarial At-
tacks

Recent advances in adversarial Deep Learning (DL) have opened up a largely unexplored

surface for malicious attacks jeopardizing the integrity of autonomous DL systems. Machine

learning models like image/video classifiers, face recognition systems and speech recognition

systems are vulnerable to adversarial attacks. Adversarial attacks refer to carefully crafted

perturbations applied to input data that are imperceptible to human observers but can lead to

erroneous predictions or misclassification by the machine learning model. The implications of

this threat are significant, particularly in real-world settings where machine learning models are

deployed.

While DNNs have been shown to be vulnerable to adversarial examples, crafting such

adversarial inputs often requires an iterative optimization approach assuming white-box access

to the model. In real world settings, the weights of the victim DNN models can be easily kept

private thereby preventing a white-box attack. Moreover, the added latency of the adversarial

example generator can be too high to pose any practical threat. For my research on evaluating

DNN vulnerabilities, I consider a more practical attack scenario and seek to answer the following

question: Can adversarial examples be generated in real-time and bypass unseen models in a

black-box setting?

In this chapter, I first provide a brief background of adversarial example generation

11



using first-order gradients. Next, I describe two attack frameworks that I developed to generate

adversarial examples in real-time. The first framework trains an Adversarial Transformation

Network (ATN) to generate adversarial inputs given a benign input. We train the ATN to target

face-recognition models by formulating training objectives that focus on the embedding space and

optimizing metrics that degrade the identification and verification performance of such models.

Once trained the ATN can generate highly transferable adversarial inputs in real-time. The second

attack framework proposes an algorithm to generate universal adversarial perturbations for speech

recognition systems. The algorithm can generate a single quasi-imperceptible perturbation that

can be added to any audio signal to cause a victim speech recognition model to mistranscribe an

audio signal.

2.1 Adversarial Examples

Adversarial examples are intentionally designed inputs to a machine learning (ML)

model that cause the model to make a mistake [8]. Prior work has shown a series of first-order

gradient-based attacks to be fairly effective in fooling DNN based models in image [9, 10, 11,

12, 13, 14, 15], audio [1, 16, 2] and text [17, 18, 19] domains. The objective of such adversarial

attacks is to find a good trajectory that (i) maximally changes the value of the model’s output

and (ii) pushes the sample towards a low-density region as indicated by the magenta arrow in

Figure 2.1. This is equivalent to the ML model’s first-order gradients with respect to input

features. Aside from utilizing only first-order gradients, prior work [20] shows that the adversary

can additionally utilize the second order gradients and take iterative steps to craft the adversarial

sample as shown by black arrows in Figure 2.1(b). Such an objective can be used in adaptive

attack [20] settings where an attacker has some knowledge of a defense existing to enhance

robustness of the ML model.

Adversarial attacks can be categorized as either black-box or white-box, depending on

the underlying threat model. In the white-box scenario, the attacker has complete access to

12



ba

Figure 2.1. (a) First order attack achieved by following the gradient direction (magenta arrow)
across the boundary into low density region. (b) Multi-step second-order attacks (black arrows)
can still generate successful adversarial samples against robust models.

the victim’s DNN, including its model architecture and parameters. This allows them to utilize

gradient-based optimization techniques in order to discover the perturbation. In the black-box

attack scenario, the adversary does not have access to the internals of the DNN. As such, proposed

attacks use black-box optimization algorithms [21, 22] or surrogate models [23, 24, 2] to find an

effective perturbation.

2.2 Vulnerabilities of DL based Face Recognition

Face recognition and verification systems are widely used for identity authentication

in government surveillance, military applications, public security settings such as airports,

hotels, banks as well as smartphones to unlock applications. Over recent years, Convolutional

Neural Networks (CNNs) have achieved state-of-the-art results on several face recognition and

verification benchmarks outperforming traditional computer vision algorithms that rely on hand

engineered features. With the widespread adoption of face recognition models in surveillance

and other security sensitive applications, careful vulnerability analysis is imperative to ensure

their safe deployment.

Several works have shown that deep neural networks (DNNs) are vulnerable to adversarial

13



examples, causing the model to make an incorrect prediction with higher confidence [20, 13, 25,

26, 9]. Particularly, past attacks [27, 28] on face recognition systems have garnered immense

media attention [29, 30] by utilizing projected gradient descent (PGD) [31] based approaches to

achieve high fooling success rates. However, designing such adversarial examples requires the

adversary to solve an optimization problem for each input. This makes the attack impractical in

real-time since the adversary would need to re-solve the data-dependent optimization problem

from scratch for every new input. The aforementioned methods for generating adversarial

examples may cause a timing bottleneck that could hinder real-time image uploads, making

it impractical to deploy such attacks. This bottleneck becomes even more pronounced when

dealing with videos, where adversarial examples need to be generated for multiple frames per

second. For example, during surveillance real-time face recognition models operate on live

video streams from security cameras or webcam interfaces. In order to expose any real-time

security vulnerabilities in such systems, it is necessary to generate an adversarial video stream in

real-time as well.

Benign AdversarialAdversarialReface 
ATN

Figure 2.2. Real-time ReFace attack on a face recognition model operating on a live video
stream. ReFace uses an Adversarial Transformation Network to inject adversarial perturbations
into the video frames causing the face recognition model to mis-predict the identity of the subject
in the video.

To generate adversarial attacks against classification systems in real-time, some past

works, such as Adversarial Transformation Networks (ATNs) [32], have attempted to learn a

perturbation function with a neural network. ATNs are encoder-decoder neural networks that

are trained to generate an adversarial image directly from an input image without having to

14



perform multiple forward-backward passes on the victim classification model during inference,

thereby making the attack possible in real time. However, ATNs have only been explored for

classification tasks. The training objective studied thus far for an ATN is to push the classifier’s

output outside the decision boundary of the correct class. Unlike a classification model, where

model outputs are class probabilities, the output space of a typical face recognition system is

an embedding vector. A face recognition system is trained to cluster the embeddings of the

same identity together in the embedding space while ensuring they are well separated from the

embeddings of other identities. Therefore when attacking such a setup, the attack objective

requires the adversary to target the embedding space rather than the decision boundaries of the

classifier.

To perform attacks on face recognition models, we first develop training objectives

that target the embedding space of face recognition models and optimize metrics that degrade

the identification and verification performance of such models. To minimize perceptibility of

our perturbations, we incorporate Learned Perceptual Image Patch Similarity Lpips perceptual

loss [33] in addition to the L∞ constraint during training. Next, to perform real-time attacks, we

design a new ATN based on the U-net [34] architecture, since U-nets have been notably effective

in many prior image-to-image translation tasks [35, 36]. We find that while a U-net based ATN

can generate real-time adversarial examples, the attack performance falls short as compared

to per-image gradient based attacks such as PGD [31] at the same magnitude of adversarial

perturbation. This is because gradient-based attacks generate highly tailored adversarial examples

that are optimized on a single image. We address the performance gap between ATN and PGD

attacks through neural architectural improvements to our ATN model which we describe in

Section 2.2.3.

Having bridged the gap with gradient based attacks on seen victim models, we evaluate

the transferability of our adversarial samples to unseen models. Since ATNs are trained on a

diverse set of images, we find that perturbations generated from an ATN are more transferable to

unseen architectures as compared to per-input PGD attack, while being much faster to compute.

15



To further improve our attack transferability, we adapt our ATN training framework to target

an ensemble of face recognition models with various backbone architectures. Our best ATN

attacks on unseen models successfully reduce the performance of face recognition models to

the level of random guessing or worse. We present a demo video of our attack in real-time on

our project webpage 1 with sample images presented in Figure 2.2. Finally, we demonstrate our

attack effectiveness against cloud-hosted face recognition APIs in a complete black-box setting.

The technical contributions of our work are as follows:

• We propose a real-time attack framework to study the robustness of face recognition

systems and demonstrate that our proposed ATN can synthesize adversarial examples

several orders of magnitude faster than existing attacks on face recognition systems while

achieving comparable attack success metrics as past works. To the best of our knowledge

this is the first real-time attack on face recognition systems, in contrast to previous works

which perform gradient based attacks or study real-time attack only in the classification

domain.

• We bridge the performance gap between real-time ATN attacks and PGD attacks by

developing a Residual U-net architecture that allows us to effectively increase the capacity

of the ATN (Section 2.2.3). Our ResU-Net ATN approaches PGD performance in white-

box attacks and outperforms PGD on black-box transfer attacks.

• We develop and release a benchmarking library for face recognition models (Section 2.2.4),

implemented in the PyTorch framework. This allows us to evaluate our attacks on diverse

set of architectures and loss functions. This library may be used to develop more robust face

recognition models and to provide benchmarks of models’ performance in an adversarial

setting.

• We demonstrate the effectiveness of our real-time attacks on commercial face recognition

1Demo video: https://refaceattack.github.io/

16

https://refaceattack.github.io/


services such as Amazon Face Rekognition and Microsoft Azure Face. Our attacks reduce

face identification accuracy from 82% to 16.4% for AWS SearchFaces and face verification

accuracy from 91% to 50.1% for Microsoft Azure.

Benign Sample Adversarial Sample 

Face 
Recognition

Model

Face 
Recognition

Model

Not Match Robert Downey Jr.

Setup 1 : Verification Setup 2 : Identification

Benign 
Probe Image 

Adversarial 
Probe Image 

Adversarial 
Probe Image Database 

Gallery

X

Encoder-Decoder

g: ATN Perturbation

Figure 2.3. Overview of ReFace adversarial perturbation generator (top) and attack application
on face verification and identification systems (bottom).

2.2.1 ReFace: Adversarial Transformation Networks for Real-time
Attacks on Face Recognition Systems

In this section, I describe our proposed approach: ReFace [37], a real-time, highly-

transferable attack framework on face recognition models leveraging Adversarial Transformation

Networks (ATNs). Past attacks on face recognition models require the adversary to solve an

input-dependent optimization problem using gradient descent making the attack impractical in

real-time. Such adversarial examples are also tightly coupled to the victim model and are not

as successful in transferring to different models. We find that the white-box attack success rate

of a pure U-Net ATN falls substantially short of gradient-based attacks like PGD on large face

recognition datasets. We therefore develop a new architecture for ATNs that closes this gap while

maintaining a 10000× speedup over PGD. Furthermore, we find that at a given perturbation

17



magnitude, our ATN adversarial perturbations are more effective in transferring to new face

recognition models than PGD. We demonstrate that our attacks transfer effectively to models with

different architectures, loss functions, and training procedures. ReFace attacks can successfully

deceive commercial face recognition services via transfer attack and reduce face identification

accuracy from 82% to 16.4% for AWS SearchFaces API and Azure face verification accuracy

from 91% to 50.1%.

2.2.2 Background and Related Work

Adversarial Examples for Real-time Attacks

Prior work on attacks have demonstrated that adversarial examples can circumvent state-

of-the-art image classification models while remaining indistinguishable from benign images

for humans [13, 25, 31, 38, 39, 9, 15]. However many of these works are gradient based attacks,

which cannot be performed in real-time. To address this limitation, the authors of UAPs [40]

demonstrated that there exist universal input-agnostic perturbations which when added to any

image will cause the image to be misclassified by a victim network. The existence of such

perturbations poses a threat to machine learning models in practical settings since the adversary

may simply add the same pre-computed perturbation to a new image and cause misclassification

in real-time. Also addressing the real-time challenge, the authors of [32] designed Adversarial

Transformation Networks (ATNs) that follow an encoder-decoder architecture and output an

adversarial perturbation for each input image, without having to compute gradients from the

victim classification model during inference [32]. Unlike UAPs, ATNs generate input-specific

perturbations. However these ATN attacks are specific to image classification tasks and cannot

be directly used to attack face recognition models that use task-specific model and loss functions

as opposed to the standard cross-entropy loss used by classifiers.

18



Facial Recognition Systems

Unlike typical classification algorithms, facial recognition systems do not have a fixed set

of classes. Instead, a face recognition system must establish a person’s identity and can operate in

two different modes 1) face verification or 2) face identification. A verification system establishes

whether or not a person is who they say they are (i.e., the person claims an identity and the system

tries to prove whether or not that claim is true). On the other hand, an identification system

attempts to establish a person’s identity from scratch i.e. the system tries to associate a person

with an identity from a set of identities in the system’s database. Both problems are generally

solved with metric learning [41, 42, 43]. Recognition algorithms learn an embedding of face

images in which the distance between embedding vectors indicates whether or not the vectors

came from the same identity. Given this learned embedding function, face verification amounts

to applying a threshold to the distance between two embedding vectors, and face identification

amounts to ranking images by closeness to the query image. While most state-of-the-art facial

recognition algorithms use this general approach, they use different strategies to learn the metric.

DeepID [42] is a CNN based network which follows a training process where each unique

training identity is treated as a separate class and the network is trained using softmax loss.

The second-to-last layer then serves as the embedding, which is effective on unseen identities.

SphereFace [43] builds on DeepID by replacing traditional softmax loss with angular softmax

loss. Angular softmax ensures that Euclidean distance in the embedding space produces optimal

decision boundaries between identities. Similarly, ArcFace [44] loss is also adopted by recent

state-of-the-art face recognition models, and these models are used as the main testbench in

recent literature [28, 45] to study the effectiveness of adversarial attacks. In our work, we study

the effectiveness of adversarial attacks using ATNs on face recognition models trained with

SphereFace, DeepID and ArcFace loss, in addition to black-box models trained with unseen loss

functions.

19



Adversarial Attacks on Face Recognition

While several works have studied adversarial attacks on face recognition models, these

are relatively fewer in literature as compared to image classification attacks. Some prior works

include physical adversarial examples in the form of objects such as glasses [46, 47] and

hats [45] that can fool models to make wrong prediction on the person wearing the object. The

authors of [48] attempt to target face “classification” networks which operate differently from

face recognition networks that perform face verification and identification. Prior works such

as [49, 50, 28, 27] generate adversarial examples for face recognition systems by optimizing

the perturbation for each image using white-box access to a face-recognition model. One such

attack Face-Off [27] demonstrates that it is possible to generate adversarial faces by optimizing

in the model embedding space using PGD [31] and CW [13] attack, however reports an attack

run-time from 6 seconds to 373 seconds per image while using 2 GPUs. The authors of Face-

Off evaluate the strongest attack algorithms to perform adversarial attack on Face Recognition

models. They report that PGD algorithm used in their experiments is stronger than CW attack.

This finding is corroborated in other papers [51]. Another gradient based attack Lowkey [52]

generates image-specific adversarial samples for face recognition models and demonstrates

their transferability to public cloud provider APIs, however reports an attack run-time of 32

seconds per image. To generate adversarial examples in black-box settings, the authors of [49]

utilize an evolutionary optimization technique, but require at least 1,000 queries to the target

face recognition system before a realistic adversarial face can be synthesized. Similarly, the

more recently proposed black-box attack by [53] on face recognition systems requires at least

1700 queries to generate successful attacks. The time for generating adversarial examples using

the above techniques can potentially bottleneck real-time image upload making the attacks

impractical for deployment. The timing bottleneck gets even more significant for videos in which

we need to generate adversarial examples for several frames per second. In contrast, we propose

a framework to adversarially modify query images in real-time, such that the performance of

20



face recognition models deteriorate significantly in both white-box and transfer based black-box

attack settings. Unlike past works on face recognition, our proposed approach enables real-time

attacks on video streams which we demonstrate via successful attacks over web-cam interfaces

(demo video linked in the second page).

2.2.3 ReFace Methodology

Victim Models

A typical face recognition pipeline first detects and crops faces. Next, they map each

cropped image x to an embedding vector y using F : x 7→ y. Typically, such models are trained

on a dataset of facial images and identity labels, with the objective of clustering embeddings of

images from the same identity together and ensuring separability between embeddings of images

from different identities. State-of-the-art face recognition models are commonly trained with

objectives that effectively optimize a cosine distance metric e.g. SphereFace [41], DeepID [42]

or ArcFace [44] loss. During inference, a face recognition model can be used for one of the

following goals:

1. Verification - A face recognition model can be used to verify whether two images belong to

the same person or not. In this setting, the model compares the embeddings of two probe images

and reports a match if the distance between the embeddings of the two models is below a certain

threshold.

2. Identification - In this setting, the face recognition system tries to associate a person with

an identity from a set of identities in gallery images stored in the system’s database. When

presented with a probe image, the system compares the embedding of the probe image with the

gallery images to find the closest matching neighbour in the gallery and determine the identity of

the probe image.

In our work, we attack CNN-based face recognition models in real time and assess the

success rate against both of the above goals. To simplify experimentation, we do not include

the detection and cropping step in our attacks pipeline. Instead we use the pre-cropped images

21



provided by standard datasets.

Attack Objective

Threat Model: Given benign facial input images, our goal is to adversarially modify the inputs

in real-time, such that the modified inputs cause the face recognition model to mispredict the

embedding vectors, thereby degrading the verification and identification performance of the

face recognition model. In order to adversarially modify each image, we design a perturbation

generator that operates in real-time to add a quasi-imperceptible adversarial perturbation to the

given input image. When attacking a face verification system, we adversarially perturb one of the

two probe images. In this attack setting, our goal is to reduce the true recall rate of the verification

system (performance on positive pairs). When attacking a face identification system, we assume

the probe images have been adversarially perturbed while the dataset of gallery images is benign.

In this attack setting, our goal is to lower the recognition rate of the face identification system.

Person A

Person B

Person C

Person D Person DPerson B

Person C

Person A

Embeddings of xadv after 
finding the optimal solution 
to maximizing the cosine 
distance of adversarial 
embeddings with the 
original embeddings

Embeddings of benign 
images from a well trained 
facial recognition model 
visualized on a 2-d unit 
sphere. 

Figure 2.4. Visualizing the optimum solution to our attack objective: Our attack objective
pushes the originally predicted embedding vectors to the opposite end of the unit sphere thereby
hampering the performance of the face-recognition model.

Problem Formulation: To achieve the above objectives, we train a perturbation generator gθ ,

parameterized by θ , which takes as input an image x and generates an adversarial perturbation

gθ (x) that can be added to x to synthesize an adversarial example xadv. The optimization objective

of gθ is to maximize the cosine distance the embeddings of the adversarial and original image,

22



while constraining the amount of the perturbation added to the image. This is different from the

objective for fooling classification systems, where the commonly used objective for untargeted

attacks is to maximize the cross-entropy loss with the correct label. Lp norm is a widely used

distance metric for measuring the distortion between the original and adversarial inputs. Prior

works [25] recommend constraining the maximum distortion of any individual pixel using the

L∞ norm. To further reduce the perceptibility of the perturbation we incorporate Lpips [33] loss

during training. Lpips distance measures the visual similarity between two images by comparing

the embeddings from a pre-trained CNN model.

Mathematically, our attack objective is as follows:

∀x∈X maximize [d(F(xadv),F(x))−λLpips(xadv,x)] (2.1)

where xadv = clip[0,1](x+gθ (x))

s.t ||gθ (x)||∞ < ε

where d(F(xadv),F(x)) is the cosine distance between embeddings of the adversarial and original

image and λ is the loss coeffecient for Lpips. In Figure 2.4 we illustrate how an optimum solution

to the above problem of maximizing the cosine distance completely degrades the performance of

a face recognition model. A visualization of such embedding clusters for a hypothetical case of

four individuals on a 2-D unit sphere is shown on the left in Figure 2.4. If we were to find the

optimum solution to our attack objective in an unbounded attack setting, the embeddings clusters

for adversarial images will move to the opposite end of the unit sphere (to maximize the cosine

distance). This clearly results in hampering both verification and identification performance of

the model since the embeddings of benign and adversarial examples are completely rotated to

the opposite ends in the unit sphere.

In our work, we model gθ as a neural encoder-decoder architecture called an Adversarial

Transformation Network (ATN) (Section 2.2.3).

23



ATN: Adversarial Transformation Network

An ATN is a neural network trained to produce adversarial images, with the form

gθ : X →X . Since the network only needs one forward pass to compute the perturbation, it is

less expensive than an iterative gradient-based optimization procedure. We obtain an adversarial

image from a benign image using the neural network Nθ as follows:

gθ (x) = ε · tanh(Nθ (x)) (2.2)

With this formulation we enforce the constraint ||xadv− x||∞ < ε since the output of tanh

is bounded between [−1,1].

Algorithm 1. Ensemble attack training procedure
Inputs: Victim Models F= F1, . . .Fn, image dataset X
Output: Perturbation engine (gθ ) parameters θ

HyperParams: Learning rate α , L∞ bound ε , Lpips loss coefficient λ

Initialize ATN: Nθ

Batch training images: Xbatched← Batch(X)
for epoch in 0 to Nepochs do

for x in Xbatched do
xadv← clip[0,1](x+ ε · tanh(Nθ (x)))
loss← 0
for Fi in F do

loss← loss+(−d(Fi(x),Fi(xadv)))

loss← loss/len(F)
loss← loss+λLpips(xadv,x)
θ ← θ −α ·∇θ (loss)

return θ

We train the ATN to generate adversarial examples using the procedure described in

Algorithm 1. Our ATN can be trained to target one or more face recognition models in the model

set F. During each mini-batch iteration, we generate a batch of adversarial images from the ATN

and compute the cosine distance between embeddings of benign and adversarial images. We

accumulate the loss for all models in the set F and can optionally add the Lpips loss to minimize

the perceptibility of the adversarial perturbation. Finally, we backpropogate through all models

24



in the set F to compute the gradient of the loss with respect to the parameters θ of the ATN and

update the ATN parameters using mini-batch gradient descent with a learning rate α . Targeting

an ensemble of face recognition models during training can result in more transferable adversarial

attacks. In our experiments, we verify this hypothesis and demonstrate that ATNs trained to

target an ensemble of models result in better transferability to unseen models.

The search for an effective ATN architecture

The input and output domains of the ATN have the same spatial dimension, so a logical

choice for the network architecture is a U-net [34]. U-nets are commonly used for several

image-to-image translation problems. The architecture consists of several down-sampling

layers followed by an equal number of up-sampling layers. The feature maps from the down-

sampling layers have skip connections that are concatenated to the up-sampling layers with

matching resolution. Previous work with ATNs used different architectures, but in our preliminary

experiments, we found that U-nets were far more effective than alternate architectures at the

same level of perturbation.

However, we still found that there was a large gap between a U-net based ATN and

an iterative gradient-based white-box attack, even on the training data. This is illustrated in

Figure 2.6 in our experiments comparing PGD-30 (i.e., 30 iterations of PGD) to the U-net ATN.

From the universal approximation theorem [54], a neural network could in principle represent a

close approximation of the PGD-30 function. As this neural network would have lower training

loss than the U-net ATN, it appears that this architecture is underfitting. We therefore explored

ways to add capacity to the ATN. We found that adding layers and making the layers wider both

led to small gains in performance with diminishing returns.

One feature of the U-net is that every layer changes the spatial resolution. The deeper

layers of the U-net necessarily operate at very low spatial resolutions. Intuitively, it may be

useful to be able to express complex hierarchical functions at higher resolutions. We developed a

new Residual U-net architecture, illustrated in Figure 2.5, that replaces individual convolution

25



and transpose convolution layers in a U-net with groups of residual blocks. We use 2-layer

pre-activation blocks with ReLU and batch normalization. One skip connection per downsample

is carried over to the decoder, which allows arbitrary numbers of residual blocks at each step.

We denote the number of blocks in each group as a vectors E and D for the encoder and decoder,

respectively. While similar architectures have been proposed in the past [55, 56], they are not

widely used and have not been used in adversarial perturbation literature.

+

+

E1

E2

E3

E4

E5
D5

D4

D3

D2

D1 conv

convEi

convt

convt

Di

௜

௜

Figure 2.5. Residual U-net architecture: We replace the strided convolutions and transposed
convolutions in the U-Net architecture with residual blocks. Each residual block contains
multiple convolutions (in the encoder) or transposed convolution (in the decoder) layers.

We found that adding layers in this architecture was considerably more effective than in

the pure U-net ATN. We performed an architecture search to find an effective balance between

computational cost and attack effectiveness. The optimal architecture from this process had

five downsampling steps with E = [1,1,2,3,5] and D = [1,1,1,1,1]. We use a base width of

64 channels and double the width at each downsample step except for the last. Using this

ResU-net architecture, the ATN approached the performance of PGD-30 (plotted in Figure 2.6a)

with roughly 10,000× less run-time. We refer the readers to the code-base included in our

supplementary material for the precise model implementation.

26



2.2.4 Experiments

We perform experiments to evaluate our proposed attack in both white-box and transfer-

attack settings. We perform the attack at different levels of adversarial perturbations and study

how factors such as victim model architecture, loss functions and random initialization affect

the success rate of the attacks. We also perform a timing analysis and demonstrate that our

attacks can be performed in real-time and achieve a high success rate in both white-box and

transfer attack settings. We compare our attack performance against state-of-the-art adversarial

attacks on face recognition models such as Face-Off [27] and Fawkes [28] that utilize the PGD

attack algorithm. Finally, we perform our transfer attack on black-box public APIs (Amazon

Rekognition and Microsoft Azure) and demonstrate that our attacks can significantly reduce both

the verification and identification performance of such APIs.

Dataset and Models

We develop a benchmarking framework in PyTorch to evaluate both white-box and

transfer attack performance of adversarial examples generated using our ATNs. Our experiments

are designed to examine how factors such as network architecture, training loss functions, and

random initialization affect the transferability of attacks. We used two main CNN architectures

for the face recognition models: pre-activation ResNet [57] and Inception-v4 [58]. Within

these architectures, we varied the number of blocks leading to networks ranging from 22 to 118

layers which were trained with three different loss functions: DeepID [42], SphereFace [41] and

ArcFace [44]. The dimension of the output embedding vector for all test-bed models is 512. The

face recognition models are trained on the training partition of the VGGFace2 dataset [59]. We

start with the standard crops provided by the dataset and perform random resized cropping for

data augmentation during training. VGGFace2 dataset contains 3.31 million images across 9131

identities which is larger and more diverse as compared to other face recognition datasets such

as FaceScrub [60] or UMDFaces [61]. We choose VGGFace2 dataset for training the test-bed

face recognition models because models trained on larger and more diverse datasets are more

27



robust and generalize better to unseen images [59].

Table 2.1. Victim model sets used for conducting our attack evaluations. Experiments are
conducted on both single and ensemble model sets. The verification and identification metrics
are averages over the whole model set reported on the clean unperturbed VGGFace2 test set.

Networks Verification Identification

Name Architecture # Models Loss V-AUC V-Acc. R1-Acc.

RN-SF-1 ResNet 1 SphereFace 0.99 95.2 84.4
RN-DID-1 ResNet 1 DeepID 0.98 93.3 78.0
IN-SF-1 InceptionNet 1 SphereFace 0.99 94.4 78.5
RN-AF-1 ResNet 1 ArcFace 0.98 92.8 89.0

RN-SF-6 ResNet 6 SphereFace 0.99 94.3 82.0
RN-DID-6 ResNet 6 DeepID 0.98 93.0 77.4
IN-SF-4 InceptionNet 4 SphereFace 0.99 94.4 78.9
RN-AF-4 ResNet 4 ArcFace 0.98 93.3 90.0

Table 2.1 presents the test-bed of face recognition models that we use for training our

ATNs. The model sets comprise single and ensemble versions for each architecture, enabling

us to evaluate the efficacy of ensemble attacks on unknown models. For ensemble models, the

reported metrics are averaged over all individual models in the ensemble. For the training and

testing of the ATNs, we utilize the VGGFace2 validation set that was not used in the training of

the test-bed face recognition models. Specifically, we partitioned the validation set of VGGFace2

into two distinct subsets, each containing a comparable number of images and non-overlapping

identities. The resulting subsets comprise a training subset of 84,953 images and a testing subset

of 84,443 images, used for training and testing the ATN models.

Evaluation Metrics

We evaluate the performance of face recognition models on both verification and identifi-

cation tasks with the metrics described below.

Face Verification Metrics: For each identity in the test set, we prepare all possible pairs of

distinct images that have the same identity. To keep our problem balanced, we randomly sample

an equal number of non-matching pairs. On the test set of VGGFace2, this creates a total of

28



Table 2.2. White-box and transfer attack results of ATN attack at ε = 0.03. A lower value for all
three metrics indicates a more successful attack. The diagonal entries in each of the three tables
represents a white-box attack while all other entries represent a transfer (black-box) attack.

Attack Success

AUC, white box setting

0.9797640872

0.9419810039

Seen Unseen
RN-SF RN-DID IN-SF

AUC R-1 AUC R-1 AUC R-1 AUC R-1
RN-SF
RN-DID
IN-SF

6.c single on 6.c ALL 6.c single on 6.d ALL 6.c single on 6.f ALL
Loading checkpoint './atn/output/6c-1_eps03_res.p' Loading checkpoint './atn/output/6c-1_eps03_res.p' Loading checkpoint './atn/output/6c-1_eps03_res.p'
Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000 Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000 Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000
evaluating 6 models evaluating 4 models evaluating 6 models
starting model number 1 of 6 starting model number 1 of 4 starting model number 1 of 6
0.7588173242632997 0.6887463044451916 0.2269299999999994 26.033539999999963 0.9026470287735457 0.8246858301918578 0.41264000000000045 11.622159999999983 0.7600438114847038 0.6792664020657107 0.20229999999999973 25.408910000000017
starting model number 2 of 6 starting model number 2 of 4 starting model number 2 of 6
0.7149827777801805 0.6641995947144876 0.19792999999999933 30.495109999999997 0.9083799864683709 0.8410303299421382 0.4717999999999999 11.079739999999994 0.7686638103827785 0.6864966813983678 0.22958999999999952 24.567880000000006
starting model number 3 of 6 starting model number 3 of 4 starting model number 3 of 6
0.7692071948748027 0.7222818026973878 0.2850700000000004 25.166479999999975 0.8920128812998274 0.8251313666571355 0.43417 13.24486 0.7329230466724626 0.6679232479551839 0.2085699999999993 28.328059999999994
starting model number 4 of 6 starting model number 4 of 4 starting model number 4 of 6
0.7014665962057893 0.6864464607648441 0.2276099999999997 31.66352999999997 0.8675639790996257 0.8172094136711232 0.43959000000000037 15.102440000000007 0.7195279111814725 0.6579118185327968 0.2022199999999995 30.02480999999997
starting model number 5 of 6 final verification auc 0.8926509689103426 starting model number 5 of 6
0.5587016657000989 0.6107888424719021 0.1395 45.65415 final verification accuracy 0.8270142351155637 0.684026780539 0.643385415474061 0.19214999999999985 33.59198000000003
starting model number 6 of 6 final rank 1 accuracy 0.43955000000000016 starting model number 6 of 6
0.03242151929840238 0.4877813754720918 0.00039000000000000016 95.98439 final mean rank 12.762299999999996 0.5930791093444521 0.5930985558155808 0.12659000000000015 42.31093999999993
final verification auc 0.5892661796870956 final verification auc 0.7097107449341449
final verification accuracy 0.6433740634276508 final verification accuracy 0.6546803535402835
final rank 1 accuracy 0.17957166666666646 final rank 1 accuracy 0.19356999999999966
final mean rank 42.49953333333332 final mean rank 30.70542999999999

6.c single on 6.c single 6.c single on 6.d single 6.c single on 6.f single
Loading checkpoint './atn/output/6c-1_eps03_res.p' Loading checkpoint './atn/output/6c-1_eps03_res.p' Loading checkpoint './atn/output/6c-1_eps03_res.p'
Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000 Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000 Loaded checkpoint './atn/output/6c-1_eps03_res.p' from iteration 498000
evaluating 1 models evaluating 1 models evaluating 1 models
starting model number 1 of 1 starting model number 1 of 1 starting model number 1 of 1
0.032130379254010286 0.4878481455196143 0.00047000000000000026 95.90467000000001 0.8674331206750938 0.8170825182119896 0.4345099999999994 15.367849999999997 0.5928708656217382 0.592868004163875 0.12599000000000007 42.317159999999994
final verification auc 0.032130379254010286 final verification auc 0.8674331206750938 final verification auc 0.5928708656217382
final verification accuracy 0.4878481455196143 final verification accuracy 0.8170825182119896 final verification accuracy 0.592868004163875
final rank 1 accuracy 0.00047000000000000026 final rank 1 accuracy 0.4345099999999994 final rank 1 accuracy 0.12599000000000007
final mean rank 95.90467000000001 final mean rank 15.367849999999997 final mean rank 42.317159999999994

6_h Ensemble on 6_h
Loading checkpoint './atn/output/6h_eps03.p' Loading checkpoint './atn/output/6h_eps03.p' Loading checkpoint './atn/output/6h_eps03.p'
Loaded checkpoint './atn/output/6h_eps03.p' from iteration 479000 Loaded checkpoint './atn/output/6h_eps03.p' from iteration 479000 Loaded checkpoint './atn/output/6h_eps03.p' from iteration 479000
evaluating 6 models evaluating 6 models evaluating 4 models
starting model number 1 of 6 starting model number 1 of 6 starting model number 1 of 4
0.07414408945038374 0.47889684509518576 0.00044000000000000023 91.89615999999995 0.17328263560363957 0.4795175014721841 0.002469999999999994 82.17647000000005 0.3646501658805928 0.522919008317586 0.03583000000000001 64.72002000000002
starting model number 2 of 6 starting model number 2 of 6 starting model number 2 of 4
0.06935650657527594 0.4800968262828283 0.0008800000000000006 92.34522000000001 0.15259104049040972 0.48432069181163667 0.0024399999999999934 83.94195999999997 0.38656948051623335 0.5477535702946981 0.06307999999999997 62.43898000000004
starting model number 3 of 6 starting model number 3 of 6 starting model number 3 of 4
0.06695249202476691 0.48300681433736903 0.0013300000000000009 92.36695000000002 0.12475944472854429 0.4832255324368507 0.002169999999999998 86.61248000000003 0.36483827695546667 0.5362293522659567 0.05005 64.19214999999997
starting model number 4 of 6 starting model number 4 of 6 starting model number 4 of 4
0.08376502129682518 0.48245787072139185 0.0008500000000000005 90.89162999999995 0.1295397411123856 0.48182637485704877 0.002439999999999994 86.19068000000007 0.35219859296563405 0.534380215765116 0.053109999999999935 65.25332000000002
starting model number 5 of 6 starting model number 5 of 6 final verification auc 0.3670641290794817
0.06898767054350505 0.48196169612475004 0.0008800000000000006 92.07875999999997 0.11349103725085734 0.48539671208523005 0.0017600000000000014 88.04123999999996 final verification accuracy 0.5353205366608391
starting model number 6 of 6 starting model number 6 of 6 final rank 1 accuracy 0.05051749999999998
0.06394268220821177 0.48386700262290266 0.0008500000000000005 92.91922000000002 0.11937582165510972 0.48468182944863947 0.002199999999999998 87.34115 final mean rank 64.15111750000001
final verification auc 0.0711914103498281 final verification auc 0.1355066201401577
final verification accuracy 0.48171450919740455 final verification accuracy 0.4831614403519316
final rank 1 accuracy 0.0008716666666666673 final rank 1 accuracy 0.0022466666666666633

Single Defender Models Ensemble Defender Models
RN-SF-1 RN-DID-1 IN-SF-1 RN-AF-1 RN-SF-6 RN-DID-6 IN-SF-4 RN-AF-4

Clean 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98
RN-SF-1 0.03 0.59 0.87 0.77 0.59 0.71 0.89 0.71
RN-DID-1
IN-SF-1 0.77
RN-AF-1 0.68
RN-SF-6 0.06 0.12 0.35 0.17 0.07 0.14 0.37 0.19
RN-DID-6 0.10
IN-SF-4
RN-AF-4

Clean 95.20% 93.30% 94.40% 92.80% 94.30% 93.00% 94.40% 93.30%
RN-SF-1 48.78% 59.29% 67.90% 63.43% 64.34% 65.47% 82.70% 68.20%
RN-DID-1
IN-SF-1 70.90%
RN-AF-1
RN-SF-6 48.37% 48.47% 53.44% 49.89% 48.17% 48.32% 53.53% 48.87%
RN-DID-6 48.13%
IN-SF-4
RN-AF-4

Clean 84.40% 78.00% 78.50% 89.00% 82.00% 77.40% 78.90% 90.00%
RN-SF-1 0.05% 12.60% 43.45% 18.32% 17.96% 19.36% 43.96% 17.56%
RN-DID-1
IN-SF-1 30.31% 26.75%
RN-AF-1 17.21% 18.45%
RN-SF-6 0.10% 5.31% 0.98% 0.09% 0.22% 5.05% 0.43%
RN-DID-6
IN-SF-4
RN-AF-4

Ve
rif

ic
at

io
n 

A
U

C
Ve

rif
ic

at
io

n 
A

cc
ur

ac
y

R
an

k-
1 

A
cc

ur
ac

y

ResU-Net ATN eps FGSM PGD-3 PGD-7 PGD-30 UAP U-Net ATN ResU-Net ATN

0.988718 0 0.988718 0.988718 0.988718 0.988718 0.988718 0.988718 0.988718

0.899428 0.01 0.97833 0.946889 0.878202 0.698681 0.9868664951 0.959844 0.899428

0.205255 0.02 0.958292 0.754445 0.351483 0.067385 0.627459 0.205255

0.026128 0.03 0.936427 0.508719 0.100617 0.027955 0.143422 0.026128

No Attack

Single
Model
Attack

Ensemble
Model
Attack

No Attack

Single
Model
Attack

Ensemble
Model
Attack

No Attack

Single
Model
Attack

Ensemble
Model
Attack

0.58 0.04 0.88 0.72 0.64 0.55 0.88 0.68
0.75 0.77 0.03 0.82 0.79 0.54 0.80
0.60 0.62 0.88 0.04 0.72 0.90 0.60

0.13 0.07 0.45 0.18 0.08 0.44 0.18
0.37 0.43 0.05 0.45 0.31 0.43 0.05 0.46
0.15 0.14 0.34 0.06 0.12 0.15 0.38 0.08

62.54% 49.45% 82.28% 64.12% 64.40% 60.63% 81.58% 69.54%
71.21% 68.91% 48.43% 72.12% 69.98% 63.64% 71.41%
61.34% 60.12% 68.10% 49.21% 67.34% 66.62% 83.45% 64.57%

48.85% 48.67% 57.20% 50.23% 48.57% 56.44% 49.35%
50.79% 50.98% 47.93% 51.21% 49.46% 50.86% 47.99% 51.21%
49.53% 50.12% 58.12% 48.73% 49.62% 48.92% 57.41% 48.45%

16.36% 0.02% 43.10% 19.87% 17.41% 12.57% 41.01% 18.76%
26.14% 0.02% 32.88% 25.59% 16.36% 27.65%
13.10% 46.37% 0.03% 21.23% 45.46% 15.21%
0.22%

0.72% 0.05% 8.59% 1.03% 0.27% 0.05% 7.62% 0.45%
2.20% 2.20% 0.01% 3.10% 1.03% 2.03% 0.01% 2.41%
0.81% 0.34% 6.43% 0.05% 0.31% 0.27% 8.12% 0.04%

917,692 verification tests where half have a pair of images with matching identities (positive

labels) and half have different identities (negative labels). Given this binary classification

problem, we report the following metrics:

1. Verification AUC (V-AUC): We use the cosine distance between the embedding of the two

images along with the verification label to generate a Receiver Operating Characteristic curve

(ROC). Our metric is the standard area under the ROC curve (AUC).

2. Verification Accuracy (V-Acc.): To determine the accuracy, we need a threshold for the cosine

distance, across which the example is labelled positive or negative. For each model, we set this

29



to equal error rate threshold of the model on the (clean) VGGFace2 validation set.

Face Identification Metric: We use the VGGFace2 test set to create a random gallery with

100 unique identities. For each of these 100 identities, we select a probe image with one of the

identities appearing in the gallery and compute its distance to each image in the gallery. This

creates 100 identification tests. We repeat this gallery test on 1000 random galleries to create a

total of 100,000 identification tests. When evaluating attacks, we perturb the probe image and

leave the gallery unmodified. We report the Rank-1 Accuracy (R-1), which is the percentage of

tests where the image in the gallery with the minimum distance to the probe image has the same

identity as the probe image.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03

V-
AU

C

Epsilon

PGD vs ATN - Transfer Attack

PGD-30 (Face-Off), FaceNet

ResU-Net ATN, FaceNet

PGD-30 (Face-Off), SphereFace

ResU-Net ATN, SphereFace
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.01 0.02 0.03

V-
AU

C

Epsilon

Attack Comparison - White-box

FGSM
PGD-3
PGD-7
PGD-30 (Face-Off)
UAP
U-Net ATN
ResU-Net ATN

Figure 2.6. Comparison of PGD and ATN based attacks. (a) compares white-box attacks on the
single RN-SF-1 model. (b) compares transfer attacks optimized on the six RN-SF-6 models and
evaluated on two different models.

Baseline Attacks

We compare the effectiveness of ATN attacks against three alternate attacks:

1. Universal Adversarial Perturbations (UAP): UAP is a single input-agnostic perturbation

vector that can be added to all images to fool the victim models. UAP can be formulated as

a simplified ATN where the ATN formulation reduces to : gθ (x) = ε · tanh(θh×w×c). That

is, instead of modeling ATN as a neural network, the ATN is modelled using a perturbation

vector θh×w×c which is trained using the same procedure given by Algorithm 1.

2. Fast Gradient Sign Method (FGSM): FGSM [25] attack obtains an adversarial example

for an image by obtaining the gradient of the optimization objective with respect to the

30



image and then perturbing the image in the direction of the gradient with step size ε . That

is, xadv = clip[0,1](x+ ε · sign(∇xL(x))) where L(x) is the optimization objective given by

Equation 2.1.

3. Face-Off [27] / Projected Gradient Descent (PGD): PGD [31] attack is a multi-step iterative

variant of the FGSM attack. Unlike ATNs and UAPs, PGD attack requires several forward

and backward passes through a victim face-recognition model to find an adversarial

perturbation that is highly optimized for a single image. We perform PGD attack as a

baseline because it has been commonly adopted by past attacks such as Fawkes [28], Face-

Off [27], [51] and achieves highest white-box attack success rates. In our experiments

PGD-n refers to PGD with n iterations.

2.2.5 Results

We train six ATN models each targeting one of the model sets listed in Table 2.1. The

ATNs are trained using mini-batch gradient descent with a batch size 32 for 500K iterations

using Adam optimizer [62] with a learning rate 2e-4. Our primary evaluation is conducted using

the ResU-Net ATN architecture described in Section 2.2.3 at max L∞ distortion ε = 0.03 in [0,1]

pixel scale. We present the white-box and transfer attack results of our primary evaluation in

Table 2.2. Additionally, we present the results and comparisons for the pure U-Net architecture

in Section 2.2.5 and comparison against alternate attacks at ε = [0.01,0.02,0.03] in Figure 2.6.

Finally, we present examples of adversarial images generated at ε = [0.03] from each of the

techniques in Figure 2.7.

Single Model Attack vs Ensemble Attack

Aversarial perturbations trained on an ensemble of victim models exhibit better trans-

ferability across model architectures than those trained on a single model. That is, the attack

success metrics on unseen models for ATNs trained on ensemble models (RN-SF-6, RN-DID-6

and IN-SF-4) are significantly better than ATNs trained on single models (RN-SF-1, RN-DID-1

31



and IN-SF-1 respectively). The only difference amongst the models in an ensemble is their

weight initialization. It is interesting to note that this difference in weight initialization offers

enough variance in the model set to train significantly more generalizable perturbations, at the

same level of distortion as compared to the single-model attacks.

ATN vs. PGD based attacks

State-of-the-art attacks such as Fawkes [28] and Face-Off [27] utilize PGD based attack

against face recognition systems. As such, we implement the PGD based attack algorithm

proposed in Face-Off on our models and architectures to compare the effectiveness of ATNs

and PGD on both seen and unseen models. We optimize PGD-30 and ATN attacks on the same

surrogate models and perform the attack on a random subset of 10,000 images from the test set.

For a fair comparison, we drop the Lpips term from the loss and train purely to maximize the

cosine distance with an L∞ constraint. Figure 2.6a shows white-box attack success rate of PGD

and ATN attacks on the RN-SF-1 model. As discussed in Section 2.2.3, the Residual U-Net ATN

architecture developed by us provides a large improvement over a basic U-net architecture and

bridges the white-box performance gap between the ATN and PGD-30.

We also performed an ensemble attack on the six models from RN-SF-6. Running PGD-

30 against six surrogate models simultaneously took more than three seconds per image, while

the ATN’s forward pass was the same complexity as other experiments - more than 10,000×

faster than PGD-30. Table 4.4 reports the timing comparison of ATN and PGD attacks.

In addition to being fast, ATNs learn attacks that generalize effectively to new models.

We evaluated how well the perturbed images transferred to two different models. First, we

evaluated against a ResNet+SphereFace model that is similar to the RN-SF-6 models, but has a

different number of layers. Second, we evaluated against an open source model from the FaceNet

repository2. This model uses a different architecture (Inception ResNet), loss (DeepID) and

training procedure. We did not do any parameter tuning based on this model, so it serves as an

2https://github.com/davidsandberg/facenet

32



Table 2.3. Average Wall-Clock time in seconds required for generating a single adversarial image
on GPU (Nvidia Titan X) and CPU platforms using different attacks. Time for RN-SF-1 process
indicates the forward pass computation time for a single ResNet Face Recognition model.

Avg Wall-Clock Time (seconds)

Process GPU CPU

RN-SF-1 2.93e-2 1.02e-1

ATN 2.83e-3 5.67e-2
UAP 1.89e-4 5.39e-3
PGD 3.73 365.2

independent validation of the transferability of our attacks.

Figure 2.6b compares the attacks at different L∞ thresholds. As expected, transferring

an attack from RN-SF-6 to the FaceNet model was more difficult than the ResNet+SphereFace

model. However, in both cases the ATN attack is effective at ε = 0.02 and transfers much better

than PGD to the new models.

Benign Face Adversarial Face Benign Face Adversarial Face Benign Face Adversarial Face

Benign Face Adversarial Face Benign Face Adversarial Face Benign Face Adversarial Face

Figure 2.7. Sample adversarial images generated by ReFace attack at ε = 0.03 and their benign
counterparts.

33



ATN vs. UAP

We find that attacks utilizing ATNs outperform the UAP attacks at the same level of

perturbation. Since the goal of finding a single input-agnostic perturbation is more challenging

than finding one perturbation per image, a higher amount of distortion is required for a successful

attack using UAPs as compared to the ATN based attacks. This is indicated by less successful

attack metrics (higher V-AUC) from UAPs in Figure 2.6a. However, it is important to note

that UAPs pose a significant threat to face recognition models since they can be easily shared

amongst attackers and are simpler to implement as compared to ATNs.

ATN Architecture Complexity vs Performance

To study the relationship between the architecture of the ATN model, computational

cost and attack effectiveness, we train different ATN architectures to attack the RN-SF-1 face-

recognition model. First, we consider different variants of the U-net architecture by progressively

increasing the base channel-width from 16 to 64 and the number of downsampling/upsampling

layers from 3 to 5. Next, we consider ResU-net architecture with 5 downsampling/upsamping

layers with the default 2, 3, and 5 residual blocks in the last three downsampling layers (the

default ATN model for all experiments described in Section 5.6). We compare the number of

parameters, inference time, and attack effectiveness of the different architectures in Table 2.4.

We find that scaling up the architecture complexity and size helps improve attack performance

with a marginal increase in the average wall-clock time which is real-time for all ATN attacks and

several orders of magnitude faster than PGD-based attack (provided in Table 4.4). Our proposed

ResU-net architecture allows adding intermediate residual blocks to increase the number of

parameters without requiring additional downsampling/upsampling layers or increasing the

base-channel width.

34



Table 2.4. Model size, inference time and attack effectiveness comparison for different architec-
tures of the ATN model. Inference time is reported as the average wall clock time for a single
image on a single Nvidia Titan X GPU and CPU. Attack effectiveness is reported at ε = 0.03.

Model Size Time (seconds) Attack Performance

ATN Arch. #Layers #channels #Params GPU CPU Ver. AUC

U-net 3 32 337k 1.01e-3 6.12e-3 0.80
U-net 3 64 1.45m 1.25e-3 1.35e-2 0.75

U-net 5 16 1.04m 1.37e-3 1.05e-2 0.35
U-net 5 32 4.17m 1.45e-3 1.76e-2 0.21
U-net 5 64 16.6m 1.73e-3 3.12e-2 0.15

ResU-net 5 64 48.6m 2.83e-3 5.67e-2 0.03

2.2.6 Vulnerabilities of Public Face Recognition APIs

We demonstrate the effectiveness of our attacks against commercial face recognition systems.

These systems are black-box, proprietary, and are abstracted away through a web-based API. We

evaluate our perturbations against the Amazon (AWS) Rekognition and Microsoft Azure Face

services.

Face Verification: In this setting, we target the CompareFaces API in AWS and the verify face -

to face API in the Azure Face client. We prepare a total of 1000 image pairs (500 positive and

500 negative pairs sampled randomly from the VGGFace2 test set) and report the verification

metrics in Table 2.5.

Face Identification: We target the SearchFaces API in AWS Rekognition. The API accepts

a gallery of N faces x1,x2,x3...xN and a query image xq, and returns similar faces to the query

image from those in the gallery, ranked in order of similarity to the query image. We generate a

gallery of 500 benign faces each with unique identities randomly sampled from the VGGFace2

test set and 500 adversarial samples by adversarially perturbing alternate images of the same

identities as those in the gallery, resulting in a total of 500 trials. We report the Rank-1 accuracy

of this experiment in Table 2.5.

35



Table 2.5. ATN attack results at ε = 0.03 on AWS and Azure face recognition APIs. The ATN
was trained jointly on RN-SF-6 and IN-SF-4. Recall(%) indicates the verification accuracy on
only the positive pairs in the evaluation set. For verification, we use the default match threshold
0.5 for both AWS and Azure.

Verification Identification
V-Acc. (%) Recall (%) Rank-1 Acc. (%)

Input type AWS Azure AWS Azure AWS

Clean images 95.5 91.0 91.0 83.0 82.0
Ensemble ATN 64.7 50.1 30.2 2.1 16.4

For attacking the above APIs, we train an ATN jointly on the ensemble of RN-SF-6 and IN-SF-4

models. Training the attack against an ensemble of different architectures helps achieve more

effective attack generalization against black-box models. As reported by the results in Table 2.5,

for images perturbed by our Ensemble ATN, we achieve a significant drop in both verification and

identification metrics as compared to the API performance on Clean images. This is indicated by

the lower verification accuracy, recall rate and identification accuracy for the Ensemble ATN

attack.

2.2.7 Conclusion

In this section I described our proposed framework ReFace, a real-time, highly transfer-

able attack on face recognition models based on Adversarial Transformation Networks. Using our

Residual U-Net ATN model, we bridge the performance gap between ATN and gradient-based

PGD attacks while being several orders of magnitude faster than PGD attacks. Unlike prior work,

our method enables real-time attacks on video streams which we demonstrate via successful

attacks on face recognition over web-cam interfaces. We demonstrate that adversarial examples

generated using ATNs can effectively bypass face recognition systems in both white-box and

black-box transfer attack settings. Our work bridges the attack effectiveness gap between real-

time ATN attacks and PGD attacks by developing a Residual U-net architecture that allows us to

36



effectively increase the capacity of the ATN. Our ResU-Net ATN approaches PGD performance

in white-box attacks and outperforms PGD on black-box transfer attacks. Adversarial examples

generated from our framework can bypass commercial face recognition APIs in a complete

black-box setting and reduce face identification accuracy from 82% to 16.4%. Our extensive

experiments validate that ReFace attacks can effectively target the embedding space of face

recognition models, and therefore serve as a strong benchmark to investigate the adversarial

robustness of future models.

2.3 Vulnerabilities of DL based Speech Recognition

Machine learning agents serve as the backbone of several speech recognition systems,

widely used in personal assistants of smartphones and home electronic devices (e.g. Apple Siri,

Google Assistant). Traditionally, Hidden Markov Models (HMMs) [63, 64, 65, 66, 67, 68]

were used to model sequential data but with the advent of deep learning, state-of-the-art speech

recognition systems are based on DNNs [4, 69, 70, 71].

However, several studies have demonstrated that DNNs are vulnerable to adversarial

examples [25, 20, 13, 26, 9]. An adversarial example is a sample from the classifier’s input

domain which has been perturbed in a way that is intended to fool a victim machine learning

(ML) model. While the perturbation is usually imperceptible, such an adversarial input can

mislead neural network models deployed in real-world settings causing it to output an incorrect

class label with higher confidence.

