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Abstract

The livestock industry plays an important role in the global food chain and provides the

main source of protein for human consumption. Pork production provides more than one-

third of total meat protein worldwide. There is a gap between the amount of data available

in the swine industry and its effective use in analytical models and the decision making

process of farm management. This work tries to fill this gap by building a data-driven

decision framework. This framework allows for risk-based and early intervention in the

swine industry which mitigates the overall cost.

First, we focus on the most challenging and costly viral infectious diseases impacting the

swine industry called the Porcine Reproductive and Respiratory Syndrome (PRRS). We build

a framework to forecast the risk of having a PRRS outbreak on a farm. This forecasting

allows for early detection of disease outbreaks and could direct risk-based, and thus more

cost-effective, interventions. Machine learning algorithms were trained using multi-scale

data (pig group-, farm-, and area-level data). For the first time, on-farm, between-farm, and

environmental variables, including farm location, pig movements, production parameters,

diagnostic data, and climatic information, were combined for the prediction of PRRS out-

breaks. Multi-scale datasets were merged via feature creation, followed by the wrapper and

filter feature selection, to find those feature subsets with the best forecasting performance.

The predictive value of each features selection mechanism was evaluated in terms of its sta-

bility. Numerical results demonstrate good forecasting performance in terms of area under

the ROC curve.

Furthermore, we leverage a semi-supervised variational auto-encoder (VAE) deploying Long

Short Term Memory (LSTM) to predict the mortality rates (mummified and stillborn) and

farrowing rate in the production system. The PRRS can be one of the underlying mor-

tality factors. The use of VAE allows for handling the missing data by building a proba-

bilistic model. We learn the target variable by learning a latent representation using the

generative model for samples with unobserved target value, and then learning a generative
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semi-supervised model, using this representation instead of the raw data.

Finally, a factorized generative model is applied based on fine grained semi-synthatic data

for the study of PRRS virus. Using this model, we can predict the PRRS outbreak in all

farms of a swine production system by capturing the spatio-temporal dynamics of infection

transmission based on the intra-farm pig-level virus transmission dynamics, and inter-farm

pig shipment network. We simulate a PRRS infection epidemic based on the shipment net-

work and the SEIR epidemic model using the statistics extracted from real data provided by

the swine industry. We develop a hierarchical factorized deep generative model that approx-

imates high dimensional data by a product between time-dependent weights and spatially

dependent low dimensional factors to perform per farm time series prediction. The predic-

tion results demonstrate the ability of the model in forecasting the virus spread progression

with average error of NRMSE = 2.5%.
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Chapter 1

Motivation, Background and Literature

Review

In this chapter the motivation behind this work is discussed, a brief description of some

models that are used and examples from the literature are provided.

1.1 Motivation and Significance

Infectious disease outbreaks have caused dramatic financial cost and affected the lives of

many human and animals during history. From the the loss of 50 million people in 1918

H1N1 pandemic Tumpey et al. 2005 to the recent COVID-19 pandemic. The number of

outbreaks and the rates of spread of some pathogens have been increasing in recent decades

VanderWaal and Deen 2018. This can be an alarming threat to both animals and human

lives. Especially the transmission of pathogens from animals to humans, such as the H1N1

swine flu pandemic in 2009, highlights the importance of controlling the animal infectious

disease outbreaks for human safety Smith et al. 2014.

The live stock industry plays an important role in the global food chain and provides the

main source of protein for human consumption. Pork production, provides more than one-

third of total meat protein worldwide (Food and Agriculture Organization) and such demand

has created areas with closely located and densified pig population which improves the

efficiency for the required frequent movement of pig and food among farms in the production
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system. All these factors increase the chance of having an outbreak Martinez 2002. These

outbreaks can bring food insecurity by causing animal loss and restricting the required

trades among different farms to keep the production system sustainable. The animal welfare,

human risk of death, food insecurity and economic impacts requires academia, industry and

governmental authorities to investigate and find better solution to mitigate and control these

outbreaks. As a result this work focus on addressing the most challenging and costly viral

disease of swine industry, the Porcine Reproductive and Respiratory Syndrome Mateu and

Dıéaz 2008, by collaborating with the largest swine production system in United States and

with the funding from National Science Foundation.

To mitigate and control the Porcine Reproductive and Respiratory Syndrome outbreaks,

different approaches including the experimental vaccine development Nodelijk et al. 2001,

theoretical vaccine Bitsouni et al. 2019 modeling, immunological treatment and prevention

methods Murtaugh and Genzow 2011, statistical Evans et al. 2010; Islam et al. 2013 and

analytical modeling have been conducted. In recent years the researchers have been trying

to exploit the machine learning approaches to build better models to understand and predict

the occurrence of outbreaks in live stock industry Garcia et al. 2020. However, there are

limited machine learning works on Porcine Reproductive and Respiratory Syndrome.

Due to the high level of specialization in production systems, a vast amount of data has

been collected in the livestock industry, in particular, swine industry. Specifically, data is

gathered in all processes of pig production: pig demographics and production performance,

pig movements, farm testing etc. Note that the data is multilevel (i.e., pig production perfor-

mance indices, pig movement networks between farms, and pathogen test result), constantly

changing over time and increasing in size.

Unfortunately, while this vast amount of data is available, its usage in animal health

remains circumstantial, and is usually restricted to simple descriptive statistics or sequencing

and molecular analyses for specific aspects of animal breeding and pathogen diagnostics.

To the best of our knowledge, there is no data-driven decision framework that effectively

integrates the multi-level data to better study the complex nature of a Porcine Reproductive

and Respiratory Syndrome. This large gap between the data availability and its effective

usage motivate the proposed work in this thesis. Our specific aim here is to develop a
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principled data-driven decision framework that facilitates the early detection and fast control

of PRRS, which will save swine producers millions of dollars annually. It will also provide a

revolutionary approach that can be adapted to other diseases and other livestock species.

The challenge: PRRS is currently the most challenging and costly viral infectious disease

in the swine industry. This emerging disease was discovered first in 1980s in the US and

rapidly spread to many swine production countries in Europe and Asia. Now, most of the

pig producing countries in the world are infected. PRRS has a huge economic impact on

the swine industry in the US and across the world. In the US only, it causes an estimated

economic loss of $664 million annually, 55% associated to growing pigs and 45% to breeding

farms Holtkamp, Kliebenstein, et al. 2013. The complexity in PRRS control is mainly due to

the easy transmission within and between farms and the wide variability of the PRRS virus

(PRRSV) due to mutations. PRRSV, an RNA virus, mutates easily, and thus continuously

challenges the pig immunity and makes vaccine development difficult. As a result, the

current available vaccines are only partially protective. Key factors in the PRRS prevention

and control are the early detection of infection, cost-effective monitoring/testing of farm

health status, and efficient implementation of immunization and biosecurity (internal and

external) mechanisms. To address this challenge, this work tries to build a data-driven

decision framework for systematic PRRS prevention and control, based on the multi-level

data sources collected during swine production, using advanced data mining and machine

learning techniques.

1.2 Predictive Models

The predictive classification problem can be viewed as a task of function approximation

in which a binary or categorical variable y can be predicted from a set of predictors X.

The predicted variable y = f(X) is called response (target or dependent variable) and

the predictors are called features (covariates, attributes, or independent variables). The

mapping f is the true underlying model that describes input-output relation and can be

approximated by a function f̂ by fitting the labelled training data X into the model f̂ . The

task would translate into an optimization problem of minimizing the prediction error between
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the training labels y = f(X) and predicted values ŷ = f̂(X). If f be as close as possible

to f̂ then the prediction error on unseen data points are expected be be minimized. The

property of predicting with low error the labels of a new test set x is called generalization.

Considering the case of predicting a binary variable y where the y = 1 means a farm is

unhealthy and y = 0 means it is healthy, this prediction can be performed with uncertainty.

We denote the probability distribution over the possible label, given the input training set

D, input test vector x and the model M by P (y|x,D,M). It is notable to mention that in

case of binary classification P (y = 1|x,D,M) + P (y = 0|x,D,M) = 1 and we only need

to determine one class. In other words we looking for the most probable class healthy or

unhealthy for a vector of input x corresponding to a farm and expressed mathematically

as: ŷ = argmaxP (y = c|x,D,M) for c = 0, 1 (Murphy 2012). In the rest of this section,

different models for classification and the related literature in the field of veterinary medicine

are briefly discussed.

Logistic Regression

If a model of P (y|x) is build by mapping input x to binary output y then we are building

a discriminative classifier which can discriminate between different class labels. Logistics

regression can be mathematically expressed as Murphy 2012: p(y|x,w) = Ber(y|µ(x)), where

µ(x) = E[y|x] = p(y = 1|x) and by defining µ(x) = sigm(wTx), we can ensure that

0 <= µ(x) <= 1. The sigm(η) =
1

1 + exp(−η)
referrers to sigmoid function, an S-shaped or

squashing function which maps the input into a probability space by bounding it between zero

and one. We can obtain the logisitc regression formula as P (y|x,w) = Ber(y|sigm(wTx)).

When working with logistic regression the output probability needs to be converted to the

class label. This requires to have a threshold for deciding the range of probability for each

class. In other words P (y = 1|x) > threshold, would result in the data point x be classified

as class y = 1. In this case everything on one side of the hyper-plane will belong to one class

and the points on the other side of the hyper-plane belong to the other class. If the hyper-

plane can well different the classes then the problem in hand is of linear nature, otherwise a

none-linear decision boundaries are required.

To estimate the parameters of logistic regression, the maximum likelihood estimation is
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used. The negative log likelihood for logistic regression also known as cross entropy can be

written as: NLL(w) = −
∑N

n=1[yilog(µi) + (1 − yi)log(1 − µi)], where µi = sigm(wTxi). If

we assume that yi ∈ −1, 1 instead of yi ∈ 0, 1 the formula can be rewritten as: NLL(w) =∑N
n=1 log(1 + exp(−ỹiw

Txi)). To find the NLL, an optimization problem is solved by calcu-

lating the gradient and the hessian.

When models with flexible number of paramters such as logistic regression are used, the

model might overfit the training data if the model has higher degree of freedom than required

for the underlying problem. This happens when the model learns the training data too well,

it learns the noise and slight changes in the training data, but does not generalize and

perform poorly on the testing data set. The problem of selecting the number of parameter

is a model selection problem. A suitable model complexity can be decided by comparing

different models on the number of miss classifications on a testing data set. The testing set

used for this purpose is called validation data set and typically is composed of 20 percent

of the original data. If the order of the data point does not matter, methods such as leave

one out and K-fold cross validation are used Hastie, Tibshirani, et al. 2009. However, in this

thesis we will be required to choose the data points that chronologically appear after the

training data points.

One important assumption in logistic regression is that variables are not linear com-

binations of each other Midi, Sarkar, and Rana 2010. If there are two or more predictor

variables that are highly correlated then we are facing the multicollinearity problem where

the coefficient estimates may change erratically in response to small changes in the model or

the data. The multicollinearity make coefficients unstable. The general rule is that if corre-

lation coefficient between two features is greater than 0.9, the multicollinearity is a serious

problem. Multicollinearity does not decrease the predictive power or reliability of the entire

model Midi, Sarkar, and Rana 2010 however the interpretation about the importance of each

predictor is not reliable and variable selection in these situation become very difficult. The

are a range of solutions for Multicollinearity problem in logistic regression including dropping

variables, combining variables into an index, and testing hypothesis about sets of variables,

increasing the sample size if possible. Another commonly used approach is regularization.

All the features are used for prediction but the coefficients of some features are shrunk to
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zero, as a result those variables are automatically not selected for prediction. Ridge Hoerl

and Kennard 1970 and Lasso Tibshirani 1996 are two mostly used regularization approaches

in which a penalizing term is added to the cost function of the model. Ridge and lasso per-

form a trading off a small increase in bias for a large decrease in variance of the predictions,

hence they may improve the overall prediction accuracy Hoerl and Kennard 1970. In Lin

et al. 2013, the authors utilize the group lasso algorithm for logistic regression to construct

a risk scoring system for predicting PPRS outbreak. The authors of Koene et al. 2012 use

ridge to classify animals based on serum protein profiles.

For the above mentioned formulation of logistic regression, a small change in the training

data may cause a large change in the coefficient estimates and the model may have high

variance. Ridge regression and lasso perform by trading off a small increase in bias for a

large decrease in variance of the predictions, hence they may improve the overall prediction

accuracy. Ridge logistic regression all the coefficient, except the intercept are shrunk by

imposing a penalty on their size Hastie, Tibshirani, et al. 2009. The parameters estimates

are obtained by minimizing the log-likelihood function:

wridge =argmin
w

N∑
n=1

[yilog(µi) + (1− yi)log(1− µi)] + λ
P∑

j=1

w2
j (1.1)

where µ(x) = sigm(wTx) =
1

1 + exp(−wTx)
, λ is the controls the amount of shrinkage.

The larger the λ the more shrinkage is applied. There are P predictors, and wj corresponds

to the coefficient of the jth predictor

If there are two correlated variables the coefficient of one can be positive and the other one

be negative. In this case, a change in one coefficient can result in change of the coefficient of

the correlated variable while having the same prediction value. This results in poor coefficient

estimation. This problem can be addressed by specifying the number of coefficient t in the

ridge formula, as:
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wridge =argmin
w

N∑
n=1

[yilog(µi) + (1− yi)log(1− µi)]

subject to
P∑

j=1

w2
j ≤ t (1.2)

In 1.2, increasing the value of λ will shrink more the coefficient toward zero but does

not set them exactly to zero which might become problematic for feature selection. This

problem can be addressed by penalizing the log likelihood regression with L1 instead of L2.

