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ABSTRACT

Unlike the simplified procedure for characterizing conventional construction materials such 

as steel, mechanical characterization of pultruded composites requires a more sophisticated 

multi-scale analysis.  This is due to several reasons including:  (i) the orthotropic nature of 

each lamina that requires identification of several engineering constants and strength 

parameters and (ii) pultruded composites are not precisely laminated structures, and (iii) 

experimental characterization of lamina mechanical properties are tedious and expensive. In 

this paper, analytical and numerical homogenization methods are proposed to effectively 

simulate the pultruded lamina macroscopic properties.  In this study, a continuum damage 

model was implemented via user material subroutine to model fiber failure, while the Mohr-

Coulomb plastic criterion is employed to model the matrix damage and the cohesive surfaces 

reflecting the relationship between traction and displacement in order to simulate the fiber-

matrix interface.  Tensile, compressive, and shear performances were experimentally 

studied to validate the results of the proposed theoretical and numerical approaches.  Results 

of this study indicated that both theoretical, numerical prediction values agreed well with 

Xin, H., Mosallam, A., Liu, Y., Veljkovic, M., & He, J. (2019). Mechanical characterization of a unidirectional pultruded composite lamina 
using micromechanics and numerical homogenization. Construction and Building Materials, 216, 101-118.
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experimental verification results indicating that the proposed methodologies can provide a 

reference for structural design and construction of pultruded composite structures.

Keywords: Pultruded unidirectional GFRP lamina, micro-mechanic analysis, numerical 

homogenization, engineering constants, Mohr-Coulomb plastic criterion.

1. INTRODUCTION

Deterioration of existing structures built with traditional materials such as concrete, steel and 

timber is considered to be a major challenge for civil engineers. Fiber Reinforced Polymer 

(FRP) composites are one of the promising alternative materials that potentially can solve this 

problem with its unique fetaurs such as its high-strength-to-weight ratio, and high resistance 

to harsh environments [1–5]. One of the popular types of composites that have been used by 

civil engineers for the past three decades or so is manufactured through the pultrusion 

continuous manufacturing process. Pultruded glass fiber reinforced polymer (GFRP) 

composites could meet the established design criteria with reasonable cost and are often 

recommended for newly constructed bridges and buildings [6–9]. Typical pultruded 

composites profiles used in civil engineering application includes I- and H-shaped girders 

[1,2], double web beam [10], GFRP-concrete hybrid decks [3,4,11] and modular bridge decks 

[12,13].

Different from traditional regulated specifications of reinforced concrete and steel, GFRP 

composites are inhomogeneous, anisotropic and viscoelastic and should be viewed and 

analyzed at different levels and on different scales (micro-mechanics and macro-mechanics). 

The importance of adopting a multi-scale analysis in determining mechanical properties of 
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pultruded GFRP laminates has been recommended in previous studies [e.g. 12, 13].  

Although several investigations on carbon fiber reinforced polymer (CFRP) for aerospace 

structures were conducted, results and outcomes of such studies are not generally applicable 

to pultruded composites that are commonly used in construction applications.  One of the 

known difficulties in accurately analyzing and modeling pultruded composites [14] is that 

pultruded composites are not precisely laminated structures due to the nature of the pultrusion 

process.  For this reason, analytical modeling that considers the nature of composites 

produced by the pultrusion manufacturing process is required in order to accurately identify 

such properties.  Details for calculating lamina thickness, laminates fiber volume fraction 

and engineering constants of each lamina were reported previously by authors [12, 13].  In 

addition, and in order to accurately obtain lamina strength, laboratory tests to characterize the 

strength of unidirectional lamina strength are needed.  However, experimental approach is 

usually impractical due to several reasons including: (i) each lamina is orthotropic that 

requires measuring several strength parameters including: longitudinal tensile strength, XT, 

longitudinal compressive strength, XC, transverse tensile strength, YT, transverse compressive 

strength, Yc, and in-plane shear strength, S., (ii) as stated earlier, pultruded composites are 

not precisely laminated in the true sense due to the nature of the pultrusion process and it is 

physically almost impossible to extract experimentally mechanical properties of an individual 

lamina (refer to Fig. 1).  For this reason, micromechanics approach, the technique used to 

obtain approximate values of composite material, are adopted in this study, where accurate 

homogenization models is used to predict the equivalent properties of pultruded composites. 

Micromechanics models can be classified into analytical and numerical.  The analytical 

methods include: empirical, semi-empirical, and strictly-analytical mode.  Many analytical 
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techniques of homogenization are based on equivalent Eigen-strain method [15]. The Reuss 

model [15] (also called rule of mixtures), assumes that the strain tensors in the fiber, matrix 

and composites are the same.  The longitudinal elastic modulus E1 and longitudinal 

Possion’s ratio v12 are derived and computed this way in the rule of mixtures formulas. The 

Voigt model (also called inverse rule of mixtures), assumes that the stress tensors in the fiber, 

matrix and composite are the same.  The transverse elastic modulus E2 and in-plane shear 

modulus G12 etc. are derived and computed this way in the rule of mixtures formulas.  

Considering initial imperfections, the formulas of rule of mixtures were improved by 

introducing several empirical parameters [16].  If the composite could be approximated as 

having periodic microstructure, then Fourier series could be used to estimate all the 

components of the stiffness tensor of a composite. Explicit formulas for a composite 

reinforced by long circular cylindrical fibers, which are periodically arranged in a square 

array, are adopted by Barbero et al. [17].  In addition to elastic engineering constants 

prediction, the rule of mixtures formula [15, 18, 19] was used to predict lamina’s longitudinal 

tensile strength XT and longitudinal compressive strength XC, where it assumed that the fibers 

and the matrix behaved linearly up to failure and the fibers were brittle and stiff with respect 

to the matrix, leading that the longitudinal tensile strength is controlled by the fiber strength. 

