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ABSTRACT 
 

Unraveling the causes and consequences of dynamic species interactions in California kelp 

forests 

by 

Bartholomew Paul DiFiore 

 

 The strength of species interactions shapes the structure and function of ecological 

communities, with profound implications on the ecosystem services these communities 

provide, such as maintenance of biodiversity, carbon sequestration, cultural heritage, and 

viable food production. However, we, as humans, are altering the strength, direction, and 

variability in species interactions through global climate change, habitat loss, and harvest. By 

altering how species interact, these anthropogenic impacts are shifting both consumptive and 

non-consumptive ecosystem services. Therefore, understanding why species interaction are 

changing and what the consequences of these changes are on ecological communities is an 

important component of effectively managing ecosystems in a dynamic future. In this 

dissertation, I explore two different mechanics that underscore variation in species 

interactions across space and through time: variability in body size among individual 

predators and their prey and contingencies associated with historic population fluctuations in 

a marine foundation species.  

In Chapter 1, I combined mesocosm experiments and long-term ecological data to 

test to what extent individual variation in predator body size, prey body size, and prey 

density drove spatiotemporal variation in interaction strength. I then tested the efficacy of 

established body size-scaling relationships at predicting variation in interaction strength. My 
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results demonstrate that the majority of variation in how strongly California spiny lobster 

(Panulirus interruptus) interact with their purple sea urchin (Strongylocentrotus purpuratus) 

prey can be attributed to variation in body size. Furthermore, utilizing established size-

scaling relationships from the literature failed to accurately predict our experimental 

estimates of interaction strength by more than an order of magnitude. 

In Chapter 2, I sought to uncover the physiological mechanisms driving the relation 

between a predator’s body size and its consumption rate. Specifically, I tested between 

alternative theoretical hypotheses for the relationship between an animal’s size, metabolism, 

and consumption rate to better understand the connection between a predator’s ecology and 

physiology. Contrary to prevailing theoretical expectations, I demonstrate that larger lobster 

can consume disproportionately more than smaller conspecifics, despite declining metabolic 

requirements, which could have implications on how body size is incorporating into models 

of community and ecosystem dynamics. 

Finally, in Chapter 3, I examine how historic variability in the foundation species, 

Macrocystis pyrifera, alters non-trophic interactions between functional groups on the 

seafloor. My results suggest that, while the current biomass of M. pyrifera has the strongest 

impact, metrics of historic variability in the foundation species have strong effects on benthic 

community structure that ameliorate with time.  

A pressing issue in managing ecosystems is understanding what causes variation in 

how strongly species interact, what the implications of this variation are for communities, 

and how to predict shift in species interactions in the future. My research suggests that 

incorporating historical contingencies and individual variation in body size could bolster 
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management and restoration efforts that aim to increase the resilience of marine communities 

in a dynamic future. 
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 1 

1. INTRODUCTION 
 
1.1. Motivation and Objectives 
 

Interactions between species, including trophic (e.g., predatory), competitive, or 

mutualistic interactions, can have widespread implications on the structure of ecological 

communities and the services they provide to people and nature (Oksanen et al. 1981, Paine 

1992, Albrecht et al. 2014). However, anthropogenic drivers, such as climate change, habitat 

loss, and the harvest of wild populations, are changing the strength and direction of species 

interactions (Soudijn et al. 2021, Sandor et al. 2022, Smale et al. 2022), leading to the large-

scale restructuring of both terrestrial and marine ecosystems (Frank et al. 2011, Lister and 

Garcia 2018). For instance, human-driven species introductions (Miller-ter Kuile et al. 2021), 

changes in species ranges (Urban et al. 2012, Kitchel and Pinsky 2023), shifts in species 

traits (Lindmark et al. 2019), and increases in disturbance to biogenic habitat (Castorani et al. 

2018) can alter the identity of species in a community and how strongly those species 

interact. Faced with unprecedented environmental change, it can seem that species 

interactions are entirely context dependent (Lawton 1999, Chamberlain et al. 2014). 

However, understanding if general mechanisms underlie the seeming context-dependence of 

species interactions is key to predicting the repercussions of direct (e.g., harvest, species 

introductions) and indirect (e.g., climate change) human disturbances and implementing 

flexible management strategies that adapt with shifting environmental conditions (Poisot et 

al. 2015, Ingeman et al. 2019, Geary et al. 2020). 

In this dissertation, I ask, “What are the causes and consequences of variation in 

species interactions?” using California kelp forests and their associated species as a study 
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system. Specifically, I explore two mechanisms that could cut through the context-

dependency of species interactions.  

The first mechanism that I explore is how variation in individual traits, like body size, 

can be used to predict the strength of interactions between a predator and its prey. Decades of 

theoretical and empirical research has focused on quantifying how the interaction strength 

varies across different species pairs (Berlow et al. 1999), leading to seminal advances in the 

understanding of community stability (Berlow 1999, Downing et al. 2020), the maintenance 

of biodiversity (Tilman 1994), and the consequence of species loss (Duffy et al. 2007). 

However, species are not static entities, and interactions occur between individuals that vary 

in physiological, behavioral, and ecological traits (Bolnick et al. 2011), causing any two 

species in a community to interact differently in different contexts (Poisot et al. 2015). Body 

size is a conspicuous trait of individuals that is strongly linked to an organism’s metabolism 

(Brown et al. 2004), and thereby its ecological role as a consumer in an ecosystem (Peters 

1983, Yodzis and Innes 1992). Yet, the relationships between an animal’s body size, 

physiology, and ecology remain unclear (e.g., Lindmark et al. 2022). Uncovering the nature 

of these relationships could reveal physiological drivers of when and where two species 

interact strongly or weakly.  

The second mechanism that I explore is how historical contingencies influence spatial 

variation in non-trophic interactions. An ecological community is not just the sum of current 

biotic interactions and abiotic conditions. Rather, interactions in the present can be 

influenced by historic events such as the previous presence of a competitor (Miller et al. 

2009), the timing of species arrivals (Fukami 2015), or historic disturbances (Johnstone et al. 

2016). Understanding how history informs species interactions in the present could offer 
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insight into predicting spatial and temporal variation in community structure and inform 

management that focuses on the restoration of ecosystem health and services.  

To test the roles of body size and historic contingencies in driving variation in species 

interactions I used a combination of mesocosm experiments, theoretical models, and long-

term observational data. Specifically, in Chapter 1 I explore how prey density and the body 

size of predator and prey lead to variation in interaction strength across space and time. In 

Chapter 2, I test widely assumed theoretical relationships between a predator’s physiology 

and ecology. The results challenge prevailing notions on the relationships between body size, 

physiology, and consumption by demonstrating that larger predators can consume 

disproportionately more than smaller conspecifics despite declining metabolic requirements. 

Finally, in Chapter 3, I explore how historic populations fluctuations in the foundation 

species, Giant kelp (Macrocystis pyrifera), alter competitive and facilitative interactions 

between benthic guilds long into the future. 

 
1.2. The role of body size in driving variation in interaction strength 

Ecologists have long understood that an animal's size is a critical driver of its role in 

an ecosystem (Brooks and Dodson 1965, Lindmark et al. 2019). After almost a century of 

research, it is clear that body size is linked to numerous ecological processes (Peters 1983). 

For instance, body size is correlated with how fast an animal grows (West et al. 2001), how 

far an animal migrates (Hein et al. 2012), how biomass is distributed across size classes in 

ecosystems (Sheldon et al. 1972, Heather et al. 2021), and the rate that populations grow 

(Savage et al. 2004) or decline (McCoy and Gillooly 2008). Critically, body size is correlated 

with the foraging ecology of consumers, providing a link between individual traits and 

community dynamics. Across taxa and ecosystems, predators tend to consume relatively 
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smaller prey (Barnes et al. 2010, Gravel et al. 2013, Brose et al. 2019), and the amount of 

prey that a predator consumes at a given prey density (e.g., the functional response; (Holling 

1959) increases with the size of the predator (Rall et al. 2012). Understanding what underlies 

this powerful connection between body size and foraging ecology is critical to predicting the 

community-scale consequences of dynamic interactions caused by variation in body size.  

The leading hypothesis for why predator foraging ecology scales with body size is 

grounded in the evidence that larger organisms have higher metabolic rates. While the exact 

exponent is widely debated (White et al. 2007), metabolic rate (𝑏) increases as a power-law 

function of body mass (𝑚)  

𝑏	 ∝ 	𝑚! (1) 

where the scaling exponent (𝛽) is remarkably consistent across taxa (𝛽 ≅ 	0.6 − 0.8; 

(Kleiber 1932, West et al. 1997, White and Seymour 2003, Glazier 2010). The metabolic 

theory of ecology (MTE) contends that most biological processes scale with body size at the 

same rate that metabolism scales with body size (Brown et al. 2004). In regard to foraging 

ecology, MTE suggests that the mechanism behind why larger animals eat more than smaller 

animals is larger animals have higher total metabolic rates and require more food to fuel 

basal metabolic requirements (Rall et al. 2012). Specifically, MTE predicts that because 

animals must balance energy acquisition (i.e., consumption, 𝐶) with demand (i.e., 

metabolism), how much an animal consumes scales with body size at the same rate that 

metabolism scales with body size:  

𝐶	 ∝ 	𝑚! (2) 

The theory that body size can be used to approximate how much a predator eats has 

led to the development of dynamic food webs models grounded in the bioenergetic 
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requirements of individual consumers (e.g., Yodzis and Innes 1992, Weitz and Levin 2006, 

Kalinkat et al. 2013). In a foundational paper, Yodzis and Innes (1992) constructed a 

consumer-resource model, where they assumed that a predator’s functional response scales 

with body size according to the metabolic scaling exponent. Yodzis and Innes (1992) and 

subsequent theoretical research (Andersen 2019), propose that animals allocate energy gained 

through foraging to cover basal metabolic requirements and the energy lost to foraging (i.e., 

maintenance costs). When the amount of energy acquired exceeds maintenance costs, surplus 

energy is converted to somatic (i.e., an increase in body size) or reproductive (i.e., higher 

fecundity) biomass, providing a link between individual bioenergetics, population 

demographic rates (i.e., per-capita growth/reproduction), and consumer-resource dynamics 

(i.e., the functional and numerical response). Therefore, there is a strong theoretical 

foundation for predicting how interacting populations will change through time based on the 

body size of individuals (Persson et al. 1998) or the average body size of species (DeLong et 

al. 2015).  

The ability to estimate community dynamics based on metabolic-scaling relationships 

is a compelling strategy due to the challenges associated with estimating interaction strength 

in nature (Abrams 2001, Wootton and Emmerson 2005). The classic approach to estimate 

how strongly predator and prey interact involves mesocosm foraging experiments, where 

researchers manipulate the density of prey and other covariates. But mesocosm experiments 

are limited to small species due to logistical constraints (i.e., enclosure size) and may fail to 

approximate ecologically relevant estimates of interaction strength due to the complexity of 

natural systems (Bergström and Englund 2004, Bergström et al. 2006, Englund and 

Leonardsson 2008). Alternatively, researchers use intensive field observations to estimate 



 

 6 

how predators’ consumption rates change with prey availability, predator density, and 

environmental conditions (Novak 2010, 2013, Stier and White 2014, Preston et al. 2018, 

2019), but such an approach may not be feasible for species of management or conservation 

concern if those species are highly migratory, or interactions cannot be directly observed. 

Finally, the effect of predator populations on their prey can be estimated through statistical 

analysis of time series data (Essington and Hansson 2004, Moustahfid et al. 2010), but this 

technique requires considerable data which may be costly to collect or not exist for species of 

interest.  

Body size, one of the most commonly measured traits, offers a means of overcoming 

the challenges of estimating interaction strength, by allowing ecologists to predict predator 

consumption rates and, therefore, model community dynamics with few parameters (Pope et 

al. 2006). However, the power of using body size to predict interactions based on metabolic 

scaling exponents is dependent on the assumed relationships between consumption, 

metabolism and body size.  

Recent syntheses of empirical studies reveal that the relationship between predators’ 

functional responses and body size is far more complicated than would be predicted by 

simple metabolic scaling arguments (Rall et al. 2012, Uiterwaal and DeLong 2020). Across 

empirical studies, maximum consumption rates (i.e., consumption at saturating prey 

densities) increase with predator size and decrease with prey size, consistent with metabolic 

expectations, but the rate that consumption scales with body size varies considerably between 

taxa. For example, in what is likely one of the most comprehensive assessments, Uiterwaal 

and DeLong (2020) find that maximum consumption rates increase with body size at a rate 

between [-1,1] for different taxa, after accounting for variation in prey size and other 
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covariates. Previous work has attributed variation in the consumption-size scaling 

relationship to variation in temperature (Englund et al. 2011), habitat dimensionality (i.e., 2-

D vs. 3-D foraging environments, (Pawar et al. 2012, Barrios‐O’Neill et al. 2016), or 

predator foraging mode (Barrios‐O’Neill et al. 2019). However, no single predictor explains 

why the rate that consumption increases with body size is so variable, calling in to question 

the ability to predict consumption based on metabolic constraints. 

Considering how challenging it is to estimate species interactions, bioenergetic 

consumer-resource models that assume metabolic scaling exponents are an appealing means 

to model the consequences of disturbances, like fisheries harvest, on ecosystems. Broadly, 

these stage- or size-structured models assume that mortality, growth, and reproduction are 

functions of body size (Blanchard et al. 2017), and have been used to understand the 

consequence of harvest on target populations (Andersen et al. 2009), communities (Claessen 

et al. 2009, Andersen et al. 2015), or whole ecosystems (Fulton et al. 2011, Heymans et al. 

2016), a critical step in effectively implementing ecosystem-based management (Persson et 

al. 2014). However, these models often rely on metabolic exponents to parameterize the rate 

that consumption scales with body size (but see (Reum et al. 2019, Spence et al. 2021). 

Considering the substantial variation in the rate that consumption scales with body size, it is 

unclear to what extent size-structured models grounded in metabolic theory provide 

qualitative versus quantitative predictions for the consequences of harvest on community 

dynamics. Therefore, to advance ecologists’ capacity to use body size to make quantitative 

predictions of community dynamics, my dissertation:  
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● Determines how well consumption-size scaling relationships from the 

literature predict variation in interactions between a specific predator-prey pair 

across space and time (Chapter 1), 

● Tests the widely held assumption that increases in a predator’s metabolic 

demand with body size underlie the relationship between a predator’s foraging 

ecology and body size (Chapter 2) 
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2. CHAPTER I 

Variation in body size drives spatial and temporal variation in 

lobster-urchin interaction strength 

2.1. ABSTRACT 

How strongly predators and prey interact is both notoriously context dependent and 

difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, 

prey size, and prey density, suggesting that general cross-taxonomic relationships could be 

used to predict how strongly individual species interact. Here, we ask how accurately do 

general size-scaling relationships predict variation in interaction strength between specific 

species that vary in size and density across space and time? To address this question, we 

quantified the size and density-dependence of the functional response of the California spiny 

lobster (Panulirus interruptus), foraging on a key ecosystem engineer, the purple sea urchin 

(Strongylocentrotus purpuratus), in experimental mesocosms. Based on these results, we 

then estimated variation in lobster-urchin interaction strength across five sites and nine years 

of observational data. Finally, we compared our experimental estimates to predictions based 

on general size-scaling relationships from the literature. Our results reveal that predator and 

prey body size has the greatest effect on interaction strength when prey abundance is high. 

Due to consistently high urchin densities in the field, our simulations suggest that body 

size—relative to density—accounted for up to 87% of the spatiotemporal variation in 

interaction strength. However, general size-scaling relationships failed to predict the 

magnitude of interactions between lobster and urchin; even the best prediction from the 

literature was, on average, an order of magnitude (+18.7x) different than our experimental 

predictions. Harvest and climate change are driving reductions in the average body size of 
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many marine species. Anticipating how reductions in body size will alter species interactions 

is critical to managing marine systems in an ecosystem context. Our results highlight the 

extent to which differences in size-frequency distributions can drive dramatic variation in the 

strength of interactions across narrow spatial and temporal scales. Furthermore, our work 

suggests that species-specific estimates for the scaling of interaction strength with body size, 

rather than general size-scaling relationships, are necessary to quantitatively predict how 

reductions in body size will alter interaction strengths. 

 

2.2. INTRODUCTION 

The complexity and context dependency of species interactions has led numerous 

ecologists to argue that prediction in community ecology is impossible (Lawton, 1999). Yet, 

across species from widely different taxonomic groups there is considerable evidence for 

general patterns relating individual traits, like body size, to the strength of species 

interactions (Brown et al., 2004). For instance, recent syntheses of empirical work 

demonstrate that across taxa, how much predators consume at a given prey density—one 

measure of interaction strength (Berlow et al. 2004)—is strongly correlated with predator and 

prey size (Rall et al. 2012, Uiterwaal and DeLong 2020). Yet despite the strength of general 

size-scaling relationships, it is unclear how accurately these relationships predict interactions 

between specific species, and if these predictions might disentangle complexity in 

community ecology (e.g., Poisot et al. 2015). In this paper, we present a case study testing if 

general cross-taxonomic patterns relating interaction strength with predator and prey body 

size predict how strongly a focal predator-prey pair interact. Understanding if general size-

scaling relationships can be used to predict interactions between focal species would be 
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powerful, particularly for species of management or conservation concern, whose large size, 

rarity, or highly migratory behavior make empirical estimates of interactions challenging 

(Geary et al., 2020).  

Ontogenetic increases in body size can drive variation in the strength of interactions 

(Persson et al., 1998). As an individual predator grows, the amount, size, and species of prey 

it consumes changes (Barnes et al., 2010; De Roos et al., 2003; Werner & Gilliam, 1984). 

Likewise, as an individual prey grows, its risk of predation can decrease as it outgrows a 

predator’s gape (Urban, 2007), improves predator evasion (Martin et al., 2021), or develops 

defenses such as spines (Laforsch & Tollrian, 2004). Such changes in feeding behavior or 

defensive capacity as individual predators and prey grow through ontogeny can drive 

variation in interaction strength (Brose 2010). This same phenomenon may extend to the 

scale of the community. Even if different communities have the same number of predator and 

prey individuals, differences in the distribution of biomass across size-classes may cause 

differences in how strongly predator and prey interact across space or time. For instance, 

communities with larger predators and smaller prey could have stronger interactions, while 

communities with smaller predators and larger prey may have weaker interactions (Fig. 1.1). 

A considerable body of prior work has quantified the effects of body size on consumption 

rates under controlled conditions (Uiterwaal and DeLong 2020, Brose et al. 2017 for 

reviews). A next step in this field is to pair similar controlled experiments with observational 

data in order to understand how differences in the size-structure of populations drives when 

and where predators interact strongly with their prey. 

Across taxa, interaction strength tends to—on average—increase with predator size 

(Rall et al., 2012; Uiterwaal & DeLong, 2020), suggesting it may be possible to predict how 
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strongly specific species interact knowing only the size and density of individuals. Indeed, 

previous work has widely relied on theoretical scaling exponents based on metabolic 

arguments (e.g., Brown et al. 2004) as a null expectation to estimate interaction strength 

(Berlow et al., 2009; Petchey et al., 2008; Yodzis & Innes, 1992). Adopting a similar 

approach based on empirical size-scaling relationships could offer a simple means of making 

quantitative predictions of interaction strength without in-depth experimentation. However, 

there is considerable noise around the mean trend in general size scaling relationships due to 

differences in taxonomy (Rall et al., 2012), temperature (Englund et al., 2011), habitat 

dimensionality (Barrios‐O’Neill et al., 2016; Pawar et al., 2012), and foraging mode 

(Barrios‐O’Neill et al., 2019). Therefore, it is likely that for a given species pair, the 

relationship between body size and interaction strength differs from the mean trend across 

species. Yet understanding how far species pairs deviate from the mean trend will determine 

the utility of naively applying general-size scaling relationships. 

