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Introduction 

Exceedingly complex processes can now be subjected to reasonably 

realistic analysis and simulation. ,Electrochemical processes qualify 

as complex because of the diverse chemistry involved and the presence 

of electrical variables. Consequently, we should get on with the job 

of modeling so that we can simulate electrochemical systems with a 

completeness and realism comparable to what is found in the simulation 

of distillation columns. 

In this paper we intend to expound on the philosophy of such 

simulation and to reiterate some of the governing mathematical basis 

for the physical and chemical processes with which we expect to deal. 

Examples will be mentioned in order to maintain some flavor of 

current research problems. These include the use of semiconductor 

electrodes in a photoelectrochemical cell, the design of LiAl-FeS 

cells for electrical energy storage, and the growth of a salt film 

in the corrosion of iron. 

Governing Equations 

We intend to model the processes going on inside an electro-

chemical cell, and for this purpose it is always a good idea to have 

the governing physical laws firmly in mind. These include laws of 

transport in electrolytic solutions, a subject reviewed in references 

• 1 and 2. 

For many purposes it is sufficient to use dilute-solution theory. 

There are four equations which we should master here. The material-
. 

balance equation can be written 
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(1) 

The flux density N. contains contributions due to migration, diffusion, 
~ 

and convection: 

(2) 

The current density in the solution is due to the movement of 

charged species: 

i = F l: 
i 

z.N. • 
~ ~ 

Finally, the solution is electrically neutral, 

(3) 

(4) 

These are'the four principal equations that we should remember 

for electrolytic transport phenomena. For many problems, these need 

to be augmented by equations of hydrodynamics (a momentum balance and 

an overall material balance) because the velocity v appearing in 

equation 2 still needs to be determined. In other problems, such as 

porous electrodes, the velocity is determined by the production rates 

of the various species and the volume changes of the solids, and the 

momentum balance does not govern. 

In all these cases, the governing transport equations need to be 

augmented by boundary conditions describing Faraday's law and potential 

losses by electrode kinetics. These are also reviewed in reference 2. 
• 



• 

• 

-3-

In some applications, the above equations may be modified. The 

dilute-solution transport relation (equation 2) should probably be 

replaced by the multicomponent diffusion equation (chapter 12 of 

reference 2) when dealing with concentrated solutions, ionic melts, 

or membranes • 

Philosophical Considerations 

Approximations are always introduced in the application of 

governing laws to a real system. Questions then revolve around whether 

the approximations compromise the validity of the results while helping 

to make the model tractable mathematically. We can note that in 

engineering work we are generally interested in scaling up a given 

system (reference 3). This has the general effect of emphasizing the 

importance of transport phenomena. A similar dominance of transport 

phenomena over electrode kinetics occurs for systems operating at 

elevated temperature. 

Historically, the transport-dominated problems have be~n 

attacked from one of two extremes (references 2 to 5). In the one 

extreme, perhaps with an excess of supporting electrolyte, the effect 

of ,the migration term in equation 1 becomes negligible, and this term 

can safely be ignored. If the boundary conditions are appropriately 

simple, such as a limiting-current condition, then the situation is 

nearly identical to that prevailing in convective heat transfer and 

nonelectrolytic mass transfer, and we can use methods and results 

already developed in those fields. On the other extreme, stirring 

may be so overwhelming that concentration gradients can be ignored. 
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Then the cell-design problem reduces.to one of solving Laplace's 

equation, subject to boundary conditions describing the electrode 

kinetics. This is one of the classical areas in which Laplace's 

equation was treated mathematically. 

As we, said at the beginning, electrochemical systems are complex, 

and we cannot always be satisfied with the approximations represented 

by the above extremes. To take into account the diverse, interrelated 

phenomena means that we must take our work seriously. Simplistic 

analysis is judged to be a useful guide for understanding many features 

of system behavior, but we need to bring in the computer as a tool for 

handling everything at once. This does not mean that there is no 

longer any room for subtlety. A brute-force approach is not being 

advocated here--although it has its place. Some of the tools presently 

being used will be illustrated in the examples. 