The longitudinal compressive failure mode [15, 18] was also assumed to be triggered by fiber 

micro-buckling when individual fibers buckle inside the matrix.  The transverse tensile 

strength of composites [18, 20] is controlled by matrix ultimate strength and it is lower than 

the matrix strength by a factor (SRF) known as strength-reduction factor, which depends on 

the relative properties of the fibers and the matrix and their volume fractions. The transverse 

compressive strength could be obtained by the strain-magnification factor method [21, 22] or 
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empirical formulas [23, 24]. Compared with analytical micromechanics formulations [25], 

numerical homogenization simulation could accurately consider the geometry and spatial 

distribution of the phases, and also could precisely estimate the propagation of damage to 

accurately predict the failure strength. Numerical homogenization method [26] is emerging 

methodology and is considered to be an effective modeling tool to analyze advanced 

composites, where the macroscopic properties of lamina could be acquired by means of the 

numerical modeling of deformation and failure of microstructure model, a representative 

volume element (RVE). Results of several research studies on nonlinear mechanical response 

of FRP lamina simulation have been reported. For example, Gonzalez and LLorca [25] 

analyzed the mechanical response of a unidirectional FRP subjected to transverse 

compression. The results showed that transverse compression behaviors of unidirectional 

FRP were mainly controlled by interface strength and the matrix yield strength while the 

failure modes were controlled by by the nucleation of interface cracks or by the formation of 

matrix shear bands.  Vaughan and McCarthy [27] investigate the effect of fiber–matrix 

debonding and thermal residual stress on the transverse damage behavior of unidirectional 

FRP. Results of their study indicated that the fiber-matrix interface strongly affected the 

transverse strength and that the interfacial strength is one of the major controlling factors of 

the overall transverse strength.  Soni et al. [28] developed a three-dimensional 

micromechanical finite element model to predict mechanical behavior and damage response 

of composite laminates, where the macroscopic stress-strain fields were obtained using 

Gauss’s theorem, in conjunction with the Hill-Mandal strain energy equivalence principle.  

The predicted results from the proposed model, which could be used to study effects of 

matrix friction angle and cohesive strength of the fiber-matrix interface on global material 
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response, and also could be used to predict initiation and propagation of the fiber-matrix 

interfacial decohesion and propagation at every point in the laminate, were found to be in 

good agreement with experimental results.  Romanowicz [29] employed the numerical 

homogenization methods to predict the strength of unidirectional FRP lamina under a 

combination of the transverse compression and axial tension. The failure modes mainly 

presented fiber breakage, fiber/matrix debonding and matrix plastic deformation. The 

proposed model is verified against an analytical solution and experimental data.  Results 

showed that the numerical results agreed better with experimental data than analytical model. 

Melro et al. [30, 31] used a pressure-dependent, elasto-plastic thermodynamically consistent 

damage mode to simulate the matrix and used cohesive elements to model the interface 

between matrix and fibers. Their results showed that damage initiation is mainly due to 

interfacial damage under both transverse tension and shear loadings and that the damage 

initiation under longitudinal shear load is mainly due to the damage of epoxy matrix.  Ullah 

et al. [32] developed a computational homogenization framework to predict the nonlinear 

mechanical response of FRP composites. The accuracy and performance of the computational 

framework are demonstrated with a variety of numerical examples. 

In order to extend the use of pultruded GFRP profiles in bridge engineering and provide basic 

design data of pultruded unidirectional GFRP lamina, analytical and numerical 

homogenization methods were used to effectively model the macroscopic properties of 

lamina.  Continuum damage model implemented via user material subroutine is employed to 

simulate fiber failure, Mohr-Coulomb plastic criterion is employed to simulate the matrix 

damage and the cohesive surfaces reflecting the relationship between traction and 

displacement at the interface were employed to simulate the fiber-matrix interface. Tensile 



7 / M38

performance, compressive performance and shear performance have been experimentally 

studied to validate the theoretical and numerical results.

2. ANALYTICAL MICROMECHANICS EVALUATION

It is quite difficult and expensive to fabricate pultruded lamina accompany with the 

pultrusion profiles fabrication for the ASTM materials characterization standard tests in order 

to precisely obtain elastic engineering constants and strengths of each lamina.  Based on 

information obtained from in-depth literature review conducted in this study, it is believed 

that there is a dearth of references involving pultruded FRP profiles in civil engineering 

application with multiscale prediction in both engineering constants and ultimate capacity. 

2.1 Lamina Engineering Constants 

The engineering constants of a unidirectional lamina include longitudinal elastic modulus E1, 

transverse elastic modulus E2, in-plane shear modulus G12, transverse shear modulus G23, 

longitudinal Poisson’s ratio ν12 and transverse Poisson’s ratio ν23. The detailed equations to 

predict lamina engineering constants were listed in Appendix A. 

2.2 Lamina Ultimate Strength

The ultimate strength of a pultruded unidirectional lamina includes longitudinal tensile 

strength F1t, transverse tensile strength F2t, longitudinal compressive strength F1c, transverse 

compressive strength F2c and in-plane shear strength S.  Detailed equations to predict 

ultimate strength were listed in Appendix B.  It is also noted that the purpose of predicted 

strength is to provide initial coarse reference in the finite element simulation in the fact that 

the constitutive law of sub-materials and interface between sub-materials were much 

complicated.
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3. COMPUTATIONAL HOMOGENIZATION

As compared with analytical micromechanics formulations [25], numerical homogenization 

simulation could accurately consider the geometry and spatial distribution of the phases, and 

also could precisely estimate the propagation of damage to accurately predict the failure 

strength. 

3.1 Computational Homogenization and Periodic Boundary Condition

The link between micro-scale and macro-scale behavior could be established based on Hill-

Mandel computational Homogenization method. The macro-scale Cauchy stress  is ij

obtained by averaging the micro scale Cauchy stress, , in the unit cell domain, expressed as ij

Eq. 1. [26]: 

                           (1)1
ij ijd 



 
 

where:  is the macro-scale Cauchy stress,  is the micro-scale Cauchy stress,  is ij ij 

the domain of the unit cell.  The unit cell problem could be solved for the leading order 

translation-free micro-scale displacement.  The micro-scale displacement  is  ,f
iu x y

expressed in the following form [26]:

                    (2)     1, ,f c
i ij j iu x y y u x y 

where: x is the macro-scale position vector in the macro-scale domain,  is the micro-scale y

position vector in the unit cell domain;  is the strain tensors in the macro-scale domain, c
ij
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is the perturbation displacement of the micro-scale.    1 ,iu x y

If two nodes, M and S, located at the opposite faces of the RVE model, with M and S being 

the master and slave nodes respectively.  The fine scale displacement at the two nodes are 

given as [26] Eq. (3) and Eq. (4) based on expression in Eq.(2). 