The coefficients in the L2 regularization, named as lasso, can be obtained using:

wlasso =argmin
w

N∑
n=1

[yilog(µi) + (1− yi)log(1− µi)] + λ
P∑

j=1

|wj| (1.3)

Similar to ridge, the intercept is not penalized. In addition to shrinkage, lasso makes

feature selection by forcing some of the coefficient exactly to zero and as a result can improve

model interpretability. If there are some features with larger coefficient the lasso is expected

to perform better and in case of closely valued coefficients ridge is expected to perform better.

The coefficient estimates in both ridge and lasso whose values depend on how large the

value of λ should be. The cross validation methods can be used for tuning the value of λ.

Support Vector Machines

Support vector machines (SVM)s are kernel-based algorithms with sparse solutions, i.e.,

the prediction for a new test point requires kernel function evaluation only at a subset

of the training points. SVM uses this subset of the training points to find a separating

hyperplane between data of different classes. SVM parameter estimation distill into a convex

optimization problem where any local optimum is a global one. In this section, we describe

the SVM formulation for the two-class classification problem, which is the interest of our

study.

Our training dataset comprises N input vectors x1,x2, . . . ,xN , with corresponding labels

y1, y2, . . . , yN where yn ∈ {−1, 1}. Our SVM classifier denoted as f(x) is a linear model of
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form

f(x) = wTϕ(x) + b, (1.4)

where ϕ(w) is the feature-space transformation and b is the bias parameter. For simplicity

we first introduce the case that our training data set is linearly separable in feature space,

i.e., there exists at least one set of parameters ϕ(w) and b such that f(xn) > 0 for the data

points with yn = +1 and f(xn) < 0 for the data points with yn = −1, shortly ynf(xn) > 0

for all training data points. To minimize generalization error, SVM introduces the concept

of the margin, which is the smallest distance between the decision boundary and a train-

ing data point and tries to select the decision boundary in such a way that the margin is

maximized. Intuitively, the solution to the SVM problem involves finding the nearest point

to the separating hyperplane, minimum distance training data point x, and maximizing the

margin by adapting the parameters w and b. The minimum-distance margin corresponding

to the training data point x is the perpendicular distance of that point from the hyperplane

f(x) = 0, where f(x) takes the form (1.4), that is given by |f(x)|/∥w∥. Hence, finding

the nearest point xn to the separating hyperplane, given that all data points are correctly

classified ynf(xn) > 0, corresponds to minimizing the following expression

ynf(xn)

∥w∥
=

yn
(
wTϕ(xn) + b

)
∥w∥

. (1.5)

Maximizing the margin shown in (1.5), which is the perpendicular distance to the nearest

training data point xn to the separating hyperplane, with respect to the parameters w and

b yields the solution to the SVM problem as

argmax
w,b

{
1

∥w∥
min
n

[yn
(
wTϕ(xn) + b

)
]

}
. (1.6)

Solution of the SVM Problem

Direct solution the optimization problem in (1.6) is quite complex, and in practice, it is

converted into an equivalent problem that is much easier to solve. This is possible by

rescaling the parameters w and b in such way that set yn
(
wTϕ(xn) + b

)
for the nearest

point to the hyperplane. Note that enforcing the mentioned equality does not change the

distance from any point xn to the decision hyperplane, ynf(xn)/∥w∥. Any other data points
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satisfy the constraints

yn
(
wTϕ(xn) + b

)
≥ 1, n = 1, . . . , N, (1.7)

which is known as the canonical representation of the decision hyperplane. The new opti-

mization problem then becomes that of maximizing ∥w∥−1, which is equivalent to minimizing

argmin
w,b

1

2
∥w∥2 (1.8)

subject to: yn
(
wTϕ(xn) + b

)
≥ 1, n = 1, . . . , N.

The new SVM problem is a quadratic programming problem in which we minimize a

quadratic function subject to a set of linear inequality constraints. This problem can be

solved using Lagrange multipliers. Lagrange multipliers variables an ≥ 0 are defined for each

of the constraints in (1.8), producing the Lagrangian function

L(w, b, a) =
1

2
∥w∥2 −

N∑
n=1

an
{
yn

(
wTϕ(xn) + b

)
− 1

}
, (1.9)

where a = (a1, . . . , aN)
T. The solution to this problem is obtained by setting the derivatives

of L(w, b, a) with respect to w and b equal to zero, and then substituting w and b in

L(w, b, a), which gives the dual representation of the maximum margin problem in which we

maximize

L̃(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamynymk(xn,xm) (1.10)

subject to: an ≥ 0, n = 1, . . . , N,

N∑
n=1

anyn = 0.

where k(x,x′) = ϕ(x)Tϕ(x′). The dual problem is a quadratic programming problem in

which we optimize a quadratic function of a subject to a set of inequality constraints.

When class distributions Overlaps

If the training data points are not linearly separable in our feature space ϕ(x), we assume

that the class-conditional distributions overlap. In this case, instead of aiming for the exact
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separation of the training data, which leads to poor generalization, the SVM is modified

in such a way that it allows for some of the training points to be misclassified. Therefore,

instead of implicitly using an error function that gives infinite error for a misclassified data

and zero error for correct classification, data points are allowed to be misclassified having a

penalty that increases with the distance from that boundary.

To allow for few misclassified data points to have more generalisation, one slack vari-

able for each training data point is defined as ξn ≥ 0 where n = 1, . . . , N , (Bennett and

Mangasarian 1992; Cortes and Vapnik 1995). The slack variable are set to zero for data

points on or inside the correct margin boundary, ξn = 0, and for the other points we have

ξn = |yn−f(xn)| . As a result, when a data point is on the decision boundary we have ξn = 1,

and when a data point is on the wrong side we have ξn > 1. Then, the exact classification

constraints shown in (1.7) should be changed into

yn
(
wTϕ(xn) + b

)
≥ 1− ξn, n = 1, . . . , N, (1.11)

where the slack variables are should satisfy ξn ≥ 0. Data points with ξn = 0 are classified

correctly and are either on the margin or on the correct side of the margin. The data points

with 0 < ξn ≤ 1 lie inside the margin, but on the correct side of the decision boundary.

Finally, those data points with ξn ≥ 1 are on the wrong side of the decision boundary and

are misclassified.

The procedure of defining a set of slack variables is known as relaxing the hard mar-

gin constraint to have a soft margin that allows for some of the training data points to be

misclassified. Note that the introduction of slack variables allows for overlapping class distri-

butions. However, this approach is still sensitive to outliers due to the fact that the penalty

for misclassification increases linearly with ξ. Now the goal is to maximize the margin while

softly penalizing points on the wrong side of the margin boundary. We therefore minimize

C

N∑
n=1

ξn +
1

2
∥w2∥ (1.12)

where the parameter C > 0 controls the trade-off between the slack variable penalty and

the margin.
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Random Forest

Bagging or bootstrapping is a method for reducing the variance of a prediction function. The

bagging method work best for procedures with high variation and low bias, such as trees.

In regression, the same regression tree is fitted many times to bootstrap sampled versions

of the training data. Then the average of all the results constitute the final result. For

classification, a group of trees are responsible for class prediction.

Boosting, also, is a committee method, meaning that, it exploits a group of learners to

accomplish a prediction task. Although, unlike bagging, it is a committee of weak learners

that evolves over time. Boosting usually dominates bagging on most problems.

Random forests (Breiman 2001) is obtained through a substantial modification of bagging

algorithm. Random forests build a large collection of de-correlated trees, and then compute

the average result. The performance of random forests is comparable with that of boosting

on many problems. In addition, they are simpler to train and tune.

Definition of Random Forests

In bagging, the main idea is to average many noisy models, which are approximately unbi-

ased, and hence reduce the variance. Since trees can capture complex structures in the data

and are high variance, they are ideal candidates for bagging. In addition, trees can have

sufficiently large depth with relatively low bias. However, trees are quite noisy, and hence,

they benefit greatly from the averaging. The assumption is that the trees that are generated

in bagging are identically distributed. We say the expectation of an average of N trees is the

same as the expectation of any one of them. This means the bias of N bagged trees is the

same as that of an individual tree. During the bagging procedure, we aim to improve the

variance (see figure. 1.1). This is different from the goal in boosting technique, in which the

trees are grown in an adaptive way to remove bias, and hence are not identically distributed.

From statistics, we know that the average N i,i.d random variables, each with variance

σ2, has variance
1

N
σ2. In case of identically distributed variables which are not necessarily

independent each with variance σ2 and with positive pairwise correlation ρ the variance of

the average is ρσ2 +
1− ρ

N
σ2. If we increase N , the last term converges to zero and the
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Dataset

Decision Tree 1 Decision Tree 2 Decision Tree 3

Decision result 1 Decision result 2 Decision result 3

Average / Majority vote

Final decision result 

Figure 1.1: A random forest scheme. Random forest goal is to reduce the variance through
bagging of trees and to improve this variance reduction by reducing the correlation between
the trees.

first term remains. Therefore, the size of the correlation between pairs of random variables

governs the variance of the average, and in the case of bagging trees, it limits the benefits of

averaging.

In random forests, the goal is to reduce the correlation between the trees to improve the

variance reduction induced by bagging. This is achieved by random selection of the input

variables in the course of forming each tree. Specifically, each tree is grown on a bootstrapped

dataset as follows. Before each split, a set of m input variables is selected at random from D

input variables as candidates for splitting (note that m ≤ D). The value for can be chosen

to be
√
D, or as low as one. The set of trees is denoted as {T (x; Θn)}N1 . After building N

such trees, the random forest (regression) predictor is of the form

f̂N
RF (x) =

1

N

N∑
n=1

T (x; Θn). (1.13)

The parameters Θn characterizes the nth random forest tree in terms of split variables,
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cut-points at each node, and terminal-node values. It is intuitive to see that reducing m will

result in reducing the correlation between any pair of trees in the ensemble, and as a result

the variance of the average is reduced. It is worthwhile to note that among all estimators

the highly nonlinear ones, such as trees, can be improved by this technique.

Gradient Boosting

Gradient boosting machines (GBMs) J. H. Friedman 2001 are a popular machine learning

algorithm that have proven successful across many domains. Boosting is when we build

strong learners using a combination/ensemble of weak learners. GBMs build shallow trees

in sequence in contrast with random forests, which generate an ensemble of deep indepen-

dent trees. Each tree learns from the previous one and improves on it. Shallow trees are

fairly weak predictive models by themselves, but they can be boosted to produce a powerful

committee that can beat other algorithms when properly tuned. In Machado et al. 2019, the

authors apply Random Forest, Gradient Boosting and Support vector Machine to integrated

environmental and movement factor to identify the occurrence of porcine epidemic diarrhea

virus outbreaks.

Boosting Approaches

Supervised machine learning algorithms are mostly composed of a single predictive model

such as linear regression models, single decision trees, and support vector machines. There

exist other models such as bagging and random forests that owe their power to the combined

performance of a set of single models, which together we call them an ensemble. Combining

predictions from various base models within an ensemble yields new predictions. Bagging

algorithm, and its other similar extension such as random forest, works with averaging that

reduces variance. As a result, they are suitable for single models with low bias and high

variance. Boosting, however, is a general algorithm for constructing an ensemble from a set

of single simple models. Boosting is more efficient when applied to a set of single models

with high bias and low variance, and it is usually applied to decision trees.
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Figure 1.2: Sequential ensemble approach

Sequential Ensemble and Gradient Descent

In boosting a new model is added sequentially to the ensemble. The goal of boosting is to

find a compromise between bias and variance by starting with a weak model. A weak model

can be a simple one such as a decision tree with only a few splits. Then the performance of

the weak model is sequentially boosted by building new trees, where each new tree in the

sequence tries to compensate for the biggest error of the previous tree; see figure 1.2.

The essential components of boosting algorithm are the base learners, training of weak

models, and the sequential training with respect to errors. In boosting framework, we itera-

tively improve a weak learning model. Gradient boosting allows for using various classes of

weak learners. However in practice, boosted algorithms almost always use decision trees as

the base-learner. The error rate associated to a weak model is slightly better than random

guessing. In boosting, each model in the sequence improves slightly upon the performance of

the previous one. Shallow trees, i.e., trees with relatively few splits, are considered as a weak

learner. Boosted trees are grown sequentially, i.e., each tree is grown by using information

from previously grown trees to improve performance. For example for boosting regression

trees, a decision tree is fitted to the data: F1(x) = y. Then, the next decision tree is fitted to

the residuals of the previous: h1(x) = y−F1(x). A new tree is added: F2(x) = F1(x)+h1(x).

The next decision tree is fitted to the residuals of F2 : h2(x) = y−F2(x) and it is added the

14



model. This procedure is continued until it can be stopped based on cross validation. The

final model is a stage-wise additive model of b individual trees:

f(x) =
B∑
b=1

f b(x). (1.14)

GBM Design, Hyperparameters, and Tuning

Different variants of boosting algorithms with focus on classification problems exist, Freund,

Schapire, and Abe 1999; Kuhn, Johnson, et al. 2013. A GBM model contains two set of

hyperparameters: (i) boosting and (ii) tree-specific. The essential boosting hyperparameters

are the number of trees and the learning rate. The number of trees is the total number

of trees in the sequence or ensemble. As a result of the averaging of independently grown

trees in bagging and random forests, we can combat the overfiting. Learning rate, also

known as shrinkage, affects how fast the algorithm learns and determines how much each

tree contributes to the final outcome. The smaller is the learning rate the more accurate the

model can be but with the drawback that it will require more trees in the sequence.

The two main tree hyperparameters in a simple GBM model include: Tree depth: Con-

trols the depth of the individual trees. Typical values range from a depth of 3–8 but it is

not uncommon to see a tree depth of 1 (Hastie, J. Friedman, and Tibshirani 2001). Smaller

depth trees such as decision stumps are computationally efficient (but require more trees);

however, higher depth trees allow the algorithm to capture unique interactions but also in-

crease the risk of over-fitting. Note that larger n or p training data sets are more tolerable

to deeper trees. Minimum number of observations in terminal nodes: Also, controls the

complexity of each tree. Since we tend to use shorter trees this rarely has a large impact on

performance. Typical values range from 5–15 where higher values help prevent a model from

learning relationships which might be highly specific to the particular sample selected for a

tree (overfitting) but smaller values can help with imbalanced target classes in classification

problems.