Growth of a Salt Film 

One of the computer tools now available makes' the solution of 

coupled, nonlinear, differential equations reasonably straightforward 

(references 2, appendix C, and 6). With this program, BAND(J), we can 

treat quite complex problems without requiring extensive mathematical 

approximation. Some problems treated deal with several regions 

coupled together, for example, the positive porous electrode, the 

negative porous electrode, and the separator of a battery. Sometimes 

the thickness of one of the regions needs to be determined as part of 

the problem. An example is the development of a salt film on a metal 

undergoing rapid anodic dissolution (reference 7). Figure I shows how 

• 

• 
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we think about the arrangement of the equations and the boundary con­

ditions within the computer for a typical, reasonably complex problem 

involving coupled, one-dimensional equations--the example being the 

salt film. Here material balances are written for iron, hydrogen, and 

total sulfate, and these apply in two regions--the salt film on the 

left and the electrolytic solution on the right. Boundary conditions 

are represented by squares. There will be flux conditions at the 

electrode surface at the far left, and at the junction between the 

salt film aqd the solution there will need to be conditions stating 

that the fluxes are continuous, or are related to the growth of the 

salt film. These are the square boxes in the middle. An additional 

statement that the concentrations are continuous is unnecessary because 

only one concentration variable is used at this internal boundary point 

(for each species). 

Actually four material balance equations could be written, cor­

responding to the four solute species: sulfate, bisulfate, ferrous, 

and hydrogen ions. Here it is assumed that the equilibrium between 

sulfate and bisulfate is rapid. The equilibrium relation replaces the 

fourth material balance, and the four material balances are added to­

gether in such a way as to eliminate the rate of the bisulfate-sulfate 

reaction. E1ectroneutra1ity constitutes the fifth equation; it can be 

thought of as a,governing equation for the potential, even .though the 

potential does not appear in it. The bulk composition and the potential 

are specified as boundary conditions, represented by the square boxes at 

the right on figure 1. It is not important whether the four concentra­

tions (and the potential) are specified or only two concentrations are 
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specified and the remaining two are determined by· the electroneutrality 

and equilibrium conditiQns. Thus the two right boxes on lines 4 and 5 

of figure 1 could be eliminated. 

The problem posed here involves the development of the salt film 

with time. Thus the partial differential equations are stepped through 

time, and at arty time they look to the computer like ordinary dif­

ferential equations. One realizes that the above description is flawed. 

The salt-film thickness is not actually known at'. each time step. Further­

more, the material-balance or flux-continuity conditions at the film­

electrolyte interface are too many to fit into the square boxes in 

lines 1, 2, and 3. To resolve this problem, the salt-film thickness 

(or actually the change in this quantity over a time step) is added ~s 

an unknown variable, one whose value is independent of distance. This 

strategy leaves uS with a box at the film-electrolyte interface, and 

here we put the remaining boundary condition. Here we have programmed 

the computer just like the physical problem--the film thickness is 

unknown and is to be determined by the physical and mathematical 

processes in the course of the calculation. 

The somewhat cruder alternative is to set the salt-film thickness 

at some arbitrary value, relax the last boundary condition, converge 

the problem, and compute the error in the unsatisfied boundary con­

dition. Then one must construct a separate loop to determine the 

value of the salt-film thickness that satisfies the remaining material 

balance at the interface. This we may do in the course of developing 

a stable computer program, but the first procedure is more powerful 

and shows how BAND(J) can be used to program a problem in a manner that 

parallels the governing laws. 

• 
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LiAl-FeS Electrical Storage Battery 

Figure 2 illustrates a section through a cell sandwich for a 

battery. The left portion represents a porous LiAl negative electrode; 

in the middle there is a porous separator; and the right portion is a 

porous FeS positive electrode, separated from the separator by a 

reservoir. The mathematical model is to determine simultaneously the 

composition, potential, and current density profiles within the 

LiCl-KCl electrolyte, as well as the discharge curve for the cell 

potential as a function of time. Figure 3 shows the composition at 

several times during the discharge. 

The one-dimensional model cannot completely represent the resistance 

of the current collector or grid by means of which current is carried 

across the face of a plate to a tab or bus. The results obtained above 

or by means of experiments designed to eliminate the effects of grid 

resistance can next be embedded into a separate model which calculates 

the distributions of current density and potential acroSS the face of 

the plates typical of a battery. By accounting for the weight of the 

components of the complete cell, one can determine the specific power 

and specific energy which can be achieved with various designs (see 

reference 8). 