A vast amount of past research in adversarial machine learning has shown such attacks

to be successful in the image domain [72, 9, 10, 73, 11]. However, few works have addressed

attack scenarios involving other modalities such as audio. This limits our understanding of

system vulnerabilities of many commercial speech recognition models employing DNNs, such

as Amazon Alexa, Google Assistant, and home electronic devices like Amazon Echo and Google

Home. Recent studies that have explored attacks on automatic speech recognition (ASR) systems

37



[74, 1, 75, 76], have demonstrated that adversarial examples exist in the audio domain. The

authors of [1] proposed targeted attacks where an adversary designs a perturbation that can cause

the original audio signal to be transcribed to any phrase desired by the adversary. However,

calculating such perturbations requires the adversary to solve an optimization problem for each

data-point they wish to mis-transcribe. This makes the attack in-applicable in real-time since

the adversary would need to re-solve the data-dependent optimization problem from scratch for

every new data-point.

Universal Adversarial Perturbations [40] have demonstrated that there exist universal

image-agnostic perturbations which when added to any image will cause the image to be mis-

classified by a victim network with high probability. The existence of such perturbations poses a

threat to machine learning models in real world settings since the adversary may simply add the

same pre-computed universal perturbation to a new image and cause mis-classification.

Contributions: In this chapter, we address the question “Do universal adversarial perturbations

exist for neural networks in audio domain?” We demonstrate the existence of universal audio-

agnostic perturbations that can fool DNN based ASR systems.3 We propose an algorithm to

design such universal perturbations against a victim ASR model in the white-box setting, where

the adversary has access to the victim’s model architecture and parameters. We validate the

feasibility of our algorithm, by crafting such perturbations for Mozilla’s open source implemen-

tation of the state-of-the-art speech recognition system DeepSpeech [71]. Additionally, we

discover that the generated universal perturbation is transferable to a significant extent across

different model architectures. Particularly, we demonstrate that a universal perturbation trained

on DeepSpeech can cause significant transcription error on a WaveNet [4] based ASR model.

3Sound Examples: universal-audio-perturbation.herokuapp.com

38

universal-audio-perturbation.herokuapp.com


2.3.1 Universal Adversarial Perturbations for Real-time Attacks on
Speech Recognition Systems

In this section, I discuss the existence of universal adversarial audio perturbations that

cause mis-transcription of audio signals by automatic speech recognition (ASR) systems. I

describe our proposed algorithm to find a single quasi-imperceptible perturbation, which when

added to any arbitrary speech signal, will most likely fool the victim speech recognition model.

Our experiments demonstrate the application of our proposed technique by crafting audio-

agnostic universal perturbations for the state-of-the-art ASR system – Mozilla DeepSpeech.

Additionally, we show that such perturbations generalize to a significant extent across models

that are not available during training, by performing a transferability test on a WaveNet based

ASR system.

2.3.2 Background and Related Work

Adversarial Attacks in the Audio Domain: Adversarial attacks on ASR systems have primarily

focused on targeted attacks to embed carefully crafted perturbations into speech signals, such

that the victim model transcribes the input audio into a specific malicious phrase, as desired by

the adversary [74, 1, 77, 75, 78]. Prior works [75, 78] demonstrate successful attack algorithms

targeting traditional speech recognition models based on HMMs and GMMs, that operate on Mel

Frequency Cepstral Coefficient (MFCC) representation of audio. For example, in Hidden Voice

Commands [75], the attacker uses inverse feature extraction to generate obfuscated audio that can

be played over-the-air to attack ASR systems. However, obfuscated samples sound like random

noise rather than normal human perceptible speech and therefore come at the cost of being

fairly perceptible to human listeners. Additionally, these attack frameworks are not end-to-end,

which render them impractical for studying the vulnerabilities of modern ASR systems – that are

entirely DNN based.

In recent work [1], Carlini et al. propose an end-to-end white-box attack technique to

craft adversarial examples, which transcribe to a target phrase. Similar to the work in images,

39



they propose a gradient-based optimization method that replaces the cross-entropy loss function

used for classification, with a Connectionist Temporal Classification (CTC) loss [79] which

is optimized for time-sequences. The CTC-loss between the target phrase and the network’s

output is backpropagated through the victim neural network and the MFCC computation, to

update the additive adversarial perturbation. The adversarial samples generated by this work

are quasi-perceptible, motivating a separate work [80] to minimize the perceptibility of the

adversarial perturbations using psychoacoustic hiding.

Designing adversarial perturbations using all the above mentioned approaches requires

the adversary to solve a data dependent optimization problem for each input audio signal the

adversary wishes to mis-transcribe, making them ineffective in a real-time attack scenario. In

other words, targeted attacks must be customized for each segment of audio, a process that

cannot yet be done in real-time. The existence of universal adversarial perturbations (described

below) can pose a more serious threat to ASR systems in real-world settings since the adversary

may simply add the same pre-computed universal adversarial perturbation to any input audio and

fool the DNN based ASR system.

Universal Adversarial Perturbations: The authors of [40] craft a single universal perturbation

vector which can fool a victim neural network to predict a false classification output on the

majority of validation instances. Let k̂(x) be the classification output for an input x that belongs

to a distribution µ . The goal is to find a perturbation v such that: k̂(x+ v) ̸= k̂(x) for “most”

x ∈ µ . This is formulated as an optimization problem with constraints to ensure that the universal

perturbation is within a specified p-norm and is also able to fool the desired number of instances

in the training set. The proposed algorithm iteratively goes over the training dataset to build a

universal perturbation vector that pushes each data point to its decision boundary. The authors

demonstrate that it is possible to find a quasi-imperceptible universal perturbation that pushes

most data points outside the correct classification region of a victim model. More interestingly, the

work demonstrates that the universal perturbations are transferable across models with different

architectures. The perturbation produced using one network such as VGG-16 can also be used to

40



fool another network e.g. GoogLeNet showing that their method is doubly universal. Universal

adversarial perturbations for images focuses on the goal of mis-classification and cannot directly

be applied to the more challenging goal of mis-transcription by Speech Recognition System. In

our work we address this challenge and solve an alternate optimization problem to adapt the

method for designing universal adversarial perturbations for ASR systems.

2.3.3 Methodology

Threat Model

CSE-291G 

Do Universal Adversarial Perturbation Exist in the 
Audio Domain?

9

How is the 
weather?

What is the 
time?

Play me a 
song

She has a 
lovely smile 

who have no 
ongcon

bther ren me

who could 
help him he 

billothin ot find 
teee

Figure 2.8. Threat Model: We aim to find a single perturbation which when added to any arbitrary
audio signal, will most likely cause an error in transcription by a victim Speech Recognition
System

We aim to find a universal audio perturbation, which when added to any speech waveform,

will cause an error in transcription by a speech recognition model with high probability. For

the success of the attack, the error in the transcription should be high enough so that the

transcription of the perturbed signal (adversarial transcription) is incomprehensible and the

original transcription cannot be deduced from the adversarial transcription. As discussed in [1],

the transcription “test sentence” mis-spelled as “test sentense” does little to help the adversary.

To make the adversary’s goal challenging, we report success only when the Character Error Rate

(CER) or the normalized Levenshtein distance (Edit Distance) [81] between the original and

adversarial transcription is greater than a particular threshold. Formally, we define our threat

model as follows:

41



Let µ denote a distribution of waveforms and C be the victim speech recognition model

that transcribes a waveform x to C(x). The goal of our work is to find perturbations v such that:

CER(C(x),C(x+ v))> t for “most” x ∈ µ

Here, CER(x,y) is the edit distance between the strings x and y normalized [81] by the

length of x i.e

CER(x,y) =
EditDistance(x,y)

length(x)

The threshold t is chosen as 0.5 for our experiments i.e., we report success only when

the original transcription has been edited by at least 50% of its length using character removal,

insertion, or substitution operations.

The universal perturbation signal v is chosen to be of a fixed length and is cropped or

zero-padded at the end to make it equal to length of the signal x.

Distortion Metric

To quantify the distortion introduced by some adversarial perturbation v, an l∞ met-

ric is commonly used in the space of images. Following the same convention, in the audio

domain [13], the loudness of the perturbation can be quantified using the dB scale, where

dB(v) = maxi(20. log10(vi)). We calculate dBx(v) to quantify the relative loudness of the univer-

sal perturbation v with respect to an original waveform x where:

dBx(v) = dB(v)−dB(x)

Since the perturbation introduced is quieter than the original signal, dBx(v) is a negative value,

where smaller values indicate quieter distortions. In our results, we report the average relative

loudness: dBx(v) across the whole test set to quantify the distortion introduced by our universal

perturbation.

42



Problem Formulation and Algorithm

Our goal to find a quasi-imperceptible universal perturbation vector v such that it mis-

transcribes most data points sampled from a distribution µ . Mathematically, we want to find a

perturbation vector v that satisfies:

1. ∥v∥∞ < ε

2. P
x∼µ

(CER(C(x),C(x+ v)> t))≥ δ .

Here ε is the maximum allowed l∞ norm of the perturbation, δ is the desired attack success rate

and t is the threshold CER chosen to define our success criteria.

To solve the above problem, we adapt the universal adversarial perturbation algorithm

proposed by [40] to find universal adversarial perturbations for the goal of mis-transciption of

speech waveforms instead of mis-classification of data (images). Let X = x1,x2, . . . ,xm be a set

of speech signals sampled from the distribution µ . Our Algorithm (4) goes over the data-points

in X iteratively and gradually builds the perturbation vector v. At each iteration i, we seek a

minimum perturbation ∆vi, that causes an error in the transcription of the current perturbed data

point xi + v. We then add this additional perturbation ∆vi to the current universal perturbation v

and clip the new perturbation v, if necessary, to satisfy the constraint ∥v∥∞ < ε .

Algorithm 2. Universal Adversarial Perturbations for Speech Recognition Systems
1: input: Training Data Points X , Validation Data Points Xv Victim Model C, allowed distortion

level ε , desired success rate δ

2: output: Universal Adversarial Perturbation vector v
3: Initialize v← 0
4: while SuccessRate(Xv)< δ do
5: for each data point xi ∈ X do
6: if CER(C(xi + v+ r),C(xi))< t then
7: Compute min perturbation that mis-transcribes xi + v: ∆vi← argminr ∥r∥2 s.t.:

CER(C(xi + v+ r),C(xi))> t
8: Update and clip universal perturbation v: v = Clipv,ε(v+∆vi)

43



At each iteration we need to solve the following optimization problem, that seeks a

minimum (under l2 norm) additional perturbation ∆vi, to mis-transcribe the current perturbed

audio signal xi + v:

∆vi← argmin
r
∥r∥2 s.t. CER(C(xi + v+ r),C(xi))> t (2.3)

It is non-trivial to solve the above optimization in its current form. In [40], the authors

try to solve a similar optimization problem for the goal of mis-classification of data points. They

approximate its solution using DeepFool [82] which finds a minimum perturbation vector that

pushes a data point to its decision boundary. Since we are tackling a more challenging goal of

mis-transcription of signals where we have decision boundaries for each audio frame across

the time axis, the same idea cannot be directly applied. Therefore, we approximate the solution

to the optimization problem given by Equation 2.3 by solving a more tractable optimization

problem:

Minimize J(r) where

J(r) = c∥r∥2 +L(xi + v+ r,C(xi))

s.t. ∥v+ r∥∞ < ε

where L(x,y) =−CTCLoss( f (x),y)

(2.4)

In other words, to mis-transcribe the signal, we aim to maximize the CTC-Loss between

the predicted probability distributions of the perturbed signal f (xi + v+ r) and the original

transcription C(xi) while having a regularization penalty on the l2 norm of r. Since this a

non-convex optimization problem, we approximate its solution using iterative gradient sign

44



method [83]:

r0 =
−→
0

rN+1 = Clipr+v,ε{rN−αsign(∆rN J(rN)}
(2.5)

Note that the error J is back-propagated through the entire neural network and the MFCC

computation to the perturbation vector r. We iterate until we reach the desired CER threshold t

for a particular data point xi. The regularization constant c is chosen through hyper-parameter

search on a validation set to find the maximum success rate for a given magnitude of allowed

perturbation.

2.3.4 Experiments

We demonstrate the application of our proposed attack algorithm on the pre-trained

Mozilla DeepSpeech model [71, 84]. We train our algorithm on the Mozilla Common Voice

Dataset [71] which contains 582 hours of audio across 400,000 recordings in English. We train

on a randomly selected set X containing 5,000 audio files from the training set and evaluate our

model on both the training set X and the entire unseen validation set of the Mozilla Common

Voice Dataset. We analyze the effect of the size of the set X below. The length of our universal

adversarial perturbation is fixed to 150,000 samples which corresponds to around 9 seconds

of audio at 16 KHz. The universal adversarial perturbations are trained using our proposed

algorithm 4 with a learning rate α = 5 and the regularization parameter c set to 0.5.

Evaluation: We utilize two metrics: i) Mean CER - Character Error Rate averaged over the

entire test set and ii) Success Rate to evaluate our universal adversarial perturbations. We report

success on a particular waveform, if the CER between the original and adversarial transcription

(Section 2.3.3) is greater than 0.5. The amount of perturbation is quantified using mean relative

distortion dBx(v) over the test set (Refer to Section 2.3.3).

45



Table 2.6. Results of our algorithm for different allowed magnitude of universal adversarial
perturbation

Training Set (X) Test Set

∥v∥∞

Mean
dBx(v)

Success
Rate (%)

Mean
CER

Mean
dBx(v)

Success
Rate (%)

Mean
CER

100 -42.03 57.46 0.63 -41.86 56.13 0.64
150 -38.51 72.78 0.81 -38.34 72.49 0.82
200 -36.01 83.27 0.92 -35.84 80.47 0.95
300 -32.49 89.52 1.10 -32.32 89.06 1.11
400 -30.18 90.60 1.06 -29.82 88.24 1.07

2.3.5 Results

Table 2.6 shows the results of our algorithm for different allowed magnitude of universal

adversarial perturbation on both the training set X and the unseen Test Set. Both the success

rate and the Mean Character Error Rate (CER) increase with increase in the maximum allowed

perturbation. We achieve a success rate of 89.06 % on the validation set, with the mean distortion

metric dBx(v) ≈ −32dB. To interpret the results in context, −32dB is roughly the difference

between ambient noise in a quiet room and a person talking [85, 1] . We encourage the reader to

listen to our adversarial samples and their corresponding transcriptions on our web page (link in

the footnote of the first page)

Figure 2.9 (a) shows the success rate and mean edit distance compared to the size of the training

set X for maximum allowed perturbation ∥v∥∞ = 200 (Mean dBx(v) = −36.01). We observe

that it is possible to train our proposed algorithm on very few examples and achieve reasonable

success rates on unseen data. For example, training on just 1000 examples can achieve a success

rate of 80.47 % on the test set.

Effectiveness of universal perturbations

In order to assess the vulnerability of the victim Speech Recognition System to our

attack algorithm, we compare our universal perturbation with random (uniform) perturbation

46



Size of X

Su
cc

es
s 

Ra
te

 (%
)

0

25

50

75

100

10 100 1000 5000

db(v) Universal Random
0 0 0

100 56.13 5.4192229
200 80.47 13.9059305
300 89.06 20
400 89.06 28

0

20

40

60

80

100

0 100 200 300 400

Su
cc

es
s R

at
e 

(%
)

||V||∞

Universal Random

(a) (b)

Figure 2.9. (a) Attack Success Rate on the test set vs. the number of audio files in the training
set X (b) Success Rate vs ∥v∥∞ of universal and random perturbations.

having the same magnitude of distortion (same ∥v∥∞) as our universal adversarial perturbation.

Figure 2.9 (b) shows the plot of success rate vs. the magnitude of the perturbation for each of

these perturbations. It can be seen that universal adversarial perturbations are able to achieve high

success rate with very low magnitude of distortion as compared to a random noise perturbation.

For example, for allowed perturbation ∥v∥∞ = 100 our universal perturbation achieves a success

rate of 65% which is substantially higher than the success rate of random noise. This implies

that for the same magnitude of distortion, distorting an audio waveform in a random direction

is significantly less likely to cause mis-transcription as compared to distorting the waveform

in the direction of universal perturbation. Our results support the hypothesis discussed in [40],

demonstrating that universal adversarial perturbations exploit geometric correlations in the

decision boundaries of the victim model.

Table 2.7. Results of the same universal adversarial perturbation on two victim models: Wavenet
and Mozilla DeepSpeech. The universal perturbation was trained on the DeepSpeech model.

Wavenet Mozilla DeepSpeech

∥v∥∞

Mean
dBx(v)

Success
Rate (%)

Mean
CER

Success
Rate (%)

Mean
CER

150 -38.34 26.97 0.37 72.49 0.82
200 -35.84 31.18 0.40 80.47 0.95
300 -32.32 42.05 0.47 89.06 1.11
400 -29.82 63.28 0.60 88.24 1.07

47



Cross-model Transferability

We perform a study on the transferability of adversarial samples to deceive ML models

that have not been used for training the universal adversarial perturbation, i.e., their parameters

and network structures are not revealed to the attacker. We train universal adversarial pertur-

bations for Mozilla DeepSpeech and evaluate the extent to which they are valid for a different

ASR architecture based on WaveNet [4]. For this study, we use a publicly available pre-trained

model of WaveNet [86] and evaluate the transcriptions obtained using clean and adversarial

audio for the same unseen validation dataset as used in our previous experiments. Our results in

Table 2.7 indicate that our attack is transferable to a significant extent for this particular setting.

Specifically, when the mean dBx(v) = −29.82, we are able to achieve a 63.28% success rate

while attacking the WaveNet based ASR model. This result demonstrates the practicality of

such adversarial perturbations, since they are able to generalize well across data points and

architectures.

2.3.6 Conclusion

In this section, I described the existence of audio-agnostic adversarial perturbations for

speech recognition systems. We demonstrate that our audio-agnostic adversarial perturbation

generalizes well across unseen data points and to some extent across unseen networks. Our

proposed end-to-end approach can be used to further understand the vulnerabilities and blind

spots of deep neural network based ASR system, and provide insights for building more robust

neural networks.

2.4 Acknowledgements

Chapter 2 contains material found in the following two papers (1) ReFace: Adversarial

Transformation Networks for Real-time Attacks on Face Recognition Systems. IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks, 2023. Hussain, Shehzeen; Huster,

48



Todd; Mesterharm, Chris; Neekhara, Paarth; Koushanfar, Farinaz. (2) Universal Adversarial

Perturbations for Speech Recognition Systems. Interspeech, 2019. Neekhara, Paarth; Hussain,

Shehzeen; Pandey, Prakhar; Dubnov, Shlomo; McAuley, Julian; Koushanfar, Farinaz. The

dissertation author was the primary investigator and author of paper (1). The dissertation author

and Paarth Neekhara made equal contributions to the work done in paper (2).

49



Chapter 3

Vulnerabilities of DL to Adversarial Re-
programming

3.1 Vulnerabilities of DL based Text Recognition

While neural network based machine learning models serve as the backbone of many text

and image processing systems, recent studies have shown that they are vulnerable to adversarial

examples. Traditionally, an adversarial example is a sample from the classifier’s input domain

which has been perturbed in such a way that is intended to cause a machine learning model to

misclassify it. While the perturbation is usually imperceptible, such an adversarial input results

in the neural network model outputting an incorrect class label with higher confidence. Several

studies have shown such adversarial attacks to be successful in both the continuous input domain

[72, 9, 87, 73, 11] and discrete input spaces [88, 89, 90].

Adversarial Reprogramming [91] is a new class of adversarial attacks where a machine

learning model is repurposed to perform a new task chosen by the attacker. The proposed attack

is interesting because it allows an adversary to move a step beyond mere mis-classification of

a victim network’s output onto having the control to repurpose the network fully. The authors

demonstrated how an adversary may repurpose a pre-trained ImageNet [92] model for an alternate

classification task like classification of MNIST digits or CIFAR-10 images without modifying the

network parameters. Since machine learning agents can be reprogrammed to perform unwanted

actions as desired by the adversary, such an attack can lead to theft of computational resources

50



such as cloud-hosted machine learning models. Besides theft of computational resources, the

adversary may perform a task that violates the code of ethics of the system provider.

The adversarial reprogramming approach proposed by [91] trains an additive contribution

θ to the inputs of the neural network to repurpose it for the desired alternate task. This approach

assumes a white-box attack scenario where the adversary has full access to the network’s

parameters. Also, the adversarial program proposed in this work is only applicable to tasks

where the input space of the the original and adversarial task is continuous.

In our work, we propose a method to adversarially repurpose neural networks which

operate on sequences from a discrete input space. The task is to learn a simple transformation

(adversarial program) from the input space of the adversarial task to the input space of the

neural network such that the neural network can be repurposed for the adversarial task. We

propose a context-based vocabulary remapping function as an adversarial program for sequence

classification networks. We propose training procedures for this adversarial program in both

white-box and black-box scenarios. In the white-box attack scenario, where the adversary has

access to the classifier’s parameters, a Gumbel-Softmax trick [93] is used to train the adversarial

program. Assuming a black-box attack scenario, where the adversary may not have access to the

classifier’s parameters, we present a REINFORCE [94] based optimization algorithm to train the

adversarial program.

H e n r i q u e sAdversarial Task: 
Name Classification

Adversarial Reprogramming Function (fḎ)

Victim Model - Questions Classifier (C)

 other always live What Who does ind Who gold is off ...Original Task: 
Question Classification

Portuguese

Human
Label Remapping (fL)

Figure 3.1. Example of Adversarial Reprogramming for Sequence Classification. We aim to
design and train the adversarial reprogramming function fθ , such that it can be used to repurpose
a pre-trained classifier C, for a desired adversarial task.

51



We apply our proposed methodology on various text classification models including

Recurrent Neural Networks such as LSTMs and bidirectional LSTMs, and Convolutional Neural

Networks (CNNs). We demonstrate experimentally, how these neural networks trained on a

particular (original) text classification task can be repurposed for alternate (adversarial) clas-

sification tasks. We experiment with different text classification datasets given in table 3.1 as

candidate original and adversarial tasks and adversarially reprogram the aforementioned text

classification models to study the robustness of the attack.

3.1.1 Adversarial Reprogramming of Text Classification Neural Net-
works

In this work, we develop methods to repurpose text classification neural networks for

alternate tasks without modifying the network architecture or parameters. We propose a context

based vocabulary remapping method that performs a computationally inexpensive input trans-

formation to reprogram a victim classification model for a new set of sequences. We propose

algorithms for training such an input transformation in both white box and black box settings

where the adversary may or may not have access to the victim model’s architecture and param-

eters. We demonstrate the application of our model and the vulnerability of neural networks

by adversarially repurposing various text-classification models including LSTM, bi-directional

LSTM and CNN for alternate classification tasks.

3.1.2 Background and Related Work

Adversarial Examples

Traditionally, adversarial examples are intentionally designed inputs to a machine learning

model that cause the model to make a mistake [11]. These attacks can be broadly classified into

untargeted and targeted attacks. In the untargeted attack scenario, the adversary succeeds as

long as the victim model classifies the adversarial input into any class other than the correct

class, while in the targeted attack scenario, the adversary succeeds only if the model classifies

52



Update θ
Update θ

ls

Label Remapping fL
lt

Reward
+1 : Correct Preditcion
-1 : Incorrect Prediction

t1 t2 t3 t4 t5 tN

s1 s2 s3 s4 s5 sN

Adversarial Program - 
Policy Network

Action - Sample a token

REINFORCE

Pad Pad

Text Classifier C

target = fL-1( lt ) Cross Entropy Loss

t1 t2 t3 t4 t5 tN

g1 g2 g3 g4 g5 gN

Distributions over Vs (πi’s) Distributions over Vs (πi’s)

Adversarial Program - 
Policy Network

Generate Gumbel
Distribution Backpropatgation

Pad Pad

Text Classifier C

Figure 3.2. Adversarial Reprogramming Function and Training Procedures. Left: White-box
Adversarial Reprogramming using gumbel softmax distributions. Right: Black-box Adversarial
Reprogramming using REINFORCE algorithm.

the adversarial input into a specific incorrect class. In both these scenarios, the intent of the

adversary is usually malicious and the outcome of the victim model is still limited to the original

task being performed by the model.

Adversarial attacks of image-classification models often use gradient descent on an

image to create a small perturbation that causes the machine learning model to mis-classify it

[72, 95]. There has been a similar line of adversarial attacks on neural networks with discrete

input domains [88, 90], where the adversary modifies a few tokens in the input sequence to

cause mis-classification by a sequence model. In addition, efforts have been made in designing

more general adversarial attacks in which the same modification can be applied to many dif-

ferent inputs to generate adversarial examples [11, 40]. For example, authors [32] trained an

Adversarial Transformation Network that can be applied to all inputs to generate adversarial

examples targeting a victim model or a set of victim models. In this work, we aim to learn such

universal transformations of discrete sequences for a fundamentally different task: Adversarial

Reprogramming described below.

Adversarial Reprogramming

Adversarial Reprogramming [91] introduced a new class of adversarial attacks where

the adversary wishes to repurpose an existing neural network for a new task chosen by the

53



attacker, without the attacker needing to compute the specific desired output. The adversary

achieves this by first defining a hard-coded one-to-one label remapping function hg that maps

the output labels of the adversarial task to the label space of the classifier f ; and learning a

corresponding adversarial reprogramming function h f (.;θ) that transforms an input (X̃) 1 from

the input space of the new task to the input space of the classifier. The authors proposed an

adversarial reprogramming function h f (.;θ), for repurposing ImageNet models for adversarial

classification tasks. An adversarial example Xadv for an input image X̃ can be generated using

the following adversarial program: 2

Xadv = h f (X̃ ;θ) = X̃ + tanh(θ)

where θ ∈ Rn×n×3 is the learnable weight matrix of the adversarial program (where n is the

ImageNet image width). Let P(y|X) denote the probability of the victim model predicting label

y for an input X . The goal of the adversary is to maximize the probability P(hg(yadv)|Xadv)

where yadv is the label of the adversarial input Xadv. The following optimization problem that

maximizes the log-likelihood of predictions for the adversarial classification task, can be solved

using backpropagation to train the adversarial program parameterized by θ :

θ̂ = argminθ

(
− logP(hg(yadv)|Xadv)+λ ||θ ||22

)
(3.1)

where λ is the regularization hyperparameter. Since the adversarial program proposed is a

trainable additive contribution θ to the inputs, it’s application is limited to neural networks

with a continuous input space. Also, since the the above optimization problem is solved by

back-propagating through the victim network, it assumes a white-box attack scenario where the

adversary has gained access to the victim model’s parameters. In this work, we describe how we

can learn a simple transformation in the discrete space to extend the application of adversarial

1X̃ is an ImageNet size (n×n×3) padded input image
2Masking ignored because it is only a visualization convenience

54



reprogramming on sequence classification problems. We also propose a training algorithm in the

black-box setting where the adversary may not have access to the model parameters.

Transfer Learning

Transfer Learning [96] is a study closely related to Adversarial Reprogramming. During

training, neural networks learn representations that are generic and can be useful for many

related tasks. A pre-trained neural network can be effectively used as a feature extractor and

the parameters of just the last few layers are retrained to realign the output layer of the neural

network for the new task. Prior works have also applied transfer learning on text classification

tasks [97, 98]. While transfer learning approaches exploit the learnt representations for the

new task, they cannot be used to repurpose an exposed neural network for a new task without

modifying some intermediate layers and parameters.

Adversarial Reprogramming reprogramming studied whether it is possible to keep all the

parameters of the neural network unchanged and simply learn an input transformation that can

realign the outputs of the neural network for the new task. This makes it possible to repurpose

exposed neural network models like cloud-based photo services to a new task where transfer

learning is not applicable since we do not have access to intermediate layer outputs.

3.1.3 Methodology

Threat Model

Consider a sequence classifier C trained on the original task of mapping a sequence s ∈ S

to a class label lS ∈ LS i.e C : s 7→ lS. An adversary wishes to repurpose the original classifier C

for the adversarial task C′ of mapping a sequence t ∈ T to a class label lT ∈ LT i.e C′ : t 7→ lT .

The adversary can achieve this by hard-coding a one-to-one label remapping function:

fL : lS 7→ lT

55



that maps an original task label to the new task label and learning a corresponding adversarial

reprogramming function:

fθ : t 7→ s

that transforms an input from the input space of the adversarial task to the input space of the

original task. The adversary aims to update the parameters θ of the adversarial program fθ such

that the mapping fL(C( fθ (t))) can perform the adversarial classification task C′ : t 7→ lT . Note

that the victim model’s parameters will be kept frozen while training the reprogramming function

fθ .

Adversarial Reprogramming Function

The goal of the adversarial reprogramming function fθ : t 7→ s is to map a sequence t to s

such that it is labeled correctly by the classifier fL(C).

The tokens in the sequence s and t belong to some vocabulary lists VS and VT respectively.

We can represent the sequence s as s = s1,s2, ..,sN where si is the vocabulary index of the

ith token in sequence s in the vocabulary list VS. Similarly sequence t can be represented as

t = t1, t2, .., tN where ti is the vocabulary index of the ith token of sequence t in the vocabulary

list VT .

In the simplest scenario, the adversary may try to learn a vocabulary mapping from VT

to VS using which each ti can be independently mapped to some si to generate the adversarial

sequence. Such an adversarial program has limited potential since the representational capacity

of such a reprogramming function is very limited. We experimentally support this hypothesis

by showing how such a transformation has limited potential for the purpose of adversarial

reprogramming.

A more sophisticated adversarial program can be a sequence to sequence machine

translation model [99] that learns a translation t 7→ s for adversarial reprogramming. While

theoretically this is a good choice, it defeats the purpose of adversarial reprogramming. This is

56



because the computational complexity of training and using such a machine translation model

would be similar if not greater than that of a new sequence classifier for the adversarial task C′.

The adversarial reprogramming function should be computationally inexpensive but

powerful enough for adversarial repurposing. To this end, we propose a context-based vocabulary

remapping model that produces a distribution over the target vocabulary at each time-step based

on the surrounding input tokens. More specifically, we define our adversarial program as a

trainable 3-d matrix θk×|VT |×|VS| where k is the context size. Using this, we generate a probability

distribution πi over the vocabulary VS at each time-step i as follows:

hi =
k−1

∑
j=0

θ [ j, ti+⌊k/2⌋− j] (3.2)

πi = so f tmax(hi) (3.3)

Both hi and πi are vectors of length |VS|. To generate the adversarial sequence s we sample each

si independently from the distribution πi i.e si ∼ πi

In practice, during training, we implement this adversarial program as a single layer of

1-d convolution over the sequence of one-hot encoded vectors of adversarial tokens ti with |VT |

input channels and |VS| output channels with k-length kernels parameterized by θk×|VT |×|VS|.

White-box Attack

In the white-box attack scenario, we assume that the adversary has gained access to the

victim network’s parameters and architecture. To train the adversarial reprogramming function

fθ , we use an optimization objective similar to equation 3.1. Let P(l|s) denote the probability

of predicting label l for a sequence s by classifier C. We wish to maximize the probability

P( f−1
L (lt)| fθ (t)) which is the probability of the output label of the classifier being mapped to the

correct class lt for an input t in the domain of the adversarial task. Therefore we need to solve

the following log-likelihood maximization problem:

57



θ̂ = argminθ (−∑
t

log(P( f−1
L (lt)| fθ (t)))) (3.4)

Note that that the output of the adversarial program s = fθ (t) is a sequence of discrete

tokens. This makes the above optimization problem non-differentiable. Prior works [100,

101, 90] have demonstrated how we can smoothen such an optimization problem using the

Gumbel-Softmax [93] distribution.

In order to backpropagate the gradient information from the classifier to the adversarial

program, we smoothen the generated tokens si using Gumbel-Softmax trick as per the following:

For an input sequence t, we generate a sequence of Gumbel distributions g = g1,g2, ..,gN .

The nth component of distribution gi is generated as follows:

gn
i =

exp((log(πn
i )+ rn)/temp)

∑ j exp((log(π j
i )+ r j)/temp)

where πi is the softmax distribution at the ith time-step obtained using equation 3.3, rn is

a random number sampled from the Gumbel distribution [102] and temp is the temperature of

Gumbel-Softmax.

The sequence then passed to the classifier C is the sequence g which serves as a soft

version of the one-hot encoded vectors of si’s. Since the model is now differentiable, we can

solve the following optimization problem using backpropagation:

θ̂ = argminθ (−∑
t

log(P( f−1
L (lt)|g)))

During training the temperature parameter is annealed from some high value tmax to a

very low value tmin. The details of this annealing process for our experiments have been included

in the appendix.

58



Black-box Attack

In the black-box attack scenario, the adversary can only query the victim classifier C for

labels (and not the class probabilities). We assume that the adversary has the knowledge of the

vocabulary VS of the victim model. Since the adversarial program needs to produce a discrete

output to feed as input to the classifier C, it is not possible to pass the gradient update from

the classifier fL(C) to the adversarial program θ using standard back-propagation. Also, in the

black-box attack setting it is not possible to back-propagate the cross entropy loss through the

classifier C in the first place.

We formulate the sequence generation problem as a Reinforcement Learning prob-

lem [103, 104, 105] where the adversarial reprogramming function is the policy network. The

state of the adversarial program is a sequence t ∈ T and an action of our policy network is

to produce a sequence of tokens s ∈ S. The adversarial program parameterized by θ , models

the stochastic policy πadv(s|t;θ) such that a sequence s ∈ S may be sampled from this policy

conditioned on t ∈ T . We use a simple reward function where we assign a reward +1 for a

correct prediction and -1 for an incorrect prediction using the classifier fL(C) where fL is the

label remapping function and C is the classifier. Formally:

r(t,s) =


+1, fL(C(s)) = lt

−1, fL(C(s)) ̸= lt

The optimization objective to train the policy network is the following:

max
θ

J(θ) where, J(θ) = Eπadv[r(t,s)]

Following the REINFORCE algorithm [94] we can write the gradient of the expectation with

respect to θ as per the following:

59



∇θ J = ∇θ

[
E

πadv
[r(t,s)]

]
= ∇θ

[
∑
s

πadv(s|t;θ)r(t,s)
]

= ∑
s

πadv(s|t;θ)∇θ log(πadv(s|t;θ))r(t,s)

= E
πadv

[r(t,s)∇θ log(πadv(s|t;θ))]

= E
πadv

[r(t,s)∇θ log(πadv(s1, ..,sN |t;θ))]

= E
πadv

[
r(t,s)∇θ log(∏

i
πadv(si|t;θ))

]

= E
πadv

[
r(t,s) ∑

i
∇θ log(πadv(si|t;θ))

]

Note that πadv(si|t;θ) is the same as πi defined in equation 3.3 which can be differentiated

with respect to θ . The expectations are estimated as sample averages. Having obtained the

gradient of expected reward, we can use mini-batch gradient ascent to update θ with a learning

rate α as: θ ← θ +α∇θ J.

3.1.4 Experiments

Datasets and Classifiers

We demonstrate the application of the proposed reprogramming techniques on various

text-classification tasks. In our experiments, we design adversarial programs to attack both

word-level and character-level text classifiers. Additionally, we aim to adversarially repurpose a

character-level text classifier for a word-level classification task and vice-versa. To this end, we

choose the following text-classification datasets as candidates for the original and adversarial

classification tasks:

1. Surname Classification Dataset (Names-18, Names-5) [106]: The dataset categorizes

surnames from 18 languages of origin. We use a subset of this dataset Names-5 containing Names

60



Table 3.1. Summary of datasets. |V | denotes the vocabulary size of each dataset.

Data Set # Classes Train Samples Test Samples |V | Avg Length

Names-18 18 115,028 28,758 90 7.1
Names-5 5 3632 909 66 6.5
Questions 6 4361 1091 1205 11.2
Arabic 2 1600 400 955 9.7
IMDB 2 25,000 25,000 10000 246.8

from 5 classes: Dutch, Scottish, Polish, Korean and Portuguese, as a candidate for adversarial

task in the experiments.

2. Experimental Data for Question Classification (Questions) [107]: categorizes around 5500

questions into 6 classes: Abbreviation, Entity, Description, Human, Location, Numeric.

3. Sentiment Classification Dataset [108] (Arabic) : contains 2000 binary labeled tweets on

diverse topics such as politics and arts.

4. Large Movie Review Dataset (IMDB) for sentiment classification [109]: contains 50,000

movie reviews categorized into binary class of positive and negative sentiment.

The statistics of the above mentioned datasets have been given in Table 3.1. We train

adversarial reprogramming functions to repurpose various text-classifiers based on Long Short-

Term Memory (LSTM) network [110], bidirectional LSTM network [111] and Convolutional

neural network [112] models. All the aforementioned models can be trained for both word-level

and character-level classification. We use character level classifiers for Names-18 and Names-5

datasets and word-level classifiers for IMDB, Questions and Arabic datasets. We use randomly

initialized word/character embeddings which are trained along with the classification model

parameters. For LSTM, we use the output at last timestep for prediction. For the Bi-LSTM, we

combine the outputs of the first and last time step for prediction. For the Convolutional Neural

Network we follow the same architecture as [112]. Additionally, to understand the effectiveness

of adversarial reprogramming, we train a single layer CNN with convolutional filter width 5 and

discuss the results of this experiment in Section 3.1.5.

61



Table 3.2. Test accuracy of various classification models. We use character-level models for
Names-5 and Names-18 and word-level models for all other tasks. 1-CNN is a single layer CNN
model with filter width 5.

Data Set LSTM Bi-LSTM CNN 1-CNN

Names-18 97.84 97.84 97.88 74.04
Names-5 99.88 99.88 99.77 71.51
Questions 96.70 98.25 98.07 83.77
Arabic 87.25 88.75 88.00 74.75
IMDB 86.83 89.43 90.02 83.32

Experimental Setup

As described in the methodology section, the label remapping function fL we use, is a

one-to-one mapping between the labels of the original task and the adversarial task. Therefore it

is required to apply the constraint that the number of classes of the adversarial task are less than

or equal to the number of classes of the original task. We choose Names-5, Arabic and Question

Classification as candidates for the adversarial tasks and repurpose the models allowed under

this constraint. We use context size k = 5 for all our experiments.

In white-box attacks, we use the Gumbel-Softmax based approach described in the

methodology to train the adversarial program. The details of the temperature annealing process

are included in table 1 of the supplementary material. For black-box attacks, we use the

REINFORCE algorithm described in methodology, on mini-batches of sequences. Since the

action space for certain reprogramming problems, (eg. reprogramming of IMDB classifier)

is large (|VS| = 10000), we restrict the output of the adversarial program to most frequent

1000 tokens in the vocabulary VS. We use Adam optimizer [113] for all our experiments.

Hyperparameter details of all our experiments are included in table 1 of the supplementary

material.

62



Table 3.3. Adversarial Reprogramming Experiments: The accuracies of white-box and black-box
reprogramming experiments on different combinations of original task, adversarial task and
model. White-box on Random Network column presents results of the white-box attack on an
untrained neural network.

Test Accuracy (%)

Original Task Adversarial Task Victim Model Black Box White Box White Box on
Random Network

Questions Names-5
LSTM 80.96 97.03 44.33
Bi-LSTM 93.51 99.66 63.14
CNN 88.90 99.22 93.06

Questions Arabic
LSTM 73.50 87.50 50.00
Bi-LSTM 81.75 83.50 70.00
CNN 82.25 87.25 76.25

Names-18 Questions
LSTM 68.56 95.23 28.23
Bi-LSTM 94.96 97.15 80.01
CNN 71.03 97.61 33.45

Names-18 Arabic
LSTM 83.00 84.75 51.50
Bi-LSTM 78.75 84.25 69.25
CNN 80.75 86.50 60.00

IMDB Arabic
LSTM 80.75 88.25 50.50
Bi-LSTM 83.25 86.75 84.00
CNN 84.00 87.00 84.25

3.1.5 Results and Discussion

The accuracies of all adversarial reprogramming experiments have been reported in

Table 3.3. To interpret the results in context, the accuracies achieved by the LSTM, Bi-LSTM

and CNN text classification models on the adversarial tasks can be found in table 3.1.

We demonstrate how character-level models trained on Names-18 dataset can be repur-

posed for word-level sequence classification tasks like Question Classification and Arabic Tweet

Sentiment Classification. Similarly, word-level classifiers trained on Question Classification

Dataset can be repurposed for the character-level Surname classification task. Interestingly, clas-

sifiers trained on IMDB Movie Review Dataset can be repurposed for Arabic Tweet Sentiment

63



Classification even though there is a high difference between the vocabulary size (10000 vs

955) and average sequence length(246.8 vs 9.7) of the two tasks. It can be seen that all of the

three classification models are susceptible to adversarial reprogramming in both white-box and

black-box setting.

White-box based reprogramming outperforms the black-box based approach in all of

our experiments. In practice, we find that training the adversarial program in the black-box

scenario requires careful hyper-parameter tuning for REINFORCE to work. We believe that

improved reinforcement learning techniques for sequence generation tasks [104, 103] can make

the training procedure for black-box attack more stable. We propose such improvement as a

direction of future research.

To assess the importance of the original task on which the network was trained, we

also present results of white-box adversarial reprogramming on untrained random network.

Our results are coherent with similar experiments on adversarial reprogramming of untrained

ImageNet models [91] demonstrating that adversarial reprogramming is less effective when it

targets untrained networks. The figures in Table 3.3 suggest that the representations learned

by training a text classifier on an original task, are important for repurposing it for an alternate

task. However another plausible reason as discussed by reprogramming is that the reduced

performance on random networks might be because of simpler reasons like poor scaling of

network weight initialization making the optimization problem harder.

Complexity of Reprogramming Function

As motivated earlier in Section 3.1.3, computational efficiency of the adversarial program

is critical for adversarial reprogramming to be of interest to an adversary. If the adversary can

achieve the desired results using a computationally inexpensive classifier, it defeats the purpose

of adversarial reprogramming. To understand if this is the case, we train a one-layer CNN with

the same convolutional filter width as our adversarial program and average the activations across

all time-steps to classify a given phrase. The results of such a classifier on various datasets have

64



been reported in Table 3.2. We can observe that our white-box attack on pre-trained networks,

outperforms this classifier in all scenarios (refer to Table 3.3). Our best black-box attacks also

outperform a one-layer CNN for all adversarial tasks. This experiment demonstrates that the

reprogramming function exploits the learned feature representation of the victim model. Also, the

observation that adversarial reprogramming is significantly less effective on randomly initialized

untrained networks further reinforces the importance of utilizing a trained victim model.

Since the reprogramming function is a context based vocabulary remapping function, we

can implement it as a look-up table that maps a combination of k tokens from the vocabulary Vt

to a token in the source vocabulary Vs. The time complexity for transforming a sentence t to an

adversarial sentence is just O(length(t)).

Adversarial Sequences

Figure 3.3 (a) shows some adversarial sequences generated by the adversarial program for

Names-5 Classification while attacking a CNN trained on the Question Classification dataset. A

sequence t in the first column is transformed into the adversarial sequence s in the second column

by the trained adversarial reprogramming function. While these adversarial sequences may not

make semantic or grammatical sense, it exploits the learned representation of the classifier to map

the inputs to the desired class. For example, sequences that should be mapped to HUMAN class

have words like Who in the generated adversarial sequence. Similarly, sequences that should

be mapped to LOCATION class have words like world, city in the adversarial sequence. Other

such interpretable transformations are depicted via colored text in the adversarial sequences of

Figure 3.3 (a).

Effect of Context Size

By varying the context size k of the convolutional kernel θk×|VT |×|VS| in our adversarial

program we are able to control the representational capacity of the adversarial reprogramming

function. Figure 3.3 (b) shows the percentage accuracy obtained when training the adversar-

65



Adversarial 
Task 

Sequence (t) 
(Names-5)

Adversarial Program Output (s) (Question 
Classification)

Prediction by 
Classifier

Mapped 
Class Actual Class

Ryoo white sport substance animal All off .. ENTITY Korean Korean
Houtum player video exp abb What does off is off .. ABBREVIATION Dutch Dutch

Winogrodzki manner France manner video def oil def 
reason desc What do All off .. DESCRIPTION Polish Polish

Murphy world live exp city What university All is off 
.. LOCATION Scottish Scottish

Paulissen player stars along abb abb exp exp always 
abb What is off .. ABBREVIATION Dutch Dutch

Henriques other always live What Who does ind Who 
gold is off .. HUMAN Portuguese Portuguese

Maly world attend home abb home is off .. LOCATION Scottish Polish

Kasprzak does exp exp def manner does reason 
What does off .. DESCRIPTION Polish Polish

Ferreiro e-mail Who ind exp Who ind university 
university gold off .. HUMAN Portuguese Portuguese

Hong sport cremat substance university is off .. ENTITY Korean Korean

50
55
60
65
70
75
80
85
90
95

100

1 3 5 7

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Adversarial Program Context Size (k)

Original Task: Names-18 Adversarial Task: Arabic Tweets

Bi-LSTM
CNN
LSTM

50
55
60
65
70
75
80
85
90
95

100

1 3 5 7

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Adversarial Program Context Size (k)

Original Task: Questions Adversarial Task: Names-5

Bi-LSTM
CNN
LSTM

(a) (b)

Figure 3.3. (a) Adversarial sequences generated by our adversarial program for Names-5
Classification (adversarial task), when targeting CNN trained for Question Classification (original
task). (b) Accuracy vs Context size (k) plots for 3 classification models on 2 different adversarial
reprogramming tasks.

ial program with different context sizes k on two different adversarial tasks: Arabic Tweets

Classification and Name Classification. Using a context size k = 1 reduces the adversarial

reprogramming function to simply a vocabulary remapping function from VS to VT . It can be

observed that the performance of the adversarial reprogramming model at k = 1 is significantly

worse than that at higher values of k. While higher values of k improve the performance of the

adversarial program, they come at a cost of increased computational complexity and memory

required for the adversarial reprogramming function. For the adversarial tasks studied in this

paper, we observe that k = 5 is a reasonable choice for context size of the adversarial program.

3.2 Cross-modal Adversarial Reprogramming

Transfer learning [96] and adversarial reprogramming [91] are two closely related tech-

niques used for repurposing well-trained neural network models for new tasks. Neural networks

when trained on a large dataset for a particular task, learn features that can be useful across mul-

tiple related tasks. Transfer learning aims at exploiting this learned representation for adapting a

pre-trained neural network for an alternate task. Typically, the last few layers of a neural network

are modified to map to a new output space, followed by fine-tuning the network parameters

66



on the dataset of the target task. Such techniques are especially useful when there is a limited

amount of training data available for the target task.

Adversarial reprogramming shares the same objective as transfer learning with an ad-

ditional constraint: the network architecture or parameters cannot be modified. Instead, the

adversary can only adapt the input and output interfaces of the network to perform the new

adversarial task. This more constrained problem setting of adversarial reprogramming poses a

security challenge to neural networks. An adversary can potentially re-purpose cloud-hosted

machine learning (ML) models for new tasks thereby leading to theft of computational resources.

Additionally, the attacker may reprogram models for tasks that violate the code of ethics of the

service provider. For example, an adversary can repurpose a cloud-hosted ML API for solving

captchas to create spam accounts.

Prior works on adversarial reprogramming [91, 19, 114, 115] have demonstrated success

in repurposing Deep Neural Networks (DNNs) for new tasks using computationally inexpensive

input and label transformation functions. One interesting finding of [91] is that neural networks

can be reprogrammed even if the training data for the new task has no resemblance to the original

data. The authors empirically demonstrate this by repurposing ImageNet [116] classifiers on

MNIST [117] digits with shuffled pixels showing that transfer learning does not fully explain the

success of adversarial reprogramming. These results suggest that neural circuits hold properties

that can be useful across multiple tasks which are not necessarily related. Hence neural network

reprogramming not only poses a security threat, but also holds the promise of more reusable

and efficient ML systems by enabling shared compute of the neural network backbone during

inference time.

In existing work on adversarial reprogramming, the target adversarial task has the same

data domain as the original task. Recent work has shown that network architectures based

on the transformer model can achieve state-of-the-art results on language [118], audio [119]

and vision [120] benchmarks suggesting that transformer networks serve as good inductive

biases in various domains. Given this commonality between the neural architectures in different

67



domains, an interesting question that arises is whether we can perform cross-modal adversarial

reprogramming: For example, Can we repurpose a vision transformer model for a language task?

Cross-modal adversarial reprogramming increases the scope of target tasks for which

a neural network can be repurposed. In this work, we develop techniques to adversarially

reprogram image classification networks for discrete sequence classification tasks. We propose a

simple and computationally inexpensive adversarial program that embeds a sequence of discrete

tokens into an image and propose techniques to train this adversarial program subject to a label

remapping defined between the labels of the original and new task. We demonstrate that we

can reprogram a number of image classification neural networks based on both Convolutional

Neural Network (CNN) [121] and Vision Transformer [120] architectures to achieve competitive

performance on a number of sequence classification benchmarks. Additionally, we show that it

is possible to conceal the adversarial program as a perturbation in a real-world image thereby

posing a stronger security threat. The technical contributions of this paper are summarized

below:

• We propose Cross-modal Adversarial Reprogramming, a novel approach to repurpose ML

models originally trained for image classification to perform sequence classification tasks.

To the best of our knowledge, this is the first work that expands adversarial reprogramming

beyond the data domain of the original task.

• We demonstrate the feasibility of our method by re-purposing four image classification

networks for six different sequence classification benchmarks covering sentiment, topic,

and DNA sequence classification. Our results show that a computationally-inexpensive

adversarial program can leverage the learned neural circuits of the victim model and

outperform word-frequency based classifiers trained from scratch on several tasks studied

in our work.

• We demonstrate for the first time the threat imposed by adversarial reprogramming to

the transformer model architecture by repurposing the Vision Transformer model for six

68



different sequence classification tasks. The reprogrammed transformer model outperforms

alternate architectures on five out of six tasks studied in our work.

fθ(t)

Victim
Image 

Classifier 
(C)

Adversarial Program (f’θ)

Label Remapping (fL)

𝝐x

f’θ(t)

Prediction: 
Joy

E
m

be
dd

in
g 

Lo
ok

up
(θ

)

am

very

I

excited

<pad>

.

.

Sequence (t)

Joy

Anger

Sorrow

Ocean
Sky

Sand
Bridge

…
..

Original Labels New Labels
xc

Figure 3.4. Schematic overview of cross-modal adversarial reprogramming method.

3.2.1 Background and Related Work

Adversarial Reprogramming

Neural networks have been shown to be vulnerable to adversarial examples [11, 9, 87,

40, 90, 122, 2, 123, 38, 39] which are slightly perturbed inputs that cause victim models to make

a mistake. Adversarial Reprogramming was introduced by [91] as a new form of adversarial

threat that allows an adversary to repurpose neural networks to perform new tasks, which are

different from the tasks they were originally trained for. The proposed technique trains a single

adversarial perturbation that can be added to all inputs in order to re-purpose the target model for

an attacker’s chosen task. The adversary achieves this by first defining a hard-coded one-to-one

label remapping function that maps the output labels of the adversarial task to the label space of

the classifier; and learning a corresponding adversarial reprogramming function that transforms

an input from the input space of the new task to the input space of the classifier. The authors

demonstrated the feasibility of their attack algorithm by reprogramming ImageNet classification

models for classifying MNIST and CIFAR-10 data in a white-box setting, where the attacker has

access to the victim model parameters.

While the above attack does not require any changes to the victim model parameters or

architecture, the adversarial program proposed [91] is only applicable to tasks where the input

69



space of the the original and adversarial task is continuous. To understand the feasibility of

attack in a discrete data domain, [19] proposed methods to repurpose text classification neural

networks for alternate tasks, which operate on sequences from a discrete input space. The attack

algorithm used a context-based vocabulary remapping method that performs a computationally

inexpensive input transformation to reprogram a victim classification model for a new set of

sequences. This work was also the first in designing algorithms for training such an input

transformation function in both white-box and black-box settings—where the adversary may or

may not have access to the victim model’s architecture and parameters. They demonstrated the

success of their proposed reprogramming functions by adversarially re-purposing various text-

classification models including Long Short Term Memory networks (LSTM) [110], bi-directional

LSTMs [111] and CNNs [124] for alternate text classification tasks.

Recent works [114, 115] have argued that reprogramming techniques can be viewed as an

efficient training method and can be a superior alternative to transfer learning. Particularly [115]

argue that one of the major limitations of current transfer learning techniques is the requirement

of large amounts of target domain data, which is needed to fine-tune pre-trained neural networks.