GBMs can have high variability in accuracy which is dependent on their hyperparameter

settings (Probst, Bischl, and Boulesteix 2018). Therefor, an appropriate strategy for tuning

is necessary. A good approach is to choose a relatively high learning rate, e.g., something
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around 0.05 to 0.2 such as 0.1. Then the optimum number of trees for this learning rate

should be determined. With the fixed tree hyperparameters, the learning rate can be tuned

and the speed vs. performance can be assessed. The tree-specific parameters for decided

learning rate can then be tuned accordingly. At a later step, after the tree-specific parameters

are set, the learning rate can be reduced to assess for any improvements in accuracy.
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Chapter 2

Porcine Reproductive and Respiratory

Syndrome (PRRS) Outbreak Forecasting

using Machine Learning

Abstract. Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most

challenging and costly viral infectious diseases impacting the swine industry. The disease

transmission pathways for PRRS are very complex, requiring a combined approach of inten-

sive surveillance (i.e., testing), biosecurity, and vaccination for control and eradication. This

study builds a proactive framework to forecast the risk of having a PRRS outbreak on a

farm. This forecasting allows for early detection of disease outbreaks and could direct risk-

based, and thus more cost-effective, interventions. Machine learning algorithms were trained

using multi-scale data (pig group-, farm-, and area-level data). For the first time, on-farm,

between-farm, and environmental variables, including farm location, pig movements, produc-

tion parameters, diagnostic data, and climatic information, were combined for the prediction

of PRRS outbreaks. Multi-scale datasets were merged via feature extraction, followed by the

wrapper and filter feature selection, to find those feature subsets with the best forecasting

performance. The predictive value of each features selection mechanism was evaluated in

terms of its stability. Numerical results demonstrate good forecasting performance in terms

of area under the ROC curve.
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2.1 Introduction

The livestock industry capitalizes on the production of the highest quality animals through

the most economically efficient means. The success of a given producer relies on their ability

to maintain the health of their herds through good management practices, and the capacity

to prevent, detect and control both endemic and epidemic diseases.

The US is the world’s second largest pork producer and the second largest meat exporter

(North American Meat Institute, 2016). Within the US, most pigs are raised within multi-site

swine production systems (i.e. separate facilities by pig type and age), allowing for specialized

housing and feed. However, this multisite system intrinsically requires the frequent movement

of live animals between sites, providing a source of disease movement and introduction.

Further, these intensive production systems create environments of high pig density, which

increases the risk of disease spread. Porcine Reproductive and Respiratory Syndrome Virus

(PRRSV) is currently the most challenging and costly viral infectious disease in the US swine

industry, accounting for over $660M in losses annually (Holtkamp, Kliebenstein, et al. 2013).

Among these outbreaks, 55% are associated with growing pigs and 45% with breeding farms.

The high viral mutation rate seen in PRRSV results in high levels of sequence variability,

making vaccine development and implementation a challenge (Mateu and Dıéaz 2008). The

high cost of diagnostic screening tests, biosecurity (e.g., air filtration) and vaccination, as

well as the direct losses associated with outbreaks, highlight the need to develop forecasting

models to help identify farms at highest risk of having an outbreak. Such models allow more

cost-effective and efficient disease mitigation efforts, with risk-based surveillance, vaccination

and outbreak response strategies.

The current approach to PRRSV control includes the maintenance of high biosecurity,

routine disease surveillance via diagnostic testing, and the use of standard vaccine protocols

(Corzo et al. 2010). Serologic and molecular diagnostic tests are available for use on blood,

oral fluids, and tissue samples from live and dead pigs (Nodelijk 2002). The shedding (using

PCR) and exposure (using ELISA) status of a herd can be determined based on the results

of these tests. For breeding herds (sow and nursery farms) there are four disease status

categories: (I) positive unstable, (II) positive stable, (III) provisional negative and (IV)
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negative (Holtkamp, Polson, et al. 2011). Growing herds (finishing herds) are classified as

either positive or negative status. The challenge is that untested farms have uncertain status

and cannot be easily categorized as positive or negative. Some farm managers accept the

risk of an outbreak rather than continuously running tests. Therefore, the level of diagnostic

information, as well as the biosecurity and vaccination protocols, may vary by farm.

The aim of this study is to examine different machine learning models and to explore

those variables or features that would most effectively forecast and enable the early detection

of PRRSV outbreaks (Alkhamis et al. 2017; Shamsabardeh et al. 2019). This is a study

based on multi-scale data (pig group-, farm-, area- level data). On-farm, between-farm, and

environmental variables, including farm location, pig movements (Valdes-Donoso et al.;

2017), production parameters, diagnostic data, and climatic information are evaluated. The

ability to forecast high risk farms can inform strategies for more efficient testing and targeted

mitigation plans to reduce the impact of PRRSV on the swine industry. This study focuses

on finishing farms, which currently have the lowest frequency of disease screening and the

lowest standards of immunization and biosecurity. Finishing farms could greatly benefit

from a system that helps to forecast outbreaks. Importantly, improving health outcomes at

finishing farms would contribute to reducing the burden of disease transmission to breeding

herds, thus improving the health status of the entire system.

PRRSV transmission can occur by both direct and indirect contacts. The two main

modes of PRRSV between-farm transmission are 1) the transportation of infected live pigs

(Lee et al. 2017) and 2) airborne transmission from nearby infected farms (Otake et al.

2010). Other indirect routes of transmission include the use of infected semen, contaminated

personnel, tools or materials, or insects which can act as mechanical vectors. In this study, we

just considered the two main pathways for disease transmission: direct transmission through

the reception of pigs from other farms, and indirect airborne transmission from nearby farms.

Different features are created to represent these disease pathways and other risk factors

that may contribute to PRRSV epidemics. In general, adding additional features potentially

increases the accuracy of a forecasting model. However, using a large number of features with

comparably few data samples can result in overfitting to training data, and consequently,

decreases the generalization of the model to new data samples (Guyon and Elisseeff 2003).

19



To combat this issue, feature selection methods are used. Feature selection is the process

of selecting a subset of relevant features that are useful for predicting response variables.

In this work, filter method feature selection based on correlation (Hall, 1999), and wrapper

method based on recursive feature elimination (RFE) (Granitto et al. 2006; Guyon, Weston,

et al. 2002; Haury, Gestraud, and Vert 2011), are used to find the most relevant features

influencing PRRSV outbreaks. Furthermore, to compare the robustness of each feature

selection algorithm with respect to different training data samples, stability analysis using

Tanimoto distance is performed Kalousis, Prados, and Hilario 2007).

Overall, this work examines multiple machine learning models for outbreak forecasting

and early detection in finishing farms using a combination of diagnostic, production, and pig

trade data. This work demonstrates the strength of these techniques and provides the basis

for future real-time dashboards that can allow producers to actively monitor and respond

to shifting disease dynamics on their farms. In addition, an architecture composed of two

forecasting models stacked to each other in order to exploit the data of the farms with

unknown PRRS status is proposed.

2.2 Data and Feature Generation

In this section, the data source and structure, data pre-processing steps to build the features,

and methods to forecast the probability of having a PRRSV outbreak are explained.

Data Sources

This study is conducted based on one large-scale swine production system with multiple sow,

nursery, and finishing farms in the midwest of the United States.

For the time period 2006-2019, a rich database from this system provided information on

the movement of pigs between farms, production of the farms, and PRRSV testing results.

During this period, there were over 230,000 movement records to or from farms within the

production system. For each movement entry, the source and destination, the farm type, the

number of shipped pigs, the total weight of the shipped pigs, and the date of the movement

are available.
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At each finishing farm, the period of time from the first pig entering the farm to the last

one leaving the farm is defined as Finishing Period (FP). Lab results demonstrate that 620

out of the 3770 FP during our study period experienced at least one outbreak. In practice,

most of the farms are tested only when there is evidence of health problems on the farm.

Thus the lab results are positive for almost all submitted samples and negative samples are

not statistically representative of the negative class. To build a machine learning model that

can classify negative and positive samples, samples for both classes are needed. In this study,

domain knowledge expertise is used to define criteria for an assumed negative classification.

A farm is assumed to be negative if it meets two conditions: the mortality rate is in the

lowest 10 percent (i.e., in the 10th percentile), and the percentage of exiting pigs with weight

in the standard range is in top 10 percent (i.e. at 90th percentile). This results in 5 percent

of FPs being negative.

For each farm, climate information was obtained from the closest weather station. The

data was obtained using the R package ‘riem’, which queries the data from an online interface

to obtain weather information. The location of the weather station is not reported for data

confidentiality. Temperature, wind speed, relative humidity and altitude are considered for

this study.

Data Pre-Processing

Data Cleansing

Identification and correction of inaccurate data is an important step of data analysis. Using

incomplete or inaccurate data samples in the training procedure may lead to poor model

performance. Hence, the data were extensively analyzed to correct incomplete or inaccurate

data samples. Some fields, such as weather information, were missing for several records.

Missing fields were assigned the average value of the same period of time in the previous

years. Weather related missing fields associated with each location (farm) are replaced with

the average taken over previous years of the same period of time (e.g., month). . Due to

discrepancies in the naming system in production data and lab results we could not associate

some production data to the health status of the farm. Records with such inconsistencies
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were removed from the dataset. Moreover, inaccurate and invalid records were removed by

applying a set of rational range constraints. Specifically, in some records the number of

dead and survived pigs did not add up to the number of pigs entering the farm. Also, some

weights of the pigs were out of the reasonable range for that type of a farm.

Feature Engineering

Machine learning can provide good predictions if it can extract the relevant information from

the data. This means that its success depends on both the goodness of the model and the

data representation, the transformation of the raw data into feature vectors. The better

the data representation, the simpler the deployed model can be for the same performance

metrics, meaning less chance of over-fitting and better generalization. Feature engineering is

the manual construction of features from raw data. The importance of data representation

and feature engineering becomes clearer when the number of data samples are small com-

pared to the model complexity required to capture the relationship between dependent and

independent parameters. The feature engineering step is the most time-intensive step of this

work.

Domain knowledge is key to the construction of relevant features. One key contribution

of this work is to construct features that represent those factors that affect the risk of

having an outbreak on a farm. This paper combines data across different scales for better

forecasting. After the construction of different features, feature selection methods can be

used to evaluate whether a feature is improving the forecasting performance or not. For

example, using temperature, different features were created based on the expectation that

the spread of PRRSV would follow different patterns in warm (Dee, Deen, Rossow, Weise,

et al. 2003) versus cold (Dee, Deen, Rossow, Wiese, et al. 2002) temperatures. Next, the

best subset of temperature features can be chosen in the features selection step.

First Pathway (Direct Contact) Features: To model the PRRSV transmission

through direct contacts, different risk factors were considered. Most pigs are able to clear

PRRSV infection after getting infected, but some become persistently infected and can then

act as carriers, spreading the virus if that pig is transferred to another farm. To capture

this effect, a feature was created representing the number of entering pigs that are coming
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from a farm that has had an outbreak during the lifetime of that pig on the farm, i.e. if the

nursery that the pig is coming from had an outbreak during that pig’s lifetime. In addition,

the total number of times that pigs enter a farm during a given FP, and the total number of

different sources that pigs are coming from, are additional risk factors. The total number of

pigs on a farm was also considered.

Second Pathway (Airborne) Features: The second pathway is through airborne

transmission from nearby farms. To model this pathway, the vicinity of the farm was defined

as the circular area around the farm within a defined distance. For each farm, the total

number of movements and number of pigs, entering or exiting the vicinity were calculated.

In addition, different neighborhood sizes (vicinity diameters) of 5km, 10km and 20km were

examined in this study. Figure 1 depicts the neighborhood for farm F1 at the center of the

circle. The dashed red arrows show the movements that the model counts for airborne effect.

The solid red arrows represent direct contact movements.

Each movement feature has versions based on time period: 1) from the start of the FP

up to its forecasting date, and 2) the historical equivalent of this feature for the one year

prior to FP start date. These two sets of features are highly correlated, but together can

indicate how the current FP movements are different from what is expected on average for

the farm’s neighborhood. Each of the features for current FP were normalized by dividing

the feature value by the period of time for which they were calculated.

A farm with a higher density of neighboring farms is at higher risk for having an outbreak.

More importantly, the number of outbreaks happening in the neighborhood of the farm

during the FP, and the historical number of the outbreaks in the neighborhood in the one

year prior to the start of FP, represent how risky the area is.

Production Features: Production data include total feed consumed and exiting weight

at the end of the FP. This information cannot be used for the purpose of forecasting an out-

break for that same FP because it will violate causality. However, suchthese data can be

used for the evaluation of future FPs, because it is a good indicator of the overall perfor-

mance/management practices/risk of a farm. Thus, features for historical production data

for each farm were built. The total number of pigs, and the average weight of pigs entering a

farm, are two features that can be used for the current FP. The following features based on
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Figure 2.1: The two main PRRSV pathways for farm F3:1) Airborne effect from neighboring
farms (movements (orange color) with source or destination to farms that are located in
the circle), 2) direct reception of pigs (blue colors). Other movements (grey) and farms are
assumed to have no effect.

historical data were used for each FP. Based on the weight of existing pigs, the percentage

of sub-standard pigs was calculated by dividing the number of survivingsurvived pigs that

were not within standard weight range by the total number of survived pigs. In addition, the

average weight of sub-standard pigs on that farm was determined. Similarly, the percent and

average weight of exiting pigs falling within the standard range were calculated. The total

net weight survived is the weight difference of survived pigs from entrance to exit and is di-

vided by the number of survived pigs to obtain average net weight survived. Total pig days is

the number of days pigs spendspent on a farm. The total net weight survived can be divided

by the total pig days to obtain Average Daily Gain (ADG). Similarly, the Average Daily Feed

(ADF) was calculated as the ratio of total consumed feed and total pig days. Next, the ratio

between ADG and ADF provides the net weight survived per one pound of food consumed.