Here, we explore the size-dependence of interaction strength for two economically 

and ecologically important species: the California spiny lobster (Panulirus interruptus, 

hereafter “lobster”) – a predator, and the purple sea urchin (Strongylocentrotus purpuratus, 

hereafter “urchin”) – a prey. Understanding when and where lobster impact urchin 

populations is critical because increases in urchin abundance can drive communities to 

switch from kelp to urchin dominated states (Ling et al., 2015). Previous studies have shown 

that a high abundance of urchin predators can increase the resistance of kelp communities to 

urchin-driven phase shifts (Hamilton & Caselle, 2015). Yet, empirical evidence for urchin 

regulation by lobsters remains equivocal, with some studies finding a strong top-down effect 

(Lafferty, 2004) and others finding only a weak effect of lobsters (Dunn & Hovel, 2019; 
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Guenther et al., 2012; Malakhoff & Miller, 2021). Previous work on California spiny lobster 

and other lobster species shows that larger lobster consume more and larger urchins (Ling et 

al., 2009; Tegner & Levin, 1983), yet the relative role of lobster size, urchin size, and urchin 

density in driving interaction strength remains poorly understood.  

In this manuscript, we test the hypothesis that general size-scaling relationships can 

be used to predict variation in lobster-urchin interactions. To test this hypothesis, we first 

quantified how the body size and density of lobster and urchins varied across space and 

through time. We then ask, how does urchin size, lobster size, and urchin density alter 

consumption rates of urchins in experimental mesocosms? By combining our empirical 

estimates of consumption rates with long-term observational data, we then disentangle the 

effects of lobster size, urchin size, and urchin density on spatiotemporal variation in 

interaction strength. Finally, we address the question: how well do general size-scaling 

relationships predict interaction strength between a specific predator-prey pair across natural 

variation in body size and density? 

2.3. METHODS 

How do lobsters and urchins vary in body size and density across space and through time? 

We used 9-years of spatially explicit observational data collected by the Santa 

Barbara coastal long-term ecological research program (SBC LTER) to explore how lobster 

and urchin density (ind. m-2) and body size varied across space and time. The SBC LTER 

collects annual data on the abundance and size distribution of lobsters and urchins at five 

sites. Briefly, divers count the number of urchins greater than 20 mm in six quadrats 

uniformly spaced along 40 m transects at each site (3-8 transects per site) (Santa Barbara 

Coastal LTER et al., 2021b). Along a single transect, a diver estimates the test diameter of the 
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first ~50 urchins to the nearest 0.5 cm (Santa Barbara Coastal LTER et al., 2021c). Divers 

count and estimate the carapace length to the nearest mm of all lobsters in 1200 m2 plots 

centered around each transect (Santa Barbara Coastal LTER et al., 2021a). 

 

How does lobster predation on urchins vary with lobster size, urchin size, and urchin 

density?  

While there are numerous definitions of interaction strength in the literature, here we 

define interaction strength as a predator’s nonlinear functional response, which describes 

how consumption rates change as a function of prey density (Berlow et al. 2004 for review). 

Typically, consumption rates increase with prey density until predator satiation, at which 

point consumption becomes density-independent (Jeschke et al., 2002). The initial increase in 

consumption approximates the rate that a predator searches space and finds new prey items 

(i.e., the attack rate), while the predator’s maximum consumption rate is limited by the time it 

takes to manipulate and digest prey (i.e., the handling time) (Holling, 1959). Together, these 

relationships describe a type II functional response, such that 

𝐶 = 	
𝛼𝑁

1 + 𝛼ℎ𝑁 	 𝐸𝑞. 1 

where C is consumption rate, N is the initial density of prey, α is attack rate, and h is handling 

time, or the inverse of a predator’s maximum consumption rate (1/Cmax). 

Theory predicts that maximum consumption rates (i.e., 1/h) scale with consumer body 

size at the same rate that metabolism scales with body size (Brown et al., 2004; Yodzis & 

Innes, 1992). Therefore, handling time (1/Cmax) will decrease with consumer body size 

according to a negative power law function (ℎ	 ∝ 	𝑚"
#!). A predator’s handling time may also 

be a function of prey size. Larger prey can be more challenging to manipulate or digest 



 

 21 

resulting in longer handling times (Rall et al., 2012). Together, consumption rates at 

saturating prey densities are expected to vary according to: 

1
𝐶$%&	

= ℎ = 	ℎ(𝑚"
!!,#𝑚)

!!,$ 	 𝐸𝑞. 2	 

where mc and mr are predator and prey mass, respectively, h0 is a constant, and βh,c and βh,r 

are scaling coefficients (Uiterwaal and DeLong 2020).  

Foraging theory and biomechanical arguments also provide expectations for how a 

predator’s attack rate should vary with body size. Larger predators have higher mobility and 

larger prey are more easily detected (McGill & Mittelbach, 2006). Therefore, attack rates 

should increase according to power law functions of predator and prey size, such that  

𝛼 = 	𝛼(𝑚"
!%,#𝑚)

!%,$ 	 𝐸𝑞. 3	 

where α0 is a constant, and βα,c and βα,r are scaling exponents (Rall et al. 2012, Uiterwall and 

DeLong 2020). Previous work suggests that attack rates increase and then decrease as a 

function of predator size at a fixed prey size (Kalinkat et al., 2013; Uiterwaal et al., 2017). 

However, in preliminary analyses we found no evidence for a hump shaped relationship 

between attack rates and size (see Appendix 6.1.1). Therefore, we focus on the power-law 

scaling relationship (Eq. 3).  

To determine the size-dependence of the lobster functional response, we conducted a 

factorial experiment where we manipulated urchin density, urchin size, and lobster size in 

mesocosms. The lobsters and urchins used in these experiments spanned the size range of 

local populations surveyed by the SBC LTER. We placed a single lobster in an experimental 

arena and fed each lobster one of three size classes of urchin at six different densities (N = 2, 

3, 5, 10, 16, 26 ind. arena-1). We selected urchin densities such that the highest density in 

experimental trials was representative of that in urchin-dominated areas (Rennick et al., 
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2022). We conducted all foraging trials for 48 hours in 200 L arenas. Prior to a trial, we fed 

lobsters ad libitum for 48 hours and then starved the predators for 48 hours. For more detail 

on the specifics of mesocosm experiments refer to Appendix 6.1.2.  

We then estimated the parameters of the size-dependent functional response using a 

Bayesian hierarchical model. Specifically, we estimated the number of urchins eaten as a 

function of the number of urchins offered, lobster size (g), and urchin size (g). We assumed 

that the number of urchins consumed in trial i by lobster j (𝐶*,,) followed a Poisson 

distribution such that 

𝐶*,, 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛?𝜆*,,A	 	𝐸𝑞. 4 

𝜆*,, =
𝛼*,,𝑁*

1 + 𝑎,ℎ,𝑁*
	

log	(α-) = log(𝛼() +	𝛽.,"log	(𝑚",,) + 𝛽.,)log	(𝑚),,) +	µ/,-		

log	(ℎ,) = log(ℎ() +	𝛽0,"log	(𝑚",,) + 𝛽0,)log	(𝑚),,) + 𝜇0,, 	

1) 	

where, 𝛼, is the attack rate (d-1 m-2) of lobster j, ℎ, is the handling time (d) of lobster j, and 

𝑚) was the average mass of the urchin size class that lobster j foraged on. We constructed 

informed priors on all 𝛽 parameters, where the 𝛽’s were normally distributed with a mean 

based on theoretical predictions (Table S1). We assumed gamma distributions for the prior 

variances. We included a random effect of lobster individual on the estimation of α and h 

(𝜇.,, , 𝜇0,,), assuming that errors between individuals were normally distributed with mean 0. 

We implemented the model in Stan (Stan Development Team, 2022) which uses a 

Hamiltonian Monte Carlo procedure to estimate parameters. We ran three chains for 25,000 

iterations with a burnin of 12,500 iterations and thinned the chains to retain every 3rd 
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iteration. To diagnose model convergence, we visually assessed mixing of the model chains 

and confirmed using the Gelman-Rubin convergence diagnostic (𝑅L < 1.1) (Brooks & 

Gelman, 1998). For more details on our modeling approach see Appendix 6.1.1.  

 

How might lobster-urchin interaction strength have varied across space and through time?  

To generate plausible estimates for how strongly lobsters and urchins interact under 

natural conditions, we combined the observational data with our experimentally 

parameterized functional response. We assumed that interactions were random at a site in a 

particular year, such that 1) any lobster could interact with any urchin and 2) lobster and 

urchin density was homogenous across a site. Specifically, we resampled with replacement 

1000 individual body masses from the size distributions of lobsters and urchins at each 

site/year and estimated the interaction strength (IS) between predator i and prey j as  

𝐼𝑆*,, =	
𝛼(𝑚"

!%,#𝑚)
!%,$𝑁𝑃

1 + 𝛼(𝑚"
!%,#𝑚)

!%,$ℎ(𝑚"
!!,#𝑚)

!!,$𝑁
	 	𝐸𝑞. 5 

 

where N and P are the density of urchins and lobsters, respectively, averaged across transects 

at a site in a particular year, and mx is the mass of lobster (c) and urchin (r) individuals in a 

particular draw from the size-distribution. For simplicity, we set all parameters (α0, ℎ(, βx) as 

the median posterior estimate from the Bayesian model. Based on this procedure, IS 

represents a distribution of plausible interactions between lobster and urchin individuals at 

each site and year.  
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Disentangling the effects of body size and density as drivers of variation in interaction 

strength 

Many empirical studies of interaction strength focus on predator and prey density 

(Berlow et al. 1999, Novak et al. 2016 for reviews). However, estimating interaction 

strengths based on density alone may be inaccurate, particularly for species that experience 

nonlinear, indeterminate growth, like many marine species where a single large individual 

has the same mass as many smaller, younger individuals. Recent work highlights the 

importance of accounting for size-dependent consumption rates in estimating interaction 

strength (Atkins et al., 2015). But it is unclear how much of the variation in interaction 

strength would be missed by estimating interactions based solely on density. 

To partition the amount of variation in interaction strength due to differences in body 

size versus density we used a simulation procedure. From eq. 5, it follows that there is an 

interaction between body size and density, such that at low urchin densities consumption 

rates will be determined by the size-dependence of lobster attack rates, while at high urchin 

densities consumption rates will be determined by the size-dependence of lobster handing 

times. To partition variance, we therefore compared the total variation in estimated 

interaction strengths accounting for variation in both density and body size to simulations 

where density varied at fixed values of lobster and urchin body size. We iterated this 

procedure across 625 different values of lobster size and urchin size such that sizes ranged 

from the maximum lobster mass and minimum urchin mass to the maximum urchin mass and 

minimum lobster mass. For each iteration, we estimated the proportion of variation due to 

differences in density as the correlation coefficient (R2) of the simple linear regression 

between the estimated interaction strengths when both body size and density vary to the 



 

 25 

estimated interaction strengths when density varied at a fixed combination of body sizes. 

Considering the only sources of uncertainty in our estimates were body size and density, we 

estimated the proportion of variation due to body size as 1- R2 for each iteration and report 

the full range of values (see Appendix 6.1.3 for further details).  

 

How well can general size-scaling relationships predict species-specific interactions? 

Resolving how accurately a given predator’s consumption rate can be predicted from general 

size-scaling relationships and their covariates is at the crux of integrating our theoretical and 

experimental depth of knowledge about the size dependence of predator-prey interactions 

into ecosystem-based management practices. To determine how well general size-scaling 

relationships predict lobster-urchin interactions, we compared our experimental predictions 

with estimates from three published size-scaling relationships. Based on previous work 

demonstrating that both traits and taxonomy are important for predicting how strongly 

species interact (Rall et al., 2011), we hypothesized that size-scaling relationships from the 

literature would more precisely match our experimental predictions as they increased in 

taxonomic specificity. Therefore, we predicted how strongly lobsters and urchins interact 

based on a general cross-taxonomic estimate (Uiterwaal & DeLong, 2020), an estimate for 

marine invertebrates (Rall et al., 2012), and an estimate for active marine crustaceans 

foraging on static prey (Barrios‐O’Neill et al., 2019) (Table S2). Each of these previous 

analyses included covariates such as temperature, arena size, or habitat dimensionality in 

their models of attack rates or handling times (Table S2). Therefore, we included these 

covariates when generating the predictions and fixed their values at the observed values in 

our mesocosm experiments (see Appendix 6.1.4 for more details). We converted the units of 
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our observational variables (body size and density) into the units used in each previous study 

respectively, and then back converted all predicted values of interaction strength into urchins 

consumed per m2 per day in order to compare with our experimental predictions. All analyses 

were implemented in R 4.0.4 (R Core Team, 2021). 

 

2.4. RESULTS 

Size-frequency distributions of lobsters relative to urchins varied widely in space and time 

Lobster size ranged more than three orders of magnitude from 6.2 – 6184.0 g (393.6 

[88.8 – 897.8] g, XR [95% CI] unless otherwise specified), while urchin mass was on average 

39.2 [8.1 – 132.2] g (Fig. 1.1A). The relative difference in body mass between lobsters and 

urchins changed from site to site and year to year with some sites at a particular time having 

relatively large lobsters and small urchins, while others had relatively small lobsters and 

large urchins (Fig. S1.1). The average urchin density was 6.5 [0.8 – 27.8] ind. m-2, while the 

average lobster density was 0.03 [0.004 – 0.097] ind. m-2.  

 

Interaction strength between lobsters and urchins increased with urchin density and lobster 

size but decreased with urchin size 

In mesocosm experiments, the consumption rate of urchins by lobster increased with 

urchin density and lobster size, and decreased as urchin size increased (Fig. 1.2, Fig. S1.2). 

Only the largest lobsters regularly consumed the largest urchins. For example, lobsters 

smaller than the median body size only consumed two individual large urchins across all 

feeding trials. However, all size classes of lobster consumed small urchins, and maximum 

consumption rates were highest for the largest lobsters preying on the smallest urchins. We 
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found no evidence for variation in attack rates with lobster size or urchin size (Fig. 1.3a, 

𝛽.," = 0.050[ -0.12 – 0.41], 𝛽.,) = 0.093[ -0.15– 0.45]). However, handling time decreased 

with lobster size and increased with urchin size (Fig. 1.3b, 𝛽0," = -1.61[ -2.16 – -1.02], 

𝛽0,) = 1.30[1.03 – 1.64]). Despite the inclusion of informative priors, the posterior estimates 

for the scaling exponents differed from first principal expectations (Fig. S1.3, Table 

S1.1,S1.3). Handling time decreased at a faster rate than expected with lobster size (e.g., 

𝛽0,") and at a higher rate than expected with urchin size (e.g., 𝛽0,)).  

 

How might lobster-urchin interaction strength have varied across space and through time?  

By integrating our experimental model with long term data on lobster and urchin 

body sizes and densities, we generated plausible estimates for historic interaction strengths. 

We found that the inferred interaction strength between lobsters and urchins varied 

considerably across narrow spatial and temporal scales (0.01 [ 0.0004 – 0.08] ind. m-2 d-1, 

Fig. 1.4). The variation in interaction strength between sites (𝐶𝑉12%3*%4 	 =	1.21 ± 0.4, X̅ ± 1 

SD) was similar to the variation between years (𝐶𝑉35$26)%4	 =	1.13 ± 0.1). 

 

Variation in lobster-urchin interaction strength is caused by asymmetries in lobster and 

urchin body size rather than urchin density 

Considering the extent of variation in inferred interaction strength across space and 

time, we tested how much of this variation could be attributed to differences in lobster-urchin 

body sizes versus densities. We found that body size accounted for the majority of the 

variation in inferred interaction strength (75-87%) compared to variation in density (Fig. 

1.5a). To better understand the implication of body size accounting for the majority of 
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variation, we generated a hypothetical community of lobster and urchins. We then used our 

experimental estimate of the size-dependent functional response to simulate a 10-fold 

increase in mean urchin density with no change in lobster or urchin size distributions relative 

to a 10-fold increase in mean lobster size with no change in the density of urchins or lobsters 

(Fig. 1.5b). The increase in lobster body size resulted in a 230% increase in the median 

interaction strength, whereas the increase in urchin density resulted in only a 38% increase in 

interaction strength. In our estimates of interaction strength based on the field data, 

communities characterized by large lobsters relative to urchin size and high urchin density 

displayed the highest interaction strength, while interaction strength in communities with 

small lobsters relative to urchins and low urchin density approached zero (Fig. S1.4). Across 

all sites and years, lobster-urchin interactions were log-distributed with far more weak than 

strong interactions (Fig. 1.5a,c). 

 

General size-scaling relationships failed to quantitatively predict lobster-urchin interactions 

In general, size-scaling relationships from the literature provided similar rank order 

predictions for which sites or years displayed the strongest or the weakest interactions 

compared to our experimental estimates (Fig. S1.5, Spearman’s rank order correlation test, p 

< 0.001). However, published size-scaling relationships failed to estimate the magnitude of 

inferred interactions between lobster and urchin. The closest prediction from the literature to 

the average of our experimental prediction was for active crustacean predators foraging on 

static prey (Barrios-O’Neill et al. 2019). However, the average of this prediction was still 

18.7 times greater than the interaction strength estimated by our experimental model (Fig. 

1.5c, Fig. S1.6). Furthermore, there was only a 15.6% overlap between the distribution of our 
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experimental prediction and the distribution of the closest prediction from the literature. The 

precision of the predictions increased as the taxonomic specificity increased. The average of 

the cross-taxa estimate (Uiterwaal and DeLong 2020) was five orders of magnitude lower 

than the experimental average, while the average estimate for marine invertebrates (Rall et al. 

2012) was ~100 times less than the experimental average. The estimate for active marine 

crustacean predators performed the best. 

 

3.5. DISCUSSION 

Understanding when and where predators will interact strongly with prey is critical to 

disentangling context dependency in trophic ecology and can offer insight into the 

repercussions of disproportionate harvesting of species at the top of the food chain. Spatial 

and temporal heterogeneity in predator and prey size distributions driven by demographic 

variation (De Roos et al., 2003), spatially explicit size-structured harvest (Kay et al., 2012), 

and size-structured predation (Rudolf, 2008) may underlie much of the context dependency. 

Our findings demonstrate that body size is a strong determinant of lobster-urchin interactions 

in experimental trials and suggest that natural and human-induced variation in body size in 

the field may be a powerful driver of interaction strength between lobsters and urchins. Our 

results provide insight into when and where we expect lobsters to play a dominant predatory 

role and suggest that harvest-induced reductions in lobster size may have significant 

ecological consequences in kelp forest ecosystems.  

