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Investigations & Diagnostics

Introduction

Diabetes mellitus and osteoarthritis (OA) are frequent 
health disorders with a rising prevalence.1,2 The National 
Diabetes Statistics Report of 2017 estimated that currently 
9.4% of the total U.S. population has diabetes mellitus, 
which equates to 30.3 million people.3 OA is the most com-
mon degenerative joint disorder and is characterized by 
cartilage breakdown and subsequent damage to adjacent 
joint structures, leading to pain and disability.4 The most 
important risk factors for OA are higher body mass index 
(BMI) and age, with the prevalence of OA increasing from 
13.5% in adults of 25 years and older, to 33.5% in adults 
older than 65 years.5 However, beyond obesity and age-
related OA, previous studies have suggested that metabolic 
disorders, such as type 2 diabetes mellitus (T2DM), may 
accelerate morphological joint degeneration.6-10

The association of T2DM and OA has been subject to a 
number of previous studies that found accelerated cartilage 
degeneration in subjects with T2DM compared to nondia-
betic controls.6-12 However, little is known about the under-
lying biological mechanisms driving this accelerated 
cartilage degeneration. Previous studies have demonstrated 
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Abstract
Objective. To assess differences in biochemical composition of the deep cartilage layer in subjects with type 2 diabetes 
mellitus (T2DM) and nondiabetic controls using UTE (ultra-short echo time) T2* mapping and to investigate the association 
of vascular health and UTE T2* measurements. Design. Ten subjects with T2DM matched for age, sex, and body mass index 
with 10 nondiabetic controls. A 3D UTE sequence with 6 echo times was acquired using 3T magnetic resonance imaging of 
the knee. For UTE T2* analysis, the deep cartilage layer was segmented and analyzed in 5 compartments (patella, medial, 
and lateral femur and tibia). The ankle brachial index (ABI) was obtained in all subjects. Linear regression analyses were 
used to assess associations of T2DM and UTE T2* relaxation times and the associations of ABI measurements and UTE 
measurements. Results. Compared with nondiabetic controls, T2DM subjects had significantly lower mean T2*-UTE in 
the patella (mean difference 4.87 ms; 95% confidence interval [CI] 1.09-8.65; P = 0.015), the lateral tibia (mean difference 
2.26 ms; 95% CI 0.06-4.45; P = 0.045), and the lateral femur (mean difference 4.96 ms; 95% CI 0.19-9.73; P = 0.043). 
Independent of diabetic status, subjects with higher ABI values, indicating better vascular health, had higher T2*-UTE of the 
patella (coefficient 15.2; 95% CI 3.3-21.4; P = 0.017), the medial tibia (coefficient 9.8; 95% CI 1.0-18.6; P = 0.031), and the 
lateral femur (coefficient 18.8; 95% CI 3.3-34.3; P = 0.021). Conclusions. T2*-UTE measurements of the deep cartilage layer 
were consistently lower in subjects with T2DM and in subjects with impaired vascular health, likely indicating increased 
mineralization of this layer.
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that ultra-short echo time (UTE) T2* mapping (T2*-UTE) 
can be used to characterize the deep calcified cartilage 
layer.13-15 Moreover, it has been suggested that the deep 
calcified cartilage layer may be critically important in the 
pathogenesis of OA.16,17 However, to the best of our knowl-
edge, the deep calcified cartilage layer has been virtually 
unexplored in subjects with metabolic disorders.

The purpose of this study was therefore to compare dif-
ferences in the biochemical composition of the deep calci-
fied cartilage layer, in subjects with T2DM and healthy 
nondiabetic controls, using UTE cartilage T2* mapping. 
Moreover, we aimed to investigate the association between 
vascular health, as another component of the metabolic OA 
phenotype,18 and the biochemical composition of the deep 
calcified cartilage layer.

Method

Subject Selection

Study participants were recruited within an age range of 40 
to 70 years. Bilateral knee radiographs were obtained in a 
posterior-anterior (PA) projection while subjects were 
weightbearing and Kellgren-Lawrence (KL) grades were 
determined, as previously reported.19 Those with advanced 
radiographic OA in either knee (KL grade >2) and with 
knee pain most days of the month were excluded (>15 days 
over the last month), since previous studies have shown that 
quantitative assessment of cartilage composition may be 
limited once advanced cartilage defects occur.20 We also 
excluded subjects with inflammatory arthropathic disor-
ders, a history of knee injury or surgery, and with conditions 
excluded by magnetic resonance imaging (MRI) safety 
guidelines such as metal implants.