Photoelectrochemical Cells 

Solar energy can presently be converted into electrical energy 

by means of solid-state, semiconductor devices, and these find 

application in remote situations despite the high cost. Progress has 

been made in developing electrochemical cells for the same purpose but 
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with the use of polycrystalline semiconductor material. This promises 

to bring down the cost, but it creates some severe corrosion problems 

which may not have solutions compatible with the energy-conversion 

requirements. Furthermore, there are questions of scaleup related to 

the placement of the counterelectrode in relation to the working 

electrode and incident solar radiation. 

We have developed a model for photoelectrochemical cells (reference 

9). First,. we treated a one~dimensional semiconductor material in 

which photons were absorbed, a process accompanied by the generation 

of holes and electrons. Electrons are adsorbed at the interface with 

different energetics from the bulk, and this created a diffuse charge 

layer within the bulk of· the· semiconductor. The same thing occurs in 

electrolytic solutions at the interface with an electrode, but the 

thickness of the region of departure from electroneutrality (the Debye 

length) is much greater in the case of the semiconductor. This is 

because the concentrations of holes and electrons within the semi-

conductor are much less than those in dilute aqueous solutions. Further-

more, the dielectric constant is less than for water. Consequently, 

while for aqueous solutions the region of departure from electro-

neutrality can be regarded as part of the interface, for the semiconductor 

this is the bulk region. Equation 4 must be replaced as a governing 

equation by Poisson's equation: 

L z.c. 
i ~ ~ 

(5) 

The model now deals with three coupled differential equations--Poisson's 

equation and material balances for the holes and the electrons--whose 

• 
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solution should yield profiles for· the electric potential and the 

concentrations of holes and electrons. The production terms R. 
~ 

contain terms due to thermal, as well as photo, generation of holes 

and electrons and due to recombination. The resulting equations are 

coupled because the potential and the hole and electron concentrations 

appear in all three governing equations. The equations are also non-

linear, and it is ideally suited for solution with the BAND sub-

routine. It is also desired to account for complex charge transfer 

reactions at the interface, charge and mass transfer limitations within 

an electrolytic solution, and the behavior of the counterelectrode. 

After developing the one-dimensional model outlined by these 

remarks, we may wish to assess the penalty imposed by various cell 

designs which permit different configurations of the semiconducting 

electrode relative to the source of illumination and the counter-

electrode. We wish to illustrate here the incorporation of the 

primary resistance of one of these geometries into the model. We do 

this instead of an exact treatment, which might involve the incor-

poration of the one-dimensional model of the semiconductor electrode 

as a boundary condition for a solution of Laplace's equation. For the 

geometry chosen here (see figure 4), a Schwarz-Christoffel transfor-

mation yields the primary current distribution and cell resistance. 

The.use of the computer for the evaluation of the integrals involved 

yields a practical design tool which frees the investigator from· 

tedious treatment of elliptic integrals. This method, based on the 

Schwarz-Christoffel transformation, gives accurate solutions to Laplace's 
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equation with greater-computational efficiency than'" treatment with a 

relatively coarse finite-difference grid in two dimensions, with an 

infinite current density at the edge of one of the electrodes. 

Summary 

In summary, we should like to reiterate that system simulation 

and mathematical m~deling are aids in cell design and also help fill 

the gaps in our knowledge and understanding of the chemistry and physics 

of the processes involved. 
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Nomenclature 

concentration of species i, mol/cm3 

diffusion coefficient, cm2 /s 

permittivity, F/cm 

Faraday's constant, 96,487 C/equiv 

current density, A/cm2 

flux of species i, mol/cm2 - s 

electrical potential, V 

rate of homogeneous production of species i, mol/cm3 
- s 
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t time, s 

u. 
~ 

mobility of species i, cm2 -mo1/J-s 

v fluid velocity, cm/s 

charge number of species i 
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Fig. 1. A schematic representation of the structure of the governing 
equations and boundary conditions for salt-film problem. 
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SCHEMATIC DIAGRAM OF SYSTEM 
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Fig. 3. Position dependence of mole fraction of LiCl at different 
discharge times. Dashed line represents saturation limit for 
LiCl at 450°C. 
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Fig. 4. Schematic diagram of the slotted-semiconductor 
photovoltaic cell. 
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