From the information on the number of days on-farm the following features were calculated

for dead and survived pigs: the total live pig days is the number of days that survived pigs

were alive; total dead pig days is the total number of days that pigs were on-farm before

their death. The total live pig days and total dead pig days were divided by the number

of survived pigs and the number of dead pigs, respectively. The mortality rate is the ratio
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of the number of dead pigs to entering pigs. All these are used as features. Other Overall

Management Practices/Performance Features Additional features that can demonstrate the

general management practices of a farm were created. Good management practices include

the disinfection of the farm before the start of each FP. Additionally, receiving new animals

all together within a few days of the start of the FP (i.e. all-in all-out), is considered a better

practice than to allow continual additions throughout the FP. The continuous reception of

pigs, versus a single time point population of the farm, results in a staggered cycle of animals

leaving the farm at different time points, meaning there is no time at which the entire farm

can be disinfected, allowing for the possible retention of infection from previous FPs. To

represent this risk factor, a feature was created for the number of days between the first and

last reception of new pigs. The percentage of time that a farm has had an outbreak in the

past is a mixed indicator of all of the above mentioned historical factors. Climate Features

In addition to wind speed, relative humidity, and altitude provided in the climate data, the

average and lowest temperature of the past 15, 30, 45, 60 and 90 days prior to the forecast-

ing date were built. It was not deemed necessary to have exact temperature measurements

for every time point given the expected variability between true on-farm temperature values

versus those recorded by weather stations due to on-site thermoregulation, distance from the

weather station, and data collection in windows of a minimum of 15 days. Missing weather

data were removed, and the average temperature for the past 60 days was selected as the

best temperature feature for the model. The season of the FP was defined as the season of

the forecasting day. It is a categorical feature and was represented using one hot encoding.

In other words, four binary features were created, and a single value was assigned to a given

FP based on the corresponding season for a given forecasting day.

2.3 Machine Learning Methods

In this section, the machine learning methods that were used to forecast the PRRSV outbreak

probability are explained. As in the other classification problems, the goal was to find the

discriminator function that most efficiently mapped features to target labels.
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Standard Machine Learning Models

Various machine learning algorithms including: Logistic Regression (LR), Support Vector

Machine (SVM), Gradient Boosting (GB), and Random Forest (RF) were trained to forecast

the PRRSV status of a farm. The probability of each farm being classified as positive for

PRRSV is obtained from the output of each of these models. A farm is identified as positive

by the model if its probability of infection is higher than a given threshold. Thus, metrics

such as accuracy, sensitivity and specificity are dependent on this threshold. The Receiver

Operating Characteristic (ROC) does not have this issue as it can be computed for every

possible threshold. ROC curve shows how true positive rate (sensitivity) changes with false

positive rate (1- specificity) for different thresholds. Therefore, the Area Under Curve (AUC)

of the ROC is a good metric for comparing different models and is used here.

Cross Validation and Hyper-parameter Tuning

Given the past and the present observations on the health status of a farm and its features,

the goal of this work is to predict the future health status of the farm. Therefore, all data

about events that occur chronologically after the time of forecasting should be withheld and

not used for prediction. The data were therefore split temporally into two non-overlapping

parts for training and testing. The first portion was used for model training, while the second

half was reserved for performance evaluation of the model.

Each model has different hyper-parameters that govern its complexity. We tuned hyper-

parameters, namely, learning rate, tree depth, etc., to find the best fit model, i.e., to prevent

the model from both overfitting and underfitting. To achieve this, the training data were

further divided temporally into two chunks. The first chunk included 80 percent of the

training data and was used to train the models with different sets of hyper-parameters;

the remaining 20 percent of training data was used to test these models and find the best

hyper-parameters values. First, hyperparameter-tuning was performed using the training

data by performing a grid search over a range of values for the hyperparameters in different

types of models. Specifically, each of these models was trained using eighty percent of the

training data, and then tested over the remaining twenty percent for each collection of values

26



of the hyperparameters to find the best hyper-parameters values. Using these best hyper-

parameters values, a performance evaluation was then carried out by repeatedly training the

model using a randomly selected subset (60%) of the training set and reporting the area

under the receiver operator characteristic curve (AUC-ROC) on a randomly selected subset

(80%) of the test set. Note that this approach for model validation was chosen so that all the

points used for testing come chronologically after the ones used in training as the standard

K-fold cross validation is not appropriate for time series data.

Feature Selection

The process of selecting features with the highest contribution towards forecasting the output

is called feature selection. Having a high-dimensional feature space can cause the training

algorithm to have impaired learning performance, be prone to overfitting, and become com-

putationally cumbersome. The main goal of feature selection is either: 1) to find the subset

of features that minimizes generalization error, or 2) to select the smallest possible subset of

features that satisfies the performance criterion and allows for better model interpretability.

The main approach in this work is the latter.

Prior to the feature selection, we used hierarchical clustering to observe the degree to

which the features are correlated. Hierarchical clustering groups the features such that the

features constituting one group have more similarity among themselves than features in the

other groups. Feature selection methods are categorized into wrapper, filter and embedded

methods. In this study, we used filter and wrapper methods as explained below:

Filter Methods: The filter method performs a feature selection procedure regardless

of the type of learning model. A scoring measure based on data characteristics such as

distance, information, or correlation, is used as the metric to filter those features that seem

more relevant to the response variable. The filtering in this work was done based on Pearson

correlation and mutual information.

Pearson correlation measures the similarity between two variables. In a univariate method,

the correlation between each feature and the response variable is obtained, and feature selec-

tion is done based on the correlation with the response variable (target). Another popular

filter method is a mutual information-based feature selection Hoque, Bhattacharyya, and
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Kalita 2014 which uses mutual information as the entropy measure to choose the subset of

important features. Mutual information is a measure between two random variables, e.g.,

each input feature and the response variable, that quantifies the amount of information ob-

tained about one, through the other. The drawback of these two approaches is that they

do not take the correlation between features into account (only that between the feature

and response variable), and may thereby choose two highly correlated features such that

one is redundant in presence of the other. To solve this problem, we proposed a metric

based on Pearson correlation and mutual information, described in Algorithm 1, to find the

desired subset of features. Specifically, the metric denoted as M is directly proportional

to the mutual information MI and to the correlation with target PTarget . It is, however,

reversely proportional to the correlation with the previously selected features, as we want to

avoid selecting highly correlated features and choose features that can contribute different

information to the classifier accuracy. We convert the proportionality to equality as:

M =
MI × P Target

α + βP Feat
, (2.1)

where α and β are hyperparameters that control the dependency of the metric M to

feature correlation PFeat and correlation with response variable PTarget. High ratios of α/β

will eliminate the dependency of M on PFeat and high values of α removes the dependency

of the M on PTarget. We performed a grid-search over the range of values 1, 10 and 100 for

both and to determine their optimal value.

The Pearson’s correlation function ρFeat(T, Fselected, f) takes the training set T computes

the Pearson’s correlation of feature f with all the features in set Fselected and returns the maxi-

mum within feature correlation over features in set Fselected. The function FTarget(T, f, y) com-

putes the Pearson’s correlation of feature f with target y. Finally, the function MI(T, f, y)

take the training set T and computes the Mutual information of feature f with the target y.

Wrapper Methods: Wrapper methods merge feature selection and learning steps allowing

the learning algorithm to interact with the bias of the feature selection step, decreasing the

total bias. Thus, using wrapper methods, a subset of features that result in better prediction

performance will be selected. The Recursive Feature Elimination (RFE) method (Guyon,
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Algorithm 1 Algorithm for proposed filter method.

Weston, et al. 2002) is a commonly used wrapper model. It is a recursive algorithm that

ranks features according to some measure of their importance. For example, SVM-RFE ranks

the features based on SVM, Sanz et al. 2018. In this paper, we use LR-RFE, SVM-RFE,

GB-RFE and RF-RFE to eliminate and rank features.

Stability of Feature Selection

Many feature selection algorithms have been successful at improving the forecasting accu-

racy of learning models while reducing feature-space dimensionality and model complexity

(Khalid, Khalil, and Nasreen 2014). Beyond high accuracy, the stability of feature selection

is another important attribute of these algorithms. The stability of a feature selection al-

gorithm is defined as the robustness of the feature set it produces to differences in training

sets drawn from the same generating distribution P (X,C), where C is the class label for X.

Here we use the stability measure proposed in Kalousis, Prados, and Hilario 2007 to compare

several feature selection methods, informing selection of the one that best fits our dataset
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and performance needs. Similarity between two subsets of features using a straightforward

Ss takes values in [0,1] with 0 meaning there is no overlap between the two sets and 1 that

the two sets are identical. To empirically estimate the stability of a feature selection algo-

rithm for a given dataset, the distribution P(X,C) from which the training sets are drawn is

simulated by using a re-sampling technique

Ss(s, s
′) = 1− |s|+ |s′| − 2|s ∩ s′|

|s|+ |s′| − |s ∩ s′|
, (2.2)

where Ss takes values in [0, 1] with 0 meaning there is no overlap between the two sets,

and 1 that the two sets are identical. To calculate the stability, K data subsets were created

by randomly shuffling the data and dividing it into folds. A small K does not produce a

robust estimation of the variance for stability estimation as there are few instances of its

measurement. A large K, on the other hand, decreases the number of data points in each fold,

and as a result does not yield a reliable AUC-ROC score. Therefore, as a compromise between

accuracy for AUC-ROC and stability, we chose K = 5 folds. For each fold, the selected

features are computed according to the feature selection method. Then, the similarity of

each pair of selected features, i.e. K(K − 1)/2 pairs, is computed using the similarity

measure.

2.4 Result

In this section, the performance analysis, in terms of test ROC-AUC and stability of the

feature selection, regarding the four predictive models on the extracted features are presented.

Performance and Stability Results

We used 196 data points for the method training and evaluation. Specifically, the training

set consists of 157 data points (80%), and the remaining 39 data points (20%) constitute the

testing set. A performance evaluation was conducted by repeatedly training the model using

94 randomly selected data points (60% of the training set) and reporting the AUC-ROC on

31 randomly selected data points (80% of the test set).
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The various hyper-parameters for each model, alongside the related AUC-ROC score for

N=10, 20, 40 features, are presented in Table 1. The best hyper-parameter that achieves

higher AUC-ROC score, while introducing less complexity in terms of the number of pa-

rameters is indicated with bold font. An example of hyper-parameter tuning for support

vector classifier for features length ranging from 1 to 60 can be seen in Figure 2. A range of

three values for the regularization parameter (C) were considered, where the strength of the

regularization is inversely proportional to C.

(a) AUC-ROC score versus number of features (b) Stability Versus number of features

Figure 2.2: (a) Stability score for different regularization parameters (C) in Support Vector
Classifier (SVC) for different sizes of feature sets. (b) the area under the ROC curve (AUC-
ROC) score for different regularization parameters for different sizes of feature set. The
strength of the regularization is inversely proportional to the regularization parameter C.
The regularization C=10 yields the best AUC-ROC but the regularization C=1 has better
stability (equivalent to part of the table 1).

For each model, Figure 3, demonstrates the AUC-ROC and stability measure mean and

standard deviation across the folds. This figure shows the performance of each of these

models together with the stability of the corresponding RFE-based feature selection method

in terms of AUC-ROC score. According to the results, the two non-linear models, GB and

RF, have better AUC-ROC scores than the linear models, SVC and LR (Figure 3a). In

Figure 3b, it can be seen that the non-linear models, GB and RF, are not as stable as the

linear models in selecting a robust subset of features.
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Table 2.1: Hyper-parameter tuning for the four classifiers used for PRRSV outbreak predic-
tion. The ROC-AUC for each set of hyper-parameters is reported for different feature sizes
N = 10, 20, 40, and the best set is shown in bold font.
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(a) AUC-ROC score versus number of features (b) Stability Versus number of features

Figure 2.3: Performance assessment of Recursive Feature Elimination (RFE) merged with
different classifiers for PRRSV outbreak prediction in terms of: (a) The area under the ROC
curve (AUC-ROC), and (b) stability score for different size features sets. Each graph is
labeled according to the classifier used in the RFE feature selection algorithm.

Since the tree-based models (GB and RF) have a higher AUC-ROC, we used them as the

base classifiers to assess other filter-based feature selection methods (see Figure 4). In Figure

4a-b, we show the performance assessment of different feature selection methods using GB

as the classifier. Specifically, we compared a RFE-GB feature selection method and three

other filter-based feature selection methods: correlation with target, Mutual Information

(MI), and our proposed algorithm (Algorithm 1). Similarly, in Figure 4c-d, we showed the

performance assessment of these feature selection methods using RF as the classifier. As

demonstrated in these two figures, the filter-based feature selection methods had higher

stability, but lower ROC-AUC, in comparison with the RFE-based methods. Algorithm 1

surpassed the stability of RFE-based feature selection methods, while showing a comparable

ROC-AUC performance.

Feature Selection

To identify highly correlated features, hierarchical clustering was performed as shown in

Figure 5. The features are clustered according to their correlation-based distance and the

cluster value, shown as a distinct color in the horizontal bar plot. Each feature belonging to
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(a) (b)

(c) (d)

Figure 2.4: Performance demonstration of different feature selection methods (wrapper and
filter methods) merged with the Gradient Boosting (GB) Random Forest (RF) as classifier
for PRRSV outbreak prediction in terms of: (a and c) The area under the ROC curve (AUC-
ROC), and (b and d) Stability score for different size features sets. Each graph is labeled
according to its feature selection method (on the left of dash) and its classifier method (on
the right of dash).
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a specific cluster is representative of that cluster and has relatively the same contribution in

terms of classification performance.

