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ABSTRACT OF THE THESIS

Precipitation estimation and error reconstruction from an ensemble of hydrologic models

By

Hao Guo

Master of Science in Environmental Engineering

University of California, Irvine, 2015

Assistant Professor Jasper A. Vrugt, Chair

Bayesian methods are finding increasing application and use in environmental modeling.

Bayes law states that the posterior, P (θ|D̃) is proportional to the product of the prior, P (θ)

and likelihood, L(θ|D̃), or in mathematical form, P (θ|D̃) ∝ P (θ)L(θ|D̃). The main crux

in the application of such methods relies in the definition of the likelihood function, L(θ|D̃)

used to summarize the distance between the n model simulated values, D and corresponding

data, D̃. Under ideal conditions, the residuals exhibit normality and standard likelihood

functions will suffice. Yet, in real-world modeling studies the residuals are dominated by

model and input data errors with probabilistic properties that are not easy to capture in the

construction of a likelihood function. Recent contributions therefore use latent variables to

parameterize model input and structural errors and estimate these variables jointly with the

model parameters, θ. We caution against this approach in the present thesis and demonstrate

that the posterior values of the latent variables strongly depend on the (hydrologic) model

structure being used. Although strong priors can be used to somewhat alleviate this problem,

this requires explicit information about the size and space/time correlation of the input data

errors. An alternative viewpoint emerges that model structural errors are relative and only

meaningfully interpreted on a model comparative basis.

vii



Chapter 1

Introduction

The movement of water through watersheds is an incredibly complex process that is con-

trolled by a myriad of processes and properties that interact and exhibit large spatial and

temporal variations. Despite significant advances in remote sensing and in-situ measurement

technologies, available data is often of insufficient resolution to warrant an accurate char-

acterization of (amongst others) small-scale variability in topography, subsurface flow and

transport properties, vegetation, soil types, flow paths, and forcing conditions deemed neces-

sary for detailed distributed simulation of soil moisture flow, groundwater recharge, surface

runoff, preferential flow, root water uptake, and river discharge. This lack of high resolution

and high quality data faces hydrologists with tremendous challenges, and forces hydrologic

modelers to describe spatially distributed vegetation and subsurface properties with much

simpler homogeneous units using transfer functions that describe the flow of water within and

between different storage compartments. A consequence of this aggregation process is that

most of the parameters in hydrologic models cannot be inferred through direct observation

in the field, but can only be meaningfully derived by calibration against an input-output

record of the catchment response. In this process the parameters are adjusted in such a

way that the model approximates as closely and consistently as possible the response of
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the catchment over some historical period of time. The parameters estimated in this man-

ner represent effective conceptual representations of spatially and temporally heterogeneous

watershed properties.

During the past four decades much research has been devoted to the development of computer

based methods for fitting hydrologic models to data (e.g. streamflow, water chemistry,

groundwater table depth, soil moisture, pressure head, snow water equivalent). That research

has primarily focused on six different issues: (1) the development of specialized objective

functions that appropriately represent and summarize the errors between model predictions

and observations, (2) the search for efficient optimization algorithms that can reliably solve

the hydrologic model calibration problem, (3) the determination of the appropriate quantity

and most informative kind of data, (4) the selection of an appropriate numerical solver for

the partially structured differential and algebraic equation systems of hydrologic models,

(5) the representation of uncertainty, and (6) the development of methods for inferring and

refining the mathematical structure and process equations of hydrologic models.

Research into error residual distributions had led to the development of a suite of different

(hierarchical) likelihood functions for measuring the ”closeness” between the model simu-

lations (predictions) and the corresponding data (Ibbitt and O’Donnell , 1974; Sorooshian

and Dracup, 1980; Kuczera, 1983a; Bates and Campbell , 2001; Kavetski , 2006a; Marshall

et al., 2007; Schoups and Vrugt , 2010a; Smith et al., 2010). Recent work by Schoups and

Vrugt (2010a) has resulted in a generalized likelihood function that encapsulates many of

the existing likelihood functions in the hydrologic literature, but with additional flexibility

to simultaneously account for correlated, heteroscedastic, and nontraditional error residual

distributions.