                   (3)     1, ,f M c M M
i ij j i ju x y y u x y 

                    (4)     1, ,f S c S S
i ij j i ju x y y u x y 

where: , and  are the fine-scale coordinates.  Considering the periodic boundary My Sy

conditions [26] in the unit cell domain, gives:

                     (5)       1 1, = ,M S
i j i ju x y u x y

Thus, above two equations yield to the following relation [26]:

               (6)     , ,f M f S c M S
i j i j ij j ju x y u x y y y  

This could be implemented by so called “mixed boundary conditions” via constraint 

equations, is expressed by the following equations [26,33]: 

                    (7)  , 0
Y

f c
i ik k j Yu x y y N d 


 

                      (8) ,f c
i ik k ju x y y N Tol  

where:  is the unit normal to the unit cell boundary . jN 

y

3.2 Material Constitutive Model 

Typical RVE model in the case of unidirectional GFRP composites employed in this paper is 

shown in Fig. 2, that consists of a fiber embedded in a matrix polymer.  The macro-scale 

GFRP material behavior could be obtained by averaging micro-scale stress distribution and 
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considering individual sub-materials components constitutive law and fiber-matrix interface 

de-bonding.  Each constitutive model of sub-material is detailed explained as below section. 

3.2.1 Fibers:  Continuum damage material model was implemented via the user-material 

subroutine UMAT of ABAQUS/Standard [34] to simulate the fiber damage. The stress and 

strain relationship [12] was expressed as follows:

                      (9) 1ij ijkl klw L  

where：w is the damage variable. Once a damage initiation is detected, further loading will 

cause degradation of material stiffness. The reduction of the stiffness coefficients depended 

on damage variables.  The evolution of damage variable, w, is assumed to be governed by 

equivalent strain .  Now, considering the brittle nature of glass fibers, the glass fibers is ̂

assumed to be fully damaged when the equivalent strain, , increases to a value larger than ̂

the defined strain threshold value . The damage variable is given as following relationship:t u
f

                      (10)   
max

ˆ0
ˆ

ˆ

t u
f

t u
fw

 


 

   


where:  is the maximum value of damage variable and is assumed to be 0.999 in this maxw

manuscript to avoid convergence problems.  The equivalent strain, , is defined as follows:̂

                           (11)  
3

2

1

2ˆ
3 i

i
 



 

where：  is the principal strain in each direction.  Note that the shear strain is zero in the i

principal strain coordinate.  The operator “< >” is defined in order to consider the difference 

between tensile damage and compressive damage of glass fibers.  The effective principal 
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strain, , in each direction is given as following relationship:i

                         (12)
0

=
0

i
i

i

 


 


 

where: the material parameter is defined as the ratio of the ultimate tensile strain to the 

ultimate compressive strain.

                             (13)
t u t u

f f
c u c u

f f

 


 
 

where:   and  is ultimate tensile and compressive strength of fibers. t u
f c u

f

The yield function that predicts damage initiation of glass fibers is expressed by the following 

relation:

                        (14) ˆ ˆ, 0g r r   

The loading functions obey the loading-unloading conditions of the Karush–Kuhn–Tucker 

conditions, and are expressed in the following form [14]:

， ，                 (15)0   ˆ, 0g r   ˆ, 0g r  

Materials models with softening behavior and stiffness degradation generally have 

convergence difficulties in implicit finite element method.  In order to alleviate convergence 

difficulties, a viscous regularization scheme is adopted, and a viscous damage variable is 

defined by the evolution equations [14]:

                           (16)1 ( )v vw w w


 

where:  is a viscosity coefficient representing the relaxation time of the viscous system 
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and  denotes regularized damage variable. vw

The finite element equations obtained for this model by discretizing the virtual work 

equations are in general nonlinear, and the Newton–Raphson technique is used to solve the 

resulting system of nonlinear equations in ABAQUS [34].  It is important to note that the 

material tangent constitutive tensor is computed correctly to ensure robustness of the 

Newton–Raphson method. The material tangent constitutive tensor could be computed from 

the following equation:

                         (17) 1ij v
ijkl

kl

w L




 



The detailed implementation algorithm is summarized in Table 1. 

3.2.2 Polymer Matrix:   The polymeric matrix was assumed to be behaved as isotropic 

materials. The plastic behavior of polymer matrix was assumed to be governed by the Mohr-

Coulomb criterion [34,35]. The Mohr-Coulomb criterion assumes that the yielding happens 

when the shear stress along one specific plane reaches a critical value, which is related to the 

normal stress . It is expressed as:

                        (18)tanc   

where: stands for the cohesion of the matrix materials,  stands for the friction angle of c 

the matrix materials.  The cohesion, c, stands for the failure stress under pure shear while 

the friction angle  is used to consider the effects of the hydrostatic stress on yield stress.  

The values of both material parameters could be determined from its tensile and compressive 

strengths,  and expressions as follow:mt mc
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                         (19)
cos2

1 sinmt c 





                         (20)
cos2

1 sinmc c 





The Mohr-Coulomb yield surface can then be expressed as [34]:

                    (21)tan 0mcF R q p c   

where: 

is the hydrostatic stress：p

                             (22)
1
3 ij ijp   

 is the Mises equivalent stress:q

                             (23)
3
2 ij ijq S S

is the deviatoric stress defined as:ijS

                         (24)ij ij ijS p  

 is defined as the Mohr-Coulomb deviatoric stress measure defined as [34]:mcR

       (25)1 1sin cos tan
3 3 33 cosmcR   


           
   

 is the deviatoric polar angle defined as:

                         (26) 
3

cos 3 r
q

 
   

 

is the third invariant of deviatoric stress:r

                       (27)
1/39 :

2 ij ij ijr S S S   
 

A non-associated flow role was employed to compute the directions of plastic strain in the 

stress space in ABAQUS [34]. The plastic strain is given in the following expressions:
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                             (28)p
ij

ij

G
g











                             (29)
1 ij

ij

G
g

c








The flow potential, G, is assumed as hyperbolic function [34]:

                 (30)   2 2
0= tan tanmwG c R q p   

    (31)
   

     

22 2

2 2 2 2 2

4 1 cos 2 1 3 sin
6cos2 1 cos 2 1 4 1 cos 5 4

mw

e e
R

e e e e e




    


       

                          (32)3 sin
3 sin

e 







where: is dilation angle,  is the meridional eccentricity parameters,  is the initial   0c

cohesion when the plastic strain is zero,  is the parameter of the deviatoric eccentricity. e

3.2.3 Fiber-Matrix Interface:  The cohesive surfaces reflecting the relationship between 

traction and displacement at the interface were employed to simulate the fiber-matrix 

interface. As is shown in Fig. (3-a), the bilinear traction-separation model, which assumed to 

be linear elastic (point “a”) followed by the damage initiation (point “b”), evolution of 

damage (point “c”), and finally the fully damaged state (point “d”), is employed in this paper.  