 

Body size drives variation in the role of lobsters in the kelp forest 
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The hypothesis that lobsters control urchin populations is contested, with some 

research finding evidence for predator-induced declines in urchins (Ling et al., 2009) and 

other research finding no evidence at all (Malakhoff & Miller, 2021). Our results suggest two 

scenarios when lobsters could potentially impact urchin populations, thereby potentially 

buffering macroalgae resources. We found that interaction strength is greatest when urchin 

density is high, lobsters are large, and urchins are small. In marine protected areas where 

lobsters are protected from fishing, lobster size and density are greater than in fished areas 

(Kay et al., 2012; Peters et al., 2019). With a relatively high density of large lobsters our 

results suggest that there could be substantial predation pressure on urchins, which is 

consistent with recent modeling work that highlights the importance of size-selective 

predation on the recovery of kelp communities under different management strategies (Dunn 

et al., 2021). Alternatively, our foraging trials demonstrate that even small lobsters can be 

effective predators of small urchins. Purple urchins can recruit in large numbers to reefs if 

environmental and biological conditions allow (Okamoto et al., 2020). High densities of 

lobsters, even if small, may provide a bottleneck of mortality for small urchin recruits, 

effectively reducing the capacity of the urchin population to consume kelp (e.g., Rennick et 

al. 2022). However, strong interactions at one point in time could lead to weak interactions in 

the future as urchins grow large enough to experience reduced predation. Accounting for 

dynamic interactions between density and size-structure can lead to counterintuitive 

predictions, such as increases in total prey biomass even when predator induced mortality 

increases (Schröder et al., 2009). Therefore, to understand the long-term dynamics of lobster-

urchin interactions a critical next step is to explicitly model the dynamics of size-structured 

communities.  
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Body size – not density – accounts for the majority of variation in interaction strength 

Empirical research on predator-prey interactions has historically focused on 

estimating interaction strength based on species abundances (Novak et al., 2016). Typically, 

interaction strength is quantified by measuring the abundance of a focal species in the 

presence or absence of the interacting species (Wootton & Emmerson, 2005). This 

abundance-based approach implicitly assumes that intraspecific variation in traits has little 

impact on how strongly populations interact. Yet, there is evidence that intraspecific variation 

in traits can overshadow interspecific effects (Des Roches et al., 2018). For example, recent 

work showed that accounting for size-specific differences in consumption rates using 

theoretical size-scaling relationships (e.g., 𝑚(.89) better predicts empirical interaction 

strength than density or biomass (Atkins et al., 2015).  

Our study provides additional support for the critical role of accounting for 

intraspecific variation in body size in predicting interaction strength by demonstrating that 

lobster-urchin interactions are determined by their respective size distributions, more so than 

density. We attributed up to 89% of the variation in inferred interaction strength to variation 

in body size. One possible reason for this pattern is because lobster maximum consumption 

rates, not attack rates, were size-dependent. As consumption becomes more density 

independent (e.g., approaches Cmax) it becomes more size dependent. Across our 

observational data set, urchin densities were high relative to the average maximum 

consumption rates of lobster at a site. Thus, it was unlikely that lobsters were limited by 

urchin availability, but rather by lobsters’ ability to handle prey—a parameter that is strongly 

size-dependent. Therefore, we speculate that variation in predator and prey body size 
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accounted for the majority of variation in interaction strength because at the observed urchin 

densities lobsters foraged in a size-dependent, rather than density-dependent, manner.  

Together, our results highlight the extent to which focusing on species densities or 

biomass alone could lead to inaccurate estimates of interactions. Accounting for traits like 

body size could resolve long-standing debates on the role of predators in regulating prey 

populations (Poisot et al., 2015) and move debates from the static question of if predators 

impact prey dynamics, to when and where predators play a strong role in a community. 

 

Naïve predictions of interaction strength 

Researchers are increasingly focused on implementing ecosystem-based approaches 

to management (EBM) that account for species interactions, physical forces, social drivers, 

and economic considerations (Long et al., 2015). One challenge to effective implementation 

of EBM is uncertainty in the strength of species interactions, particularly when system 

specific data are limited (Hunsicker et al., 2011). Previous work in food web ecology has 

utilized theoretical scaling relationships to determine the structure and resilience of 

ecological networks (Brose et al., 2006; Petchey et al., 2008). Recently, applied ecologists 

have adapted a similar approach to parameterize stage- or size structured models, where they 

assume theoretical size-scaling exponents to estimate interaction strength along with other 

life history parameters (Blanchard et al. 2017; see Reum et al. 2019, Spence et al. 2021 for 

exceptions). These models have led to conceptual advances in the consequences of harvest on 

populations (Andersen et al., 2009), communities (Andersen et al., 2015; Claessen et al., 

2009), or whole ecosystems (Fulton et al., 2011; Heymans et al., 2016). Our results suggest 

that qualitative predictions for when predators display strong or weak interactions with their 
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prey may be resilient to inaccurate estimates of how consumption varies with body size for 

particular species. However, our case study on lobster-urchin interactions suggests that 

relying on general size-scaling relationships may fail to quantitatively predict the magnitude 

of trophic interactions between specific species. In other words, naïve estimates may 

accurately predict the direction and rank order of when and where predators interact strongly 

with prey but not the magnitude of these interactions. Failing to quantitatively estimate 

interactions is a critical deficiency in predicting harvest quotas in an EBM framework.  

There are two likely reasons for the large discrepancy between our experimental 

estimates of interaction strength and estimates based on published size-scaling relationships. 

The first is that the relationship between body size and interaction strength is highly variable 

across different species and taxa (Rall et al. 2012, Uiterwaal and DeLong 2020), or even 

among different functional groups in the marine benthos (Barrios-O’Neill et al. 2019). Here, 

we focused on the mean trend in the relationship between size and interaction strength from 

these studies to determine how much information could be borrowed to estimate the 

interaction strength of particular predator-prey pairs. However, the considerable variation 

around the mean is certainly a source of imprecision in using cross-species size-scaling 

relationships to estimate interactions for specific species. 

   The other likely reason our experimental estimates differed from estimates based on 

published size-scaling relationships are discrepancies between consumption-size 

relationships within species pairs compared to across species pairs (Brose et al., 2017). 

Previous metanalyses used the average body size of a predator species and the average body 

size of its prey species to estimate how the functional response varies with body size (Rall et 

al. 2012, Uitterwaal and DeLong 2020). However, body size varies among individuals, and 
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consumption is a nonlinear function of body size. Therefore, the consumption rate of the 

average sized individual will poorly approximate the average consumption rate across 

variation in body size (Bolnick et al., 2011). While size-scaling relationships generated 

across the average body size of species may uncover general ecological patterns (White et al., 

2019), our results add to a growing body of evidence that general relationships may have 

little bearing on how a particular predator’s consumption rate on a prey changes with 

ontogenetic growth (Aljetlawi et al., 2004; Uiterwaal et al., 2017). Exploring if there are any 

general patterns in the consumption-body size relationship within species pairs could 

improve the utility of using body size to estimate ontogenetic variation in interaction strength 

in the absence of species-specific data. 

 

Conclusion 

To sustainably harvest and conserve ecosystems, it is critical to predict how strongly 

predators interact with their prey–a challenging task considering the same species of predator 

can interact with its prey differently in different spatial or temporal contexts. Here, we used a 

simulation procedure to infer how strongly lobster and urchin may have interacted across 

narrow spatial and temporal scales. Our analysis suggests that variation in the body size of 

predator and prey, more so than variation in density, accounted for the majority of variation 

in lobster-urchin interaction strength. Our results highlight the importance of accounting for 

body size when determining fine-scale variation in interaction strength, as two sites may have 

the same density of species, but species may interact strongly at one site and not at all at the 

other depending on variation in individual body size. For lobsters and urchins, species-

specific estimates for how consumption changes with body size, rather than general size-
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scaling relationships, are necessary to sufficiently predict how changes in size drive changes 

in interaction strength.  

Humans are driving reductions in the size of predators (Blanchard et al., 2005; 

Robinson et al., 2017) through the interactive effects of harvest and warming temperatures 

(Baudron et al., 2014; Lindmark et al., 2018; Pauly & Cheung, 2018). Such reductions in 

body size not only alter the economic and cultural value of the target population (Oke et al., 

2020), but also lead to shifts in how strongly species interact in communities. Incorporating 

body size as a means of approximating how strongly species interact will improve ecologists’ 

ability to predict when and where predators have strong effects on prey, a critical step in 

clarifying the context-dependence of trophic interactions and understanding the repercussions 

of the ongoing losses of large predators.  
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2.7. FIGURES AND FIGURE CAPTIONS 

 
 
Figure 1.1. Observed body size distributions of a predator (Panulirus interruptus - lobster) 
(A) and their prey (Strongylocentrotus purpuratus - urchin) (B) across 5 sites monitored 
annually from 2012-2020. Different processes such as variation in recruitment, habitat 
suitability, or harvest can cause differences in the size of predators, like lobster, relative to 
their prey independent of density (C-E). Theory predicts that larger predators will consume 
more total prey biomass than smaller predators, and that predators tend to consume more 
small than large prey. Such size-dependent foraging at the scale of the individual could result 
in large variation in interaction strength at the population-scale at different sites or years (F). 
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Figure 1.2. Purple sea urchin (Strongylocentrotus purpuratus) consumption rates by 
California spiny lobster (Panulirus interruptus) predators in mesocosm foraging trials. 
Individual lobsters (n = 45) foraged on a single urchin class at six different urchin 
abundances. Lines are posterior predictions (𝑋U [95% CI]) from a Bayesian model for the 
body size dependent functional response. Predictions are for hypothetical lobsters with body 
mass set to the 10th percentile, mean, and 90th percentile (e.g., small, medium, large) of the 
size distribution of lobster used in the experiment.   
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Figure 1.3. Body size scaling of the attack rate (A) and handling time (B) parameters of the 
functional response of California spiny lobster (Panulirius interruptus) foraging on purple 
urchins (Strongylocentrotus purpuratus). Lines are posterior predictions (𝑋U [95% CI]) for the 
body size scaling of each parameter according to power law functions of predator and prey 
mass (see Methods for details). Data points are 100 sampled draws from the posterior 
distributions of α and h for each individual predator foraging on a particular prey size class 
using a Bayesian hierarchical model. Note the log10 transformations of both axes.  
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Figure 1.4. Predicted interaction strength between California spiny lobster (Panulirius 
interruptus) predators and purple sea urchin (Strongylocentrotus purpuratus) prey at five 
sites in the Santa Barbara Channel, USA from 2012-2020 (A-B). Points and surrounding 
grayscale circles represent the median and upper 95% CI of interaction strength simulated for 
historic observations of lobster and urchin size-distributions and densities using a body size-
dependent functional response parameterized from mesocosm foraging experiments. Inset 
plots (C-G) are the median interaction strength through time at each site. Green polygons 
along coastline are the historic extent of giant kelp forests estimated via satellite imagery 
(Santa Barbara Coastal LTER et al., 2022).   
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Figure 1.5. (A) Predicted interaction strengths between individual lobster predators 
(Panulirius interruptus) and their urchin prey (Strongylocentrotus purpuratus) across five 
sites and nine years of observational data. Variation in urchin and lobster body size accounted 
for 82-89% of the total variation in interactions, while variation in density accounted for the 
remainder. (B) A hypothetical simulation demonstrating the change in interaction strength for 
a 10-fold increase in urchin density with no change in lobster size compared to a 10-fold 
increase in lobster body mass with no change in urchin density. In this simulation, interaction 
strength was estimated using the parameters from the experimental size-scaling relationship 
for lobster-urchin interactions. (C) Comparison of three estimates of the size-scaling of 
interaction strength from the literature with experimental predictions. Points and intervals at 
the bottom are mean and 95% CIs of each distribution. Note the log10 transformation on the 
x-axes in panels A and C. 
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3. CHAPTER II:  

Resource acquisition increases with body size faster than metabolic 

requirements in a marine invertebrate predator: evidence for 

hyperallometric scaling of consumption 

 

3.1. ABSTRACT 

 Across taxa, organisms’ body size is tightly linked to their metabolism, leading to the 

widely help assumption that animals’ foraging rates can be predicted by their size. However, 

few empirical studies have explicitly linked the physiological and consumption rates across 

ontogenetic variation in body size. Here, we tested between multiple competing hypotheses 

for the scaling of metabolism and consumption with body size using California spiny lobster 

(Panulirus interruptus) as a model predator. Specifically, we estimated the size-dependent 

functional response of lobster foraging on mussels (Mytilus galloprovincialis). We then 

connected the parameters of the functional response (attack rate and maximum consumption 

rate), with different metrics of lobster physiology, including standard and maximum 

metabolic rate. We found that contrary to prevailing theoretical expectations, larger lobsters 

consumed disproportionately more than smaller conspecifics (e.g., hyperallometric scaling of 

consumption), despite declining metabolic requirements. Anthropogenic impacts, including 

harvest and global climate change, have driven declines in the body size of terrestrial and 

marine consumers. Our results suggest that changes in community structure or function 

associated with the loss of large consumers may not be compensated for by increases in the 

abundance of smaller size classes. 
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3.2. INTRODUCTION 

Body size is perhaps the most conspicuous of animal characteristics and is a critical 

driver of animal physiology and ecology. For instance, body size is correlated with how fast 

an animal grows (West et al. 2001), how far an animal migrates (Hein et al. 2012), how 

biomass is distributed across size classes in ecosystems (Sheldon et al. 1972, Heather et al. 

2021), and the growth (Savage et al. 2004) or mortality (McCoy and Gillooly 2008) rates of 

populations. Understanding what underlies this powerful connection between animal body 

size and animal biology is a fundamental component of considering how ecosystems are 

likely to change as the average body size of species continues to decline due to human 

impacts (Robinson et al. 2017, Santini and Isaac 2021).  

The most widely accepted mechanism underlying the connection between animal 

body size and animal ecology is the strong positive relationship between body size and 

metabolism. While the exact exponent is widely debated (White et al. 2007), metabolic rate 

(b) typically increases as a power-law function of body mass (m)  

𝑏	 ∝ 	𝑚! (1) 

where the scaling exponent or slope (𝛽) is remarkably consistent across taxa (𝛽 ≅ 0.6-0.8; 

(Kleiber 1932, West et al. 1997, White and Seymour 2003, Glazier 2010). This means that 

larger species (White et al. 2007), or larger individuals within a species (Killen et al. 2010), 

have higher absolute metabolic rates, but lower mass-specific metabolic rates. Theory posits 

that because animals must consume enough energy to meet their basic metabolic 

requirements (termed standard metabolic rate), the total amount an animal eats should 

increase with body size, while the amount of energy an animal consumes per unit mass 

should decrease with body size (Rall et al. 2012). This assumption that consumption rates can 
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be predicted based on body size has led to seminal advances in the field of food web ecology, 

from body size being used as the bioenergetic basis of consumer-resource dynamics (Yodzis 

and Innes 1992, Weitz and Levin 2006, Kalinkat et al. 2013) to predicting the structure and 

stability of complex food webs (Emmerson and Raffaelli 2004, Berlow et al. 2009). Yet, 

despite the prevalence of this assumption, the relationship between the scaling of metabolism 

and consumption with body size is still debated (Marshall and White 2019), and how well an 

individual’s metabolism predicts its consumption rate remains an open question.  

There are two common hypotheses for how metabolism and consumption scale with 

body size. The metabolic theory of ecology suggests that per unit mass an organism’s 

maximum consumption rate (Cmax) will decrease with body size at the same rate (e.g., the 

same exponent, β) that standard metabolic rate decreases with body size (Peters 1983, Brown 

et al. 2004) (Fig. 2.1A - H0). Alternatively, mechanistic theories of ontogenetic growth 

generally assume that standard metabolism decreases with body size at a slower rate (i.e., 

higher 𝛽) than consumption increases with body size (Kooijman 2000, West et al. 2001, Hou 

et al. 2008), which has been proposed as an explanation for asymptotic size (Essington et al. 

2001, West et al. 2001, Hou et al. 2008) (Fig. 2.1 - H1). However, there are surprisingly few 

studies that have simultaneously linked the physiology and ecology of individual animals to 

empirically test how consumption and metabolism increase with body size (Marshall and 

White 2019). Instead, syntheses have focused on understanding how metabolism and 

consumption independently change with body size across species (e.g., interspecific scaling, 

(Rall et al. 2012, Uiterwaal and DeLong 2020)), which may have little bearing on how 

energy acquisition and metabolic requirements scale with body size within a species (e.g., 

intraspecific scaling, (Lindmark et al. 2022)). Better linking between the physiology and 
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ecology of animal feeding could offer a mechanistic understanding of how shifts in body size 

are likely to change population and ecosystem dynamics. 

While most research assumes that consumption increases with body size at the same 

or slower rate than standard metabolism increases with body size (Marshall and White 2019), 

there is empirical evidence that consumption may increase with body size at a faster rate than 

metabolism (Fig. 2.1, H2). Previous studies have demonstrated that consumption scales with 

body size at a rate greater than one (e.g., hyperallometric scaling, 1 > 𝛽:&'() for crustacean 

predators (Barrios‐O’Neill et al. 2019) or consumers foraging in a 3-D environment (Pawar 

et al. 2012), despite metabolism scaling with body size at a slower rate (e.g., 1	 > 𝛽;<= 	≅ 

0.6-0.8) across taxa (Brown et al. 2004). If consumption rates increase and SMR decreases 

with body size per unit mass, then the ratio of energy intake to energy requirements, which 

we call factorial energy acquired, can increase with body size, resulting in larger animals 

having disproportionately more available energy (Fig. 2.1B).  

One potential explanation for why energy acquisition (e.g., consumption) may 

increase at a faster rate than standard metabolic requirements with body size is that how 

much an animal consumes may be driven by more complex physiological needs than only its 

standard metabolic rate (SMR). Aerobic performance is limited by an animal’s maximum 

metabolic rate (MMR, Fig. 2.1D), and the ratio of an animal’s maximum to standard 

metabolic rate, referred to as factorial aerobic scope (FAS = MMR/SMR), describes the 

factor by which an animal can increase metabolism above maintenance levels to support all 

fitness-enhancing physiological processes, including growth, feeding, digestion, 

reproduction, and predator evasion (Careau et al. 2014). Similarly, the difference between an 

animal’s maximum and standard metabolic rates, called absolute aerobic scope (AAS = 
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MMR-SMR), describes the animal’s absolute aerobic capacity to expend energy beyond 

standard metabolic needs. Empirical evidence suggests that across taxa, standard metabolic 

rates scale with body size slower (e.g., lower 𝛽) than maximum metabolic rates (Darveau et 

al. 2002), although it is possible that MMR and SMR scale at the same rate with body size 

(Killen et al. 2016), or that SMR scales with body size at a faster rate than MMR (Fig. 2.1D). 

If SMR per unit mass decreases with body size at a faster rate than MMR (i.e., 𝛽;<= < 𝛽<<=; 

Fig. 2.1D - H5), then larger animals would have lower energetic constraints (i.e., greater FAS, 

Fig. 2.1E - H5). Therefore, larger animals may utilize this larger aerobic scope to consume 

disproportionately more than smaller conspecifics, if, for example, the cost of reproduction 

increases with ontogenetic growth (Marshall and White 2019, Jutfelt et al. 2021). 

Alternatively, consumption is energetically costly, due to the costs of foraging and digestion. 

Recent work shows that animals may regulate consumption in order to preserve aerobic 

scope and that how much aerobic scope is preserved changes with body size (Jutfelt et al. 

2021). If organisms systematically decrease their need to preserve aerobic scope during 

digestion with ontogeny, for instance due to declining predation risk with body size (Preisser 

and Orrock 2012), then larger organisms may consume more than predicted by their standard 

metabolic rate relative to smaller organisms. Therefore, either changing energetic costs or 

shifting behaviors as individuals grow could lead to larger organisms consuming 

disproportionately more than smaller organisms (Fig. 2.1, H2). 