Ten subjects with T2DM were recruited for our study and 
group matched for age, sex, and BMI with 10 nondiabetic 
controls. Informed consent was obtained from all participants; 
the study was compliant with the Health Insurance Portability 
and Accountability Act and approved by the local institutional 
review board (Institutional Review Board UCSF, 16-18725). 
Subjects with T2DM were defined as subjects diagnosed with 
T2DM by a physician for more than 3 years that was either 
insulin requiring or treated with oral therapies such as sulfo-
nylureas and metformin. Subjects without T2DM were 
defined as subjects without self-reported T2DM and without 
oral antidiabetic medication or insulin treatment.

Vascular and Laboratory Assessment

The ankle brachial index (ABI) was obtained to identify 
large vessel, peripheral arterial disease as a measure to 
assess vascular health.21 The systolic blood pressure from 
both brachial arteries and from both the dorsalis pedis and 
posterior tibial arteries of each leg was measured using a 

standard blood pressure cuff and a handheld 8-mHz Doppler 
instrument (Summit Doppler L150, Wallach, Golden, CO, 
USA). To calculate the ABI for each leg, the higher pressure 
of the either the dorsalis pedis or posterior tibial artery was 
divided by the higher of the 2 brachial systolic measure-
ments. The ABI was calculated for the left and the right leg, 
respectively and the lower ABI value was used for analysis. 
In addition, hemoglobin A1c (HbA1c) was obtained in all 
study subjects using the standard cutoff of <6.5% to define 
optimal long-term glycemic status.22

Magnetic Resonance Imaging

MR images were acquired of the knee with the lower KL 
grade, or the right knee (in case of equal KL grades) using a 
3T MRI scanner (Discovery MR 750w) and 16 channel 
Geometry Embracing Method (GEM) flex medium coil 
(Neocoil, Pewaukee, WI). A sagittal 3D multiecho UTE 
cones sequence23 with 6 echo times (TEs 0.228 ms, 3.9 
ms,7.6 ms, 12 ms, 17 ms, 24 ms; repetition time [TR] = 32 
ms; field of view [FOV] = 14 × 14 × 9.2 cm3, resolution 
= 0.5 × 0.5 × 2 mm3, 18° flip angle, and fat suppression 
radiofrequency pulse applied every 5 TRs) was used to 
obtain cartilage UTE relaxation measurements.

Image Analysis

The distinct linear signal intensity of the deep calcified 
layer of articular cartilage, previously described by Bae 
et al.,13 was segmented manually on the first-echo images 
from UTE cones in the following five compartments: the 
patella (PAT), the medial and lateral femur (MF and LF) 
and the medial and lateral tibia (MT and LT); Figure 1. The 
trochlea was not segmented due to flow-artifacts in this 
region caused by the popliteal artery. We aimed to segment 
as many slices as possible to cover the entire cartilage but 
used rigorous criteria to exclude sections with compromised 
image quality. Furthermore, sections with artifacts limiting 
the segmentation of the cartilage were excluded. UTE 
T2*maps were computed for each compartment by using a 
monoexponential decay model as fitting function for the 
signal intensity from the multiecho UTE images on a pixel-
by-pixel basis using six echoes (TE = 0.228-24 ms), as 
shown in Figure 2. A global UTE value was calculated 
using the mean of all compartments.

Reproducibility

To calculate scan-rescan reproducibility and inter- and 
intrareader reproducibility for UTE T2* mapping of the 
deep calcified cartilage layer, the reproducibility error was 
assessed by calculating the root mean square average of the 
single coefficients of variation (CV) on a percentage basis, 
as previously reported.24 The scan-rescan reproducibility 
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was assessed in 4 volunteers. Each volunteer underwent 2 
MRI scans of the same knee in one session with at least 1 
hour separating both scans. The multiecho UTE cones 
sequence obtained from the first and second MRI scans 

were segmented by the same reader (SCF) and scan-rescan 
reproducibility was assessed overall and for each of the 5 
compartments segmented (PAT, MF, LF, MT, and LT). 
Inter-reader reproducibility was assessed in 4 volunteers 

Figure 1. E xample of ultrashort echo time–enhanced (UTE) T2* segmentation splines of the lateral tibia compartment, with white 
dashed line indicating the border of the articular cartilage. The distinct linear signal intensity above the subchondral bone of the deep 
calcified layer of articular cartilage (A), was manually segmented manually on the first echo (B). Finally, UTE T2* values were calculated 
on a pixel-by-pixel basis using a monoexponential decay model as fitting function for the signal intensity (C).

