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Crust‑mantle decoupling 
beneath Afar revealed 
by Rayleigh‑wave tomography
Utpal Kumar1 & Cédric P. Legendre2*

The Afar triple junction accustoms the diverging plate dynamics between the Arabian, Nubian, and 
Somalian plates along the Red Sea, Gulf of Aden, and East African rifts. The average anisotropy 
obtained from shear‑wave splitting measurements agrees with the surface motion recovered by 
geodetic analyses. However, the vertical layering of anisotropy in this region is yet to be accurately 
determined. Here, we use earthquake seismic data to map Rayleigh‑wave azimuthal anisotropy in the 
crust and lithospheric mantle beneath the East African Rift System. Our results suggest that a layering 
of anisotropy is present around the East African Rift System. At shorter periods that sample the crust, 
rift‑parallel anisotropy is present in the vicinity of the rift, but in the central part of the rift, rift‑normal 
anisotropy is found. At longer periods, sampling the lithospheric mantle, the anisotropic pattern is 
quite different. These observations suggest that the crust and lithospheric mantle are mechanically 
decoupled beneath the environs of the East African Rift System. Similarly, these results suggest 
complex dynamics within the crust and lithosphere in the region of the Afar triple junction.

The Afar rift, located at the northern tip of the East African Rift  System1, is a region with high crustal seismic-
ity and active volcanoes (Figs. 1a and S1), because of the last stage of continental rifting and the early stage of 
seafloor  spreading2,3.

The Afar hotspot is located at the triple junction between the Red Sea rift, the Gulf of Aden, and the Ethiopian 
rift zone. It is rising at the triple junction, mingling the three branches of the East African Rift  System4–6. The East 
African Rift System is a divergent tectonic plate boundary splitting the African Plate into two: the Nubian and 
Somalian  plates1. The Red Sea rift separates the Arabian and Nubian-African plates, whereas the Gulf of Aden 
separates the Arabian and Somalian-African  plates1.

The influence of the mantle upwelling of the Afar hotspot on the East African Rift System has been the topic 
of numerous  studies4,7. Seismic imaging allows to extract important details on the structure and deformation to 
map the crustal and mantle structures, hence providing information on the regional tectonic system. In addition, 
seismic anisotropic studies can yield information related to the geodynamical evolution of the sampled material, 
which is a key factor in understanding the geodynamical mechanisms of the  region8,9.

Recent seismological studies of the region have shown remarkably low seismic velocity in the central  Afar10–12. 
The low velocities, not only limited to the center of the rift, are mainly associated with active tectonic and mag-
matic activities. Exceptionally negative seismic velocity anomalies are found in the crust and upper mantle, up 
to 5–15% slower than the  PREM13. Such anomalies can be only explained by the combined effects of temperature 
and partial  melt14,15. The Afar hotspot has been suspected to have a very deep origin, likely in the lower mantle 
and is associated with the African  Superplume16, with very strong velocity variations in the mantle transition 
zone and upper  mantle17,18.

Lateral and vertical variations in the seismic anisotropy can provide additional constraints on the tectonic 
evolution of the crust and lithospheric material of a selected  region19,20. Numerous studies focusing on shear-
wave splitting  measurements7,21,22 display a very homogeneous pattern of anisotropy (Fig. 1b), which is consist-
ent with the surface velocity  vectors23 (Fig. 1c) obtained from geodetic measurements. The presence of radial 
 anisotropy24 suggests an intrinsically layered crust, with an accumulation of sills in the upper to the mid crust, 
both on and off-rift.

In this study, we used the vertical component of open-access seismic records in the region to build tomo-
graphic maps of the fundamental-mode Rayleigh-wave phase velocity for the Afar triple junction. First, we 
obtain all seismic data available in the region. A total of 361 seismic stations (Fig. 2a) recording 4137 regional 
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and teleseismic earthquakes (Fig. 2b) between the years 1990–2021 and magnitude (MW ) > 6.0 were  used25. For 
each pair of station, we selected all events with an epicentral distance at least five times larger than the inter-
station distance. Then, we kept only the events for which the difference in back-azimuth between the event and 
both stations was smaller than ± 5 ◦.

For each selected event satisfying the magnitude / distance / back-azimuth criteria (Fig. S2), the seismic 
records (Fig. 3a,b) were first transferred in the frequency domain (Fig. 3c,d), cross-correlated and the phase 
velocities were  computed26 (Fig. 3e). A total of 68,420 dispersion curves were measured (Fig. S3) to constrain 
3,578 path-average dispersion  curves26,27. For each individual dispersion curve, statistical analysis was performed. 
Each individual fragment was compared with the average of all dispersion curves as well as with the path-specific 
average. Fragments displaying excessive deviation (over one standard deviation) were discarded, and the pair 
specific averaged dispersion curve was recomputed (Fig. 3f). Path-specific dispersion curves constrained by 
fewer than ten measurements were discarded.