In the elastic stage [12,13], the traction increased linearly along the displacement with an 

initial slope of K0.  At point “b”, the damage of cohesive element is initiated.  The cohesive 

element is always subjected to complicated loading condition; the quadratic stress failure 

criterion [34] is used to evaluate the initial damage, as is shown in Fig. (3-b). 

                       (33)

2 2 2

0 0 0 1n s t

n s t

t t t
t t t

     
       

    



15 / M38

where: tn , ts and tt are traction components related to pure modes I, II and III, , and  0
nt

0
st

0
tt

are interfacial strength of pure modes I, II and III. 

In the damage evolution period, the interfacial stiffness degraded from initial K0 to (1-d) K0, 

where d is a damaged variable.  The Benzeggagh-Kenane fracture criterion (BK Law) 

described in Eq. (34) [34, 36] is particularly used to predict damage propagation of mixed-

mode loadings in terms of the critical fracture energies during deformation purely along the 

first and the second shear directions are the same. 

                  (34) C C C C s t
n s n

n s t

G GG G G G
G G G


 

      

where: Gn, Gs, and Gt are the corresponding energy release rates under pure modes I, II, and 

III, the additional subscript “C” denotes critical case, which can be determined based on a 

standard fracture toughness test and η is a material parameter. 

4 EXPERIMENTAL PROGRAMS AND RESULTS

4.1 Properties of Fiber and Resin

Tables 2 and 3 present a summary of mechanical properties of E-glass fibers and epoxy resin, 

respectively [37]. 

4.2 Processing Method

As shown in Fig. 4, a typical pultrusion production line consists mainly of the following 

components [38]: (i) roving/fabric stacked on creels, (ii) pre-forming guide plate, (iii) resin 

impregnator, (iv) forming & curing die, and (v) a pulling system and cutting system. Glass 

fibers rovings are guided by a pre-forming plate from a creel into a resin impregnation tank 

for wetting the reinforcements with polymeric matrix. The pre-forming guide plate guides 
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positions of reinforcements in the designed locations in the cross section of profiles.  The 

wetted reinforcements are then travels through heated die to cure epoxy resin drawn by 

pulling system. The resin matrix progressively changes from liquid to gel and finally to solid.  

After performing and shaping, the composites are pulled out and cut off based on required 

length.

4.3 Density and Fiber Volume Fraction Tests

In this study, three specimens with nominal dimensions of 25.0 mm × 25.0 mm × 4.0 mm 

were fabricated to investigate the fiber fraction based on calcination methods [39] and density 

[40].  The specimens were weighed to acquire composite destiny before burning in an 

incinerator.  After burning, the remaining consists only of fiber that was weighed to 

determine the fiber volume fraction of each specimen. Table 4 presents a summary of results 

of these tests. As shown in this table, the average density of the pultruded composite lamina 

is 1920.10 kg/m3 with an average fiber volume fraction of 56.2%. 

4.4 Test Specimens

The tensile performance, Poisson’s ratio, compressive performance and in-plane shear 

performance of pultruded lamina have been experimentally investigated.  As shown in 

Fig.5, five specimens were tested under tension load parallel to fiber direction and five 

specimens were tested under tension load perpendicular to fiber direction in order to measure 

the ultimate tensile strength, elastic modulus and the Poisson’s ratio based on procedures 

described in reference [41].  The typical dimensions of the longitudinal tensile specimens 

are 230.0 mm× 15.00 ×4.0 mm, while the dimensions of the transverse tensile specimens is 

170.0 mm×25.0 mm×4.0 mm.  In addition, five specimens were tested under compression 

along the fiber direction and another five specimens perpendiculars to the fiber direction [42] 
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were also tested under compression (refer to Fig. 6).  The average dimension of the 

compressive specimens is 110.0 mm×8.7.0 mm×4.0 mm with an effective compressive length 

of 10.0 mm.  A total of five specimens were also prepared based on procedures described in 

reference [43] in to measure the in-plane shear strength and modulus of each specimen (refer 

to Fig. 7).  The average dimension of the in-plane shear specimen is 76.0 mm×56.0 mm×4.0 

mm (see Fig. 7).  The loads and displacements were measured by a calibrated universal 

testing machine (UTM) load cell and displacement sensor, while strains were measured using 

strain gauges during loading process. 

4.5 Experimental Results

Table 5 presents a summary of experimental results. In this table, SD is the standard 

deviation, COV is the coefficient of variability, Eav is the average elastic modulus, E95% is the 

elastic modulus with 95% reliability, Uav is the average ultimate strength, and U95% is the 

ultimate strength with 95% reliability. 

The average longitudinal tensile strength, transverse tensile strength, longitudinal 

compressive stress, transverse compressive stress, and the in-plane shear stresses obtained 

from the tests are 1146.03MPa, 47.45MPa, 1014.34MPa, 168.40MPa and 48.50MPa, 

respectively. The average experimental values of longitudinal tensile elastic modulus, 

transverse tensile elastic modulus, longitudinal compressive elastic modulus, transverse 

compressive elastic modulus and in-plane shear modulus are 47.17GPa, 16.18GPa, 

55.02GPa, 16.74GPa and 5.04GPa, respectively.  Test results also indicated that the average 

longitudinal and transverse Poisson’s ratio are 0.265 and 0.114, respectively. Test results 
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showed that the experimental value of the in-plane shear strength is smaller than the predicted 

value obtained in previous studies [12–14].  This variation may be attributed to the fact that 

the behavior of woven reinforced lamina is different from unidirectional GFRP lamina.  For 

this reason, further research is underway to gain in-depth understanding of the in-plane shear 

behavior of such laminates. 

4.6 Resistance Factor

The load and resistance factor design (LRFD) protocol is commonly adopted in the bridge 

engineering.  According to LRFD design method, the resistance of the structure and the 

applied loads are considered separately.  The design should satisfy following inequality 

[44]. 