They demonstrated the advantage of instead using reprogramming techniques to repurpose

existing ML models for alternate tasks, which can be done even when training data is scarce. The

authors designed a black-box adversarial reprogramming method, that can be trained iteratively

from input-output model responses, and demonstrated its success in repurposing ImageNet

models for medical imaging tasks such as classification of autism spectrum disorders, melanoma

detection, etc.

All of these existing reprogramming techniques are only able to reprogram ML models

when the data domain of the target adversarial task and the original task are the same. We address

this limitation in our work by designing adversarial input transformation functions that allow

image classification models to be reprogrammed for sequence classification tasks such as natural

language and protein sequence classification.

70



Transformers and Image Classifiers

While Convolutional Neural Networks (CNNs) have long achieved state-of-the-art perfor-

mance on vision benchmarks, the recently proposed Vision Transformers (ViTs) [120] have been

shown to outperform CNNs on several image classification tasks. Transformers [118] are known

for achieving state-of-the-art performance in natural language processing (NLP). In order to

train transformers for image classification tasks, the authors [120] divided an image into patches

and provide the sequence of linear embeddings of these patches as an input to a transformer.

Image patches are treated the same way as tokens (words) in an NLP application and the model

is trained on image classification in a supervised manner. The authors report that when ViTs are

trained on large-scale image datasets, they are competitive and also outperform state-of-the-art

models on multiple image recognition benchmarks.

Since transformers can model both language and vision data in a similar manner, that

is, as a sequence of embeddings, we are curious to investigate whether a vision transformer

can be reprogrammed for a text classification task. In the process, we find that CNN network

architectures can also be reprogrammed to achieve competitive performance on discrete sequence

classification tasks. In the next section, we discuss our cross-modal adversarial reprogramming

approach.

3.2.2 Methodology

Problem Definition

Consider a victim image classifier C trained for mapping images x ∈ X to a label lX ∈ LX .

That is,

C : x 7→ lX

71



An adversary wishes to repurpose this victim image classifier for an alternate text classification

task C′ of mapping sequences t ∈ T to a label lT ∈ LT . That is,

C′ : t 7→ lT

To achieve this goal, the adversary needs to learn appropriate mapping functions between the

input and output spaces of the original and the new task. We solve this by first defining a

label remapping fL that maps label spaces of the two tasks: fL : lX 7→ lT ; and then learning a

corresponding adversarial program fθ that maps a sequence t ∈ T to an image x∈ X i.e., fθ : t 7→ x

such that fL(C( fθ (t))) acts as the target classifier C′.

We assume a white-box adversarial reprogramming setting where the adversary has

complete knowledge about architecture and model parameters of the victim image classifier. In

the next few sections we describe the adversarial program fθ , the label remapping function and

the training procedure to learn the adversarial program.

Cross-modal Adversarial Program

The goal of our adversarial program is to map a sequence of discrete tokens t ∈ T to an

image x ∈ X . Without loss of generalizability, we assume X = [−1,1]h×w×c to be the scaled

input space of the image classifier C where h,w are the height and width of the input image and

c is the number of channels. The tokens in the sequence t belong to some vocabulary list VT . We

can represent the sequence t as t = t1, t2, . . . , tN where ti is the vocabulary index of the ith token

in sequence t in the vocabulary list VT .

When designing the adversarial program it is important to consider the computational cost

of the reprogramming function fθ . This is because if a classification model that performs equally

well can be trained from scratch for the classification task C′ and is computationally cheaper

than the reprogramming function, it would defeat the purpose of adversarial reprogramming.

Keeping the above in mind, we design a reprogramming function that looks up embed-

72



dings of the tokens ti and arranges them as contiguous patches of size p× p in an image that is

fed as input to the classifier C. Mathematically, the reprogramming function fθ is parameterized

by a learnable embedding tensor θ|VT |×|p|×|p|×|c| and performs the transformation fθ : t 7→ x as

per Algorithm 3.

Algorithm 3. Cross-modal Adversarial Program fθ
Input: Sequence t = t1, t2, . . . , tN
Output: Reprogrammed image xh×w×c
Parameters: Embedding tensor θ|VT |×|p|×|p|×|c|
x← 0h×w×c
for each tk in t do

i← ⌊(k× p)/h⌋
j← (k× p) mod w
x[i : i+ p, j : j+ p, :]← tanh(θ [tk, :, :, :])

return x

The patch size p and image dimensions h,w determine the maximum length of the

sequence t that can be encoded into the image. We pad all the input sequences t all the way up to

the maximum allowed sequence length with a padding token to fill up the reprogrammed image

and clip any sequences longer than the maximum allowed length from the end. More details

about the hyper-parameters can be found in our experiments section.

Concealing the adversarial perturbation: Most past works on adversarial reprogramming have

considered an unconstrained attack setting, where the reprogrammed image does not necessarily

need to resemble a real-world image. However, as noted by [91], it is possible to conceal the

reprogrammed image in a real-world image by constraining the output of the reprogramming

function. We can conceal the reprogrammed image as an additive perturbation to some real-world

base image xc by defining an alternate reprogramming function f ′
θ

as follows:

f ′θ (t) = Clip[−1,1](xc + ε.fθ (t)) (3.5)

Since the output of the original reprogramming function fθ is bounded between [−1,1], we can

control the L∞ norm of the added perturbation using the parameter ε ∈ [0,1].

73



Computational Complexity: As depicted in Figure 8.2, during inference, the adversarial

program only looks up embeddings of the tokens in the sequence t and arranges them in an image

tensor which can optionally be added onto a base image. Asymptotically, the time complexity

of this adversarial program is linear in terms of the length of the sequence t. Since there are

no matrix-vector multiplications involved in the adversarial program, it is computationally

equivalent to just the embedding layer of a sequence-based neural classifier. Therefore the

inference cost of the adversarial program is significantly less than that of a sequence-based neural

classifier. Table 1 in our supplementary material compares the wall-clock inference time for a

sequence of length 500 for our adversarial program and various sequence-based neural classifiers

used in our experiments.

Label Remapping and Optimization Objective

Past work [91, 19, 115] on adversarial reprogramming assume that the number of labels

in the target task are less than than the number of labels in the original task. In our work, we

relax this constraint and propose label remapping functions for both of the following scenarios:

1. Target task has fewer labels than the original task: Initial works on adversarial

reprogramming defined a one-to-one mapping between the labels of the original and new

task [91, 19]. However, recent work [115] found that mapping multiple source labels to one target

label helps improve the performance over one-to-one mapping. Our preliminary experiments on

cross-modal reprogramming confirm this finding, however, we differ in the way the final score

of a target label lt is aggregated—[115] obtained the final score for a target label as the mean

of the scores of the mapped original labels. We found that aggregating the score by taking the

maximum rather than the mean over the mapped original labels leads to faster training. Another

advantage of using max reduction is that during inference, we can directly map the original

predicted label to our target label without requiring access to probability scores of any other

label.

Consider a target task label lt , mapped to a subset of labels LSt ⊂ LS of the original task

74



under the many-to-one label remapping function fL. We obtain the score for this target task label

as the maximum of the scores of each label li ∈ LSt by classifier C. That is,

Z′lt (t) = max
li∈LSt

Zli( fθ (t)), (3.6)

where Zk(x) and Z′k(t) represent the score (before softmax) assigned to some label k by classifier

C and C′ respectively.

To define the label remapping fL, instead of randomly assigning m source labels to a

target label, we first obtain the model predictions on the base image xc (or a zero image in the

case of an unbounded attack) and sort the labels by the obtained scores; We then assign the

the highest scored source labels to each target label using a round-robin strategy until we have

assigned m source labels to each target label.

Note that while we need access to individual class scores during training (where we

assume a white-box attack setting), during inference we can simply map the highest predicted

label to the target label using the label remapping function fL without having to know the actual

scores assigned to different labels.

2. Original task has fewer labels than the target task: In this scenario, we map the

probability distribution over the original labels to a distribution over target labels to class scores

for the target label space using a learnable linear transformation. That is,

Z′(t) = θ ′|LT |×|LX | · softmax(Z( fθ (t))). (3.7)

Here Z′(t) is a vector representing class scores (logits) for the target label space. θ ′|LT |×|LX |

are the learnable parameters of the linear transformation that are optimized along with the

parameters of the reprogramming function fθ . Note that unlike the previous scenario, in this

setting, we assume that we have access to the probability scores of the original labels during

both training and inference.

75



Optimization Objective: To train the parameters θ of our adversarial program, we

use a cross-entropy loss between the target label and the model score predictions obtained

as per Equation 3.6 or Equation 3.7. We also incorporate an L2 regularization loss for better

generalization on the test set and to encourage more imperceptible perturbation in the case of our

bounded attack. Therefore our final optimization objective is the following:

Plt = softmax(Z′(t))lt

E(θ) =− ∑
t∈T

log(Plt )+λ ||θ ||22.

Here λ is the regularization hyper-parameter and Plt is the predicted class probability of the

correct label lt for sequence t. We use mini-batch gradient descent using an Adam optimizer [113]

to solve the above optimization problem on the dataset of the target task.

3.2.3 Experiments

Victim Image Classifiers

To demonstrate cross-modal adversarial reprogramming, we perform experiments on

four neural architectures trained on the ImageNet dataset. We choose both CNNs and the

recently proposed Vision Transformers (ViT) [120] as our victim image classifiers. While CNNs

have long achieved state-of-the-art performance on computer-vision benchmarks, the recently

proposed ViTs have been shown to outperform CNNs on several image classification tasks. We

choose the ViT-Base [120], ResNet-50 [125], InceptionNet-V3 [126] and EfficientNet-B7 [127]

architectures. The details of these architectures are listed in Table 3.4. We perform experiments

on both pre-trained and randomly initialized networks.

Datasets and Reprogramming Tasks

In this work, we repurpose the aforementioned image classifiers for several discrete

sequence classification tasks. We wish to analyze the performance of cross-modal adversarial re-

76



Table 3.4. Victim image classification networks used for adversarial reprogramming experiments.
We include the number of parameters of each model and also the Top-1 and Top-5 test accuracy
achieved on the ImageNet benchmark.

Accuracy (%)

Model Abbr. Type # Params Top-1 Top-5

ViT-Base ViT Transformer 86.9M 84.2 97.2
ResNet-50 RN-50 CNN 25.6M 79.0 94.4
InceptionNet-V3 IN-V3 CNN 23.8M 77.5 93.5
EfficientNet-B4 EN-B4 CNN 19.3M 83.0 96.3

Table 3.5. Statistics of the datasets used for reprogramming tasks. We also include the test
accuracy of both neural network based and TF-IDF based benchmark classifiers trained from
scratch on the train set.

Dataset Statistics Accuracy (%)

Avg Neural Methods TF-IDF
Dataset Task Type # Classes # Train # Test Token Length Bi-LSTM 1D-CNN unigram n-gram

Yelp Sentiment 2 560,000 38,000 word 135.6 95.94 95.18 92.50 92.93
IMDB Sentiment 2 25,000 25,000 word 246.8 89.43 90.02 88.52 88.43

AG Topic 4 120,000 7,600 word 57.0 91.45 92.09 90.92 90.69
DBPedia Topic 14 560,000 70,000 word 47.1 97.78 98.09 97.12 97.16

Splice DNA 3 2,700 490 neucleobase 60.0 93.26 83.87 51.42 72.24
H3 DNA 2 13,468 1,497 neucleobase 500.0 86.84 85.43 75.68 78.89

programming for different applications such as understanding language and analyzing sequential

biomedical data. Biomedical datasets e.g. splice-junction detection in genes, often have fewer

training samples than language based datasets and we aim to understand whether such limitations

can adversely affect our proposed reprogramming technique.

Sentiment analysis and topic classification are popular NLP tasks. However, analyzing

the underlying semantics of the sequence is often not necessary for solving these tasks since

word-frequency based statistics can serve as strong discriminatory features. In contrast, tasks

like DNA-sequence classification requires analyzing the sequential semantics of the input and

simple frequency analysis of the unigrams or n-grams does not achieve competitive performance

on these tasks. To evaluate the effectiveness of adversarial reprogramming in both of these

77



scenarios, we consider the following tasks and datasets in our experiments:

Sentiment Classification Datasets

1. Yelp Polarity Dataset (Yelp) [124]: This is a dataset consisting of reviews from Yelp

for the task of sentiment classification, categorized into binary classes of positive and negative

sentiment.

2. Large Movie Review Dataset (IMDB) [109]: This is a dataset for binary sentiment

classification of positive and negative sentiment from highly polar IMDB movie reviews.

Topic Classification Datasets

1. AG’s News Dataset (AG) [124]: is a collection of more than 1 million news articles.

News articles have been gathered from more than 2000 news sources and contains 4 classes:

World, Sports, Business, Sci/Tech.

2. DBPedia Ontology Dataset (DBPedia) [124]: consists of 14 non-overlapping cate-

gories from DBpedia 2014. The samples consist of the category and abstract of each Wikipedia

article.

DNA Sequence Classification Datasets

1. Splice-junction Gene Sequences (Splice): This dataset [128, 129] was curated for

training ML models to detect splice junctions in DNA sequences. In DNA, there are two kinds

of splice junction regions: Exon-Intron (EI) junction and Intron-Exon (IE) junction. This dataset

contains sample DNA sequences of 60 base pair length categorized into 3 classes: “EI” which

contains exon-intron junction, “IE” which contains intron-exon junction, and “N” which contain

neither EI or IE regions.

2. Histone Protein Occupancy in DNA (H3): This dataset from [130, 131] indicates

whether certain DNA sequences wrap around H3 histone proteins. Each sample is a sequence

with a length of 500 neucleobases. Positive samples contain DNA regions wrapping around

histone proteins while negative samples do not contain such DNA regions.

The statistics of these datasets are included in Table 3.5. To benchmark the performance

that can be achieved on these tasks, we train various classifiers from scratch on the datasets for

78



each task. We consider both neural network based classification models and frequency-based

statistical models (such as TF-IDF) as our benchmarks. We use word-level tokens for sentiment

and topic classification tasks and neucleobase level tokens for DNA sequence classification tasks.

The TF-IDF methods can work on either unigrams or n-grams for creating the feature

vectors from the input data. For the n-gram model, we consider n-grams up to length 3 and

choose the value of n that achieves the highest classification accuracy on the hold-out set. We

train a Stochastic Gradient Descent (SGD) classifier to classify the feature vector as one of the

target classes. Additionally, we train DNN based text-classifiers: Bidirectional Long Short Term

Memory networks (Bi-LSTM) [111, 110] and 1D CNN [112] models from scratch on the above

tasks. We use randomly initialized token embeddings for all classification models, which are

trained along with the network parameters. For Bi-LSTMs, we combine the outputs of the first

and last time step for prediction. For the Convolutional Neural Network we follow the same

architecture as [112]. The hyper-parameter details of these classifiers and architecture have been

included in Table 2 of the supplementary material.

We report the accuracies on the test set of the above mentioned classifiers in Table 3.5.

We find that while both neural and frequency based TF-IDF methods work well on sentiment

and topic classification tasks, neural networks significantly outperform frequency based methods

on DNA sequence classification tasks. This is presumably because the latter require structural

analysis of the sequence rather than relying on keywords.

Experimental Details

Input image size and patch size: The ViT-Base model utilized in our work is trained on

images of size 384×384 and works on image patches of size 16×16. For all our experiments,

we fix the input image size to be 384×384. When we use a patch of size 16×16 for encoding a

single token in our sequence, it allows for a maximum of 576 tokens to be encoded into a single

image. In our initial experiments we found that using larger patch sizes for smaller sequences

leads to higher performance on the target task, since it encodes a sequence in a spatially larger

79



area of the image. Therefore, we choose our patch size as the largest possible multiple of 16

that can encode the longest sequence in our target task dataset. We list the patch size p used for

different tasks in Table 3.6.

Table 3.6. Results (% Accuracy on the test set) of adversarial reprogramming experiments
targeting four image classification models for six sequence classification tasks.

Unbounded Bounded (L∞ = 0.1)

Pre-trained Randomly Initialized Pre-Trained

Task p ViT RN-50 IN-V3 EN-B4 ViT RN-50 IN-V3 EN-B4 ViT RN-50 IN-V3 EN-B4

Yelp 16 92.82 93.29 89.19 93.47 92.73 68.50 65.56 52.97 88.57 81.32 81.33 81.23
IMDB 16 86.76 85.60 80.67 87.26 88.38 81.08 52.87 50.26 82.07 72.28 71.22 81.42

AG 16 91.59 89.88 89.78 90.46 91.45 82.37 50.43 24.87 86.49 83.26 78.93 84.03
DBPedia 32 97.62 96.31 95.70 96.77 97.56 30.12 52.87 19.61 92.79 80.64 81.46 79.53

Splice 48 95.31 94.48 95.10 92.04 54.13 48.57 91.22 50.20 95.10 94.27 94.89 91.55
H3 16 82.57 78.16 80.29 80.16 77.02 73.00 64.20 51.17 76.62 72.01 75.55 75.42

Training hyper-parameters: We train each adversarial program on a single Titan 1080i

GPU using a batch size of 4. We set the learning rate as 0.001 for the unbounded attacks

and 0.001× ε−1 for our bounded attacks (Equation 3.5). We set the L2 regularization hyper-

parameter λ = 1e−4 for all our experiments and train the adversarial program for a maximum

100k mini-batch iterations in the unbouned attack setting and for 200k mini-batch iterations in

the bounded attack setting. We map 10 original labels to each target label in the scenario when

there are fewer labels for the target task than for the original task. We point the readers to our

codebase for precise implementation.3

3.2.4 Results

Pre-trained vs untrained victim models

Experimental results of our proposed cross-modal reprogramming method are reported

in Table 3.6. In these experiments, the original task has more labels than the target task so we

3https://github.com/paarthneekhara/multimodal rerprogramming

80

https://github.com/paarthneekhara/multimodal_rerprogramming


use the label remapping function given by Equation 3.6. We first consider the unbounded attack

setting, where the output of the adversarial program does not need to be concealed in a real-world

image. For these experiments, we use the reprogramming function fθ described in Algorithm 3.

We also note that the primary evaluation of past reprogramming works [91, 19, 115] is done in

an unbounded attack setting.

When attacking pre-trained image classifiers, we achieve competitive performance (as

compared to benchmark classifiers trained from scratch, reported in Table 3.5) across several

tasks for all victim image classification models. To assess the importance of pre-training

the victim model on the original dataset, we also experiment with reprogramming untrained

randomly initialized networks. Randomly initialized neural networks can potentially have rich

structure which the reprogramming functions can exploit. Prior works [132, 133] have shown

that wide neural networks can behave as Gaussian processes, where training specific weights

in the intermediate layers is not necessary to perform many different tasks. However, in our

experiments, we find that for CNN-based image classifiers, reprogramming pre-trained neural

networks performs significantly better than reprogramming randomly initialized networks for

all tasks. This is consistent with the findings of prior reprogramming work [91] which reports

that adversarial reprogramming in the image domain is more effective when it targets pre-trained

CNNs. For the ViT model, we find that we are able to obtain competitive performance on

sentiment and topic classification tasks when reprogramming either randomly initialized or

pre-trained models. Particularly, we find that reprogramming untrained vision transformers

provides the highest accuracy on the IMDB classification task. However, for DNA sequence

classification tasks (Splice and H3) that require structural analysis of the sequence rather than

token-frequency statistics, we find that reprogramming pre-trained vision transformer model

performs significantly better than a randomly initialized transformer model.

The ViT model outperforms other architectures on 5 out of 6 tasks in the unbounded attack

setting. In particular, for the task of splice-junction detection in gene sequences, reprogramming

a pre-trained ViT model outperforms both TF-IDF and neural classifiers trained from scratch.

81



For sentiment analysis and topic classification tasks, which primarily require keyword detection,

some reprogramming methods achieve competitive performance as the benchmark methods

reported in Table 3.5.

Additionally, to assess the importance of the victim classifier for solving the target task,

we study the extent to which the task can be solved without the victim classifier and using only

the adversarial reprogramming function with a linear classification head. We present the results

and details of this experiment in Table 3 of our supplementary material.

DNA H3 Task Input Sequence

ACTCAGTCAGAAAACTGAATTTAGTTGA
TATGGGACCGCTCCAAGGTAGGAGAATA
CTAGATCAAGTAAAGCAACCGCACTAGT
GCCTTTTTCAAACAAGGTGGTTTGATGA
GGAGGCTTTCTACAATCCTAGAAATATA
AGACATCTG….

Unbounded ViT Unbounded ResNet-50

Bounded (L∞=0.1)  ViT Base Image Bounded (L∞=0.1)  ResNet-50 

Figure 3.5. Example outputs of our adversarial reprogramming function in both unbounded
(top) and bounded (bottom) attack settings while reprogramming two different pre-trained image
classifiers for a DNA sequence classification task (H3).

Concealing the adversarial perturbation: To conceal the output of the adversarial

program in a real-world image, we follow the adversarial reprogramming function defined in

Equation 3.5. We randomly select an image from the ImageNet dataset (shown in Figure 3.5) as

82



the base image xc and train adversarial programs targeting different image classifiers for the same

base image. We present the results at L∞ = 0.1 (on a 0 to 1 pixel value scale) distortion between

the reprogrammed image and the base image xc on the right side of Table 3.6. It can be seen that

for some drop in performance, it is possible to perform adversarial reprogramming such that

the input sequence is concealed in a real-world image. Figure 1 in our supplementary material

shows the accuracy on three target tasks for different magnitudes of allowed perturbation, while

reprogramming a pre-trained ViT model.

Target task has more labels than original task

In a practical attack scenario, the adversary may only have access to a victim image

classifier with fewer labels than the target task labels. To evaluate adversarial reprogramming

in this scenario, we constrain the adversary’s access to the class-probability scores of just q

labels of the ImageNet classifier. We choose the most frequent q ImageNet labels as the original

labels, that can be accessed by the adversary; and perform our experiments on two tasks from our

datasets, which have the highest number of labels—AG News (4 labels) and DBPedia (14 labels).

We use the label remapping function given by Equation 3.7, and learn a linear transformation to

map the predicted probability distribution over the q original labels to the target task label scores.

We demonstrate that we are able to perform adversarial reprogramming even in this more

constrained setting. We achieve similar performance as compared to our many-to-one label

remapping scenario reported in Table 3.6 when q is close to the number of labels in the target

task. This is because we learn an additional mapping function for the output interface, which can

potentially lead to better optimization. However as a downside, this setting requires access to all

q class probability scores for predicting the adversarial label, while in the previous many-to-one

label remapping scenario, we only need to know the highest-scored original label for mapping it

to one of the adversarial labels.

83



Table 3.7. Results of adversarial reprogramming when the target task has more labels than the
original task. The access of the adversary is constrained to class-probabilities of q labels of
the original (ImageNet) task. This evaluation is done on pre-trained networks in an unbounded
attack setting.

Accuracy (%)

Dataset # Labels q ViT RN-50 IN-V3 EN-B4

AG 4 3 89.42 87.18 86.66 89.18
DBPedia 14 3 96.34 83.16 84.17 92.95
DBPedia 14 10 98.01 96.84 94.88 97.16

3.2.5 Conclusion

In this work, we extend adversarial reprogramming, a new class of adversarial attacks,

to target text classification neural networks. Our results demonstrate the effectiveness of such

attacks in the more challenging black-box settings, posing them as a strong threat in real-world

attack scenarios. We demonstrate that neural networks can be effectively reprogrammed for

alternate tasks, which were not originally intended by a service provider. Our proposed end-

to-end approach can be used to further understand the vulnerabilities and blind spots of deep

neural network based text classification systems. We recommend future work to study the scope

of adversarial reprogramming for other NLP applications such as machine translation, text to

speech synthesis and text to image synthesis where the input space is discrete.

We propose Cross-modal Adversarial Reprogramming, which for the first time demon-

strates the possibility of repurposing pre-trained image classification models for sequence

classification tasks. We demonstrate that computationally inexpensive adversarial programs can

repurpose neural circuits to non-trivially solve tasks that require structural analysis of sequences.

Our results suggest the potential of training more flexible neural models that can be repro-

grammed for tasks across different data modalities and data structures. More importantly, this

work reveals a broader security threat to public ML APIs that warrants the need for rethinking

existing security primitives.

84



3.3 Acknowledgements

Chapter 3 is a reprint of the material as it appears in two papers (1) Adversarial Repro-

gramming of Text Classification Neural Networks. Empirical Methods in Natural Language

Processing, 2019. Neekhara, Paarth; Hussain, Shehzeen; Dubnov, Shlomo; Koushanfar, Farinaz.

(2) Cross-modal Adversarial Reprogramming. IEEE Winter Conference on Applications of

Computer Vision, 2022. Neekhara, Paarth; Hussain, Shehzeen; Du, Jinglong; Dubnov, Shlomo;

Koushanfar, Farinaz; McAuley, Julian. The dissertation author and Paarth Neekhara made equal

contributions to this work.

85



Chapter 4

WaveGuard: Understanding and Mitigat-
ing Audio Adversarial Examples

The recent surge in adversarial attacks on deep learning based automatic speech recog-

nition (ASR) systems threatens the wide-scale adoption of these technologies in safety-critical

applications. In this chapter, I describe our proposed solution WaveGuard: a framework for

detecting adversarial inputs that are crafted to attack ASR systems. Our framework incorporates

audio transformation functions and analyses the ASR transcriptions of the original and trans-

formed audio to detect adversarial inputs.1 We demonstrate that our defense framework is able

to reliably detect adversarial examples constructed by four recent audio adversarial attacks, with

a variety of audio transformation functions. With careful regard for best practices in defense

evaluations, we analyze our proposed defense and its strength to withstand adaptive and robust

attacks in the audio domain. We empirically demonstrate that audio transformations that recover

audio from perceptually informed representations can lead to a strong defense that is robust

against an adaptive adversary even in a complete white-box setting. Furthermore, WaveGuard

can be used out-of-the box and integrated directly with any ASR model to efficiently detect audio

adversarial examples, without the need for model retraining.

Speech serves as a powerful communication interface between humans and machine

learning agents. Speech interfaces enable hands-free operation and can assist users who are

1Audio Examples: https://waveguard.herokuapp.com

86

https://waveguard.herokuapp.com


visually or physically impaired. Research into machine recognition of speech is driven by

the prospect of offering services where humans interact naturally with machines. To this end,

automatic speech recognition (ASR) systems seek to accurately convert a speech signal into a

transcription of the spoken words, irrespective of a speaker’s accent, or the acoustic environment

in which the speaker is located [134]. With the advent of deep learning, state-of-the-art speech

recognition systems [69, 135, 71] are based on Deep Neural Networks (DNNs) and are widely

used in personal assistants and home electronic devices (e.g. Apple Siri, Google Assistant).

The popularity of ASR systems has brought new security concerns. Several studies

have demonstrated that DNNs are vulnerable to adversarial examples [25, 20, 13, 26, 9]. While

previously limited to the image domain, recent attacks on ASR systems [74, 80, 1, 75, 76, 3,

2, 136, 137], have demonstrated that adversarial examples also exist in the audio domain. An

audio adversarial example can cause the original audio signal to be transcribed to a target phrase

desired by the adversary or can cause significant transcription error by the victim ASR model.

Due to the existence of these vulnerabilities, there is a crucial need for defensive methods

that can be employed to thwart audio adversarial attacks. In the image domain, several works

have proposed input transformation based defenses [138, 139, 140, 141, 142] to recover benign

images from adversarially modified images. Such inference-time adversarial defenses use image

transformations like feature squeezing, JPEG compression, quantization, randomized smoothing

(etc.) to render adversarial examples ineffective. While such defenses are effective in guarding

against non-adaptive adversaries, they can be bypassed in an adaptive attack scenario where the

attacker has partial or complete knowledge about the defense.

Another line of defense in the image domain is based on training more robust neural

networks using adversarial training or by introducing randomization in network layers and

parameters. Such defenses are comparatively more robust under adaptive attack scenarios,

however they are significantly more expensive to train as compared to input transformation

based defenses that can be employed directly at the model inference stage. Although input

transformation based defenses are shown to be broken for image classifiers, the same conclusion

87



cannot be drawn for ASR systems without careful evaluation. This is because an ASR system

is a more complicated architecture as compared to an image classification model and involves

several individual components: an acoustic feature extraction pipeline, a neural sequence model

for processing the time-series data and a language head for predicting the language tokens. This

pipeline makes it challenging to craft robust adversarial examples for ASR systems that can

reliably transcribe to a target phrase even when the input is transformed and reconstructed from

some perceptually informed representation.

Adversarial

Browse to 
evil dot com

WaveGuard
Alert!

Benign

ASR Model

ASR Model

Defended ASR system

Undefended ASR system

Figure 4.1. Depiction of an undefended ASR system and an ASR system defended by WaveG-
uard in the presence of a malicious adversary. The ASR system defended by WaveGuard detects
the adversarial input and alerts the user.

WaveGuard: In this section, we analyze the effectiveness of audio transformation based

defenses for detecting adversarial examples for speech recognition systems. We first design a

general framework for employing audio transformation functions as an adversarial defense for

ASR systems. Our framework transforms the given audio input x using an input transformation

function g and analyzes the ASR transcriptions for the input x and g(x). The underlying idea

for our defense is that model predictions for adversarial examples are unstable while those for

benign examples are robust to small changes in the input. Therefore, our framework labels an

input as adversarial if there is a significant difference between the transcriptions of x and g(x).

88



We first study five different audio transformations under different compression levels

against non-adaptive adversaries. We find that at optimal compression levels, most input trans-

formations can reliably discriminate between adversarial and benign examples for both targeted

and untargeted adversarial attacks on ASR systems. Furthermore, we achieve higher detection

accuracy in comparison to prior work [143, 144] in adversarial audio detection. However, this

evaluation does not provide security guarantees against a future adaptive adversary who has

knowledge of our defense framework. To evaluate the robustness of our defense against an

adaptive adversary, we propose a strong white-box adaptive attack against our proposed defense

framework. Interestingly, we find that some input transformation functions are robust to adaptive

attack even when the attacker has complete knowledge of the defense. Particularly, the transfor-

mations that recover audio from perceptually informed representations of speech prove to be

more effective against adaptive-attacks than naive audio compression and filtering techniques.

Following are the explicit contributions of this work:

• We develop a formal defense framework (Section 4.2) for detecting audio adversarial

examples against ASR systems. Our framework uses input transformation functions

and analyses the transcriptions of original and transformed audio to label the input as

adversarial or benign.

• We evaluate different transformation functions for detecting recently proposed and highly

successful targeted [1, 3] and untargeted [2] attacks on ASR systems. We study the trade-

off between the hyper-parameters of different transformations and the detector performance

and find an optimal range of hyper-parameters for which the given transformation can

reliably detect adversarial examples (Section 4.5).

• We demonstrate the robustness of our defense framework against an adaptive adversary

who has complete knowledge of our defense and intends to bypass it. We find that certain

input transformation functions that reduce audio to a perceptually informed representation

cannot be easily bypassed under different allowed magnitudes of perturbations. Particularly,

89



we find that Linear Predictive Coding (LPC) and Mel spectrogram inversion are more

robust to adaptive attacks as compared to other transformation functions studied in our

work (Section 4.6).

• We investigate transformation functions for the goal of recovering the original transcrip-

tions from an adversarial signal. We find that for certain attacks and transformation

functions, we can recover the original transcript with a low Character Error Rate. (Sec-

tion 4.5.2)

4.1 Background and Related Work

4.1.1 Adversarial Attacks in the Audio Domain

Adversarial attacks on ASR systems have primarily focused on targeted attacks to embed

carefully crafted perturbations into speech signals, such that the victim model transcribes the

input audio into a specific malicious phrase, as desired by the adversary [74, 1, 77, 75, 78].

Such attacks can for example cause a digital assistant to incorrectly recognize commands it

is given, thereby compromising the security of the device. Prior works [75, 78] demonstrate

successful attack algorithms targeting traditional speech recognition models based on HMMs

and GMMs [63, 64, 65, 66, 67, 68]. For example, in Hidden Voice Commands [75], the attacker

uses inverse feature extraction to generate obfuscated audio that can be played over-the-air to

attack ASR systems. However, obfuscated samples sound like random noise rather than normal

human perceptible speech and therefore come at the cost of being fairly perceptible to human

listeners.

In more recent work [1] involving neural network based ASR systems, Carlini et al. pro-

pose an end-to-end white-box attack technique to craft adversarial examples, which transcribe

to a target phrase. Similar to work in images, they propose a gradient-based optimization

method that replaces the cross-entropy loss function used for classification, with a Connectionist

Temporal Classification (CTC) loss [79] which is optimized for time-sequences. The CTC-loss

90



between the target phrase and the network’s output is backpropagated through the victim neural

network and the Mel Frequency Cepstral Coefficient (MFCC) computation, to update the additive

adversarial perturbation. The authors in this work demonstrate 100% attack success rate on

the Mozilla DeepSpeech [71] ASR model. The adversarial samples generated by this work are

quasi-perceptible, motivating a separate work [80] to minimize the perceptibility of the adversar-

ial perturbations using psychoacoustic hiding. Further addressing the imperceptibility of audio

attacks, Qin et al. [3] develop effectively imperceptible audio adversarial examples by leveraging

the psychoacoustic principle of auditory masking. In their work [3], the imperceptibility of

adversarial audio is verified through a human study, while retaining 100% targeted attack success

rate on the Google Lingvo [135] ASR model.

Targeted attacks, such as those described above, cannot be performed in real-time since

it requires the adversary to solve a data-dependent optimization problem for each data-point they

wish to mis-transcribe. To perform attacks in real-time, the authors of [2] designed an algorithm

to find a single quasi-imperceptible universal perturbation, which when added to any arbitrary

speech signal, causes mis-transcription by the victim speech recognition model. The proposed

algorithm iterates over the training dataset to build a universal perturbation vector, that can be

added to any speech waveform to cause an error in transcription by a speech recognition model

with high probability. This work also demonstrates transferability of adversarial audio samples

across two different ASR systems (based on DeepSpeech and Wavenet), demonstrating that such

audio attacks can be performed in real-time even when the attacker does not have knowledge of

the ASR model parameters.

Physical attacks. Adversarial attacks to ASR Systems have also been demonstrated to be a

real-world threat. In particular, recently developed attack algorithms have shown success in

attacking physical intelligent voice control (IVC) devices, when playing the generated adver-

sarial examples over-the-air. The recently developed Devil’s Whisper [137] demonstrated that

adversarial commands embedded in music samples and played over-the-air using speakers, are

able to attack popular IVC devices such as Google Home, Google Assistant, Microsoft Cortana

91



Targeted Attack Setting:

What is 
the time?

Cancel my 
meeting

Figure 4.2. In the targeted attack setting the adversary solves a data-dependent optimization
problem to find an additive perturbation, such that a victim ASR model transcribes the adversarial
input audio to a target phrase as desired by the adversary.

have no 
ongcon

ay evil dot 
com song

What is 
the time?

Play me 
a song

Untargeted Universal Attack Setting:

Figure 4.3. In untargeted universal attacks the adversary computes a single universal perturbation
which when added to any arbitrary audio signal, will likely cause errors in transcription by a
victim ASR.

and Amazon Alexa with 98% of target commands being successful. They utilize a surrogate

model approach to generate transferable adversarial examples that can attack a number of unseen

target devices. However, as noted by the authors, physical attacks are very sensitive to various

environmental factors, such as the volume when playing adversarial examples, the distance

between the speaker and the victim IVC device, as well as the brand of speakers, that can

render the attack unsuccessful. Qin et al. [3] designed robust, physical-world, over-the-air audio

adversarial examples by constructing perturbations, which remain effective in attacking the

Google Lingvo ASR model [135] even after applying environmental distortions. Such robust

adversarial examples are crafted by incorporating the noise simulation during the training process

of the perturbation. In our work, we evaluate our defense against the robust attack proposed

in [3] on the Google Lingvo ASR model. We find that while such examples are more robust to

small input changes as compared to previously proposed targeted attacks [1], they can still be

92



easily distinguished from benign audio samples using our defense framework.

4.1.2 Principles of Defense and Adaptive Attacks in the Image Domain

To strengthen the reliability of deep learning models in the image domain, a significant

amount of prior work has proposed defenses to adversarial attacks [138, 139, 142, 140, 145, 146].

However, most of these defenses were only evaluated against non-adaptive attacks or using a

“zero-knowledge” threat model, where the attacker has no knowledge of the defense existing

in the system. Such defenses offer bare-minimum security and in no way guarantee that

they can be secure against future attacks [95, 147]. Accurately evaluating the robustness of

defenses is a challenging but important task, particularly because of the presence of adaptive

adversaries [20, 147, 148, 149]. An adaptive adversary is one that has partial or complete

knowledge of the defense mechanism in place and therefore adapts their attack to what the

defender has designed [147, 150, 148].

Many prior works on defenses are variants of the same idea: pre-process inputs using a

transform, e.g. randomized cropping, rotation, JPEG compression, randomized smoothing, auto-

encoder transformation, that can remove the adversarial perturbation from the input. However,

such defenses are shown to be vulnerable to attack algorithms that are partially or completely

aware of the defense mechanism [20, 151]. In [20], the authors show that the input-transformation

function can be substituted with a differentiable approximation in the backward pass in-order to

craft adversarial examples that are robust under the given input-transform. In [151], the authors

craft adversarial examples that are robust over a given distribution of transformation functions,

which guarantees robustness over more than one type of transform.

Solely analyzing a defense against a non-adaptive adversary gives us a false sense of

security. Therefore, the authors of [147] provided several guidelines to ensure completeness in

the evaluation of defenses to adversarial attacks. The authors recommend using a threat model

with an “infinitely thorough” adaptive adversary, who is capable of developing new optimal

attacks against the proposed defense. They recommend applying a diverse set of attacks to

93



any proposed defense, with the same mindset of a future adversary. However, such defense

guidelines have not been applied to the audio domain and many of the proposed ASR defenses

have not carried out thorough evaluations against adaptive adversaries. In our work, we follow

these guidelines and evaluate our ASR defense against the strongest non-adaptive and adaptive

adversaries.

4.1.3 Defenses in the Audio Domain

In comparison to the image domain, only a handful of studies have proposed defenses

to adversarial attacks in the audio domain. Prior work on defenses for speech recognition

models have focused on both audio pre-processing techniques [143, 152] and utilizing temporal

dependency in speech signals [144] to detect adversarial examples.

Yang et al. in [144] proposed a defense framework against three attack methods targeting

state-of-the-art ASR models such as Kaldi and DeepSpeech. The proposed defense framework

checks if the transcription of the first k-sized portion of the audio waveform (t1) is similar to

the first k-sized transcription of the complete audio waveform (t2). A sample is identified as

adversarial when the two transcriptions are dissimilar, i.e., the Character Error Rate (CER) or

Word Error Rate (WER) between t1 and t2 is higher than a predefined threshold. The authors

further study the effectiveness of their defense in an adaptive attack scenario, where the attacker

has partial knowledge of the defense framework. In their strongest adaptive attack scenario, they

vary the portion kD used by the defense and evaluate the cases where the adaptive attacker uses a

the same/different portion kA.

However, recent work [149] has re-evaluated temporal dependency frameworks and

demonstrated them to be ineffective in detecting adversarial perturbations in the audio domain.

The authors of [149] designed attacks that were able to fool the proposed detector in [144]

with 100% accuracy, and further report that the adaptive evaluations conducted in [144] are

incomplete. In the adaptive attack designed by [149], the CTC loss function used by the attacker

incorporates different values of kA and is therefore able to bypass the temporal dependency

94



detector with minimal added perturbation to audio.

Aside from proposing the temporal-dependency defense for detection, the authors of [144]

also study the effectiveness of various input transformation functions in recovering the original

transcription from the adversarial counterpart. To this end, they perform experiments with

transformation functions such as quantization, down-sampling, local smoothing and auto-encoder

reformation of signals. They report that these methods are ineffective in recovering the correct

transcription of audio signals. In our work, we will evaluate some of these transformations for

the goal of detecting adversarial examples as opposed to recovering benign examples. However,

we report that for some attack types, most transformation based defenses are able to recover the

benign audio transcription with low CER.

Rajaratnam et al. [143] also studied the use of pre-processing techniques such as audio

compression, band-pass filtering, audio panning and speech coding as a part of both isolated

and ensemble methods for detecting adversarial audio examples generated by a single targeted

attack [148]. While they report high detection performance against the targeted adversarial

attack proposed by [148], their techniques were not evaluated in an adaptive attack setting and

therefore do not provide security guarantees against a future adversary. Given the difficulty of

performing defense evaluations, in our work, we perform additional experiments with various

input transformation functions to validate or refute the security claims made in existing papers.

4.2 WaveGuard Methodology

4.2.1 Threat Model

Adversarial attacks in the audio domain can be classified broadly into two categories:

targeted and untargeted attacks. In targeted attacks the goal of the adversary is to add a small

perturbation to an audio signal such that it causes the victim ASR to transcribe the audio to

a given target phrase. In untargeted attacks the goal is simply to cause significant error in

transcription of the audio signal so that the original transcription cannot be deciphered.

95



ASR 

Benign

ASR 

Adversarial

WaveGuardWave Guard

Transcription: Transcription:

Wave Guard

“How is the 
wether?”

“How is the 
weather?”

“How is the 
weather?”

“Browse to 
Evil dot com”

CER = 0.0 CER = 0.72

gg

Figure 4.4. WaveGuard Defense Framework: Input audio x is processed using an audio transfor-
mation function g to obtain g(x). Next, ASR transcriptions or x and g(x) are compared. An input
is classified as adversarial if the difference between the transcriptions of x and g(x) exceeds a
particular threshold.

The common goal across both targeted and untargeted attack is to cause mis-transcription

of the given speech signal while keeping the perturbation imperceptible. Therefore, we define

an audio adversarial example xadv as a perturbation of an original speech signal x such that the

Character Error Rate (CER) between the transcriptions of the original and adversarial examples

from an ASR C is greater than some threshold t. That is,

CER(C(x),C(xadv))> t (4.1)

and the distortion between xadv and x is constrained under a distortion metric δ as follows:

δ (x,xadv)< ε. (4.2)

Here, CER(x,y) is the edit distance [81] between the strings x and y normalized by the length of

the strings i.e.,

CER(x,y) =
EditDistance(x,y)

max(length(x), length(y))
. (4.3)

96



Lp norms are popularly used to quantify the distortion δ between the original and

adversarial example in the image domain. Following prior works [1, 2] on audio adversarial

attacks, we use an L∞ norm on the waveforms to quantify the distortion between the adversarial

and the original signal.

4.2.2 WaveGuard Defense Framework

The goal of our defense is to correctly detect adversarially modified inputs. The un-

derlying hypothesis for our defense framework is that the network predictions for adversarial

examples are often unstable and small changes in adversarial inputs can cause significant changes

in network predictions. In the image domain, it has been shown that several input transforma-

tion techniques [138, 139, 140, 141] such as JPEG compression, randomized smoothing and

feature squeezing can render adversarial perturbations ineffective. This is because such input

transformations introduce an additional perturbation in the input that can dominate the carefully

added adversarial perturbation. On the other hand, predictions for the original (benign) inputs

are usually robust to small random perturbations in the input.

Based on this hypothesis, we propose the following defense framework for detecting

audio adversarial examples: For a given audio transformation function g, input audio x is

classified as adversarial if there is significant difference between the transcriptions C(x) and

C(g(x)):

d(C(x),C(g(x)))> t (4.4)

where d is some distance metric between the two given texts and t is a detection threshold. In

our work we use the Character Error Rate (CER) as the distance metric d. z An overview of the

defense is depicted in Figure 8.5. Note that unlike [144], the goal using an input transformation

g is not to recover the original transcription of an adversarial example, but to detect if an example

is adversarial or benign by observing the difference in the transcriptions of x and g(x).

In this work, we study various input transformation functions g as candidates for our

97



defense framework. We evaluate our defense against four recent adversarial attacks [148, 3, 2] on

ASR systems. One of the main insights we draw from our experiments is that in the non-adaptive

attack setting, most audio transformations can be effectively used in our defense framework to

accurately distinguish adversarial and benign inputs. This result is consistent with the success of

input-transformation based defenses in the image domain.

However, in order to use a defense reliably in practice, the defense must be secure against

an adaptive adversary who has knowledge of the defense. For an adaptive attack setting, we

find that certain input transformations are more robust to attacks than others. Particularly, the

transformations which compress audio to perceptually informed representations cannot be easily

bypassed even when the attacker has complete knowledge of the defense. This finding is in

contrast to the image domain where most input transformation based defenses have been shown

to be broken under robust or adaptive adversarial attacks. We elaborate on our adaptive attack

scenario and the results in Section 4.6 and Section 4.6.3.

4.3 Input-transformation functions

We study the following audio transformations as candidates for the input transformation

function g:

4.3.1 Quantization-Dequantization

Several works in the image domain [141, 153, 154], have used quantization based

defenses to neutralize the effect of adversarial perturbations. Since adversarial pertubations

to audio have small amplitudes, quantization can help reomve added perturbations. In this

study, we employ quantization-dequantization in our defense framework, where each waveform

sample is quantized to q bits and then reconstructed back to floating point to produce the output

approximation of the original input data.

98



Estimated Magnitude 
Spectrogram

Estimated Phase

Magnitude 
Spectrogram

Phase Information

Magnitude 
Spectrogram

Mel Spectrogram
STFT

Feature Extraction Inversion

Inv.
STFTEstimated Magnitude 

Spectrogram

Drop 
Phase

Phase 
Est.

Mel 
Comp.

Mag 
Est.

Figure 4.5. Steps involved in the Mel extraction and inversion transform (Section 4.3.4).

4.3.2 Down-sampling and Up-sampling

Discarding samples from a waveform during down-sampling could remove a significant

portion of the adversarial perturbation, thereby disrupting an attack. To study this effect, we

down-sample the original waveform (16 kHz in our experiments), to a lower sampling rate and

then estimate the waveform at its original sampling rate using interpolation. We perform this

study for a number of different down-sampling rates to find an optimal range of sampling rates

for which the defense is effective.

4.3.3 Filtering

Filtering is commonly applied for noise cancellation applications such as removing

background noise from a speech signal. It is intuitive to study the effect of filtering in order to

remove adversarial noise from a speech signal. In this work, we use low-shelf and high-shelf

filters to clean a given signal. Low-shelf and high-shelf filters are softer versions of high-pass

and low-pass filters respectively. That is, instead of completely removing frequencies above or

below some thresholds, shelf filters boost or reduce their amplitude. For noise removal, we use a

low-shelf filter to reduce the amplitude of frequencies below a threshold and a high-shelf filter to

reduce the amplitude of frequencies above a threshold.

In our experiments we first compute the spectral centroid of the audio waveform: Each

frame of a magnitude spectrogram is normalized and treated as a distribution over frequency bins,

from which the mean (centroid) is extracted per frame. We then compute the median centroid

frequency (C) over all frames and set the high-shelf frequency threshold as 1.5×C and low-shelf

99



frequency threshold as 0.1×C. We then reduce the amplitude of frequencies above and below

the respective thresholds using a negative gain parameter of -30.

4.3.4 Mel Spectrogram Extraction and Inversion

Mel spectrograms are popularly used as an intermediate audio representation in both

text-to-speech [155, 156, 157] and speech-to-text [158, 159] systems. While reduction of the

waveform to a Mel spectrogram is a lossy compression, the Mel spectrogram is a perceptually

informed representation that mostly preserves the audio content necessary for speech recognition

systems. We use the following Mel spectrogram extraction and inversion pipeline for disrupting

adversarial perturbations in our experiments:

Extraction: We first decompose waveforms into time and frequency components using

a Short-Time Fourier Transform (STFT). Then, the phase information is discarded from the

complex STFT coefficients leaving only the magnitude spectrogram. The linearly-spaced

frequency bins of the resultant spectrogram are then compressed to fewer bins which are equally-

spaced on a logarithmic scale (usually the Mel scale [160]). Finally, amplitudes of the resultant

spectrogram are made logarithmic to conform to human loudness perception, then optionally

clipped and normalized to obtain the Mel spectrogram.

Inversion: To invert the Mel spectrogram into a listenable waveform, the inverse of each

extraction step is applied in reverse. First, logarithmic amplitudes are converted to linear ones.

Then the magnitude spectrogram is estimated from the Mel spectrogram using the approximate

inverse of the Mel transformation matrix. Next, the phase information is estimated from the

magnitude spectrogram using a heurisitc algorithm such as Local Weighted Sum (LWS) [161]

or Griffin Lim [162]. Finally, the inverse STFT is used to render audio from the estimated

magnitude spectrogram and phase information.

We hypothesize that reconstructing audio from a perceptually informed representation

can potentially remove the adversarial perturbation while preserving the speech content that is

perceived by the human ear. While some speech recognition systems also use Mel spectrogram

100



features, we find that reconstructing audio from the compressed Mel spectrograms introduces

enough distortion in the original waveform, such that the ASR Mel features of the newly

reconstructed audio are different from the original audio. The distortion in the reconstructed

audio is introduced by the magnitude estimation and phase estimation steps depicted in Figure 4.5.

In order to bypass a defense involving Mel extraction and inversion, an adaptive attacker will need

to craft a perturbation that can be retained in the compressed Mel spectrogram representation,

making it challenging to keep the perturbation imperceptible. In our adaptive attack experiments

in Section 4.6.3 we demonstrate that even when the attacker uses a differentiable implementation

of the Mel extraction and inversion pipeline, it cannot easily be bypassed without introducing a

clearly perceptible adversarial noise in the signal.

4.3.5 Linear Predictive Coding (LPC)

Excitation Generator Vocal Tract System
 

(Filter)

Filter 
Parameters

White Noise Impulse

or

Figure 4.6. Model for linear predictive analysis of speech signals.

Linear Predictive Coding (LPC) is a speech encoding technique that uses a source-filter

model based on a mathematical approximation of the human vocal tract. The model assumes

that a source signal e(n) (which models the vocal chords) is passed as input to a resonant filter

h(n) (that models the vocal tract) to produce the resultant signal x(n). That is:

x(n) = h(n)∗ e(n) (4.5)

The source excitation e(n) can either be quasi-periodic impulses (during voiced speech) or

101



random noise (during unvoiced speech). Both these source excitation sources are spectrally flat

implying that all spectral information is modeled in the filter parameters.

LPC assumes a pth order all-pole filter h(n) which means that each waveform sample is

modelled as a linear combination of p previous values. That is,

x(n) = Σ
k=p
k=1akx(n− k)+ e(n). (4.6)

The basic problem of LPC analysis is to estimate the filter parameters ak. Since the source

signal is assumed to be an impulse train or random white noise, the problem is formulated as

minimizing ||e(n)||2 which is the power of the excitation signal. This reduces the parameter-

estimation problem to a linear regression problem in which the goal is to minimize:

minimize: ⟨||e(n)||2⟩= ⟨(x(n)−Σ
k=p
k=1akx(n− k))2⟩ (4.7)

Here, ⟨⟩ denotes averaging over finite number of waveform samples. In practice, a long

time-varying signal is divided into overlapping windows of size w and LPC coeffecients ak are

estimated for each window by solving the above linear regression problem. To re-synthesize

the signal from the estimated coefficients, we use a random-noise excitation signal. In our

experiments, we use 25 millisecond windows with 12.5 millisecond overlap. We experiment with

different numbers of the LPC coeffecients which control the compression level of the original

signal.

Since LPC models the human vocal tract system, it preserves the phonetic information of

speech in the filter parameters. Bypassing a defense involving LPC transform, would require the

adversary to add an adversarial perturbation that can be preserved in the LPC filter coeffecients;

thereby requiring the adversary to modify the phonetic information in speech. We empirically

demonstrate that the LPC transform is the most robust against an adaptive adversary amongst all

the transforms studied in this paper.

102



4.4 Experimental Setup

We evaluate our defense against the following recent audio adversarial attacks on speech

recognition systems [1, 2, 3]:

• Carlini: Attack introduced in [1]. This is a white-box targeted attack on the Mozilla

Deepspeech [71] ASR system, where the attacker trains an adversarial perturbation by

minimizing the CTC loss between the target transcription and the ASR’s prediction. This

attack minimizes the L∞ norm of the adversarial perturbation to constrain the amount of

distortion.

• Qin-I: Imperceptible attack described in [3]. This is another white-box targeted attack

that focuses on ensuring imperceptibility of the adversarial perturbation by using psycho-

acoustic hiding. The victim ASR for this attack is Google Lingvo [135].