Here, we test between multiple alternative hypotheses for how consumption and 

metabolism scale with body size in California spiny lobster (Panulirus interruptus, hereafter 

lobster), a commercially and ecologically important marine invertebrate predator. We first 

estimate how consumption varies across gradients of prey density, prey size, and predator 
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size in laboratory mesocosms. We then quantified four metrics of metabolic rate (SMR, 

MMR, FAS, AAS) for each individual predator. Finally, we examined the scaling 

relationships between body size, metabolism, and consumption rate to determine how energy 

acquisition and energetic requirements vary with consumer body size. 

3.3. METHODS 

To determine the relationship between how much an animal eats, its metabolic 

requirements, and body size, we examined the bioenergetics of lobsters preying on the 

naturalized Mediterranean mussel (Mytilus galloprovincialis, hereafter mussel) (Robles 

1987). Lobster are important predators on rocky subtidal reefs stretching from the central 

Baja peninsula, Mexico to Point Conception, CA, USA and are a commercially important 

species harvested throughout their range. Lobster are an ideal predator to examine the 

relationship between a consumer's foraging and metabolic requirements because they are 

ectothermic predators that forage in a size structured manner (DiFiore and Stier 2023) and 

there are established methodologies to estimate their physiological rates (Csik et al. 2023).   

How does consumption vary with lobster size, mussel size, and mussel density? 

How much a consumer eats (e.g., consumption rate) is determined by both intrinsic 

factors (e.g., metabolic rate, satiation, etc.) and extrinsic factors, including resource 

availability (Holling 1959), resource size (McCoy et al. 2011), temperature (Englund et al. 

2011), or predation risk (Schmitz et al. 1997, DiFiore et al. 2019). Here we focus on the role 

of lobster size, mussel size, and mussel density in driving lobster consumption rates. 

Typically, consumption rates increase asymptotically with resource density according 

to a type II functional response, which is dependent on two parameters: attack rate and 
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handling time (Real 1977). The attack rate, or space clearance rate (Uiterwall and Delong 

2020), describes the area that a consumer searches per unit time, while the handling time 

describes the time required for a consumer to manipulate and digest an individual prey 

(Jeschke et al. 2002). The inverse of handling time provides an estimate of a consumer’s 

maximum consumption rate  

𝐶$%& = 1
ℎW (2) 

Together, a type II functional response can be described by 

𝐶 = 	
𝛼𝑁

1 + 𝛼ℎ𝑁	
(3) 

where N is initial resource density, α is the attack rate describing the initial slope at low 

resource densities, and h is the handling time. 

A consumer’s functional response can be modified to account for body size by 

assuming size-scaling relationships for h and 𝛼. Theory predicts that when resources are not 

limiting, a consumer’s consumption rate (e.g., 𝐶$%&) should increase with consumer size 

according to a power-law function of body mass similar to the scaling of metabolism with 

body mass (Yodzis and Innes 1992, Rall et al. 2012). Maximum consumption rates, however, 

likely decline as a power-law function of prey mass (Uiterwaal and DeLong 2020). 

Therefore, handling times should follow vary with body size according to:  

ℎ = 	ℎ(𝑚"
!!,#𝑚)

!!,$ (4) 

where ℎ(is a normalization constant, 𝑚" 	and 𝑚) 	are the mass of consumer (here lobster) and 

resource (here mussel) respectively, and 𝛽:," and 𝛽:,) are scaling exponents on consumer and 

resource mass respectively. Similarly, first principles predict that attack rates increase as a 

power-law function of consumer size due to increases in the motility and visual acuity of 
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larger consumers (McGill and Mittelbach 2006). Increases in prey size may cause increases 

in a consumer’s attack rate (Rall et al. 2012) or could cause increases followed by declines in 

attack rate (Brose 2010, Kalinkat et al. 2013). Preliminary analysis of the data, however, 

showed no evidence for a hump shaped relationship between attack rates and body size. 

Therefore, we focused on power-law functions of body mass such that: 

𝛼 = 	𝛼(𝑚"
!%,#𝑚)

!%,$ (5) 

where 𝛼(is a normalization constant, and 𝛽.," and 𝛽.,) are scaling exponents on consumer 

and resource mass respectively. 

To estimate the size-dependence of the lobster functional response, we conducted a 

factorial experiment where we manipulated lobster size, mussel size, and mussel density. We 

collected lobsters and mussels from the Santa Barbara Channel (CA, USA). Lobster (n = 11) 

ranged in size from 176-1199 g. We allowed each lobster to forage on three size classes of 

mussel (20-35, 35-50, and 50-65 mm) at five different densities (2, 5, 10, 20, 50 ind. arena-1). 

We conducted all foraging trials in 171-liter tanks divided in half by a permeable barrier with 

one lobster per side under a natural photoperiod (12 light: 12 dark). All lobsters were 

maintained under ambient sea water temperature. To ensure lobsters entered feeding trials at 

a similar level of satiation, we fed lobsters mussels ad libitum, and then starved lobsters for 

48 hrs. To initiate a trial, each lobster was given a random density of mussel of a particular 

size class. We measured each mussel prior to the start of a trial. After 24 hours, we removed, 

counted, and re-measured all un-eaten mussels. 

To estimate the functional response of each lobster foraging on each size class of 

mussel, we used a Bayesian hierarchical model. A Bayesian hierarchical approach allowed us 

to account for the structure in the data (i.e., non-independent observations of foraging in any 
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trial i), while informing the scaling exponents based on first principle expectations. 

Specifically, we assumed that the number of mussels consumed in trial i (𝐶*) followed a 

Poisson distribution such that:  

𝐶* 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆*,,,>)	 

𝜆*,,,> =
𝛼,,>𝑁*

1 + 𝛼,,>ℎ,,>𝑁*
(6) 

𝑙𝑜𝑔(𝛼,,>) 	= 	𝑙𝑜𝑔(𝛼() 	+	𝛽.,"𝑙𝑜𝑔(𝑚",,) 	+	𝛽.,)𝑙𝑜𝑔(𝑚),>) + 𝜇.,, 

𝑙𝑜𝑔(ℎ,,>) 	= 	𝑙𝑜𝑔(ℎ() 	+	𝛽0,"𝑙𝑜𝑔(𝑚",,) 	+	𝛽0,)𝑙𝑜𝑔(𝑚),>) + 𝜇0,, 

where, 𝛼,,> is the attack rate (d-1 m-2) of lobster j foraging on mussel size class k, and ℎ,,> is 

the handling time (d) of lobster j foraging on mussel size class k. We constructed informed 

priors on all β parameters, where the βs were normally distributed with a mean based on 

theoretical predictions (Table S1). We assumed gamma distributions with mean 0 for the 

prior variances. We included a random effect of lobster individual on the estimation of α and 

h (𝜇.,,, 𝜇0,,), assuming that errors between individuals were normally distributed with mean 

0. See Table S2.1 for further details. 

We implemented the model in Stan (Stan Development Team 2022) which uses a 

Hamiltonian Monte Carlo procedure to estimate parameters. We ran three chains for 25,000 

iterations with a burnin of 12,500 iterations and thinned the chains to retain every 3rd 

iteration. To diagnose model convergence, we visually assessed mixing of the model chains 

and confirmed using the Gelman-Rubin convergence diagnostic (𝑅L<1.1) (Brooks and 

Gelman 1998). 
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How does metabolism vary with lobster size? 

To estimate how lobster metabolism scales with lobster body size, we measured 

oxygen consumption rates using intermittent flow respirometry. We estimated the 

metabolism for each lobster used in the foraging trials in addition to thirteen lobster not used 

in the foraging trials (176 - 1381 g, n = 24 total). Prior to trials, we starved lobsters for 24 h. 

We then elicited MMR, by chasing lobsters and repeatedly exposing them to air (30 s chase, 

30 s air exposure). We performed this sequence 3 times, for a total of 3 minutes, then the 

lobster was air exposed for 1 min to ensure exhaustion. Immediately following, we placed the 

lobster in custom-build respirometry chambers (17.89 L; 14.79 ± 0.09℃, 𝑋Z± SE) and 

measured oxygen consumption rate to estimate MMR. Lobsters remained in the 

respirometers overnight (~ 24 hours) while their oxygen consumption was measured on 

automated cycles (8 min measurement: 15 min flush) to assess SMR. We measured 

background respiration rates in empty chambers after each respirometry trial and determined 

that background respiration was negligible.  

We estimated each lobster’s metabolic rate according to  

𝑀?) = (𝑉	 − 	𝑚)
𝛥𝑂@
𝛥𝑡

(7)	 

where 𝑀?) is in mgO2 min-1, ΔO2 is the change in oxygen concentration in water (mgO2/L), 

V is the volume of respirometry chamber (L), m is the weight of the lobster (kg), Δt is the 

measurement length (min). We calculated MMR by estimating the steepest 60-120 s 

regression slope within the first O2 measurement cycle. We estimated standard metabolic 

rate, the metabolism in resting, non-digesting, thermally acclimated individual, by calculating 

the lowest 15th quantile of all MO2 values (min = 47, max = 63, average = 56) recorded over 
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~24 h (Chabot et al. 2016). We calculated AAS by subtracting MMR and SMR (mgO2/min) 

and FAS by dividing MMR by SMR. 

To determine how standard and maximum metabolic rates vary with body size, we fit 

power law functions using a Bayesian regression model via the rstanarm package (Goodrich 

et al. 2023). Specifically, we estimated the slope of the relationship between body size, 

standard metabolic rate, maximum metabolic rate, and their interaction using a log-log 

regression with weakly informative priors (Table S2). Using a similar procedure, we also 

estimated the slope of the relationship between body size and absolute aerobic scope and 

body size and factorial aerobic scope.  

Converting to units of energy acquisition and energy required 

Our primary goal was to understand how the processes of energy acquisition, or the 

energetic value of mussels consumed by lobster, and energy requirements, or the energy 

required to meet an individual's metabolic rate, increase with body size. Therefore, we 

converted our metric of metabolism (mg O2 min-1) and consumption (ind. d-1 m-2) to 

energetic rates (kJ d-1). To convert indices of metabolism we assumed that 1 g oxygen is 

associated with the release of 13.6 kJ of energy (Cho et al. 1982, Eliason et al. 2008, Steell et 

al. 2019). To estimate the energetic content of mussels, we first converted all mussel shell 

lengths to shell-free dry mass (Ceccherelli and Rossi 1984) and then converted to shell-free 

wet mass using a conversion factor generated for local populations of M. galloprovincialis 

(LTER et al. 2016). Finally, we estimated the energetic content of mussels assuming 0.99 kJ 

g-1 shell-free wet mass (Prado et al. 2020). 
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3.4. RESULTS 

The number of mussels lobster consumed increased with mussel density and lobster 

size and decreased with mussel size (Fig. 2.2). Changes in the functional response with body 

size were largely due to the size-dependence of maximum consumption rates (Cmax). We 

found no evidence for variation in attack rates with lobster (𝛽.," = -0.031 [-0.23, 0.07], 

median ± 95% CI’s unless otherwise noted) or mussel (𝛽.,) = 0.139 [-0.01, 0.31]) body size 

(Fig. S2.1), while maximum consumption rates (the inverse of handling time, h) increased 

with lobster size (𝛽:$%&," = 1.50 [1.12, 1.85]) and decreased with prey size (𝛽:$%&,) = -1.33 

[-1.05, -1.62]; Fig. S2.1). However, in units of energy (kJ d-1), the data suggest that lobster 

consume the same caloric content of mussels regardless of mussel size (Fig. S2.2). For 

example, an average sized lobster (~540 g) tends to consume 77.2 kJ of mussel whether those 

calories come from many small or a few large mussels. 

As expected, larger lobsters had higher whole animal standard and maximum 

metabolic rates than smaller lobsters (Fig. 2.3a, Fig. S2.3), but lower mass-specific metabolic 

rates. Standard and maximum metabolic rates increased with body size at similar rates (𝛽;<=: 

0.86 [0.64, 1.06], 𝛽<<=: 0.77 [0.56, 0.98], Table S2.3), with no evidence for differences in 

the slopes of MMR and SMR (-0.09 [-0.38, 0.21]). Accordingly, mass-specific absolute 

aerobic scope decreased with lobster size (𝛽AA;: -0.23 [-0.48, 0.02]), while there was no 

relationship between factorial aerobic scope and body size (Fig. 2.3c; 𝛽BA;: -0.09 [-0.38, 

0.22]; Table S2.3).  

Despite larger lobsters requiring less energy per unit mass to meet their standard 

metabolic rate (𝛽;<= < 1), we found strong evidence that larger lobsters consumed 

disproportionately more than smaller lobsters. Maximum consumption rate (kJ d-1) increased 
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with body size to an exponent greater than 1 (𝛽:$%&," = 1.50 [1.12, 1.85]), Fig. 2.3b), such 

that mass-specific consumption increased with lobster size (e.g., Fig. 1 - H2). Together our 

results show that per unit mass, larger lobsters had lower metabolic requirements and higher 

energy intake rates (Fig. 2.4). Therefore, factorial energy acquired, or the ratio of energy 

acquisition to energy expenditure on standard metabolic processes, increased with body size 

(Fig. 2.3d, Fig. 2.4).  

3.5. DISCUSSION 

Ecologists have traditionally assumed that consumption rates increase with body size 

at the same or a slower rate than metabolism increases with body size (Peters 1983, Brown et 

al. 2004, Marshall and White 2019). However, surprisingly few empirical studies have 

examined the relationships between consumption, metabolism, and body size for individual 

consumers. Here, we present strong evidence that consumption increased with body size at a 

faster rate than whole-animal metabolism in California spiny lobster, suggesting that 

consumer energy intake rates are not necessarily constrained by standard metabolic 

requirements as previously assumed. Furthermore, our results show that it is possible for 

larger consumers to consume disproportionately more than smaller conspecifics despite 

larger consumers having lower mass-specific metabolic requirements (e.g., Fig. 2.1 - H2). 

While prevailing theory has assumed that consumption should scale with body size at the 

same or a slower rate than SMR, acknowledging the possibility for hyperallometric scaling of 

consumption could dramatically alter the predictions of size-structured trophic models 

(e.g.,(Yodzis and Innes 1992, Berlow et al. 2009)). Moving forward, resolving the 

relationship between an individual's physiology and their ecological role in a community will 
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be an important component of advancing mechanistic understanding of how ecosystems 

function and predicting the consequences of the loss of large consumers. 

Across ecosystem types, humans are disproportionately impacting the largest 

consumers or the largest individuals in consumer populations (Blanchard et al. 2005, 

Robinson et al. 2017) through harvest and warming temperatures (Baudron et al. 2014, 

Lindmark et al. 2018, Pauly and Cheung 2018). Despite increases in the abundance of 

smaller consumers, smaller consumers are often unable to fill the ecological role of their 

larger counterparts (Shackell et al. 2010, Rudolf and Rasmussen 2013), but the reasons why 

remain opaque. Basic metabolic arguments would predict that if consumers ate in proportion 

to their standard metabolic rate, then two smaller individuals should consume more than one 

large individual of the same biomass (Reiss et al. 2011). For example, empirical work on 

sunfish predators shows that two small individuals consume a greater amount than one large 

individual of equivalent biomass (Chalcraft and Resetarits 2004). Our results, however, 

demonstrate that larger lobster consume disproportionately more than smaller lobster, 

suggesting that in some instances changes in community structure or function associated with 

the loss of large consumers may not be compensated for by increases in the abundance of 

smaller size classes. 

  There are several potential reasons why larger individuals may consume 

disproportionately more than smaller individuals. First, larger individuals may have greater 

energetic requirements than smaller individuals causing larger individuals to consume more 

per unit mass. Lobster species, like many other marine species (Barneche et al. 2018), display 

hyperallometric increases in reproductive capacity (DeMartini et al. 2003, MacCormack and 

DeMont 2003). Increases in mass-specific consumption with size may therefore be a strategy 
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to cope with the increased costs of reproduction. However, we found that factorial aerobic 

scope did not change with lobster body size because both SMR and MMR had similar scaling 

relationships. Because larger lobsters did not have lower metabolic constraints (i.e., higher 

FAS), it is unlikely that increased energetic costs of reproduction were the driver of larger 

lobster consuming disproportionately more energy. An alternative explanation is that smaller 

individuals may reduce their foraging relative to larger conspecifics as a behavioral response. 

Capturing, processing, and digesting a meal is an energetically costly, and potentially 

dangerous, process. Therefore, smaller individuals may reduce consumption relative to their 

larger conspecifics, in order to reserve energy for defense or escape (Jutfelt et al. 2021). 

Critically, this is a behavioral response and is independent of the scaling of FAS with body 

size. Smaller lobster are prey to many fish species, while larger lobster are less vulnerable to 

predation (Loflen and Hovel 2010). Thus, our results suggest that smaller lobsters may be 

altering their foraging behavior by reducing the amount they eat relative to the amount 

expected based on their metabolic demand in order to preserve aerobic scope. By not 

consuming as much food as they could, these smaller individuals may be choosing to avoid 

allocating energy towards food acquisition and digestion to be able to escape predators.  

We acknowledge that it is possible that the observed increases in mass-specific 

consumption were an experimental artifact. Foraging in natural conditions is far more 

complex than in simplified mesocosms. Smaller lobster may prefer different prey types than 

larger lobster, causing depressed foraging in single prey experiments. However, lobster of all 

sizes are known to forage on mussels (Robles 1987, McCormick 2016), and recent work has 

demonstrated similar hyperallometric scaling of sea urchin (DiFiore and Stier 2023) and 

mussel (Csik et al. 2023) consumption by lobster in separate experimental trials.  
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The extent to which hyperallometric scaling of consumption is common across taxa is 

largely unclear. Synthetic work on the interspecific scaling of consumption rate with body 

size found that consumption rates can scale hyperallometrically for consumers foraging in 3-

D environments (Pawar et al. 2012). However, the finding was criticized because it did not 

account for ontogenetic (e.g., intraspecific) variation in body size and because 

hyperallometry would violate prevailing theory on asymptotic body size (Giacomini et al. 

2013). We would argue that hyperallometric scaling of consumption is biologically feasible if 

a) larger conspecifics have disproportionately higher energetic costs (e.g., for reproduction), 

b) assimilated energy scales at a lower rate than consumed energy due to the scaling of other 

physiological processes (excretion, Maino and Kearney 2015; specific dynamic action, Steell 

et al. 2019) or c) smaller conspecifics are reducing foraging as a behavioral response. A 

recent metanalysis of fish species found little evidence for hyperallometric scaling of 

consumption (Lindmark et al. 2022). However, hyperallometry has been found in the 

consumption rates of marine invertebrates (Barrios‐O’Neill et al. 2019), land snails (Astor et 

al. 2015), some insects (Maino and Kearney 2015), and in the energy intake rates of large 

carnivores (Rizzuto et al. 2018). While it remains unclear how common hyperallometry is 

across different consumers foraging on different prey, accounting for the possibility of 

hyperallometry could heavily influence current understanding of community and ecosystem 

dynamics. The recent focus on ecosystem-based approaches to management has increased the 

use of multispecies to whole-ecosystem models that seek to simulate different harvest 

scenarios using canonical scaling exponents to estimate consumption rates (𝛽:&'( = 0.67, 

0.75; Andersen 2019, Blanchard et al. 2014, Soudijn et al. 2022). Exploring how the 

hyperallometric scaling of consumption rates might alter the predictions of simulation 
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models, could therefore lead to different advice to decision makers responsible for either 

consumer or resource populations. 