                      (2)
1

+
LN

D D j j
j

F L L


    

where: F is material strength, Φ is resistance factor, αD is dead load factor, LD is dead load, αj 

is live load factors, Lj is other loads including live, pressure, thermal, acceleration etc., and NL 

is number of other types of design loads. 

Now, assuming that the applied stress is deterministic, the resistance factor could be obtained 

for a given reliability relation as follows [15]:

                                        (3)1 1F F
F

F

z zC  
    



where: μF is average strength, is standard deviation (SD), CF is coefficient of variability F

(COV), z is variable in terms of standard normal Gaussian probability density function. 

The results of resistance factors are summarized in Table 6.  If the required reliability is 



19 / M38

95%, the resistance factor of the elastic modulus will then falls between 0.84 and 0.90, and 

the corresponding ultimate strength resistance factor will fall in the range of 0.82 to 0.97.  In 

case that the required reliability is 99%, the elastic modulus resistance factor of will fall 

between 0.77 and 0.86 while the ultimate strength resistance factor falls within a range 

between 0.74 to 0.95.  Therefore, an ultimate strength resistance factor of 0.8 for 95% 

reliability and 0.7 for 99% reliability on the safety side is adopted. 

5. COMPARISONS AND DISCUSSION

5.1 Engineering Constants Comparisons

Using Eq. A.1.1 of Appendix A, the predicted density of composites is 1,946.8 kg/m3, and the 

difference between theoretical value and experimental value is within 3%. 

Figure 8, shows a comparison between analytical, numerical and experimental engineering 

constants results. It is noted that all the predicted values of both the longitudinal elastic 

modulus E1 and longitudinal Poisson’s ratio, v12, agreed well with the average experimental 

results and that the test results fall within 95% reliability, with a difference of about 10%.  

For the transverse elastic modulus, E2, the predicted value obtained from the improved roles 

of mixture and numerical homogenization agreed well with the average experimental results 

and the test results fall within a 95% reliability.  However, predicted values obtained from 

other methods tended to be smaller than average test results.  With respect to the in-plane 

shear modulus, the predicted value, except of the case of roles of mixture, agreed well with 

both the average experimental results that test results fall within 95% reliability.

5.2 Ultimate Strength Comparisons

5.2.1 Longitudinal Tensile Strength:  Figure 9 shows comparisons between experimental 
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and theoretical ultimate strength and stress-strain relationship for specimens subjected to 

longitudinal tensile loading.  As shown in Fig. 9-a, the predicted ultimate strength values 

obtained from the “roles of mixture” equations (Eqn. B.1.1 of Appendix B), and the 

“numerical homogenization” approach both agreed well with experimental results.  As 

shown in this figure, the predicted value obtained from the “roles of mixture” approach is 

10% larger than the average experimental results but is about 14% larger than the 

experimental results with 95% reliability.  In addition, the difference between predicted 

results obtained from “numerical homogenization” approach and corresponding experimental 

results is within 7%.  Also, theoretical stress-strain relationship for specimens subjected to 

longitudinal tensile loading calculated using “numerical homogenization” agreed well with 

experimental values (refer to Fig. 9-b). 

Figure 10 presents the Mises stress, equivalent plastic strain, and damage distributions in the 

unit cell domain under longitudinal tensile loading.  As shown in Fig. 10-a, in the elastic 

stage, the fibers Mises stress are generally much larger than the matrix stresses due to elastic 

moduli differences.  One can also see that plastic strains developed gradually in the matrix 

phase and that fiber-matrix de-bonding developed gradually as the longitudinal load 

increased.  The Mises stress has a periodic distribution in both the elastic and plastic stages 

under longitudinal tensile loading, indicating that the unit cell was modeled with correct 

periodic boundary conditions based on Eqns. (7) and (8).  As shown in Fig.10-b, the 

longitudinal load reached its maximum when the fiber damage initiated, and this failure 

agreed well with the basic assumption of role of mixtures approach presented in Eqn. B.1.1 of 

Appendix B.  

5.2.2 Longitudinal compressive strength:  Figure 11 presents comparisons between 

Not clear? Please rephrase.
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theoretical and experimental ultimate strength and stress-strain relationships for specimens 

subjected to longitudinal compressive loads.  By assuming the correction factor  to be 

1.16 in the “roles of mixture” equation (Eqn. B.2.1 in Appendix B), the differences between 

predicted and experimental results are within 10%.  If a correction factor  is assumed to 

be 0.28 in the “fiber buckling method” (Eqn. B.2.2 of Appendix B), the predicted value 

would agree well with test results.  The predicted result of the “improved fiber buckling 

method” (Eqn. B.2.3 of Appendix B) agrees well with experimental results if a fiber 

misalignment standard deviation of ασ =1.15 is assumed. Also, results showed that the 

predicted value obtained from the “numerical homogenization” approach is 14% less than the 

average experimental results and 6% less than the experimental results with 95% reliability.  

As shown in Fig. 11-b, the predicted stress-strain relationship based on “numerical 

homogenization” method generally agrees well with test results. 

Figure 12 presented Mises stress, equivalent plastic strain and damage distributions in the 

unit cell domain under longitudinal compressive loading.  As is shown in Fig. 12-a, in the 

elastic stage, elastic modulus of fiber is much larger than the matrix leading to that fiber 

distributed larger Mises stress.  The Mises stress of both fiber and matrix presented periodic 

distribution in both elastic stage and plastic stage. Obvious plastic strain appeared in the 

matrix phase and fiber-matrix de-bonding occurred in the plastic stage.  As is shown in Fig. 

12-b, de-bonding between fiber and matrix interface and damage of fiber leaded to final 

failure under longitudinal compressive loading.

5.2.3 Transverse tensile strength:  Figure 13 presented ultimate strength and stress-strain 

relationship comparisons under transverse tensile loading.  The predicted value from stress 

concentration method in Eqn.B.3.1 in Appendix B, with concentration factor proposed by 
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Agarwal [18] (Eqn. B.3.2 in Appendix B) is less than experimental results while the 

difference between predicted value from stress concentration method with concentration 

factor proposed by Huang [20] (Eqn. B.3.3 in Appendix B) is within 10% under assuming 

bridge factor β as 0.70.  The predicted value based on linear fracture mechanics method 

(Eqn. B.3.6 of Appendix B) agreed well with test results if mode I critical fracture energy G1c 

is assumed to be 140.0 J/m2. Now, assuming Vυ to be 0.02, based on previous literature [15], 

the predicted value using the empirical equation is 5% larger than the average test results and 

20% larger than the test results with 95% reliability.  The predicted value from the 

“numerical homogenization” method is 1.5% less than the average experimental results and 

10.5% less than the experimental results with 95% reliability.  As is shown in Fig.13-b, the 

stress-strain relationship predicted from the “numerical homogenization” method for 

specimens subjected to transverse tensile loading agreed well with test values. 