Figure 2.5: Feature similarity grouped by hierarchical clustering. Hierarchical clustering is
used to analyze the similarity between features in terms of their correlation. The darker colors
are representative of higher correlations among features. The formed blocks are indicative
of the clusters of similar features. The exact margins are shown by the horizontal bar at the
top where each color represents a cluster. The description of each feature number can be
found in Table 1 of Supplement 1.

According to these sampled selected feature subsets, it was found that the average 60 prior

days was the best temperature feature when combined with other features for forecasting,

thus these values were used in the model. The prior 60 day average temperature and wind
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were selected more frequently than relative humidity and altitude. Seasonal features were not

selected when a temperature feature was chosen. In addition, it was found that the number

of movements in the neighborhood for different radii (the number of movements to/from

any farm located in 5km, 10km and 20 km) can be used together to improve prediction.
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Table 2.2: Subsets of selected features using Recursive Feature Elimination + Gradient
boosting classifier to forecast PRRSV outbreaks as evaluated by AUC-ROC. Historical is
defined as a period of one year prior to the start of the current finishing period.

The 20km radius features were more frequently selected than those of the 5km and 10km

vicinity. In general, the number of movements were more important than the number of

animals being shipped in a given movement. The total number and weight of incoming pigs,

and the percent of existing pigs with substandard weight were important. The number of

dead pigs and the average number of days that dead pigs have lived on the farm are also

important predictive features. Moreover, average daily feed, past outbreak frequency in the

farm, and the number of outbreaks in the neighborhood during the current finishing period,

were amongst the most important features.
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2.5 Discussion

This study incorporates swine farm- and area-level data in the forecasting of the farm-level

PRRSV outbreaks. Using a uniquely rich real-world dataset, obtained from our industry

collaborators, we included a level of detail that, to the best of our knowledge, has not been

previously considered in the prediction of PRRSV outbreaks. We integrated production

data, movement data, and climate information for our predictions. Further, we demonstrate

the generation of new features from standard industry variables that better represent farm-

level management practices and risk for use in forecasting models. In this manner, we have

addressed the two main PRRSV transmission pathways, direct contact and airborne, as well

as onsite disease history and management practices, and the role of near-farm status, on

outbreak risk.

Based on the AUC-ROC and stability results, the two tree-based models have superior

AUC-ROC scores in comparison with the linear models when used as classifiers. This is

expected as the tree-based models are non-linear in nature and, therefore, can capture the

nonlinearities in the data. However, due to their inherent randomness, they do not show a

reasonable stability when used as RFE-based feature selection methods. As observed in the

results section, filter-based feature selection methods demonstrated considerable stability

and, hence, were used as the basis for developing a new feature selection algorithm. By

combining Algorithm 1 for feature selection, which inherits the superior stability of the

filter-based feature selection, and a tree-based model as classifier, we achieve high predictive

performance and stability.

Considering Table 2 and 3, we observe that all different types of data, i.e., shipment,

diagnostic, and production, play an important role in improving the prediction performance

of the model. Based on the feature selection results, the most predictive feature in the

dataset is the pig population. As the most frequently selected features across different

methods, features representing movements in a neighborhood during the current FP are

strong predictive features. Features related to pig movements to/from farms located in a

20 km neighborhood is a strong predictive feature to capture the effect of airborne disease

transmission pathway. Features representing the number of dead pigs and the number of days
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they lived can represent the magnitude and impact of the PRRSV infection (and associated

co-morbidities) on the farm. The historical features, which are the averages over the past

measurements, are important because they provide the model with the information about

the biosecurity and management practices of the farm over the time, while the current

FP features are informative in terms of the recent events. The superior performance of

the 60-day climatic period may be due to the fact that it capture seasonality; or, it may

outperform other time periods because more shipments happen during the 60 days prior to

the forecasting day and thus this average may best represent the temperature that pigs were

exposed to during shipment.

Different subsets or combinations of features can yield the same performance. This is

due to the fact that a feature in a given subset may be substituted with another feature

that is highly correlated with it. This gives flexibility to those wanting to generate their

own models. The clusters presented in Figure. 5, and on the list and description of features

included in each cluster (Supplement 1), provide alternative features for use in forecasting

when all the data fields used in this work are not available. In general, selecting 4 features,

one from each of the first 4 clusters in Figure. 5 should provide high predictive power.

2.6 Conclusion

To the best of our knowledge, this is one of the first attempts to apply multiple machine

learning models for PRRSV forecasting using multi-level data. We have demonstrated the

strength of these methods for disease prediction in the swine industry, and believe they

could be readily adapted for use on other diseases and for additional livestock species. This

approach could save the swine industry millions of dollars through the improved efficiency

and reduced economic burden provided by early, targeted, risk mitigation strategies. This

work uses a rich, multi-scale (pig group-, farm-, area-level data) feature set - assessing on-

farm characteristics at a level previously unreported for farm health analysis in the swine

industry. Additionally, the integration of historical data with current cycle data to improve

forecasting accuracy is a novel approach applied in this work. Generating an expansive set of

features, ranging across farm level, time and space, allowing the evaluation of multiple disease
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transmission pathways, environmental factors, and management practices as risk factors for

disease occurrence, resulted in improved outbreak forecasting ability. Stable feature selection

allowed us to identify and represent the most important risk factors for PRRSV outbreaks.

These variables can now be further explored by the industry and research community as

points for future intervention. These approaches offer a strong basis for ongoing work,

and we hope the adaptation of these methods into dynamic dashboards within the Disease

BioPortal (https://bioportal.ucdavis.edu) will provide industry users with near real-

time information for improved health management decisions.
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Figure 2.6: The following table provides the description of the features used in the models.
The feature numbers correspond to the indices shown in Figure 2.5, and the features color-
coded based on the clustering result shown in Figure 2.5. FP refers to the current finishing
period, while H refers to the historical features. Furthermore the features are categorized
into farm-level, group-level, area-level, and environment-level.
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Chapter 3

Semi-supervised LSTM-VAE for

Mortality Rate Prediction

In this chapter, we focus on the sow farm of a production system and different performance

metrics for the sows and piglets.

The moralities in piglet can have different causes. These causes can be infection-based

such as PRRS or non-infection such as genetics, sow’s body condition, age at delivery, far-

rowing birth assistance, order of birth, environmental factors (heating control system) and

etc. Vanderhaeghe et al. 2013. These moralities can occur at different times, before, during

or after weaning (weaning is the shift in food of piglets from the sow’s milk to a other foods).

It can happen during early gestation and the fetus be resorbed, after day 40 of pregnancy

but before farrowing (mummified piglet), or close to birth at farrowing (still-born). The

general management practices of the farm can affect these mortalities.

Pigs can die from PRRS at any age. The reproductive failure caused by PRRS can occur

in both early and late gestation, when the virus has the ability to cross the placental wall

and infect the embryos (early developmental stage within the uterus). Embryos dead prior

to 35 days are generally resorbed. However, in late pregnancy the result of infection is more

sever and can cause abortion of up to 40% Pena et al. 2019. It can also cause the early

farrowing and the birth of weak piglets with different abnormality at a later time.

We aim to predict the still-born and mummified mortality rates. We also are interested

in farrowing rates (the proportion of females served that farrow) in sow farms of a production
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system. Building a predictive model can help the farm management better understand these

mortality rates. We are looking to build a prediction model based on the data of the years

2016 to 2021 of a large swine production system. It is a time series data that provides weekly

update for the breeding performance, farrowing, weaning management (laction), inventory,

the number of death and culling. This data indicate the general management practice of a

farm together with the mortality rates.

To solve this problem we deploy a predictive model known as variational recurrent auto-

encoder. Variational recurrent auto-encoder, can combine the advantage of VAE and LSTM.

This model leverages the powerful recurrent Long Short Term Memory (LSTM) neural net-

work and variational Auto Encoder (VAE). LSTM exploits the time dependency for better

prediction while VAE learns the distribution of the data by learning the latent space. We

also take a semi-supervised approach allowing for prediction of response variables in a semi-

supervised setting.

3.1 Introduction

We are looking at a well-known class of models, known as semi-supervised deep generative

models, endowed with LSTM networks, for predicting multivariate time-series based on

features that are in form of a time series themselves. We are focusing on semi-supervised

approaches since in supervised learning problems, including classification and regression, we

are sometimes dealing with a dataset in which a portion of the data is unlabelled and the

response variable has no value. Classical methods only made use of the labeled portion of

the data to train a supervised model. However, there are still a lot of information in the

unlabeled data that can inform the modeling of the dependent variable. The term semi-

supervised learning mitigate this issue by using both unlabeled and labeled data to improve

supervised learning’s generalization error. The main goal of this techniques is to get the best

performance with a lowest amount of labelled data, Zhu and Goldberg 2009.

Furthermore, the problem at hand is a nonlinear regression problem that arises because

we have different variables in the dataset, and the goal is to predict the value of one variable,

known as dependent variable, given the values of the other independent variables. In general,
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regression analysis builds a mathematical model based on the data that allows the prediction

of the output variable to be most accurate Mendenhall, Sincich, and Boudreau 2003. The

regression problem can be extended in the semi-supervised setting, i.e., given a set of labeled

training data and a set of unlabeled data points, the goal is to predict the dependent variable,

also known as regressand, for any new observation. In contrast to the supervised learning,

where we only use the labeled data, in this case, the insight from the unlabeled data points

is also deployed by the learning algorithm Kostopoulos et al. 2018.

Semi-supervised deep generative models are a sub-group of latent variable models, which

are statistical models that contain latent variables, i.e. unobserved variables. In addition to

the types of observed variables, latent variables can be discrete or continuous. This allows

for broad classifications of latent variable models. Formally, a latent variable model is a

probability distribution over two sets of variables x and z: p(x, z; θ) where the x is the

observed variable, and z is the latent variable. We have both discriminative and generative

latent variable models. We use latent variable models when some data in our model is

unobserved. These models also enable us to leverage the prior knowledge when defining a

model. They can also be viewed as a tool to increase the expressive power of our model. For

example in case Gaussian mixture models, we can model a much more expressive distribution

using a mixture of Gaussian than using a single Gaussian.

The learning process in semi-supervised deep generative models is according to the frame-

work of Bayesian inference, which is a statistical approach for updating the a priori known

probability distribution over unobserved variable using Bayes’ theorem when more empirical

observation becomes available. More formally, in the Bayesian inference framework, we have

some unobserved variable, or a set of parameters, denoted as θ, and some observed data or

evidence, which is, denoted as x. The problem of probabilistic inference is considered the

problem of calculating the conditional probability distribution over θ, given the evidence x.

3.2 Semi-supervised Deep Generative Model

The goal of this chapter is to formalize the problem of mortality rate prediction and modeling

as a latent variable modeling problem. Note only we care about the mortality rate itself, we
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also care about the feature values that cause a specific mortality rate. Formally, We have a

dataset D = {(x1, y1), ..., (xN , yN)} containing pairs of (xn, yn), where xn ∈ RD is the nth

observation and yn ∈ R is the corresponding regressand in our semi-supervised regression

model, which represent the mortality rate. We assume that our observed features have

corresponding latent variables denoted by zn . We also assume that the mortality rate is

only know for a subset of our observations, and we want to predict the rest in an inference

procedure. Therefore, we have two different empirical distributions, one over the part of the

data for which y is known psup(x, y), and one over the part of the data for which y is not

known pun(x, y). We deploy a semi-supervised generative modeling approach that improves

predictive performance of the model by exploiting the generative descriptions of the data.

Generative Model for Features

In many of the complex real-world applications, data includes hundreds of features. Usually,

we can reduce the dimensionality of the feature space to comparably lower dimension. We

call the new space with the reduced dimension the embedding or representation space and we

define it by a latent variable. In latent variable modeling, we construct a model that defines

a feature representation of the data also known as embedding. If the data is generated

according to several different lower dimensional factors, introducing the embedding space

will allow for a clustering of observations in the latent feature space, which can be later

used for accurate prediction of some dependent variable, e.g., regressand in the regression

problem. We leverage neural networks as an expressive non-linear function estimator to

construct a deep generative model of the data that provides a rich set of of latent features.

The generative model can be formally described as:

p(z) = N (z | 0, I)

pθ(x | z) = f(x; z,θ) (3.1)

where f(x; z,θ) is likelihood probability distribution which can take the form of a Gaussian,

Bernoulli, or any other appropriate distribution. Note that the parameters of these probabil-

ity distributions, e.g., mean and variance in case of a Gaussian distribution, are non-linear
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Figure 3.1: Probabilistic graphical model for semi-supervised generative model based on
Durk P Kingma et al. 2014

transformations of the latent variables z. These transformations are parameterized with

deep neural networks, in which the weights are collectively denoted by θ).

In a classification problem, we use approximate samples from the posterior distribution of

the latent variables p(z|x) to train a classifier for predicting the class labels. We can use the

same methodology in a regression problem, i.e., using the posterior distribution samples as

a guide to predict the dependent variable y, the mortality rate. Hence, we can do regression

in a lower dimensional space, which is the latent space.