Research into optimization methods has led to the development of a wide variety of different

search methods. Whereas initial approaches utilized local search principles that seek iter-

ative improvement of the objective function from a single starting point in the parameter
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space (Ibbitt , 1972; Johnston and Pilgrim, 1976; Sorooshian and Dracup, 1980; Restrepo,

1982; Kuczera, 1983a,b; Gupta and Sorooshian, 1983; Sorooshian et al., 1983b; Troutman,

1985a,b), problems with parameter insensitivity, curved ridges, local minima, and multiple

different regions of attraction has stimulated the development of population based search al-

gorithms that use multiple different points concurrently to locate the global optimum Wang

(1991); Duan et al. (1992); Yapo et al. (1998); Seibert (2000); Vrugt et al. (2003b); Khu

and Madsen (2005); Chu et al. (2010). In this regard, the Shuffled Complex Evolution

global optimization algorithm of Duan et al. (1992) has shown to be effective and efficient in

calibrating conceptual watershed models. Recent developments include simple randomized

adaptation (Mazi et al., 2004; Tolson and Shoemaker , 2007), multimethod ensemble (Vrugt

and Robinson, 2007a; Vrugt et al., 2008b), and filtering based (Pauwels , 2008) parameter

estimation methods that further improve search efficiency and reliability.

Research into the information content of data has led to the understanding that it is not the

length of the data that matters, but the variability of the observed discharge data (Kuczera,

1982; Sorooshian et al., 1983a; Gupta and Sorooshian, 1985; Yapo et al., 1996; Vrugt et al.,

2006c). Wet and dry periods are both required to make sure that all the different components

of the watershed model are excited and the different parameters can be estimated from the

calibration data. Post-audit simulations presented in Vrugt et al. (2002) using a Bayesian

analysis, adaptive Random Walk Metropolis resampling, and value of information (VOI)

framework has demonstrated that only a few (daily) streamflow data measurements are

necessary to reliably calibrate a conceptual hydrologic model. The remaining data contain

redundant information and cannot be used to evaluate the adequacy of the actual model

structure.

Research into numerical solvers has demonstrated that explicit (Euler based) time-stepping

schemes introduce considerable streamflow simulation errors and spurious local minima, pits

and irregularities in the objective function space (Kavetski et al., 2003, 2006b; Kavetski and
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Clark., 2010; Schoups et al., 2010b). These findings provide a deeper understanding of the

convergence problems of local search methods, and demonstrate a need for implicit solvers

that iteratively adjust the integration time step based on the state dynamics.

Research into the characterization of uncertainty has resulted in formal and informal sta-

tistical approaches. While initial attempts have focused primarily on methods to quantify

parameter uncertainty (Beven and Binley , 1992; Freer et al., 1996; Gupta et al., 1998; Kucz-

era and Parent , 1998; Vrugt et al., 2002, 2003a; Wagener et al., 2003; Beven, 2006; Vrugt

and Robinson, 2007a), emerging approaches include state-space filtering (Vrugt et al., 2005;

Moradkhani et al., 2005a,b; Vrugt et al., 2006a; Slater and Clark , 2006; Reichle, 2008; Sala-

mon and Feyen, 2009; DeChant and Moradkhani , 2012; Vrugt et al., 2012), multimodel av-

eraging (Butts et al., 2004; Georgakakos et al., 2004; Ajami et al., 2007; Vrugt and Robinson,

2007b), and various (non)Bayesian approaches to treat individual error sources and assess

predictive uncertainty (Montanari and Brath, 2004; Vrugt et al., 2005; Kavetski , 2006a,b;

Kuczera et al., 2006; Huard and Mailhot , 2006; Jacquin and Shamseldin, 2007; Fenicia et al.,

2007; Marshall et al., 2007; Montanari and Gross , 2008; Vrugt et al., 2008a,b; Reichert and

Mieleitner , 2009; Solomatine and Shrestha, 2009; Kuczera et al., 2010; Renard et al., 2011).