Figure 14 presents Mises stress, equivalent plastic strain and damage distributions in the unit 

cell domain under transverse tensile loading.  As shown in Fig. 14-a, the Mises stress for 

both the fibers and the matrix exhibited periodic distribution in both the elastic stage and 

plastic stage.  The maximum Mises stress value in the elastic stage appeared in the middle 

of fibers, while the maximum Mises stress in the plastic stage occurred near the interface.  

As shown in Fig. 14-b, de-bonding between fiber and matrix interface and damage of matrix 

leaded to final failure under transverse tensile loading.  No fiber damage occurred during the 

transverse tensile loading, indicating that the transverse tensile behavior is mainly controlled 

by matrix and interface performance.  

5.2.4 Transverse compressive strength:  Figure 15 presents comparisons between 

theoretical and experimental values of both the ultimate strength and stress-strain relationship 
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for specimens subjected to transverse compressive loading.  The predicted value from the 

“strain amplification method” (Eqn. B.4.1 of Appendix B) is 10% larger than the average 

experimental value, and is 12.5% larger than the test value with 95% reliability.  However,  

the predicted result based on the empirical formula described in Eqn. B.4.2 of Appendix B is 

much less than the experimental results.  On the other hand, the predicted value from the 

“numerical homogenization” method is 2.5% larger than the average experimental results, 

and 5.5% larger than the experimental results with 95% reliability.  As shown in Fig. 15-b, 

the stress-strain relationship obtained from the “numerical homogenization” for specimens 

subjected to transverse compressive loading agreed well with test values.

Figure 16 presents the Mises stress, equivalent plastic strain and damage distributions in the 

unit cell domain under transverse compressive loading.  As is shown in Fig. 16-a, the Mises 

stress of both fibers and matrix exhibited periodic distribution and that the maximum Mises 

stress appeared in the middle of fiber in both elastic stage and plastic stage.  Also,  Fig. 16-

b shows that the damage of matrix led to the final failure under transverse compressive 

loading.  No fiber damage occurred during the transverse compressive loading, indicating 

that the transverse compressive behavior is mainly controlled by matrix plasticity.  

5.2.5 Ultimate shear strength:  Figure 17 presents comparisons between the thortical and 

experimental ultimate strength and stress-strain relationship for specimens subjected to in-

plane shear loads.  As shown in the figure, the analytical results obtained from the “fracture 

mechanics” methods is 1% less than than the average corresponding experimental value, and 

is 12.5% larger than the test value, with 95% reliability under the assumption that the mode II 

critical fracture energy, G2c, is 220J/m2.  Also, the predicted value from the “numerical 
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homogenization” approach is 1.2% larger than the average experimental results and is 18.5% 

larger than the experimental results with 95% reliability. 

Figure 18 presents the Mises stresses, the equivalent plastic strain, and the damage 

distributions in the unit cell domain for specimens subjected to in-plane shear loads.  As 

shown in Fig. 18-a, the maximum Mises stress appeared periodically at both the top and the 

bottom middle surface in the elastic stage.  The stress redistributed due to material damage, 

and the maximum Mises stress occurred in the fiber due to matrix damage.  As shown in 

Fig. 18-b, debonding between fiber and matrix interface and matrix damage led to final 

failure of specimens subjected to  in-plane shear loads.  Again, no fiber damage was 

observed during in-plane shear loading, indicating that the in-plane shear behavior is mainly 

controlled by matrix and interface performance. 

Due to the fact that the thickness of FRP plate is quite small, it is usually difficult to define 

experimentally the transverse shear behavior of composites.  For this reason,  the 

numerical homogenization approach may provide a satisfactory reference for the transverse 

shear behavior of unidirectional FRP materials.  Figures 19 show the numerical shear stress-

strain curves.  As shown in Fig. 19, one can notice a difference between the in-plane shear 

modulus and the transverse shear modulus (23-direction), while only a small difference is 

observed between the transverse shear strength (23-direction) and the in-plane shear strength 

(13-direction).  It is commonly accepted that in case of lack of sufficient material test data, 

transverse shear strength of a pultruded unidirectional GFRP lamina could be assumed to be 

the same as its in-plane shear strength value [14].The Mises stress, the equivalent plastic 

strain, and the damage distributions in the unit cell domain under transverse shear loading are 

presented in Fig. 20.    As shown in Fig. 20-a, the maximum Mises stress periodically 
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appeared in the fibers near the matrix-fiber interface in both elastic and plastic stage.  As 

shown in Fig. 20-b, damage of the matrix led to the final failure under transverse shear 

loading. No fiber damage occurred during in-plane shear loading, indicating that the 

transverse shear behavior is mainly controlled by matrix performance. 

6. CONCLUSIONS

Analytical and numerical homogenization methods were successfully used in this study to 

effectively model the macroscopic properties of pultruded composite unidirectional GFRP 

lamina. Five identical tests of each tensile, compressive and shear performances were 

experimentally evaluated in order to validate the theoretical and numerical results. Based on 

the results of this study, the following conclusions are drawn:

 In terms of unidirectional GFRP lamina with fiber volume fraction of 56.2%, the 

average density is 1920 kg/m3. Following mechanical properties are obtained:

-  The average longitudinal tensile strength is 1146 MPa, 

- The transverse tensile strength is 47 MPa, 

- The longitudinal compressive stress is 1014 MPa, 

- The transverse compressive stress is 168 MPa and 

- The in-plane shear stress is 48 MPa, 

- The average longitudinal tensile elastic modulus is 47 GPa, 

- The transverse tensile elastic modulus is 16 GPa, 

- The longitudinal compressive elastic modulus is 55 GPa, 

- The transverse compressive elastic modulus is 16 GPa  

- The in-plane shear modulus is 5 GPa 
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- The average longitudinal Poisson’s ratio 0.265

- The transverse Poisson’s ratio 0.114.