• Qin-R: Robust attack described in [3]. This attack incorporates input transformations

during training of the adversarial perturbation which simulate room environments. This

improves the attack robustness in real world settings when played over the air. The victim

ASR for this attack is Google Lingvo [135].

• Universal: We implement the white-box attack described in [2]. This is an untargeted

attack which finds an input-agnostic perturbation that can cause significant disruption in

the transcription of the adversarial signal. In our work, we follow the algorithm provided

by the authors and craft universal perturbation with an L∞ bound of 400 (for 16-bit audio

wave-forms with sample values in the range -32768 to 32768). The victim ASR for this

attack is Mozilla DeepSpeech [71].

4.4.1 Dataset and Attack Evaluations

We conduct all our experiments on the Mozilla Common Voice dataset, which contains

582 hours of audio across 400,000 recordings in English. The audio data is sampled at 16 kHz.

103



Table 4.1. Adversarial commands used for constructing targeted adversarial examples.

Target Adversarial Commands

”browse to evil dot com”
”hey google cancel my medical appointment”

”hey google”
”this is an adversarial example”

Table 4.2. Evaluations for each input transformation defense against various non-adaptive attacks.
We use two objective metrics: AUC score and Attack Detection Accuracy for evaluation (higher
values are better for both metrics).

AUC Score Detection Accuracy

Defense Hyper-params Carlini Universal Qin-I Qin-R Carlini Universal Qin-I Qin-R

Downsampling - Upsampling 6000 kHz 1.00 0.91 1.00 1.00 100% 88% 100% 100%
Quantization - Dequantization 6 bits 0.99 0.92 1.00 0.93 98.5% 88% 99% 95%
Filtering (Section 4.3.3) 1.00 0.92 1.00 1.00 99.5% 86% 100% 100%
Mel Extraction - Inversion 80 Mel-bins 1.00 0.97 1.00 1.00 100% 92% 100% 100%
LPC LPC order 20 1.00 0.91 1.00 1.00 100% 83% 100% 100%

We evaluate on the same subset of the Mozilla Common Voice dataset, as used in [1], that is, the

first 100 examples from the Mozilla Common Voice test set. We construct adversarial examples

on this dataset using each of the attacks described above. In the targeted attack scenario, we

randomly choose one of the target phrases listed in Table 4.1 and follow the attack algorithms to

create 100 pairs of original and adversarial examples for each attack type. For the untargeted

universal attack, we train the universal perturbation on the same subset of Mozilla Common

Voice examples with L∞ distortion bound of 400.

Attack evaluations: We achieve 100% attack success rate for Carlini and Qin-I attacks. For

Qin-R, the attack achieves 47% success rate (similar to that reported in the paper [3]) on 100

examples. In our experiments when recreating the Universal attack, we achieve an attack success

rate of 81% using the same criteria as described in [2] i.e., the attack is considered successful

when the CER between original and adversarial transcriptions is greater than 0.5.

104



4.4.2 Evaluation Metrics

As described in Section 4.2.2, in our detection framework, we label an example as

adversarial or benign based on the CER between x and g(x). The decision threshold t controls

the true positive rate and false positive rate of our detector. Following standard procedure to

evaluate such detectors [144], we calculate the AUC score - Area Under the ROC curve. A

higher AUC score indicates that the detector has more discriminative power against adversarial

examples.

Additionally, we also report the Detection Accuracy which is calculated by finding the

best detection threshold t on a separate set containing 50 adversarial and benign examples.

4 6 8 12 16
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C
 S

co
re

Number of Quantization Bits

(a) Quantization - Dequantization (b) Downsampling - Upsampling

(d) Mel Extraction - Inversion(c) LPC

2000 4000 6000 8000 12000 16000
0.4

0.5

0.6

0.7

0.8

0.9

1
A

U
C

 S
co

re

Down-sampling Rate (Hz)

5 20 40 80 256
0.4
0.5
0.6
0.7
0.8
0.9

1

A
U

C
 S

co
re

Number of Mel Bins
4 10 20 30 40

0.4
0.5
0.6
0.7
0.8
0.9

1

A
U

C
 S

co
re

LPC Order

Figure 4.7. Detection AUC Scores against Carlini attack at varying compression levels for the
following transforms: (a) Quantization - Dequantization; (b) Downsampling - Upsampling; (c)
Linear Predictive Coding (LPC); and (d) Mel Spectrogram Extraction- Inversion.

105



4.5 Evaluation against Non Adaptive Attacks

The various input transformation functions we consider can be parameterized to control

the compression level of the transformation. There is a trade-off between the compression level

and the discriminative power of the detector. At low compression levels the transformation may

not eliminate the adversarial perturbation. In contrast, at very high compression levels, even the

benign signals may become significantly distorted causing substantial change in their transcrip-

tions. Keeping this in mind, we perform a search over the hyper-parameters for different audio

transforms. The AUC score of the detector against the Carlini attack for different transformation

functions at varying compression levels is depicted in Figure 4.7. For most transformations, we

observe the expected pattern where the defense is effective at some optimal compression levels

and the AUC falls at very high or low compression levels. The Mel-inversion pipeline is effective

for a wide range of Mel-bins possibly due to the distortion introduced by the phase estimation

step during the inversion stage. For the Filtering transform we do not perform a hyper-parameter

search and use the transformation parameters described in Section 4.3.3.

4.5.1 Attack Detection Scores

Based on the above described search, we find the optimal hyper-parameters for each of

the transforms and report the detection scores against all the attacks in Table 4.2. We observe

that at optimal compression levels, all the input transforms listed in Section 4.3 can achieve high

discriminative performance against adversarial examples. As compared to targeted adversarial

examples, it is harder to detect examples with universal adversarial perturbations. This is because

universal perturbations attempt to distort the original transcription rather than targeting a very

different phrase. Interestingly, we find that the defense is effective even against the Qin-R attack

which incorporates noise simulation during training and leads to adversarial examples that are

robust to small changes. We elaborate on this result in the following Section.

106



4.5.2 Analysis of undefended and defended transcriptions

In Figure 4.8 we provide comparisons of Mean CER between transcriptions of audio

before and after passing through a given transformation function (g) for both benign (orig) and

adversarial examples (adv). Additionally, we also calculate the CER between the transcriptions

of the defended adversarial example and its benign counterpart: CER(orig,g(adv)).

The discriminative power of the detector is indicated by the difference between

CER(orig,g(orig)) (blue) and CER(adv,g(adv)) (red). A high difference between the

red and blue bar graphs in Figure 4.8 indicates easier detection of adversarial examples. From

these results we can observe that detecting the Qin-I attack is easier than detecting the Carlini [1]

attack. We can further deduce that detecting Universal attacks is generally more difficult for any

given transformation function compared to the Carlini and Qin-I attacks.

The metric CER(orig,g(adv)) helps evaluate the ability of the transformation function to

recover the original transcript from the adversarial audio. A low CER(orig,g(adv)) indicates

better recovery of the original transcript. We find that for the imperceptible attack Qin-I,

the recovery rate of the original transcript is higher than any other attack indicating that the

adversarial perturbation is unstable to small changes in inputs.

The Qin-R attack has a lower CER(adv,g(adv)) for most transformations as compared to

Qin-I which suggests that the adversarial perturbation generated by the Qin-R attack is relatively

more robust to input transformations. Also, recovering the original transcription is much harder

as compared to Qin-I and is indicated by higher CER(orig,g(adv)) values. However, there is

still a significant difference between the blue and red bar graphs for Qin-R, which can be used

to discriminate between adversarial and benign samples. This result is consistent with the high

detection accuracy reported in Table 4.2, since the transformations are successful in disrupting

the adversarial perturbations.

We provide a few sample transcriptions from our experiments in Table 4.3. The green

commands indicate the transcriptions from benign audio samples, while the red transcriptions

107



Table 4.3. Sample transcriptions of un-transformed(x) and transformed audio(g(x)) for both
benign and adversarial examples.

Attack Adversarial Command (C(x_adv)) Defended Command (C(g(x_adv))) Benign Command (C(x))

Down-Up Quant Filter Mel LPC

Carlini "browse to evil dot com"
i'm sure i didn't 
know whenc 
set's talking 

about

"i'm sure i don't 
know what you' 
talking about"

"srown to withe 
cot gom"

"i'm sure i don't 
know what 

you'e talking 
about"

"absure i don't 
know what you' 
talking about"

"i'm sure i don't know what 
you're talking about"

Qin-I "hey google" "this is no place 
for you"

"this is no place 
for you"

"but it is no 
place for you"

"this is no place 
for you"

"this is no place 
for you" "this is no place for you"

Qin-R "hey google cancel my medical 
appointment"

"ah you 
hahogum he 
hath a home 
and not far 

called the man 
pulling there"

 "hey de laggle 
cancel my 
medical 

appointment"

"he hated the 
loggal cly 

anticone not a 
particle of 

appointment"

"lady galogolfe 
and lygam 

amethurical 
appointment"

"and when i had 
never he ankle 

a handful for my 
little 

appointment"

"he did find it soon after dawn 
and not far from the sand pits"

Universal "there ae little ied ne 
callyuack"

"wa didn't i call 
you back"

"why didn't i call 
you back"

"lodidn't i call 
you back"

"why didn't i call 
you back"

" litwoted no col 
yo back" "why didn't o call you back"

Benign Command (C(x)) Defended Command (C(g(x)))

Down-Up Quant Filter Mel LPC

"i'm sure i don't know what 
you're talking about"

"i'm sure i don't 
know what 

you're talking 
about"

"i'm sure i don't 
know what 

you're talking 
about"

"i'm sure i don't 
know what 

you're talking 
about"

"i'm sure i don't 
know what 

you're talking 
about"

"i'm sure i don't 
know what 

you're talking 
about"

refer to adversarial commands from each attack type. Overall, the results in Figure 4.8 and

Table 4.3 demonstrate that the ability to recover benign commands is dependent on the type of

attack and varies for each input transformation function.

Figure 4.8. Mean Character Error Rate (CER) is measured between ASR transcriptions of
un-transformed (x) and transformed (g(x)) audio for original and adversarial pairs crafted using
various attacks.

108



4.5.3 ROC for Detection under Non-Adaptive Attacks

We provide the Receiver Operating Characteristic (ROC) curves for our detection of

non-adaptive adversarial attacks using various transformation functions against three different

adversarial attacks in Figure 4.9. The AUC scores are reported in Table 4.2 in Section 4.5.1 and

included with each of the plots below. A true positive implies an example that is adversarial and

is correctly identified as adversarial.

4.5.4 Timing analysis

To implement our defense framework in practice, we have to perform two forward passes

through our ASR model to obtain the transcriptions C(x) and C(g(x)). It is ideal to parallelize

these two forward passes, so that the only computational overhead introduced by the defense is

that of the transformation function g. Table 4.4 provides the average Wall-Clock time in seconds

of each transformation function averaged over the 100 audio files (entire test set). Since our

transformation functions were implemented solely on CPU, we provide timing comparisons for

all implementations on the Intel Xeon CPU platform. The average inference time over the test

set for Mozilla Deepspeech ASR model is 2.540 seconds and that of Google Lingvo ASR model

is 4.212 seconds on the Intel Xeon CPU Platform.

Table 4.4. Average Wall-Clock time in seconds required for transcription of audio by ASR
models and each transformation function on Intel Xeon CPU platform. The Wall-Clock time is
averaged over the entire test set.

Process Avg. Wall-Clock time (s)

Deepspeech ASR 2.540
Lingvo ASR 4.212

Downsampling-Upsampling 0.148
Quantization-Dequantization 0.001
Filtering 0.035
Mel Extraction - Inversion 0.569
LPC 0.781

109



Carlini [12] Universal [16] Qin-I [15]

False Positive RateFalse Positive Rate False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

(a) Downsampling-upsampling

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(b) Quantization

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(c) Filtering

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(d) Linear Predictive Coding (LPC)

Qin-I [15]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Universal [16]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Carlini [12]

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(e) Mel Extraction - Inversion

Figure 4.9. Detection ROC curves for different transformation functions against three attacks
(Carlini [1], Universal [2], Qin-I [3]) in the non-adaptive attack setting.

110



4.5.5 Thresholds for Attack Detection Accuracy

Table 4.5 lists the detection thresholds (t) for various transformation functions for the two

ASR systems studied in our work. We choose 50 original examples (separate from the first 100

used for evaluation) and construct 50 adversarial examples using each of the attack. This results

in 100 adversarial-benign example pairs for DeepSpeech (constructed using Carlini [1] and

Universal [2] attacks) and 100 adversarial-benign example pairs for Google Lingvo (constructed

using Qin-I and Qin-R attacks [3]). Using this dataset, we obtain the threshold that achieves

the best detection accuracy for each defense separately for the two ASRs. The AUC metric is

threshold independent. We do not change the threshold for adaptive attack evaluation and use

the same threshold as listed in Table 4.5.

Table 4.5. Detection Threshold when using each transformation function in WaveGuard frame-
work for DeepSpeech and Lingvo ASR systems.

Defense
Threshold -
DeepSpeech

Threshold -
Lingvo

Downsampling - Upsampling 0.48 0.48
Quantization - Dequantization 0.44 0.26
Filtering 0.32 0.31
Mel Extraction - Inversion 0.33 0.31
LPC 0.38 0.46

4.6 Adaptive Attack

While our defense framework can accurately discriminate adversarial from benign ex-

amples for existing attacks, it only offers security in a “zero-knowledge” attack scenario where

the attacker is not aware of the defense being present. As motivated in Section 4.1.2, in order to

use our defense framework reliably in practice, it is important to evaluate it against an adaptive

adversary who has complete knowledge of the defense and intend to design a perturbation that

can bypass the defense mechanism.

In the adaptive attack setting, we will focus on the more impactful targeted attack scenario,

111



where the adversary designs an adversarial perturbation that causes the victim ASR system to

transcribe the input audio into a specific target phrase. In order to bypass the proposed defense

framework, the adversary must craft an adversarial perturbation such that the transcription of

C(xadv) and C(g(xadv)) match closely with each other and the target transcription τ . Therefore,

to craft such a perturbation δ , the adversary aims to optimize the following problem:

minimize: |δ |∞ + c1 · ℓ(x+δ ,τ)+ c2 · ℓ(g(x+δ ),τ)

where, ℓ(x′, t) = CTC-Loss(C(x′), t) and c1 and c2 are hyper-parameters that control the weights

of the respective loss terms. Since optimization process over the L∞ metric is often unstable [1],

we modify our optimization objective as follows:

minimize: c · |δ |22 + c1 · ℓ(x+δ ,τ)+ c2 · ℓ(g(x+δ ),τ)

such that |δ |∞ < ε

(4.8)

4.6.1 Gradient Estimation for Adaptive Attack

To solve the optimization problem given by equation 4.8 using gradient descent, the

attacker must back-propagate the CTC-Loss through the ASR model and the input transformation

function g. In case a differentiable implementation of g is not available, we use the Backward

Pass Differentiable Approximation (BPDA) technique [20] to craft adversarial examples. That

is, during the forward pass we use the exact implementation of the transformation function as

used in our defense framework. During the backward pass, we use an approximate gradient

implementation of the transformation g. We first perform the adaptive attack using the straight-

through gradient estimator [20]. That is, we assume that the gradient of the loss with respect to

the input x to be the same as the gradient of the loss with respect to g(x):

∇xℓ(g(x))|x=x̂ ≈ ∇xℓ(x)|x=g(x̂) . (4.9)

112



In our experiments, we find that the straight-through estimator is effective in breaking the

Quantization-Dequantization and Filtering transformation functions at low perturbation levels.

However, using a more accurate gradient estimate can lead to a stronger attack. Specifically for

the Mel-inversion and LPC transformations, we find that using a straight-through gradient esti-

mator does not work for solving the above optimization problem (Equation 4.8). We discuss our

results of using a straight-through gradient estimator for LPC transform in Appendix 4.6.3. Also,

using a straight-through estimator for the Downsampling-Upsampling transform results in high

distortion for adversarial perturbations. Therefore, we implement differentiable computational

graphs for the following three transforms in TensorFlow:

Downsampling-Upsampling: We use TensorFlow’s bi-linear resizing methods to first down-

sample the audio to the required sampling rate and then re-estimate the signal using bi-linear

interpolation.

Mel inversion: For the Mel inversion transform we use TensorFlow’s STFT implementation to

obtain the magnitude spectrogram, then perform the Mel transform using matrix multiplication

with the Mel basis, and estimate the waveform using the iterative Griffin-Lim [162] algorithm

implemented in TensorFlow [163].

LPC transform: We replicate the LPC analysis and synthesis process in TensorFlow. Specifi-

cally, for each overlapping window in the original waveform, we first estimate LPC coefficients

by solving the linear regression problem given by Equation 4.7. Next, for the reconstruction

process, we generate the residual excitation signal using the exact same implementation as used

in our defense. We also fix the random seed of the excitation generator in both our defense and

our adaptive attacks for a complete knowledge white box attack scenario. Finally, we implement

auto-regressive filtering of the residual signal with the LPC coefficients for that window, and

combine the filtered signal for each overlapping window to generate the transformed audio.

Note that for all the adaptive attacks, we use the original defense implementations in the

forward pass and use the differentiable implementation only during the backward pass.

113



4.6.2 Adaptive Attack Algorithm

Algorithm 4 details our adaptive attack implementation. We closely follow the targeted

attack implementation in [1] and incorporate the optimization objective of our adaptive attack

specified by Equation 4.8 and BPDA. We choose c1 = c2 = 1 since both loss terms have the

same order of magnitude. Following the default open source implementation of [1], we do not

penalize L2 distortion. We optimize for 5000 iterations and use a learning rate of 10. Any time

the attack succeeds, we re-scale the perturbation bound by a factor of 0.8 to encourage less

distorted (quieter) adversarial examples.

Algorithm 4. Adaptive attack algorithm
1: Initialize rescaleFactor← 1
2: Initialize δ ← 0
3: Initialize bestDelta← null
4: for iterNum in 1 to MaxIters do
5: loss← c · |δ |22 + c1 · ℓ(x+δ , t)+ c2 · ℓ(g(x+δ ), t)
6: ∇δ ← BPDA(loss,δ )
7: δ ← δ −α sign(∇δ )
8: δ ← rescaleFactor∗ clipε(δ )
9: if C(x+δ ) =C(g(x+δ )) = τ then

10: bestDelta← δ

11: rescaleFactor← rescaleFactor×0.8
12: if bestDelta is null then
13: bestDelta← δ

14: return (x+bestDelta)

4.6.3 Adaptive Attack Evaluation

In this section, we test the limits of our defense and evaluate the breaking point for each

transformation function through adaptive attacks in white box setting. We conduct adaptive

attack evaluations on the same dataset used in our previous experiments. The victim ASR for the

adaptive attack is the Mozilla DeepSpeech model. In order to evaluate the imperceptibility of

adversarial perturbations, we quantify the distortion of adversarial perturbations as follows.

114



Table 4.6. Adaptive attack evaluations against different transformation functions. ε∞ is the
initial L∞ bound used and δ∞ is the mean L∞ norm of the perturbations obtained after applying
the adaptive attack algorithm. Bolded values indicate the δ∞ required to completely break a
particular defense.

Distortion metrics Attack Performance Detection Scores

Defense ε∞ |δ |∞ dBx(δ ) SR (xadv) SR (g(xadv)) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

None 500 81 -45.3 100% - 0.00 - - -

Downsampling - Upsampling 500 342 -32.7 100% 78% 0.00 0.05 0.31 50.0%
Quantization - Dequantization 500 215 -36.7 100% 81% 0.00 0.01 0.11 50.0%
Filtering 500 92 -44.1 91% 72% 0.01 0.02 0.45 50.0%
Mel Extraction - Inversion 500 500 -29.4 34% 0% 0.11 0.44 0.97 95.5%
LPC 500 500 -29.4 43% 0% 0.06 0.51 0.94 86.0%

Mel Extraction - Inversion 1000 1000 -23.5 53% 0% 0.05 0.34 0.92 84.0%
LPC 1000 1000 -23.5 72% 0% 0.01 0.29 0.77 72.5%

Mel Extraction - Inversion 4000 2461 -15.1 100% 31% 0.00 0.08 0.48 50.0%
LPC 4000 2167 -16.7 100% 73% 0.0 0.03 0.21 50.0%

Distortion Metrics and Relative Loudness: We first implement adaptive attacks using an initial

distortion bound |ε|∞ = 500. Note that we are using a 16-bit waveform representation which

means that the waveform samples are in the range -32768 to 32768. An L∞ distortion of 500

is fairly perceptible although it does not completely mask the original signal.2 Along with the

L∞ norm of the perturbation, we report another related metric dBx(δ ) [1, 2] that measures the

relative loudness of the perturbation with respect to the original signal in Decibels(dB). The

metric dBx(δ ) is defined as follows:

dB(x) = maxi20log10(xi)

dBx(δ ) = dB(δ )−dB(x)
(4.10)

The more negative dBx(δ ) is, the quieter is the adversarial perturbation. For comparison, -31 dB

is roughly the difference between ambient noise in a quiet room and a person talking [1]. While

we start with an initial L∞ (ε∞) bound of 500 in our experiments, the final distortion norm (δ∞)

can be much smaller than the initial bound. This is because our optimization objective penalizes

high distortion amounts and our algorithm re-scales the perturbation bound by a factor of 0.8

2Audio Examples: https://waveguard.herokuapp.com

115

https://waveguard.herokuapp.com


every time the attack succeeds.

Generally, prior work on attacks to ASR systems apply particular attention to minimize

perturbation distortions, in order to encourage imperceptibility of adversarial audio. Towards this

goal of generating imperceptible adversarial examples, Qin et al. [3] and Universal [2] generate

examples with maximum allowed distortion of L∞ = 400, while Carlini et al. [1] generate

examples with maximum distortion of L∞ = 100. However for conducting our adaptive attack

evaluation, since we aim to test the breaking point of each transformation function, we generate

adversarial perturbations at much higher L∞ bounds (500, 1000, 4000) that are significantly more

audible to the human ear.

Table 4.6 presents the results for our adaptive attack against various input transformation

functions. We provide the Receiver Operating Characteristic (ROC) of the detector in the adaptive

attack settings for different transformation functions under different magnitudes of perturbation

in Figure 4.10. A true positive implies an example that is adversarial and is correctly identified

as adversarial. We evaluate the adaptive attacks on two aspects: 1) Attack Performance: How

successful was the adaptive attack in its objective? 2) Detection Scores: How effective is our

detector for the adversarial audios generated by the attack?

For the adaptive attacks against the Downsampling - upsampling, Quantization - De-

quantization and Filtering transforms, we achieve low CER between the target transcription and

transcriptions for xadv and g(xadv) (CER(xadv,τ) and CER(g(xadv)) respectively). This makes it

harder for the detector to discriminate between adversarial and benign samples thereby resulting

in a drastic drop in detector AUC and accuracy scores as compared to the non-adaptive scenario.

Amongst these three transformations, bypassing Downsampling-upsampling requires the highest

amount of perturbation (δ∞ = 342) indicating that it serves as a more robust defense transfor-

mation as compared to Quantization-Dequantization and Filtering. The columns SR(xadv) and

SR(g(xadv)) indicate the percentage of examples that transcribed exactly to the target phrase for

the un-transformed and transformed adversarial inputs respectively.

The calibration of the detection threshold depends on the use case of the ASR system—

116



Downsampling-upsampling        = 500 

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
     Quantization        = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Filtering        = 500

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

(a) Downsampling-upsampling, Quantization and Filtering

             LPC        = 500       

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

             LPC        = 1000                    LPC        = 2167       

(b) Linear Predictive Coding (LPC)

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e
Mel Inv - Extraction        = 1000       Mel Inv - Extraction         = 2461       Mel Inv - Extraction         = 500       Mel Extraction - Inv Mel Extraction - Inv Mel Extraction - Inv

(c) Mel Extraction - Inversion

Figure 4.10. Detection ROC curves for different transformation functions against adaptive
attacks (Section 4.6.3) with various magnitudes of adversarial perturbation (|δ |∞).

for a user facing ASR system, the number of legitimate commands would usually be very high

as compared to the number of adversarial commands. Therefore, the false positive rate needs

to be extremely low for such ASR systems. As shown in Figure 4.9 ( Appendix 4.5.3), in

the non-adaptive attack scenario, we are able to achieve a very high true positive rate at 0%

false positive rate for the targeted adversarial attacks (Carlini and Qin-I) for all transformation

117



functions. Therefore a low detection threshold can be reliable against non-adaptive adversaries

and also not interfere with the user experience. In the adaptive attack scenario, while both LPC

and Mel inversion achieve higher AUC scores as compared to other transforms, Mel inversion

transform gives the highest true positive rate at extremely low false positive rates. Therefore,

amongst the transformation functions studied in our work, Mel Extraction and Inversion serves

as the best defense choice for user facing ASR systems.

Robustness of perceptually informed representations: For both Mel extraction-inversion and

LPC transformations, although we observe a drop in the detector scores as compared to the non-

adaptive attack setting, we are not able to completely bypass the defense using the initial distortion

bound ε∞ = 500. Note that a perturbation higher than this magnitude, has dBx(δ )>−29 which

is more audible than ambient noise in a quiet room (dBx(δ ) = −31) [85, 148]. In order to

test the limit at which the defense breaks, we successively increase the allowed magnitude of

perturbation. We are able to completely break the defense (AUC ≤ 0.5) at δ∞ = 2479 and

δ∞ = 2167 for Mel extraction-inversion and LPC transforms respectively. These perturbations

are more than 6× higher than that required to break any of the other transformation functions

studied in our work and more than 25× higher than that required to fool an undefended model.

At such distortion levels, the perturbation is very perceptible to the human ear so it defeats

the purpose of an adversarial audio attack. This suggests that using perceptually informed

intermediate representations prove to be more robust against adaptive attacks as compared to

naive compression and decompression techniques.

Figure 4.11 reports the same metrics as those reported in Figure 4.8 for the adap-

tive attack scenario with an initial ε∞ = 500. The CER(adv,g(adv)) (red bar) drops below

CER(orig,g(orig)) (blue bar) for Downsampling-upsampling, Quantization-Dequantization and

Filtering transforms thereby breaking these defenses. In contrast, the red bar for Mel extraction-

inversion and LPC based defense is much higher than the blue bar indicating that the defense is

more robust under this adaptive attack setting.

118



C
E

R

0.00

0.25

0.50

0.75

1.00

Down-up Quant Filtering Mel LPC

CER( orig, g(orig)) CER( adv, g(adv) ) CER(orig, g(adv) )

Adaptive Attacks

Figure 4.11. Mean CER between the ASR transcriptions of un-transformed (x) and transformed
(g(x)) audio for adaptive attacks with an initial distortion ε∞ = 500.

Straight-through Gradient Estimator for LPC

We find that the LPC transform cannot be broken in an adaptive attack scenario using

BPDA attack with a straight-through gradient estimator (i.e assuming identity function as the

gradient of transformation function g during the backward pass). In our experiments, we started

with an initial ε∞ of 2000, and increased the initial distortion bound to 16000 but did not observe

any improvement in the attack performance as the detector was still able to identify adversarial

audio with 100% accuracy. Therefore, using our BPDA attack algorithm, we do not arrive at

a solution in which both x and g(x) transcribe to the target phrase even with a high amount of

allowed distortion. This motivated us to design stronger adaptive attacks with differentiable

LPC (Section 4.6.1) to find distortion bounds over which LPC transforms are not able to reliably

detect adversarial examples.

119



Table 4.7. Evaluation of LPC transform against straight-through gradient estimator.

Distortion metrics Attack Performance Detection Scores

Defense ε∞ |δ |∞ dBx(δ ) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

LPC 2000 2000 -15.9 0.31 0.85 1.0 100%
LPC 16000 16000 2.1 0.34 0.85 1.0 100%

Table 4.8. Evaluation of Mel Extraction - Inversion and LPC transform defense against perturba-
tions targeting an undefended DeepSpeech ASR model at different levels of magnitude.

Distortion metrics Attack Performance Detection Scores

Defense |δ |∞ dBx(δ ) CER(xadv,τ) CER(g(xadv),τ) AUC Acc.

LPC 1000 -23.5 0.0 0.80 0.99 98.5%
LPC 2000 -17.4 0.0 0.83 0.99 99.0%
LPC 4000 -11.4 0.0 0.81 0.99 97.0%
LPC 8000 -5.4 0.0 0.91 0.99 99.0%

Mel Ext - Inv 1000 -23.5 0.0 0.81 0.99 98.5%
Mel Ext - Inv 2000 -17.4 0.0 0.88 0.99 97.5%
Mel Ext - Inv 4000 -11.4 0.0 0.89 0.99 98.0%
Mel Ext - Inv 8000 -5.4 0.0 0.92 0.99 98.5%

4.7 Evaluation of Transfer Attacks from an Undefended
Model

We additionally evaluate the robustness of Mel extraction-inversion and LPC transforma-

tions against transfer attacks from an undefended model. We craft targeted adversarial examples

using [1] for DeepSpeech ASR at different perturbation levels by linearly scaling the perturbation

to have the desired L∞ norm. Table 4.8 shows the evaluations of transfer attack at different

perturbation levels. We find that attacks targeting undefended models do not break the defense

using these two transformation functions even at high perturbation levels. This is because the

transcription of g(xadv) is significantly different from the target transcription and transcription

of xadv even at high perturbation levels thereby allowing our detector to consistently detect the

adversarial samples.

120



4.8 Discussion

Do learnings from adversarial defenses in the image domain transfer over to the

audio domain? We find that not all learnings about input-transformation based defenses in

the image domain transfer to the speech recognition domain. It has been shown that input-

transformation based adversarial defenses can be easily bypassed using robust or adaptive attacks

for image classification systems [20, 151]. However, an ASR system is a substantially different

architecture as compared to an image classification model. ASR systems operate on time-varying

inputs and map each input frame to a language token. Since they rely on Recurrent Neural

Networks (RNNs), the token prediction for each frame also depends on other frames in the signal.

For targeted attacks, that are robust to a transformation g, we need to find an adversarial example

xaudio such that both xaudio and g(xaudio) map to the target language tokens across all time-steps.

On the other hand, for the image classification problem, the adaptive attack goal is simpler: Find

an image ximage, such that both ximage and g(ximage) map to the same class label. Therefore, in

our adaptive attack experiments, we need to add significant amount of perturbation to bypass the

defense even for simple transformation functions. We also find that adversarial attacks targeting

undefended ASR models do not transfer to defended models even at high perturbation levels, in

contrast to results reported in the image domain [149]. Details of this experiment are provided in

Section 4.7.

4.9 Conclusion

In this chapter, I have presented our proposed solution WaveGuard, a framework for

detecting audio adversarial inputs, to address the security threats faced by ASR systems. Our

framework incorporates audio transformation functions and analyzes the ASR transcriptions of

the original and transformed audio to detect adversarial inputs. We demonstrate that WaveGuard

can reliably detect adversarial inputs from recently proposed and highly successful targeted

and untargeted attacks on ASR systems. Furthermore, we evaluate WaveGuard in the presence

121



of an adaptive adversary who has complete knowledge of our defense. We find that only at

significantly higher magnitudes of adversarial perturbation, which are audible to the human

ear, can an adaptive adversary bypass transformations that compress input to perceptually

informed audio representations. In contrast, naive audio transformation functions can be easily

bypassed by an adaptive adversary using small inaudible amounts of perturbations. This makes

transformations such as LPC and Mel extraction-inversion more robust candidates for defense

against audio adversarial attacks.

4.10 Acknowledgements

Chapter 4 is a reprint of the material as it appears in WaveGuard: Understanding

and Mitigating Audio Adversarial Examples. USENIX Security Symposium, 2021. Hussain,

Shehzeen; Neekhara, Paarth; Dubnov, Shlomo; McAuley, Julian; Koushanfar, Farinaz. The

dissertation author was the primary investigator and author of this paper.

122



Part II

Efficient Neural Media Synthesis

123



Chapter 5

Compute Efficient Design for Neural
Media Synthesis

The goal of autoregressive neural networks is modeling the predictors of future values of

time series sequences given their past. Autoregressive convolutional neural networks (CNNs)

have been widely exploited for sequence generation tasks such as audio synthesis, language

modeling and neural machine translation. These architectures use a stack of temporal convolu-

tional layers to model sequences and have achieved exemplary results in audio [4, 164, 165, 166]

and text domains [167, 168] with respect to both estimating the data distribution and generating

high-quality samples. Wavenet [4] is an example of autoregressive CNN, used for modelling

audio for applications such as text-to-speech (TTS) synthesis and music generation. WaveNet

has been rated by human listeners to provide substantially more natural sounding audio when

compared to the best existing parametric and concatenative systems in TTS applications for both

English and Mandarin[4]. Alongside achieving state-of-the art results in the audio synthesis,

autoregressive CNN architectures based on ByteNet [167] are prominent for natural language

modeling tasks like text generation and machine translation.

Generally, both autoregressive convolutional neural networks (CNNs) and Recurrent

Neural Networks (RNNs) [169] are widely popular for sequence modelling tasks. The main

advantage of CNN based models is that they can achieve higher parallelism during training

and can capture longer time-dependencies as compared to RNN based models [170, 171]. This

124



allows scaling up CNN based model to deeper architectures and larger datasets thereby achieving

state-of-the-art results in speech and text synthesis. However, this comes at a cost of slower

inference, since the naive inference implementation of autoregressive CNNs has exponential time

complexity in terms of the depth of the network. To overcome this problem, Fast-Wavenet [172]

exploits the temporal dependencies by caching redundant computations using fixed-length

convolutional queues and thus makes the generation time linear in terms of depth of the network.

Such efforts have made it feasible to use autoregressive CNNs for practical sequence generation

applications, as an alternative to RNN-based models.

While the fast inference algorithm provides significant speed-up in sequence synthesis

over the naive implementation, the inference is still slower than real-time, even on a high-end

GPU. For examples, it takes around 120 seconds to generate 1 second of audio using Fast-Wavenet

implementation on a NVIDIA TITAN Xp GPU. Prior studies have shown FPGAs to be successful

in accelerating the inference of pre-trained neural networks by providing custom data paths to

achieve high parallelism. Despite the considerable body of research dedicated to accelerating

neural networks for tasks like image classification [173, 174], speech recognition [175, 176],

and language modeling using RNNs [177], limited attention has been given to speech and text

synthesis.

This work presents pioneering solutions for accelerating CNNs on FPGA platforms,

specifically for sequence synthesis in the audio and text domains. First I describe our proposed

solution FastWave [178], the first accelerator platform for autoregressive convolutional neural

networks, which primarily targets speech synthesis. Next, I detail the extension of FastWave to

text synthesis, by redesigning the input and output interfaces of the network and introduce new

network components like the embedding layer (Section 5.5.5) and activation functions to make

the transition from audio to text model. These details are listed in Section 5.6.3. Furthermore in

this chapter, I systematically examine and address the challenges related to resource and runtime

efficiency when leveraging autoregressive CNN models for accelerating speech and text synthesis

on FPGA. The goal is to optimize the generation of sequential multimedia data such as audio and

125



text, by efficiently utilizing resources on hardware platforms and minimizing processing time.

The primary challenges in deploying autoregressive CNN inference on FPGA are designing

modules for dilated convolutional layers, buffers for storing redundant computations using

convolutional queues, and dealing with the large depth of these networks which is necessary

to maintain high synthesis quality especially in audio. In this work, I address these challenges

of deploying large autoregressive convolutional models on FPGAs and perform a wide range

of application and architectural optimizations. Furthermore, I comprehensively analyze and

compare the performance of both audio and text synthesis implementations on FPGA with the

CPU and GPU counterparts. The explicit contributions of this study are as follows:

• Creation of FastWave, the first accelerator platform for autoregressive CNNs. Our platform

is generalizable and maintains high performance across different temporal input domains

such as audio and text. We deploy a fast inference algorithm on Xilinx XCVU13P FPGA

which achieves 11 times faster generation speed than a high-end GPU and 66 times faster

audio generation speed than a high-end CPU. For text synthesis, the speed up is 29 times

faster than a high-end GPU and 175 times faster than a high-end CPU.

• Development of reconfigurable basic blocks pertinent to autoregressive convolutional

networks i.e., dilated causal convolutional layers, convolutional queues, embedding layer

and fully connected layer. Our operations are powered by a fully-customizable matrix-

multiplication engine that uses two levels of parallelism controlled by tunable parameters.

• Optimization of our accelerator for limited resource deployment settings: We perform

accuracy aware pruning targeting the memory bottlenecks of long convolutional queues in

deep autoregressive CNNs. We demonstrate that we can preserve the model correctness

and performance gains across two different FPGA platforms.

• Exploration of the design space using different architectural and application optimizations,

as well as comparing the performance and resource usage. We present extensive evaluation

126



of throughput and power efficiency for our fully optimized and baseline designs. We

integrate a high level of parallelism along with a pipelined design to maximize system

throughput.

5.1 FastWave: Accelerating Autoregressive Convolutional
Neural Networks

In this section, we describe the first accelerator platform FastWave that we developed

for autoregressive convolutional neural networks, and address the associated design challenges.

We design the Fast-Wavenet inference model in Vivado HLS and perform a wide range of

optimizations including fixed-point implementation, array partitioning and pipelining. Our

model uses a fully parameterized parallel architecture for fast matrix-vector multiplication that

enables per-layer customized latency fine-tuning for further throughput improvement. Our

experiments comparatively assess the trade-off between throughput and resource utilization for

various optimizations. Our best WaveNet design on the Xilinx XCVU13P FPGA that uses only

on-chip memory, achieves 66× faster generation speed compared to CPU implementation and

11× faster generation speed than GPU implementation.

5.2 Prior Work on Accelerating DNNs for FPGAs

Prior works have made significant efforts in compressing Deep Neural Networks (DNNs)

to support fast energy-efficient applications. However, recent research on DNNs is still increasing

the depth of models and introducing new architectures, resulting in higher number of parameters

per network and higher computational complexity. Other than CPUs and GPUs, FPGAs are

becoming a platform candidate to achieve energy efficient neural network computation [179,

180, 181, 174, 173, 182, 183]. Several works [179, 184, 185] have efficiently mapped DNN

computations to different FPGA resources, thereby achieving higher energy efficiency compared

to optimized multi-core CPU and GPU implementations. Alternately, some prior works [173,

186] have proposed model adaptation techniques such as parameter encoding, to customize DNNs

127



for the hardware platforms, thereby reducing the total memory footprint and computational

burden of DNNs. Equipped with the necessary hardware for basic DNN operations, FPGAs

are able to achieve high parallelism and utilize the properties of neural network computation

to remove unnecessary logic. Algorithm explorations also show that neural networks can be

simplified to become more hardware friendly without sacrificing the accuracy of the model.

Therefore, it has become possible to achieve increased speedup and higher energy efficiency on

FPGAs compared to CPU and GPU platforms [187, 179, 188] while maintaining state-of-the-art

accuracy. However, these works on FPGA acceleration have mainly focused on neural network

based classifiers. Most of these works, focus on accelerating conventional CNN architectures

that operate in the image domain. They utilize techniques such as adaptive network quantization,

matrix-vector multiplication optimizations and parallelization which tackle challenges pertinent

to FPGA acceleration of conventional CNN architectures.

Some prior efforts have also been made in FPGA acceleration of speech recognition,

classification and language modelling using RNNs [183, 175, 177]. A recent work [189] presents

an acceleration framework for 1-d CNN networks that are used as classifiers or audio transcribers.

However, the challenges in generation of sequences with long-term dependencies, particularly in

audio and text domain have not been addressed in any of these prior works. Sequence generation

models that can capture long-term dependencies often use autoregressive CNN architectures

based on WaveNet or Bytenet. Such networks, present their own set of optimization challenges

— naive inference implementation of such networks has many redundant computations at each

time-step. These redundant computations can be cached to significantly speed up the inference

time at the cost of memory overhead. Also, the memory footprint of such networks increases

exponentially with the increasing number of layers thereby making their implementation in

resource constrained settings more challenging. In this work, we address such challenges

pertinent to autoregressive CNNs i.e., dilated causal convolutional layers, convolutional queues,

embedding layers and propose a general purpose FPGA accelerator for such architectures.

128



5.3 Background and Preliminaries

In this section, we provide a background on autoregressive CNNs. We cover two popular

autoregressive CNNs in audio and text domain, WaveNet [4] and ByteNet [167] respectively.

We first elaborate on the 1D convolution operation as it is the core computation performed in

these models. Next, we explain the general architecture of autoregressive CNNs and specifics

of WaveNet and ByteNet models. Finally, we go over the time-efficient inference algorithm

Fast-Wavenet that can be generally applied to any autoregressive CNN with dilated convolutional

layers.

5.3.1 1D Convolution

The 1D convolution operation is performed by sliding a one dimensional kernel over a

1D input signal. Each output value at position i is produced by calculating the dot product of the

kernel and the overlapping values of the input signal, starting from position i. More formally,

for an input vector a of length n and a kernel k of length m, the 1D convolution is calculated as

follows:

(a∗ k)i = σ
m
j=1k j×ai− j+m

2
(5.1)

where i is an arbitrary index in the output vector, which has a total length of n−m+ 1. The

subscripts denote the indices of the kernel/input vectors.

5.3.2 Autoregressive CNNs

Autoregressive Neural Networks are popularly used for sequence generation tasks which

rely on ancestral sampling i.e. the predictive distribution for each sample in the sequence is

conditioned on all previous ones. While RNNs are popular autoregressive models, they do not

exhibit high receptive field making them unsuitable for modeling sequences with long-term

dependencies like audio [170]. In contrast, autoregressive CNN based models use a stack of

dilated convolutional layers to achieve higher receptive field necessary for modeling sequences

129



with long-term dependencies. In this section, we discuss two popular autoregressive CNNs for

audio and text domains.

WaveNet: WaveNet [4] is an autoregressive CNN that produces raw audio waveforms by directly

modeling the underlying probability distribution of audio samples. This has led to state-of-

the-art performance in text-to-speech synthesis [164, 190, 191, 192], speech recognition [193],

and other audio generation settings [4, 165, 166]. Popular cloud based TTS synthesis systems

such as Google Now and Google Assistant, that produce natural sounding speech, are built

on WaveNet architecture [166, 190]. The Wavenet architecture aims to model the conditional

probability among subsequent audio samples. The joint probability distribution of waveform

sample points x = x0,x1, ...,xT can be written as: P(x|λ ) = ∏
T
t=1 P(xt |xt−1, ..,x0,λ ) where λ

denotes the learnable parameters of Wavenet model. During inference, next-sample audio (xt)

generation is performed by sampling from the conditional probability distribution given all of

the previous samples, P(xt |xt−1, ...,x1,x0,λ ).

One possible method for modeling the probability density is via a stack of causal convo-

lutional layers as depicted in Figure 5.1a. The input passes through this stack of convolutional

layers and gated activation functions and finally through a softmax layer to get the posterior

probability P(xt |xt−1, ...,x1,x0). The downside of this approach is that in order to model long

temporal dependencies from samples far in the past, the causal convolutional network requires

either many layers or large filters to increase the receptive field. In general, the receptive field

is calculated as # o f layers+ f iltersize−1 which gives a receptive field of 5 in the architecture

shown in Figure 5.1. To address this problem, WaveNet leverages dilated convolutions [194, 195]

which deliver higher receptive fields without significant increase in computational cost of the

model. Dilated convolution is equivalent to performing convolutions with dilated filters where

the size of the filter is expanded by filling the empty positions with zeros. In practice, this is

achieved by performing a convolution where the filter skips input values with a certain step.

Fig 5.1b illustrates a network with dilated causal convolutions for dilation values of

1, 2, 4, and 8. Here, the input nodes are shown with color blue and the output is shown with

130



orange. Each edge in the graph correspond to a 1-dimensional convolution (See section 5.3.1),

more generally a matrix multiplication. Due to the binary tree structure of the network, the time

complexity of computing output at each time-step is O(2L) where L is the number of layers in

the network, which gets highly undesirable as L increases. Similarly, the total memory required

to store the inputs, output, and the intermediate layer features is O(2L).

Figure 5.1. a. (Left) Stacked causal convolution layers without any dilations. b. (Right) Stacked
causal 1-d convolution layers with increasing dilation. Figures from WaveNet paper [4].

ByteNet: ByteNet [167] is another example of autoregressive CNN used for natural language

modelling tasks. The ByteNet model is composed of an encoder and decoder, both of which are

stack of dilated 1-d convolutional layers. The encoder operates over the source sequence and

the decoder operates over the encoded representation to generate the target sequence. ByteNet

model can either be used for machine translation task, or for the task of language modelling. For

the latter, only the ByteNet decoder is used which is a stack of causal 1-d covolutional layers

similar to the WaveNet architecture. The authors demonstrate that ByteNet can achieve state of

the art results in character level language modelling.

131



5.3.3 Fast Inference Algorithm for Autoregressive CNNs

The naı̈ve inference implementation of autorgressive CNNs in Figure 5.1 has many

redundant computations when generating a new sample, that is, it recomputes activations that

have been already computed for generating previous samples. Fast-Wavenet [172] proposed an

efficient algorithm that caches these recurrent activations in queues instead of recomputing them

from scratch while generating a new sample. The algorithm uses a per-layer first-in-first-out

queue to cache the states to be used in future timestamps.

The queue size at each layer is determined by its corresponding dilation value. Figure 5.2

demonstrates an example 4-layer network and their corresponding queues. For the first layer,

the dilation value is 1 and therefore the corresponding queue (Q1) only keeps one value. Sim-

ilarly, the output layer has a dilation value of 8, which means that its queue (Q4) will store 8

recurrent values. By removal of redundant computations due to the queue storing mechanism,

the computational complexity of Fast-Wavenet is O(L) where L is the number of layers. The

overall memory requirement for queues as well as the intermediate values remains the same as

the nav̈e implementation, i.e., O(2L).

The basic queue operations performed in the Fast-Wavenet are as follows (refer to Figure

5.2 ):

1. Pop phase: The oldest recurrent states are popped off the queues in each layer and fed as

input to the generation model. These popped off states and the current input are operated

with the convolutional kernel to compute the current output and the new recurrent states.

2. Push Phase: Newly calculated recurrent states (orange dots) are pushed to the back of

their respective layer queues to be used in future time stamps.

Maintaining the convolutional queues in the above manner allows us to handle the sparse

convolutional operation and avoid redundant computations and makes the generation algorithm

linear in terms of length of the sequence. This algorithm is applicable for any autoregressive

132



CNN including both WaveNet and ByteNet.

Q4

Q3

Q2

Q1

Queue Pop

Queue Push

Convolutional Queues Generation Model

Figure 5.2. Basic queue operations (Push and Pop) performed in Fast inference algorithm to
achieve linear time in audio generation.

5.4 Methodology

Our primary objective is to accelerate the inference of autoregressive CNNs for sequence

generation on FPGAs. We train two such models as candidates for our acceleration framework:

one for the task of audio synthesis and one for the task of text synthesis. Due to the high

temporal data density in audio, audio models require a larger receptive field to capture long-term

dependencies as compared to text. This in turn requires the network to be very deep which

increases the computational and storage cost of such models. When designing an accelerator

for such models, it is important to be aware of the system restrictions, particularly those of

memory access bandwidth [179, 173]. Accessing off-chip memory is expensive and can limit

the throughput of our network, making it important to compress DNNs into an optimal model

for efficient inference.

Design Flow: We start with an open source TensorFlow implementation of the Fast-

Wavenet algorithm for audio synthesis. We adapt this model for text synthesis by adding an

embedding layer and modifying the network architecture. We train the two models - one for the

task of audio synthesis and one for the task of language modelling. We save the weights of the

133



convolutional and fully connected layers of our trained model which are used in the inference

stage for generating sequences. We implement the fast inference algorithm in NumPy without

using any high level deep learning libraries. This implementation serves as a bridge between

the high level TensorFlow and the low level Vivado HLS implementation in C++. On the FPGA

platform, we then perform design space exploration on the audio synthesis model since it is a

more resource and computation heavy architecture. We apply the best design optimizations on

the text synthesis model and evaluate the performance across different hardware platforms: two

different FPGA boards, CPU and GPU.

5.4.1 Model Architecture and Training on GPU

We use an open-source TensorFlow implementation of Fast-Wavenet [172] to pre-train

our audio and text synthesis networks as follows:

Audio Synthesis: For audio synthesis, the network architecture we use is a stack of two dilated

convolutional blocks. Each block consists of 14 convolutional layers with kernel size (filter

width) = 2 and dilation increasing in powers of 2 (Table 5.1). Therefore each of the kernels

is a 3-dimensional array of shape 2× inputchannels×out putchannels. The number of output

channels in each layer is 128 in the baseline implementation. After each convolutional layer there

is a tanh activation function which serves as the non-linearity in our model as used in the original

WaveNet paper [4]. A tanh activation normalizes values between -1 and 1 and also allows us

to better utilize fixed point data-types in the Vivado implementation without compromising on

accuracy.

After the two convolutional blocks, we have a single fully connected layer which maps

the activation of size 128 from the last convolutional layer to an output vector of size 256

followed by a softmax normalization layer. The output after the softmax layer is the generated

distribution. The target audio is quantized linearly between -1 and 1 into 256 values. The one-hot

representation of each sample of size 256 serves as the target distribution at each time-step. The

cross entropy loss between the generated and target distribution is back-propagated to train the

134



Table 5.1. Audio synthesis model architecture: This model uses 2 blocks of dilated convolutional
layers with 14 layers each. The column Queue Size denotes the number of floating point numbers
stored in each queue and is equal to QueueLength× InputChannels.

Block
No.

Layer
No.

Filter
Width

Queue
Length

Input
Channels

Output
Channels

Queue
Size

1 1 2 1 1 128 1
1 2 2 2 128 128 256
1 3 2 4 128 128 512
1 4 2 8 128 128 1024
1 5 2 16 128 128 2048
1 6 2 32 128 128 4096
1 7 2 64 128 128 8192
1 8 2 128 128 128 16384
1 9 2 256 128 128 32768
1 10 2 512 128 128 65536
1 11 2 1024 128 128 131072
1 12 2 2048 128 128 262144
1 13 2 4096 128 128 524288
1 14 2 8192 128 128 1048576

2 1 2 1 128 128 128
2 2 2 2 128 128 256
2 3 2 4 128 128 512
2 4 2 8 128 128 1024
2 5 2 16 128 128 2048
2 6 2 32 128 128 4096
2 7 2 64 128 128 8192
2 8 2 128 128 128 16384
2 9 2 256 128 128 32768
2 10 2 512 128 128 65536
2 11 2 1024 128 128 131072
2 12 2 2048 128 128 262144
2 13 2 4096 128 128 524288
2 14 2 8192 128 128 1048576

convolutional kernels and weights of the fully connected layer.

Text synthesis: For text synthesis, our neural network architecture utilizes a stack of two dilated

convolutional blocks with 10 layers each (Table 5.2). Since text data has lower temporal density

as compared to audio, we need a comparatively lower receptive field for language modelling.

This is aligned with the architecture of the ByteNet decoder being smaller than the WaveNet

audio model. We train a character level neural network architecture on a subset of Shakespearean

text with a vocabulary size of 58. To process the inputs, we add an embedding layer with

128 as the embedding dimension. The embedded input is then passed into the stack of dilated

135



Table 5.2. Text synthesis model architecture: The column Queue Size denotes the number of
floating point numbers stored in each queue and is equal to QueueLength× InputChannels.

Block
No.

Layer
No.

Filter
Width

Queue
Length

Input
Channels

Output
Channels

Queue
Size

1 1 2 1 128 128 128
1 2 2 2 128 128 256
1 3 2 4 128 128 512
1 4 2 8 128 128 1024
1 5 2 16 128 128 2048
1 6 2 32 128 128 4096
1 7 2 64 128 128 8192
1 8 2 128 128 128 16384
1 9 2 256 128 128 32768
1 10 2 512 128 128 65536

2 1 2 1 128 128 128
2 2 2 2 128 128 256
2 3 2 4 128 128 512
2 4 2 8 128 128 1024
2 5 2 16 128 128 2048
2 6 2 32 128 128 4096
2 7 2 64 128 128 8192
2 8 2 128 128 128 16384
2 9 2 256 128 128 32768
2 10 2 512 128 128 65536

convolutional layers. After each convolutional layer we use the ReLU activation function since it

provides higher accuracy than tanh for the task of language modelling. The final fully connected

layer in the network maps the output of size of 128 to our vocabulary of size 58.