Much progress has also been made in the treatment of forcing data error (Clark and Slater ,

2006; Kavetski , 2006a,b; Vrugt et al., 2008a), development of a formal hierarchical framework

to formulate, build and test different watershed models (Clark et al., 2008), and algorithms

for efficient sampling of parameter and predictive uncertainty distributions (Kuczera and

Parent , 1998; Vrugt et al., 2003a, 2008a; Kuczera et al., 2010; Laloy and Vrugt , 2012).

Finally, research into structural adequacy has resulted in data-based mechanistic Young

(2002, 2012), data assimilation Vrugt et al. (2005); Smith et al. (2008); Bulygina and Gupta

(2011), and other stochastic techniques Reichert and Mieleitner (2009) for inference and

iterative refinement of the mathematical structure of conceptual hydrologic models. This

has led to the understanding that discharge data contain sufficient information to warrant
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the identification of a suitable model structure that mimics as closely and consistently as

possible the observed watershed behavior at the temporal and spatial scale of measurement.

All this work capitalizes in some way on the ”classical” error residual aggregation approach

introduced in the early nineteenth century by Adrian Marie Legendre (1752 - 1833) and

Carl Friedrich Gauss (1777 - 1855) for fitting simple empirical regression models to noisy

data. The least squares method they proposed defines the ”best” parameter values, θ as

those for which the sum of squared error, FSLS =
∑n

t=1(dt(θ) − d̃t)
2 between the observed,

D̃ = {d̃1, . . . , d̃n} and simulated response, D(θ) = {d1(θ), . . . , dn(θ)} is at its minimum. In

1822, Gauss was able to state that this approach is optimal if the final residual errors are

uncorrelated, with zero mean, and equal variances (homoscedastic). This result is known as

the Gauss-Markov theorem.

There is increasing concern surfacing in the hydrologic literature that this historical approach

to model calibration introduced by Legendre and Gauss has some serious deficiencies that

necessitates the development of a more powerful paradigm. One of these deficiencies is that

model and forcing (input) data errors are assumed to be either ”negligibly small” or to be

somehow ”absorbed” into the error residuals. The residuals are then expected to behave

statistically similar as the calibration data measurement error. Yet, a-posteriori diagnostic

checks typically demonstrate that the error residuals, E(θ) = D(θ)− D̃ = {e1(θ, . . . , en(θ)
exhibit considerable variation in bias, variance, and correlation structures at different parts of

the model response. This is in part due to the presence of model structural and forcing (input)

data errors whose contribution may, in general, be substantially larger than the (calibration)

data measurement error. These errors do not necessarily have any inherent probabilistic

properties that can be exploited in the construction of an explicit objective function. While

we can assume an (stochastic or deterministic) error model for model structural and forcing

data errors, this will be purely for the sake of mathematical convenience.

Some interesting approaches for addressing the limitations of the classical calibration ap-
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proach, particularly in the context of addressing model parameter and prediction uncertainty,

have begun to appear in the literature. These include the limits of acceptability approach

(Beven, 2006; Blazkova and Beven, 2009), the Bayesian Total Error Analysis (BATEA)

framework of Kavetski and coworkers (Kavetski , 2006a,b; Kuczera et al., 2006; Thyer et al.,

2009; Renard et al., 2011), the Simultaneous Optimization and Data Assimilation (SODA),

DiffeRential Evolution Adaptive Metropolis (DREAM) and Particle-DREAM methodologies

of Vrugt and coworkers (Vrugt et al., 2005, 2012), the stochastic, time-dependent parameter

approach of Reichert and coworkers (Frey et al.,, 2011; Reichert and Mieleitner , 2009), the

generalized likelihood function of Schoups and Vrugt (2010a) combined with Markov Chain

Monte Carlo (MCMC) simulation using DREAM (Vrugt et al., 2008a,b, 2009a; Laloy and

Vrugt , 2012), (Bayesian) model-averaging (Butts et al., 2004; Ajami et al., 2007; Vrugt and

Robinson, 2007b), the hypothetico-inductive data-based mechanistic modeling framework of

Young (2012) and Bayesian data assimilation (Bulygina and Gupta, 2011). Many of these

approaches adopt a Bayesian viewpoint, and relax the assumption of a single ”optimum”

parameter value in favor of a posterior distribution that accurately recognizes the role of

model structural, forcing data, calibration data, and parameter uncertainty (see Figure 1.1).