Further, the dispersion curves were inverted for isotropic and azimuthally anisotropic Rayleigh-wave phase 
 velocities28 at periods sampling the crust and lithospheric mantle, as displayed in Fig. 4. Rejection of outliers 
(Fig. S4) and inversion parameters (Figs. S5, S6, S7 and S8) have been determined using trade-off curves (Fig. S9). 
Careful examination of the path density (Fig. S10) and azimuthal coverage (Fig. S11), supplemented by resolution 
tests (Figs. S12 and S13), indicate that in the region around the Afar triple junction, the data coverage is sufficient 
to allow for the retrieval of both isotropic and anisotropic components. However, in the regions further away 

Figure 1.  (a) Regional tectonic map of Afar region. Plate  boundaries1 are framed in red. The yellow arrows 
indicate the Absolute Plate Motion (in mm/year) with a European  reference49. The location of the Holocene 
 volcanoes43 are highlighted with blue volcanoes shape. The location of the epicenters of  earthquakes50 is 
indicated with purple circles (Events depth displayed in Fig. S1). The black text framed in green provides the 
names of the different  plates1: An, African (Nubian) plate; As, African (Somalian) plate; Ar, Arabian plate. 
The blue text framed in brown (Af) indicates the location of the Afar triple junction. (b) Shear-wave splitting 
 measurements29,30. (c) GPS velocity field in a Eurasia-fixed reference  frame23. Individual figure panels were 
generated with the Generic Mapping Tool (6.3.0)51 and PyGMT (0.7.0)52. Individual figure panels were 
combined using Inkscape (1.2.1)53.

Figure 2.  Map of the 361 available seismic stations (a) and 4,137 selected regional and teleseismic earthquakes 
(b). Individual figure panels were generated with the Generic Mapping Tool (6.3.0)51 and PyGMT (0.7.0)52. 
Individual figure panels were combined using Inkscape (1.2.1)53.
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from the rift system, the station coverage does not allow for sufficient retrieval of both velocities and anisotropy. 
We will therefore focus our discussion in the region where the model appears to be well constrained.

Results
The final models (Figs. 4, S14 and S15) and respective sensitivity kernels (Fig. S16) allowed us to investigate 
specific periods corresponding to crustal (10–30 s), intermediate (40–50 s), and lithospheric mantle (60 s and 
longer) depths. Representative periods have been selected to highlight our results (20, 40 & 60 s respectively in 
Fig. 4). Note that the sensitivity kernels have been computed using  PREM13 as an initial model. These models 
display both lateral and vertical variations in Rayleigh-wave phase-velocity as well as azimuthal anisotropy.

In the period range sampling the crust (10–30 s), fast velocities are found outside the rift (up to +3%), associ-
ated with rift-parallel anisotropy, whereas rift-normal anisotropy and very slow velocities ( −10%) are found at 
the center of the rift.

Then, at periods of 40–50 s, sampling both the crust and upper lithospheric mantle, the isotropic pattern 
remains very similar to that of shorter periods. The model is dominated by a strong negative velocity anomaly 
( −10%) in the backbone of the rift, and a gradual increase in velocities when moving away from the central part 
of the rift system. At those periods, the anisotropic pattern is also dominated by strong amplitudes in the central 

Figure 3.  Example seismic traces of an event (MW = 6.8) on 2007-09-10 01:49:14 (3.0◦ N, − 77.9◦ E, 29 km 
depth), recorded at two stations ZE.CHIE (a) and ZE.MILE (b) and respective spectrogram (c & d). Cross-
correlation function and phase picking. The dispersion curve was automatically selected with successful pick 
(green circles) or unsuccessful selection (empty circles) using the spectrum’s zero crossing (e). Summary of all 
fragments of dispersion curves picked for this station pair and average dispersion curve (f).
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part of the rift (around 4%) with a rift-normal fast direction. In the flanks of the rift, the anisotropic pattern 
evolves with increasing periods, from rift-parallel directions (with amplitudes of 1%) in the northern flank at 
short periods (10–20 s) to rift-parallel (with amplitudes of 0.5%) at longer periods (40–50 s), consistent with the 
 GPS23 and  SKS29,30 measurements.