Figure 2.  (A and B) Sagittal 3-dimensional ultrashort echo time–enhanced (UTE) T2* sequences demonstrate the distinct linear 
signal intensity of the deep calcified layer of the articular cartilage (black arrows) and segmentation splines of the patella compartment. 
(C) T2*-UTE maps were computed using a monoexponential decay model as fitting function for the signal intensity from the multislice 
multiecho (MSME) images on a pixel-by-pixel basis with blue color indicating low values and red color indicating high UTE T2* values. 
(D) UTE color map of the patella compartment (values are in milliseconds).
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between 2 readers (SCF and WA). For intrareader reproduc-
ibility, image segmentations for UTE T2* evaluation were 
repeated in the same 4 volunteers with at least 14 days sepa-
rating the readings.

Statistical Analysis

The statistical analysis was performed with Stata software, 
version 14 (StataCorp, College Station, TX) using a 2-sided 
0.05 level of significance. Differences in subject character-
istics between those with and without T2DM were assessed 
using Pearson’s chi-square test for categorical data (gender, 
race) and independent-samples t tests for continuous vari-
ables (age, BMI).

Multivariable linear regression analyses adjusted for 
race were used to assess differences in UTE T2* relaxation 
times between cases and controls, and to analyze the asso-
ciation of UTE T2* relaxation time and HbA1c in all sub-
jects. We also investigated the association of ABI values 
and UTE T2* relaxation times, adjusting for race and dia-
betic status, as diabetic status is a known confounder for 
vascular health.25

Results

Study Subjects

The age range for our cohort of subjects with T2DM 
spanned 47 to 58 years (mean: 53.7 ± 4.3 years). The BMI 
range for subjects with T2DM spanned 24.5 to 34.9 kg/m2 
(mean: 29.5 ± 3.6 kg/m2). The age range for our control 
cohort spanned 43 to 59 years (mean: 51.8 ± 6.1 years) and 
the BMI spanned 21.8 to 35.9 kg/m2 (mean: 28.9 ± 3.9 kg/m2). 
Age and BMI were not significantly different between both 
cohorts (P = 0.431 and P = 0.712, respectively). Moreover, 

the T2DM cohort and control cohort had similar distribu-
tions for sex (4 females, 6 males in the T2DM cohort; 
3 females, 7 males in the control cohort; P = 1.000) and KL 
grades (P = 1.000). Significant differences were found for 
distribution of race (T2DM cohort: 2 Caucasian, 4 African 
American, 4 Asian subjects; control cohort: 8 Caucasian, 
1 African American, 1 Asian subject; P = 0.048). Subjects 
characteristics are reported in Table 1.

Diabetes and UTE T2* Measurements

Mean UTE T2* values in subjects with and without T2DM 
are demonstrated in Table 2. Compared with nondiabetic 
controls, T2DM subjects had significantly lower mean 
UTE T2* values in the PAT (mean difference 4.87 ms; 95% 
confidence interval [CI] 1.09-8.65; P = 0.015), the LT 
(mean difference 2.26 ms; 95% CI 0.06-4.45; P = 0.045; 
Figure 3), and the LF (mean difference 4.96 ms; 95% CI 
0.19-9.73; P = 0.043). Averaged over all compartments, 
the mean UTE T2* was significantly lower in those with 
T2DM compared with nondiabetic controls (mean differ-
ence 3.24 ms; 95% CI 0.36-6.12; P = 0.030).

Mean UTE T2* values in subjects with optimal long-
term glycemic status (HbA1c < 6.5%; n = 11) compared to 
subjects without optimal glycemic status (HbA1c ≥ 6.5%; 
n = 9) are shown in Table 3. UTE T2* measurements of the 
deep cartilage layer of the PAT (mean difference 4.59 ms; 
95% CI 0.75-8.42; P = 0.022), and the LT (mean difference 
2.31 ms; 95% CI 0.16-4.46; P = 0.037) were significantly 
lower in subjects with elevated HbA1c ≥ 6.5% com-
pared to those with HbA1c < 6.5%. Moreover, UTE T2* 
measurements averaged over all compartments were sig-
nificantly lower in those with elevated HbA1c ≥ 6.5% 
compared to those with HbA1c < 6.5% (mean difference 
3.11 ms; 95% CI 0.25-5.97; P = 0.035).