Figure 1.1 provides an overview of possible error sources that affect our ability to correctly

describe the physical system. The error in the model output (5) originates from several

sources, including (1) inadequate and/or incomplete knowledge of the model parameters,

θ (2) errors in the input (forcing) data, Ũ and (3) initial states, x̃0 and (4) structural

inadequacies in the model equations, and/or improper dimensionality of the state space (e.g.

epistemic errors). We now like to confront the uncertain model output with the observed data

D̃ and derive estimates of each individual error source. If we adopt a Bayesian viewpoint this

requires the definition of a prior distribution and likelihood function. These two functions

should properly recognize the contribution of each individual error source, yet are very

difficult to specify a-priori due to a lack of knowledge.
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Figure 1.1: Schematic overview of the model-data fusion problem. The output simulated
by the model operator (hypothesis), D = F(θ, Ũ, x̃0) is subject to considerably uncertainty
in the (1) model parameters, (2) forcing data, (3) initial states, and (4) model structure.
Bayesian analysis now proceeds with inference of these error sources using the observed data,
D̃.
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The need for more sophisticated approaches to model calibration and evaluation is becoming

well recognized in the scientific community. For example, the Predictions in Ungaged Basins

(PUB) initiative seeks to reduce predictive uncertainty through interactive learning leading

to new and/or improved hydrological models (Sivapalan et al., 2003); Theme 3 of the PUB

initiative is titled ’Uncertainty Analysis and Model Diagnostics’ (Wagener et al., 2006). A

broader community effort involves the move towards Environmental Observatories (EOs)

in the USA and elsewhere. As stated during a recent National Science Foundation (NSF)

sponsored meeting to discuss Grand Challenges of the Future for Environmental Modeling:

’Models are complex assemblies of multiple, constituent hypotheses ... that must be tested

... against the new streams of field data. Working out novel ways of conducting these tests,

will be a major scientific challenge associated with the Environmental Observatories’ (Beck,

Presentation at NSF EO Workshop on Modeling, Tucson, AZ, April 2007). This is further

expressed as Challenge 7 in the white paper resulting from the workshop:

What radically novel procedures and algorithms are needed to rectify the chronic, historical

deficit (of the past four decades) in engaging complex Very High Order Models systemati-

cally and successfully with field data for the purposes of learning and discovery and, thereby,

enhancing the growth of environmental knowledgethis given the expected massive expansion

in the scope and volume of field observations generated by the Environmental Observatories,

coupled and integrated with the prospect of equally massive expansion in data processing and

scientific visualization enabled by the future environmental cyber-infrastructure? (Beck et

al., 2007).

In this thesis, we will adopt a Bayesian viewpoint to model calibration and include explicit

recognition of forcing data uncertainty in the calibration of rainfall-runoff models. Latent

variables are used to describe rainfall data error and the resulting precipitation multipliers

and model parameters are estimated using the DiffeRential Evolution Adaptive Metropolis

(DREAM) algorithm Vrugt et al. (2008a, 2009a). This multi-chain Markov chain Monte
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Carlo (MCMC) simulation algorithm automatically tunes the scale and orientation of the

proposal distribution en route to the target distribution, and exhibits excellent sampling effi-

ciencies on complex, high-dimensional, and multi-modal target distributions. DREAM is an

adaptation of the Shuffled Complex Evolution Metropolis Vrugt et al. (2003a) algorithm and

has the advantage of maintaining detailed balance and ergodicity. Benchmark experiments

Vrugt et al. (2008a, 2009a); Laloy and Vrugt (2012); Laloy et al. (2013); Linde and Vrugt

(2013); Lochbühler et al. (2014); Laloy et al. (2015) have shown that DREAM is superior to

other adaptive MCMC sampling approaches, and in high-dimensional search/variable spaces

even provides better solutions than commonly used optimization algorithms.