Generative Model with Regressand

For the part of data with known dependent variable y, we can assume that the observed

data is generated by a latent regressand variable y in addition to a latent variable z. In this

case, the genrative model is described as:

p(y) = N (y | µ,Σ),

p(z) = N (z | 0, I),

pθ(x | y, z) = f(x; y, z,θ) (3.2)

where N (y | µ,Σ) is a multivariate Gaussian distribution with mean µ and covaraiance

Σ, the dependant variable y is treated as a latent variable when no y is recorded and

zs are the other latent variables. Here, as shown the graphical model of figure. 3.1 we

assume that these two set of latent variables are marginally independent, which is a valid

assumption in that it separates the regression-specific dependencies from other variation in
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Figure 3.2: Variational autoencoder for semi-supervised learning.

the fully observed data x. As before, f(x; y, z, θ) is a non-linear likelihood function such

as Gaussian distribution, which is parameterized by a non-linear transformation of all the

latent variables. This function is parameterized with deep neural networks representing the

non-linear transformation. For the sample with unobserved y, this value is estimated during

the inference process. The inference process involves predictions for the y value based on

the inferred posterior distribution pθ(y | x).

Generative Model for Observed and Unobserved y

Semi-supervised learning approach involves learning a latent representation using the gener-

ative model for samples with unobserved y, and then learning a generative semi-supervised

model, using this representation instead of the raw data x. Therefore, we have a deep

generative model with two layers of stochastic variables (see figure. 3.2).

3.3 Variational Inference

In almost the variational autoencoder models, the exact computation of posterior distribution

is intractable because of the nonlinear, non-conjugate dependencies between the random
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variables. The advances in variational inference (Diederik P Kingma and Welling 2014a;

Rezende, Mohamed, and Wierstra 2014) made it possible to perform inference and parameter

learning. To this end, an approximate distribution denoted as qϕ(z | x) with parameters ϕ

is introduced to approximate the true posterior distribution p(z | x). A lower bound on

the marginal likelihood of the model p(x), or p(x, y), is derived according to the variational

principle, which is thought of as the objective function. The ultimate goal is to force the

approximate posterior to be as close as possible to the true posterior.

A well-known approach for for efficient variational inference is to build the approximate

posterior distribution qϕ(·) as an inference model (Dayan 2000; Diederik P Kingma and

Welling 2014a; Rezende, Mohamed, and Wierstra 2014). In standard variational inference

methods, variational parameters should be computed for each data point, and hence, the

number of parameters grows with the number of samples. In this study, we use an inference

network, which is at its core a network parameterized with a set of global variational param-

eters ϕ. This technique, known as amortized variational inference, diminishes the need to

compute per data point variational parameters. In this way, the cost of inference is reduced

as the posterior estimates for all latent variables can be computed through learning the pa-

rameters of the inference network. In addition, using a single inference network allows for

fast inference at both training and testing time.

The inference network introduced for all latent variables are parameterized as deep neural

networks in which the outputs are the parameters of the approximate distribution qϕ(·). We

introduce two approximate distributions: (i) one for the samples with unknown y denoted

as qϕ(z | x) for the latent variable z and (ii) one for the samples with observed y denoted as

qϕ(z, y | x) for each of the latent variables z and y. For the latter, we assume a factorized

form as

qϕ(z, y | x) = qϕ(z | x)qϕ(y | x), (3.3)

where qϕ(z | x) and qϕ(y | x) have appropriate Gaussian distributions. We have
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Unobserved y: qϕ(z | x) = N
(
z | µϕ(x), diag(σ2

ϕ(x))
)

Observed y: qϕ(z | y,x) = N (z | µϕ1(y,x), diag(σ2
ϕ1
(x))),

qϕ(y | x) = N (y | µϕ2(x), diag(σ2
ϕ2
(x))).

Lower Bound Objective

The variational bound J (x) for the samples with unobserved y on the marginal likelihood

for a single data point can be derived as:

log pθ(x) ≥ Eqϕ(y,z|x)

[
log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qϕ(y, z|x)

]
= Eqϕ(y|x)

[
Eqϕ(z|x)

[
log pθ(x|y, z) + const + log pθ(z)− log qϕ(y|x)− log qϕ(z|x)

]]
= Eqϕ(y|x)

[
Eqϕ(z|x)

[
log pθ(x|y, z)

]
+ const −KL[qϕ(z|x)||pθ(z)]− log qϕ(y|x)

]
= Eqϕ(y|x)

[
− L(x, y)− log qϕ(y|x)

]
=

∑
y

[
qϕ(y|x)(−L(x, y))− qϕ(y|x) log qϕ(y|x)

]
=

∑
y

qϕ(y|x)(−L(x, y)) +H(qϕ(y|x)) = −J (x) (3.4)

In this model, the inference network qϕ(z | x), which is parameterized by neural network,

uses both samples with observed y and samples with unobserved y. This approximate poste-

rior is then used as a feature extractor for the samples with known y, and the features used

for training the regressor.

For the samples with observed y, the variational objective for a single data point (x, y)

is:
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log pθ(x, y) ≥ Eqϕ(µ,Σ,z|x,y)

[
log pθ(x|y, z,µ,Σ) + log pθ(µ,Σ|y)

+ log pθ(y) + log pθ(z)− log qϕ(µ,Σ, z|x, y)
]

= Eqϕ(z|x)

[
log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qϕ(z|x)

]
+ Eqϕ(µ,Σ|x)

[
log pθ(µ,Σ|y)− log qϕ(µ,Σ|x)

]
= −L(x, y)−KL[qϕ(µ,Σ|x)||pθ(µ,Σ|y)]

≥ −L(x, y) + α log qϕ(y|x) + const 2 (3.5)

where α is a hyper-parameter.

Training the Semi-Supervised Model

For training the semi-supervised model, the final loss function is of the following form:

J =
∑

x∈Dunlabelled

[∑
y

qϕ(y|x)(L(x, y))−H(qϕ(y|x))
]
+

∑
(x,y)∈Dlabelled

[
L(x, y)− α log qϕ(y|x)

]
(3.6)

With the loss function of equation 3.6, we train the network by taking a mini-batch,

sampling the priors, computing the values in the networks, and computing the loss func-

tion. The ELBO bound includes the parameters θ and ϕ that are related to the generative

distributions, which defines the distribution over data pθ(X), and the variational distribu-

tion, respectively. We maximize this bound with respect to the parameters θ to learn the

generative model and maximize it over the parameters ϕ to perform inference.

3.4 LSTM for Encoder and Decoder Networks

In order to combine the advantages of VAE with recurrent networks, such as LSTM, we use

LSTM networks for both encoder and decoder part of our semi-supervised VAE model.
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Recurrent Neural Network (RNN) are a type of neural network designed for time series

data. The RNN has two major problems and the Long Short Term Memory (LSTM) was

developed to address these problems. First the so called vanishing and exploding gradient

descent: During the training of the neural networks with gradient decent algorithm, the

goal is to minimize the cost function error by back-propagating that error and updating

the weights of the neurons that participated in creation of the error. These neurons in feed

forward neural networks are below each other from one layer to the previous one and the

error needs to be propagated back to the input of the same time.

In a recurrent neural network the error should be additionally back-propagated through

time to the first neuron that was used for the prediction of the output of current time stamp.

The so called problem of vanishing gradient descent occurs when multiple weights have value

less than one and the result of this multiplication would become so small. This problem is

more severe for the RNN as the recurrent weights (those that hold the information from the

previous time points) would be multiplied by themselves multiple times (depending on how

long of history the model considers in time) and the gradient decline rapidly for small values

of weights. The similar problem of exploding gradient decent appears if the values of weights

are large. The problem with gradient values is addressed in LSTM architecture by setting the

value of the recurrent weights to 1. This technique of preserving error in temporal weights

is called constant error carousel and is the key feature of LSTM. Another problem of RNN

that LSTM can address is the shortcoming of RNN in dealing with long term dependencies

and dealing with understanding of the context. In LSTM there exists two state variables,

namely cell and hidden state variables. The hidden state is known as Short term memory

and the cell state is known as Long term memory. The cell state goes straight through the

cell with only some minor linear interactions to the next cell. The memory problem of RNN

is addressed by deploying a series of probabilistic gates that decides when to keep, forget

or ignore data that are being transferred to the next LSTM cell. Gates are composed of a

sigmoid neural net layer and multiplication operation to optionally let information through.

Forget Gate: A forget gate is responsible for throwing away the irrelevant information

stored in the cell state. This gate decides how much of the information coming from the

previous timestamp is to be remembered or forgotten. This decision is based on the hidden
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state from the previous cell and the input at current time step. After going through a sigmoid

function the output will be between 0 and 1. The value of zero means that the forget gate

decides the cell state to completely forget that piece of information. In other words, forget

gate learns to reset the internal state of the memory cell.

Input Gate: The input gate is responsible to learn new information from the input by

adding the information to the cell state. A sigmoid layer decides which values to update

and a tanh layer creates a vector of new candidate values and the cell state is updated

accordingly.

Output Gate: The output gate creates a filtered version of the updated information

from the current timestamp to the next timestamp. A sigmoid layer is used to decide which

parts of the cell state should be passed to the next cell. Then, the values of cell state are

mapped to -1 and 1 by going through tanh and then multiply it by the output of the sigmoid

gate, to only transfer the information we want.

3.5 Experimental Results

We have access to a time series data that provides weekly update for the breeding perfor-

mance, farrowing, weaning, laction, inventory, the number of death and culling. This data

indicate the general management practice of a farm together with the mortality rates. These

moralities can have different causes including PRRS.

The main features in this study includes, average total female inventory obtained by

dividing the total number of days that all female lived by the the number of days in period.

Average mated inventory is obtained by dividing the total number of mated female by the

number of days in period. Average gilt pool inventory is obtained by dividing the total

number of days gilts have been in inventory by the number of days in period. For the

weaning, we use the total number of weaning and normalized version by the number of sow,

average age of weaning, the pigs weaned divided by sow farrowed, pig weaned by number

of mated female pigs. For laction performance, total piglet death and normalized version

by the inventory are used as features. Also the Pre-wean mortality is defined as the sow

weaned cohort piglet death divided by the number of born alive piglet. For farrowing, average
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(a) farm A (b) farm B

(c) farm C (d) farm D

Figure 3.3: Semi-supervised learning of mummified percentage. The green curve shows the
true value, the red curve is the inference for samples with known y, (x, y), and the orange
curve shows the inference of the value y for samples with unknown y. Mummified piglets are
born with the remainder of the litter. Infectious disease such as PRRS can be the cause of
mummifcation and piglet deaths. The average normalized error bound across time for farm
A, B, C, and D are 9% ,13%, 12% and 16%, respectively.

total born is calculated by dividing the total born pig by the total farrowed in the period.

The total pig stillborn and total pig mummified can be good indicators of different diseases

especially PRRS.

We show the performance validation of this model on predicting future trend in the time

series using the experiment we describe in the following. We use various important features

such as Mummified percentage, Litters/mated female/yr(LMFY), Stillborn percentage, Gilt

pool inventory percentage, etc as input features (x) and keep one as target feature(y). Fig-

ure. 3.3, figure. 3.4, figure. 3.5, and figure. 3.6 illustrates the regressand y associated to

mummified mortality rate, Stillborn percentage, Pre-wean mortality rate, Sows farrowed
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percentage for four different farms, respectively. The first 80% of the dataset is used as

samples with observed y, while we assume the rest of the dataset (20%) has no observed y,

for which we need to infer the value of y. The green curve shows the true value, the red curve

is the inference for samples with known y, (x, y), and the orange curve shows the inference

of the value y for samples with unknown y, (x). It can be observed that the smoother is the

trend, the better is the ability of the model to capture the variation in the time series.

(a) farm E (b) farm F

(c) farm G (d) farm H

Figure 3.4: Semi-supervised learning of stillborn percentage. The green curve shows the true
value, the red curve is the inference for samples with known y, (x, y), and the orange curve
shows the inference of the value y for samples with unknown y. The average normalized
error bound across time for farm E, F, G, and H are 9% ,9%, 11% and 15%, respectively.
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(a) farm H (b) farm A

(c) farm B (d) farm D

Figure 3.5: Semi-supervised learning of pre-wean mortality percentage. The green curve
shows the true value, the red curve is the inference for samples with known y, (x, y), and the
orange curve shows the inference of the value y for samples with unknown y. The average
normalized error bound across time for farm A, B, C, and D are 8% ,15%, 12% and 18%,
respectively.
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(a) farm A (b) farm F

(c) farm I (d) farm D

Figure 3.6: Semi-supervised learning of percentage of farrowed sows. The green curve shows
the true value, the red curve is the inference for samples with known y, (x, y), and the
orange curve shows the inference of the value y for samples with unknown y. The average
normalized error bound across time for farm A, B, C, and D are 12% ,11%, 13% and 14%,
respectively.
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3.6 Discussion & Conclusion

The moralities in piglets can occur in different stages of production and for infection and

none-infection reasons. While the historical management practices in a farm determine the

expected mortality rates in that farm, a forecasting model and analysis of variables can

help the management to better understand the underlying factors. An increase in predicted

mortality rates can be caused due to change in current risk factors of the farm. Based on a

time series data of 2016-2021 with weekly update for the breeding performance, farrowing,

weaning management, laction, inventory, the number of death and culling of a large pro-

duction system, we built a machine learning model to predict the still-born, mummified and

farrowing rates which are the mortality rates at different time instances.

The use of LSTM is a strong choice when dealing with time series data due to recurrent

nature and its ability to forget and remember when necessary. The superiority of LSTM over

other time series prediction models has been indicated in multiple studies (Siami-Namini,

Tavakoli, and Namin 2018).