At periods of 60 s and longer, sampling the lithospheric mantle, very slow velocities ( −10%) are still present 
in the central part of the rift, with the rift-normal anisotropy. In the northern vicinity of the rift, fast velocities 

Figure 4.  Isotropic and azimuthally anisotropic Rayleigh-wave phase velocity model at (a) 20s, (c) 40s and (e) 
60s and corresponding sensitivity kernels (b, d, f). The colored rectangles indicate the regions with maximum 
sensitivity at each period respectively. Individual figure panels were generated with the Generic Mapping Tool 
(6.3.0)51 and PyGMT (0.7.0)52. Individual figure panels were combined using Inkscape (1.2.1)53.
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are found (up to +4%), with rift-parallel fast direction of anisotropy with strong amplitudes (around 4%). Further 
to the north-west, low velocities ( −3%) are found, with rift-normal anisotropy.

Beneath Yemen, where the resolution tests suggests that both isotropic and anisotropic pattern can be properly 
resolved (Figs. S12 and S13). Our results indicate a limited negative velocity anomaly at periods of 10 s ( −1%) 
and a uniform EW fast direction of anisotropy (Figs. 4, S14 and S15. At periods of 20–80 s, fairly constant fast 
velocities (+2%) and a constant NE-SW fast direction of anisotropy are found while at periods of 100 s, an EW 
fast direction of anisotropy is found beneath Yemen: in its western part, fast velocities (+2%) and NE-SW fast 
direction of anisotropy are found, while in its eastern part, slow velocities ( −1%) and WNW-ESE fast direction 
of anisotropy are found.

Discussion
The isotropic pattern (Figs. 4, S14 and S15) is relatively monotonous at all period ranges. Our model is dominated 
by a very strong low-velocity signature beneath the East African Rift System, especially beneath the locations 
of active volcanoes (Fig. 1a). This is highly consistent with previous tomographic studies that found very slow 
velocities beneath the center of the Ethiopian rift in the  crust10–12 and  mantle4–6.

It is important to note that we are only looking at a 2D view of a complex 3D anisotropic system projected 
on horizontal maps. The very strong amplitudes of the Rayleigh-wave azimuthal anisotropy can also be linked 
with the vertically ascending mantle flow and the large volume of melt, which is also consistent with the “Null” 
 measurements31 observed in the shear-wave splitting of the SKS phases in the  region7. Recent studies focusing 
on shear-wave splitting  measurements7 found that stations with null measurements were mainly located near 
Holocene volcanoes (Fig. 1a, suggesting the presence of fluid, melt, or ascending flow beneath the rift branches. 
This study also reveals rift-normal anisotropy beneath some stations in the northern flank of the rift and “Null” 
measurements of shear-wave splitting in the SW end of our study  area7.

In addition, previous studies focusing on shear-wave splitting  measurements7,21,22 and the surface velocity 
 vectors23,32 display a homogeneous pattern aligned with the direction of the Ethiopian Rift System (Fig. 1). This 
very straightforward pattern displayed by both shear-wave splitting and geodetic measurements is highly con-
trasting with the complexity of the crustal system beneath the region. The crustal material in the region is known 
to be highly heterogeneous. It involves a complex system composed of vertical layering of magmatic reservoirs 
in both the upper and lower  crust33. Moreover, current volcanic activity is strongly affecting the present state of 
the crust near the rift  branches12,34,35.

The NE-SW directions observed by GPS and SKS studies agree well with the overall direction of the Arabian 
 Plate23,36, and the direction of the opening of the Ethiopian  rift32,37. The plate motion of the Somalian Plate (EW), 
the direction of opening of the Gulf of Aden (EW) and the Red Sea Rift (NNW-SSE) are well determined by GPS 
velocity vectors. Further from the rift system, limited information on the shear-wave splitting is available from 
the global  database29,30. The overall pattern of anisotropy measured by shear-wave splitting and the GPS velocity 
field in the region is overall consistent with global tomographic  studies38,39, where similar trends of anisotropy 
are found at lithospheric and asthenospheric depths (in the range 80–330 km).

The fast direction of anisotropy (Figs. 4, S14 and S15), however, displays two distinct patterns: one in the 
period range of 10–30 s and another one in the period range of 60–100 s. At periods sampling the crust (10–30 s), 
rift-normal anisotropy is found beneath the center of the rift, but in its flank, mostly rift-parallel anisotropy is 
found. At periods sampling the lithosphere (60–100 s), rift-normal anisotropy is still present beneath the center 
of the rift, whereas a band of 200–300 km width around both sides of the rift exhibits rift-parallel anisotropy. 
Beneath the Nubia Plate, in the northern part of the rift, the anisotropic pattern exhibits mostly a rift-parallel 
direction of fast propagation in the period range 10–30 s, which is consistent with the shear-wave splitting 
 measurements29,30. In contrast, the rift-normal directions of fast propagation are found in the period range 
60–100 s.