Our results will elucidate a strong dependency of the posterior rainfall record on the as-

sumed model structure used to simulate the rainfall-runoff transformation. This point was

addressed in a comment of Beven (2008b) on Vrugt et al. (2009a) - and simulation results

with different watershed models now explicitly demonstrate this interdependence. The infer-

ence methodology presented herein can easily be extended to include additional errors such

as potential evapotranspiration or temperature. These quantities will primarily affect the

streamflow response during drying conditions of the watershed. Note, the results of this the-

sis are of great importance for ground-verification of remote sensing data. The remainder of

this thesis is organized as follows. Chapter 2 introduces the models, data, and basic building

blocks of the Bayesian inference methodology used herein for rainfall error reconstruction.

Section 2.1 briefly reviews Bayes law and hypothesis formulation using numerical modeling.

This is followed in Section 2.2 by a detailed discussion of how to reconstruct rainfall records

using latent variables (also called rainfall multipliers). In this section we are particularly

concerned with the formulation of the likelihood function used for inference of the rainfall

data errors. Section 2.3 then introduces the DREAM algorithm used for posterior sampling,

and Section 2.4 reviews the watershed models and hydrologic data used for testing of the

proposed methodology. Chapter 3 (3.1-3.3) then discusses the results of our numerical stud-

ies with the HYMOD, SAC-SMA and TOPMO conceptual watershed models. Finally, a

9



summary with conclusions is presented in Section 3.4.
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Chapter 2

Methods and data

In this Chapter we will discuss the Bayesian paradigm used for inference of the rainfall data

record (hyetograph) and hydrologic model parameters. Then, we will describe a parsimonious

framework for describing forcing (precipitation) data error that is similar to the methodology

described by (Vrugt et al., 2008a) using the DREAM algorithm. Finally, we will discuss the

data and models used herein to test our methodology.

2.1 Bayes Law and numerical modeling

Bayesian methods have become increasingly popular for fitting environmental models to data.

Bayes law updates the prior probability of a certain hypothesis when new data, D̃ = d̃1, ..., d̃n

become available. The hypothesis typically constitutes the parameter values, θ of a model,

F which simulates the observed data using

D̃← D(θ, Ũ, x̃0), (2.1)

11



where D is a vector (matrix) of output variables simulated by the model, U = {ũ1, . . . , ũn}
is a n× l matrix of observed forcing data (e.g. daily estimates of precipitation and potential

evapotranspiration; l = 2), x ∈ X ∈ R
s denote the s initial states, and θ ∈ Θ ∈ R

d signify

the d model parameters.

If we now adopt Bayes theorem we can derive the posterior distribution of the parameters by

conditioning the temporal behavior of the model on measurements of the observed system

response. If we assume D̃ = {d̃1, . . . , d̃n} to be a n-vector of discharge measurements at

times t = {1, . . . , n} which summarizes the response of some hydrologic system � to forcing

U = {u1, . . . ,un} then the posterior hmodel parameter distribution, P (θ|D̃, Ũ,x0) can be

derived from

P (θ|D̃, Ũ,x0) =
P (θ, Ũ,x0)L(θ|D, Ũ,x0)

P (D̃)
, (2.2)

where P (θ, Ũ,x0) signifies the prior distribution, and L(θ|D̃, Ũ,x0) denotes the likelihood

function. Note that in hydrologic modeling the sensitivity of the simulator F(·) to x0 di-

minishes with lead time. Hence, a spin-up period usually suffices to remove the dependence

of the posterior distribution on x0.