5.4.2 Optimizing the Design for Different FPGAs

Deep autoregressive CNNs have high memory footprint which posse a significant chal-

lenge in designing the FPGA accelerator. Specifically, the primary memory bottle-neck is not the

parameters of the convolutional kernels, but convolutional queues which cache the intermediate

outputs of the convolutional layers to be used for future predictions. The size of these queues

increases exponentially with the depth of the block in the neural network. As highlighted in

Table 5.1, the 14-th convolutional queue in each of the blocks stores 1,048,576 floating point

numbers (≈ 33Mb). To address this challenge, we take the following measures:

To address this memory challenge, we utilize both BRAMs and URAMs available on the

136



XCVU13P FPGA. We store all convolutional queues on the BRAMs by default and off-load the

14th convolutional queue of each block onto the URAMs on our board. In this way, we are able

to utilize only on-chip memory and achieve higher bandwidth without compromising on audio

quality.

The above approach may not be applicable to smaller FPGA boards, e.g., Xilinx Virtex

UltraScale VCU108, with lower BRAM capacity and no URAM memory allocation. The

baseline architecture shown in Table 5.1 uses 128 channels in each layer. Using 32-bit floating

point numbers would result in the memory utilization of the 13-th and 14-th queue in both blocks

to exceed the available on-chip memory. In order to fit the inference model on such FPGAs

without using any external memory, we prune our neural network while maximally preserving

accuracy. Recent research on high performance NN accelerators have proposed to either reduce

the number of weights [196] or the bit-width used for weight representation [197], which can

also help reduce the computation and storage complexity. Pruning is the process of reducing the

parameters of convolutional networks, by removing redundancies of the network before invoking

inference. This allows us to reduce the number of computational resources required and thereby

conduct inference faster with higher power efficiency.

A very effective pruning approach when trading accuracy for the size and the speed, is to

reduce the number of channels in each convolutional layer. In our work, we successfully pruned

our baseline implementation to reduce the number of channels for every layer. We started with

evaluating weights in every layer, and sorting the weights according to increasing order of their

l2 norm. We then reduced the channels to the desired value by removing the components with the

least magnitude. Pruning effectively reduces the total memory budget required for convolutional

queues from ≈ 134Mb to ≈ 40Mb. We retrained our model with fewer channels and were able

to obtain similar audio quality with minimal prediction error using a lower learning rate. A

quantitative comparison between the quality of audio generated from the pruned and original

architecture is provided in the Results Section 5.6.

137



5.4.3 Accelerator Design Overview

GPU 

TensorFlow 
Training

   Random Seed Input

Output Stream

Weights

On-Chip 
Memory 

w

w

Convolutional Queues

FPGA
…

Hello World! …
OR

Figure 5.3. Acceleration Methodology for Autoregressive CNN synthesizing audio and text.

The primary objective of our system is to generate an output stream given a seed input.

Figure 5.3 shows the overview of our accelerator design. Given a seed input, our system generates

an output stream in an autoregressive manner, one-sample at a time. The output sample produced

at each time-step is fed back as input to generate the next output sample. During each cycle, as

the input goes through all the convolutional layers, the corresponding convolutional queues are

updated using push and pop operations as explained in Section 5.3. It is important to note that

the entire model including the convolutional queues and the parameters does not use any off-chip

memory and are stored in the BRAM and URAM available on the FPGA board. We describe the

details of implementing the convolution operations, queue updates and output generation using

the fully connected layers in the following section.

138



5.5 Implementation Details

Our design is composed of 5 main elements: (i) The dilated convolution layers, (ii) the

queue control unit, (iii) the fully-connected layer, (iv) the matrix multiplication engine, and (v)

the network description module. An additional element (vi) the embedding layer is only necessary

for text synthesis models and is invoked by our API when accelerating the text synthesis model.

5.5.1 Optimization of Dilated Convolutional Layer

As explained in the Section 5.3.3, Fast-WaveNet leverages queues to implement the

dilated convolutional layers. A convolution of size = 2 is used in the WaveNet architecture, and

can be implemented as two matrix-vector multiplications followed by vector addition in the

manner explained below. Notations used for our variables along with the shapes are listed below:

ICn : Number of Input channels of layer n.

OCn : Number of Output channels of layer n.

O[n](OCn×1) : Output of convolutional layer n.

K[n](2×OCn×ICn) : Convolutional kernel of layer n.

Q[n](queueLength×ICn) : Convolutional queue of layer n.

O1[n] = K[n][0](OCn×ICn)×Q[n][0](ICn×1)

O2[n] = K[n][1](OCn×ICn)×O[n−1](ICn×1)

O[n]OCn×1 = O1[n](OCn×1)+O2[n](OCn×1)

In other words, we matrix-multiply the first component of the convolutional kernel with

the first element of the queue, and the 2nd component of the kernel with the previous layer’s

output and then add the two products to obtain the output of any layer. The details of the

matrix-vector multiplication engine have been provided in Section 5.5.4.

139



The output of the convolution layer is then passed to tanh activation function. We use

the CORDIC implementation available in Vivado HLS math library for applying tanh allowing

us to optimize our design and memory usage. The output of the dilated convolution module is a

vector of length equal to the number of layer output channels.

5.5.2 Cyclic Queue Buffer Unit

In order to reduce the number of operations, Fast-Wavenet aims to remove redundant

convolution operations by caching previous calculations in a Queue, thereby reducing the

complexity of synthesis to O(L) time. This means that after performing a convolutional operation,

we push the compute into the end of the queue and pop the out the first element. These push

and pop operations are shown in figure 5.3. As described above the queue in each layer Q[n]

is a 2-d array of shape QueueLength× InputChannels. The QueueLength depends on the

dilationFactor of the layer and is equal to 2dilationFactor. We aim to fit our queue computations

in the on-chip memory BRAMs and URAMs. Our baseline queue implementation in Vivado

HLS used shift operations to perform pop and push functionalities of a queue. The longest queue

in our model is of size 8192× 24. The shifting of a large number of elements in the queue

resulted in very high latency.

To make queue push and pop operations computationally efficient, we implemented our

queues using fixed length circular arrays for each layer. This is a lot more efficient than shifting

all the elements present in the queue. The push and pop operations are reduced to just overwriting

one column of our circular array which is indexed using modulo QueueLength index.

5.5.3 Optimization of Fully-connected Layer

The fully connected layer in WaveNet is a linear layer after all the convolutional layers.

This layer is characterized by a weight matrix Wchannels×Out putSize and a bias vector b1×Out putSize.

The fully connected layer performs the following operation on ConvOut: the output of the last

140



convolution layer:

FinalOut put =ConvOut×W +b

In our design, the weight matrix W has shape 128×256 and bias b has shape 1×256.

We use arg-max sampling on the final vector of length 256 to obtain the quantized output value

between -1 and 1.

5.5.4 Optimization with Matrix Multiplication Engine

The most computationally-intensive operation in DNN execution is matrix-vector multi-

plication. FPGAs are equipped with DSP units which offer a high computation capacity together

with the reconfigurable logic. The basic function of a DSP unit is Multiplication Accumulation

(MAC). Layers in a convolutional neural network take as input a vector XN×1 and compute the

output vector YM×1 as formulated below:

Y = f (WX +b) (5.2)

where f(.) is a nonlinear function, WM×N is the 2D matrix of the weights and bM×1 is a vector

of bias values. As can be seen, each layer is computing a vector-matrix multiplication and a

vector-vector addition. In order to optimize the design and make efficient use of the DSP blocks,

we proposed a parallelized approach to convert layer computations into multiple MAC operations.

Figure 5.4 (a) presents our method to parallelize the matrix-vector multiplication computations.

We define two levels of parallelism for our engine which control the parallel computations

with parameters num parallel in and num parallel out, denoting the level of parallelism in the

input and output, respectively. For the first level of parallelism, multiple rows of the weight

matrix are processed simultaneously by dividing it into chunks, each having num parallel out

rows. In each round, a chunk of the weights matrix is copied to one of the weight buffers while

the other weight buffer is fed into the dot product modules together with a copy of the input vector.

The iterations end when all rows of the weight matrix have been processed. For the second level

141



(a) (b)

Figure 5.4. (a) Schematic representation of the matrix multiplication engine and the correspond-
ing parallelization factors. (b) Realization of the tree-based vector reduction algorithm.

of parallelism, each dot-product function partitions its input vectors into num parallel in chunks

and concurrently executes MAC operations over the partitioned subsets. The accumulated results

of the subsets are then added together within the reduce sum function to compute the final output.

The reduce sum module performs a tree-base reduction algorithm as outlined in Figure 5.4 (b).

The reduction function takes an array of size 2M as its input (array a) and oscillates between 2

different modes. In mode 0, the function reduces a by using temp as a temporary array. In mode

1, temp is reduced using a. The result is returned based on the final mode.

The aforementioned parameters num parallel in and num parallel out are individually

defined for each of the layers to enable fine-tuning according to the per-layer requirements.

Due to the limited number of available resources on the FPGA platform, it is not possible to

define high parallelization factors for all layers. As such, we give priority to layers with higher

computational complexity, i.e., higher number of input and output channels, by instantiating

their corresponding matrix multiplication engines with larger parallelization parameters.

142



Table 5.3. Design space exploration on Xilinx XCVU13P FPGA. We report the resource
utilization of each of our designs. The percentages reported indicate percentage of resources
utilized by the design.

Resource Utilization

BRAM
(Mb)

URAM
(Mb)

FF
(K)

LUT
(K) DSP48E

Design / Available Resources 94.5 360 3456 1728 12288
FloatingPointBaseline 93 (98%) 144 (40%) 35 (1%) 86 (5%) 288 (2%)
FloatingPointCQ 93 (98%) 144 (40%) 35 (1%) 83 (5%) 330 (3%)
FloatingPointPipeline 93 (99%) 144 (40%) 231 (7%) 231 (13%) 475 (4%)
FixedPointUnrolling 79 (84%) 144 (40%) 22 (1%) 146 (8%) 660 (5%)
FixedPointMME (Best) - Audio 90 (96%) 144 (40%) 425 (12%) 1669 (97%) 540 (4%)
FixedPointMME (Best) - Text 32 (34%) 0 138 (4%) 432 (25%) 1068 (8%)

5.5.5 Optimization of Embedding Layer

An embedding layer is used to numerically encode discrete inputs like characters in

text synthesis models and is not utilized by audio synthesis models. Therefore, we design an

embedding layer module for our accelerator for the purpose of text synthesis. In this module, we

design the embedding operation as a lookup function to find the embedded vector for a given

character in an embedding matrix. For this use case, the embedding matrix has dimensions

Vocabulary Size×Embedding Dimension. The embedding dimension is a hyper-parameter set to

128 and serves as the number of input channels in our text synthesis network. We use pipelining

to optimize the latency of this operation.

5.5.6 Network Description Module

In this module, we implement the overall architecture of our network as a stack of dilated

conventional layers and perform queue update operations followed by a fully connected layer.

This module instantiates the corresponding function for each network layer and manages the

layer inter-connections. Since each layer is independently instantiated, we can use custom

dilation, channels and parallelization parameters for each layer. After the last fully connected

layer, to make audio generation deterministic we use arg-max sampling. This allows us to bypass

143



Table 5.4. Design space exploration on Xilinx XCVU13P FPGA. We report the performance
and correctness of each of our designs. MSE and LSD are measured by comparing the generated
audio from FPGA against corresponding GPU implementations. Acc. indicates the prediction
accuracy for text synthesis

Performance Correctness

Latency Clock-Cycle
Time (ns)

Through-
put (Hz) MSE LSD Acc.(%)

FloatingPointBaseline 12110989 8.83 9.4 0 0 -
FloatingPointCQ 6170104 8.83 18.4 0 0 -
FloatingPointPipeline 612952 8.88 183.7 0 0 -
FixedPointUnrolling 293914 8.75 388.8 0.006 0.104 -
FixedPointMME (Best) - Audio 78275 8.66 1475.2 0.006 0.104 -
FixedPointMME (Best) - Text 28932 6.52 5301.2 0 - 96.1

the final softmax layer since we can directly apply the arg-max function on the output of our

final fully connected layer.

5.6 Results and Experiments

In this section, we evaluate the effect of our optimizations, namely cyclic queues, pipelin-

ing, loop unrolling and customized matrix multiplication engine, by conducting extensive design

space exploration. Our design experiments are synthesized for the Xilinx XCVU13P board using

Xilinx Vivado HLS 2017.4. In particular, we discuss the experimental techniques applied to

reduce resource utilization and latency of our baseline implementation. We further provide a

comprehensive comparison of our best designs with CPU and GPU implemented baselines in

terms of throughput and power efficiency.

5.6.1 Evaluation Metrics

To evaluate the accuracy of our implementation we compare the output generated from our

FPGA implementation with the golden output generated by the TensorFlow GPU implementation

for the same initial seed.

For audio, since the outputs are continuous values, we use the MSE and Log-Spectral

144



Distance metrics to compare any two audio signals x1, x2 of the same length. For text we use

the prediction accuracy to evaluate the correctness of our discrete outputs. We describe these

metrics below:

• Mean Squared Error (MSE): The mean squared error (MSE) between any two given

signals x1,x2 is the mean squared error between their representations in time domain as a

sequence of floating point numbers. That is, MSE = mean((x1− x2)
2). The MSE losses

reported are from the comparison of the entire waveform i.e. the total mean squared error

from all 32000 samples.

• Log-Spectral Distance (LSD): The log-spectral distance [198] is a commonly utilized

metric, obtained as the root mean square error between the normalized log-spectra of

given signals. Given two signals x1, x2, we calculate log-spectral distance between them

as follows:
ps1 = (abs(st f t(x1)))

2

ps2 = (abs(st f t(x2)))
2

ls1 = normalize(log(ps1))

ls2 = normalize(log(ps2))

LSD = RMSE(ls1, ls2)

(5.3)

Here ps1, ps2 are the power spectra and ls1, ls2 are the normalized log spectra of signals

x1, x2 respectively. The normalization is performed across all frequencies in the log

spectrograms.

• Prediction Accuracy using teacher forcing (Acc.): To evaluate correctness of discrete

outputs of our text synthesis inference, we use the accuracy metric in which the output

of the TensorFlow implementation serves as the ground-truth. Note that we use teacher

forcing for this evaluation, i.e. we feed in the ground truth inputs for time-steps 1 through

n−1 and evaluate the correctness of the nth output. We estimate the accuracy of predictions

145



over a sequence of 1000 characters.

• Qualitative Evaluation: Along with the quantitative results, we also provide log spectro-

gram visualizations of the audio signal generated using our FPGA implementation and the

golden-output audio signal generated from the TensorFlow implementation in Figure 5.5.

Figure 5.5. Log-Spectrograms of the 2-second audio generated from the TensorFlow implemen-
tation (top) and FPGA FixedPointMME design implementation (bottom).

5.6.2 Design Space Exploration

We implement several variants of our designs to study the effect of various optimization

techniques in isolation and in combination with other techniques. We perform the design space

exploration on the Xilinx XCVU13P FPGA. The resource utilization, performance (throughput)

and error in the generated audio, for each of the following designs have been reported in Table 5.3

and Table 5.4 and Figure 5.6. Throughput measures the number of sequence tokens generated

per second by our implementation of an autoregressive model. For text, each token corresponds

to one character and in the case of audio, one second of audio contains 16000 samples if audio is

146



sampled at 16KHz. Since the audio synthesis model is computationally more expensive than the

text synthesis model, we perform the design optimization on the audio model and apply the best

design principles on the text model.

Figure 5.6. Design space exploration for the audio synthesis model on the Xilinx XCVU13P
FPGA. A: Throughput (Number of Samples generated per second) of different designs. B:
Normalized Resource Utilization of different designs.

Baseline Floating Point Implementation (FloatingPointBaseline)

The baseline design of our network is comprised of modules to implement the basic functionality

of each layer, queue, initialization of weights from stored data files and forward propagation. We

use a array-shifting implementation of queue which results in a fairly high latency as shown in

Table 5.4 because of the very long queues (length = 8192 and 4096) in the 13th and 14th layers

of our design. For matrix vector multiplication we use simple for loops without any optimization.

Floating Point + Cyclic Queue (FloatingPointCQ)

In this design, we replace our shifting based queue implementation with a cyclic queue imple-

mentation that uses dynamic indexing to produce the same effect as push and pop operations.

This helps reduce latency substantially since shifting operations in the longer queues was the

bottleneck in our baseline design. The resource utilization however, stays almost the same as our

baseline design.

147



Floating Point + Cyclic Queue + Pipelining (FloatingPointPipeline)

In this design, we modify the above design and add pipelining pragma in the dot product

computation and queue update operations. Pipelining the above design helped increasing the

throughput substantially at the cost of higher resource utilization.

Fixed Point + Cyclic Queue + Unrolling (FixedPointUnrolling)

Including both Cyclic Queue and Pipelining optimization, we switch to fixed point operations

from floating point operations. Since the order of magnitude of our kernels, inputs, activations

and outputs is nearly the same, we keep a common data-type across all of them. After some

experimentation, we found that Loop Unrolling outperforms pipelining in terms of both resource

utilization and throughput for fixed point data-types. We use loop unrolling factor = 8 for the

inner loop of our dot product and also the queue update operations. We observe a trade-off

between precision and resource utilization for different fixed point bit width and chose ap -

fixed<27,8> (8 bits for the integer and 19 bits for the fractional part)since it gives reasonable

MSE under the constraints of resources.

Fixed Point + Matrix Multiplication Engine (FixedPointMME - Best)

For our best design, we use fixed-point implementation in a parallelized approach to convert

layer computations into multiple MAC operations (refer to Section 5.5.4 for details). For the first

dilated convolution layer we set num parallel out and num parallel in as 1 since the number

of input channels is just 1. For all other layers, including the fully connected layer we set

num parallel out as 8 and num parallel in as 4 to get the best throughput under the constraint of

available resources.

5.6.3 Design Modifications for Text Synthesis

For our text synthesis model, we use the best design found using our design space

exploration on the audio model and change the input and output interfaces to adapt the model for

148



Table 5.5. Accelerator results on Xilinx Virtex UltraScale VCU108 FPGA (Smaller board). We
report the resource utilization for each design implementation. The percentages reported indicate
percentage of resources utilized by the design.

Resource Utilization

BRAM
(Mb)

FF
(K)

LUT
(K) DSP48E

Design / Available Resources 60.8 1075 537.6 768
FloatingPointCQPruned 2881 (83%) 335 (43%) 43323 (4%) 87108 (16%)
FixedPointUnrollingPruned 2456 (71%) 660 (85%) 26441 (2%) 125206 (23%)
FixedPointMME (Best) - Audio 53 (87%) 957 (89%) 65 (12%) 684 (91%)
FixedPointMME (Best) - Text 42 (69%) 22 (2%) 135 (25%) 276 (35%)

Table 5.6. Accelerator results on Xilinx Virtex UltraScale VCU108 FPGA (Smaller board). We
report performance and measured error in generation for each design implementation. MSE and
LSD are measured by comparing the generated audio from FPGA against corresponding GPU
implementations.

Performance Correctness

Latency Clock-Cycle
Time (ns)

Throughput
(Hz) MSE LSD Acc.%

FloatingPointCQPruned 1935599 8.75 59.04 0 0 -
FixedPointUnrollingPruned 182218 8.75 627.19 0.007 0.110 -
FixedPointMME (Best) - Audio 100169 8.75 1140.9 0.007 0.110 -
FixedPointMME (Best) - Text 52612 8.66 2194.8 0 - 96.1

characters instead of audio. More specifically:

• We implement the embedding table lookup for the input layer. We use a loop unrolling 4

in the loop that reads the embedding vector. We change the number of input channels of

the first convolutional layer to 128.

• We use ReLU instead of tanh as the activation function for the convolutional layers. As

discussed earlier, we found the network to converge better for the ReLU activation function

for the text synthesis task. Implementing ReLU is straightforward because it simply gates

the input based on the sign of the input. We found this also leads to a higher per layer

throughput as compared to the audio model (shown in Table 5.4) leading to significantly

faster synthesis as compared to the GPU and CPU implementations.

149



• We change the final fully connected layer to map to our vocabulary of 58 characters.

• Since, the text synthesis network is smaller than the audio model, we increase the bit-width

of our fixed-width datatype to 32 bits and use 16 bits for integer and 16 bits for the

fractional part. Using this fixed width datatype, we are able to achieve 96.1% prediction

accuracy against the golden output obtained using the TensorFlow implementation.

The resource utilization, performance and correctness metrics for the text synthesis

network are reported in Table 5.3 and Table 5.4.

5.6.4 Design Optimization for smaller FPGA Platforms

As discussed in Section 5.4.2, in-order to fit the model on a smaller board: Xilinx

Virtex UltraScale VCU108 FPGA, we need to perform accuracy aware pruning that targets the

memory bottleneck of deeper architectures. While we are able to fit our text synthesis model

on the smaller board without pruning the network, for the audio model, we replace the baseline

architecture with the pruned architecture. The high BRAM utilization in the baseline design is

mainly due to the queues in layer 13 and 14 containing 4096×128 and 81292×128 floating

point numbers respectively. We pruned the network so that the channels required in these queues

get reduced from 128 to 24. Upon retraining the pruned model, we observe only a slight increase

in prediction error where MSE increases from 0.006 to 0.007, while achieving a significantly

lower memory footprint. This helped reduce both the BRAM utilization and also increased the

throughput since the number of scalar multiplications and accumulation operations got reduced.

We also reduce the parallelization factors of the matrix multiplication engine to fit both the

text and audio synthesis models on the smaller board. For the first dilated convolution layer

we set num parallel out and num parallel in as 1 since the number of input channels is just

1. For all other layers, including the fully connected layer we set num parallel out as 4 and

num parallel in as 2 to get the best throughput under the constraint of available resources. The

resource utilization, performance and correctness of our designs on the Xilinx Virtex UltraScale

150



VCU108 FPGA are reported in Table 5.5 and 5.6 respectively.

5.6.5 Performance and Power Analysis

Table 5.7 illustrates the performance and power consumption for our implemented designs

and a highly optimized CPU and GPU implementation. We benchmark the optimized Tensorflow

implementation of Fast-Wavenet on two GPUs: NVIDIA TITAN Xp and Nvidia Tesla V100.

The CPU implementation is the NumPy inference program written by us and optimized fully. We

measure the power consumption for the GPU benchmarks using the NVIDIA power measurement

tool (nvidia-smi) running on Linux operating system which is invoked during program execution.

For our FPGA implementations, we synthesize our designs using Xilinx Vivado v2017.4. We

then integrate the synthesized modules accompanied by the corresponding peripherals into a

system-level schematic using Vivado IP Integrator. The frequency is set to 150 MHz and power

consumption is estimated using the synthesis tool. We perform this evaluation on two FPGA

platforms: the larger Xilinx XCVU13P (FPGA 1) and the smaller Xilinx Virtex UltraScale

VCU108 (FPGA 2) platforms.

Table 5.7. Power Consumption and Wall-Clock time required when generating 1-second audio for
different implementations on different hardware platforms. FPGA 1 refers to Xilinx XCVU13P
and FPGA 2 refers to Xilinx Virtex UltraScale VCU108.

Implementation
Time (in seconds)

for 1-Second
Audio Generation

Power
(W)

CPU (Numpy) 732
GPU - NVIDIA Titan Xp (TensorFlow) 120 70.0
GPU - NVIDIA Tesla V100 (TensorFlow) 85 66.0
FPGA 1 - FloatingPointPipeline 87 10.2
FPGA 1 - FixedPointUnrolling 41 7.6
FPGA 1 - FixedPointMME (Best-Audio) 11 23
FPGA 2 - FixedPointMME (Best-Audio) 14 9.2

As shown in Table 5.7, our best FPGA implementation achieves 11× speed-up in audio

generation while being 3× more power efficient as compared to NVIDIA Titan Xp GPU. As

compared to a NumPy based CPU implementation, our best design is 66× faster. For text

151



Table 5.8. Power Consumption and Wall-Clock time for networks required when generating
16000 characters using our text synthesis network on different hardware platforms. FPGA 1
refers to Xilinx XCVU13P and FPGA 2 refers to Xilinx Virtex UltraScale VCU108.

Implementation
Time (in seconds)

for generating
16000 characters

Power
(W)

CPU (Numpy) 525
GPU - NVIDIA Titan Xp (TensorFlow) 86 69.0
GPU - NVIDIA Tesla V100 (TensorFlow) 61 66.0
FPGA 1 - FixedPointMME (Best-Text) 3.0 17.6
FPGA 2 - FixedPointMME (Best-Text) 7.3 8.5

synthesis, the speedup is even higher because of the efficient ReLU implementation on the

FPGA platforms. As shown in Table 5.8, our best accelerator design achieves 29× speed-up in

text generation while being 4× more power efficient as compared to NVIDIA Titan Xp GPU.

Additionally, our accelerator design achieves 175× faster generation speed compared to NumPy

based CPU implementation for text synthesis.

5.7 Conclusion

In this chapter, I have described the design and development of our proposed solution

FastWave: the first accelerator platform for deep autoregressive convolutional neural networks.

While prior works have proposed algorithms for making the inference of such networks faster

on GPUs and CPUs, they do not exploit the potential parallelism offered by FPGAs. We

have developed a systematic approach to accelerate the inference of autoregressive CNNs by

optimizing their fundamental computational blocks and utilizing only on-chip memory. We

additionally optimize the design for smaller resource constrained FPGA devices by effectively

pruning the memory bottleneck of deep autoregressive CNNs. We demonstrate the effectiveness

of using various FPGAs for applications like audio and text synthesis by achieving a significant

speed-up over prior efforts on CPU and GPU based implementations.

152



5.8 Acknowledgements

Chapter 5 is a partial reprint of the material as it appears in FastWave: Accelerating

Autoregressive Convolutional Neural Networks on FPGA. IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), 2019. Hussain, Shehzeen; Javaheripi, Mojan; Neekhara,

Paarth; Kastner, Ryan; Koushanfar, Farinaz. The dissertation author was the primary investigator

and author of this paper.

153



Chapter 6

Data Efficient Training for Neural Speech
Synthesis

In recent years, there has been a significant advancement in speech synthesis using neural

networks. Synthesizing natural-sounding speech using neural networks typically requires several

hours of speech data for the target speaker. The process of collecting such high-quality speech

data and training neural networks is often very costly and time consuming. The process requires

recording a new speaker’s voice, cleaning up the recorded data and training the spectrogram

synthesis and vocoder models. Since many speaking characteristics for a given language are

shared amongst different speakers, it is desirable to reuse the knowledge of a pre-trained TTS

model when learning to synthesize the voice of a new speaker.

To address the above challenge, my research investigates methods that allow high-quality

speech synthesis in data-limited settings. More precisely, I propose training frameworks based on

transfer learning to effectively adapt pre-trained speech representation extractors and synthesizers

for new tasks. In this chapter, I describe the speech synthesis frameworks that I have developed

to allow speech generation using only a few seconds of data of the target speaker.

In Section 6.1, I describe the first framework that tackles the problem of Voice Cloning

where the goal is to perform text-to-speech synthesis for a target speaker in a limited data settings.

While previously proposed voice cloning systems can generate speech from text for a new

speaker, they leave out control over various style aspects of speech. My proposed framework

154



addresses this challenge by using explicit conditioning with style information.

In Section 6.2, I discuss a data-efficient voice conversion framework. Voice conversion

is the task of modifying a speech signal from a source speaker to match the vocal qualities

of the target speaker. While traditional voice conversion systems [199, 200] rely on parallel

training data with multiple speakers saying the same sentence, there has been a recent surge in

voice conversion systems trained on non-parallel multi-speaker datasets [201, 202, 203, 204].

In order to perform non-parallel voice conversion, it is necessary to disentangle speech into

representations describing the linguistic content and speaker characteristics. Synthesizing speech

from these disentangled features allows voice conversion by swapping the speaker embedding of

a given utterance with a target speaker. The motivation behind developing such voice conversion

systems is to remove the dependence on text as training data. This results in universal language-

independent models that do not require transcribed speech files for training and is particularly

useful for low-resource languages, where there is a scarcity of audio training data and often a

lack of parallel text transcripts. In my research, I propose a voice conversion framework that

addresses the challenges in existing voice conversion systems and achieves state-of-the-art results

by disentangling content and speaker information features from representations learned using

self-supervised learning.

6.1 Expressive Neural Voice Cloning

The goal of voice cloning is commonly formulated as learning to synthesize the voice

of an unseen speaker using only a few seconds of transcribed or untranscribed speech. This is

typically done by embedding speaker-dependent information from the available speech samples

of the new speaker, and conditioning a trained multi-speaker Text-to-Speech (TTS) model on the

derived speaker embedding [205, 206]. While such a system can achieve promising results in

closely retaining speaker-specific characteristics in the cloned speech, it does not offer control

over other aspects of speech that are not contained in the text or the speaker-specific embedding.

155



These aspects include variation in tone, speaking rate, emphasis and emotions.

Adapting multi-speaker TTS models for voice cloning requires scaling up model training

to a large multi-speaker TTS dataset, containing several minutes of transcribed speech from

thousands of speakers. High speaker diversity in the training data is important to achieve

generalization on unseen speakers [205, 206]. The goal of our voice conversion framework is to

perform TTS synthesis for an unseen speaker with control over the style aspects of generated

speech. As a first step in this direction, we train a TTS model conditioned on speaker encodings

and latent style tokens [207] on a large multi-speaker dataset. While this model is able to generate

voices for unseen speakers, we find that the results fall short in terms of speech naturalness and

style control during synthesis. Our results suggest that learning meaningful latent style aspects is

difficult when training on a large multi-speaker dataset containing speech with mostly neutral

style and expressions.

To address problem of disentangling style and speaker characteristics on a large multi-

speaker dataset containing mostly style-neutral speech, we propose a voice cloning model that is

conditioned on both latent and heuristically derived style information. Specifically, we condition

our TTS synthesis model on (i) text, (ii) speaker encoding (iii) pitch contour of the target speech

and (iv) latent style tokens [207]. By conditioning synthesis on various style aspects and speaker

embeddings derived from the target speech, we are able to train a model that offers fine-grained

style control for synthesized speech. To adapt inference for an unseen speaker, we can either

perform zero-shot inference or fine-tune the synthesis model on the limited text and speech pairs

for the new speaker. Through both quantitative and qualitative evaluations, we demonstrate that

our proposed model can make a new voice express, emote, sing or copy the style of a given

reference speech.

6.1.1 Voice Cloning Framework

Our expressive voice cloning framework is a multi-speaker TTS model that is conditioned

on speaker encodings and style aspects of speech. Style conditioning in expressive TTS models

156



ConcatText

GST

Pitch Contour

Target Waveform

Encoder Attention Decoder

Speaker 
Encoder

Vocoder

Synthesized
Waveform

Log-mel 
spectrogram

Synthesizer

Figure 6.1. Expressive Voice Cloning Model: Tacotron-2 TTS model conditioned on speaker and
style characteristics derived from the target audio of a given text. At inference time, the model
can be provided independent references for style and speaker encodings to achieve expressive
voice cloning.

is popularly done by learning a dictionary of latent style vectors called Global Style Tokens

(GST) [207]. While GSTs can learn meaningful latent codes when trained on a dataset with high

variation in expressions, we empirically find that it offers limited style control when trained on a

large multi-speaker dataset with mostly neutral prosody.

Signal processing heuristics like the Yin algorithm [208] can derive the fundamental

frequency contour (pitch contour) and voicing decisions from speech, which can be useful for

expressive speech synthesis. We find that using a combination of latent and heuristically derived

style information in the TTS model not only provides fine-grained control over the style aspects

of synthesized speech, but also scales up to a large multi-speaker dataset to produce more natural

sounding audio for an unseen speaker.

Speaker Encoder

Speaker conditioning in multi-speaker TTS models is usually done using a lookup in

the speaker embedding matrix which is randomly initialized and trained end-to-end with the

synthesizer. While such a framework learns speaker-specific information via the embedding

vectors, synthesis cannot be generalized to unseen speakers. To adapt the multi-speaker TTS

model for the goal of voice cloning, the speaker embedding layer can be replaced with a speaker

encoder that derives speaker specific information from the target waveform. In this setting,

157



the speaker encoder can obtain embeddings for speakers not seen during training using a few

reference speech samples. To obtain meaningful embeddings, the speaker encoder should be

trained to discriminate between different speakers for the task of speaker verification [209]. We

follow the speaker encoder architecture described in [209, 210]. The speaker encoder is trained

to optimize a generalized end-to-end speaker verification loss [209], that encourages high cosine

similarity between embeddings from same speaker and low similarity between different speaker

embeddings. During inference, each utterance is broken into smaller segments of 1,600 ms with

1,000 ms overlap between consecutive segments. The final embedding is estimated by averaging

the embedding of each individual segment.

Mel-Spectrogram Synthesizer

The goal of our synthesis model is to disentangle the style and speaker-specific informa-

tion in speech by conditioning our TTS synthesis model on the speaker encoding and various

style aspects. To this end, we adapt the synthesis model used in Mellotron [211] for the task

of voice cloning. Mellotron is a multi-speaker TTS model that extends Tacotron 2 GST [207]

by additional conditioning on pitch contours and speaker embeddings. To adapt Mellotron for

voice cloning, we remove the speaker embedding layer and replace it with the speaker encoder

network described in Section 6.1.1.

At its core, our synthesis model based on Tacotron 2 [155], is an LSTM based sequence-

to-sequence model composed of an encoder that operates on a sequence of characters and a

decoder that generates the individual frames of the mel spectrogram while attending over the

encoded representations. Along with the encoded representation for text, we concatenate the

speaker encoding (obtained from the speaker encoder) and the GST embedding at each time-step.

The GST embedding is obtained by querying a dictionary of latent style vectors with the target

mel-spectrogram using a multi-headed attention mechanism described in [207]. Decoding occurs

in an autoregressive manner where we synthesize one mel spectrogram frame at a time by

providing the fundamental frequency (from the pitch contour) and the mel spectrogram of the

158



previous frame as the input to the decoder. The pitch contours are derived from the target speech

using the Yin algorithm with harmonicity thresholds between 0.1 and 0.25.

In this way, we can factor mel-spectrogram synthesis into the following variables: text

(t), speaker encoding (s), pitch contour ( f0) and latent style embedding obtained from GST (z).

Formally, our synthesizer is a generative model g(t,s, f0,z;W ) that is parameterized by trainable

weights W , trained to optimize a loss function L that penalizes the differences between the

generated and ground truth mel spectrogram. That is,

min
W

E(ti,ai)∼D {L(g(ti,si, f0i,zi;W ),meli)} (6.1)

where D is the dataset containing text and audio pairs (ti,ai). The variables (si, f0i,zi,meli) are

all derived from the target waveform ai. For the loss function L, we use the L2 loss between the

generated and ground truth mel spectrograms.

During training, the synthesizer learns another latent variable: the attention map between

the encoder and decoder states which captures the alignment between text and audio. Following

the notation used in [211], we call this latent variable rhythm, since it controls the timing aspects

of synthesized speech. Note that unlike other style aspects which can be obtained directly from

ai, deriving rhythm requires both text and audio (ti,ai). In our experiments, we obtain the rhythm

by using our synthesizer as a forced-aligner. That is, for a given text and audio pair, we derive

the attention map between the encoder and decoder states by doing a forward pass through our

model using teacher forcing. Therefore, during inference, our synthesizer g can be explicitly

conditioned on rhythm r derived from some text and audio pair: g(t,s, f0,z,r;W ).

While the style aspects are obtained from the target waveform of the same speaker during

training, we can use a different reference audio and text pair during inference. For example, we

can transfer the pitch contour and rhythm of a style reference audio S from a different speaker to

159



the voice of a given target speaker T as follows:

mel = g(tS,sT , f0S,zT ,rS;W ) (6.2)

The output mel should have the same pitch and rhythm as the style reference S and should retain

the latent style aspects and voice of the target speaker T .

Additionally, to assess the importance of pitch contours during training, we train another

TTS model that is conditioned only on the latent style aspects obtained using GST. We use the

same Tacotron2 architecture and GST module as our proposed model. Formally, this alternative

synthesizer g(t,s,z;W ) is trained to optimize the same objective as Equation 6.1:

min
W

E(ti,ai)∼D {L(g(ti,si,zi;W ),meli)} (6.3)

We refer to this alternative model as Tacotron2 + GST in our experiments. Similar to our

proposed system, this model can also be additionally conditioned on rhythm. Since we are not

explicitly conditioning the model on pitch contours, we expect the pitch variation in speech to

be captured as part of the latent style tokens. We empirically demonstrate that using only latent

style representation on a large multi-speaker dataset with neutral prosody offers limited style

control and audio naturalness.

Vocoder:

For decoding the synthesized mel-spectrograms into listenable waveforms, we use the

WaveGlow [212] model trained on the single speaker Sally dataset [211]. An advantage of

WaveGlow over WaveNet [4] is that it allows real-time inference, while being competitive in

terms of audio naturalness. The same vocoder model is used across all experiments and datasets.

We find that the vocoder model trained on a single speaker generalizes well across all speakers

in our datasets.

160



6.1.2 Cloning Techniques: Zero-Shot and Model Adaptation

We adopt the following two approaches for cloning the voice of a new speaker from a

few transcribed or untranscribed speech samples:

Zero-Shot: For zero-shot voice cloning, we derive the speaker embedding by taking the

mean followed by L-2 normalization of the speaker encodings of the individual samples of the

target speaker. Since speaker encodings are obtained directly from the waveforms, we do not

require audio transcriptions of the new speaker for zero-shot voice cloning.

Model Adaptation: When transcribed samples of a new speaker are available, we

can fine-tune our synthesis model using the text and audio pairs. As shown in Neural Voice

Cloning [205], fine-tuning can significantly improve the speaker similarity metrics of the cloned

speech. Also, the authors of [205] observe that fine-tuning the whole synthesis model is faster and

more effective than fine-tuning only the speaker embedding layer since more degrees of freedom

are allowed in the whole model adaptation. Our preliminary experiments on model adaptation

suggested the same. We hypothesize the reason for this is that fine-tuning the last-few layers of

the synthesis model is essential, if not sufficient, to adapt the synthesizer to the speaker-specific

speech characteristics. Therefore, we study the following two model adaptation techniques:

Adaptation whole - Fine-tune all the parameters of the synthesis model on the text and audio

pairs of the new speaker. Adaptation decoder - Fine-tune only the decoder parameters of the

synthesis model. The advantage of only adapting the decoder parameters is that it requires fewer

speaker-specific model parameters and a shared encoder can be used across all speakers in a

real-world deployment setting. In both of the above adaptation settings, we fine-tune our model

for 100 to 200 iterations using Adam optimizer with a learning rate of 1e−4.

6.1.3 Experiments on Expressive Voice Cloning

We train our mel-spectrogram synthesis model on the clean subset of the publicly

available Libri-TTS [213] dataset—train-clean-100 and train-clean-360. This clean subset

161



contains around 245 hours of speech across 1151 speakers sampled at 24 kHz. We filter out

utterances longer than 10 seconds and resample waveforms to 22050 Hz. The speaker embedding

layer is replaced with our speaker encoding network which is kept frozen during training. We

use a validation set with 250 examples and train the model using a batch size of 32 and an initial

learning rate of 5e-4. We use an Adam optimizer [113] to update the weights and anneal the

learning rate to half its value every 50k mini-batch iterations. For the Tacotron 2 + GST model,

we use the same Tacotron 2 architecture and GST hyper-parameters as our proposed model.

Training for the proposed model and the Tacotron 2 + GST model converged in 210,000 and

185,000 mini-batch iterations respectively and took around 4 seconds per iteration on a single

Nvidia Titan 1080 GPU. The Resemblyzer speaker encoder [210, 214] used in our experiments is

trained on the VoxCeleb [215], VoxCeleb2 [216] and LibriSpeech-other [217] datasets containing

a total of 8.4k speakers. The authors of [214] report a 4.5% Equal Error Rate (EER) for the task

of speaker verification using this speaker encoder on their internal test set.

To evaluate our cloning techniques objectively in terms of style and speaker disentangle-

ment, and also assess their usefulness in real world settings, we perform the following cloning

tasks:

1. Text Cloning speech directly from text: For cloning speech directly from text, we first

synthesize speech for the given text using a single speaker TTS model: Tacotron 2 + WaveGlow

trained on the LJ Speech [218] dataset. We then derive the pitch contour of the synthetic speech

using the Yin algorithm [208] and scale the pitch contour linearly to have the same mean pitch

as that of the target speaker samples. For deriving rhythm, we use our proposed synthesis

model as a forced aligner between the text and Tacotron2-synthesized speech. We use the target

speaker samples for obtaining the GST embedding for both our proposed model and the baseline

Tacotron2 + GST model.

2. Imitation - Reconstruct a sample from the target speaker: In this setup, we use a text

and audio pair of the target speaker (not contained in the target speaker samples), and try to

reconstruct the audio from its factorized representation using our synthesis model. All of the

162



style conditioning variables - pitch, rhythm and GST embedding are derived from the speech

sample we are trying to imitate. The imitation task is a toy experiment that allows quantitative

evaluation of style similarity metrics between the synthesized speech and style reference.

3. Style Transfer - Transfer the pitch and rhythm of speech from a different expressive speaker:

The goal of this task is to transfer the pitch and rhythm from some expressive speech to the

cloned speech for the target speaker. For this task, we use examples from the single speaker

Blizzard 2013 dataset [219] as style references. This dataset contains expressive audio book

readings from a single speaker with high variation in emotion and pitch. For our proposed model,

we use this style reference audio to extract the pitch and rhythm. Similar to the Text task, we

scale the pitch contour to have the same mean as that of the target speaker samples. In-order

to retain speaker-specific latent style aspects, we use target speaker samples to extract the GST

embedding. For the Tacotron2 + GST model, which does not have explicit pitch conditioning,

we use the style reference audio for obtaining the GST embedding and the rhythm.

For the above-described cloning tasks, we evaluate three aspects of the cloned speech: i)

speaker similarity to the target speaker, ii) style similarity to the reference style and iii) speech

naturalness. We encourage the readers to listen to our audio examples referenced in the footnote

of the first page to contextualize the following results.

Speaker Classification Accuracy: We train a speaker classifier on the VCTK dataset to classify

a given utterance as one of the 108 speakers. The speaker classifier is a two layer neural network

with 256 hidden units that takes as input the speaker encoding obtained through our pre-trained

speaker encoder network. Similar to [205], our speaker classifier achieves 100% accuracy on a

hold out set containing 200 examples from the VCTK dataset. However, since our classification

model and training dataset for the synthesizer are not the same as [205] (1,151 speakers in ours

vs. 2,481 speakers in [205]), we do not make direct comparisons with their work.

We conduct our speaker classification evaluations on all 108 speakers of the VCTK

dataset. We clone 25 speech samples per speaker for each cloning task. Figure 6.2 (left) shows

the speaker classification accuracy curves for all cloning tasks and techniques with respect to

163



the number of target speaker samples. Our results are consistent with the following findings

of [205]—Model adaptation significantly outperforms the zero-shot voice cloning technique

since it allows the model to adjust to the speaker characteristics of the new speaker. More target

speaker samples helps improve speaker classification accuracy, although in the zero-shot scenario

we do not observe much improvement after 10 target speaker samples.

For zero-shot voice cloning, both Tacotron2-GST and our proposed model achieve similar

speaker classification accuracy for Text and Style Transfer cloning tasks. The accuracy of our

proposed model is slightly higher for the imitation task as compared to other tasks for both model

adaptation and zero-shot voice cloning. This implies that conditioning on the actual pitch contour

of the target speaker improves speaker specific characteristics of the cloned speech. While linear

scaling of a reference style pitch contour works well, our findings motivate future research on

predicting speaker-specific pitch contours from text and speaker encodings.

1 5 10 20
0

10

20

30

40

50

60

70

80

90

Sp
ea

ke
r C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y 
( %

)

Number of Target Speaker Samples

  Tacotron2 + GST Zeroshot - Text  Tacotron2 + GST Zeroshot - Imitation  Tacotron2 + GST Zeroshot - Style Transfer
 Zero-shot - Text  Zero-shot - Imitation  Zero-shot - Style Transfer
 Adaption Decoder - Text  Adaption Decoder - Imitation  Adaption Decoder - Style Transfer
 Adaption Whole - Text  Adaption Whole - Imitation  Adaption Whole - Style Transfer

1 5 10 20
0
2
4
6
8
10
12
14
16
18
20

SV
 -

Eq
ua

l E
rro

r R
at

e 
(%

)

Number of Target Speaker Samples

VCTK Real

Figure 6.2. Speaker similarity evaluation of each cloning technique for different voice cloning
tasks in terms of Speaker Classification Accuracy and Speaker Verification Equal Error Rate
(SV-EER).

Speaker verification Equal Error Rate (SV-EER): SV-EER is another objective metric used

to evaluate speaker similarity between the cloned audio and the ground-truth reference audio.

We use a speaker verification system that scores the speaker similarity between two utterances

based on the cosine similarity of the encodings obtained using the speaker encoder described

164



in Section 6.1.1. Equal Error Rate (EER) is the point when the false acceptance rate and false

rejection rate of the speaker verification system are equal.

We perform speaker verification evaluations on randomly selected 20 speakers in the

VCTK dataset. We enroll 5 speech samples per speaker in the speaker verification system and

synthesize 50 speech samples per speaker for each cloning task. EERs are estimated by pairing

each sample of the same speaker with another sample from a different speaker. Figure 6.2 shows

the plots of SV-EER for different cloning techniques and tasks using our proposed model and

also the those estimated using real data. Our observations on the SV-EER metric are similar to

those on the accuracy metric. Model adaptation outperforms zero-shot cloning techniques and

with more than 10 cloning samples achieves similar EER as the real data.

Table 6.1. Style similarity evaluations for the imitation and style transfer tasks. We use three
objective error metrics (lower values are better). For the style transfer task we present the mean
opinion scores on style similarity (Style-MOS) with 95% confidence interval.

Imitation Style Transfer

Approach GPE VDE FFE Style-MOS

Tacotron2 + GST - Zero-shot 20.37% 26.39% 29.47% 2.69±0.11
Proposed Model - Zero-shot 3.72% 10.65% 11.74% 3.15±0.11
Proposed Model - Adaptation Whole 2.97% 12.58% 13.60% 3.40±0.10
Proposed Model - Adaptation Decoder 2.39% 11.60% 12.51% 3.29±0.10

Style Similarity: In order to evaluate the similarity between the style of synthesized and

reference audio, we perform quantitative evaluation on the Imitation task. We use the following

error metrics: Gross Pitch Error (GPE) [220], Voicing Decision Error (VDE) [220] and F0 Frame

Error (FFE) [221]. Results are presented in Table 6.1 in which we compare the error values for

different approaches when using 10 target speaker samples for cloning. We synthesize 25 speech

samples per speaker for all speakers in the VCTK dataset to estimate the reported error values.

Our proposed models significantly outperform the Tacotron 2 + GST baseline, clearly indicating

the importance of pitch contour conditioning for accurate style transfer.

We also conduct a crowd-sourced listening test on Amazon Mechanical Turk (AMT) for

165



the style transfer task in which we ask the listeners to rate the style similarity between the ground

truth style reference and synthesized audio on a 5 point scale. For each cloning technique (using

10 target speaker samples), we synthesize 25 audio samples per speaker for 20 speakers in the

VCTK dataset leading to 500 evaluations of each technique. We present the style similarity Mean

Opinion Scores (Style-MOS) in Table 6.1. It can be seen that our proposed models significantly

outperform the Tacotron 2 + GST model. Model adaptation techniques perform slightly better

than zero-shot method suggesting that fine-tuning improves the model predictions for an unseen

speaker encoding.

Naturalness: To assess speech naturalness, we conducted a crowd-sourced listening test on

AMT and asked listeners to rate each audio utterance on a 5-point naturalness scale to collect

Mean Opinion Scores (MOS). Similar to the above mentioned user study, we use 10 target

speaker samples for each cloning technique. All evaluations are conducted on randomly selected

20 VCTK speakers with 25 audio samples synthesized per speaker. Each sample is rated

independently by a single listener leading to 500 evaluations for each technique per cloning task.

We report the MOS of Real data and audio synthesized using different cloning techniques in

Table 6.2. Our proposed model significantly outperforms the baseline Tacotron2 + GST model for

both zero-shot and model adaptation techniques. This suggests that pitch contour conditioning in

a multi-speaker setting helps improve speech naturalness in addition to providing higher style

similarity. It can be seen that the naturalness is even further improved with model adaptation

techniques since it allows the generative model to adjust for the unseen speaker encodings.

6.2 Voice Conversion Using Iterative Self-Refinement

In this section, I describe a zero-shot voice conversion framework we developed using

speech representations trained with self-supervised learning. The key idea behind our voice

conversion system is disentangling speech into features describing the linguistic content and

speaker characteristics. Synthesizing speech from these disentangled features allows voice

166



Table 6.2. Mean Opinion Score (MOS) for speech naturalness with 95% confidence intervals.

Cloning Task

Approach Text Imitation Style Transfer

Real data VCTK 4.11±0.08
Real data Blizzard 4.07±0.08

Tacotron2 + GST - Zero-shot 2.67±0.10 2.51±0.10 3.02±0.09
Proposed Model - Zero-shot 3.56±0.09 3.54±0.10 3.53±0.10
Proposed Model - Adaptation Whole 3.75±0.09 3.71±0.09 3.60±0.09
Proposed Model - Adaptation Decoder 3.61±0.09 3.57±0.09 3.45±0.09

conversion by swapping the speaker embedding of a given utterance with a target speaker. The

goal of this work is to develop universal language-independent models, that do not rely on text

and, as a result, do not require transcribed speech files for training. This characteristic makes

them especially suitable for synthesizing low-resource languages, where there is a scarcity of

audio training data and often a lack of parallel text transcripts.

To derive disentangled speech representations in a text-free manner, recent methods [222,

223, 224, 225, 203] have proposed to obtain speaker information from a speaker verification

model and linguistic content information from the output of models trained using self-supervised

learning (SSL) [226, 227]. While the representations obtained from the SSL models are highly

correlated with phonetic information, they also contain speaker information [228, 225, 229]. To

remove speaker information from the SSL model outputs, some techniques utilize an information

bottleneck approach such as quantization [223, 222, 230]. Alternatively, several researchers

have proposed training strategies that employ an information perturbation technique to eliminate

speaker information without quantization [231, 203, 232, 228]. Notably, for training synthesizers,

NANSY [203] and NANSY++ [232] propose to heuristically perturb the voice of a given

utterance with hand-engineered data augmentations, before deriving the content embedding from

the SSL model. To reconstruct the original audio accurately, the synthesizer is forced to derive

the speaker characteristics from the speaker embedding since the speaker information in the

content embedding is perturbed. While such techniques are effective, heuristic voice perturbation

167



algorithms based on pitch randomization and formant shifting represent a very limited set of

transformations. We hypothesize that such training strategies can be improved by utilizing neural

network-generated augmentations.

In our work, I propose a learning framework to automatically generate diverse data

transformations during training and enable controllable speech synthesis from imperfectly dis-

entangled but uncompressed speech representations. First, we develop a feature extraction

methodology that not only derives the content and speaker embeddings but also prosodic infor-

mation such as speaking rate and pitch modulation. Next, to train a controllable synthesizer,

we propose a training strategy that utilizes the synthesis model itself to create challenging

voice-converted transformations of a given speech utterance. At any given training iteration, the

current state of the synthesis model is used to transform the input content embedding and the

model is updated to minimize the reconstruction error of the original utterance.

All the components in our framework are trained in a text-free manner requiring only

audio data. Once trained, our framework can be used for tasks such as zero-shot voice con-

version, audio reconstruction with pitch and duration modulation as well as multilingual voice

conversion across languages outside of the training set. On metrics evaluating speaker similarity,

intelligibility and naturalness of synthesized speech we demonstrate that our model outperforms

previously proposed zero-shot voice conversion methods for both seen and unseen speakers.

6.2.1 Related Work

Voice conversion is the task of modifying an utterance of a source speaker to match the

vocal qualities of a target speaker. Traditionally, voice conversion models were trained as a

speech-to-speech translation system on a parallel dataset containing multiple speakers saying

the same utterance [233, 234]. More recently, voice conversion systems have been developed by

training neural synthesizers to reconstruct speech from disentangled representations describing

content and speaker characteristics [202, 201]. For example, [235, 236] have utilized pre-

trained automatic speech recognition (ASR) and speaker verification (SV) models to disentangle

168



content and speaker information respectively. The predicted text or phonetic posteriogram (PPG)

obtained from the ASR model is taken as the content representation. However, such voice

conversion systems have limitations: 1) Training such systems requires transcribed speech data

and the synthesis is limited to the language the model is trained on. 2) Text and PPG do not

capture all linguistic features such as accent, expressions, emotions or speaker-independent style

resulting in neutral-sounding synthesized speech.