The generative framework allows for a semi-supervised approach in which we can use of

all the data, with or without target variable. This enhance the learning of the latent variable

and the mode

The data is none-smooth and none-stationary. The model can always learn the training

data, however, it would over-fit and will not generalize to testing data. A tuned model can

always capture the trend in testing data as can be seen in the figures 1-4 and majority of the

time can detect the seasonal variation. We also tried random forest and gradient boosting

in a supervised setting, and both had lower predictive performance on testing data.
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Chapter 4

PRRS Outbreak Prediction: Deep State

Space Modeling

Abstract. We propose an epidemic analysis framework for the outbreak prediction in the

livestock industry, focusing on the study of the most costly and viral infectious disease in the

swine industry – the PRRS virus. Using this framework, we can predict the PRRS outbreak

in all farms of a swine production system by capturing the spatio-temporal dynamics of

infection transmission based on the intra-farm pig-level virus transmission dynamics, and

inter-farm pig shipment network. We simulate a PRRS infection epidemic based on the

shipment network and the SEIR epidemic model using the statistics extracted from real data

provided by the swine industry. We develop a hierarchical factorized deep generative model

that approximates high dimensional data by a product between time-dependent weights

and spatially dependent low dimensional factors to perform per farm time series prediction.

The prediction results demonstrate the ability of the model in forecasting the virus spread

progression with average error of NRMSE = 2.5%.
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4.1 Introduction

Similar to chapter 2, the goal here is to develop a predictive models that can help to identify

farms at high risk of infection to support risk-based, more cost-effective, target interventions.

Such a framework will allow for more efficient testing, vaccination and outbreak prevention.

Due to the high level of specialization in the swine industry, vast amount of data has been col-

lected by the swine production systems. However, they have not yet been exploited enough

due to difficulty of data access, integration and analyses (i.e., data are not consistently gath-

ered, are non-standardized which makes their integration difficult, and are usually scattered

across stakeholders). Examples of these data include diagnostic information, including the

number of infected or dead animals, animal movements between farms or production data,

which can give insights regarding farm health status and its contact network. Usually, these

data do not satisfy the granularity required for learning an advanced predictive model (e.g.

diagnostic samples are only taken once or twice per month per farm). However, using the

real-world data, we can simulate epidemics to produce fine-grained time series data to analyze

it further with an advanced novel prediction method based on a generative and variational

inference model.

The direct contact with an infected pig is the main pathway for PRRS virus transmission.

The network of between-farm movements, shown in Fig. 4.1a together with the intra-farm

(local) pig-level contact pattern based on Susceptible-Exposed-Infectious-Removed (SEIR)

epidemic model (see Fig. 4.1b) allows for constructing a system-level (global) pig-level disease

transmission contact network, Ferdousi et al. 2019. Network-based SIR or SIR-extended

epidemic models have been extensively studied in the literature Lee et al. 2017. In Newman

2002, Newman studied a network-based SIR epidemic model where infection is transmitted

through a random network of contacts between individuals. The disease transmission contact

network is a probabilistic graph that can be sampled to generate virtual contact. Using this,

we generate fine-grained spatio-temporal time-series data based on statistics of real-world

data.

The spatio-temporal data is often considered to have a high level of correlation between

spatial dimensions, and, therefore, they can be assumed to be governed by a smaller number
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Figure 4.1: Contact Network. (a) The swine shipment network (directed graph). The
premises are displayed by a number-labeled node and edge weights corresponds to the ship-
ment rate. The between-premises shipment rate network is showcased for 10% of nodes
randomly selected among over 300 existing nodes. (b) Top: Pig level network graph. Bot-
tom: State-transition diagram for a single node.

of underlying components. For modeling the temporal dynamic of the time series including

the number of infected, dead, or recovered pigs, we employ a non-linear vector auto-regressive

latent model inspired by the work of Farnoosh, Azari, and Ostadabbas 2021. Our spatio-

temporal time-series data is first factorized into temporal weights and spatial factors. The

temporal weights are modeled using a non-linear auto-regressive model parameterized by

neural networks governed with a Markovian chain of discrete switches to capture higher-

order multimodal latent dependencies, Becker-Ehmck, Peters, and Smagt 2019; Chang and

Athans 1978; Ghahramani and Hinton 1996; Linderman et al. 2017; Nassar et al. 2019.

4.2 Background

Before diving into the state-of-the-art problem formulation that has been adopted in this

work, we provide some history, preliminaries, and notation pertaining to linear Gaussian

dynamical systems and the SEIR disease propagation model.
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Switching State Space Model

Linear Gaussian dynamical systems operating in Markov dependent switching environment

have long been investigated in the literature, Ackerson and Fu 1970; Chang and Athans

1978; Fox et al. 2009; Ghahramani and Hinton 1996; Hamilton 1990; Murphy 1998. These

models, also known as switching linear dynamical system (SLDS), decompose nonlinear time

series data into series of simpler, repeated dynamical modes. The SLDS model learns the

underlying nonlinear generative process of the data as it breaks down the data sequences

into coherent, potentially interpretable, discrete units, similar to the piecewise affine (PWA)

framework in control systems Juloski, Weiland, and Heemels 2005; Paoletti et al. 2007;

Sontag 1981 . The generative process starts with sampling a discrete latent state st ∈

{1, . . . , S} at each time t = 1, . . . , T according to Markovian dynamics st | st−1,Φ ∼ πst−1 ,

where Φ is the Markov transition matrix and πs is the categorical distribution parameter.

Then, a continuous latent state wt ∈ RK is sampled from a normal distribution whose mean

follows a conditionally linear dynamics as wt = Astwt−1 + bst + νt−1, νt−1
iid∼ N (0,Qst),

for matrices As,Qs ∈ RK×K and vectors bs ∈ RK for s = 1, 2, . . . , S. Finally, a linear

Gaussian observation xt ∈ RD is generated from the continuous latent state wt according

to xt = Cstwt + dst + µt, µt
iid∼ N (0,Gst), for matrices Cs ∈ RD×K ,Gs ∈ RD×D and

vectors ds ∈ RD. SLDS parameters are learned in a Bayesian inference approach. In this

framework, the probabilistic dependencies are in such a way that st+1 | st is independent

of the continuous state wt, and hence the model cannot learn the transition of the discrete

latent state when continuous latent state enters a particular region of state space. This

problem is addressed in recurrent switching linear dynamical system (rSLDS), Linderman

et al. 2017; Nassar et al. 2019 by allowing the discrete state transition probabilities to depend

on the preceding continuous latent state, i.e, st|st−1, wt−1. rSLDS studies proposed to use

auxiliary variable methods for approximate inference in a multi-stage training process.

Nassar et al. 2019 extended rSLDS of Linderman et al. 2017 by enforcing a tree-structured

prior on the switching variables in which subtrees share similar dynamics. Becker-Ehmck,

Peters, and Smagt 2019 proposed to learn an rSLDS model through a recurrent variational

autoencoder (rVAE) framework, and approximated switching variables by a continuous re-
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laxation. This amortized inference compromised the applicability of their model on missing

data, as they only included physics-simulated experiments.

SIR Model

Kermack–McKendrick established the fundamentals of mathematical modeling for how an

epidemic spread through population. Based on the epidemiological status of each individual

the population is divided into different compartments or classes and then different classes

are related to each other with differential equations. In the basic form of this model the

compartments are Susceptible (S), Infected (I) and Recovered (R). Susceptible individuals are

those that are uninfected and susceptible to the disease (see Figure. 4.2). Infected individuals

are infected and can infect susceptibles. Recovered individuals have been recovered from

the infection and will not get infected again. This classification may not be related to

an individual health status but indicates the ability of an individual in host and spread a

pathogen Keeling and Danon 2009.

Figure 4.2: SIR transition model

Using this model the future of an epidemic process can be predicted. Given the initial

population of each class and the transmission rate among classes, the future population of

each class can be determined, thus we can know the number of infected individuals at each

time. The rate at which a susceptible get infected and is moved to infected class is assumed

to be proportional to the number of infected population. The rate at which an individual

get infected can be determined as the multiplication of three factors. First the probability at

which two individuals have direct contact. Second, the transmission probability of pathogen

and third the number of infected individuals in the population.
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In an SIR model, first the number of infected cases initially increases exponentially until

the proportion of susceptible in the population has been sufficiently depleted that the growth

rate slows. This process continues until the epidemic can no longer be sustained and the

number of cases drops eventually leading to extinction of the infection.

The real-world predictability of the SIR models depend on accuracy of estimation the

parameters of the model.

The SIR model can become one step closer to reality by considering the disease incubation

time. For that, a new class called Exposed (E) is added to the model to represent those

individuals that has been in contact with an infected individual and the pathogen has been

transmitted to them but the symptoms has not yet appeared. When the symptom appears

these individuals are moved from Exposed class to Infected class with rate σ (see Figure. 4.3).

Figure 4.3: SEIR transition model

4.3 Time Series Data Simulation

Based on the rich database of an extensive anonymous swine production system located

in the Midwest of the United States, we have access to farm-level pig shipment data, and

PRRSV testing results Shamsabardeh et al. 2019; Mohammadsadegh Shamsabardeh, Azari,

and Martıénez-López 2022. From 2006 to 2021, there have been over 260,000 movement

records to or from farms within farm farm this production system. For each movement

entry, the data includes the source and destination information, the number of transported

pigs, and the date of the movement. Based on the farm-level shipment data we generate a

farm-level movement network for the entire production system. Furthermore, the frequent

PRRSV testing in each farm gives insight into how the virus is transmitted, e.g., what is

the virus’s transmission rate, incubation time, etc. Using the SEIR model we can produce a
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pig-level contact network, Ferdousi et al. 2019. The combination of this two network built on

the statistics extracted from our real data results in an intricate contact network by which

we can simulate complex time series data showing the number of infected, dead, or recovered

pigs in each farm in the production system.

To create the farm-level movement network we build a probabilistic graph, i.e., a graph

in which the existence of edges is uncertain with some probability. A node in the graph rep-

resents a farm, while the weight of an edge is proportional to the shipment rate ( probability

of shipment) between farms. Fig. 4.1a shows a part of the shipment network of over 300

farms for our real data. The edge thickness is representative of the shipment rate. For local

(intra-farm) pig-level contact network in each farm, we consider a basic random graph model

based on Erdös—Rényi model Erdos and Rényi 1959; Ferdousi et al. 2019, that produces pig

contact graphs with an edge probability of 0.5 between any pair of pigs. The global (inter-

farm) pig-level contact network is constructed when we sample a random generalization of a

between-farm shipment over time (each day) and as a result, we create pig contact between

farms (see Fig. 4.1b, top).

The simulation is formed on the network-based SEIR epidemic model for PRRS. In a

network-based model, we consider a graph in which nodes represent individual pigs, and edges

indicate direct or indirect contacts between pigs, which are considered infection pathways of

PRRS. Each animal can be in one of the four states, Susceptible (S), Exposed (E), Infected

(I), or Recovered (R) as the result of the epidemic progression. The state-transition diagram

between these states is shown in figure. 4.1b, Bottom. In the generated swine pig-level

network, a PRRS outbreak is introduced by randomly selecting a pig farm, and infecting

an arbitrary random number of pigs. We collect several time snapshots representing the

progression dynamics of the disease spread, such as the number of infected pigs in each

farm over time. The healthy pigs which are free from PRRS virus infection are classified

as Susceptibles. If such a healthy pig comes into contact with infected pigs containing the

virus, it may get infected at the rate βYi(t), where Yi(t) is the number of infected neighbors

of node i at time t. If the transmission of pathogen occurs, a healthy pig enters into the

Exposed group where it stays for the duration of the incubation period. On average, this

period is denoted by 1/σ. Once it shows symptoms, it moves into the Infected group. It
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stays there for an average time of 1/γ before it is recovered. We choose the parameters values

β = 0.087, σ = 7, γ = 6.5 based on Charpin et al. 2012; Phoo-ngurn, Kiataramkul, and

Chamchod 2019. This dynamic produces a spatio-temporal time series from all farms over

time that can be used for predication modeling in the next section (Sec. 4.4).

4.4 Farm Disease Propagation Predication

Our spatio-temporal data indicates the number of pigs categorized within a particular stage,

e.g., infected, recovered, etc., in every time instance in each farm. We denote this data as

the matrix X ∈ RT×D, where T is the number of time points and D the number of spatial

locations, e.g., the number of farms. Building on previous work by Farnoosh, Azari, and

Ostadabbas 2021, our assumption is that X can be decomposed into a weighted summation

of K ≪ D factors over time as:

X ≈ [w1, · · · , wT ]
⊤[f1; · · · ; fK ] = W⊤F, (4.1)

where fk ∈ RD is the kth spatial factor and wt ∈ RK is the weight vector at time t. Our

intuition for adopting this model for some pig-specific collected measurements in D farm over

T time points is that there are K ≪ D underlying factors using which we can approximate

the overall dynamics of the disease propagation in the data. Our main goal is to predict the

future outbreak behavior given the past time samples in each farm.

We assume that the weights, W = {wt}Tt=1, are generated according to a set of temporal

lags, ℓ, through a deep probabilistic switching auto-regressive model. These weights are

furthermore governed by a Markovian chain of discrete latent states, S = {st}Tt=1 as follows:

wt ∼ p(wt|wt−ℓ, st), st ∼ p(st|st−1). In addition, we assume that spatial factors, F = {fk}Kk=1,

are controlled by a shared low dimensional latent variable, z, as follows: f1:K ∼ p(F |z), z ∼

p(z). Fig. 4.4 shows the relation among above-mentioned random variables in a probabilistic

graphical model diagram form.

We train the model using stochastic variational methods Hoffman et al. 2013; Diederik

P Kingma and Welling 2014b; Ranganath et al. 2013; Rezende and Mohamed 2015 by

approximating the posterior pθ(S,W, z, F |X) using a variational distribution qϕ(S,W, z, F ),

and by maximizing a lower bound (known as ELBO) L(θ, ϕ) ≤ log pθ(X):
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Figure 4.4: Probabilistic graphical model.

L(θ, ϕ) = Eqϕ(S,W,z,F )

[
log

pθ(X,S,W, z, F )

qϕ(S,W, z, F )

]
(4.2)

= log pθ(X)− KL(qϕ(S,W, z, F ) || pθ(S,W, z, F |X)).