The evidence, P (D̃) acts as a normalization constant (scalar) so that the posterior distribu-

tion integrates to unity

P (D̃) =

∫
Θ

P (θ, Ũ)L(θ|D̃, Ũ)dθ, (2.3)

over the parameter space. In practice, P (D̃) is not required for posterior estimation as all

statistical inferences about P (θ|D̃, Ũ) can be made from the product of the prior distribution

and likelihood function (e.g. unnormalized density)

P (θ|D̃, Ũ) ∝ P (θ, Ũ)L(θ|D̃, Ũ) (2.4)
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The likelihood function, L(θ|D̃, Ũ) summarizes, in probabilistic sense, the overall distance

between the model simulation and corresponding observations. The mathematical definition

of this function has been subject to considerable debate in the literature. Simple likelihood

functions that assume Gaussian error residuals are statistically convenient, but this assump-

tion is often not borne out of the probabilistic properties of the error residuals that show

significant variations in bias, variance, and auto-correlation at different parts of the simu-

lated watershed response. Such non-traditional residual distributions are often caused by

forcing data and model structural errors, whose probabilistic properties are very difficult, if

not impossible, to adequately characterize.

2.2 Precipitation error estimation and reconstruction

Rainfall errors propagate nonlinearly through watershed models and accumulate in the re-

solved state variables. Their effect is clearly visible in the simulated discharge dynamics with

error residuals that deviate from a simple traditional statistical distribution, and persist well

beyond the respective precipitation event. This anomaly is difficult to adequately capture

in the construction of a likelihood function. Alternatively, we could use latent variables to

parameterize rainfall data errors, and estimate these variables along with the model param-

eters. In the most extreme case we could assign each rainfall observation an independent,

latent variable, but this approach is not particularly practical as the dimensionality of the

parameter estimation problem would grow manifold. For instance, if a three-year record of

daily discharge data is to be used for calibration purposes, a total of 2 × 365 = 730 latent

variables would be necessary. This severely compromises the predictive capabilities of the

watershed model.

A more defensible and more parsimonious implementation of this idea would use a single

multiplier for each consecutive storm event. This idea was originally introduced by Kavetski

13
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Figure 2.1: Example of how the multipliers are assigned to each storm event. These multi-
pliers are then treated as latent variables and their posterior distribution derived along with
that of the model parameters by calibration against the observed streamflow data using
Bayesian inference with DREAM.

et al. (2002) and is at the heart of the BATEA methodology (Kavetski , 2006a,b; Kuczera

et al., 2006; Renard et al., 2011). Prior to calibration, individual storm events are identified

from the measured hyetograph and hydrograph. Each of the m storm events is assigned

a different rainfall multiplier, β = {β1, . . . , βm}. The ”true” rainfall, U is then assumed

to follow the same pattern as the observed precipitation, Ũ but with a simple linear error

correction, uj = βj p̃j ∀j ∈ {1, . . . ,m} to the rainfall depths. This corrected hyetograph then

serves as input to the hydrologic model. Note that this method does not correct rainfall

amounts of zero, yet it provides a reasonable starting point for our analysis. The rainfall

multiplier methodology is schematically explained in Figure 2.1.

2.2.1 Likelihood function used in case study A

The main culprit now resides in the definition of the likelihood function. In case A, L(θ|D̃)

that summarizes the overall distance between the model simulations and corresponding ob-

14



servations. If we assume the error residuals to be uncorrelated, Gaussian distributed with

constant variance, σ2
ν , the likelihood function can be written as

L(θ|D̃, Ũ) =
n∏

t=1

1√
2πσ̂2

ν

exp

[
−1

2
σ̂−2
ν (d̃t − dt(θ, Ũ))2

]
, (2.5)

where σ̂ν is an estimate of the standard deviation of the measurement error. The value of

σ̂ν can be specified a-priori based on knowledge of the measurements errors, or alternatively

its value can be inferred simultaneously with the values of θ Vrugt et al. (2008b); Laloy and

Vrugt (2012).