To derive linguistic content in a text-free manner, some prior works have utilized SSL

based models. However, as noted by prior work [223, 225], SSL model outputs do not necessarily

separate speaker and content information. One line of research [223, 222, 230] aiming to

disentangle the speaker and content representations, proposes an information bottleneck approach

to quantize SSL model outputs thereby limiting the information to only capture the content or

pseudo-text of the audio. However, the loss of information during such a quantization approach

leads to sub-optimal reconstruction quality.

Addressing the limitations of information bottleneck approaches, researchers have pro-

posed training strategies based on heuristic transformations. For example, in ContentVec [231]

and ACE-VC [228], while training the SSL-based feature extractor model, the audio is trans-

formed using pitch-shift transformation and the SSL model is encouraged to output similar

representations for the original and transformed audio. Alternatively, in NANSY [203], the trans-

formations are applied while training the synthesizer, i.e. the synthesizer is tasked to reconstruct

the original audio from the content representation of audio perturbed using transforms such as

formant-shift, pitch-randomization and randomized frequency shaping. Although these heuristic

transformations serve as a reasonable proxy for voice conversion methods, we hypothesize such

methods can be greatly improved by utilizing the voice conversion system itself to generate more

diverse input transformations.

169



Speaker Embedding from a 
different speaker

Pitch Extraction

Formant and/or 
Frequency 

Transformation

Operations

NetworksDuration 
Extraction

Figure 6.3. Voice Conversion Approach Overview: The synthesis model is trained to reconstruct
the mel-spectrogram from SSL-based content representation of a transformed audio (heuristic or
self-transformed) and speaker embedding of the original audio.

6.2.2 Voice Conversion Approach

Our framework consists of two main components: 1) A feature extractor that derives

content (linguistic features), speaker and style representations from a given speech utterance. 2)

A synthesizer that reconstructs the audio from the derived representations. To allow controllable

synthesis from imperfectly disentangled representations, we propose a training strategy that

challenges the model to reconstruct the audio from self-generated perturbations of the content

representation. Specifically, we train the model to reconstruct the audio from the content

representation of a heuristically modified or self transformed audio, while preserving the speaker

and style representations. The content and speaker encoder networks remain fixed during

synthesis model training.

Feature Extraction

Content Embedding: We define content as a temporal feature that encodes the linguistic informa-

tion of a given speech utterance. We use the output of the Conformer-SSL [227] model (Gc) as

170



the content representation of speech (z). The Conformer-SSL model is a convolution-augmented

transformer architecture that is trained to reconstruct the masked areas of the mel-spectrogram

on 56k hours of English speech data, using contrastive and masked language modelling (MLM)

losses. The representations derived from SSL-based speech encoder models have been shown to

have a high correlation with corresponding phonetic information [226]. Given a speech utterance

as a sequence of mel-spectrogram frames x = x1 . . .xT , the Conformer-SSL model outputs a

temporally downsampled sequence of feature vectors z = Gc(x) = z1 . . .zT ′ . In our setup, the

SSL model temporally downsamples the mel-spectrogram by a factor of 4 and the output at each

time-step zt is a 256 dimensional vector corresponding to a contextualized representation of

roughly 46 milliseconds of audio.

Speaking Rate or Duration: Speaking rate determines how long the speaker vocalizes each

phoneme of a given utterance. Since the speaking rate can vary greatly across different speakers

and accents, accurate modelling of speaking rate during synthesis is important to closely mimic

a target speaker. We propose a technique to derive the speaking rate or duration information

in a text-free manner from the content representation. Since SSL representations have a high

correlation with phonemes [226, 227], we conjecture that if a phoneme is emphasized in an

utterance, the consecutive content vectors at the corresponding timesteps will have high similarity.

Therefore, we propose Algorithm 5 to process the content representation z = z1 . . .zT ′ into a

duration-augmented content representation z′ = z′1 . . .z
′
T ′ and d′ = d′1 . . .d

′
T ′ . We group together

consecutive content vectors with cosine similarity higher than a threshold τ , and set the target

duration for the averaged vector as the number of grouped vectors times the duration of a single

vector.

Speaker Embedding: The speaker embeddings in our setup are derived from the TitaNet [237]

model (Gs). TitaNet is based on a 1-D depthwise separable convolution architecture with Squeeze

and Excitation layers that provide global context. The TitaNet speaker verification model is

trained using additive angular margin loss [238] on 3373 hours of speech from multiple datasets

that span 16681 speakers. The model is designed to be parameter-efficient and achieves state-of-

171



Algorithm 5. Deriving duration-augmented content by grouping similar consecutive vectors

1: z′← [z1] ▷ Initialize z′ with the vector from the first time-step in z
2: d′← [δ ] ▷ d′t represents duration of z′t . δ represents duration of of each zt (i.e 46 ms)
3: num grouped← 1 ▷ number of similar vectors grouped at the last processed time-step
4: for t← 2 to T ′ do
5: if CosineSimilarity(zt ,z′[−1])> τ then ▷ Group zt with the running group
6: z′[−1]← (zt +num grouped ∗ z′[−1])/(num grouped +1) ▷ Update average
7: d′[−1]← δ ∗ (num grouped +1)
8: num grouped← num grouped +1
9: else ▷ Insert zt in a new group

10: z′.append(zt)
11: d′.append(δ )
12: num grouped← 1
13: return z′,d′

the-art results on the VoxCeleb-1 speaker verification benchmark with an EER of 0.68%. The

output from the speaker verification model is a 256 dimensional speaker embedding s = Gs(x).

Pitch Contour: The pitch contour p is derived from the fundamental frequency f0 contour of

the speech signal that represents the prosodic modulations over time. The raw values in the

fundamental frequency contour (derived from PYin algorithm [208]) are speaker-dependent,

therefore f0 is not strictly disentangled from the speaker information. To ensure that the pitch

contour only encodes the prosodic changes and not the speaker identity, we normalize f0 using

the mean ( fmean) and standard deviation ( fstd) of all pitch contours of the given speaker. That is,

p = ( f0− fmean)/ fstd.

Synthesizer

The task of the synthesizer is to first reconstruct the ground-truth mel-spectrogram from

the extracted speech representations and then vocode the mel-spectrogram into a listenable audio

waveform. For vocoding, we use a HiFiGAN [239] vocoder, which is trained separately on

spectrogram and waveform pairs of real audio from a multi-speaker dataset.

Our mel-spectrogram synthesizer Gsynth is composed of two feed-forward transformers

Fe and Fd and intermediate modules to predict the duration and pitch similar to [240] but operates

172



3 2

PYin Algorithm

Normalized Pitch contourDuration Augmented Content Embedding

Grouping
Pitch normalizing using speaker-wise 
statistics

Speaker Embedding
Fixed-duration content embeddings

Grouped Content Embedding

Synthesizer Encoder (Fe)

Repeated Speaker Embedding (s)

Generated Mel Spectrogram

𝜹 𝜹 3𝜹 2𝜹 𝜹 Duration Targets (d)

Synthesizer Decoder (Fd)

Pitch Predictor Duration PredictorPitch 
Contour 
(p)

(Concat)

Duration Regulated 
Encoding

Pitch Embedding

(Add)

Synthesizer Encoding 
(h)

Feature Extractor Synthesizer

SSL Content Encoder (Gc)

(a) (b)

Speaker Encoder
(Gs)

Figure 6.4. (a) The feature extractor derives the duration augmented content information from
an SSL model, pitch information using PYin algorithm and speaker embedding from a speaker
verification model. (b) The synthesizer reconstructs the mel-spectrogram from the derived
features.

on the grouped content representation z′ = z′1 . . .z
′
T ′ instead of text. The speaker embedding s

is repeated across all time-steps and concatenated with each z′t to be fed as input to the first

feed-forward transformer Fe. The hidden representation from Fe is then used to predict the

duration and pitch, that is: h = Fe(z′,s); ŷd = DurationPredictor(h), ŷp = PitchPredictor(h).

The pitch contour is projected and averaged over each time-step of the hidden representation

h and added to h to get k = h+PitchEmbedding(p). Finally, k is discretely upsampled as per

the ground-truth duration d′ and fed as input to the second transformer Fd to get the predicted

mel-spectrogram ŷ = Fd(DurationRegulation(k,d′))

Our model is trained to optimize three losses — mel-reconstruction error, pitch prediction

error and duration prediction error such that

Lsynth = ∥ŷ− y∥2
2 +λ1∥ŷp− p∥2

2 +λ2∥ŷd−d′∥2
2 (6.4)

During inference, we can use either the predicted pitch and duration, in which case the

prosody is derived from both the content and speaker embeddings; or we can mimic the prosody

and speaking rate of the source utterance by using ground-truth duration and pitch information.

173



6.2.3 Synthesizer Training: Iterative Refinement using Self Transforms

While the mel-spectrogram can be accurately reconstructed from a synthesizer trained

using the objective given by Equation 6.4, during inference, we cannot effectively modify the

voice of a given utterance. This is because the content representation z′ is not strictly disentangled

from the speaker information. To address this challenge, past works [203, 232], have proposed

an information perturbation based training strategy as follows: Instead of feeding the content

embedding of the original audio as the input, the audio is perturbed to synthetically modify the

speaker characteristics using formant-shifting, pitch-randomization and randomized frequency

shaping transforms to obtain xp = gheuristic(x). Next, the content embedding is derived from the

perturbed audio z′ = Gc(xp), while the speaker embedding is still derived from the original audio

s = Gs(x). The network is then tasked to reconstruct the original audio from z′ and s. While

heuristically perturbed content representations play a crucial role in enhancing the synthesizer

model’s attention towards the speaker embedding, they are limited in terms of the range of

transformations they can introduce. Heuristic transformations represent only a subset of the

potential natural variations that can occur during voice conversion.

To expand on the heuristic set of transforms, we propose to utilize the synthesizer model

itself to generate a voice-converted variation of a given utterance x. That is, given a synthesizer

model Gi
synth trained until training iteration i, we obtain a self transformed audio for iteration

i+1 as:

xp = gself(x) = Gi
synth((Gc(x),s′) (6.5)

where Gc(x) is the content embedding of the original audio x and s′ is the speaker embedding

obtained from an utterance x′ of a different randomly selected speaker, that is, s′ = Gs(x′). The

content embedding input for the training step i+1 is then derived as z′ = Gc(xp).

Self transformations not only provide a more diverse set of transformations but also

174



present an increasingly challenging reconstruction task for the synthesizer, as its voice conversion

capabilities improve with each training iteration. Figure 6.3 demonstrates the proposed self

transformation training strategy. In our experiments, we begin self transformations after 100k

mini-batch iterations of training with heuristically modified audio. Thereafter, we continue to

use self transformations to obtain xp.

6.2.4 Experiments on Voice Conversion

Dataset and Training

The Conformer-SSL model used as the content encoder is pretrained on 56k hours of

unlabelled English speech from the LibriLight [241] corpus sampled at 16 KHz. We finetune

the Conformer-SSL model (using self-supervision with contrastive and MLM loss) on the train-

clean-360 subset of LibriTTS [213] dataset with audio sampled at 22050Hz to make the model

compatible with the mel-spectrogram representation of the synthesizer. For both the content

encoder and synthesizer, we use 80 bands for mel spectrogram with the FFT, window, and hop

size set to 1024, 1024, and 256 respectively. We finetune the Conformer-SSL on this revised

spectrogram representation for 50 epochs with a batch size of 32 using the AdamW optimizer

with a fixed learning rate of 5e−5 and β1 = 0.9,β2 = 0.99. Finetuning takes around 50 hours

on a single NVIDIA A600 GPU.

For our primary experiments, the mel-spectrogram synthesizer and the HifiGAN vocoder

are also trained on the train-clean-360 subset of the LibriTTS dataset which contains 360 hours

of speech from 904 speakers. We train three variants of the mel-spectrogram synthesizer:

1. Synth (NoTransform) is trained to simply reconstruct the mel-spectrogram from the

embeddings of the given utterance without any information perturbation procedure.

2. Synth (Heuristic) is trained to reconstruct the mel-spectrogram from the content embed-

ding of the heuristically perturbed utterance and the speaker embedding of the original

utterance. We employ two transforms g1,g2 proposed in [203]. g1 perturbs formant, pitch,

175



and frequency response and g2 perturbs formant and frequency response while preserving

pitch.

3. Synth (SelfTransform) is first trained in the same way as Synth-Heuristic for the first

100k mini batch iterations. Thereafter, we use the gself transformation procedure given by

Equation 6.5.

All three variants of the synthesizer are optimized using AdamW optimizer [242] with a

fixed learning rate of 1e−4 and β1 = 0.8,β2 = 0.99 for 500 epochs with a batch size of 32. The

threshold τ for duration extraction is set as 0.925. The loss coefficients for the duration and pitch

loss are set as λ1 = λ2 = 0.1. Training time for Synth (SelfTransform) model is around 5 days on

4 NVIDIA A600 GPUs. The HifiGAN vocoder is trained on the mel-spectrogram and waveform

pairs of the real audio utterances and the same vocoder is used across all three synthesizers.

Evaluation Metrics

Quantitatively, we evaluate the synthesized audio on the following aspects:

1. Intelligibility (CER): We compute the Character Error Rate (CER) between the ASR

transcriptions of the original source and the generated audio. We use the pre-trained

Quartznet [243] ASR models for the respective language of the given utterance.

2. Speaker Similarity (SV-EER): To evaluate speaker similarity to our target speaker, we

compute the speaker embeddings of synthesized and real utterances using a separate pre-

trained speaker verification model [244]. Then we pair the synthesized and real utterances

to create an equal number of positive and negative pairs for each target speaker to compute

the Equal Error Rate (SV-EER).

3. Naturalness (MOS): We perform a human study on Amazon Mechanical Turk, where

human judges rate the naturalness of each utterance on a 1 to 5 scale with 0.5 point

increments. Each utterance is rated by 4 independent listeners and each listener can rate

176



multiple utterances. For 200 synthesized utterances from each technique, this procedure

results in a total of 800 evaluations of each technique.

4. Prosodic Similarity (GPE): To evaluate prosodic similarity for the reconstruction task

(Section 6.2.4), we compute the error between the fundamental frequency contours of the

original and synthesized audio. Specifically, we use the Gross Pitch Error (GPE) [221] to

evaluate prosodic similarity.

Reconstruction Results

First, we evaluate how effectively our setup can reconstruct audio from the extracted

representations for unseen utterances and speakers. Our synthesizers can operate in two modes

during inference — 1) Guided: In this scenario, we use ground truth pitch and duration informa-

tion derived from the source utterance. 2) Predictive: In this case, we use the predicted pitch and

duration for synthesis.

We conduct the reconstruction test on two unseen datasets — 1) We choose 200 utterances

from the VCTK [245] dataset (English) with 20 random utterances from each of the 10 speakers

(5 random male and 5 random female speakers); 2) To evaluate performance on unseen languages,

we choose 200 utterances from the CSS10 [246] dataset with 20 random utterances from each

of the 10 unseen languages. The CSS10 dataset has a single speaker per language. For both of

these evaluations, we use the synthesizer models trained on the same dataset, i.e. train-clean-360

subset of LibriTTS (English). The synthesized speech is evaluated on the intelligibility, speaker

similarity and prosodic similarity metrics. As indicated by the results in Table 6.3, all three

synthesizers can effectively reconstruct the speech signal from the derived representation. Since

the model is trained in a text-free manner, we also see a promising generalization to unseen

languages. For unseen languages, our synthesizers produce more intelligible speech in the guided

mode, where the duration information of the source utterance is kept intact. In the reconstruction

mode, since the speaker and content embeddings are derived from the same utterance, both Synth

(NoTransform) and Synth (Heuristic) models achieve competitive speaker similarity to the target

177



speaker. However, for controllable synthesis tasks such as voice conversion, we demonstrate that

Synth (SelfTransforms) outperforms these models.

Table 6.3. Reconstruction evaluation: The resynthesized speech from different synthesizers is
evaluated for intelligibility (CER), speaker similarity (SV-EER) and prosodic similarity (GPE).
Lower values are desirable for all three metrics.

Guided Predictive

Dataset Technique SV-EER CER GPE SV-EER CER GPE

Real Data 3.1% - - 3.1% - -
VCTK Synth (NoTransform) 4.6% 3.5% 8.0% 4.7% 4.9% 22.0%

(English) Synth (Heuristic) 4.3% 2.9% 8.8% 4.5% 4.1% 21.1%
Seen Language Synth (SelfTransform) 4.2% 2.2% 8.9% 4.1% 3.9% 21.0%

Real Data 2.3% - - 2.3% - -
CSS10 Synth (NoTransform) 5.5% 25.5% 11.7% 4.9% 29.8% 15.9%

(Multilingual) Synth (Heuristic) 5.3% 26.1% 11.6% 5.5% 30.2% 16.1%
Unseen Language Synth (SelfTransform) 4.1% 25.2% 10.8% 4.8% 29.2% 16.8%

Voice Conversion Results

To convert the voice of a given source utterance to a target speaker, we derive the content

embedding from the source utterance and estimate the speaker embedding from the target

speaker’s audio and feed both as input to the synthesizer. We consider two voice conversion

scenarios — for a seen speaker to another seen speaker from the training data (Many-to-Many)

and from an unseen speaker to another unseen speaker outside of training data (Any-to-Any). For

seen speakers, we use the holdout utterances of the train-clean-360 subset of LibriTTS dataset,

and for unseen speakers, we use the VCTK dataset. For each scenario, we randomly select 20

target speakers (10 male and 10 female). Next, we select 10 source utterances, each one from 10

alternate speakers. This results in a total of 200 voice conversion trials in each scenario.

For our primary evaluation, we use 10 seconds of speech from each target speaker to

derive the speaker embedding. We split the 10 second target-speaker utterance into 2 second

segments and estimate the speaker embedding as the mean speaker embedding across the

segments. We also evaluate the speaker-similarity performance for different amounts of target

178



Table 6.4. Comparison of different voice-conversion techniques. Lower values for SV-EER and
CER are desirable for higher speaker similarity and intelligibility respectively. Higher MOS
(reported with 95% confidence interval) indicates more natural-sounding speech.

Many-to-Many Any-to-Any

Technique SV-EER CER MOS SV-EER CER MOS

Real Data 2.9% - 4.03±0.09 3.1% - 4.08±0.09

AutoVC [202] 23.5% 21.2% 2.75±0.11 38.3% 34.2% 2.46±0.11
AdaIN-VC [201] 18.2% 29.2% 2.64±0.11 27.5% 30.3% 2.82±0.12
MediumVC [230] 10.2% 31.5% 3.01±0.12 23.2% 36.2% 2.95±0.11
FragmentVC [224] 15.9% 27.2% 3.10±0.11 24.8% 38.5% 3.11±0.12
S3PRL-VC [225] 13.7% 9.8% 3.20±0.11 22.8% 9.8% 3.14±0.12
YourTTS [204] 9.5% 6.1% 3.52±0.10 12.3% 7.9% 3.58±0.10
ACE-VC [228] 5.3% 3.7% 3.58±0.10 9.2% 8.2% 3.68±0.09

Synth (NoTransform) 19.1% 2.6% 3.55±0.12 25.2% 3.8% 3.51±0.11
Synth (Heuristic) 4.4% 2.3% 3.69±0.12 10.5% 3.1% 3.65±0.12
Synth (SelfTransform) 3.0% 2.2% 3.72±0.11 4.3% 3.1% 3.75±0.11

speaker data and present the results in Figure 6.5.

The synthesized speech is evaluated on three aspects: speaker similarity, intelligibility

and naturalness. We compare our synthesis model against several prior voice conversion methods

listed in Table 6.4. While NANSY [232] is not open-sourced, our Synth (Heuristic) baseline

model closely follows the training strategy proposed in NANSY, incorporating more recent

neural architectures for the synthesizer and feature extractors. As shown by the results, the Synth

(SelfTransform) model outperforms the Synth (NoTransform) and Synth (Heuristic) models on

the speaker similarity metrics. The improvement is even more notable for Any-to-Any voice

conversion task. On all three metrics, our proposed technique outperforms previously proposed

voice conversion models. In Figure 6.5, we show TSNE plots of the speaker embeddings of

generated and real audio.

Cross-lingual Voice Conversion: In this setup, we consider three scenarios — 1) S2U:

Source utterance from a seen language speaker (English VCTK) and target speaker from an

unseen language (CSS10). 2) U2S: Source utterance from an unseen language (CSS10) and

179



Any-to-Any Voice Conversion
(VCTK)

Many-to-Many Voice Conversion
(train-clean-360 LibriTTS)

SV-EER vs Amount of target speaker data

Figure 6.5. Left: SV-EER of voice-converted speech generated by Synth (SelfTransform) using
different amounts of target speaker data. Right: TSNE visualization of speaker embeddings
of generated (using Synth (SelfTransform)) and ground-truth audio. Each color represents a
different speaker.

target speaker from the source language (English VCTK). 3) U2U: Source utterance from an

unseen language (CSS10) and target speaker from another unseen language (CSS10).

We present the results in Table 6.5. While the Synth (SelfTransform) model generates

speech with high speaker-similarity in all three scenarios, the generated speech is more intelligible

when the source utterance is in English. This is not surprising since the synthesizer is trained on

only English speech (LibriTTS).

Table 6.5. Results on cross-lingual voice conversion task in three scenarios considering different
languages for source utterance and target speaker. Lower SV-EER is desirable for higher speaker
similarity and lower CER is desirable for more intelligible speech.

S2U U2S U2U

Technique SV-EER CER SV-EER CER SV-EER CER

Real Data 2.3% - 3.1% - 3.1% -

Synth (NoTransform) 31.2% 3.8% 28.2% 29.7% 39.1% 30.7%
Synth (Heuristic) 15.3% 3.1% 9.0% 28.5% 22.1% 29.5%
Synth (SelfTransform) 8.5% 3.0% 5.4% 27.5% 15.1% 29.1%

180



6.3 Conclusion

In this chapter, I described two speech synthesis frameworks that tackle the problem of

expressive speech synthesis for new speakers. The first framework is a voice-cloning method

that performs text-to-speech synthesis with explicit control over speaker and style aspects. By

utilizing both latent and heuristically derived style information, the model is able to learn a

wide-range style control for unseen speakers while being trained on a mostly style-neutral

dataset. The second framework is a voice conversion model that proposes a training strategy

to perform controllable speech synthesis from imperfectly disentangled speech representations.

The synthesis model of the voice conversion framework allows speaker-adaptive duration and

pitch control for more natural-sounding speech achieving state-of-the-art results on various voice

conversion metrics. Both of the above frameworks enable high-quality speech synthesis that can

accompany AI-generated visuals for various generative media applications.

6.4 Acknowledgements

Chapter 6 contains material found in the following two papers. (1) Expressive Neural

Voice Cloning. 2021. Neekhara, Paarth; Hussain, Shehzeen; Dubnov, Shlomo; Koushanfar,

Farinaz; McAuley, Julian. Asian Conference on Machine Learning 2021. (2) Controllable

Speech Synthesis with Iterative Refinement using Self Transformations. 2023. Neekhara, Paarth;

Hussain, Shehzeen; Ranjan, Rishabh; Dubnov, Shlomo; Koushanfar, Farinaz; McAuley, Julian.

Currently under review for publication. The dissertation author and Paarth Neekhara made equal

contributions to this work.

181



Part III

Robust and Efficient Media Authentication

and Recognition

182



Chapter 7

Deepfake Detection and Their Vulnerabil-
ity to Adversarial Attacks

Media synthesis and editing techniques were traditionally based on computer graphics

and signal processing algorithms that required manual editing to generate high-quality audio-

visual content. Deep Learning techniques have transformed the field of multimedia synthesis in

two major ways: 1) Deep neural networks (DNNs) have improved the quality of the generated

content producing more realistic video and speech. 2) DNN based synthesizers are often trained

in an end-to-end manner, minimizing the need for domain-specific hand-engineered workflows

and resulting in streamlined media synthesis pipelines.

Deepfakes are a new genre of synthetic videos, in which a subject’s face is modified into

a target face in order to simulate the target subject in a certain context and create convincingly

realistic footage of events that never occurred. Neural Face swapping techniques [247, 248, 249]

can easily swap the face in a source videos with a target face to create fake visuals. When

combined with realistic voice conversion techniques described in Chapter 6, these methods can

generate convincing fake videos.

The intent of generating such videos can be harmless as they can be used for advertise-

ments, movies and entertainment purposes. However, such synthesis techniques can also be used

maliciously to spread misinformation, harass individuals or defame famous personalities [250].

These videos are now an emerging threat, especially within the realms of politics and misin-

183



formation. Deepfakes have been used to create fake news aggravating political and religious

tensions, with the aim to influence results in election campaigns [251, 252, 253]. Such extensive

spread of fake videos through social media platforms has raised significant concerns worldwide,

particularly hampering the credibility of digital media. Recent research has found evidence that

widespread misinformation not only misleads individuals and reduces public trust on digital

media but also leads to increased cynicism within democratic societies [254].

To guard against the misuse of Deepfakes, several countermeasures have been proposed

to identify media forgery [255]. In this chapter, I first describe the recently proposed state-of-the-

art methods to detect Deepfakes. These methods typically use a visual DNN-based classification

system that is trained in a supervised manner on a curated dataset of real and fake videos.

Deepfake detection is typically modelled as a per-frame classification problem. Additionally, the

best-performing models employ a face-tracking method following which the cropped face from a

frame is passed on to a Convolutional Neural Network (CNN) classifier for classification as real

or fake [256, 257, 5, 258]. Some of the recent Deepfake detection methods also use models that

operate on a sequence of frames as opposed to a single frame to exploit temporal dependencies

in videos [259].

While such CNN based Deepfake detectors achieve promising results in accurately de-

tecting manipulated videos, my research exposes major vulnerabilities in such detectors. Later in

the chapter, I describe my work on Adversarial Deepfakes that examines the vulnerabilities of

Deepfake detection systems adversarial examples. An adversarial example is an intentionally

perturbed input that can fool a victim classification model [8]. We quantitatively assess the vul-

nerability of Deepfake detectors to adversarial examples in different threat scenarios. Assuming

a complete access (white-box) threat scenario, we find that it is trivial to bypass a Deepfake detec-

tor with an imperceptible adversarial modification to a given video. However, in a practical threat

scenario, the attacker may not have knowledge of the victim detection model and parameters. To

this end, we assume a more challenging threat scenario in which the attacker can only query a

victim model to get the detection scores for a video frame. Even in this attack scenario, we find

184



that it is possible to bypass the detector with a slightly higher amount of adversarial perturbation.

Additionally, to ensure the adversarial videos remain effective even after video compression, we

incorporate expectation over input transforms [151] while training the adversarial perturbation

to craft robust adversarial videos. While the above attacks can effectively bypass Deepfake

detectors, they can be easily thwarted by the service provider. Detection models and parameters

can be kept private to prevent the white-box attack and query access can be limited to prevent

the black-box attack. Adversarial examples pose a practical threat to Deepfake detection if they

are transferable across different detection methods. That is, if adversarial videos designed to fool

some open source Deepfake detection method can also reliably fool other unseen CNN-based

detection methods, this would pose a real security threat to deploying CNN-based detectors

in production. We experimentally demonstrate that it is possible to design highly transferable

adversarial examples by ensuring robustness to input-transformation functions while training

the perturbation. Finally, we design more accessible adversarial attacks by creating transferable

universal adversarial perturbations that can be universally added across all frames of all videos

to reliably fool a number of Deepfake detection methods.

7.1 Deepfake Detection Datasets

Deepfake detection methods rely on the availability of high-quality deepfake detection

datasets, which are crucial for training and evaluating deepfake detection models. Several

Deepfake detection datasets have been developed in recent years, each with its own unique

characteristics and properties. One of the most widely used Deepfake detection datasets is the

FaceForensics++ dataset. This dataset contains Deepfake and real videos captured using a variety

of cameras and settings. The dataset includes four types of Deepfakes:

• FaceSwap (FS): FaceSwap [249] is a classical computer graphics-based approach for face

replacement in videos. In this method, sparse facial landmarks are detected to extract the

face region in an image. These landmarks are then used to fit a 3D template model which

185



is back-projected onto the target image by minimizing the distance between the projected

shape and localized landmarks. Finally, the rendered model is blended with the image and

color correction is applied.

• Face2Face (F2F): Face2Face [247] is a facial reenactment system that transfers the

expressions of a person in a source video to another person in a target video, while

maintaining the identity of the target person. In this method, faces are compressed into a

low-dimensional expression space, where expressions can be easily transferred from the

source to the target.

• DeepFakes (DF): While the term ‘Deepfake’ has commonly been used in mainstream

media as a blanket term for deep-learning based face replacement, it is also the name of

a specific manipulation [260] method that was spread via online forums. In the learning

phase, two auto-encoders with a shared encoder are trained to reconstruct the images of

source and target face. To create a fake image, the encoded source image is passed as input

to the target image decoder.

• NeuralTextures (NT): NeuralTextures [248] is a Generative Adversarial Network (GAN)

based facial reenactment technique. In this method, a generative model is trained to learn

the neural texture of a target person using original video data. The GAN objective is a

combination of an adversarial and photometric reconstruction loss.

FaceForensics++ has been widely used in research, with several deepfake detection

models trained on this dataset. Aside from the FaceForensics++ dataset, another prominent

collection of Deepfake videos was released by Facebook, Inc in 2019. To the best of our

knowledge, this recently developed DeepFake Detection Challenge (DFDC) dataset [261] is the

largest collection of real and Deepfake videos, consisting of over one million training clips of

face swaps produced with a variety of methods. For synthesizing the fake videos in the DFDC

dataset, 8 different video manipulation techniques were used, many of which are CNN-based

186



techniques. These methods include the traditional Deepfake auto-encoder architecture, a non-

learned morphable mask face swap algorithm, and several Generative Adversarial Networks

(GAN) techniques like Neural Talking Heads [262], FSGAN [263] and StyleGAN [264]. In

conjunction with the dataset, a corresponding competition1 was launched in which competitors

were encouraged to submit models trained for Deepfake detection on the training set. These

models were then ranked on a hidden, held-out test set, and the winning competitors released

their architectures and training strategies publicly.

7.2 Deepfake Detectors

Traditionally, multimedia forensics investigated the authenticity of images [265, 266, 267]

using hand-engineered features and/or a-priori knowledge of the statistical and physical properties

of natural photographs. However, video synthesis methods can be trained to bypass hand-

engineered detectors by modifying their training objective. We direct readers to [268, 269] for

an overview of counter-forensic attacks to bypass traditional (non-deep learning based) methods

of detecting forgeries in multimedia content.

More recent works have employed CNN-based approaches that decompose videos into

frames to automatically extract salient and discriminative visual features pertinent to Deepfakes.

Some efforts have focused on segmenting the entire input image to detect facial tampering

resulting from face swapping [270], face morphing [271] and splicing attacks [272, 273]. Other

works [274, 275, 256, 276, 6, 277] have focused on detecting face manipulation artifacts resulting

from Deepfake generation methods. The authors of [275] reported that eye blinking is not well

reproduced in fake videos, and therefore proposed a temporal approach using a CNN + Recurrent

Neural Network (RNN) based model to detect a lack of eye blinking when exposing Deepfakes.

Similarly, [278] used the inconsistency in head pose to detect fake videos. However, this form of

detection can be circumvented by purposely incorporating images with closed eyes and a variety

of head poses in training [279, 280].
1https://www.kaggle.com/c/deepfake-detection-challenge

187



7.2.1 Per-frame Deepfake Detectors

The Deepfake detectors proposed in [6, 256, 261] model Deepfake detection as a per-

frame binary classification problem. The authors of [6] demonstrated that XceptionNet can

outperform several alternative classifiers in detecting forgeries in both uncompressed and com-

pressed videos, and identifying forged regions in them. Since the task is to specifically detect

facial manipulation, these models incorporate domain knowledge by using a face tracking

method [247] to track the face in the video. The face is then cropped from the original frame

and fed as input to a classification model to be labelled as real or fake. Experimentally, the

authors of [6] demonstrate that incorporation of domain knowledge helps improve classification

accuracy as opposed to using the entire image as input to the classifier. The best performing

classifiers amongst others studied by [6] were both CNN based models: XceptionNet [257] and

MesoNet [256]. Figure 7.1 demonstrates the detection pipeline of these per-frame Deepfake

classifiers.

Figure 7.1. Per-frame Deepfake Classification Models typically follow a two-step pipeline: Face
detection followed by binary classification.

7.2.2 Sequence-based Deepfake Classifiers

Some detectors have also focused on exploiting temporal dependencies for detecting

Deepfake videos. Such detectors work on sequence of frames as opposed to a single frame using

a CNN + RNN model or a 3D CNN model. One such model based on a 3D EfficientNet [127]

architecture, was used by the third place winner [259] of DFDC challenge [261] in addition

188



to a per-frame classification model. While intuitively, exploiting temporal dependencies using

sequence models should improve a detector’s ability to detect manipulated videos, the insights

from the results of the DFDC challenge [261] show that the best performing models operate on a

frame level. In fact, the winning team [5] of the DFDC challenge explicitly noted that other ideas

besides frame-by-frame detection did not improve their performance on the public leaderboard.

The first two winning submissions were both CNN based per-frame classification models similar

to the ones described above.

7.2.3 Understanding Deepfake detectors

To gain insight into the decision-making logic of Deepfake detectors, we obtain the

gradient of the score of the predicted class with respect to the input image and plot the magnitude

of these gradients as a heat-map. Back-propagating gradients naively does not result in very

interpretable visualizations. This is because it is more important to consider pixels which activate

a neuron and do not suppress it (suppression is indicated by negative gradients). Therefore, we

use guided back-propagation which defines custom gradient estimates for activation functions

like ReLU and suppresses negative gradients during the backward pass. We then standardize the

gradient obtained with respect to the input and overlay the heat-map on the frame to visualize

the areas of an image that trigger the network’s output. Figure 7.2 shows some examples of the

saliency maps obtained while analyzing two different detectors on Deepfake videos.

Our initial observations on these saliency maps suggest that different CNN based detec-

tion methods attend to similar aspects of the input frame for predicting the label. These aspects

include the edges of the face, the eyes, lips, teeth etc. These similarities across different detection

methods indicate that adversarially modifying such aspects of the image could potentially fool

multiple detection methods. We validate this hypothesis in our work by studying the transfer-

ability of adversarial examples (Section 7.5.2) across different detection methods and proposing

techniques (Section 7.3.3) that improve the transferability.

189



Figure 7.2. Gradient saliency maps obtained on Deepfake videos using guided backpropogation
on a CNN-based detector [5]. The highlighted areas indicate the image regions that strongly
influence the detector’s predictions.

7.3 Adversarial attacks on Deepfake detectors

In this section, I discuss the threat models for Deepfake detectors in various attack settings

assuming different attacker capabilities. First, we mathematically define the threat model and

attack goal (Section 7.3.1). Next, we propose a white-box attack to achieve the attack goal in a

scenario when the attacker has complete access to the victim model architecture and parameters

(Section 7.3.2). In our experiments, we find that while the simple white-box attack works well on

uncompressed videos, the attack success rate drops significantly on compressed videos. Another

challenge in the simple white-box attack is the limited transferability of the attack to unseen

models. We tackle these two challenges using our robust and transferable attack which poses

a real world threat — the adversarial videos are more robust to compression and can also fool

unseen detectors to a significant extent thereby posing a real-world threat (Section 7.3.3). Next

we propose query based black-box attacks which do not require access to any surrogate model

but only require query access to the model scores (Section 7.3.4, 7.3.5). Finally, we propose a

highly accessible attack using universal adversarial perturbations — we find that it is possible to

craft a single input-agnostic perturbation that can be added across all frames of any given video

190



to cause classification to the target label by many seen and unseen detectors. Once crafted, this

perturbation can be easily shared amongst adversaries thereby posing a very practical challenge

to Deepfake detection (Section 7.3.6).

7.3.1 Threat Model

Given a video (Real or Fake), our task is to adversarially modify the video such that the

label predicted by a victim Deepfake detection method is incorrect. That is, we want to modify

the videos such that the Fake videos are classified as Real and vice-versa. Misclassifying a Fake

video as Real can be used by the adversary to propagate false information. Misclassifying a Real

video as Fake can be used by the adversary to cover up an event that did actually happen.

Distortion Metric

To ensure imperceptibility of the adversarial modification, the Lp norm is a widely used

distance metric for measuring the distortion between the adversarial and original inputs. The

authors of [11] recommend constraining the maximum distortion of any individual pixel by

a given threshold ε , i.e., constraining the perturbation using an L∞ metric. Additionally, Fast

Gradient Sign Method (FGSM) [11] based attacks, which are optimized for the L∞ metric, are

more time-efficient than attacks which optimize for L2 or L0 metrics. Since each video can be

composed of thousands of individual frames, time-efficiency becomes an important consideration

to ensure the proposed attack can be reliably used in practice. Therefore, in this work, we use

the L∞ distortion metric for constraining our adversarial perturbation and optimize for it using

gradient sign based methods.

Notation

We follow the notation previously used in [13, 281]; we define F to be the full neural

network (classifier) including the softmax function, Z(x) = z to be the output of all layers except

191



𝟄+      C Fake Real

Adversarially modified fake video

=       C

Fake video

Figure 7.3. An overview of our attack pipeline to generate Adversarial Deepfakes. We generate
an adversarial example for each frame in the given fake video and combine them together to
create an adversarially modified fake video.

the softmax (that is z are the logits). That is:

F(x) = softmax(Z(x)) = y

The classifier assigns the label C(x) = argmaxi(F(x)i) to input frame x.

Problem Formulation

Mathematically, for each video frame x, we aim to find an adversarial frame xadv such

that:

C(xadv) = y and ||xadv− x0||∞ < ε

where y is the target label. In our case the target label is Real for Fake videos and Fake for

Real videos. In the upcoming sections, we study this attack goal in various attacker knowledge

settings and constraints.

192



Attack Pipeline

An overview of the process of generating adversarial fake videos is depicted in Figure 7.3.

For any given frame, we craft an adversarial example for the cropped face, such that after going

through some image transformations (normalization and resizing), it gets classified as Real by

the classifier. The adversarial face is then placed in the bounding box of face-crop in the original

frame, and the process is repeated for all frames of the video to create an adversarially modified

fake video. In the following sections, we consider our attack pipeline under various settings and

goals. Note that, the proposed attacks can also be applied on detectors that operate on entire

frames as opposed to face-crops. We choose face-crop based victim models because they have

been shown to outperform detectors that operate on entire frames for detecting facial-forgeries.

7.3.2 Simple White-box attack

In this setting, we assume that the attacker has complete access to the detection model,

including the face extraction pipeline and the architecture and parameters of the classification

model. To construct adversarial examples using the attack pipeline described above, we use the

iterative gradient sign method [83] to optimize the following objective:

Minimize loss(x′) where

loss(x′) = max(Z(x′)o−Z(x′)y,0)
(7.1)

Here, Z(x)y is the final score for target label y and Z(x)o is the score of the original label

o before the softmax operation in the classifier C. The loss function we use is recommended

by [13] because it is empirically found to generate less distorted adversarial samples and is robust

against defensive distillation. We use the iterative gradient sign method to optimize the above

loss function while constraining the magnitude of the perturbation as follows:

xi = xi−1− clipε(α · sign(∇loss(xi−1))) (7.2)

193



We continue gradient descent iterations until success or until a given number of maximum

iterations, whichever occurs earlier. We solve the optimization problem for each frame of

the given video and combine all the adversarial frames together to generate the adversarial

video. In our experiments, we demonstrate that we are able to successfully fool all the detection

methods studied in our work in the white-box attack setting using the above attack. However, the

transferability of adversarial examples generated using this attack across different methods is

limited. In the next section we propose techniques to overcome this challenge.

7.3.3 Robust and Transferable attack

Videos uploaded to social networks and other media sharing websites are usually com-

pressed. Standard operations like compression and resizing are known to remove adversarial

perturbations from an image [282, 283, 284]. To ensure that the adversarial videos remain

effective even after compression, it is important to ensure robustness to input-transformation

functions while training the perturbation.

Also, past works [285, 286, 287, 10, 288, 289] have studied that adversarial inputs can

transfer across different models. That is, an adversarial input that was designed to fool a particular

victim model can possibly fool other models that were trained for the same task. This is because

different models learn similar decision boundaries and therefore have similar vulnerabilities.

However, for Deepfake detectors, the goal of making transferable adversarial videos is more

challenging due to multiple steps involved in the Deepfake detection pipeline and the differences

in these steps across various methods.

• Different face detection methods result in different face-crops.

• Different data-augmentation procedures during training result in different levels of robust-

ness to adversarial examples.

• Different input pre-processing pipelines, such as image resizing, cropping and channel

normalization parameters vary across different detection methods.

194



Therefore ensuring robustness to input transformation functions not only helps create

adversarial videos that are robust to compression, but can also potentially result in adversarial

videos that are transferable across different detection methods. We use the expectation over

transforms [151] attack to craft robust and transferable adversarial examples. Given a distribution

of input transformations T , input image x, and target class y, our objective is as follows:

xadv = argmaxxEt∼T [F(t(x))y] s.t. ||x− x0||∞ < ε

That is, we want to maximize the expected probability of target class y over the distribution of

input transforms T . To solve the above problem, we update the loss function given in Equation 7.1

to be an expectation over input transforms T as follows:

loss(x) = Et∼T [max(Z(t(x))o−Z(t(x))y,0)]

Following the law of large numbers, we estimate the above loss functions for n samples as:

loss(x) =
1
n ∑

ti∼T
[max(Z(ti(x))o−Z(ti(x))y,0)] (7.3)

Since the above loss function is a sum of differentiable functions, it is tractable to compute

the gradient of the loss w.r.t. to the input x. We minimize this loss using the iterative gradient

sign method given by Equation 7.2. We iterate until a given number of maximum iterations

or until the attack is successful under the sampled set of transformation functions, whichever

happens first.

Next we describe the class of input transformation functions we consider for the distribu-

tion T :

• Gaussian Blur: Convolution of the original image with a Gaussian kernel k. This

transform is given by t(x) = k ∗ x where ∗ is the convolution operator.

195



• Gaussian Noise Addition: Addition of Gaussian noise sampled from Θ∼N (0,σ) to

the input image. This transform is given by t(x) = x+Θ

• Translation: We pad the image on all four sides by zeros and shift the pixels horizontally

and vertically by a given amount. Let tx be the transform in the x axis and ty be the

transform in the y axis, then t(x) = x′H,W,C s.t. x′[i, j,c] = x[i+ tx, j+ ty,c]

• Downsizing and Upsizing: The image is first downsized by a factor r and then up-sampled

by the same factor using bilinear re-sampling.

The details of the hyper-parameter search distribution used for these transforms can be

found in the Section 7.5.1.

7.3.4 Query based Black-box Attack

In the black-box setting, we consider the more challenging threat model in which the

adversary does not have access to the classification network architecture and parameters. We

assume that the attacker has knowledge of the detection pipeline structure and the face tracking

model. However, the attacker can solely query the classification model as a black-box function

to obtain the probabilities of the frame being Real or Fake. Hence there is a need to estimate

the gradient of the loss function by querying the model and observing the change in output for

different inputs, since we cannot backpropagate through the network.

We base our algorithm for efficiently estimating the gradient from queries on the Natural

Evolutionary Strategies (NES) approach of [290, 291]. Since we do not have access to the

pre-softmax outputs Z, we aim to maximize the class probability F(x)y of the target class y.

Rather than maximizing the objective function directly, NES maximizes the expected value of

the function under a search distribution π(θ |x). That is, our objective is:

Maximize: Eπ(θ |x)[F(θ)y]

196



This allows efficient gradient estimation in fewer queries as compared to finite-difference

methods. From [290], we know the gradient of expectation can be derived as follows:

∇xEπ(θ |x) [F(θ)y] = Eπ(θ |x) [F(θ)y∇x log(π(θ |x))]

Similar to [291, 290], we choose a search distribution π(θ |x) of random Gaussian noise around

the current image x. That is, θ = x+σδ where δ ∼N (0, I). Estimating the gradient with a

population of n samples yields the following variance reduced gradient estimate:

∇E[F(θ)]≈ 1
σn

n

∑
i=1

δiF(θ +σδi)y

We use antithetic sampling to generate δi similar to [292, 291]. That is, instead of

generating n values δ ∼N (0, I), we sample Gaussian noise for i ∈ {1, . . . , n
2} and set δ j =

−δn− j+1 for j ∈ {(n
2 + 1), . . . ,n}. This optimization has been empirically shown to improve

the performance of NES. Algorthim 6 details our implementation of estimating gradients using

NES. The transformation distribution T in the algorithm just contains an identity function

i.e., T = {I(x)} for the black-box attack described in this section.

After estimating the gradient, we move the input in the direction of this gradient using

iterative gradient sign updates to increase the probability of the target class:

xi = xi−1 + clipε(α · sign(∇F(xi−1)y)) (7.4)

7.3.5 Query based Robust Black-box Attack

To ensure robustness of adversarial videos to compression, we incorporate the Expectation

over Transforms (Section 7.3.3) method in the black-box setting for constructing adversarial

videos.

197



To craft adversarial examples that are robust under a given set of input transformations

T , we maximize the expected value of the function under a search distribution π(θ |x) and our

distribution of input transforms T . That is, our objective is to maximize:

Et∼T [Eπ(θ |x) [F(t(θ))y]]

Following the derivation in the previous section, the gradient of the above expectation can be

estimated using a population of size n by iterative sampling of ti and δi:

∇E[F(θ)]≈ 1
σn

n

∑
i=1,ti∼T

δiF(ti(θ +σδi))y

Algorithm 6. NES Gradient Estimate

1: Input: Classifier F(x), target class y, image x
2: Output: Estimate of ∇xF(x)y
3: Parameters: Search variance σ , number of samples n, image dimensionality N
4: g← 0n
5: for i = 1 to n do
6: ti ∼ T
7: ui←N (0N , IN·N)
8: g← g+F(ti(x+σ ·ui))y ·ui
9: g← g−F(ti(x−σ ·ui))y ·ui

10: return 1
2nσ

g

We use the same class of transformation functions listed in Section 7.3.3 for the distri-

bution T . Algorithm 6 details our implementation for estimating gradients for crafting robust

adversarial examples. We follow the same update rule given by Equation 7.4 to generate adver-

sarial frames. We iterate until a given a number of maximum iterations or until the attack is

successful under the sampled set of transformation functions.

198



7.3.6 Universal attack

While the transferability of adversarial perturbations poses a practical threat to Deepfake

detectors in production, creating an adversarial video requires significant technical expertise in

adversarial machine learning — the attacker needs to solve an optimization problem for each

frame of the video to fool the detector.

To ease the process of fooling Deepfake detectors, we aim to design more accessible

adversarial attacks that can be easily shared amongst attackers. Past works [12, 293, 2] have

shown the existence of universal adversarial perturbations that can fool classification models in

various input domains. We aim to find a single universal adversarial perturbation which when

added across all frames of any video, will cause the victim Deepfake Detector to classify the

video to a target label.

That is, we aim to find a targeted universal perturbation δ such that:

C(x+δ ) = y s.t ||δ ||∞ < ε

for “most” x in our dataset
(7.5)

where y is the target class. We train separate perturbations for Real and Fake target labels. In order

to ensure robustness to differences across detection methods, we incorporate the transformation

functions described in Section 7.3.3. We train the universal adversarial perturbation on a dataset

of videos that are labelled opposite from our target label. On this dataset of videos, we aim

to maximize the log-likelihood of predicting our target label y. Additionally to ensure the

imperceptibility of the adversarial perturbation we penalize the L2 distortion of the perturbation

by adding a regularization term in our objective. Thus, our final objective to train a universal

perturbation for a target label y is as follows:

Minimize ∑
x in D

Et∼T [L(F(t(x+δ )),y)]+ c||δ ||2

such that ||δ ||∞ < ε

(7.6)

199



Here, L is the cross-entropy loss between the predictions and our target label, c is a

hyper-parameter to control the regularization loss and x is an input frame of a video from our

dataset D. Similar to Equation 7.3, we estimate the above expectation using n samples as follows:

Et∼T [L(F(t(x+δ )),y)] =
1
n ∑

ti∼T
[L(F(ti(x+δ )),y)] (7.7)

To ensure the constraint ||δ ||∞ < ε , we express δ as follows:

δ = ε · tanh(p)

where p is a trainable unconstrained parameter having the same dimensions as δ . We fix

the size of the perturbation vector p to be 3× 256× 256 in our experiments, but resize the

perturbation using bilinear interpolation to match the size of our input x. We iteratively optimize

the objective given by Equation 7.6 using gradient descent. In our experiments, we find that

targeting certain Deepfake detectors not only results in input-agnostic universal perturbations but

also model-agnostic universal perturbations.

7.4 Experimental Setup

We perform adversarial attacks on the FaceForensics++ [6] and the DFDC datasets [261]

and choose the best performing models on these datasets as the victim models. We first craft

adversarial videos for the FaceForensics++ dataset and target the XceptionNet and MesoNet

models which are the best reported architectures reported in the paper [6] introducing this dataset

(Section 7.5.1). We use these two models as a test-bed to study the robustness of our attacks

to video compression and demonstrate the using our robust attack helps significantly improve

attack performance on compressed videos. Next we conduct the transferable and universal attack

experiments on the DFDC dataset. We choose the models from top three winning entries in the

DFDC Kaggle competition as the victim models for these experiments (Section 7.5.2, 7.5.3).

200



Finally, we evaluate our attacks on a sequence based 3D CNN model to demonstrate that

adversarial examples are a threat to not only frame by frame detectors but also sequence based

models (Section 7.5.4).

7.4.1 Dataset and Models

On the FaceForensics++ dataset, XceptionNet [257] and MesoNet [256] CNN classifiers

have been reported to achieve the best performance in the paper introducing the dataset [6]. For

these two models, we perform our attack on the test set of the FaceForensics++ Dataset [6],

consisting of manipulated videos from the four methods described in Section 7.1. We construct

adversarially modified fake videos on the FaceForensics++ test set, which contains 70 videos

(total 29,764 frames) from each of the four manipulation techniques. For simplicity, our exper-

iments are performed on high quality (HQ) videos, which apply a light compression on raw

videos. The accuracy of the detector models for detecting facially manipulated videos on this

test set is reported in Table 7.1.

Table 7.1. Accuracy of Deepfake detectors on the FaceForensics++ HQ Dataset as reported
in [6]. The results are for the entire high-quality compressed test set of Deepfakes.

DF F2F FS NT
XceptionNet [6] Acc % 97.49 97.69 96.79 92.19

MesoNet [6] Acc % 89.55 88.6 81.24 76.62

For the DFDC dataset, we choose the top three winners of the challenge, which was hosted

by Facebook on the Kaggle website. The top two winning entries of the challenge rely solely

on face detection models and per-frame CNN classifiers similar to the best performing models

on the FaceForensics++ dataset. The third place winner of the challenge uses a combination

of per-frame classifiers and a 3D CNN based sequence model. Table 7.2 lists the Deepfake

detection methods studied in this work along with their respective CNN architectures used for

classification and face detection. We use the DFDC dataset and these top three winning models

as the test bed for evaluating the transferability of our attacks across different models. In our

201



Table 7.2. Different Deepfake detection systems studied in our work with their respective
classification models, face detection models and detection AUC scores on the DFDC test set.

Model Team Name Classifier Face detection AUC

EN-B7 Selim [5] Selim EfficientNet B7 [127] MTCNN [294] 0.717
XN WM [258] Team WM XceptionNet [257] RetinaFace [295] 0.724
EN-B3 WM [258] Team WM EfficientNet B3 [127] RetinaFace [295] 0.724
EN-B7 NLab [259] NTech Lab EfficientNet B7 [127] DSFD [296] 0.717

transferability experiments we use the terms victim model and test model and define them as:

• Victim model: The detection model that the attack/adversarial perturbation is trained on, in

the complete-knowledge (white-box) attack scenario.

• Test model: The model on which we evaluate the attack. This can be the same as the victim

model (white-box) or an unseen detection model (black-box).

We craft adversarial videos for the first 100 Fake and 100 Real videos in the public DFDC

validation set [261]. These videos contain a total of 30,300 frames. The videos are recorded in

various lighting and background conditions and include people with different skin-tones.