By maximizing the bound with respect to the parameters θ, we learn the generative dis-

tribution over datasets pθ(X), and by maximizing the bound over the parameters ϕ, we do

Bayesian inference by approximating the distribution qϕ(S,W, z, F ) ≃ pθ(S,W, z, F |X) over

latent variables for each data point. According to the graphical model in Fig. 4.4, the joint

distribution of observations and latents will be:

pθ(X,S,Z) = p(F |z)p(z)
N∏

n=1

p(Xn|Wn, F )p(wn,−ℓ)p(sn,0)

T∏
t=1

p(sn,t|sn,t−1)p(wn,t|wn,t−ℓ, sn,t), (4.3)

where Z = {W, z, F}). Furthermore, we assume a fully factorized variational distribution

for the latent variables posterior as:

q(S,Z) = q(F )q(z)
N∏

n=1

q(wn,−ℓ)q(sn,0)
T∏
t=1

q(sn,t)q(wn,t). (4.4)
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Generative Parameters

Here we describe the generative distribution parameters and model assumptions. We assume

the variable sn,t to represents a categorical variable of dimensionality S, i.e., the number of

modes/switches that a system can be in at a specific time t. The sequence of the discrete

latents, sn,1:T , are in form of a Markov chain and govern the state transitions over time with

distributions:

pθ(st|st−1) = Cat(Φθ πst−1)

qϕ(st−1) = Cat(πst−1), (4.5)

where πst−1 = [π1, · · · , πS] represents the probabilities of the categorical distribution for st−1,

and Φθ ∈ RS×S is a valid probability transition matrix.

For the temporal weights, wt, we assume a switching Gaussian dynamic for the temporal

latent transitions governed by the discrete latent states, st. In other words, we assume that

the marginal distribution of temporal weights follows a Gaussian mixture distribution in the

latent space, as:

pθ(wt|wt−ℓ, st = s) = N
(
µw
θs(wt−ℓ),Σ

w
θs(wt−ℓ)

)
,

where s ∈ {1, · · · , S}, and state-specific µw
θs
(·) and diagonal Σw

θs
(·) are parameterized by

multilayer perceptrons (MLPs), hence, follow a nonlinear vector auto-regressive model given

wt−ℓ. Namely, we feed wt−ℓ to a multi-head MLP for estimating the Gaussian parameters,

e.g.,

µw
θs = FCs(hs), hs =

∑
l∈ℓ

σ(FCs,l(wt−l)),

where FC denotes a fully connected layer, and σ is a non-linear activation function.

For the spatial factors, F , we assume a diagonal Gaussian distribution for spatial factors

parameterized with an MLP as

pθ(F |z) = N
(
µF
θ (z),Σ

F
θ (z)

)
(4.6)

where z is sampled from a normal distribution: z ∼ N (0, I). The latent z is introduced

as a low dimensional spatial embedding that encourages the estimation of a multimodal

distribution among spatial factors. Given the temporal weights and spatial factors, we

reconstruct the data by consolidating the two factorized part as:

Xn ∼ pθ(Xn|Wn, F ) = N
([

wn,1, · · · , wn,T

]⊤
F, σ2

0

)
, (4.7)
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where σ0 is a hyperparameter for observation noise.

Variational Parameters

The trainable variational parameters, ϕ, are assumed to have fully factorized distribu-

tions. The variational distribution for the continuous variables, q(z;ϕz), q(F ;ϕF ), and

{q(wn,t;ϕ
w
n,t)}

N,T
n=1, t=−ℓ, are considered to be Gaussian distributions with diagonal covariances.

In addition, the variational parameters for the distribution of discrete latents,
{
q(sn,t;ϕ

s
n,t)

}N,T

n=1, t=1
,

are considered based on the mean-field approximation assumption to compensate information

loss (see Farnoosh, Azari, and Ostadabbas 2021 for more detail.)

Training Procedure

The Monte-Carlo estimate of the gradient of ELBO is computed with respect to generative,

θ, and variational, ϕ, parameters using a re-parameterized sample, Diederik P Kingma and

Welling 2014b, from the posterior of continuous latents, {W, z, F}. For the discrete latent,

S, however, we compute the expectations by summing over the S, without the need for

explicit sampling. This regularizes the S nonlinear auto-regressive priors based on their

corresponding weighting. We can analytically calculate the Kullback-Leibler (KL) divergence

terms of ELBO for both multivariate Gaussian and categorical distributions, which leads to

lower variance gradient estimates and faster training as compared to e.g., noisy Monte Carlo

estimates often used in literature. We use the Adam optimizer, Diederik P Kingma and Ba

2014, with learning rate of 0.01 for training. We initialized all the parameters randomly, and

adopted a linear KL annealing Bowman et al. 2016 schedule to increase from 0.01 to 1 over

the course of 100 epochs.

4.5 Experimental Results

Future Trend Prediction

For future sample prediction, we predict the test set sequentially using the generative model

and spatial factors learned on the train set. We predict the next time point on the test
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set using the generative model and spatial factors learned on the train set: X̂t+1 = ŵ⊤
t+1F ,

where ŵt+1 ∼ p(ŵt+1|wt+1−ℓ, ŝt+1), and ŝt+1 ∼ p(ŝt+1|st). We then run inference on Xt+1,

the actual observation at t + 1 (if not missing), to obtain wt+1 and st+1, and add them to

the historical data for prediction of the next time point X̂t+2 in the same way. We repeat

these steps to make predictions in a rolling manner across a test set. We keep the generative

model and spatial factors fixed during the entire prediction. We report normalized root-

mean-square error (NRMSE%). The test set NRMSE% is related to the expected negative

test-set log-likelihood for our case of Gaussian distributions (with a multiplicative/additive

constant), hence it is used for evaluating the predictive generative models.

Swine Infection Progression Prediction

We used time series of epidemic progression from over 300 farms simulated for 700 time

points. We kept last 20% of the time series as the test set. We then performed a short-term

prediction tasks by adopting a rolling prediction scheme reported in Chen et al. 2019. For

short-term prediction, the next time point is predicted on the test set using the generative

model and spatial factors learned on the train set. We reported the test set normalized

root-mean-square error (NRMSE%), which is related to the expected negative test-set log-

likelihood for the case of Gaussian distributions, and it is used for evaluating the predictive

generative models. We obtained NRMSE of 2.5% averaged over all the farms. Fig. 4.5 shows

the number of infected pigs over time for nine selected farms. In this figure, we illustrate

the actual number of infected pigs in the simulated data with a solid green curve, the mean

estimate of the predictive model with a dashed purple curve, and the standard deviation of

the data with a shaded red error bar. Each row in the figure represents a group of relatively

highly connected farms in terms of the frequency of the pig shipments. Note that each group

show a relatively strong correlation regarding the outbreak progression and the predictive

model was able to capture this.

One observation regarding the performance of the model in situations when we do not

have a curve with smooth behavior is the fact that when the increase and decrease of the

number of infected pigs is abrupt, the model tends to converge to a middle point between the

current value and the future one. This issue can be addressed using a model selection choice.
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Figure 4.5: Short-term (one-day) predication. Each plot demonstrates the actual number
of infected pigs in the simulated data (solid green), the mean estimate of the predictive
model (dashed purple), and the standard deviation of the prediction estimate (shaded red
error bar). Each row represents neighbouring farms that are connected in terms of pigs
movement.

Specifically, we can control the number of factors K in order to increase the flexibility of the

model in capturing different levels of curve smoothness.

Flu Spread Future Trend Prediction

To show the applicability of our model in the analysis of other time-series datasets and future

trend prediction, we used Google Flu Trends (please see Google Flu Trends Data 2016 for

dataset information), which represents the number of flu outbreaks in different countries.

This dataset provides another enlightening example of future trend prediction in time series.

We applied our training and prediction algorithm to the spatio-temporal Flu trend. The

comparison with the ground truth can be seen in figure. 4.6. However, due to the page

limitation, we would not incorporate this result into the paper. This is just to show the

performance evaluation of our model for a publicly available dataset. Kindly note that we

are committed to releasing the code and training example upon the publication date.

Model Performance for Non-Smooth Data

As explained in the method, the data matrix X ∈ RT×D (T : the number of time points,

D: the number of spatial locations) can be decomposed into a weighted summation of

K ≪ D factors over time as X ≈ [w1, · · · , wT ]
⊤[f1; · · · ; fK ] = W⊤F . Note that K is the
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Figure 4.6: Google Flu future trend prediction.

number of underlying factors using which we can approximate the overall dynamic of the

data. Therefore, K is a model order parameter (also referred to as a hyperparameter) that we

will choose based on a compromise between good fit (negative log-likelihood) and complexity,

Stoica and Selen 2004. The higher is K, the more complex the model is, i.e., we have a higher

number of parameters. Therefore, we can capture non-smooth high-frequency variations in

the signal. On the other hand, when K is small, the model cannot follow the rapid changes

in the signal, and consequently, we observe some performance drop. However, note that

although an efficiently parameterized model is unable to catch some abrupt changes in the

data, it will generalize better than an over parameterized model.

Multivariate Model: Sow Farm Case Study

The generative model in this chapter was developed to address the spatio temporal dynamic

of the disease propagation. However, we can use this model also as a multivariate predictive

model for one specific location. In this scenario the spatioal dimension is replaced with the

feature space. In this case the input and outputs are similar to the models in chapter one in

the sense that some features are used to predict a response variable at one specific location.

The data are the sow farms from previous chapter. To compare the performance of this

model with those used in the previous chapter we use the same dataset and the model will

learn all the features at the same time. The data composed of different categories. The Sow
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Figure 4.7: Farm A

Farm efficiencies are based on normalized weaned pigs. We have chosen the PWMFY in

which the the total pig weaned are calculated per average mated female and per year. For

the farrowing the number of stillborn and mummified are considered. The total pig stillborn

in a period is normalized by dividing it to the total sow farrowed in the farm. Similarly,

the total number of mummified pigs are divided by the total sow farrowed in the farm. The

lactation metric is indicated by the pre-weaned mortality rate by calculating the ratio of the

sows weaned cohort piglet deaths and born alive. The percentage of dead piglet is calculated

by dividing the total piglet death in a period to average piglet inventory in the period. We

also considered the farrowing rate and the percentage of multiple mating. We have used the

data from 2016 to 2020 for training and the last two years for training.

4.6 Discussion & Conclusion

The PRRS outbreak cause an economic loss of over $664 million annually Holtkamp, Klieben-

stein, et al. 2013, which can be significantly mitigated by early detection and risk-based

intervention practices. Direct contact is the main disease transmission pathway. Therefore,

the pig contact network provides a substantial basis to develop an outbreak prediction frame-

work. We create a system-wide pig contact network by combining the SEIR epidemic model

based on intra-farm infection transmission parameters, and inter-farm pig shipment network.
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Figure 4.8: Farm B

(a) 2020-2021 (b) 2020-2021

(c) 2020-2021 (d) 2020-2021

Figure 4.9: Farm C
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Figure 4.10: Farm D

We presented a hierarchical factorized deep generative model of our spatio-temporal data

that can capture the underlying dynamics of the disease spread with the aim to predict the

number of infected pigs in all farms. Our result demonstrates the ability of the model in

forecasting the virus spread progression with an average one-day prediction error of NRMSE

= 2.5%. We also considered the model for multivariate prediction of sow farms. A potential

future direction is to incorporate the per farm disease transmission parameters for the SEIR

model to represent variations in the disease control implementation. Additionally, indirect

disease transmission pathways, such as airborne, can be included in the framework for a

more comprehensive analysis.
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Chapter 5

Conclusion

In this thesis, we tried to address some of the challenges of swine industry by building

data driven frameworks. Due to the high level of specialization in production systems, a

vast amount of data has been collected in the swine industry, however, the usage of this

data in animal health remains circumstantial, and is usually restricted to simple descriptive

statistics or sequencing. One of the most important challenges are outbreaks specifically the

PRRS. These outbreaks can bring food insecurity by causing animal loss and restricting the

required trades among different farms to keep the production system sustainable. In this

work we tried to use the machine learning approaches to build better models to understand

and predict the occurrence of outbreaks in swine industry.

The PRRS outbreak cause an economic loss of over $664 million annually, which can be

significantly mitigated by early detection and risk-based intervention practices. We built

a framework to forecast the risk of having a PRRS outbreak on a farm. This forecasting

allowed for early detection of disease outbreaks and could direct risk-based, and thus more

cost-effective, interventions. Machine learning algorithms were trained using multi-scale

data. For the first time, on-farm, between-farm, and environmental variables, including farm

location, pig movements, production parameters, diagnostic data, and climatic information,

were combined for the prediction of PRRS outbreaks. Multi-scale datasets were merged

via feature extraction, followed by the wrapper and filter feature selection, to find those

feature subsets with the best forecasting performance. The predictive value of each features

selection mechanism was evaluated in terms of its stability. Numerical results demonstrate
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good forecasting performance in terms of area under the ROC curve.

Furthermore, we developed a semi-supervised variational auto-encoder (VAE) deploying

Long Short Term Memory (LSTM) to predict the mortality rates (mummified and stillborn)

and farrowing and weaning factors in the production system. The use of VAE allows for

handling the missing data by building probabilistic model. We learned the target variable y

with learning a latent representation using the generative model for samples with unobserved

y, and then learning a generative semi-supervised model, using this representation instead

of the raw data.

Finally, we created a system-wide pig contact network by combining the SEIR epidemic

model based on intra-farm infection transmission parameters, and inter-farm pig shipment

network. We presented a hierarchical factorized deep generative model of our spatio-temporal

data that can capture the underlying dynamics of the disease spread with the aim to predict

the number of infected pigs in all farms. Our result demonstrates the ability of the model in

forecasting the virus spread progression with an average one-day prediction error of NRMSE

= 2.5%.
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