Understanding the physiological mechanisms by which reductions in body size will 

impact the ecological role of consumers may improve the ability to forecast species 

interactions in a changing future. Here, we showed lobster metabolic rates were strongly 

linked to their foraging capacity, but consumption rates did not scale with metabolic rates as 

predicted by prevailing theory. Rather we found that lobster maximum consumption rates 

increased with body size per unit mass, despite declining standard metabolic requirements, 

contrary to commonly assumed bioenergetic scaling relationships. How common the 

observed patterns are across different consumers or if the pattern holds under natural foraging 

conditions remains to be seen. However, the possibility that consumption is not constrained 

by the scaling of standard metabolic rate with body size could be powerful in further 

developing the bioenergetic factors that drive foraging. Integrating individual organisms' 

physiology with their ecological role in communities will serve to uncover how and why 

reductions in consumer body size will alter ecosystems in the future. 
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3.7. FIGURES AND FIGURE CAPTIONS 

 
Figure 2.1. There are three hypothetical relationships between maximum consumption rate 
(Cmax, energy intake), SMR (energy required), and body size (A). Energy intake per unit mass 
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may decrease with body size at a slower rate than metabolism (H1), decrease with body size 
at the same rate as metabolism (H0), or increase with body size at a faster rate than 
metabolism (H3). Factorial energy acquired, or ratio of energy acquired and energy required 
to meet SMR, varies depending on how energy intake scales with body size (B, C). Across 
taxa and across individuals within a species, SMR and MMR tend to decrease with body size 
per unit mass (D). However, the relationship between the scaling of SMR and MMR with 
body size is largely unknown. MMR may scale with body size at the same rate as SMR (H3), 
decrease with body size at a faster rate than SMR (H4), or decrease with body size at a slower 
rate than SMR (H5). Differences in the scaling of MMR relative to SMR can lead to 
differences in factorial aerobic scope (FAS = MMR/SMR) or absolute aerobic scope (AAS = 
MMR-SMR) (C, E). Absolute aerobic scope represents the amount of energy an organism has 
to conduct physiological processes after meeting its standard metabolic requirements and is 
considered to represent the energetic capacity of the organism. Factorial aerobic scope is a 
unitless, mass-independent estimate and represents the energetic constraints on an organism. 
Panel G summarizes the bioenergetics of two hypothetical consumers at both ends of the size 
range (15 and 900 g). For scaling coefficients see Appendix 6.2.1.  
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Figure 2.2. Functional response of lobster consuming mussel prey. Data points are observed 
consumption from mesocosm foraging experiments where individual lobsters preyed on 
different densities of three size classes of mussels. Colored lines and surrounding gray 
shading are the median ± 95% CIs predicted consumption rates from a Bayesian hierarchical 
model for lobster at the 10th, mean, and 90th percentiles (small, medium, and large 
respectively) of the size distribution of lobsters used in the experiment.   
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Figure 2.3. (A) Scaling of maximum (MMR, 𝛽<<= 	= 0.77 [0.5-1.0]) and standard (SMR, 
𝛽;<= 	= 0.85 [0.7-1.1]) metabolic rates with lobster body size. Lines and surrounding gray 
shading are the median ± 95% CI from a Bayesian regression model. Inlaid panel in A is the 
posterior estimate for the difference in scaling coefficients for MMR and SMR. (B) 
Estimated maximum consumption rates (Cmax, 𝛽:&'( 	= 1.50 [1.1 - 1.9]) for each lobster 
preying on different sized mussels. Data are 100 draws from the posterior distribution of each 
lobster’s Cmax, while lines and surrounding shading at median ± 95% CIs for the scaling of 
energy intake with body size for each mussel size class. (C) Factorial aerobic scope did not 
vary with lobster body size because MMR and SMR scaled at similar rates (𝛽BA; = -0.082 [-
0.37, 0.20]). However, (D) factorial energy acquired (FEA = Cmax / SMR) increased with 
lobster body size (𝛽BCA = 0.49). Lines in D are median posterior predictions from a Bayesian 
regression model. Confidence intervals are not plotted in D because they would be dependent 
on the number of draws from the posterior for the Cmax of each lobster. 
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Figure 2.4. (A) Mass specific rates of energy intake and energy requirements for lobster 
foraging on mussel prey. Model predictions are the same as Fig. 2.3 except displayed per unit 
mass. Energy intake increases with lobster body size per unit mass at a rate > 1, while the 
energy required to meet standard and maximum metabolic rate decreases per unit mass. 
Vertical dashed lines represent the size of lobster in B. (B) Estimated rates of energy required 
and acquired for small (176 g) and large (1199 g) lobster.  
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 4. CHAPTER III 
 

Historical variability in a marine foundation species mediates benthic 

competition to determine current community structure. 

4.1. ABSTRACT 

 Heathy populations of foundation species mediate the structure, function, and services 

of the communities they inhabit. However, anthropogenic effects, including species 

introductions and global climate change, are causing the decline of foundation species in a 

diverse array of systems on land and in the ocean. Such declines have spurred numerous 

efforts to restore foundation species, under the assumption that restoring the foundation will 

restore the ecosystem and the services it provides. Yet, effective restoration will depend on 

understanding how long after a foundation species is lost will its role in the community 

dissipate, and how long after it recovers will the community regain its structure and function. 

Here, we address these general questions by testing the role that historic population 

fluctuations play in mediating non-trophic interactions in communities structured by giant 

kelp (Macrocystis pyrifera), a marine, canopy-forming foundations species. First, we used a 

theoretical model of kelp forest community dynamics to generate hypotheses for how historic 

disturbance regimes (frequency, severity, and timing) to giant kelp impact the benthic cover 

of two major functional groups, epilithic sessile invertebrates and understory algae, that 

compete for space on the seafloor. We then tested the directional hypotheses generated by our 

model using a data set that combined multi-decadal time series of kelp canopy cover with 

observational data of benthic community structure collected at 68 locations. Our results 

showed that the cover of understory algae and sessile invertebrate cover was best explained 

by current kelp canopy biomass. However, the time since the last kelp canopy absence and 
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disturbance frequency were important components of predicting spatial variation in benthic 

community structure. Together, our results highlight how historic fluctuation in a foundation 

species can cause variation in ecological communities across space, and may aid restoration 

of kelp forests, and other ecosystems organized around foundation species. 

 

4.2. INTRODUCTION 

Foundation species are habitat forming organisms such as trees, corals, and seagrasses 

that form the major structural elements of an ecosystem and have disproportionately strong 

impacts on the surrounding community (Dayton 1972, Ellison et al. 2005). By generating 

favorable physical environments and providing resources or habitat to other species (Jones et 

al. 1994, Jenkins et al. 1999, Thomsen et al. 2018), thriving populations of foundation 

species can bolster biodiversity, facilitate biogeochemical cycling, and mediate ecosystem 

processes through non-trophic interactions (Baiser et al. 2013, Borst et al. 2018, see Ellison 

2019 for review). Despite their indispensable role in ecosystems, many populations of 

foundation species have experienced considerable declines (Vergés et al. 2016, Case et al. 

2017, Sorte et al. 2017, Fields and Silbiger 2022). However, to fully understand the 

consequences of declining foundation species and the utility of their restoration ecologists 

need to answer two critical questions: 1) Following the loss of a foundation species, how 

much time elapses before its effects fade away? 2) Over what duration must a foundation 

species persist for its impacts to be present? Answering these questions will help to uncover 

the drivers of spatial and temporal variation in community structure and generate key insights 

into management and restoration that focuses on foundation species as indicators of 

ecosystem health and services.  
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Ecological theory can offer insight into how historic dynamics, such as the time since 

a foundation species is lost or reestablished, alter the role a foundation species plays in the 

surrounding community. For example, in a paper titled “The ghost of competition present” 

Miller et al (2009) showed that even when a species is outcompeted from a system, its 

temporary presence alters species interactions into the future. The literature on historical 

contingencies and ecological memory shows that the timing of species arrivals in the past 

(e.g., priority effects, Fukami 2015), legacy effects associated with prior disturbances 

(Fukami 2001, Chase 2007, Cuddington 2011, Johnstone et al. 2016, Hughes et al. 2019) or 

biotic legacies stemming from the remnant skeletons or nutrients of dead organisms (Miller 

et al. 2021, Kopecky et al. 2023) can profoundly reshape the pathways of community 

assembly. Therefore, the loss of a foundation species may not cause immediate community 

collapse because of the services or structures they leave behind. Likewise, it may take time 

for a community to recover following the reestablishment of a foundation species because of 

past contingencies whose effects may still dissipate into the present.   

Kelp forests are productive, biodiverse ecosystems centered around canopy-forming 

algae that function as foundation species by providing habitat, modulating environmental 

conditions, and mediating trophic and non-trophic interactions in the associated community 

(Schiel and Foster 2015, Teagle et al. 2017, Miller et al. 2018). Recent analyses suggest that 

there is substantial geographic variation in the long-term trends of kelp populations 

(Krumhansl et al. 2016, Cavanaugh et al. 2019a). However, well-publicized evidence for 

regional declines in kelp abundance (Beas-Luna et al. 2020, McPherson et al. 2021, Starko et 

al. 2022), have spurred numerous calls to restore kelp habitat (California Protection Council 

2021), in hopes of mitigating the associated loss of ecosystem services (e.g., Smale et al. 
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2019). Kelp populations display highly variable temporal dynamics across a range of spatial 

scales (Castorani et al. 2015) due to wave disturbance (Reed et al. 2011), urchin herbivory 

(Bell et al. 2015, Rennick et al. 2022), and natural senescence (Rodriguez et al. 2013, Bell 

and Siegel 2022), making the goal of kelp restoration a seeming “moving target” (sensu 

Ingeman et al. 2019). Therefore, the historic dynamics of a foundation species, like kelp, 

could have long-lasting implications on the structure and function of a community, which 

would be critical to understand in order to inform restoration efforts. 

Here, we ask, how does spatial variation in the historic population dynamics of a 

foundation species mediate spatial variability in community structure? To address this 

question, we focused on rocky subtidal reef communities dominated by the canopy-forming 

alga Macrocystis pyrifera (hereafter, kelp). Kelp grows exceptionally fast (3.5% d-1 average; 

Rassweiler et al. 2018) and has a short lifespan (<5 years; Dayton et al. 1999) relative to 

other foundation species, making kelp communities an excellent system to examine the 

effects of historic variability on community structure. We specifically focus on non-trophic 

interactions between the canopy-forming kelp and two functional groups that compete for 

space on the seafloor: epilithic sessile invertebrates (e.g., sponges, bryozoans, bivalves, 

anthozoans, ascidians, hereafter “sessile invertebrates”) and understory macroalgae (e.g., 

small low-lying foliose, filamentous, subcanopy algae, hereafter “understory algae”). Unlike 

sessile invertebrates, understory algae require light to grow. Previous work has shown that 

increases in kelp canopy result in decreases in the cover of understory algae, allowing for an 

indirect positive effect on the cover of sessile invertebrates (Fig. 3.1a, Arkema et al. 2009). 

Based on the evidence that kelp mediates competition between guilds on the benthos, we 

hypothesized that historic fluctuations in kelp canopy cover could impact the relative balance 
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of sessile invertebrates and understory algae into the future, and underly spatial variation in 

benthic community structure (Fig. 3.1b,c). 

To test our hypothesis that historical fluctuations in kelp impact current benthic 

structure we used a combination of theoretical modeling and empirical data. Because of the 

inherent variability in kelp population dynamics, we first used a theoretical model to 

determine: 1) how historic disturbance intensity, frequency, and timing alters the current 

structure of kelp communities, and 2) how long we might expect shifts in benthic structure to 

persist. We then tested the directional hypotheses that emerged from our theoretical 

simulations using a data set that combined multi-decadal time series of satellite-derived kelp 

canopy biomass with observations of kelp communities at 68 different locations. 

Understanding how historic fluctuations in a foundation species impact the structure of the 

associated community uncovers the mechanisms driving variation in ecological communities 

across space and helps to inform the restoration of not only kelp forests, but other critical 

habitats organized around foundation species. 

 

4.3. Methods 

Theoretical model and simulations 

Kelp populations are highly dynamic and their associated communities can be 

notoriously variable across space and time (Dayton 1985, Bell and Siegel 2022). To 

understand when and to what extent historic kelp dynamics might impact benthic community 

structure, we modified an existing ordinary differential equation model of kelp community 

dynamics (see Detmer et al. 2021). Our goal in simulating community dynamics from the 

model was to generate directional hypotheses that we could test using observational data. 
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Specifically, we sought to understand a) the levels of historic disturbance (frequency, timing, 

and intensity) that lead to changes in the relative percent cover of understory algae and 

sessile invertebrates and b) how long these changes might persist in the benthic community. 

Here, we briefly review the model but please refer to Appendix 6.3.1 and Detmer et 

al. (2021) for a more detailed description and equations. We modeled kelp population 

dynamics by tracking three stages in kelp life-history: the recruitment of haploid 

gametophytes, small juvenile sporophytes, and large canopy-forming adult sporophytes. In 

this model, the gametophytic stage experiences constant external recruitment (Reed et al. 

1997), and maturation from gametophyte to juvenile sporophyte and juvenile to adult 

sporophyte is governed by light availability to the seafloor. Growth of adult kelp is light-

dependent, and adults senesce according to a phenomenological function (Rodriguez et al. 

2013) that allows for synchronous and asynchronous senescence depending on the time since 

the last disturbance event.  

We assumed that sessile invertebrates and understory algae competed for physical 

space on the seafloor according to classic Lotka-Voltera competition equations. Unlike 

sessile invertebrates, understory macroalgae are photosynthetic. Therefore, understory algae 

growth was dependent on the amount of light reaching the seafloor, which, in turn, was 

mediated by the abundance of canopy-forming kelp. We explicitly model light using an 

exponential decay function that depended on adult kelp abundance, such that when adult kelp 

was at its carrying capacity, only 10% of light reached the seafloor (Reed and Foster 1984). 

In the model, when kelp is absent and benthic light levels are high, understory algae grow 

rapidly and outcompete invertebrates. By contrast, when kelp is abundant, its dense canopy 

shades the benthos and reduces the growth rate of understory algae, thereby indirectly 
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facilitating sessile invertebrate populations (Fig. 3.1a). Sessile invertebrates and understory 

algae experience a constant external recruitment and senescence. Detmer et al. (2021) 

showed that the model was able to replicate the benthic dynamics in observational data 

collected at one site by emulating a similar historical disturbance regime. 

We used this model structure to simulate different historic dynamics in the kelp 

population, and tracked how these historic effects impacted the sessile invertebrate and 

understory algae populations (Fig. 3.1b,c). We first calculated the equilibrium abundances of 

kelp, invertebrates, and algae in the absence of any disturbance. We then ran simulations in 

which we varied the intensity, frequency, and the time since the last historic disturbance. 

Large wave events, a major cause of disturbance to kelp (Reed et al. 2011), might only affect 

the kelp population. However, if the wave event is large enough, it may also remove sessile 

invertebrates, understory algae, and juvenile kelp sporophytes, a process we term benthic 

scouring. We assumed that disturbances  occur annually, that 100% of kelp was removed at 

each disturbance, and we manipulated the scouring (e.g., percent removal) of sessile inverts 

and understory algae.  

Despite the extensive work on California kelp forest ecosystems, little is currently 

known on the strength of competition, growth rates, or recruitment dynamics of sessile 

invertebrates and understory algae. To explore the sensitivity of our results to these 

parameters, we therefore also ran simulations in which we varied competition coefficients, 

growth rates, and external recruitment (Table S1). 

Through these simulations we were interested in understanding what metrics of 

historic disturbance (frequency, intensity, or time since the last disturbance) had the strongest 

impact on benthic structure and how long the community took to recover. To estimate 
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community recover time, we calculated the length of time for sessile invertebrates and 

understory algae percent cover to return to within 5% of pre-disturbance conditions. 

 

Satellite-derived estimates of historic kelp variability 

To estimate historic variability in kelp dynamics we utilized quarterly kelp canopy 

biomass estimates derived from Landsat satellite images (SBC LTER et al. 2023). This data 

set was developed by estimating the fraction of each 30x30 m Landsat pixel occupied by kelp 

and converting that fraction into an estimate of kelp canopy biomass (Bell et al. 2020). 

Our theoretical analysis of community recovery times suggested that benthic 

communities likely recover from historic disturbances within at least 10 years (Fig. 3.2). 

Therefore, we focused on a 10-year period (2008-2018), to assess metrics of kelp disturbance 

in the satellite data set. We defined a disturbance not by a specific mechanism (e.g., large 

wave event, sand inundation, urchin herbivory, etc.), but as an 80% decline in kelp canopy 

biomass that persisted for at least 6-months (two quarters). To avoid pinpointing disturbances 

when kelp biomass was already low, kelp canopy biomass had to be ≥10% of its 10-year 

maximum. Thus, we estimated disturbance frequency (E) as 

𝐸 = 	ab

1, 𝑘3#D ≥ 0.1 ∗ 𝑘$%&
															𝑘3 < 0.2 ∗ 𝑘3#D
												𝑘3ED < 0.2 ∗ 𝑘3#D	
0																																												

3FG

3FD

(1) 

where t is time in quarters of a year, k is kelp canopy biomass, and kmax is the maximum 

canopy biomass over the 10-year period. 

We also estimated the amount of time since the last 6-month period when kelp canopy 

was absent and the proportion of time over the 10-year period when kelp canopy biomass 

was estimated from the satellite imagery to be zero. The Landsat sensor may fail to 
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accurately estimate kelp canopy cover when kelp cover is low (≲16% occupancy in a pixel), 

and all estimated values below this threshold are assigned 0% cover in the data set. Thus, 

while we discuss instances where kelp was absent, it is possible that kelp was present but at 

low density. For a summary of all metrics of historic variability see Table S2. 

 

Observational data on kelp community structure 

Using the historic kelp canopy data set, and identified 69 locations (hereafter, 

transects) spread across 17 distinct kelp patches (e.g., Castorani et al. 2015, Cavanaugh et al. 

2019, hereafter sites) that differed along a gradient from highly disturbed to highly persistent 

kelp dynamics. At each transect, we assessed benthic community structure along 40 x 2 m 

transects using a combination of swath, quadrat, and uniform point count (UPC) survey 

techniques. We estimated the current biomass of kelp by counting the number of fronds > 1 

m along the 40 x 2 m swath and converting to biomass using an established regression 

relationship (Rassweiler et al. 2018). We estimated the abundance of two species of sea 

urchin (Strongylocentrotus purpuratus, Mesocentrotus franciscanus) using 1 m2 quadrats at 6 

locations evenly spaced along the transect and converted urchin abundance to urchin biomass 

using relationships developed for the study region (Reed et al. 2016). Finally, we measured 

the percent cover of the seafloor occupied by understory algae, sessile invertebrates, and sand 

using UPC method at 80 points evenly spaced 0.5 m away from either side of the center 

transect line. The UPC technique quantified the presence of each species under a single point 

due to the layered nature of the benthos. Thus, percent cover estimates can exceed 100%. 

We located the starting coordinates of each transect using the onboard GPS (~3 m 

accuracy), and recorded the transect bearing from a dive compass, such that we could 
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estimate the end location of the transect. We assumed that kelp canopy adjacent to the 

transect would impact benthic community structure through shading effects. Therefore, we 

created a 30 m buffer around the transect line and extracted historic kelp-canopy data for a 

120x60 m region centered on each transect. 