 Numerical homogenization is necessary for an accurate prediction of the non-linear 

behavior.  The continuum damage model, implemented via user material subroutine, 

was employed to simulate fiber failure. Mohr-Coulomb plastic criterion was used to 

simulate matrix damage. The cohesive surfaces, reflecting the relationship between 

traction and displacement at the interface,  were employed to simulate the fiber-

matrix interface. The differences between numerical homogenization and average 

experimental results of longitudinal tensile, transverse tensile, transverse compression 

and in-plane shear is within 5% while the compressive strength of numerical 

homogenization is 14% less than the average experimental results. A good correlation 

between numerical homogenization results and test results was achieved.  

 The damage of unidirectional GFRP lamina subjected to longitudinal tensile and 

compressive loads is controlled mainly by fiber damage. The transverse tensile and 

compressive stresses, in-plane and shear behavior of unidirectional GFRP lamina is 

controlled by the matrix and fiber-matrix interface damage.
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APPENDIX A: Prediction of Engineering Constants

The engineering constants of a unidirectional lamina include longitudinal elastic modulus E1, 
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transverse elastic modulus E2, in-plane shear modulus G12, transverse shear modulus G23, 

longitudinal Poisson’s ratio ν12 and transverse Poisson’s ratio ν23.

A.1 Roles of Mixtures:  All engineering constants could be approximated based on roles of 

mixtures [19] as follows: 

c f f m mV V     A.1.1
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where: ρf is density of fiber, ρm is density of resin, Ef1 is longitudinal elastic modulus of fiber, 

Ef2 is transverse elastic modulus of fiber, Vf is fiber volume fraction, vf  is Poisson’s ratio of 

fiber, Em is elastic modulus of matrix, Vm is resin volume fraction, vm is Poisson’s ratio of 

resin. Gf is shear modulus of fiber, Gm is shear modulus of resin.

A.2 Improved Roles of Mixtures:  To account for initial imperfections, the formulations of 

roles of mixture were improved as following [16]:
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A.3 Analytical Homogenization Method

The lamina’s engineering constants could be explicitly obtained in terms of the coefficients 

of the stiffness tensor [17,45]. 
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where:  (i=1…3, j=1…3) is coefficients of the stiffness tensor.  It is assumed that the *
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composite has periodic microstructure in a square array, and that the Fourier series could be 

used to estimate all the components of stiffness tensor.  In terms of square symmetrical 

microstructure, the stiffness tensor has six unique coefficients [17] given as follows:
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APPENDIX B: Prediction of Ultimate Strength

B.1 Ultimate Longitudinal Tensile Strength:  By assuming that all the fibers have the 

same tensile strength, both the fibers and the matrix behave linearly up to failure, the fibers 

are brittle with respect to the matrix and the fibers are stiffer than the matrix, the longitudinal 

tensile strength is controlled by the fiber strength and represented as follows based on roles of 

mixtures. [15,18,19]
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where: Fft is the fiber tensile strength. 

B.2 Ultimate Longitudinal Compressive Strength

B.2.1 Roles of Mixtures: Based on assumption of roles of mixtures, the longitudinal 

compressive strength could simply be predicted as the smaller value obtained from Eqn. 

B.2.1 [15]. 
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where:  is a correction coefficient for longitudinal compressive strength, Ffc is the 

compressive strength of fibers, Fmc is the matrix compressive strength.. 

B.2.2 Fiber Buckling Method:  The longitudinal compressive failure mode is assumed to 

be triggered by fiber micro-buckling when individual fibers buckle within the matrix.  In 

this case, the longitudinal compressive strength is considered to be the smaller value of in-

phase shear mode and out-of-phase mode [15, 18].

                  B.2.21

2
3

1

f m f
f

m
c

m

f

E E V
V In - phase shear mode

V
F

G
out - of - phase mode

V

 

 


 

B.2.3 Improved Fiber Buckling Method:  The fiber buckling method is improved to 

account for fiber misalignment and expressed as follows [15]:
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where: ασ is the standard deviation of fiber misalignment which could be measured 

experimentally.

B.3 Ultimate Transverse Tensile Strength

B.3.1 Strength Concentration Method:  It is assumed that the transverse strength of 

composites is controlled by the matrix ultimate strength and is lower than the matrix strength 

by a factor known as strength concentration factor (SCF), which depended on the relative 

properties of the fibers and the matrix and their volume fractions. Thus, the transverse 

composite strength could be expressed as [18]:

                                                 B.3.12t /mtF F SCF

where: Fmt is the matrix tensile strength.  Agarwal et al. [18] proposed the following 

expression for determingSCF : 
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Huang [20] also proposed SCF formula with transversely isotropic fibers derived upon 

isotropic fiber reinforcement as:
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where: β is bridging parameter. 

B.3.2 Fracture Mechanic Method:  It is assumed that the transverse tensile failure of a 
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unidirectional lamina occurs when a transverse crack propagates along the fiber direction 

[15], the transverse tensile strength could be obtained as follows:

                                           B.3.61
2 2 0

221.12 ( / 4)
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t
t

G
F

t
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                                                B.3.7
2 2
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2 1

12 - )
v E

E E
  （

where: G1c is the fracture toughness in mode I, tt is the transition thickness and could be 

approximated as 0.6 mm for E-glass-epoxy composites. 

B.3.3 Empirical Formula:  An empirical formula for estimating the transverse tensile 

strength is adopted [15, 23, 24]. 

                          B.3.82
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where: Vυ is the void volume fraction, Fmt is the matrix tensile strength. 

B.4 Ultimate Transverse Compressive Strength

B.4.1 Strain Amplification Method:  The transverse compressive strength could be 

obtained by strain-amplification factor method as follows [21, 22]:

                              B.4.1 1/2
2 2 1 (4 / ) [1 / ]c mc f m fF E V E E    

where: εmc is the matrix ultimate compressive strain. 

B.4.2 Strain Amplification Method:  An empirical formula for estimating the transverse 

compressive strength is given by [15, 23, and 24]: 

                      B.4.22
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B.5 Ultimate In-Plane Shear Strength
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B.5.1 Roles of Mixtures:  It assumed that in-plane shear failure occurs when a transverse 

crack propagates [15].

                                                 B.5.1
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where: G2c is the fracture toughness in mode II. 