Table 1.  Subject Characteristics.

Subject Characteristics Controls (n = 10) Diabetes (n = 10) Pa

Age, years, mean ± SD 51.8 ± 6.1 53.7 ± 4.3 0.431b

Gender, n (%) 1.000 c

  Females 3 (30) 4 (40)  
  Males 7 (70) 6 (60)  
Body mass index, kg/m2, mean ± SD 28.9 ± 3.9 29.5 ± 3.6 0.712b

Kellgren-Lawrence score, n (%) 1.000c

  0 4 (40) 3 (30)  
  1 6 (60) 7 (70)  
Race, n (%) 0.048c

  Caucasian 8 (80) 2 (20)  
 A frican American 1 (10) 4 (40)  
 A sian 1 (10) 4 (40)  

aSignificant values are in boldface.
bT test.
cPearson’s chi-square test.
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Vascular Health and UTE T2* Measurements

The mean ABI value in all our study subjects was 1.11 ± 
0.15. Analyzing the association of ABI values and UTE T2* 
relaxation times, we found that subjects with higher ABI 

values, indicating better peripheral vascular health, had 
higher UTE T2* measurements of the PAT (coefficient 
15.2; 95% CI 3.3-21.4; P = 0.017), the MT (coefficient 9.8; 
95% CI 1.0-18.6; P = 0.031), and the LF (coefficient 18.8; 
95% CI 3.3-34.3; P = 0.021) compared to subjects with 

Table 2.  Mean UTE T2* Values in Subjects with and without Diabetes.

Mean UTE T2* Values Controls (n = 10)a Diabetes (n = 10)a Coefficient (95% CI) Pb

Global knee UTE 19.2 (17.3, 21.0) 15.9 (14.0, 17.8) −3.2 (−6.1, −0.4) 0.030
PAT UTE 20.4 (18.1, 22.7) 15.5 (13.1, 18.0) −4.9 (−8.7, −1.1) 0.015
MT UTE 14.1 (12.4, 15.8) 12.5 (10.8, 14.2) 0.5 (−4.2, 1.0) 0.208
LT UTE 15.0 (13.6, 16.3) 12.7 (11.2, 14.2) −2.3 (−4.5, −0.1) 0.045
MF UTE 22.5 (19.0, 26.0) 19.2 (15.6, 22.7) −3.4 (−8.7, 2.0) 0.205
LF UTE 23.7 (20.7, 26.8) 18.8 (15.5, 22.0) 1.0 (−2.0, 3.9) 0.043

UTE = ultrashort echo time–enhanced; PAT = patella; MT = medial tibia; LT = lateral tibia; MF = medial femur; LF = lateral femur.
aNumbers are given as predicted mean values (95% confidence intervals) (milliseconds).
bMultivariable linear regression adjusting for race. Reference: subjects with diabetes. Significant results (P < 0.05) are in boldface.

Figure 3.  Sagittal ultrashort echo time–enhanced (UTE) T2* color map (values are in milliseconds) of the deep calcified cartilage 
layer of the lateral tibia of a nondiabetic control (A), and a subject with type 2 diabetes mellitus (B), with white dashed line marking 
the border of the articular cartilage. Blue color indicates low, while red color indicates high T2*-UTE values. In comparison to the 
nondiabetic control, UTE T2* measurements of the deep calcified cartilage layer of the diabetic subject show lower values (blue), 
compatible with increased mineralization.

Table 3.  Mean UTE T2* Values in Subjects with Optimal Long-Term Glycemic Status (HbA1c < 6.5%).

Mean UTE T2* Values HbA1c < 6.5% (n = 11)a HbA1c ≥ 6.5% (n = 9)a Coefficient (95% CI) Pb

Global knee UTE 18.9 (17.2, 20.7) 15.8 (13.8, 17.8) −3.1 (−6.0, −0.2) 0.035
PAT UTE 20.0 (17.8, 22.2) 15.4 (12.8, 18.1) −4.6 (−8.4, −0.7) 0.022
MT UTE 13.7 (12.1, 15.4) 12.8 (10.9, 14.6) −1.0 (−3.6, 1.7) 0.456
LT UTE 14.9 (13.6, 16.2) 12.6 (11.0, 14.1) −2.3 (−4.4, −0.2) 0.037
MF UTE 22.8 (19.6, 26.0) 18.4 (14.9, 22.0) −4.4 (−9.5, 0.7) 0.088
LF UTE 23.2 (20.3, 26.2) 18.9 (15.3, 22.4) −4.4 (−9.2, 0.5) 0.075