7.4.2 Evaluation Metrics

Once the adversarial frames are generated, we combine them and save the adversarial

videos in the following formats:

• Uncompressed (Raw): Video is stored as a sequence of uncompressed images.

• Compressed (MJPEG): Video is saved as a sequence of JPEG compressed frames.

• Compressed (H.264): Video is saved in the commonly used mp4 format that applies

temporal compression across frames.

202



We conduct our primary evaluation on the Raw and MJPEG. We also study the effective-

ness of our white box robust attack using different compression levels in the H264 codec. We

report the following metrics for evaluating our attacks:

• Success Rate (SR): The percentage of frames in the adversarial videos that get classified

to our target label. We report: SR-U- Attack success rate on uncompressed adversarial

videos saved in Raw format; and SR-C- Attack success rate on compressed adversarial

videos saved in MJPEG format.

• Accuracy: The percentage of frames in videos that get classified to their original label by

the detector. We report Acc-C- accuracy of the detector on compressed adversarial videos.

• Mean distortion (L∞): The average L∞ distortion between the adversarial and original

frames. The pixel values are scaled in the range [0,1], so changing a pixel from full-on to

full-off in a grayscale image would result in L∞ distortion of 1 (not 255).

7.5 Results

7.5.1 Evaluation on FaceForensics++ dataset

Simple white-box attack

To craft adversarial examples in the white-box setting, in our attack pipeline, we im-

plement differentiable image pre-processing (resizing and normalization) layers for the CNN.

This allows us to backpropagate gradients all the way to the cropped face in-order to generate

the adversarial image that can be placed back in the frame. We set the maximum number of

iterations to 100, learning rate α to 1/255 and max L∞ constraint ε to 16/255 for both our attack

methods described in Sections 7.3.2 and 7.3.3.

Table 7.3 shows the results of the white-box attack (Section 7.3.2). We are able to

generate adversarial videos with an average success rate of 99.85% for fooling XceptionNet and

98.15% for MesoNet when adversarial videos are saved in the Raw format. However, the attack

203



Table 7.3. Evaluation of various attacks on the two models XceptionNet and MesoNet on
the FaceForensics++ dataset. We report the average L∞ distortion between the adversarial and
original frames and the attack success rate on uncompressed (SR-U) and compressed (SR-C)
videos.

XceptionNet MesoNet

Attack Dataset L∞ SR - U SR - C Acc-C % L∞ SR - U SR - C Acc-C %

DF 0.004 99.67 43.11 56.89 0.006 97.30 92.27 7.73
Simple White-box F2F 0.004 99.85 52.50 47.50 0.007 98.94 96.30 4.70

(Section 7.3.2) FS 0.004 100.00 43.13 56.87 0.009 97.12 86.10 13.90
NT 0.004 99.89 95.10 4.90 0.007 99.22 96.20 3.80

All 0.004 99.85 58.46 41.54 0.007 98.15 92.72 7.53
DF 0.016 99.56 98.71 1.29 0.030 99.94 99.85 0.15

Robust and Transferable F2F 0.013 100.00 99.00 1.00 0.020 99.71 99.67 0.33
(Section 7.3.3) FS 0.013 100.00 95.33 4.67 0.026 99.02 98.50 1.50

NT 0.011 100.00 99.89 0.11 0.025 99.99 99.98 0.02

All 0.013 99.89 98.23 1.77 0.025 99.67 99.50 0.50
DF 0.055 89.72 55.64 44.36 0.062 96.05 93.33 6.67

Query based F2F 0.055 92.56 81.40 18.60 0.0627 84.08 77.68 22.32
Black-box (Section 7.3.4) FS 0.045 96.77 23.50 76.50 0.0627 77.55 62.44 37.56

NT 0.024 99.86 94.23 5.77 0.0627 85.98 79.25 20.75

All 0.045 94.73 63.69 36.31 0.0626 85.92 78.18 21.83

DF 0.060 88.47 79.18 20.82 0.047 96.19 93.80 93.80
Query based Robust F2F 0.058 97.68 94.42 5.58 0.054 84.14 77.50 77.50

Black-box (Section 7.3.5) FS 0.052 98.97 63.26 36.74 0.061 77.34 61.77 61.77
NT 0.018 99.65 98.91 1.09 0.053 88.05 80.27 80.27

All 0.047 96.19 83.94 16.06 0.053 86.43 78.33 78.33

average success rate drops to 58.46% for XceptionNet and 92.72% for MesoNet when MJPEG

compression is used. This result is coherent with past works [282, 283, 284] that employ JPEG

compression and image transformations to defend against adversarial examples.

Robust attack

For our robust white box attack, we sample 12 transformation functions from the distri-

bution T for estimating the gradient in each iteration. This includes three functions from each

of the four transformations listed in Section 7.3.3. Table 7.4 shows the search distribution for

different hyper-parameters of the transformation functions.

204



Table 7.4. Search distribution of hyper-parameters of different transformations used for our
Robust White box attack. During training, we sample three functions from each of the transforms
to estimate the gradient of our expectation over transforms.

Transform Hyper-parameter search distribution

Gaussian Blur Kernel k(d,d,σ), d ∼U [3,7], σ ∼U [5,10]
Gaussian Noise σ ∼U [0.01,0.02]

Translation dx ∼U [−20,20], dy ∼U [−20,20]
Down-sizing & Up-sizing Scaling factor r ∼U [2,5]

Table 7.3 shows the results of our robust white-box attack. It can be seen that robust

white-box is effective in both Raw and MJPEG formats. The average distortion between original

and adversarial frames in the robust attack is higher as compared to the non-robust white-box

attack. We achieve an average success rate (SR-C) of 98.07% and 99.83% for XceptionNet and

MesoNet respectively in the compressed video format.

H.264 Quantization Factor

S
uc

ce
ss

 R
at

e 
(%

)

20

40

60

80

100

Raw c23 c30 c40

XceptionNet MesoNet

Figure 7.4. Attack success rate vs Quantization factor used for compression in H264 codec for
robust white box attack.

We also study the effectiveness of our robust white box attack under different levels

of compression in the H.264 format which is widely used for sharing videos over the internet.

Figure 7.4 shows the average success rate of our attack across all datasets for different quantiza-

205



tion parameter c used for saving the video in H.264 format. The higher the quantization factor,

the higher the compression level. In [6], fake videos are saved in HQ and LQ formats which

use c = 23 and c = 40 respectively. It can be seen that even at very high compression levels

(c = 40), our attack is able to achieve 80.39% and 90.50% attack success rates for XceptionNet

and MesoNet respectively, without any additional hyper-parameter tuning for this experiment.

Video examples of Adversarial Deepfakes can be found on the website linked in the footnote 2.

7.5.2 Transferability of adversarial attacks

We evaluate the transferability of adversarial perturbations across different detectors

trained on the DFDC dataset. We train adversarial videos targeting a given victim model and test

the videos against different test models. For our simple whitebox attack, while we achieve 100%

attack success rate for the same test model as the victim model, the attack success rate drops

significantly on alternate models. EfficientNet-B7 by NTech Lab requires the highest amount of

adversarial perturbation under the L∞ metric as compared to other methods in this study. We

find that perturbations trained to fool EfficientNet-B7 by Team NTech Lab result in the most

transferable attacks as indicated by the higher success rates on other test models. This suggests

that EN-B7 NLab is relatively more robust to adversarial perturbations in comparison to the

other models used in this study (also indicated by higher L∞ perturbation required to fool EN-B7

NLab).

To improve the transferability of adversarial examples across different methods, we

perform our robust transfer attack described in Section 7.3.3 and evaluate the adversarial videos

against unseen detection methods in a black-box setting. The hyper-parameters of the trans-

formation functions used for the attack have been provided in Table 7.4. All other attack

hyper-parameters are kept the same as our simple white-box attack.

As indicated by the results in Table 7.5, we are able to significantly improve the transfer-

ability of adversarial perturbations across different detection methods as compared to our simple

2https://adversarialdeepfakes.github.io/

206

https://adversarialdeepfakes.github.io/


white-box attack. The adversarial perturbations are most transferable across models with the

same architecture. For example, we are able to achieve high cross-transferability between EN-B7

Selim vs EN-B7 NLab. Similar to our observation in the previous section, attacking EN-B7 NLab

results in the most transferable adversarial attacks - we are able to achieve at least 72% success

rate across all other detection methods when attacking EN-B7 NLab. Sample images for these

attacks are presented in Figure 7.5.

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Simple White-box attack examples on DFDC detectors Robust and Transferable attack examples on DFDC detectors

Figure 7.5. Randomly selected frames of adversarial videos from attacks on the DFDC detectors.

Table 7.5. Attack success rates (SR-U) of the white-box (Section 7.3.2) and robust and trans-
ferable attacks (Section 7.3.3) on different victim models and their transferability to seen and
unseen detectors (test models).

Test Model
Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM
EN-B7 Selim 0.007 100.0 % 59.5 % 57.0 % 38.5 %

Simple EN-B7 NLab 0.013 94.0 % 100.0 % 66.5 % 49.5 %
White-box (Section 7.3.2) XN WM 0.006 13.0 % 12.5 % 100.0 % 12.0 %

EN-B3 WM 0.005 21.0 % 15.5 % 22.0 % 100.0 %
EN-B7 Selim 0.010 100.0 % 89.0 % 72.5 % 62.0 %

Robust and EN-B7 NLab 0.018 99.0 % 100.0 % 72.0 % 76.5 %
Transferable (Section 7.3.3) XN WM 0.018 49.0 % 33.5 % 100.0 % 46.0 %

EN-B3 WM 0.008 46.5 % 35.0 % 47.5 % 100.0 %

7.5.3 Universal attacks

To create more accessible attacks, we train a universal adversarial perturbation using

the procedure described in Section 7.3.6. We set the L2 regularization term c = 0.01 and use

207



the Adam optimizer with a learning rate of 0.001. For our initial experiments, we set the L∞

threshold ε = 40/255 for all victim models. Since the goal of finding a single input-agnostic

perturbation is more challenging than finding one perturbation per video frame, a higher amount

of distortion is required for a successful attack as compared to the per-frame attacks described

earlier. We train the universal perturbation on a dataset of 100 videos from the DFDC train set

which are separate from our evaluation dataset. We train the perturbation using a batch size of 8

for 10,000 iterations.

Table 7.6. Attack success rates (SR-U) of the universal attacks (Section 7.3.6) on different victim
models and their transferability to unseen detectors (test models).

Test Model
Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.156 100.0% 94.5% 65.0% 69.0%
EN-B7 NLab 0.156 94.5% 100.0% 75.0% 81.5%

XN WM 0.156 77.5% 61.0% 100.0% 20.0%
EN-B3 WM 0.156 66.5% 50.5% 60.0% 100.0%

We target one victim model at a time and test the transferability of the universal pertur-

bation on seen and unseen detectors. Table 7.6 presents the results of performing the universal

attack on different victim models at ε = 40/255 = 0.156. We are able to achieve 100% attack

success rate on the same test model as the victim model using a single perturbation across

all frames and videos of the same label. Also, the universal perturbation is transferable to a

significant extent across different models which poses an extremely practical threat to Deepfake

detectors in production. Attacking EN-B7 NLab results in the most transferable perturbations

where we are able to achieve at least a 75% success rate across all unseen detectors.

Visually, the universal perturbations at ε = 0.156 are more perceptible than our per-frame

attacks discussed in the sections above. Figure 7.6 shows examples of universal adversarial per-

turbations trained on different Deepfake detectors and the resulting adversarial images obtained

after adding the perturbation to the face-crop of the benign frame.

We perform an additional experiment to study the effectiveness of universal adversarial

208



Benign
Label: FAKE

UAP

 Adversarial
Prediction: REAL

EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Figure 7.6. Visualization of universal adversarial perturbations trained on different Deepfake
detection models at ε = 0.156.

perturbations at different magnitudes of added perturbations. We choose EN-B7 NLab as the

victim model and perform our universal attack at different values of ε . The attack success rates

across different models are shown in Figure 7.7. Figure 7.7 also shows what a perturbed image

looks like at different values of ε . At ε < 0.1, the perturbation is fairly imperceptible but can

still achieve high success rates on various test models.

7.5.4 Evaluation on Sequence Based Detector

We consider the 3D CNN based detector described in Section 7.2. The detector performs

3D convolution on a sequence of face-crops from 7 consecutive frames. We perform our attacks

on the pre-trained model checkpoint (trained on the DFDC [261] train set) released by the

NTech-Lab team [259]. We evaluate our attacks on the Deepfake videos from the DFDC public

validation set which contains 200 Fake videos. We report the accuracy of the detector on the

209



𝟄 = 0.039    𝟄 = 0.078    Benign   

𝟄 = 0.235    𝟄 = 0.313    𝟄 = 0.156    

𝝐 (L∞ Norm)

Figure 7.7. Left: Visualization of the perturbed images using different magnitudes (ε) of
universal adversarial perturbations trained on EN-B7 NLab. Right: Attack success rates of the
universal attacks (Section 7.3.6) on different victim models and their transferability to unseen
detectors (test models).

Table 7.7. Evaluation of different attacks on a sequence based detector on the DFDC validation
dataset. The first row indicates the performance of the classifier on benign (non adversarial)
videos.

3D CNN Sequence Model

Attack Type L∞ SR - U SR - C Acc. - C%

None - - - 91.74

Simple White-box (Section 7.3.2) 0.037 100.00 77.67 22.33
Robust and Transferable (Section 7.3.3) 0.059 100.00 100.00 0.00
Query based Black-box (Section 7.3.4) 0.061 87.99 24.43 75.57
Query based robust Black-box (Section 7.3.4) 0.062 88.21 51.02 48.98

7-frame sequences from this test set in the first row of Table 7.7.

Similar to our attacks on frame-by-frame detectors, in the white-box setting we back-

propagate the loss through the entire model to obtain gradients with respect to the input frames

for crafting the adversarial frames. While both white-box and robust white-box attacks achieve

100% success rate on uncompressed videos, the robust white-box attack performs significantly

better on the compressed videos and is able to completely fool the detector. As compared to

frame-by-frame detectors, a higher magnitude of perturbation is required to fool this sequence

model in both the white-box attacks. In the black-box attack setting, while we achieve similar

210



attack success rates on uncompressed videos as the frame-by-frame detectors, the attack success

rate drops after compression. The robust black-box attack helps improve robustness of adversarial

perturbations to compression as observed by higher success rates on compressed videos (51.02%

vs 24.43% SR-C).

7.6 Conclusion

In this chapter, I described the current best-performing Deepfake classifiers and studied

their vulnerability to adversarial examples. We consider both per-frame and sequence-based

Deepfake detection models and demonstrate that they can be bypassed under various attack

settings and attacker capabilities. We first design an attack pipeline to bypass Deepfake detectors

in a white-box attack setting and propose techniques to increase the robustness of such attacks

to video compression codecs. Next, we demonstrate that adversarial videos crafted using our

robust attacks can fool alternate models to a significant extent thereby posing a real-world threat

in a black-box attack setting. Finally, we demonstrate the existence of universal adversarial

perturbations which pose a more practical threat since they can be easily shared amongst

attackers and applied to any video in real-time. In the upcoming chapter, I discuss a semi-fragile

watermarking framework as a proactive media authentication method to overcome the limitations

of Deepfake classifiers.

7.7 Acknowledgements

Chapter 7 contains material found in the following two papers. (1) Adversarial Deepfakes:

Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples. 2021. Hussain,

Shehzeen; Neekhara, Paarth; Jere, Malhar; Koushanfar, Farinaz; McAuley, Julian. IEEE Winter

Conference on Applications of Computer Vision 2021. (2) Exposing Vulnerabilities of Deepfake

Detection Systems with Robust Attacks. 2022. Hussain, Shehzeen; Neekhara, Paarth; Dolhansky,

Brian; Bitton, Joanna; Canton, Cristian; McAuley, Julian; Koushanfar, Farinaz. ACM Journal on

211



Digital Threats: Research and Practice, Vol 3, 2022. The dissertation author was the primary

investigator and author of these papers.

212



Chapter 8

Media Authentication using DL based
Proactive Watermarking

With the advancements in deep learning-based generative models, media authentication

has become an important challenge. As discussed in the previous chapters, DNN-based generative

models can easily manipulate images, videos and audio to create realistic multimedia content that

can support fake news, spread misinformation and reduce trust in social media platforms [297].

Media authentication is crucial in ensuring the accuracy of news and maintaining public trust.

Media authentication also plays a crucial role in law enforcement, where videos and images are

often used as evidence.

Recent methods to detect Deepfakes rely on DNN-based classification systems [6, 298].

As described in Chapter 7, there are certain limitations in classification-based Deepfake detectors:

1) The current best-performing detectors for synthetic media can be easily bypassed by attackers

using adversarial examples. 2) Classifiers trained in a supervised manner on existing media

synthesis techniques cannot be reliably secure against unseen generation methods.

To address the above challenges of Deepfake detectors, we propose to proactively embed

a secret verifiable message into images and videos at the time of their capture from a device to

establish media authenticity. Conventional image watermarking systems use hand-engineered

pipelines [299, 300, 301, 302] to embed information in the spatial or frequency domain of an

image. However, the major limitations of traditional approaches lie in the higher visibility of

213



the embedded watermarks, limited message capacity, and low robustness to digital compression

techniques like JPEG transforms. As a result, these traditional approaches are being quickly

replaced with deep learning based techniques, which are achieving state-of-the-art results in

image watermarking and steganography tasks.

Deep learning based watermarking techniques rely on encoder and decoder convolutional

neural networks (CNNs). These networks are trained end-to-end for the task of embedding and

retrieving a given message in an image. While deep learning techniques significantly outperform

hand-engineered watermarking pipelines, the improvement comes at the cost of increased compu-

tational overhead and memory requirement of these models. The best-performing neural image

watermarking encoders are parameterized by around half a million floating point parameters,

which makes it challenging to deploy such systems on resource-constrained hardware such as

FPGAs or handheld devices. Such techniques have only been implemented at a software level

which results in significant latency between image capture and transmission. Our work aims to

embed watermarks in images and videos in real-time as they are being captured. Embedding the

watermarks at the hardware level can not only reduce the latency of the watermarking process

but also enable media authentication and provenance by leveraging unique hardware signatures

from PUFs [303] or secure enclaves as the watermarking data.

In this chapter, I describe FastStamp: a light-weight yet robust neural image watermark-

ing framework [304] we developed to enable real-time watermarking on hardware platforms.

Keeping resource constraints in mind, we develop a parameter efficient CNN-based watermark-

ing model that can match and even outperform the success metrics of state-of-the-art neural

image watermarking models. Our watermarking model leverages efficient neural blocks such as

depthwise separable convolutions, spatial upsampling operations, and linear layers to reduce the

memory requirement and inference latency without compromising the watermark retrieval accu-

racy, message capacity, and imperceptibility. We then design and verify an FPGA implementation

of our watermarking encoder model to allow image watermarking directly on hardware. Our

most optimized design achieves real-time image watermarking and only requires 3 milliseconds

214



Remote Watermark Extraction

On-device Watermark Insertion

Watermarked 
Image

 FastStamp DNN 
Encoder Watermarked 

Image 

Camera 
Sensor 

Interface

On-Chip MemoryFPGA

Hardware 
Signature 
Generator

Watermark 
data

Input Image

FastStamp
Decoder

Database of Trusted 
Signatures

Cloud Server

Key 

   Key 

Signature 

SignatureWatermark
data

Figure 8.1. Schematic diagram of FastStamp watermarking pipeline. The pipeline is divided into
two steps: watermark insertion using a DNN encoder on FPGA (top) and watermark extraction
using a DNN decoder on a cloud server (bottom).

to watermark a given image while achieving the same results as the software implementations.

Our framework is end-to-end and supports two types of watermarking schemes: robust and

semi-fragile. FastStamp learns to be robust to a wide range of real-world digital image processing

operations such as lighting, color adjustments, and compression techniques. Our semi-fragile

watermarking scheme learns to be robust to above benign transformations while being fragile to

media forgery and local tampering.

8.1 Background

8.1.1 Digital Watermarking

Digital watermarking techniques broadly seek to generate three different types of wa-

termarks: fragile [305], robust ,[306, 307, 308] and semi-fragile [299, 309, 300]. Fragile and

semi-fragile watermarks are primarily used to certify the integrity and authenticity of image

215



data. Fragile watermarks are used to achieve accurate authentication of digital media, where

even a one-bit change to an image will lead it to fail the certification system. In contrast, robust

watermarks aim to be recoverable under several image manipulations to allow media producers to

assert ownership over their content even if the video is redistributed and modified. Semi-fragile

watermarks combine the advantages of both robust and fragile watermarks and are mainly used

for fuzzy authentication of digital images and identification of image tampering [309].

Prior work has proposed hand-engineered pipelines to embed semi-fragile watermark

information in the spatial[310] and frequency domain of images and videos. Particularly, in the

frequency domain, the watermark can be embedded by modifying the coefficients produced with

transformations such as the discrete cosine transform (DCT) [311, 300] and discrete wavelet

transform (DWT) [312, 302, 313]. For example, during 2D DWT an image is first decomposed

into various frequency channels using a Haar filter. A scaled image is used as the watermark and

inserted into mid frequency wavelet channel. Taking 2D inverse DWT of the altered wavelet

decomposition produces the watermark embedded image. The major drawbacks of traditional

approaches lie in higher visibility of the embedded watermarks, increased distortions in generated

images, and low robustness to compression techniques like JPEG transforms as discussed in

Section 8.4.2. Specifically, since digital images shared over social media are highly compressed

and undergo various lighting and color adjustments, the watermarks generated by DWT and

DCT algorithms break under benign real-world transformations and compression.

More recently, CNNs have been used to provide an end-to-end solution to the water-

marking problem. They replace hand-crafted hiding procedures with neural network encod-

ing [314, 315, 308, 316, 317, 318, 319, 320]. These techniques train end-to-end encoder CNNs

to embed and decode watermarks, which have resulted in lower imperceptibility and more robust

recovery of the watermark data. However, these models are memory intensive and much slower

as compared to DCT based algorithms. In our work, we address the performance limitations

of neural watermarking systems and propose a light-weight framework for both robust and

semi-fragile image watermarking suitable for hardware acceleration platforms.

216



8.1.2 FPGA Accelerated Techniques

There have been several efforts to accelerate neural networks on FPGAs [179, 181, 173,

178]. Equipped with the necessary hardware for basic DNN operations, FPGAs are able to

achieve high parallelism and utilize the properties of neural network computation to remove

unnecessary logic. Some prior efforts have been made in FPGA acceleration of convolutional

autoencoder architectures [321, 322, 323]. While these works implement many sub-blocks used

in neural network computation, we find that they cannot be directly used for an image water-

marking framework because efficient implementations of sub-blocks like 2D upsampling and

separable convolutions with skip-connections are absent. Moreover, existing neural architectures

for image watermarking are not optimized for hardware-software co-design.

Prior work [324, 325, 326, 327] has made significant efforts in accelerating traditional

image watermarking schemes that hide secret information in the frequency domain of images

and rely on DCT and DWT based algorithms. As discussed earlier, while such algorithms are

vastly popular for hardware applications due to its simplicity and low computational overhead,

the resulting watermarked image is often not robust to real-world image transformations. In our

work, we develop the first FPGA accelerator platform for DNN based image watermarking and

steganography that enables robustness to real-world digital image processing and compression

while being selectively fragile to media tampering techniques.

8.1.3 Countering Media Forgery

With the widespread development of deep learning based image and video synthesis

techniques [328, 329, 297, 249], it has become increasingly easier and faster to generate high-

quality convincing fake images/videos such as Deepfakes. Such manipulated media can fuel

misinformation, defame individuals and reduce trust in media. While considerable research

effort has been made in designing CNN based deepfake detectors [298, 256], these techniques

have been shown to hold major security vulnerabilities and can be bypassed by attackers [330].

217



To counter such threats, authors [331, 319, 317] have proposed semi-fragile watermarking as a

solution to perform media authentication and distinguish deepfake media from real media by

verifying a secret watermark embedded in the media. For both fragile and semi-fragile techniques,

a watermark must be inserted when the image is captured, which makes these techniques

dependent on both algorithmic and hardware implementation. If watermark information is

embedded separately in images and videos after it is captured by a device, this method may fail

in situations where tampering is carried out before inserting the signature or watermark. While

the proposed solution to media authentication is to add a verifiable digital signature or watermark

to an image/video using neural networks, prior works [319, 331, 317] do not actively implement

the technology in resource constrained settings or camera hardware. Upon empirical study, we

found that it is challenging to fit such off-the-shelf models [318, 308, 319] on FPGAs since they

were developed without any attention to hardware-software co-design practices and range from

500 k to 2 million parameters for the encoder model. To this end, we design our own DNN based

watermarking system that utilizes depthwise separable convolutions and a parameter efficient

message upsampler to reduce computational overhead while preserving required bit recovery

accuracy, capacity, and imperceptibility.

8.2 FastStamp Methodology

8.2.1 Training Framework

Our goal is to develop a learnable, end-to-end model for image steganography and water-

marking such that the encoder model can embed a message as a visually invisible perturbation in

the image, and the decoder network can extract the message from the watermarked image. We

develop two variants of our training framework to generate robust and semi-fragile watermarks.

A robust watermark is designed to be recoverable when real-world image transformations are

applied. A semi-fragile watermark is designed to be robust to benign image transformations

such as compression, minor color, and contrast adjustments but it should be unrecoverable when

218



FastStamp
Decoder

FastStamp
Decoder

Image Reconstruction Loss Limg

Message Retrieval Loss 
LM= L1(s, sb) - L1(s, sm)

 FastStamp Encoder

Secret Message
s

Benign Transform

Tampering 

Minimize 
Retrieval Error

Maximize 
Retrieval Error

Encoded ImageOriginal Image

Decoded 
Message

sm

sb

Robust

Semi-Fragile

Figure 8.2. FastStamp Encoder-Decoder Training: In both robust and semi-fragile schemes, the
encoder model encourages retrieval from the decoder model under benign transforms. In the
semi-fragile scheme, it maximizes message retrieval error under tampered/malicious transforms.

malicious image transforms such as image tampering and face-swapping are applied. A semi-

fragile watermark is designed to be robust to benign image transformations such as compression

and minor color, and contrast adjustments but it should be unrecoverable when malicious image

transforms such as image tampering and face-swapping are applied.

The encoder network E takes as input an image x and a bit string s ∈ {0,1}L of length L,

and produces an encoded (watermarked) image xw. That is, xw = E(x,s). Depending on our task

of either semi-fragile or robust watermarking, the encoded image goes through the following

operations:

1. Robust watermarking: In this setting, the image goes through a benign image transforma-

tion gb ∼Gb to produce xb = gb(xw). The benign image is then fed to the decoder network,

which predicts the message sb = D(xb). For optimizing secret retrieval during training, we

use the L1 distortion between the predicted and ground-truth bit strings. The decoder is

encouraged to be robust to benign transformations by minimizing the message distortion

L1(s,sb). Therefore the secret retrieval error for an image LM(x) is obtained as follows:

LM(x) = L1(s,sb) (8.1)

219



2. Semi-fragile watermarking: In this setting, the watermarked image goes through two

image transformation functions—one sampled from a set of benign transformations (gb ∼

Gb) and the other sampled from a set of malicious transformations (gm ∼Gm) to produce a

benign image xb = gb(xw) and a malicious image xm = gm(xw). The benign and malicious

watermarked images are then fed to the decoder network, which predicts the messages

sb = D(xb) and sm = D(xm) respectively. The decoder is encouraged to be robust to benign

transformations by minimizing the message distortion L1(s,sb); and fragile for malicious

manipulations by maximizing the error L1(s,sm). Therefore the secret retrieval error for

an image LM(x) is obtained as follows:

LM(x) = L1(s,sb)−L1(s,sm) (8.2)

The watermarked image is encouraged to look visually similar to the original image by

optimizing three image distortion metrics: L1, L2 and Lpips [332] distortions.

Limg(x,xw) = L1(x,xw)+L2(x,xw)+ cpLpips(x,xw) (8.3)

Therefore, the parameters α,β of the encoder and decoder network are trained using

mini-batch gradient descent to optimize the following loss over a distribution of input messages

and images:

Ex,s,gb,gm[Limg(x,xw)+ cMLM(x)] (8.4)

In the above equations, cp, and cM are scalar coefficients for the respective loss terms.

We refer the readers to our supplementary material for the values we use for these coefficients

and other implementation details.

220



8.2.2 Message encoding

The input of our encoder network is a bit string s of length L. This watermarking data

includes a secret message or a hardware signature generated by trusted execution environments

or PUFs. To further ensure message secrecy, we can encrypt the message using a stream cipher

with a secret key that is shared between the encoding and decoding devices. In our work we

embed messages of length 128 bits in an image of size 128×128, which allows embedding 2128

unique messages in each 128×128 image patch.

8.2.3 Model Architecture and Optimization

The encoder model takes as input an image x and a message bit-string s to produce a

watermarked image xw. The encoder model of a typical neural watermarking system follows

a convolutional U-Net architecture comprising several downsampling and upsampling layers

with skip-connections. In prior work [318, 319], the secret message bit-string is first projected

using a learnable linear layer reshaped as a matrix to have the same height and width as the

input image; and then attached as the fourth channel of the input image. The combined input

and secret image then undergo the downsampling and upsampling operations of the U-Net to

produce the watermarked image.

The above described encoder model architecture in prior work [318, 308, 319] has a

large memory footprint and is unsuitable for deployment in resource-constrained settings. To

reduce the model size without compromising on the watermarking performance, we propose the

following architectural optimizations:

Secret Message Upsampler

The secret message upsampler projects the message string s to a matrix that gets attached

as the fourth channel of the input image. A naı̈ve implementation using a linear layer can result

in a large memory footprint since the number of parameters is given by hwL, where h and w

are the input image height and width, respectively, and L is the secret message length. An input

221



image size of 128×128 and a message length of 128, would result in more than two million

parameters. To optimize the number of parameters, we perform the secret upsampling operation

as follows:

1. Project the message s to a vector sproj of size h′w′ using a linear layer.

2. Reshape sproj to a matrix sprojM of dimensions (h′,w′)

3. Upsample sprojM to a matrix of size (h,w) using nearest-neighbour upsampling.

Linear Layer 
Operation

S

128 Length 
Vector 

Sproj

256 Length 
Vector 

SprojM

16 x 16 Matrix

SprojM

128 x 128 Matrix

Reshape
Nearest Neighbor 
2D Upsampling

Figure 8.3. An example of optimized secret message upsampling using linear layer projection
followed by nearest neighbor 2D upsampling.

The nearest-neighbour upsampling operation is parameter-free and computationally more

efficient as compared to matrix-vector multiplication. Through our experiments, we find that

using an (h′,w′) that are much smaller than (h,w) can achieve the same watermarking while

being significantly efficient in both time and memory. For an image of size (128,128) and

message length L = 128, we use h′ = w′ = 16 thus requiring only 32768 parameters. The

upsampled secret gets attached as the fourth channel of the input image and undergoes the U-Net

downsampling and upsampling operations described below.

222



U-Net Downsampling

The downsampling network in U-Net architecture typically comprises 5 to 8 convolutional

blocks. Each block contains a strided convolutional layer, a batch normalization layer, and a non-

linear activation like ReLU or leaky ReLU. The number of output channels of each convolutional

layer increase with the depth of the network, doubling at each step until a maximum value is

reached. To optimize this architecture, we first replace the convolutional layers with depthwise

and point-wise separable convolutional layers [333]. Not only does this optimization reduce the

number of parameters but also reduces the number of floating point operations required in each

layer computation. Next, we optimize a number of output channels of each convolutional block.

In our experiments, we perform a design-space exploration to find that we can substantially

reduce the number of output channels in each layer without compromising on secret retrieval

accuracy and imperceptibility. Our most optimized design uses 5 downsampling layers with

64 output channels in the final separable convolutional layer. Figure 8.4 details the network

architecture and output tensor sizes after each downsampling step.

Downsampling Layers 
(Separable Strided 
Convolution Blocks)

Upsampling Layers 
(Separable Convolutions 
+ 2D UpSampling)

Skip Connections

Input Image + 
Upsampled Secret

Output Image

Bottleneck

Figure 8.4. FastStamp Encoder Architecture. Our encoder network takes as input an image x
and the output of the secret message upsampler sprojM and generates the watermarked image

223



U-Net Upsampling

The upsampling network in U-Net architecture follows a mirror image of the downsam-

pling network. Instead of a regular convolutional layer, each upsampling block typically contains

a transposed convolutional layer. However, transposed convolutional layers have been shown to

introduce unwanted visual artifacts in the generated images [334] and we see the same effect

empirically in our work. To remove such artifacts, we replace the transposed convolution layer

with a separable convolution layer followed up by nearest neighbor 2D upsampling following

the recommendations given by past work [334]. At each upsampling step, the output of the cor-

responding downsampling step is concatenated with the block input to provide skip-connections

which are known to improve the performance of encoder-decoder models. The output of the last

upsampling layer undergoes a tanh activation function to normalize output values between −1

and 1, which are then scaled between 0 and 1 to produce an RGB image. Figure 8.4 details our

encoder network architecture.

FastStamp’s Decoder follows a similar architecture as the encoder but contains 8 down-

sampling and 8 upsampling layers. After the upsampling U-net, the decoder network follows the

inverse architecture of the secret message upsampler to predict the 128-bit message.

8.3 Accelerator Design

8.3.1 Design Overview

Figure 8.5 gives a high-level overview of our FPGA accelerator design. Each neural

network layer is treated as a separate dataflow stage. To be low latency and high throughput,

all weights and biases are stored on-chip. Complex activation functions are implemented via

precomputed lookup tables. The design uses task-level pipelining (i.e., HLS dataflow) for each

layer and streams the data between each dataflow stage using first-in-first-out buffers (FIFOs).

As FIFOs can only be read once, to implement the skip connections, an additional dataflow stage

is used to clone the skip connection data from its input FIFO into two other FIFOs so that it can

224



be read twice for its two datapaths.

On-Chip Memory

FPGA

Message Upsampler

 FastStamp Encoder

Concat 
Module

Input Image 
Stream

Message Stream

Output 
Stream

Figure 8.5. Design overview of FastStamp Accelerator Platform.

8.3.2 Implementation Details

To implement FastStamp on FPGA, we began with using the standard hls4ml [335, 336,

337] framework and added additional libraries to this to support the necessary functionalities

such as depthwise separable convolutions, and nearest-neighbor 2D upsampling, concatenation

layers (i.e., skip connections) which were previously not supported. We create custom sub-blocks

and modify existing implementations with optimizations that better support our model. Our

design is composed of the following 6 main architectural sub-blocks:

Linear Layer

The linear layer in the Secret Message Upsampler module is implemented using efficient

matrix-vector multiplication based on product and sum tree. In order to optimize the design

and make efficient use of the DSP blocks, we use a parallelized approach to convert layer

computations into multiple MAC operations. Multiple rows of the weight matrix are processed

simultaneously by dividing it into chunks. In each round, a chunk of the weights matrix is copied

to one of the weight buffers while the other weight buffer is fed into the dot product modules

together with a copy of the input vector. The iterations end when all rows of the weight matrix

have been processed. Then each dot-product function partitions its input vectors into chunks and

225



concurrently executes MAC operations over the partitioned subsets. The accumulated results of

the subsets are then added together within the reduce sum function to compute the final output.

The reduce sum module performs a tree-based reduction algorithm which further reduces latency.

Nearest-neighbor 2D Upsampling

2D upsampling layers are used in the secret Secret Message Upsampler and the U-Net

Upsampling layers. To upsample a matrix, we iterate through every element in the matrix and

start building the new resized matrix. We use nearest neighbour as our interpolation method, as

it is the least hardware intensive computation available for resizing purposes. We do not utilize

pipelining in this sub-block, as it would cause a drastic increase in resource utilization for this

resizing task while not having a substantial effect on latency. Due to these problems, pipelining

makes this sub-block unscalable. Instead, loop unrolling is utilized to reduce loop iterations,

giving us latency reductions with negligible impact on resource utilization.

Skip Connections

Concatenate layers are used in FastStamp to implement skip connections between upsam-

pling and downsampling layers. These layers contributed towards some of the highest resource

utilization in our design. To realize FastStamp on hardware, efficient support for concatenation

of different sized inputs was implemented. We also distribute resource utilization to BRAM

within these layers due to a large allocation of LUTs. Alongside this, we are able to minimize

latency by pipelining the operations with complete unrolling in these layers.

Separable Convolution

Due to resource limitations, traditional convolution techniques in machine learning

settings are often not feasible on hardware. Recent works [338, 339] have shown that utilizing

separable convolutions significantly reduces the number of multiplications needed. Instead of

traditional convolution, separable convolution layers are used in both U-Net downsampling and

upsampling layers. A separable convolution comprises of a depthwise separable convolution

226



and point-wise convolution operation. The depthwise separable convolution is performed

independently across the input channels and results in the same number of output channels.

A point-wise convolution operation reduces to matrix-vector multiplication along the channel

axis for each spatial cell of the input. We also use a streaming implementation of depthwise

convolution utilizing pipelining with complete loop unrolling, array partitioning, and loop

flattening to achieve minimal latency. We optimize standard point-wise convolution in a similar

manner as our linear layer.

Batch-normalization

Batch-normalization [340] layers are used in U-Net downsampling and upsampling layers.

These layers are used after the separable convolution layers to stabilize the network. Rather

than using this optimization, pipelining, loop unrolling, and array partitioning are enforced to

accelerate the normalization layer. This allows for the batch-normalization output to be used as

an input to skip connections, a feature that cannot be done when fusing layers. Our optimizations

achieve low latency and minimal resource utilization.

Non-linear activations

ReLU and tanh are the two non-linear activation functions are used in FastStamp. The

ReLU function, which is used in the U-net downsampling and upsampling layers computes the

following function for each input x, y = max(0,x). Due to the simplicity of the ReLU activation

function, we use loop unrolling to optimize latency for this operation. The tanh activation

function computes the following function for each input x, y = (ex− e−x)/(ex + e−x). We use

the default tanh implementation in hls4ml which is performed using a pre-computed lookup table

to reduce latency.

227



Table 8.1. Capacity, imperceptibility, and BRA metrics of different watermarking systems
for images of size H×W . High BRA is desirable for benign transforms in both robust and
semi-fragile systems. In semi-fragile systems, a low BRA is desirable for tampering transforms.

Model Size Capacity Imperceptibility BRA (%) – Benign BRA (%) – Tampering

Method # Params H,W L BPP PSNR SSIM None JPG-75 Filtering FaceSwap

DCT (Semi-Fragile) [300] — 128 256 5.2×10−3 22.49 0.871 99.81 56.65 94.62 85.51
HiDDeN (Robust) [308] 411 k 128 30 6.1×10−4 27.57 0.934 97.06 72.71 94.52 —
StegaStamp (Robust) [318] 528 k 400 100 2.0×10−4 29.39 0.925 99.92 99.91 99.84 —

FastStamp (Robust) 45 k 128 128 2.3×10−3 30.65 0.942 100.00 99.84 99.78 —
FastStamp (Semi-Fragile) 45 k 128 128 2.3×10−3 30.64 0.940 100.00 99.74 99.72 51.11

8.4 Experiments and Results

8.4.1 Dataset

We conduct experiments on the CelebA dataset [341] which is a large database of over

200,000 face images of 10,000 unique celebrities. We set aside 1000 images for testing the

watermarking models and split the remaining data into 80% training and 20% validation. All

FastStamp models are trained using images of size 128×128, which are obtained after center-

cropping and resizing the CelebA images. We conduct experiments with message bit length

L = 128.

8.4.2 Evaluation Metrics

For the evaluation of our watermarking techniques, we investigate the following metrics

based on prior works [342, 326].

1. Imperceptibility: We compute peak signal to noise ratio (PSNR) and structural sim-

ilarity index (SSIM) between the watermarked and original images. A higher value of

both these metrics indicates a more imperceptible watermark.

2. Capacity: Capacity measures the amount of information that can be embedded in the

image. We use bits per pixel (BPP) which is calculated as L/(HWC) where L is the

message length and H,W,C indicate the height, width, and channels of the image. Higher

228



BPP values indicate higher capacity.

3. Bit-Recovery Accuracy (BRA): BRA calculates the recovery accuracy of the bit string

s. For robustness, we aim to have a high BRA when benign or intended transformations

such as JPEG compression or color and contrast adjustments are applied. For semi-fragile

watermarking systems, the goal is to have a low BRA when image tampering operations

such as local tampering or FaceSwap are applied while maintaining robustness against

benign transformations.

We compare our watermarking framework against three prior works on image water-

marking: a DCT based semi-fragile watermarking system [301] and two robust neural image

watermarking systems HiDDeN [308] and StegaStamp [318]. To evaluate the robustness and

fragility of our watermarking systems, we perform the following transformations that are unseen

during training:

1. JPEG Compression: Digital images are usually stored in a lossy format such as JPEG.

We compress the watermarked images using JPEG-75 compression and measure the

decoding BRA.

2. Filtering: We apply a set of real-world image filtering operations using the Pilgram

library [343] that simulates photo editing filters that are common on social media. These

include color, contrast, and lighting adjustments.

3. Face Swapping: For evaluating semi-fragile watermarking systems, we simulate im-

age tampering by performing face swapping using the open source implementation of

FaceSwap [249]. A low BRA is desirable against this transform to detect tampering.

8.4.3 Training and Architecture Optimization

Our encoder model follows the depthwise separable convolutional U-Net architecture as

discussed in Section 8.2.3. To find the optimum architecture, we create different-sized versions

229



of the baseline U-Net architecture by reducing the number of channels in each layer by a factor

of 2, 4 and 8. We find that reducing the number of channels by a factor of 4 does not compromise

model performance while being significantly lighter than the base U-Net model.

We train two variants of this optimized design in the robust and semi-fragile settings

using the training technique described in Section 8.2.1. In the robust setting, we simulate

differentiable JPEG compression, Gaussian blur, color, and contrast adjustment as the benign

transforms gb during training. In the semi-fragile setting, in addition to the benign transforms,

we simulate differentiable localized tampering as the malicious transform gm during training.

We train our models for 200 k mini-batch iteration with a fixed learning rate of 1.5× 10−4

using Adam optimizer. Table 8.1 compares our optimized models FastStamp (Robust) and

FastStamp (Semi-Fragile) against prior neural and DCT based image watermarking frameworks.

As compared to prior neural image watermarking and steganography models, FastStamp is

significantly smaller and achieves a similar BRA with slightly improved imperceptibility as

compared to StegaStamp [318] and HiDDeN [308]. The improvement in imperceptible metrics

is achieved by using nearest neighbor 2D upsampling in the U-Net architecture as opposed to

transposed convolutions in prior work.

Table 8.2. Design-space exploration for FPGA implementation of FastStamp on Xilinx
XCVU13P FPGA board. Our optimized 16-bit fixed point implementations fit within the
available resources while maintaining the same correctness metrics as the 32-bit implementation.

Resource Utilization (%) Performance Correctness

Design BRAM FF LUT DSP Clock Latency Throughput BRA PSNR SSIM
Available Resources 94 Mb 3456K 1728K 12288 Period (ns) (# Cycles) (Hz)

FixedPoint-32 >100% 51% >100% >100% — — — 100.0 30.67 0.942
FixedPoint-16 89% 18% >100% 54% — — — 100.0 30.64 0.941
FixedPoint-16-Optimized 59% 14% 72% 53% 5 596823 335 100.0 30.64 0.941

8.4.4 Design Space Exploration

We implement the individual submodules described in Section 8.3.2 using Vivado HLS

for the Xilinx XCVU13P FPGA board. First, we perform a search over the bit-width of the fixed

230



point representation of the network weights and intermediate outputs. Our goal is to find the

lowest bit-width that does not compromise on message recovery and imperceptibility. Figure 8.6

indicates the BRA and PSNR of different bit-width implementations of FastStamp. Based on

this analysis, we use a 16-bit representation with 6 bits for the integer and 10 bits for the decimal

representation. Next, we explore pipelining and loop unrolling options in our Vivado HLS

Fixed point Bit-width

B
R

A

PS
N

R

Figure 8.6. Watermarking success metrics for different fixed-point representations. A high value
for both BRA and PSNR is desirable for accurate message recovery and imperceptibility.

implementation of various submodules. Complete loop unrolling in submodule implementations

was an infeasible design choice for FastStamp since it exceeded the available resources on the

device. We found that partial loop unrolling with factors of 8 and pipelining loops that were

completely unrolled were the most effective optimizations for FastStamp.

While effective pipelining and loop unrolling resulted in a significant reduction in

resource utilization, the LUT requirement of our design still exceeded the available resources

on the device. Reducing the loop unrolling factor was an effective strategy to reduce LUT

utilization but resulted in significant increases in encoding latency. To avoid latency increase,

the next strategy we applied was distributing variables, such as model weights, that were

initially all implemented as LUTs, to the BRAM on our board. We also force operations, such

231



as multiplication in the separable convolution into DSP blocks, which results in lower LUT

utilization. We utilize per layer reuse factor to tune the inference latency versus utilization of

FPGA resources and enable parallelization. This allows us to process multiple MAC operations at

every unit of time. Using all of these optimizations, we are able to store our model entirely in the

on-chip memory of the FPGA and perform low latency encoding while avoiding communication

with off-chip memory. Table 8.2 lists the resource utilization, performance, and correctness of

some of the design choices that led to our most optimized design, FixedPoint-16-Optimized.

Figure 8.7 shows sample outputs of this optimized FPGA implementation and compares them

with the GPU implementation in PyTorch.

Original

FastStamp
(Torch)

FastStamp
(FPGA) 

Figure 8.7. Sample image outputs of FastStamp optimized design and PyTorch implementation
with the original image

8.4.5 Performance and Power Analysis

Table 8.3 compares the inference time and power requirement of our optimized FPGA

implementation with the highly optimized CPU and GPU implementation of FastStamp and

the open source implementations of prior neural watermarking systems. We benchmark the

optimized PyTorch implementation of FastStamp on the Nvidia Tesla V100 GPU. The CPU

232



implementation is a NumPy inference program written by us and optimized fully. We measure

the power consumption for the GPU benchmarks using the Nvidia power measurement tool

(Nvidia-smi) running on Linux operating system, which is invoked during program execution.

For our FPGA implementations, we synthesize our designs using Xilinx Vivado 2020.1. We

then integrate the synthesized modules accompanied by the corresponding peripherals into a

system-level schematic using the Vivado IP Integrator. The frequency is set to 200 MHz, and

power consumption is estimated using the synthesis tool. Our FPGA implementation achieves

∼68× faster speed against prior work’s GPU implementation and ∼10× faster speed against

FastStamp’s GPU implementation at a 3× lower power requirement.

Table 8.3. Power consumption and wall-clock time (in milliseconds) required to generate a
single watermarked image per implementation.

Implementation Time (ms) Power (W)

StegaStamp GPU [318] 205 76
HiDDeN GPU [308] 234 65

FastStamp CPU 326 —
FastStamp GPU 30 59
FastStamp FPGA 3 19

8.5 Conclusion

In this chapter, I describe an efficient image watermarking model that can embed recover-

able digital data into visual media. Our framework matches or even outperforms prior neural

image watermarking and steganography models while utilizing significantly fewer parameters.

By leveraging an efficient secret message upsampling module, depthwise separable convolutions,

and 2-D upsampling, we were able to train a smaller model while preserving success metrics

for watermarking tasks. Finally, we implement our encoder model on an FPGA to achieve 68×

higher throughput as compared to prior GPU implementations. Our implementation allows

watermark embedding directly at the hardware source, which not only secures the image capture

233



and transmission pipeline but also reduces latency in embedding the watermark. In the process of

this implementation, we develop reconfigurable sub-modules which can accelerate convolutional

downsampling and upsampling networks on hardware.

8.6 Acknowledgements

Chapter 8 is a reprint of the material as it appears in FastStamp: Accelerating Neural

Steganography and Digital Watermarking of Images on FPGAs. IEEE/ACM International

Conference on Computer-Aided Design, 2022. Hussain, Shehzeen; Sheybani, Nojan; Neekhara,

Paarth; Zhang, Xinqiao; Duarte, Javier; Koushanfar, Farinaz. The dissertation author was the

primary investigator and author of this paper.

234



Bibliography

[1] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks on speech-to-
text,” in 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018.

[2] P. Neekhara, S. Hussain, P. Pandey, S. Dubnov, J. McAuley, and F. Koushanfar, “Universal
adversarial perturbations for speech recognition systems,” in Proc. Interspeech 2019,
2019.

[3] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imperceptible, robust,
and targeted adversarial examples for automatic speech recognition,” in International
Conference on Machine Learning, 2019.

[4] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. W. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio.”
in SSW, 2016, p. 125.

[5] S. Seferbekov, “https://github.com/selimsef/dfdc deepfake- challenge,” 2020.

[6] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, “Face-
forensics++: Learning to detect manipulated facial images,” in The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing
systems, 2014.

[8] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” in International Conference on Learning
Representations, 2014.

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The
limitations of deep learning in adversarial settings,” in European Symposium on Security
and Privacy (EuroS&P). IEEE, 2016.

[10] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 2017.

235



[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” stat, 2015.

[12] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in
2017 IEEE Symposium on Security and Privacy (sp). IEEE, 2017, pp. 39–57.

[14] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramèr, A. Prakash,
and T. Kohno, “Physical adversarial examples for object detectors,” in 12th USENIX
Workshop on Offensive Technologies (WOOT 18). USENIX Association, 2018.

[15] Y. Shi, S. Wang, and Y. Han, “Curls & whey: Boosting black-box adversarial attacks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[16] Y. Qin, N. Carlini, G. Cottrell, I. Goodfellow, and C. Raffel, “Imperceptible, robust, and
targeted adversarial examples for automatic speech recognition,” in Proceedings of the
36th International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov,
Eds., vol. 97. Long Beach, California, USA: PMLR, 2019, pp. 5231–5240.

[17] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, “Hotflip: White-box adversarial examples
for text classification,” in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2018.

[18] Y. Belinkov and Y. Bisk, “Synthetic and natural noise both break neural machine transla-
tion,” in International Conference on Learning Representations, 2018.

[19] P. Neekhara, S. Hussain, S. Dubnov, and F. Koushanfar, “Adversarial reprogramming of
text classification neural networks,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, 2019.

[20] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples,” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, 2018.

[21] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841, 2019.

[22] B. Ru, A. Cobb, A. Blaas, and Y. Gal, “Bayesopt adversarial attack,” in International
Conference on Learning Representations, 2019.

[23] W. Wu, Y. Su, X. Chen, S. Zhao, I. King, M. R. Lyu, and Y.-W. Tai, “Boosting the
transferability of adversarial samples via attention,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 1161–1170.

236



[24] Y. Lu, Y. Jia, J. Wang, B. Li, W. Chai, L. Carin, and S. Velipasalar, “Enhancing cross-
task black-box transferability of adversarial examples with dispersion reduction,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 940–949.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” Stat, 2015.

[26] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” in
5th International Conference on Learning Representations, ICLR, 2017.

[27] V. Chandrasekaran, C. Gao, B. Tang, K. Fawaz, S. Jha, and S. Banerjee, “Face-off:
Adversarial face obfuscation,” Proceedings on Privacy Enhancing Technologies, 2021.

[28] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao, “Fawkes: Protecting
privacy against unauthorized deep learning models,” in 29th USENIX Security Symposium,
2020.

[29] “Fawkes press release,” in https://sandlab.cs.uchicago.edu/fawkes/press.

[30] “The new york times,” in https://www.nytimes.com/2020/08/03/technology/
fawkes-tool-protects-photos-from-facial-recognition.html.

[31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-
ing models resistant to adversarial attacks,” in International Conference on Learning
Representations, 2018.

[32] S. Baluja and I. Fischer, “Learning to attack: Adversarial transformation networks,” in
Proceedings of AAAI, 2018.

[33] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effective-
ness of deep features as a perceptual metric,” in CVPR, 2018.

[34] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical Image Computing and Computer-Assisted Intervention –
MICCAI. Springer International Publishing, 2015.

[35] M. E. Kandel, Y. R. He, Y. J. Lee, T. H.-Y. Chen, K. M. Sullivan, O. Aydin, M. T. A. Saif,
H. Kong, N. Sobh, and G. Popescu, “Phase imaging with computational specificity (pics)
for measuring dry mass changes in sub-cellular compartments,” Nature communications,
2020.

[36] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” CVPR, 2017.