In the literature, conflicting models have been proposed to explain the distribution of the anisotropy in the 
eastern Horn of Africa. Some suggested a deep origin of the anisotropy, with a source located around 300 km 
depth in the asthenospheric  mantle22. In contrast, other studies suggested that the anisotropy originates from 
crustal and lithospheric  deformation40,41. In our models, the distribution of the fast directions of anisotropies 
is consistent with the overall pattern of anisotropy obtained by shear-wave splitting  measurements29,30. Outside 
the branches of the rift, the SKS measurements agree with the directions of anisotropies found at shorter periods 
sampling the crust. These directions of anisotropies are very different in the lithospheric mantle, suggesting a 
potential decoupling between the heterogeneous crust and the lithospheric mantle beneath the East African Rift 
System. This also suggests that the shear-wave splitting measurements are primarily sensitive to crustal materi-
als in this region. Beneath the Nubia Plate, in the northern part of the rift, the seismic anisotropy observed at 
crustal depths (10–30 s), is perpendicular to the seismic anisotropy observed at mantle depths (60–100 s). This 
suggests a decoupling between the crust and mantle in the region. Additionally, this raises the possibility of a 
weak lithospheric mantle, which may be mechanically or thermally weakened by the opening of the rift branches 
on its northern and western flanks and/or by the rift’s vicinity.

Geodynamic models of the  region3,42 have already predicted the decoupling between the crust and mantle 
in the Afar region. The suggested initially weakened rigid lithosphere lid is affected by multi-directional, asym-
metric far-field stresses. These geodynamic models agree well with our results.

In the center of the rift, we found a very strong anisotropy, with amplitudes of up to 4%, contrasting with 
the surroundings, where amplitudes are in the order of 0.5–1%. This is also in good agreement with previous 
reports of shear-wave splitting  measurements29,30 that found the delay time of 1.5 s near the location of Holocene 
 volcanoes43. This very strong anisotropy is considered to originate from the combined effects of heterogeneous 
crustal  material33, the high  temperature14, the presence of partial  melt15, and ascending mantle  flow44.
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Conclusion
Our results provide additional constraints on isotropic and anisotropic patterns in the eastern part of the Horn 
of Africa. Our tomographic model highlight sharp structural contrasts between the active rift system, depicted 
by the presence of Holocene volcanoes at the surface and display outstandingly negative velocity anomalies 
( −10%) as well as significantly high anisotropy (> 4%). By contrast, the surrounding of the rift system exhibit 
relatively positive velocity anomalies (+4%) and little anisotropy (in the order of 1%), suggesting a mechanical 
decoupling between the crust and lithospheric mantle in this region.

Methods
In order to build Rayleigh-wave phase velocity anisotropic maps beneath the Afar region, we followed a three-
step method. The first step consists in collecting and pre-processing seismic data from regional and teleseismic 
earthquakes. The second step involves the computation of a set of phase-velocity dispersion curves between pairs 
of stations. And in the last step, those dispersion curves are inverted for isotropic and azimuthally anisotropic 
phase-velocity maps at selected  periods45,46.

Our database encompasses the records of 4137 selected regional and teleseismic earthquakes recorded by 
361 seismic stations (Fig. 2). A total of 68,420 dispersion curves were measured to constrain 3578 path-average 
dispersion curves for interstation distances in the range of 30–2150 km. This set of dispersion curve is then 
inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase velocity model at periods sampling 
the crust and lithospheric mantle. The inversion is based on an LSQR  approach47,48, and the average of all disper-
sion curves in the region is used as an initial model.

At each point of the model, the total velocity anomaly can be parameterized with five coefficients: one for 
the isotropic phase-velocity variation, δCiso , two for the 2 ψ-anomaly, A2ψ and B2ψ , and two for the 4 ψ-anomaly, 
A4ψ and B4ψ:

We used a triangular grid of  knots27, with a grid spacing of 10 km. The data coverage is not constant at all 
periods, resulting in some differences in the grids, composed of 926 knots at 20 s, 924 knots at 40 s, and 903 
knots at 60 s. Each dispersion curve yields the average phase velocity along the path linking the two stations 
as a function of period, and the total average velocity anomaly along this path is written as the integral of local 
anomalies at each grid knot sampled by the given path,

where the local anomalies δC(ϕ, θ) are weighted with respect to the sensitivity kernels Ki(ϕ, θ) . The sensitivity 
kernel represents the weighted contribution of a specific path to the total velocity anomaly at each knot.

Data availability
Dispersion curves and tomographic models are available at https:// github. com/ cpleg endre/ Afar- 2sta.

Code availability
The codes used to compute the tomographic model and all derived results are available from the corresponding 
author upon reasonable request.
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