UTE = ultrashort echo time–enhanced; HbA1c = hemoglobin A1c; PAT = patella; MT = medial tibia; LT = lateral tibia; MF = medial femur;  
LF = lateral femur.
aNumbers are given as predicted mean values (95% confidence intervals) (milliseconds).
bMultivariable linear regression adjusting for race. Reference group: HbA1c ≥ 6.5%. Significant results (P < 0.05) are in boldface.
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lower ABI values, indicating impaired peripheral vascular 
health. Moreover, subjects with higher ABI values had 
higher UTE T2* measurements averaged over all compart-
ments (coefficient 12.3; 95% CI 3.3-21.4; P = 0.011) com-
pared to subject with lower ABI values. Results for the 
analyses are shown in Table 4.

Reproducibility

Averaged over all compartments, the scan-rescan repro-
ducibility for UTE cartilage T2* mapping was 0.36%. The 
CVs for each compartment were 5.64% for PAT, 4.00% for 
MF, 1.49% for LF, 5.19% for MT, and 4.50% for LT. The 
interreader reproducibility for image segmentation over 
all compartments for UTE T2* evaluation was 1.28% and 
calculated for each compartment interreader CVs were 
0.97% for PAT, 2.68% for MF, 1.59% for LF, 2.91% for 
MT, and 1.77% for LT. The intra-reader reproducibility for 
image segmentation over all compartments for UTE T2* 
evaluation was 0.56% and for each compartment: 1.16% 
for PAT, 0.74% for MF, 0.79% for LF, 1.44% for MT, and 
2.35% for LT.

Discussion

This pilot study demonstrated that T2*-UTE cartilage map-
ping is a useful technique to assess differences in cartilage 
composition of the deep calcified cartilage layer with high 
scan-rescan reliability and high inter- and intrareader reli-
ability. UTE T2* measurements of the deep cartilage layer 
were consistently lower in subjects with T2DM compared 
with healthy controls, indicating increased mineralization 
of this layer. Independent of diabetic status, lower ABI val-
ues, reflecting peripheral arterial disease, were also signifi-
cantly associated with lower UTE T2* measurements of the 
deep calcified cartilage layer.

Different pathophysiological pathways are considered to 
contribute to the acceleration of joint degeneration in sub-
jects with T2DM. A unifying feature of all pathways is that 
elevated glucose levels cause local and systemic toxicity.18 
Rosa et  al.26 observed that degenerated OA chondrocytes 
lack the ability to downregulate their glucose transporter, 
leading to increased accumulation of glucose. This promotes 
production of reactive oxygen species, in turn leading to 
accelerated cartilage degeneration.27,28 In addition, the 
higher glucose levels may cause accumulation of advanced 
glycation end products, and increased systemic inflamma-
tion, further promoting cartilage degeneration.18,29-33

In comparison to nondiabetic controls, our study results 
showed that mean T2*-UTE values of the deep cartilage 
layer were consistently lower in subjects with T2DM, likely 
indicating increased mineralization of this layer. The bio-
logical mechanisms linking accelerated cartilage loss and 
increased mineralization of the deep cartilage layer are 
unclear. One hypothesis is based on the theory that increased 
mineralization of the deep subchondral cartilage layer rep-
resents a short-term functional adaptation to protect the 
hyaline cartilage but precipitates eventual cartilage loss in 
the long term.16 Moreover, dystrophic calcifications also 
occur as a result of tissue damage due to injury.34 Another 
hypothesis is based on the flow of nutrients and oxygen: as 
the articular cartilage has no direct blood supply and relies 
on perfusion from either the synovial fluid or subchondral 
vessels, increased mineralization of the deep cartilage layer 
may inhibit the supply of oxygen and nutrients from the 
subchondral bone to the cartilage plate, resulting in subse-
quent cartilage damage.35 A study by Wang et al.36 exam-
ined the effects of nutrition deprivation from either the 
subchondral bone or the synovial fluid on cartilage degen-
eration in rabbits. Interestingly rabbits with loss of nutrition 
from the synovial fluid had more severe cartilage damage 
after 8 weeks compared to rabbits with loss of nutrition 
from the subchondral bone, indicating that synovial fluid 
could to be the dominant nutrition source.36 Another study 
by Guillen-Garcia et al., analyzing cartilage fragments used 
for autologous chondrocyte cultures, found that chondro-
cytes isolated from cartilage fragments still attached to the 
subchondral bone were more viable compared with chon-
drocytes from loose cartilage fragments not attached to the 
subchondral bone.37 Therefore, likely both nutrition path-
ways are important for cartilage health.