[37] S. Hussain, T. Huster, C. Mesterharm, P. Neekhara, and F. Koushanfar, “Reface: Real-
time adversarial attacks on face recognition systems,” in 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2023.

237



[38] S. Hussain, P. Neekhara, M. Jere, F. Koushanfar, and J. McAuley, “Adversarial deepfakes:
Evaluating vulnerability of deepfake detectors to adversarial examples,” in WACV, 2021.

[39] S. Hussain, P. Neekhara, B. Dolhansky, J. Bitton, C. Canton Ferrer, J. McAuley, and
F. Koushanfar, “Exposing vulnerabilities of deepfake detection systems with robust at-
tacks,” Digital Threats: Research and Practice (DTRAP), 2022.

[40] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial pertur-
bations,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[41] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere
embedding for face recognition,” 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6738–6746, 2017.

[42] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting 10,000
classes,” 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[43] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 815–823, 2015.

[44] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for
deep face recognition,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019.

[45] S. Komkov and A. Petiushko, “Advhat: Real-world adversarial attack on arcface face id
system,” in 2020 25th International Conference on Pattern Recognition (ICPR), 2021.

[46] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. Association for
Computing Machinery, 2016.

[47] ——, “A general framework for adversarial examples with objectives,” ACM Transactions
on Privacy and Security (TOPS), 2019.

[48] A. Rajabi, R. B. Bobba, M. Rosulek, C. V. Wright, and W.-c. Feng, “On the (im) practi-
cality of adversarial perturbation for image privacy,” Proceedings on Privacy Enhancing
Technologies, pp. 85–106, 2021.

[49] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient decision-based
black-box adversarial attacks on face recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[50] A. Rozsa, M. Günther, and T. E. Boult, “Lots about attacking deep features,” in IEEE
International Joint Conference on Biometrics (IJCB), 2017, pp. 168–176.

238



[51] Y. Xu, K. Raja, R. Ramachandra, and C. Busch, “Adversarial attacks on face recognition
systems,” in Handbook of Digital Face Manipulation and Detection. Springer, Cham,
2022.

[52] V. Cherepanova, M. Goldblum, H. Foley, S. Duan, J. P. Dickerson, G. Taylor, and
T. Goldstein, “Lowkey: Leveraging adversarial attacks to protect social media users
from facial recognition,” in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=hJmtwocEqzc

[53] J. Byun, H. Go, and C. Kim, “Geometrically adaptive dictionary attack on face-
recognition,” in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2022.

[54] A. Pinkus, “Approximation theory of the mlp model in neural networks,” Acta Numerica,
vol. 8, pp. 143 – 195, 1999.

[55] D. Abdelhafiz, S. Nabavi, R. Ammar, C. Yang, and J. Bi, “Residual deep learning system
for mass segmentation and classification in mammography,” Proceedings of the 10th
ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics, 2019.

[56] H. Li, D. Chen, B. Nailon, M. E. Davies, and D. Laurenson, “Improved breast mass seg-
mentation in mammograms with conditional residual u-net,” ArXiv, vol. abs/1808.08885,
2018.

[57] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,”
ArXiv, vol. abs/1603.05027, 2016.

[58] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” in AAAI, 2017.

[59] Q. Cao, L. Shen, W. Xie, O. Parkhi, and A. Zisserman, “Vggface2: A dataset for recognis-
ing faces across pose and age,” 2018 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018), 2018.

[60] H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large face datasets,” in
IEEE international conference on image processing (ICIP). IEEE, 2014.

[61] “Umdfaces dataset,” in http://umdfaces.io/.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2015.

[63] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical estimation for
probabilistic functions of markov processes and to a model for ecology,” Bull. Amer. Math.
Soc., 1967.

239

https://openreview.net/forum?id=hJmtwocEqzc


[64] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring
in the statistical analysis of probabilistic functions of markov chains,” The annals of
mathematical statistics, 1970.

[65] A. Acero, l. Deng, T. Kristjansson, and J. Zhang, “Hmm adaptation using vector taylor
series for noisy speech recognition,” 2000.

[66] S. Ahadi and P. C. Woodland, “Combined bayesian and predictive techniques for rapid
speaker adaptation of continuous density hidden markov models,” Computer speech &
language, 1997.

[67] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “Maximum mutual information estima-
tion of hidden markov model parameters for speech recognition,” in ICASSP’86. IEEE
International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1986.

[68] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech
recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[69] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q. Cheng, and G. Chen, “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in International conference on machine learning, ICML, 2016.

[70] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. Cobo, F. Stimberg, N. Casagrande, D. Grewe,
S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves, H. King, T. Walters,
D. Belov, and D. Hassabis, “Parallel WaveNet: Fast high-fidelity speech synthesis,” in
Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan,
Stockholm Sweden: PMLR, 2018, pp. 3918–3926.

[71] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech: Scaling up end-to-end
speech recognition,” CoRR, vol. abs/1412.5567, 2014.

[72] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” CoRR, vol. abs/1312.6199, 2013. [Online].
Available: http://arxiv.org/abs/1312.6199

[73] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples,” CoRR, 2016. [Online].
Available: http://arxiv.org/abs/1605.07277

[74] M. Alzantot, B. Balaji, and M. B. Srivastava, “Did you hear that? adversarial examples
against automatic speech recognition,” CoRR, vol. abs/1801.00554, 2018. [Online].
Available: http://arxiv.org/abs/1801.00554

240

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1801.00554


[75] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and W. Zhou,
“Hidden voice commands,” in 25th USENIX Security Symposium (USENIX Security 16).
Austin, TX: USENIX Association, 2016.

[76] H. Yakura and J. Sakuma, “Robust audio adversarial example for a physical attack,”
CoRR, vol. abs/1810.11793, 2018. [Online]. Available: http://arxiv.org/abs/1810.11793

[77] D. Iter, J. Huang, and M. Jermann, “Generating adversarial examples for speech recogni-
tion,” 2017.

[78] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles: Exploiting the gap
between human and machine speech recognition,” in 9th USENIX Workshop on Offensive
Technologies (WOOT 15). Washington, D.C.: USENIX Association, 2015.

[79] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recurrent neural networks,” in ICML.
ACM, 2006.

[80] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial attacks
against automatic speech recognition systems via psychoacoustic hiding,” arXiv preprint
arXiv:1808.05665, 2018.

[81] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE Trans. Pattern
Anal. Mach. Intell., Jun. 2007.

[82] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2574–2582.

[83] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”
in Artificial intelligence safety and security. Chapman and Hall/CRC, 2018, pp. 99–112.

[84] “Project deepspeech,” https://github.com/mozilla/DeepSpeech.

[85] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing. San
Diego, CA, USA: California Technical Publishing, 1997.

[86] “Speech to text wavenet,” https://github.com/buriburisuri/speech-to-text-wavenet.

[87] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical
black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia
conference on computer and communications security. ACM, 2017.

[88] N. Papernot, P. D. McDaniel, A. Swami, and R. E. Harang, “Crafting adversarial input
sequences for recurrent neural networks,” CoRR, vol. abs/1604.08275, 2016. [Online].
Available: http://arxiv.org/abs/1604.08275

[89] W. Hu and Y. Tan, “Black-box attacks against rnn based malware detection algorithms,”
in Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

241

http://arxiv.org/abs/1810.11793
https://github.com/mozilla/DeepSpeech
https://github.com/buriburisuri/speech-to-text-wavenet
http://arxiv.org/abs/1604.08275


[90] P. Yang, J. Chen, C. Hsieh, J. Wang, and M. I. Jordan, “Greedy attack and gumbel attack:
Generating adversarial examples for discrete data,” CoRR, vol. abs/1805.12316, 2018.
[Online]. Available: http://arxiv.org/abs/1805.12316

[91] G. F. Elsayed, I. J. Goodfellow, and J. Sohl-Dickstein, “Adversarial reprogramming of
neural networks,” in International Conference on Learning Representations, ICLR, 2019.

[92] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[93] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax.”
CoRR, vol. abs/1611.01144, 2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/
corr/corr1611.html#JangGP16

[94] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, no. 3-4, May 1992. [Online].
Available: https://doi.org/10.1007/BF00992696

[95] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli,
“Evasion attacks against machine learning at test time,” in Joint European conference on
machine learning and knowledge discovery in databases. Springer, 2013.

[96] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning: Transfer learn-
ing from unlabeled data,” in Proceedings of the Twenty-fourth International Conference
on Machine Learning, 2007.

[97] C. B. Do and A. Y. Ng, “Transfer learning for text classification,” Advances in neural
information processing systems, vol. 18, 2005.

[98] T. Semwal, G. Mathur, P. Yenigalla, and S. B. Nair, “A practitioners’ guide to
transfer learning for text classification using convolutional neural networks,” CoRR, vol.
abs/1801.06480, 2018. [Online]. Available: http://arxiv.org/abs/1801.06480

[99] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969033.
2969173

[100] M. J. Kusner and J. M. Hernández-Lobato, “GANS for sequences of discrete elements
with the gumbel-softmax distribution,” CoRR, vol. abs/1611.04051, 2016.

[101] J. Gu, D. J. Im, and V. O. K. Li, “Neural machine translation with gumbel greedy decoding,”
CoRR, vol. abs/1706.07518, 2017.

[102] E. Gumbel, Statistical theory of extreme values and some practical applications: a series
of lectures, ser. Applied mathematics series. U. S. Govt. Print. Office, 1954. [Online].
Available: https://books.google.com/books?id=SNpJAAAAMAAJ

242

http://arxiv.org/abs/1805.12316
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JangGP16
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JangGP16
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1801.06480
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://dl.acm.org/citation.cfm?id=2969033.2969173
https://books.google.com/books?id=SNpJAAAAMAAJ


[103] P. Bachman and D. Precup, “Data generation as sequential decision making,” in Advances
in Neural Information Processing Systems, 2015, pp. 3249–3257.

[104] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. C. Courville, and
Y. Bengio, “An actor-critic algorithm for sequence prediction,” CoRR, vol. abs/1607.07086,
2016.

[105] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with
policy gradient.” CoRR, vol. abs/1609.05473, 2016.

[106] S. Robertson, “Classifying names with a character-level rnn - pytroch tutorial,” https:
//pytorch.org/tutorials/intermediate/char rnn classification tutorial.html, 2017.

[107] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of the 19th International
Conference on Computational Linguistics - Volume 1, ser. COLING ’02. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2002.

[108] N. A. Abdulla, N. A. Ahmed, M. A. Shehab, and M. Al-Ayyoub, “Arabic sentiment
analysis: Lexicon-based and corpus-based,” in 2013 IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies (AEECT), Dec 2013.

[109] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Portland,
Oregon, USA, June 2011.

[110] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9,
no. 8, Nov. 1997. [Online]. Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[111] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm networks for improved
phoneme classification and recognition,” in Proceedings of the 15th International Confer-
ence on Artificial Neural Networks: Formal Models and Their Applications - Volume Part
II, ser. ICANN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 799–804.

[112] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2014.

[113] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International
Conference on Learning Representations, ICLR, 2015.

[114] E. Kloberdanz, “Reprogramming of neural networks: A new and improved machine
learning technique,” Masters Thesis, 2020.

[115] Y.-Y. Tsai, P.-Y. Chen, and T.-Y. Ho, “Transfer learning without knowing: Reprogramming
black-box machine learning models with scarce data and limited resources,” in ICML,
2020.

243

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735


[116] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” in Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2009.

[117] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[118] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in NIPS, 2017.

[119] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fastspeech: Fast, robust
and controllable text to speech,” in Neurips, 2019.

[120] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image
is worth 16x16 words: Transformers for image recognition at scale,” in International
Conference on Learning Representations, ICLR, 2021.

[121] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, 1998.

[122] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun,
“Physically realizable adversarial examples for lidar object detection,” in CVPR, 2020.

[123] S. Hussain, P. Neekhara, S. Dubnov, J. McAuley, and F. Koushanfar, “Waveguard:
Understanding and mitigating audio adversarial examples,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 2021. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/hussain

[124] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015.

[125] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
CVPR, 2016.

[126] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in CVPR, 2016.

[127] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in International Conference on Machine Learning, 2019, pp. 6105–6114.

[128] M. O. Noordewier, G. G. Towell, and J. W. Shavlik, “Training knowledge-based neural
networks to recognize genes in dna sequences,” in NIPS, 1990.

[129] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

244

http://yann.lecun.com/exdb/mnist/
https://www.usenix.org/conference/usenixsecurity21/presentation/hussain
http://archive.ics.uci.edu/ml


[130] D. Pokholok, C. Harbison, S. Levine, M. Cole, N. Hannett, T. Lee, G. Bell, K. Walker,
P. Rolfe, E. Herbolsheimer, J. Zeitlinger, F. Lewitter, D. Gifford, and R. Young, “Genome-
wide map of nucleosome acetylation and methylation in yeast,” Cell, 2005.

[131] N. Ngoc Giang, V. Tran, D. Ngo, D. Phan, F. Lumbanraja, M. R. Faisal, B. Abapihi,
M. Kubo, and K. Satou, “Dna sequence classification by convolutional neural network,”
Journal of Biomedical Science and Engineering, 2016.

[132] A. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani, “Gaussian process
behaviour in wide deep neural networks,” in International Conference on Learning
Representations, ICLR, 2018.

[133] J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri, “Deep
neural networks as gaussian processes,” in International Conference on Learning Repre-
sentations, ICLR, 2018.

[134] L. R. Rabiner and R. W. Schafer, “Introduction to digital speech processing,” Foundations
and Trends® in Signal Processing, 2007.

[135] J. Shen, P. Nguyen, Y. Wu, Z. Chen, M. X. Chen, Y. Jia, A. Kannan, T. N. Sainath, and
Y. Cao, “Lingvo: a modular and scalable framework for sequence-to-sequence modeling,”
ArXiv, vol. abs/1902.08295, 2019.

[136] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang, H. Huang, X. Wang, and
C. A. Gunter, “Commandersong: A systematic approach for practical adversarial voice
recognition,” in 27th {USENIX} Security Symposium ({USENIX} Security 18), 2018.

[137] Y. Chen, X. Yuan, J. Zhang, Y. Zhao, S. Zhang, K. Chen, and X. Wang, “Devil’s whisper:
A general approach for physical adversarial attacks against commercial black-box speech
recognition devices,” in 29th USENIX Security Symposium (USENIX Security 20). Boston,
MA: USENIX Association, 2020.

[138] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[139] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial images using
input transformations,” in International Conference on Learning Representations, ICLR,
2018.

[140] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets robustness,”
Artificial Intelligence, Communication, Imaging, Navigation, Sensing Systems, 2019.

[141] F. Khalid, H. Ali, H. Tariq, M. A. Hanif, S. Rehman, R. Ahmed, and M. Shafique,
“Qusecnets: Quantization-based defense mechanism for securing deep neural network
against adversarial attacks,” in 25th International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2019.

245



[142] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting adversarial image
examples in deep neural networks with adaptive noise reduction,” IEEE Transactions on
Dependable and Secure Computing, 2018.

[143] K. Rajaratnam, K. Shah, and J. Kalita, “Isolated and ensemble audio preprocessing
methods for detecting adversarial examples against automatic speech recognition,” in
Conference on Computational Linguistics and Speech Processing (ROCLING), 2018.

[144] Z. Yang, P. Y. Chen, B. Li, and D. Song, “Characterizing audio adversarial examples using
temporal dependency,” in 7th International Conference on Learning Representations,
ICLR 2019, 2019.

[145] Y. Qin, N. Frosst, S. Sabour, C. Raffel, G. Cottrell, and G. Hinton, “Detecting and diagnos-
ing adversarial images with class-conditional capsule reconstructions,” in International
Conference on Learning Representations, 2020.

[146] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects through
randomization,” in International Conference on Learning Representations, 2018.

[147] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Goodfel-
low, A. Madry, and A. Kurakin, “On evaluating adversarial robustness,” arXiv preprint
arXiv:1902.06705, 2019.

[148] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing ten
detection methods,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, 2017.

[149] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to adversarial
example defenses,” 2020.

[150] C. Herley and P. C. Van Oorschot, “Sok: Science, security and the elusive goal of security
as a scientific pursuit,” in 2017 IEEE symposium on security and privacy (SP). IEEE,
2017.

[151] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial ex-
amples,” in Proceedings of the 35th International Conference on Machine Learning,
2018.

[152] H. Kwon, H. Yoon, and K.-W. Park, “Poster: Detecting audio adversarial example through
audio modification,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019.

[153] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly,” in The IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

246



[154] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep
neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[155] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, and R. Skerrv-Ryan, “Natural TTS synthesis by conditioning WaveNet on mel
spectrogram predictions,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018.

[156] P. Neekhara, C. Donahue, M. Puckette, S. Dubnov, and J. McAuley, “Expediting tts
synthesis with adversarial vocoding,” Proc. Interspeech 2019, 2019.

[157] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang, and J. Xiao, “Flow-tts: A non-autoregressive
network for text to speech based on flow,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020.

[158] Bhadragiri Jagan Mohan and Ramesh Babu N., “Speech recognition using mfcc and dtw,”
in 2014 International Conference on Advances in Electrical Engineering (ICAEE), 2014.

[159] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-kaldi speech recognition toolkit,”
in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019.

[160] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurement of the
psychological magnitude pitch,” The Journal of the Acoustical Society of America, 1937.

[161] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, “Fast signal reconstruction from
magnitude STFT spectrogram based on spectrogram consistency,” in Proc. International
Conference on Digital Audio Effects, 2010.

[162] D. W. Griffin, Jae, S. Lim, and S. Member, “Signal estimation from modified short-time
Fourier transform,” IEEE Trans. Acoustics, Speech and Sig. Proc, 1984.

[163] Y. He, TensorFlow implementation of Griffin-Lim algorithm, 2017. [Online]. Available:
https://github.com/candlewill/Griffin lim

[164] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang,
and R. Skerrv-Ryan, “Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions,” in International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4779–4783.

[165] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J. Raiman, and Y. Zhou,
“Deep voice 2: Multi-speaker neural text-to-speech,” in Advances in neural information
processing systems, 2017, pp. 2962–2970.

[166] K. Qian, Y. Zhang, S. Chang, X. Yang, D. A. F. Florêncio, and M. Hasegawa-Johnson,
“Speech enhancement using bayesian wavenet,” in INTERSPEECH, 2017.

247

https://github.com/candlewill/Griffin_lim


[167] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves, and
K. Kavukcuoglu, “Neural machine translation in linear time,” CoRR, vol. abs/1610.10099,
2016.

[168] Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick, “Improved variational au-
toencoders for text modeling using dilated convolutions,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
3881–3890.

[169] R. J. Williams and D. Zipser, “Backpropagation,” Y. Chauvin and D. E. Rumelhart, Eds.
L. Erlbaum Associates Inc., 1995, ch. Gradient-based Learning Algorithms for Recurrent
Networks and Their Computational Complexity, pp. 433–486.

[170] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271, 2018.

[171] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently trainable text-to-speech system
based on deep convolutional networks with guided attention,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp.
4784–4788.

[172] T. L. Paine, P. Khorrami, S. Chang, Y. Zhang, P. Ramachandran, M. A. Hasegawa-Johnson,
and T. S. Huang, “Fast wavenet generation algorithm,” arXiv preprint arXiv:1611.09482,
2016.

[173] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural networks for
efficient fpga implementation,” in Field-Programmable Custom Computing Machines
(FCCM), 2017 IEEE 25th Annual International Symposium on. IEEE, 2017, pp. 85–92.

[174] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and
H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 2016, p. 17.

[175] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, “Fpga-based low-power speech
recognition with recurrent neural networks,” in 2016 IEEE International Workshop on
Signal Processing Systems (SiPS). IEEE, 2016, pp. 230–235.

[176] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, H. Yang,
and W. B. J. Dally, “Ese: Efficient speech recognition engine with sparse lstm on fpga,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’17. ACM, 2017, pp. 75–84.

[177] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “Fpga acceleration of recurrent neural
network based language model,” in Proceedings of the 2015 IEEE 23rd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines, ser. FCCM ’15.
IEEE Computer Society, 2015, pp. 111–118.

248



[178] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar, “Fastwave:
Accelerating autoregressive convolutional neural networks on fpga,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[179] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accel-
erator design for deep convolutional neural networks,” in Proceedings of ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 2015.

[180] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and E. S. Chung, “Accelerating
deep convolutional neural networks using specialized hardware,” Microsoft Research
Whitepaper, vol. 2, no. 11, 2015.

[181] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo, and
Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale convo-
lutional neural networks,” in Proceedings of ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2016, pp. 16–25.

[182] C. Shea, A. Page, and T. Mohsenin, “Scalenet: A scalable low power accelerator for
real-time embedded deep neural networks,” in Proceedings of Great Lakes Symposium on
VLSI. ACM, 2018, pp. 129–134.

[183] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long short-term
memory recurrent neural networks,” 2017.

[184] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient cnn imple-
mentation on a deeply pipelined fpga cluster,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, ser. ISLPED ’16. New York, NY,
USA: Association for Computing Machinery, 2016.

[185] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song, Y. Wang,
and H. Yang, “Going deeper with embedded fpga platform for convolutional neural
network,” ser. FPGA ’16. New York, NY, USA: Association for Computing Machinery,
2016.

[186] M. Samragh, M. Javaheripi, and F. Koushanfar, “Encodeep: Realizing bit-flexible encoding
for deep neural networks,” ACM Trans. Embed. Comput. Syst., 2020.

[187] K. G., S. Z., J. Y., Y. Wang, and H. Y., “A survey of fpga based neural network accelerator,”
ACM Transactions on Reconfigurable Technology and Systems, 2017.

[188] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello, “Snowflake: An efficient
hardware accelerator for convolutional neural networks,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), 2017.

[189] M. Carreras, G. Deriu, L. Raffo, L. Benini, and P. Meloni, “Optimizing temporal convo-
lutional network inference on fpga-based accelerators,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 10, pp. 348–361, 2020.

249



[190] A. van den Oord, T. Walters, and T. Strohman, “Wavenet launches in the google assistant,”
2017. [Online]. Available: https://deepmind.com/blog/wavenet-launches-google-assistant/

[191] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda, “Speaker-dependent
wavenet vocoder,” in INTERSPEECH, 2017.

[192] L.-J. Liu, Z.-H. Ling, Y. Jiang, M. Zhou, and L.-R. Dai, “Wavenet vocoder with limited
training data for voice conversion,” in Proc. Interspeech, 2018, pp. 1983–1987.

[193] G. Saon, G. Kurata, T. Sercu, K. Audhkhasi, S. Thomas, D. Dimitriadis, X. Cui, B. Ramab-
hadran, M. Picheny, L.-L. Lim, B. Roomi, and P. Hall, “English conversational telephone
speech recognition by humans and machines,” in Proc. Interspeech 2017, 2017, pp.
132–136.

[194] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv
preprint arXiv:1511.07122, 2015.

[195] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp.
834–848, 2018.

[196] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, “Efficient and accurate approximations of
nonlinear convolutional networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 1984–1992.

[197] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, and S. Song, “Going
deeper with embedded fpga platform for convolutional neural network,” in Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
ACM, 2016, pp. 26–35.

[198] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Prentice-Hall, Inc.,
1993.

[199] D. Saito, K. Yamamoto, N. Minematsu, and K. Hirose, “One-to-many voice conversion
based on tensor representation of speaker space,” in Interspeech, 2011.

[200] S. H. Mohammadi and A. Kain, “An overview of voice conversion systems,” in Speech
Communication. Elsevier, 2017.

[201] J. Chou and H. Y. Lee, “One-shot voice conversion by separating speaker and content
representations with instance normalization,” Interspeech, 2019.

[202] K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-Johnson, “Autovc: Zero-shot
voice style transfer with only autoencoder loss,” in ICML. PMLR, 2019.

[203] H. S. Choi, J. Lee, W. Kim, J. Lee, H. Heo, and K. Lee, “Neural analysis and synthesis:
Reconstructing speech from self-supervised representations,” NeurIPS, 2021.

250

https://deepmind.com/blog/wavenet-launches-google-assistant/


[204] E. Casanova, J. Weber, C. Shulby, A. Junior, E. Gölge, and M. A. Ponti, “Yourtts:
Towards zero-shot multi-speaker tts and zero-shot voice conversion for everyone,” in
ICML. PMLR, 2022.

[205] S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural voice cloning with
a few samples,” in NeurIPS, 2018. [Online]. Available: http://papers.nips.cc/paper/
8206-neural-voice-cloning-with-a-few-samples.pdf

[206] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, z. Chen, P. Nguyen, R. Pang,
I. Lopez Moreno, and Y. Wu, “Transfer learning from speaker verification to multispeaker
text-to-speech synthesis,” in NeurIPS, 2018.

[207] Y. Wang, D. Stanton, Y. Zhang, R. Skerry-Ryan, E. Battenberg, J. Shor, Y. Xiao, F. Ren,
Y. Jia, and R. A. Saurous, “Style tokens: Unsupervised style modeling, control and
transfer in end-to-end speech synthesis,” arXiv:1803.09017, 2018. [Online]. Available:
https://arxiv.org/abs/1803.09017

[208] A. De Cheveigné and H. Kawahara, “Yin, a fundamental frequency estimator for speech
and music,” in The Journal of the Acoustical Society of America, 2002.

[209] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized end-to-end loss for speaker
verification,” arXiv:1710.10467, 2017.

[210] G. Louppe, Resemblyzer - https://github.com/resemble-ai/Resemblyzer/, 2019. [Online].
Available: https://github.com/resemble-ai/Resemblyzer/

[211] R. Valle, J. Li, R. Prenger, and B. Catanzaro, “Mellotron: Multispeaker expressive voice
synthesis by conditioning on rhythm, pitch and global style tokens,” ICASSP, 2020.

[212] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A flow-based generative network for
speech synthesis,” in ICASSP, 2018.

[213] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, “LibriTTS:
A Corpus Derived from LibriSpeech for Text-to-Speech,” in INTERSPEECH, 2019.
[Online]. Available: http://dx.doi.org/10.21437/Interspeech.2019-2441

[214] G. Louppe, “Master thesis : Automatic multispeaker voice cloning,” 2019.

[215] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb: Large-scale speaker
verification in the wild,” Computer Science and Language, 2019.

[216] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep speaker recognition,” in
INTERSPEECH, 2018.

[217] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus based
on public domain audio books,” in ICASSP. IEEE, 2015.

[218] K. Ito, “The lj speech dataset,” https://keithito.com/LJ-Speech-Dataset/, 2017.

251

http://papers.nips.cc/paper/8206-neural-voice-cloning-with-a-few-samples.pdf
http://papers.nips.cc/paper/8206-neural-voice-cloning-with-a-few-samples.pdf
https://arxiv.org/abs/1803.09017
https://github.com/resemble-ai/Resemblyzer/
http://dx.doi.org/10.21437/Interspeech.2019-2441
https://keithito.com/LJ-Speech-Dataset/


[219] S. J. King and V. Karaiskos, “The blizzard challenge 2013,” in In Blizzard Challenge
Workshop, 2013.

[220] T. Nakatani, S. Amano, T. Irino, K. Ishizuka, and T. Kondo, “A method for fundamental
frequency estimation and voicing decision: Application to infant utterances recorded in
real acoustical environments,” Speech Communication, 2008.

[221] W. Chu and A. Alwan, “Reducing f0 frame error of f0 tracking algorithms under noisy
conditions with an unvoiced/voiced classification frontend,” in ICASSP. IEEE, 2009.

[222] K. Lakhotia, E. Kharitonov, W. Hsu, Y. Adi, A. Polyak, B. Bolte, T. Nguyen, J. Copet,
A. Baevski, and A. Mohamed, “On generative spoken language modeling from raw audio,”
Transactions of the Association for Computational Linguistics, 2021.

[223] A. Polyak, Y. Adi, J. Copet, E. Kharitonov, K. Lakhotia, W. Hsu, A. Mohamed, and
E. Dupoux, “Speech resynthesis from discrete disentangled self-supervised representa-
tions,” in Interspeech, 2021.

[224] Y. Lin, C. M. Chien, J. H. Lin, H. Lee, and L. S. Lee, “Fragmentvc: Any-to-any voice con-
version by end-to-end extracting and fusing fine-grained voice fragments with attention,”
in ICASSP. IEEE, 2021.

[225] W. C. Huang, S. W. Yang, T. Hayashi, H. Y. Lee, S. Watanabe, and T. Toda, “S3prl-vc:
Open-source voice conversion framework with self-supervised speech representations,” in
ICASSP. IEEE, 2022.

[226] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework for self-
supervised learning of speech representations,” NeurIPS, 2020.

[227] A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang,
and Y. Wu, “Conformer: Convolution-augmented transformer for speech recognition,”
Interspeech, 2020.

[228] S. Hussain, P. Neekhara, J. Huang, J. Li, and B. Ginsburg, “Ace-vc: Adaptive and
controllable voice conversion using explicitly disentangled self-supervised speech repre-
sentations,” in ICASSP. IEEE, 2023.

[229] S. Hussain, V. Nguyen, S. Zhang, and E. Visser, “Multi-task voice activated framework
using self-supervised learning,” in ICASSP. IEEE, 2022.

[230] Y. Gu, Z. Zhang, X. Yi, and X. Zhao, “Mediumvc: Any-to-any voice conversion using
synthetic specific-speaker speeches as intermedium features,” arXiv:2110.02500, 2021.

[231] K. Qian, Y. Zhang, H. Gao, J. Ni, C. Lai, D. Cox, M. Hasegawa-Johnson, and S. Chang,
“Contentvec: An improved self-supervised speech representation by disentangling speak-
ers,” in International Conference on Machine Learning. PMLR, 2022.

252



[232] H.-S. Choi, J. Yang, J. Lee, and H. Kim, “NANSY++: Unified voice synthesis with neural
analysis and synthesis,” in International Conference on Learning Representations, ICLR,
2023.

[233] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep bidirectional long
short-term memory based recurrent neural networks,” in ICASSP, 2015.

[234] L.-H. Chen, Z.-H. Ling, L.-J. Liu, and L.-R. Dai, “Voice conversion using deep neural
networks with layer-wise generative training,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 22, no. 12, pp. 1859–1872, 2014.

[235] L. Sun, K. Li, H. Wang, S. Kang, and H. Meng, “Phonetic posteriorgrams for many-to-one
voice conversion without parallel data training,” in ICME, 2016.

[236] X. Tian, J. Wang, H. Xu, E. S. Chng, and H. Li, “Average modeling approach to voice
conversion with non-parallel data.” in Odyssey, 2018.

[237] N. R. Koluguri, T. Park, and B. Ginsburg, “Titanet: Neural model for speaker repre-
sentation with 1d depth-wise separable convolutions and global context,” in ICASSP,
2022.

[238] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere
embedding for face recognition,” in CVPR. IEEE, 2017.

[239] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks for efficient and
high fidelity speech synthesis,” NeurIPS, 2020.

[240] A. Łańcucki, “Fastpitch: Parallel text-to-speech with pitch prediction,” in ICASSP. IEEE,
2021.

[241] J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi,
V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin,
A. Mohamed, and E. Dupoux, “Libri-light: A benchmark for asr with limited or no
supervision,” in ICASSP, 2020.

[242] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International
Conference on Learning Representations, ICLR, 2019.

[243] S. Kriman, S. Beliaev, B. Ginsburg, J. Huang, O. Kuchaiev, V. Lavrukhin, R. Leary, J. Li,
and Y. Zhang, “Quartznet: Deep automatic speech recognition with 1d time-channel
separable convolutions,” in ICASSP. IEEE, 2020.

[244] N. Koluguri, J. Li, V. Lavrukhin, and B. Ginsburg, “Speakernet: 1d depth-wise sepa-
rable convolutional network for text-independent speaker recognition and verification,”
arXiv:2010.12653, 2020.

[245] J. Yamagishi, C. Veaux, and K. MacDonald, “CSTR VCTK Corpus: English multi-speaker
corpus for CSTR voice cloning toolkit (version 0.92),” 2019.

253



[246] K. Park and T. Mulc, “Css10: A collection of single speaker speech datasets for 10
languages,” Interspeech, 2019.

[247] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, “Face2face: Real-
time face capture and reenactment of rgb videos,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[248] J. Thies, M. Zollhöfer, and M. Nießner, “Deferred Neural Rendering: Image Synthesis
using Neural Textures,” ACM Transactions on Graphics, vol. 38, no. 66, pp. 1–12, 2019.

[249] FaceSwap, 2018.

[250] S. Suwajanakorn, S. Seitz, and I. Kemelmacher-Shlizerman, “Synthesizing Obama: Learn-
ing Lip Sync From Audio,” ACM Transactions on Graphics, vol. 36, no. 4, pp. 1–13,
2017.

[251] B. Guo, Y. Ding, L. Yao, Y. Liang, and Z. Yu, “The future of false information detection
on social media: New perspectives and trends,” ACM Comput. Surv., vol. 53, no. 4, 2020.

[252] Z. Jin, J. Cao, H. Guo, Y. Zhang, Y. Wang, and J. Luo, “Detection and analysis of 2016 us
presidential election related rumors on twitter,” in SBP-BRiMS, 2017.

[253] C. News, “Doctored Nancy Pelosi video highlights threat of ”deepfake”
tech,” 2019. [Online]. Available: https://www.cbsnews.com/news/
doctored-nancy-pelosi-video-highlights-threat-of-deepfake-tech-2019-05-25/

[254] C. Vaccari and A. Chadwick, “Deepfakes and disinformation: exploring the impact of
synthetic political video on deception, uncertainty, and trust in news,” Social Media+
Society, 2020.

[255] L. Verdoliva, “Media Forensics and DeepFakes: an Overview,” arXiv preprint
arXiv:2001.06564, 2020.

[256] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact facial video
forgery detection network,” in 2018 IEEE International Workshop on Information Foren-
sics and Security (WIFS). IEEE, 2018.

[257] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.
1251–1258.

[258] C. Hao, “https://github.com/cuihaoleo/kaggle-dfdc,” 2020.

[259] A. Davletshin, “https://github.com/ntech-lab/deepfake-detection-challenge,” 2020.

[260] DeepFakes, “https://github.com/deepfakes/faceswap,” 2017.

[261] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer, “The deepfake detection
challenge (dfdc) dataset,” arXiv preprint arXiv:2006.07397, 2020.

254

https://www.cbsnews.com/news/doctored-nancy-pelosi-video-highlights-threat-of-deepfake-tech-2019-05-25/
https://www.cbsnews.com/news/doctored-nancy-pelosi-video-highlights-threat-of-deepfake-tech-2019-05-25/


[262] E. Zakharov, A. Shysheya, E. Burkov, and V. Lempitsky, “Few-shot adversarial learning
of realistic neural talking head models,” in International Conference on Computer Vision
(ICCV), 2019, pp. 9459–9468.

[263] Y. Nirkin, Y. Keller, and T. Hassner, “FSGAN: Subject agnostic face swapping and
reenactment,” in Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 7184–7193.

[264] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 4401–4410.

[265] W. Wang and H. Farid, “Exposing digital forgeries in interlaced and deinterlaced video,”
IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 438–449,
2007.

[266] R. Bohme and M. Kirchner, “Digital image forensics: There is more to a picture than
meets the eye, chapter counter-forensics: Attacking image forensics,” 2013.

[267] H. Farid, Photo Forensics. The MIT Press, 2016.

[268] M. Barni, M. C. Stamm, and B. Tondi, “Adversarial multimedia forensics: Overview and
challenges ahead,” in 2018 26th European Signal Processing Conference (EUSIPCO).
IEEE, 2018, pp. 962–966.

[269] R. Böhme and M. Kirchner, “Counter-forensics: Attacking image forensics,” in Digital
image forensics. Springer, 2013, pp. 327–366.

[270] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis, “Two-stream neural networks for tampered
face detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE, 2017, pp. 1831–1839.

[271] R. Raghavendra, K. B. Raja, S. Venkatesh, and C. Busch, “Transferable deep-cnn features
for detecting digital and print-scanned morphed face images,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017, pp.
1822–1830.

[272] J. H. Bappy, A. K. Roy-Chowdhury, J. Bunk, L. Nataraj, and B. Manjunath, “Exploiting
spatial structure for localizing manipulated image regions,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 4970–4979.

[273] J. H. Bappy, C. Simons, L. Nataraj, B. Manjunath, and A. K. Roy-Chowdhury, “Hybrid
lstm and encoder–decoder architecture for detection of image forgeries,” IEEE Transac-
tions on Image Processing, vol. 28, no. 7, pp. 3286–3300, 2019.

[274] L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo, “Face x-ray for more
general face forgery detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5001–5010.

255



[275] Y. Li, M.-C. Chang, and S. Lyu, “In ictu oculi: Exposing ai created fake videos by
detecting eye blinking,” in 2018 IEEE International Workshop on Information Forensics
and Security (WIFS). IEEE, 2018, pp. 1–7.

[276] D. Güera and E. J. Delp, “Deepfake video detection using recurrent neural networks,” in
2018 15th IEEE International Conference on Advanced Video and Signal Based Surveil-
lance (AVSS). IEEE, 2018, pp. 1–6.

[277] E. Sabir, J. Cheng, A. Jaiswal, W. AbdAlmageed, I. Masi, and P. Natarajan, “Recurrent
convolutional strategies for face manipulation detection in videos,” Interfaces (GUI),
vol. 3, p. 1, 2019.

[278] X. Yang, Y. Li, and S. Lyu, “Exposing deep fakes using inconsistent head poses,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 8261–8265.

[279] K. Vougioukas, S. Petridis, and M. Pantic, “Realistic speech-driven facial animation with
gans,” International Journal of Computer Vision, pp. 1–16, 2019.

[280] A. Duarte, F. Roldan, M. Tubau, J. Escur, S. Pascual, A. Salvador, E. Mohedano,
K. McGuinness, J. Torres, and X. Giro-i Nieto, “Wav2pix: speech-conditioned face
generation using generative adversarial networks,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 3, 2019.

[281] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to
adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[282] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg compression
on adversarial images,” arXiv preprint arXiv:1608.00853, 2016.

[283] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E. Kounavis, and D. H.
Chau, “Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg
compression,” arXiv preprint arXiv:1705.02900, 2017.

[284] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten, “Countering adversarial images
using input transformations,” arXiv preprint arXiv:1711.00117, 2017.

[285] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks
with momentum,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 9185–9193.

[286] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial
examples by translation-invariant attacks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[287] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples
and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

256



[288] C. Xie, Z. Zhang, J. Wang, Y. Zhou, Z. Ren, and A. Yuille, “Improving transferability
of adversarial examples with input diversity,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2725–2734, 2019.

[289] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable
adversarial perturbations,” in ECCV, 2018.

[290] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, “Natural
evolution strategies,” J. Mach. Learn. Res., vol. 15, no. 1, p. 949–980, Jan. 2014.

[291] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with limited
queries and information,” in International Conference on Machine Learning, 2018, pp.
2137–2146.

[292] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as
a Scalable Alternative to Reinforcement Learning,” Sep. 2017. [Online]. Available:
http://arxiv.org/abs/1703.03864

[293] M. Behjati, S.-M. Moosavi-Dezfooli, M. S. Baghshah, and P. Frossard, “Universal adver-
sarial attacks on text classifiers,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 7345–7349.

[294] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask
cascaded convolutional networks,” IEEE Signal Processing Letters, vol. 23, no. 10, pp.
1499–1503, 2016.

[295] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou, “RetinaFace: Single-shot
multi-level face localisation in the wild,” in Conference on Computer Vision and Pattern
Recognition (CVPR).

[296] J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, and F. Huang, “DSFD:
dual shot face detector,” in Conference on Computer Vision and Pattern Recognition
(CVPR).

[297] Y. Mirsky and W. Lee, “The creation and detection of deepfakes: A survey,” ACM Comput.
Surv., vol. 54, no. 1, jan 2021. [Online]. Available: https://doi.org/10.1145/3425780

[298] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. C. Ferrer, “The
DeepFake Detection Challenge (DFDC) dataset,” arXiv preprint arXiv:2006.07397, 2020.

[299] E. T. Lin, C. I. Podilchuk, and E. J. Delp III, “Detection of image alterations using
semifragile watermarks,” in Security and Watermarking of Multimedia Contents II. In-
ternational Society for Optics and Photonics, 2000.

[300] C. K. Ho and C.-T. Li, “Semi-fragile watermarking scheme for authentication of jpeg
images,” in International Conference on Information Technology: Coding and Computing,
2004. Proceedings. ITCC 2004. IEEE, 2004.

257

http://arxiv.org/abs/1703.03864
https://doi.org/10.1145/3425780


[301] H. Yang, X. Sun, and G. Sun, “A semi-fragile watermarking algorithm using adaptive
least significant bit substitution,” Information Technology Journal, 2009.

[302] C. Li, A. Zhang, Z. Liu, L. Liao, and D. Huang, “Semi-fragile self-recoverable watermark-
ing algorithm based on wavelet group quantization and double authentication,” Multimedia
tools and applications, 2015.

[303] C. Gu, N. Hanley, and M. O’neill, “Improved reliability of fpga-based puf identification
generator design,” ACM Transactions on Reconfigurable Technology and Systems (TRETS),
2017.

[304] S. Hussain, N. Sheybani, P. Neekhara, X. Zhang, J. Duarte, and F. Koushanfar, “Faststamp:
Accelerating neural steganography and digital watermarking of images on fpgas,” in
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design,
ser. ICCAD ’22. New York, NY, USA: Association for Computing Machinery, 2022.

[305] F. Di Martino and S. Sessa, “Fragile watermarking tamper detection via bilinear fuzzy
relation equations,” Journal of Ambient Intelligence and Humanized Computing, 2019.

[306] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking
for multimedia,” IEEE transactions on image processing, 1997.

[307] A. Shehab, M. Elhoseny, K. Muhammad, A. K. Sangaiah, P. Yang, H. Huang, and G. Hou,
“Secure and robust fragile watermarking scheme for medical images,” IEEE Access, 2018.

[308] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data with deep networks,”
in ECCV, 2018.

[309] X. Yu, C. Wang, and X. Zhou, “Review on semi-fragile watermarking algorithms for
content authentication of digital images,” Future Internet, 2017.

[310] J. Xiao and Y. Wang, “A semi-fragile watermarking tolerant of laplacian sharpening,” in
2008 International Conference on Computer Science and Software Engineering. IEEE,
2008.

[311] R. Preda and D. Vizireanu, “Watermarking-based image authentication robust to jpeg
compression,” Electronics Letters, 2015.

[312] R. Tay and J. Havlicek, “Image watermarking using wavelets,” in The 2002 45th Midwest
Symposium on Circuits and Systems, 2002. MWSCAS-2002. IEEE, 2002.

[313] O. Benrhouma, H. Hermassi, and S. Belghith, “Tamper detection and self-recovery scheme
by dwt watermarking,” Nonlinear Dynamics, 2015.

[314] S. Baluja, “Hiding images in plain sight: Deep steganography,” NIPS, 2017.

[315] J. Hayes and G. Danezis, “Generating steganographic images via adversarial training,” in
International Conference on Neural Information Processing Systems, 2017.

258



[316] R. Zhang, S. Dong, and J. Liu, “Invisible steganography via generative adversarial net-
works,” Multimedia tools and applications, 2019.

[317] R. Wang, F. Juefei-Xu, M. Luo, Y. Liu, and L. Wang, “Faketagger: Robust safeguards
against deepfake dissemination via provenance tracking,” in Proceedings of the 29th ACM
International Conference on Multimedia, 2021, p. 3546.

[318] M. Tancik, B. Mildenhall, and R. Ng, “Stegastamp: Invisible hyperlinks in physical
photographs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020.

[319] P. Neekhara, S. Hussain, X. Zhang, K. Huang, J. McAuley, and F. Koushanfar, “Facesigns:
Semi-fragile neural watermarks for media authentication and countering deepfakes,” 2022.

[320] X. Luo, R. Zhan, H. Chang, F. Yang, and P. Milanfar, “Distortion agnostic deep water-
marking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[321] S. Liu, H. Fan, X. Niu, H.-c. Ng, Y. Chu, and W. Luk, “Optimizing cnn-based segmentation
with deeply customized convolutional and deconvolutional architectures on fpga,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 2018.

[322] W. Zhao, Z. Jia, X. Wei, and H. Wang, “An fpga implementation of a convolutional
auto-encoder,” Applied Sciences, 2018.

[323] E. Govorkova et al., “Autoencoders on field-programmable gate arrays for real-time,
unsupervised new physics detection at 40 mhz at the large hadron collider,” Nat. Mach.
Intell., vol. 4, p. 154, 2022.

[324] S. Kiran, K. N. Sri, and J. Jaya, “Design and implementation of FPGA based invisi-
ble image watermarking encoder using wavelet transformation,” in 2013 International
Conference on Current Trends in Engineering and Technology (ICCTET). IEEE, 2013.

[325] S. Hazra, S. Ghosh, S. De, and H. Rahaman, “Fpga implementation of semi-fragile
reversible watermarking by histogram bin shifting in real time,” Journal of Real-Time
Image Processing, 2018.

[326] M. A. Hajjaji, M. Gafsi, A. Ben Abdelali, and A. Mtibaa, “Fpga implementation of digital
images watermarking system based on discrete haar wavelet transform,” Security and
Communication Networks, 2019.

[327] R. M. Khoshki, S. Oweis, S. Wang, G. Pappas, and S. Ganesan, “Fpga hardware based
implementation of an image watermarking system,” Int. J. Adv. Res. Comput., 2014.

[328] M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, and S. Wen, “Stgan: A unified selective
transfer network for arbitrary image attribute editing,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

259



[329] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image synthesis for multiple
domains,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[330] S. Hussain, P. Neekhara, M. Jere, F. Koushanfar, and J. McAuley, “Adversarial deepfakes:
Evaluating vulnerability of deepfake detectors to adversarial examples,” in WACV, 2021.

[331] A. Qureshi, D. Megı́as, and M. Kuribayashi, “Detecting deepfake videos using digital
watermarking,” in 2021 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2021.

[332] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effective-
ness of deep features as a perceptual metric,” in CVPR, 2018.

[333] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in CVPR,
2017, p. 1800.

[334] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill,
2016. [Online]. Available: http://distill.pub/2016/deconv-checkerboard

[335] J. Duarte et al., “Fast inference of deep neural networks in FPGAs for particle physics,”
JINST, vol. 13, no. 07, p. P07027, 2018.

[336] T. Aarrestad et al., “Fast convolutional neural networks on FPGAs with hls4ml,” MLST,
vol. 2, no. 4, p. 045015, 2021.

[337] F. Fahim et al., “hls4ml: An Open-Source Codesign Workflow to Empower Scientific
Low-Power Machine Learning Devices,” in tinyML Research Symposium 2021, 3 2021.

[338] L. Bai, Y. Zhao, and X. Huang, “A cnn accelerator on fpga using depthwise separable
convolution,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2018.

[339] B. Yoo, Y. Choi, and H. Choi, “Fast depthwise separable convolution for embedded
systems,” in Neural Information Processing, L. Cheng, A. C. S. Leung, and S. Ozawa,
Eds. Cham: Springer International Publishing, 2018.

[340] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference on
Machine Learning, F. Bach and D. Blei, Eds. PMLR, 2015.

[341] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in ICCV,
December 2015.

[342] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th international
conference on pattern recognition. IEEE, 2010.

[343] A. Kamakura, “pilgram https://github.com/akiomik/pilgram.”

260

http://distill.pub/2016/deconv-checkerboard

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Robustness of Deep Learning Models
	Vulnerabilities of Deep Learning Models to Adversarial Attacks
	Defenses for Mitigating Adversarial Attacks

	Compute Efficient Design for Neural Media Synthesis
	Data Efficient Training for Neural Media Synthesis

	Robust Deep Learning
	Vulnerabilities of DL to Adversarial Attacks
	Adversarial Examples
	Vulnerabilities of DL based Face Recognition
	ReFace: Adversarial Transformation Networks for Real-time Attacks on Face Recognition Systems
	Background and Related Work
	ReFace Methodology
	Experiments
	Results
	Vulnerabilities of Public Face Recognition APIs
	Conclusion

	Vulnerabilities of DL based Speech Recognition
	Universal Adversarial Perturbations for Real-time Attacks on Speech Recognition Systems
	Background and Related Work
	Methodology
	Experiments
	Results
	Conclusion

	Acknowledgements

	Vulnerabilities of DL to Adversarial Reprogramming
	Vulnerabilities of DL based Text Recognition
	Adversarial Reprogramming of Text Classification Neural Networks
	Background and Related Work
	Methodology
	Experiments
	Results and Discussion

	Cross-modal Adversarial Reprogramming
	Background and Related Work
	Methodology
	Experiments
	Results
	Conclusion

	Acknowledgements

	WaveGuard: Understanding and Mitigating Audio Adversarial Examples
	Background and Related Work
	Adversarial Attacks in the Audio Domain 
	Principles of Defense and Adaptive Attacks in the Image Domain
	Defenses in the Audio Domain

	WaveGuard Methodology
	Threat Model
	WaveGuard Defense Framework

	Input-transformation functions
	Quantization-Dequantization
	Down-sampling and Up-sampling
	Filtering
	Mel Spectrogram Extraction and Inversion
	Linear Predictive Coding (LPC)

	Experimental Setup
	Dataset and Attack Evaluations
	Evaluation Metrics

	Evaluation against Non Adaptive Attacks
	Attack Detection Scores
	Analysis of undefended and defended transcriptions
	ROC for Detection under Non-Adaptive Attacks
	Timing analysis
	Thresholds for Attack Detection Accuracy

	Adaptive Attack
	Gradient Estimation for Adaptive Attack
	Adaptive Attack Algorithm
	Adaptive Attack Evaluation

	Evaluation of Transfer Attacks from an Undefended Model
	Discussion
	Conclusion
	Acknowledgements


	Efficient Neural Media Synthesis
	Compute Efficient Design for Neural Media Synthesis
	FastWave: Accelerating Autoregressive Convolutional Neural Networks
	Prior Work on Accelerating DNNs for FPGAs
	Background and Preliminaries
	1D Convolution
	Autoregressive CNNs
	Fast Inference Algorithm for Autoregressive CNNs

	Methodology
	Model Architecture and Training on GPU
	Optimizing the Design for Different FPGAs
	Accelerator Design Overview

	Implementation Details
	Optimization of Dilated Convolutional Layer
	Cyclic Queue Buffer Unit
	Optimization of Fully-connected Layer
	Optimization with Matrix Multiplication Engine
	Optimization of Embedding Layer
	Network Description Module

	Results and Experiments
	Evaluation Metrics
	Design Space Exploration
	Design Modifications for Text Synthesis
	Design Optimization for smaller FPGA Platforms
	Performance and Power Analysis

	Conclusion
	Acknowledgements

	Data Efficient Training for Neural Speech Synthesis
	Expressive Neural Voice Cloning
	Voice Cloning Framework
	Cloning Techniques: Zero-Shot and Model Adaptation
	Experiments on Expressive Voice Cloning

	Voice Conversion Using Iterative Self-Refinement
	Related Work
	Voice Conversion Approach
	Synthesizer Training: Iterative Refinement using Self Transforms
	Experiments on Voice Conversion

	Conclusion
	Acknowledgements


	Robust and Efficient Media Authentication and Recognition
	Deepfake Detection and Their Vulnerability to Adversarial Attacks
	Deepfake Detection Datasets
	Deepfake Detectors
	Per-frame Deepfake Detectors
	Sequence-based Deepfake Classifiers
	Understanding Deepfake detectors

	Adversarial attacks on Deepfake detectors
	Threat Model
	Simple White-box attack
	Robust and Transferable attack
	Query based Black-box Attack
	Query based Robust Black-box Attack
	Universal attack

	Experimental Setup
	Dataset and Models
	Evaluation Metrics

	Results
	Evaluation on FaceForensics++ dataset
	Transferability of adversarial attacks
	Universal attacks
	Evaluation on Sequence Based Detector

	Conclusion
	Acknowledgements

	Media Authentication using DL based Proactive Watermarking
	Background
	Digital Watermarking
	FPGA Accelerated Techniques
	Countering Media Forgery

	FastStamp Methodology
	Training Framework
	Message encoding
	Model Architecture and Optimization

	Accelerator Design
	Design Overview
	Implementation Details

	Experiments and Results
	Dataset
	Evaluation Metrics
	Training and Architecture Optimization
	Design Space Exploration
	Performance and Power Analysis

	Conclusion
	Acknowledgements

	Bibliography