 

Data analysis 

To analyze the observational data on algal and invertebrate cover, we used a 

generalized linear mixed effects modeling (GLMM) approach. Specifically, we modeled how 

the percent cover of sessile invertebrates and understory algae responded to three metrics of 

historic variability in kelp disturbance (number of disturbances, time since last disturbance, 

and proportion of time kelp canopy was absent). Previous work shows that kelp forest 

community structure is strongly impacted by sea urchin abundance, sand cover, and current 

kelp biomass (Miller et al. 2018, Castorani et al. 2021, Rennick et al. 2022). Therefore, we 

included current kelp biomass, urchin biomass, and the percent cover of sand estimated from 

the observational surveys as covariates in our models. We treated percent cover as the 

response variable and included a categorical predictor indicating if the percent cover was 

sessile invertebrate or understory algae. We then modeled the interactions between benthic 

guild and each continuous predictor. To compare the magnitude of each continuous predictor, 

we scaled all variables such that 𝑋f = 0 and 𝜎 = 1. To account for the fact that transects were 

nested within sites and that kelp biomass dynamics at transects within sites were not 

independent, we included a random intercept effect of site. 

We implemented the generalized linear mixed effects models in a Bayesian 

framework using the rstanarm package (Goodrich et al. 2023). Percent cover data must be 
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positive and our UPC surveys allowed for estimates of percent cover greater than 100%. 

Therefore, we assumed the data followed a gamma distribution. We used weakly informative 

priors on all parameters, and we assessed model fit using the r-hat statistic and visual 

inspection of posterior chains. 

While we were interested in exploring how historic variability in kelp dynamics 

impacted the aggregate cover of sessile invertebrates and understory algae, species within 

these groups may respond differently to kelp variability based on their specific ecology and 

life histories. To assess the multivariate response of the benthic community to the three 

metrics of historic kelp variability, we conducted a canonical correlation analysis (CCA) of 

the Bray-Curtis dissimilarity matrix using the vegan package (Oksanen et al. 2022). We also 

identified the 10 most common species within each benthic guild and estimated the 

Spearman’s rank order correlation coefficient between the percent cover of each species and 

each metric of historic kelp variability in order to identify whether different species within 

the broad taxonomic groups responded differently to historic variation in kelp canopy 

biomass.    

 

4.4. Results 

Simulations of theoretical model 

Our model simulations showed that immediately following a disturbance, understory 

algae cover increased due to increased light availability. However, kelp canopy rapidly 

recovers, reducing light levels and allowing sessile invertebrates to outcompete understory 

algae and reclaim space on the seafloor (Fig. 3.2a). Typically, this process was rapid: sessile 

invertebrates and understory algae returned to equilibrium levels within 4-5 years of the 
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event (Fig. 3.2b). Increasing the number of historic disturbances from 1 to 2, doubled the 

return time of the community, but there was little effect of disturbance frequency on recovery 

time after three consecutive disturbances (Fig. 3.2b). The slowest recoveries were associated 

with disturbances that eliminated 100% of kelp and 100% of the benthic community, while 

lower levels of benthic scouring increased the speed that the community recovered (Fig. 

3.2c).  

Altering the life-history parameters of sessile invertebrates relative to their 

competitors changed the equilibrium cover of both guilds. Decreasing the growth rate or the 

rate of external recruitment of sessile invertebrates relative to understory algae, slowed the 

recovery of the community, allowing understory algae to persist at higher cover for longer 

(Fig. S3.1a,b). Similarly, making sessile invertebrates the stronger competitor, while 

simultaneously lowering their growth rates and external recruitment (e.g., more k-selected) 

lengthened the time it took for the community to recover relative to default parameters (Fig. 

S3.1c). 

We used the results of our theoretical simulations to guide our analyses and generate 

directional hypotheses that could be tested with observational data. Because the model 

suggested that the benthic community would recover within 3-5 years, we selected a 10-year 

historical window to examine the effects of kelp variability on benthic structure. Within this 

10-year period, we then tested the prediction, stemming from the model simulations, that the 

time since the last disturbance will have a greater impact on benthic structure than other 

characteristics of historic kelp dynamics, like disturbance frequency.  
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Impact of historic variability in kelp canopy biomass on observed benthic community 

structure 

Satellite-derived estimates of kelp canopy biomass revealed stark variation in historic 

kelp dynamics among transects (Fig. 3.3a,b). At some sites kelp canopy biomass fluctuated 

dramatically (Fig. 3.3c), while at others kelp was disturbed and failed to recover to previous 

levels (Fig. 3.3d) or recovered after a prolonged absence (Fig. 3.3e). 

These different patterns in kelp dynamics were associated with differences in the 

structure of the benthic community. Results of the GLMMs showed the strongest predictor of 

current benthic structure (e.g., the percent cover of sessile invertebrates and understory 

algae), on average, was current kelp biomass (Fig. 3.4a). Higher current kelp biomass was 

correlated with a higher percent cover of sessile invertebrates and a lower percent cover of 

understory algae, which is consistent with prevailing evidence that kelp indirectly facilitates 

the cover of sessile invertebrates by limiting the growth and percent cover of understory 

algae (e.g., Fig. 3.1a). However, metrics of historic kelp variability had impacts on current 

benthic structure that were almost as strong as current kelp biomass (Fig. 3.4a). For example, 

time since the last kelp absence had 56% as strong of a negative effect on understory algae 

cover and 44% as strong of a positive effect on sessile invertebrate cover as current kelp 

biomass.  

Our theoretical simulations suggested that time since the last kelp absence should 

have a stronger impact on community structure than disturbance frequency. However, we 

found that the effect size of disturbance frequency and time since the last kelp absence were 

of similar magnitude (Fig. 3.4b,c). As the frequency of historic disturbances increased from 

0-7, we observed a 41.2% increase in understory algae and a 20.0% decrease in sessile 
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invertebrate cover (Fig. 3.4c). Similarly, as the time since the last kelp canopy absence 

increased from 0 to 10 years, understory algae declined by 28.2%, and sessile invertebrates 

cover increased 32.9% (Fig. 3.4b). There was little evidence that the proportion of time kelp 

was absent had any impact on sessile invertebrate or understory algae cover. Urchin biomass 

was negatively correlated with understory algae and positively correlated with sessile 

invertebrate cover. The proportion of the transect that was sand was negatively associated 

with sessile invertebrate and positively associated with understory algae (Fig. 3.4a). 

 

Species-level responses to historic kelp variability 

Understory algae and sessile invertebrate guilds are composed of many species, each 

with specific life history and ecological characteristics that may result in different responses 

to historic disturbance. In multivariate space, species in the benthic community differentiated 

along axes associated with metrics of historic kelp variability. Sessile invertebrate species 

tended to be associated with increases in current kelp biomass and the time since the last kelp 

extinction, while understory algae species were associated with increases in the number of 

disturbances (Fig. 3.5a). However, there was considerable interspecific variation in how 

species responded to these metrics of historic kelp dynamics. For example, most algae 

displayed positive correlations and most invertebrates displayed negative correlations with 

disturbance frequency (Fig. 3.5c), consistent with the results of our guild-level models (e.g., 

Fig. 3.4). However, one alga and four invertebrates displayed the opposite or no correlation 

with disturbance frequency (Fig. 3.5c). We found a similar pattern for the effects of time 

since last kelp absence, with many species responding as expected by their guild-level 

responses, but a few responding differently (Fig. 3.5d). Thus, our functional group 
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classifications are not monoliths. Rather, there is considerable species-level complexity in the 

responses to historic variability in the foundation, which interacts with their relative percent 

cover to determine the guild-level responses.  

 

4.5. DISCUSSION 

Many of the world’s foundation species have seen significant declines in recent 

decades due to global climate change and other anthropogenic impacts (Vergés et al. 2016, 

Case et al. 2017, Sorte et al. 2017, Ramus et al. 2017, Fields and Silbiger 2022). However, 

climate change is expected to not only drive directional declines in populations but increase 

stochasticity in population dynamics (Boyce et al. 2006, Pearson et al. 2014). While the 

effects of foundation species loss are well documented (Ellison 2019), it is unclear how 

increased variability in the population dynamics of the foundation species will impact the 

associated community. Understanding how population fluctuations in the foundation species 

alters the web of interactions in a community is essential to effective restoration efforts. 

Here, we use a fast-growing foundation species with a short generation time to demonstrate 

that the historic dynamics of the foundation species are a strong determinant of the current 

structure of the community. Our results suggest that accounting for historic dynamics will be 

critical to restoration efforts that aim to revitalize the structure, function, and services of 

communities following the loss, or recovery, of foundation species. 

 

Predictions of community structure using novel technologies 

Considering the extent by which climate change and other anthropogenic drivers are 

impacting foundation species, there is a pressing need to develop technologies that monitor 
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not only the foundation species but their associated community. Satellite remote sensing has 

expanded ecologists’ ability to monitor patterns and processes at landscape to global scales 

(Lui et al. 2002, Westberry et al. 2023, Pettorelli et al. 2018), yet most work has focused on 

species visible in satellite imagery. Only recently have researchers begun to explore the use 

of satellite remote sensing to monitor the structure of ecological communities not delineated 

in the imagery (Skidmore et al. 2021). For example, remote sensing has been used to monitor 

species interactions on coral reefs (Madin et al. 2019, DiFiore et al. 2019), to predict changes 

in the structure of temperate open-ocean communities (Decker et al. 2023), or to inform 

species distribution models in marine (Kavanaugh et al. 2021) or terrestrial environments 

(Pinto-Ledezma and Cavender-Bares 2021). Here, we demonstrate the utility of using 

satellite remote sensing of kelp canopy biomass to estimate changes in benthic community 

structure. Our results show that both current kelp canopy and the history of kelp canopy 

dynamics are necessary to predict the relative abundance of sessile invertebrates and 

understory algae. By combining in situ data from long-term ecological monitoring programs 

with satellite-derived estimates of foundation species abundance, it may be possible to 

integrate historic population fluctuations into predictions of community structure, which 

could aid monitoring and restoration efforts across different ecosystem types.  

 

The role of historic contingencies in kelp forest community dynamics 

Kelp forest communities can display considerable variation from site to site and year 

to year, and an abundance of work has sought to understand the factors that underlie this 

variability (Harrold and Reed 1985, Miller et al. 2018, Rennick et al. 2022, Liu and Gaines 

2022). Yet, to date, only a few studies have explored the extent to which historic 



 

 94 

contingencies account for variation in the structure of kelp forest communities. For example, 

Brynes et al. (2011) demonstrated that sessile invertebrate diversity was affected by the 

previous year’s kelp abundance almost as strongly as the current kelp abundance. More 

recently, researchers conducted a decade-long experiment where they annually removed kelp, 

and demonstrated that disturbance frequency, more than disturbance severity, impacted kelp 

community structure (Castorani et al. 2018). Increasing biomass of understory algae 

increased net primary productivity from understory algae (NPP), but such increases in NPP 

were not able to compensate for the loss of kelp associated NPP (Castorani et al. 2021). Our 

research contributes to this growing body of work by suggesting that interactions between 

benthic guilds is, at least in part, controlled by historical context. Knowing only the current 

abundance of kelp cover is not enough to predict the relative abundance of algae and 

invertebrates on the seafloor. Rather, it is critical to also account for the historic dynamics of 

kelp—as the timing and frequency of disturbances to kelp is linked to the relative cover of 

algae and sessile invertebrates. 

The matches and mismatches between the theoretical model simulations and analysis 

of the observational data provides insight into the potential mechanisms through which 

history impacts community structure. Our initial simulation analysis assumed that light 

attenuation on the benthos by kelp was mediated by the time since the last kelp disturbance—

not disturbance frequency—and that those factors drove benthic structure and recovery time. 

We did not include explicit mechanisms by which stochastic processes, such as random 

variability in benthic recruitment, birth/death rates, or resulting priority effects (e.g., Song et 

al. 2020, Dudgeon and Petraitis 2022), may have impacted the community’s response to 

historic kelp dynamics. As a result, recovery in the model was determined by the relative 
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cover of the benthic community following the last disturbance and the growth rates and 

competitive abilities of both functional guilds. However, from the analysis of the 

observational data, we found compelling evidence that the frequency of historic disturbances 

was a strong driver of benthic structure. We suspect that the importance of disturbance 

frequency on observed benthic structure may hint at the prevalence of stochastic community 

assembly processes, such as priority effects, operating in kelp forest systems (e.g., Chase 

2003, Fukami et al. 2010). Increases in the number of historic disturbances could interact 

with recruitment events to allow the proliferation of particular algae species limiting resource 

availability (e.g., space) for sessile invertebrates. Adding this important complexity to the 

theoretical model introduced here is a ripe area for future research. 

The suspicion that stochastic community assembly processes is a potential means 

through which historic fluctuations in the foundation species impact community structure is 

supported by our species level analysis. Sessile invertebrates and understory algae did not 

display monolithic responses to metrics of historic variability, suggesting that there is 

considerable interspecific complexity in how species respond to previous kelp fluctuations. 

While it is generally assumed that understory algae are faster growing than sessile 

invertebrates (Lamy et al. 2020), there is likely overlap in the growth rates and generation 

times of specific understory algae and sessile invertebrate species. For example, crustose 

coralline algae (EC) are long-lived perennials and appear to respond to historic kelp 

variability in a similar manner to most sessile invertebrate species (e.g., decreasing with the 

number of disturbances and increasing with the time since the last disturbance). However, 

more ephemeral algae species, such as Desmerestia ligulata (DE), were negatively correlated 

with the time since the last kelp absence and showed only weak positive correlations with 
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disturbance frequency. Thus, our results reinforce the pattern documented in many systems 

that more ephemeral species grow rapidly following a kelp disturbance, before being 

outcompeted by slowing growing more persistent species. 

 

Implications of historical contingencies for restoration 

Global initiatives such as the United Nation’s Decade of Restoration (2021-2030) 

highlight the need to develop better strategies for ecosystem restoration (Cooke et al. 2019, 

Smith et al. 2023). Foundation species are often targeted for restoration under the assumption 

that reviving the foundation will revive the ecosystem and associated services (Saunders et 

al. 2020). However, not all restoration efforts are successful (van der Heide et al. 2007), or 

restoration efforts succeed in recovering the foundation, but the associated ecosystem 

services either fail to recover or display lagged responses (Suding 2011). Our results add to 

the body of evidence that historical contingencies, such as the historic population fluctuations 

in a foundation species studied here, can have lasting implications on community structure 

(Chase 2003, Fukami et al. 2015) and alter the outcomes of restoration efforts (Catano et al. 

2023). Thus, incorporating the historical dynamics of a foundation species could help to 

explain variation in restoration outcomes (Brudvig et al. 2017), identify restoration targets 

(Ingeman et al. 2019), and improve predictions of when and where restoration will be 

successful (Brudvig and Catano 2021). By understanding the historic context of the 

foundation species, practitioners may be able to accelerate the restoration of ecosystems, 

reviving the structure, function, and essential services they provide to humans and nature. 
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4.7. FIGURES AND FIGURE CAPTIONS 
 

 
 
Figure 3.1. Conceptual diagram of non-trophic interactions between three benthic functional 
groups in California kelp forests (A). Kelp (Macrocystis pyrifera) forms a dense canopy, 
reducing light levels to the seafloor, leading to declines in understory algae abundance. 
Understory algae and epilithic sessile invertebrates compete for space. Therefore, kelp 
indirectly facilitates sessile invertebrate cover. In this paper, we hypothesize that it is not just 
the current kelp abundance that mediates benthic competition, but historic kelp population 
dynamics. For instance, at a site with low historic kelp variability, understory algae cover 
may be at low relative to sessile invertebrate cover when kelp is at its carrying capacity (B, 
Kelp = green, understory algae = orange, sessile invertebrates = blue). However, at a site with 
highly variable kelp dynamics, kelp can be at the same abundance, but understory algae may 
dominate the benthos. Time series were generated by simulating a theoretical model of kelp 
community dynamics (see Methods for details).  
  



 

 106 

 
 
Figure 3.2. Example simulations from a theoretical model of non-trophic interactions 
between three benthic functional groups in California kelp forests (A). Disturbances were 
assumed to occur annually, and always removed 100% of adult kelp. However, disturbances 
could also affect juvenile kelp, sessile invertebrates, and understory algae on the seafloor, via 
benthic scouring (e.g., the percent-removal of benthic functional groups). We simulated 1-25 
consecutive annual disturbances and tracked how the community responded for 25 years 
following the last disturbance (B). Community recovery time, or the time it took for sessile 
invertebrate and understory algae to recover to within 5% of pre-disturbance levels, was 
dependent on disturbance frequency and the level of benthic scouring (C). Simulations in A 
and B assumed 50% benthic scouring. All other parameters were held constant across the 
simulations. For visualization purposes, only 10 years following the last disturbance and 
disturbance frequencies ≤ 10 are displayed. 
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Figure 3.3. Observational data on benthic community structure was collected at 68 locations 
in the Santa Barbara Channel, USA from July-October 2018 (A, B). At each location, the 
historic kelp canopy dynamics were extracted from a satellite-derived dataset of kelp canopy 
biomass dynamics estimated at 30 m spatial resolution, every 3-months since 1984. (C-E) 
Three example time series of kelp canopy dynamics for the 10 years prior to the collection of 
benthic community data. Red vertical dashed lines represent time points identified as 
disturbances to kelp canopy, while gray blocks represent the last time when kelp canopy was 
absent for a 6-month period.   
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Figure 3.4. (A) Effect size of current kelp biomass, metrics of historic kelp variability, and 
habitat quality on observed benthic community structure. Each point represents the effect of 
each predictor on the difference in the percent cover of sessile invertebrates and understory 
algae. Points and surrounding intervals are the median ± 75% and 95% credible intervals of 
the posterior prediction from a Bayesian generalized linear mixed effects model. Continuous 
relationships between time since the last kelp absence (B) or disturbance frequency (C) on 
the percent cover of sessile invertebrates and understory algae. Lines and surrounding 
shading in B and C are the median	± 95% CI of linear expectation of the posterior predictive 
distribution. 
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Figure 3.5. (A) Species (colored by functional group) and transect loadings along the first 
two axis of a canonical correlation analysis demonstrating the impact of metrics of historic 
kelp canopy variability on the communities in multivariate space. (B-D) Univariate 
Spearman rank order correlations (𝜌) of the top ten understory algae and epilithic sessile 
invertebrates by percent cover across the full data set. Each bar represents the correlation 
between a particular species and the proportion of time kelp was absent (B), the number of 
perturbations in the last 10 years (C), or the time since the last 6-month kelp canopy 
extinction (D). 
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5. CONCLUSIONS 
 
 Recent decades have seen a rise in calls for ecosystem-based approaches to managing 

both terrestrial and marine ecosystems (e.g., ecosystem-based management, EBM; Geary et 

al. 2020). EBM seeks to account for the social, economic, and ecological components of 

systems, in order to holistically manage species and those who harvest them, not as isolated 

populations, but as pieces of a broader whole. One component of implementing EBM is 

understanding how strongly species interact. For example, efforts to restore target predator 

populations may be hampered if their prey are not simultaneously restored (Samhouri et al. 

2017). Therefore, being able to accurately understand when and where species will interact 

strongly or weakly is important to effectively implementing ecosystem-based approaches to 

management and restoring ecological communities.  