In addition to impaired glucose tolerance, vascular 
pathologies are another component of the metabolic OA 
phenotype18 and were previously found to be associated 
with knee OA, independent of obesity.38 Lo et al.39 found 
higher systolic blood and pulse pressure, a phenomenon 
attributed to arterial stiffness, aortic stiffness, and endothe-
lial dysfunction was associated with radiographic knee OA. 
Hussain et al.40 measured the caliber of retinal arterioles to 
assess microvascular health in patients with incident knee 

Table 4. A ssociation of Ankle Brachial Index and Mean  
UTE T2* Values.

Mean UTE T2* Values
Ankle Brachial Index, 
Coefficient (95% CI) Pa

Global knee UTE 12.3 (3.3, 21.4) 0.011
PAT UTE 15.2 (3.2, 27.1) 0.017
MT UTE 9.8 (1.0, 18.6) 0.031
LT UTE 3.6 (-4.4, 11.6) 0.351
MF UTE 14.9 (-3.6, 33.5) 0.106
LF UTE 18.8 (3.3, 34.3) 0.021

UTE = ultrashort echo time–enhanced; PAT = patella; MT = medial 
tibia; LT = lateral tibia; MF = medial femur; LF = lateral femur.
aMultivariable linear regression adjusting for race and diabetic status. 
Numbers are given as predicted mean values (95% confidence intervals) 
(milliseconds).
bSignificant results (P < 0.05) are in boldface.
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arthroplasties for knee OA and found that those with arthro-
plasties had a narrower arteriolar caliber compared to those 
without arthroplasties. Interestingly, we also found reduced 
ABI to be associated with increased mineralization of the 
deep cartilage layer, independent of diabetic status. While 
the ABI is not a direct measure of vascular pathology at 
the site of the joint, a low ABI generally reflects large ves-
sel, peripheral arterial disease and is typically related to 
increased arterial calcifications.35 Since we found increased 
mineralization of the deep cartilage layer in subjects 
with T2DM, a disease inherently linked to microvascular 
pathologies,41 and increased mineralization in those with 
reduced peripheral large vessel vascular health, this sug-
gests that the increased mineralization could be a conse-
quence of micro- and macrovascular disease and potentially 
related to ischemic episodes in the subchondral bone.

We acknowledge that our study has limitations. As this 
is a pilot study, the number of study subjects was limited 
(n = 20), however, we found significant results even in this 
small cohort of study subjects. Moreover, since the deep 
cartilage layer consists of a relatively confined area of the 
cartilage, we specifically assessed how UTE T2* measure-
ments compared in subjects who were scanned, reposi-
tioned and scanned again and evaluated inter- and intrareader 
reproducibility for the UTE T2* segmentations. As we had 
excellent scan-rescan, inter-, and intrareader reproduc-
ibility, arguably UTE T2* segmentations of the deep carti-
lage layer are a robust approach to assess compositional 
differences of the deep cartilage layer. Also, we had no 
histopathological correlation. Further studies involving his-
topathological analysis would be of interest. However, 
these study types are challenging in subjects with no or mild 
OA, since human specimens are typically acquired from 
subjects undergoing joint replacement surgery. It should be 
noted that previous studies found racial differences using T2 
cartilage relaxation times to measure cartilage composition.42,43 
While this association has not specifically been shown for 
T2*-UTE, it could have influenced our results, since the 
distribution of race was significantly different in the T2DM 
cohort compared with the control cohort. However, by 
adjusting all analyses for race, we aimed to minimize con-
founding caused by this factor.

Overall, our study shows that UTE cartilage T2* map-
ping can assess the biochemical composition of the deep 
subchondral cartilage layer with high scan-rescan reliability, 
and high inter- and intrareader reliability. Furthermore, this 
is the first study to demonstrate that the deep cartilage layer 
is more mineralized in subjects with T2DM and in subjects 
with impaired vascular health. This could be an important 
pathophysiological pathway contributing to accelerated car-
tilage loss, possibly by inhibiting the flow of oxygen and 
nutrients from the subchondral bone to the cartilage. Further 
large-scale, longitudinal studies are warranted to study the 

association between mineralization of the deep cartilage 
layer and longitudinal cartilage degeneration.
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