B.5.2 Fracture Mechanic Method:  Similar to transverse compressive strength, one 

empirical formulas is also adopted. [15, 23, 24]
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Figure (1): (a) Pultruded Composites vs. (b) Laminated Composites 
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Figure (2): Typical RVEs of unidirectional FRP composites 
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(a) Bilinear constitutive law 

 

(b) Mixed-mode response of cohesive elements 

 

Figure (3): Illustration of material model 
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Figure (4): Schematic of the pultrusion process [38] 

 

 

 

 

 

 

 

 

 



 

 

 

(a) Longitudinal tensile 

 

(b) Transverse tensile 

Figure (5): Dimensions of tensile test specimens (mm) 
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(a) Set-up Photo 

   

(b) Schematic of experimental set-up 

Figure (6): Compressive specimen (mm) 
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Figure (7): In-plane shear specimen (mm) 
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(a) Predicted value to average test results 

 

(b) Predicted value to test results with 95% insurance 

Figure (8): Engineering constants comparison  

 

 

 

 



 

 

(a) Ultimate strength comparisons 

 

 

(b) Stress-strain curve comparisons 

Figure (9): Longitudinal tensile behavior comparison 
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(a) Mises stress 

 

(b) Equivalent plastic strain and damage variable 

 

Figure (10): Stress, plastic strain and damage distributions of unit cell under longitudinal 

tensile loading (11-direction) 
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(a) Ultimate strength comparisons 

  

(b) Stress-strain curve comparisons 

Figure (11): Longitudinal compressive behavior comparison 
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(a) Mises stress 

(b) Equivalent plastic strain and damage variable 

 

Figure (12): Stress, plastic strain and damage distributions of unit cell under longitudinal 

compressive loading (11-direction) 
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(a) Ultimate strength comparisons 

 

(b) Stress-strain curve comparisons 

Figure (13): Transverse tensile behavior comparison   
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(a) Mises stress 

 

 

(b) Equivalent plastic strain and damage variable 

 

Figure (14): Stress, plastic strain and damage distributions of unit cell under transverse 

tensile loading (33-direction) 
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(a) Ultimate strength comparisons 

 

 

(b) Stress-strain curve comparisons 

Figure (15): Transverse compressive behavior comparison 
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(a) Mises stress 

 

 

(b) Equivalent plastic strain and damage variable 

 

Figure (16): Stress, plastic strain and damage distributions of unit cell under transverse 

compressive loading (33 direction) 
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(a) Ultimate strength comparisons 

 

(b) Stress-strain curve comparisons 

Figure (17): In-plane shear behavior comparison 
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(a) Mises stress 

 

 

(b) Equivalent plastic strain and damage variable 

 

Figure (18): Stress, plastic strain and damage distributions of unit cell under in-plane shear 

loading (13-direction) 
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Figure (19): Transverse shear stress-strain curve  
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(a) Mises stress 

 

 

(b) Equivalent plastic strain and damage variable 

 

Figure (20): Stress, plastic strain and damage distributions of unit cell under transverse shear 

loading (23-direction) 
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Table 1: Implementation algorithm of fiber damage model

1 Initial variable：     , ,n n v nw w r

2 Update strain：      1n n
i i i      1 6i  

3 Compute the principal strain    1n
j 1 3j  

4 Compute the equivalent strain 1 ˆn 

5 Update stress and Jacobian Matrix:

5-1 If ：1 ˆn nr 

, ,1n nr r  1n nw w  1n v n vw w 
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    5-3：Update Stress：
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Table 2: Mechanical properties of E-glass fibers
Longitudinal modulus, 

Ef1 
(GPa)

Transverse 
modulus, Ef2 

(GPa)
Poisson's ratio, vf 

Shear modulus, 
Gf (GPa)

Tensile 
strength, Xft 

(MPa)

Compressive 
strength, Xfc 

(MPa)

Density, ρ 
(kg/m3)

74.0 74.0 0.20 30.80 2,150 1,450 2,560 



Table 3: Mechanical properties of epoxy resin 

Modulus, Em 
(GPa)

Poisson's 
ratio, vm

Shear 
modulus Gm, 

(GPa)

Tensile 
strength Xmt, 

(MPa)

Compressive 
strength, Xmc, 

(MPa)

Shear 
strength, Sm, 

(MPa)

Density(ρ), 
(kg/m3)

3.35 0.35 1.24 80.0 120.0 75.0 1,160 



Table 4: Fiber volume fraction and density

Number
Length
(mm)

Width
(mm)

Thickness
(mm)

Mass before burning, 
(g)

Mass after burning, 
(g)

Composite destiny, 
(kg/m3)

Fiber fraction
（%）

1 24.12 25.11 4.2 4.84 3.65 1902.7 56.1%
2 24.95 23.93 4.05 4.05 3.50 1931.3 56.5%
3 25.00 23.47 4.22 4.22 3.55 1926.4 56.0%

Average 1,920.1 56.2%



Table 5: Summary of test results
Elastic Modulus (GPa) Ultimate Strength (MPa)

Property Number
SD Eav E95% COV SD Uav U95% COV

Longitudinal Tensile 5 3.10 47.17 43.12 0.07 33.93 1146.03 1104.50 0.03
Transverse Tensile 5 1.35 16.18 14.51 0.08 5.31 47.45 40.86 0.11

Longitudinal Compressive 5 0.96 55.02 53.82 0.07 70.83 1014.34 926.40 0.02
Transverse Compressive 5 0.06 16.74 15.45 0.06 3.49 168.40 164.20 0.02

In-plane Shear 5 0.46 5.04 4.55 0.09 8.47 48.50 39.38 0.10
Longitudinal Poisson’s ratio Transverse Poisson’s ratio
SD vxyav vxy95% COV SD vyxav vyx95% COVPoisson’s ratio 5

0.017 0.265 0.286 0.06 0.011 0.114 0.128 0.10



Table 6: Summary of resistance factors
95% Reliability 99% Reliability

Property
Elastic Modulus Ultimate Strength Elastic Modulus Ultimate Strength

Longitudinal Tensile 0.88 0.95 0.84 0.93
Transverse Tensile 0.87 0.82 0.81 0.74

Longitudinal Compressive 0.88 0.97 0.84 0.95
Transverse Compressive 0.90 0.97 0.86 0.95

In-plane Shear 0.85 0.84 0.79 0.77
Longitudinal Poisson’s ratio 0.90 -- 0.86 --
Transverse Poisson’s ratio 0.84 -- 0.77 --