 In this dissertation I explored mechanisms that drive variation in species interactions 

in order to better account for species interactions in management contexts. In Chapter 1, I 

demonstrated that variation in the size-frequency distributions of lobster and their urchin prey 

can account for up to ~80% of the variation in interaction strength relative to difference in 

urchin density. This suggests that two sites in proximity could have equal biomass densities 

of predators and prey, but could differ dramatically in interaction strength depending on their 

respective size-frequency distributions. I then showed that relying on canonical relationships 

grounded in the scaling of metabolism with body size failed to predict the strength of 

interactions between lobster and urchins by an order of magnitude. Building upon these 

results, I then tested prevailing theory on the relationships between an animal’s size, 

physiology, and ecology. The results reveal that larger lobster consume disproportionately 

more than smaller conspecifics, despite declining metabolic requirements, calling into 
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question the widely held assumption that consumption should scale with body size at an 

equivalent or slower rate than metabolism. Finally, I zoomed away from specific trophic 

interactions in kelp forests, to understand how the intense variability in kelp population 

dynamics could influence community structure. This analysis showed that accounting for the 

historic dynamics of a foundation species could provide valuable insight into spatial variation 

in community structure. 

 Global change is rapidly altering how species interact, and effectively managing 

ecological communities in the future will require holistic approaches that account for 

dynamic species interactions. This is a large challenge that will require enormous research on 

many fronts. The work outlined in this dissertation represents an incremental step towards 

this goal. Integrating individual-scale variation in body size and accounting for historic 

contingencies will highlight when and where species interact strongly or weakly, thereby 

assisting the restoration and management of complex socio-ecological systems. 
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6. APPENDICES 
 
6.1. CHAPTER 1 – APPENDIX 
 
6.1.1. Modeling 
 
Alternative forms for the size-scaling of attack rates 

Previous work has shown that attack rates of predators tend to increase with predator 

body size to a maximum before declining (e.g., a hump shaped relationship) (Aljetlawi et al., 

2004; Barrios‐O’Neill et al., 2016; Kalinkat et al., 2013; McCoy et al., 2011; Uiterwaal et al., 

2017; Vucic‐Pestic et al., 2010; Wahlström et al., 2000). We initially explored the data to 

determine the relationship between attack rate, predator body size, and prey body size. To 

estimate the parameters of the functional response for each predator (e.g.,α and h), we fit a 

modified version of the Bayesian model described in the main text. Specifically, we fit a type 

II functional response (Eq. 1) to each individual predator, where α and h for each individual 

were drawn from prior distributions for the prey size class that the individual was fed nested 

within the overall population of lobsters. We assumed that the number of prey consumed in 

trial i (𝐶*) was binomially distributed given the number of prey offered (𝑁*) and the 

proportion of prey consumed (𝑃*). Thus, 

𝐶* 	~	Binomial(𝑁* , 𝑃*) (1) 

𝑃* =
1

𝛼,,>#D + ℎ,,>𝑁*
 

where, α,,> is the attack rate of lobster j (1,2,…46) in treatment k (1,2,3), and h,,> is the 

handling time of lobster j in treatment k. The model results provided predictions for the 

functional response for the overall population of lobsters, lobsters preying on each prey size 
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class, and each individual lobster without assuming any a priori relationship between α, h, 

predator size and prey size.  

We then modeled the posterior median estimate of α for each lobster as a function of 

lobster and urchin body size. Following metanalyses conducted across taxa (Rall et al. 2012, 

Uiterwaal and Delong et al. 2020), we fit the following equation to the data:  

 

log	(α-) = log(𝛼() +	𝛽.,"log	(𝑚",,) + 𝛽.,)log	(𝑚),,) (2) 

	 

We expected that if α followed a unimodal function of predator mass at a fixed prey mass, 

then the residuals of the regression would display a hump shaped pattern (see Barrios-

O’Neill et al. 2016 for a similar approach). However, we found no evidence for a pattern in 

the residuals. To confirm, we included a polynomial term in the regression equation for 

predator mass, but AIC comparison suggested that the inclusion of the polynomial term did 

not improve model fit. 

We also tested to see if the size-scaling of α and h was dependent on predator size 

alone, prey size alone, both predator and prey size, or the ratio of predator and prey size. The 

best fit models for both parameters based on AIC-comparison were models that included 

both predator and prey size with independent scaling exponents. Uiterwaal and Delong 

(2020) found a similar a lack of support for body mass ratio-dependence relative to 

independent effects of predator and prey size. 

 

Model details 
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Previous studies that examined allometric scaling of the functional response have 

either fit the functional response and then explored allometric relationships among the 

parameters sequentially (e.g., Barrios-O’Neill 2016) or fit the allometric functional response 

in a single step (e.g., McCoy et al. 2011, Kalinkat et al. 2013). A recent simulation analysis 

suggests that the most accurate and precise method of fitting the functional response is to fit 

the multivariate response surface directly (Uszko et al., 2020), which also reduces 

complications in propagating uncertainty between multiple models. Following our 

preliminary analysis (see Appendix 6.1.1), we choose to adopt the approach of Uszko et al. 

(2020) and fit the size-dependent functional response directly to the data using a Bayesian 

hierarchical approach. 

Specifically, we assumed that α and h for each lobster predator was determined by the 

lobster’s mass and the mass of the urchin size class that it was preying on, where error in α 

and h between individuals was normally distributed. How many urchins a lobster consumed 

was dependent on urchin density according to a type II functional response, were the number 

of urchins eaten followed a Poisson distribution. The model sought to estimate the 

probability of the parameters given the data and the prior distribution. 

Hierarchical, nonlinear models can be fit in a maximum likelihood framework 

(Bolker, 2008; Oddi et al., 2019). However, we chose to utilize Bayesian approaches because 

they allow for the incorporation of prior information, and they offer a more direct means of 

estimating and interpreting parameter uncertainty in hierarchical models (Bolker, 2008; 

Ellison, 2004). Considering the widespread adoption of ¾ scaling of consumption based on 

metabolic theory (Brown et al., 2004), a Bayesian approach allowed us to include 

informative prior distributions based on theoretical constants (Table S1.2). 
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Table S1.1. Summary of prior distributions used to model the body-size dependence of the 
lobster functional response.  
 

Parameter Prior 
Population-level  

log	(𝛼!) 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 
𝛽",$ 𝑛𝑜𝑟𝑚𝑎𝑙(0.75, 𝜎) 
𝛽",% 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 𝜎) 

log	(𝛼!) 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 
𝛽&,$ 𝑛𝑜𝑟𝑚𝑎𝑙(−0.75, 𝜎) 
𝛽&,% 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 𝜎) 

Individual-level  
𝜇",' 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎∗) 
𝜇",' 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎∗) 

Variances  
𝜎 𝑔𝑎𝑚𝑚𝑎(1,1) 
𝜎∗ 𝑔𝑎𝑚𝑚𝑎(2,1) 

Traditional functional response experiments account for prey depletion using 

Rodger’s random predator equation (Real, 1977). However, we did not account for prey 

depletion in our analysis because, to our knowledge, there is no practical way to implement 

Rodger’s random predator equation with hierarchical structure (McCoy et al., 2011).  

6.1.2. Mesocosm experiments 

To determine the size-dependence of the lobster functional response, we conducted a 

response-surface experiment where we manipulated prey density, prey size, and predator 

size. Trained divers collected lobsters and urchins from kelp forests in the Santa Barbara 

Channel. Experimental lobsters ranged in size from 53 – 160 mm carapace length (n = 45). 

Each lobster was weighed to the nearest gram (range: 196 - 2736 g; see Jerde et al. 2019 for 

methods). We classified urchins into three size bins (1.0-2.9, 3.0-4.9, 5.0-7.0 cm test 

diameter; small, medium, and large, respectively). For subsequent analyses, we used the 

center of each urchin size class to estimate urchin mass according to published test-diameter 
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to length relationships (3.3, 23.9, 76.7 g; Reed et al. 2016). Lobster and urchin sizes used in 

experiments spanned the range of variation in body size for natural populations based on the 

observational data (lobsters: 421.3 [88.8 – 897.8] g, urchins: 46.6 [8.1 – 132.2], X̅ [95% CI]). 

Urchins were only collected from sites with kelp present because gonad weight is lower in 

urchins from barrens and barren urchins are less palatable to predators (Eurich et al., 2014). 

In order to determine the relationship between consumption rates, body size, and prey 

density, we sought to estimate the functional response of each individual lobster. Therefore, 

we conducted foraging trials in which an individual predator foraged on a single size class of 

prey at each experimental prey density (n = 6). We assigned predators to size bins (n = 4), 

and then randomly assigned each predator a prey size class treatment (n = 3), to ensure even 

replication across the response surface.  

We conducted all foraging trials in 400 L laboratory mesocosms with a continuous 

flow of ambient seawater at ~7 L min-1. Each mesocosm was divided into two foraging 

arenas by a permeable plastic barrier. We haphazardly assigned predators to foraging arenas, 

where they remained for the duration of the experiment. Each arena contained a half-round 

PVC shelter, and three bricks. The area of each mesocosm was 0.52 m2. Following capture, 

we allowed each predator at least three weeks to acclimate to the mesocosms, during which 

we fed them a mixed diet of urchins and mussels (Mytilus californianus or Mytilus 

galloprovincialis) and confirmed that each individual foraged on at least one urchin. Prey 

were maintained in separate mesocosms and fed giant kelp fronds and stipes (Macrocystis 

pyrifera) for > 1 week. 

To initiate a trial, predators were fed mussels ad libidum for 48 hours, followed by a 

48-hour starvation period. At the start of the trial, we added a given number of urchins within 
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the predators’ assigned prey size class to each arena. Lobsters are nocturnal predators and 

typically remained sheltered when prey were added to the tanks during the afternoon. We saw 

no evidence of immediate predation, and urchins moved about the tank freely until nightfall. 

We allowed predators to forage on prey for 48 hours, after which we counted each remaining 

prey item to estimate the number of urchins consumed by an individual lobster. No predator 

consumed all prey in trials with the highest prey density. We conducted trials in consecutive 

weeks, where predators were randomly assigned a new prey density each week. During the 

experimental period, ambient water temperatures in the flow-through system were on average 

16.1° ± 1.8 C (X̅ ± 1 SD).  

We found evidence of non-predation related urchin mortality during trials. When 

consuming urchins, lobsters pry their prey from the substrate and crack the teste at the vent . 

By inspecting each urchin for evidence of damage to the test near the vent we discriminated 

between urchins that died due to predation or natural mortality. We subtracted the number of 

urchins that experienced non-predation mortality from the total number of urchins available.  

 

 

6.1.3. Simulation 

Estimating predator:prey ratio for observational data 

To determine the extent to which lobster and urchin body size varied between sites, 

we estimated the predator:prey body size ratio for each site in each year. To do this we 

resampled 1000 draws with replacement from the size-distribution of lobster and urchin at 

each site/year and calculated the ratio of individual lobster mass to urchin mass. We then 
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plotted the distributions of lobster:urchin size ratios as a function of site and year (see Fig. 

S1.1).  

 

Simulating plausible distributions of lobster-urchin consumption rates based on 

observational data 

Lobster-urchin interactions are only one feeding link in the complex food web 

dynamics of the kelp forest (Morton et al., 2021; Tegner & Levin, 1983). Lobsters are 

opportunistic predators and urchins are preyed upon by other consumers (e.g., Semicossyphus 

pulcher; Hamilton and Caselle 2015). Therefore, we were only interested in estimating 

consumption rates that accounted for body size variation relative to consumption rates that 

ignore body size. Indeed, estimated consumption rates at any time point are likely different 

that actual urchin consumption. However, in the absence of spatiotemporal species-specific 

data on urchin consumption rates, our predictions offer a means of exploring the 

consequences of body size on estimated variation in consumer-resource interactions.  

 

Partitioning variance between density and body size 

Considering the extent of variation in interaction strength between lobsters and 

urchins, we sought to partition the amount of variation caused by differences in lobster and 

urchin density between sites/years and the amount of variation driven by differences in the 

size-distributions of lobsters and urchins. The size-dependent functional response in our 

experiment depends on the interactive effects of lobster size, urchin size, and urchin density 

(see Eq. 5 in main text). For example, at a particular body size of lobster and urchin, the 

interaction strength will depend on the density of urchins. Our experimental data suggests 
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that lobster attack rates are largely invariant with lobster size or urchin size (𝛽.," , 𝛽.,) ≈ 0). 

This means that lobster and urchin body size will have a greater impact on IS when the 

urchin density is high, compared to when urchin density is low, because at low urchin density 

predators are constrained by their ability to find new prey (e.g., attack rate, α), which is 

invariant with body size. Therefore, to partition the variation in interaction strength between 

body size and density, we fixed the body size of lobster and urchin at different values and 

estimated interaction strength across variation in density. 

Specifically, we selected 625 different values of lobster size and urchin size such that 

sizes ranged from the max lobster mass and minimum urchin mass to the max urchin mass 

and minimum lobster mass. We then estimated the distribution of IS assuming only variation 

in lobster and urchin density for each combination of fixed lobster and urchin size. Finally, 

we used simple linear regression to estimate the proportion of variance explained (R2) by the 

predictions where only density varied, relative to the predictions based on joint variation in 

body size and density. We reported the full range of resulting 1-R2 values to estimate the 

proportion of variance explained by body size.  

 

Predicting interaction strengths based on previous relationships in the literature 

We conducted a non-systematic search of the literature to find estimates for the size-

scaling of the functional response. For empirical estimates, we relied on Rall et al. (2012), 

Barrios-O’Neill et al. (2019), and a recent metanalysis (Uiterwaal & DeLong, 2020) which 

represents the largest compilation of functional response data available to date. For the 

complete data source to Uiterwaal and DeLong (2020), please refer to the FoRAGE database 

(Uiterwaal et al., 2022). 
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Each of the three papers we used to generate predictions utilized other covariates to 

model parameters of the functional response. Barring interactions in these models, the 

scaling-coefficients on the body mass of resource and consumer should not be affected by the 

covariates. However, the intercepts will not be directly comparable unless we accounted for 

the covariates. Therefore, for each manuscript we included the covariates from their models 

and fixed the values of those covariates at the observed value in our mesocosm trials.  
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Table S1.2. Summary of the final model structure, units, and fixed values of covariates used 
to predict interaction strength based on relationships from the literature.  
 

 
Uiterwaal and DeLong 2020 

Final models 
𝛼 ln(𝛼) = 𝛼* +	𝛽+,, ln(𝑚+) +	𝛽-,, ln(𝑚-) +	𝛽.𝑇 +	𝛽.!𝑇/ + 𝛽0 ln(𝐴) +	∗∗ 
ℎ ln(ℎ) = ℎ* +	𝛽+,1 ln(𝑚+) +	𝛽-,1 ln(𝑚-) +	𝛽.𝑇 +	𝛽.!𝑇/ + 𝛽0 ln(𝐴) + 𝛽2𝐷 +	∗∗ 

Units and fixed values 
𝑚 = mg; density = ind. Cm-2; time = days; T = 16.1oC; A = 5.206 x 104 cm2; D = 2 (e.g.,2-D) 

** Uiterwaal and Delong include random effects based on taxonomy. However, we focused only on the 
population level effect (e.g., across taxa). Therefore, we did not include random effect shifts to the 
intercept.  

Rall et al. 2012 
Final models 

𝛼 ln(𝛼) = 𝛼* +	𝛽+,, ln(𝑚+) +	𝛽-,, ln(𝑚-) +	𝛽.
𝑇 − 𝑇*
𝑘𝑇𝑇*

 

ℎ ln(ℎ) = ℎ* +	𝛽+,1 ln(𝑚+) +	𝛽-,1 ln(𝑚-) +	𝛽.
𝑇 − 𝑇*
𝑘𝑇𝑇*

 

Units and fixed values 
𝑚 = mg; density = ind. m-2; time = seconds; T = 289.25 oK; T0 = 293.15 oK; k = 8.61733326 * 10-5 eV K-1 

Barrios-O’Neill et al. 2019*** 
Final models 

𝛼 ln(𝛼) = 𝑁3𝛼*,3 +	𝛽+,, ln(𝑚+) +	𝛽-,, ln(𝑚-) + 𝛽. ln(𝑇)
+ 𝛽4"	×	. ln(𝑚-) ln(𝑇) + 𝛽0789:9𝐼0789:9 + 𝛽;<=9𝐼;<=9	 , 𝜎/7 

𝛼*,3 = 𝑁3𝜇,*, 𝜎,*,3/ 7, 𝑓𝑜𝑟	𝑇𝑎𝑥𝑎	𝑗 = 1,… , 𝐽 
where 𝐼0789:9 = 1 and 𝐼;<=9 = 0 

𝐶$%& ln(𝐶4:>) = 	𝑁(𝐶*,3 +	𝛽+,1 ln(𝑚+) +	𝛽-,1 ln(𝑚-) +	𝛽. ln(𝑇) +	𝛽4#	×	. ln(𝑚+) ln(𝑇) 	
+ 𝛽0789:9𝐼0789:9 + 𝛽;<=9𝐼;<=9	, 𝜎/)	 

𝐶*,3 = 	𝑁3𝜇+*, 𝜎+*,3/ 7, 𝑓𝑜𝑟	𝑇𝑎𝑥𝑎	𝑗 = 1,… , 𝐽	 
Where 𝐼0789:9 = 1 and 𝐼;<=9 = 0 

Units and fixed values 
𝑚 = g; density = ind. m-2; time = days; T = 16.1oC 

*** Barrios-O’Neill et al. (2019) included both a categorical fixed effect for encounter strategy and a 
random effect of taxonomy. We were interested in active predators foraging on static prey (𝐼0789:9) and 
crustacean predators. Therefore, we estimated the intercept for both models as  

𝐼 = 𝜇> + 𝛽0789:9 + 𝑋+-?89:+@:A 
where x,X is either 𝛼*	|	𝐶* and I is the final intercept used in the simulation 
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Table S1.3. Summary of equations and parameter estimates for the size-scaling of the 
functional response based on theoretical and empirical sources.
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6.1.4. Supplemental Figures 
 
 

 
 
Figure S1.1. Change in the predator (California spiny lobster) to prey (purple urchin) body 
mass ratio between sites and years. The mean and variance of the predator:prey ratio varies 
between sites and years. The predator:prey ratio was estimated by resampling from the size 
distributions of predators and prey with replacement. The y-axis is log10 transformed for 
visualization purposes. 
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Figure S1.2. The functional responses of individual lobster predators foraging on urchin prey 
in mesocosms. Lines are median predictions (± 95% CI) from a Bayesian hierarchical model 
that estimated the number of urchins consumed as a function of lobster body size, prey body 
size, and prey density. Panels are arranged in descending order of lobster body size within a 
particular prey size class. 
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Figure S1.3. Comparison of posterior and prior predictive distributions for population level 
parameters from a Bayesian hierarchical model. Priors are informed based on theoretical 
predictions (see Table S2 for details on each prior).  
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Figure S1.4. The median rate of urchins consumed per lobster predator (e.g., per predator 
interaction strength) as a function of the median predator:prey body mass ratio (top) and 
urchin density (bottom). Each point represents a site in a particular year. Sites or times with 
large lobster, small urchins, and high urchin density were estimated to have the strongest 
interactions.   
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Figure S1.5. Rank order of interaction strength estimated via experimentation and three 
different predictions from the literature for the size-scaling of consumption rates. Site-year 
combinations are arranged in decreasing order according to the experimental prediction. 
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Figure S1.6. Median and 95% CIs of simulated predictions for interaction strength based on 
our experimental estimates and estimates of the size-scaling of interaction strength from the 
literature. UD (Uiterwaal and DeLong 2020), Rall et al. (2012), BO (Barrios-O’Neill et al. 
2019), and Experimental match the predictions reported in the main text. However, UD w/ 
uncertainty and Exp. w/ uncertainty incorporate uncertainty in the regression coefficients. For 
experimental estimates, we sampled from the posterior distribution of each parameter, such 
that each draw in the simulation paired a unique lobster body size, urchin body size, and 
parameter set. Uiterwaal and Delong report mean ± SE of the regression parameters. To 
incorporate uncertainty, we sampled from a uniform distribution, where the bounds were 
defined by the 95% CIs of the mean of each parameter. Rall et al. (2012) and Barrios-O’Neill 
et al. (2019) do not report confidence intervals on their parameter estimates.   
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6.2. CHAPTER 2 – APPENDIX 
 
6.2.1. Conceptual model 

To construct Figure 2.1 (main text), we assumed power law scaling relationships 

between body size and maximum consumption rate, standard metabolic rate, and maximum 

metabolic rate in the general form of 𝑦	 = 	𝑎(𝑚"
!. We assumed that 𝑎(	for maximum 

consumption was greater than 𝑎( for standard metabolic rates, so that even as predator size 

approaches zero, consumption exceeds standard metabolism (𝑎(,:&'( 	= 0.45, 𝑎(,;<= 	= 0.1). 

We let the standard metabolic rate scale to the ¾ power of predator mass. Under H0, 𝛽 was 

equal to 0.75 following predictions from the metabolic theory of ecology (Brown et al. 

2004). Ontogenetic growth models often assume that maximum consumption increases with 

body size slower than metabolism increases with body size (West et al. 2001). Therefore, we 

set 𝛽 = 0.65 for H1. Finally, maximum consumption rates may increase with body size faster 

than metabolism (Marshall and White 2019), so we set 𝛽 = 1.1 for H2. Similarly, maximum 

metabolic rate may increase with body size faster than SMR (𝛽<<=,H9 = 0.9), slower than 

SMR (𝛽<<=,HI = 0.6), or at the same rate as SMR (𝛽<<=,HJ = 0.75). We set the 𝑎(,<<= 	= 0.8.  

 
6.2.2 Modeling details 
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Table S2.1. Summary of prior distributions for all parameters in the Bayesian hierarchical 
model used to fit the functional response for lobster foraging on mussels.  
  

Parameter Prior 

Population-level   

log(a0) 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎D) 

𝛽.," 𝑛𝑜𝑟𝑚𝑎𝑙(0.75, 𝜎D) 

𝛽.,) 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 𝜎D) 

log(h0) 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎D) 

	𝛽0," 𝑛𝑜𝑟𝑚𝑎𝑙(−0.75, 𝜎D) 

𝛽0,) 𝑛𝑜𝑟𝑚𝑎𝑙(0.5, 𝜎D) 

Individual-level   

𝜇.,, 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎@) 

𝜇0,, 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎@) 

Variances   

𝜎D 𝑔𝑎𝑚𝑚𝑎(1,1) 

𝜎@ 𝑔𝑎𝑚𝑚𝑎(2,1) 
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Table S2.2. Prior distributions for all parameters used in Bayesian model to test differences 
in metabolic rates with lobster body size. We fit the model using the stan_glm() function in 
the rstanarm package (Goodrich et al. 2020). Specifically, we fit 

𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐	𝑟𝑎𝑡𝑒	~	𝑁𝑜𝑟𝑚𝑎𝑙(�̄�, 𝜎) (1) 
𝑙𝑜𝑔(�̄�) 	= 	𝛼( 	+ 	𝛽D𝑙𝑜𝑔(𝑚") 	+	𝛽@𝑡𝑦𝑝𝑒	 +	𝛽J𝑙𝑜𝑔(𝑚")𝑡𝑦𝑝𝑒	 

where 𝑚" is lobster mass (g) and type was a categorical predictor for either maximum 
metabolic rate or standard metabolic rate. The interaction allowed us to test for differences in 
the scaling of maximum and standard metabolic rates (see inlay in Fig. 2.3 in main text). We 
used a similar modeling procedure to test how absolute aerobic scope (AAS), factorial 
aerobic scope (FAS), and factorial energy acquisition (FEA) varied with body size. However, 
these univariate models did not include an interaction term and assumed normally distributed 
priors with mean = 0 and SD = 10 on the 𝛽 coefficient. 
 

Parameter Prior 

𝛼( 𝑛𝑜𝑟𝑚𝑎𝑙(0, 10) 

𝛽D 𝑛𝑜𝑟𝑚𝑎𝑙(0.75, 1) 

𝛽@ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 10) 

	𝛽J 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1) 

	𝜎 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1) 
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Table S2.3. Summary of scaling exponents and intercepts for response variables. Standard 
metabolic rate (SMR) and maximum metabolic rate (MMR) were modeled with an 
interaction (not displayed here) to test for differences in scaling exponents. Factorial aerobic 
scope (FAS), absolute aerobic scope (AAS), and factorial energy acquired (FEA) were 
modeled as univariate relationships. Maximum consumption rate (Cmax) was estimated from a 
more complex Bayesian hierarchical model (see Table S1). Estimates are the median ± 95% 
CIs from the posterior distribution of each parameter. Credible intervals are not included for 
FEA because they would depend on the number of draws from the posterior distributions of 
each individual lobster’s maximum consumption rate. 
 

Response 𝑙𝑜𝑔(𝛼() 𝛽 Units 

SMR -6.74 [-9.7,-3.8] 0.85 [0.4 - 1.3] mg O2 min-1 

MMR -4.26 [-5.5,-2.9] 0.78 [0.6-1.0] mg O2 min-1 

FAS 2.55 [0.8, 4.3] -0.09 [-0.3,0.2] – 

AAS -4.33[-5.9,-2.8] 0.76 [0.5-1.0] mg O2 min-1 

Cmax 0.38 [-0.3,1.7] 1.50 [1.1, 1.9] ind. day-1 

FEA -1.06 0.51 – 
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6.2.3. Supplemental figures 
 

 
Figure S2.1. Variation in attack rate (A) and maximum consumption rate (1/handling time) 
(B) with body size of lobster foraging on mussels of three different mussel size classes. 
Points are 100 samples from the posterior distribution of each parameter for individual 
lobster predators foraging on each size class of mussel. Lines are the median ± 95% CIs of 
the posterior distribution for lobsters foraging on each mussel size class. 
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Figure S2.2. Functional response of individual lobsters foraging on mussels of three size 
classes. Lines and surrounding shading are median ± 95% CIs of the posterior distributions 
for the individual level parameters. Units of mussel prey offered (ind.) and consumed (ind.) 
were converted to units of energy (kJ) based on the conversion described in the main text. 
Once converted to units of energy, lobsters appeared to consume similar kJ of mussel 
regardless of mussel size class across the range of kJ of mussels offered in the experimental 
trials. Panels are arranged in order of increasing lobster size. Note the changes in the y-axis 
between panels.    
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Figure S2.3. Relationship between 
maximum (MMR) and standard 
(SMR) metabolic rates (A), 
absolute aerobic scope (B), and 
factorial aerobic scope (C) with 
lobster body size. Points are the 
observed data in the original units 
of measurement. Lines and 
surrounding shading are model 
predictions (median ± 95% CI’s) 
from Bayesian regression models. 
SMR and MMR were modeled 
simultaneously to test for 
differences in slopes, while AAS 
and FAS were modeled as 
univariate responses.  
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6.3. CHAPTER 3 – APPENDIX 
 
6.3.1. Details of theoretical model 
 
Model structure 

To explore the effects of disturbance history on kelp community dynamics we 

adapted a stage-structured kelp community model developed by Detmer et al. (2021). 

Specifically, we modeled three stages of kelp (Macrocystis pyrifera): gametophytes, juvenile 

sporophytes, and canopy-forming adult sporophytes. Kelp gametophytes (G) grow from 

external populations at rate σKLM and from adult kelp at rate σN. Recruitment to the juvenile 

sporophyte stage is dependent on an intrinsic growth rate rG and the amount of light reaching 

the benthos (Lbenthos), and experience density dependent mortality at rate mG:  

𝑑𝐺
𝑑𝑡

= σ5&3 + σA𝐴 − 𝑟O𝐿P5G3061𝐺 −𝑚O𝐺@ (1) 

Juvenile sporophytes (J) arise from the recruitment of gametophytes. For consistency 

with observational data collected by the Santa Barbara Coastal long-term research program 

(SBC LTER), we considered juvenile kelp to be < 1 m tall. Juvenile kelp experiences density 

dependent mortality at rate mJ and mature at rate rJ which depends on light availability.  

𝑑𝐽
𝑑𝑡
= 𝑟O𝐿P5G3061𝐺 − 𝑟Q𝐿P5G3061𝐽 − 𝑚Q𝐽@ (2) 

Adult kelp (A) grows logistically from the maturation of juveniles and from the 

growth of existing adults to a carrying capacity KA. We set KA = 1, so that A represents the 

proportion of kelp relative to its carrying capacity. Explicitly, we tracked A as changes in the 

number of adult fronds per unit area. However, frond number is strongly correlated with 

biomass (Rassweiller et al. 2018) and can be interpreted as a relative metric of kelp biomass 
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density. Adult frond increased at intrinsic rate (rA) which was modified by the amount of light 

reaching the surface. Kelp senesced according to a time dependent function sA.  

𝑑𝐴
𝑑𝑡

= 𝑟Q𝐿P5G3061𝐽 + 𝑟A𝐴𝐿1R)S%"5
𝐾A − 𝐴
𝐾A

− 𝑠A(𝑡)𝐴 (3) 

For full details on the function sA, refer to Detmer et al. (2021). Briefly, the senescence 

function allows for disturbance events to synchronize frond initiation following a time lag 

after which fronds senesce according to a sinusoid function. However, fronds that survive 

disturbance are assumed to senesce asynchronously at a flat baseline rate. 

The mechanism by which kelp influences competitive dynamics on the benthos is by 

altering the amount of light that reaches the seafloor. We modeled light using an exponential 

decay function, where light on the seafloor was modified by adult kelp abundance: 

𝐿P5G3061 = 𝐿1R)S%"5𝑒#>BA (4) 

Based on previous work and analysis of seafloor irradiance, we assumed that when adult kelp 

was at its carrying capacity 10% of light reached the seafloor. Therefore, we set kl = 2.3.  

Understory algae (M) and sessile invertebrates (I) competed for space on the seafloor. 

We assumed that physical space was taken up by sessile invertebrates or understory algae, 

and we did not explicitly account for space occupied by kelp holdfasts, or other kelp stages. 

M and I competed according to classic Lotka-Voltera competition equations with competition 

coefficients 𝛼 and 𝛽:  

𝑑𝑀
𝑑𝑡 = 𝑟<𝑀𝐿P5G3061

(𝑆T −𝑀 − 𝛼𝐼)
𝑆T

−𝑚<𝑀 + 𝜎< (5) 

𝑑𝐼
𝑑𝑡 = 𝑟U𝐼

(𝑆T − 𝐼 − 𝛽𝑀)
𝑆T

−𝑚U𝐼 + 𝜎U (6) 
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where 𝑟< and 𝑟U are intrinsic growth rates, 𝑚< and 𝑚U are senescence rates, 𝑆T is total space 

on the seafloor (assumed to be equal to 1, such that M and I represent proportional cover), 

and 𝜎< and 𝜎U represent a constant supply of external propagules.  

 

Simulating disturbance 

We simulated pulse disturbances by triggering reductions in the state variables. We 

assumed that disturbances could only happen annually (e.g.,1 per year), and simulated severe 

disturbances by reducing adult kelp 100% (𝜓A = 1). Severe disturbances, like large wave 

events, may also impact organisms on the seafloor, which we term benthic scouring (𝜓V). 

However, the extent of damage to the benthos is unclear. Therefore, we ran simulations 

where we manipulated the level of benthic scouring (0 > 𝜓V > 1). Benthic scouring 

occurred at the same time point as the severe disturbance to adult kelp, and affected kelp 

gametophytes, juvenile kelp sporophytes, understory algae, and sessile invertebrates equally. 

We were interested in understanding how the impacts of historic disturbances to kelp 

on community structure might be impacted by differences in the life-history parameters of 

sessile invertebrates relative to understory algae. Therefore, we ran simulations where we:  

a) reduced the external supply of sessile invertebrate propagules by 50 and 10% 

of defaults. 

b) reduced sessile invertebrate growth rates by 75 and 50% of defaults. 

c) Altered parameters to make invertebrates more k-selected (0.75 ∗ 𝑟U , 0.1 ∗ 𝜎U) 

and stronger competitors (𝛼 = 0.125, 𝛽 = 0.8).  
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Table S3.1. Summary of state variables, parameters, and simulation values for theoretical 
model. Notation follows Detmer et al. (2021). 
 

Symbol Description Units Simulation 
values 

Variable 
G Kelp gametophytes ind. m-2  
J Juvenile kelp sporophytes ind. m-2  
A Adult kelp sporophytes ind. m-2  
M Proportional cover understory macroalgae --  
I Proportional cover sessile invertebrates --  
t Time d  

Parameter 
𝐿8?-;:+@ Surface irradiance mol m-2 s-1 1000 
𝑘= adult kelp frond extinction coefficient m2 frond-1 2.3 
𝜎@>9 external supply of kelp gametophytes ind. m−2 d−1 0.0001 
𝜎0 rate of gametophyte production by adult kelp ind. frond−1 d−1 0.01 
𝜎C external supply of understory algae propagules d−1 0.001 
𝜎D external supply of sessile invertebrate propagules d−1 (0.0005, 0.00025, 

0.00005) 
𝑟E rate of recruitment of kelp gametophytes to 

juvenile sporophytes 
m2 s mol−1 d−1 10−8 

𝑟F rate of maturation of juvenile sporophytes to 
adult sporophytes 

m2 s mol−1 d−1 0.00001 

𝑟0 kelp frond growth rate m4 s mol−1 d−1 
fronds−1 

0.00009 

𝑟C understory algae growth rate m2 s mol−1 d−1 0.00006 
𝑟D sessile invertebrate growth rate d−1 (0.008, 0.006, 

0.004) 
𝑚E kelp gametophyte mortality rate m2 ind.−1 d−1 1 
𝑚F juvenile kelp sporophyte mortality rate m2 ind.−1 d−1 1 
𝑚C understory algae senescence rate d−1 0.009 
𝑚D sessile invertebrate senescence rate d−1 0.002 
𝐾0 carrying capacity of adult kelp max. proportion of 

fronds m-2 
1 

𝑆. total substrate space available for sessile 
invertebrates and understory algae 

 1 

𝛼 competition coefficient for sessile invertebrates 
on understory algae 

 (0.8, 1.25) 

𝛽 competition coefficient for understory algae on 
sessile invertebrates 

 (1.25, 0.8) 

𝜓0 proportion of adult kelp removed by disturbance  1 
𝜓G proportion of gametophytes, juvenile kelp, 

sessile invertebrates, and understory algae 
removed by disturbance 

 [0,1] 
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Table S3.2. Summary of all metrics of historic disturbance explored.  
 
Description Comments Example 
Mean kelp 
canopy biomass 
over the last 10 
years 

There are many ways in 
which a time series can vary 
and still have the same 
mean.  

-- 

Median kelp 
canopy biomass 
over the last 10 
years 

Because of the zero-inflated 
nature of the data, the 
median was often zero, 
making it not very useful for 
representing variation across 
sites. 

 
Standard 
deviation in 
kelp canopy 
biomass over 
the last 10 years 

SD scales with the mean 
making it challenging to 
compare across sites with 
very different mean biomass 

 
Coefficient of 
variation 
(mean/sd) 

CV is highly affected by 
rare events and is dependent 
on the mean. For example, 
sites that were consistently 
zero, but had one large spike 
in kelp had the highest CV. 
The timeseries of kelp to the 
right had the highest CV of 
all site/transects. 
 
 
  

Consecutive 
dissimilarity 
index 

Proposed by Fernandez-
Martinez et al. 2018 
Ecosphere. Estimates a 
metric of variability in time 
series that is not dependent 
on the mean and insensitive 
to rare events. Despites its 
normal distribution across 
sites/transect, we could find 
little pattern of the metric 
with the biomass of either 
UA or SI.   
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Proportional 
variability 
index 

Proposed by Heath (2006), 
pv ranges from 0-1, with 
zero being low variability 
and 1 being high variability. 
The pv is independent of the 
mean but does not consider 
the chronological order of 
the time series. 

 
Number of 
times kelp 
canopy biomass 
was >0 and then 
declined to 0 
for two 
quarters.  

By not using a threshold 
value at time t, this metric 
identified many “extinction” 
events when in fact kelp 
was exceptionally low but 
not zero at time t, and then 
zero for the next two 
quarters. See example at 
right, where extinction 
events are coded in red. 

 
Number of 
times kelp was 
greater than or 
equal to 10% of 
its 10-year 
maximum, then 
declined by 
>80% for two 
quarters. 

At no site/transect was kelp 
always zero. By estimating 
the threshold at 10% of the 
max, the threshold was 
always greater than zero. 
While 10% of the max may 
seem low, the distribution of 
kelp biomass was log-
normally distributed, with 
rare high biomass events. 
We used a decline of 80% to 
ensure there was enough 
variability among sites, as 
increasing this value above 
95% resulted in few events 
that typically occurred 
across most sites at the same 
time. 

 

Amount of time 
(in years) since 
the last kelp 
canopy 
extinction, 
where an 
extinction is 
identified as 
described in the 
metric 
“extinction”.  

This metric identified the 
time since the last canopy 
extinction event, rather than 
the time since the last period 
when kelp was zero. This 
resulted in long times since 
last extinction even when 
kelp had been zero for many 
consecutive quarters (see 
example at right w/ 
extinction events coded in 
red).   



 

 145 

Amount of time 
(in years) since 
the last 6-month 
period kelp 
canopy biomass 
was zero for a 
6-month period, 
regardless of 
whether kelp 
was zero or 
greater than 
zero in the 
previous 
quarter. 

Our hypothesis was focused 
on the fact that when kelp 
biomass was zero, then 
understory algaes should be 
able to outcompete sessile 
invertebrates and take space 
on the benthos. Thus, the 
time since the last period 
when kelp was zero for 6 or 
more months seemed like 
the most biologically 
relevant metric.  

Proportion of 
time in the last 
10 years that 
kelp canopy 
biomass was 
zero. 

See hypothesis in “time 
since last absent”.  

 
Proportion of 
time in the last 
10 years that 
kelp canopy 
biomass was 
greater or equal 
to 50% of its 
maximum.  

It was challenging to 
understand where to set this 
threshold. At 50% of the 
maximum, there was little 
variation across sites 
because kelp biomass was 
rarely above 50% of its 
maximum.  
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6.3.2. Supplemental figures 
 

 
 
Figure S3.1. Effects of changing life-history parameters of sessile invertebrates relative to 
understory algae on community structure recovery following a single disturbance. 
Decreasing the growth rate (A) or external recruitment rate (B) of sessile invertebrates 
slowed the recovery time on the community relative to default parameters. Similarly, making 
sessile invertebrates more k-selected [slower growth (0.75 ∗ 𝑟U), lower external recruitment 
(0.1 ∗ 𝜎U), but higher competitive ability	(𝛼 = 0.125, 𝛽 = 0.8)] altered equilibrium 
abundances and slowed the recovery of the community following a disturbance. In all 
simulations, we assumed that 90% of the benthos was removed with each disturbance (𝜓V =
0.9).  