For reasons of algebraic simplicity and numerical stability, it is often convenient to consider

the log-likelihood function, L(θ|D̃, Ũ) rather than L(θ|D̃, Ũ) itself

L(θ|D̃, Ũ) = −n

2
log(2π)− n

2
log(σ̂2

ν)−
1

2
σ̂−2
ν

n∑
t=1

(d̃t − dt(θ, Ũ))2. (2.6)

In the absence of detailed information about the measurement error of the calibration data,

it might be convenient to remove σ̂2
ν . If we assume the variance of the error residuals to be

a sufficient statistic for σ̂2
ν then we can derived the following simplified likelihood function

L(θ|D̃, Ũ) = −n

2
log

(
n∑

t=1

(
d̃t − dt(θ, Ũ)

)2)
. (2.7)

2.2.2 Likelihood function used in case study B

In case B, we use a Laplacian formulation of the likelihood function. The essential difference

of this likelihood with the Gaussian formulation of case A is that a L1-norm of the residuals

15



is used. The Laplacian likelihood function can be written as

L(θ|D̃, Ũ) =
n∏

t=1

1

2σ̂ν

exp

(
−|d̃t − dt(θ, Ũ)|

σ̂ν

)
. (2.8)

If we assume a heteroscedastic error model, and let σ̂ν depend on the actual observation

then this provides the following formulation of the likelihood function

L(θ|D̃, Ũ) = −
n∑

t=1

{log(2σt,ν)} −
n∑

t=1

(
|d̃t − dt(θ, Ũ)|

σ̂t,ν

)
(2.9)

2.2.3 Likelihood function used in case study C

The third and last likelihood function considered herein is taken from Kavetski (2006a). This

likelihood function differs from those used in case A and B in that the precipitation data

is considered explicitly so as to avoid the reconstructed rainfall record to deviate too much

from its measured counterpart. As in Kavetski (2006a) it is assumed that the m multipliers

β are described by a vague inverse gamma prior with ν degrees of freedom. The following

log-likelihood function is then obtained

L(θ|D̃, Ũ) = −(m+ ν − 1)

2
log

{
m∑
t=1

(βt − μβ)
2 + νσ2

β

}
− n

2
log

(
n∑

t=1

(
d̃t − dt(θ, Ũ)

)2)
,

(2.10)

where μβ and σ2
β denote the prior mean and variance of the rainfall multipliers. We assume

that the precipitation measurements are, on average, unbiased, and hence μβ = 1. The

variables {ν, σ2
β} of the inverse gamma prior reflect the modeler’s confidence in the input

data. Figure 2.2 plots three different shapes of the prior distribution for different values of

ν. The larger he value of ν, the degrees of freedom, the peakier the prior distribution of

σ2
β. It is apparent that this prior discourages extremely small and very large values of σ2

β.

16



P
ro

ba
bi

lit
y 

  d
en

si
ty

Figure 2.2: Inverse gamma prior distribution of σ2
β for four different degrees of freedom coded

in a different color; ν = 0.2 (blue), ν = 1 (green), ν = 2 (red), and ν = 3 (black)

Kavetski (2006b) recommend setting ν so that values of σ2
β between 0.1 - 0.3 are somewhat

favored. We use values of ν = 1 and σ2
β = 0.2 in the remainder of this thesis. These values

reflect an a prior expectation of likely corruption of precipitation data. A detailed derivation

of Equation (2.10) appears in Appendix A - and follows Kavetski (2006a).

2.3 Differential Evolution Adaptive Metropolis(DREAM)

A key task in Bayesian inference is to summarize the posterior distribution. When this

task cannot be carried out by analytical means nor by analytical approximation, Monte

Carlo simulation methods can be used to generate a sample from the posterior distribution.

The desired summary of the posterior distribution is then obtained from the sample. The

posterior distribution, also referred to as the target or limiting distribution, is often high

dimensional. A large number of iterative methods have been developed to generate sam-

17



ples from the posterior distribution. All these methods rely in some way on Monte Carlo

simulation.

Vrugt et al. (2008a) introduced the Differential Evolution Adaptive Metropolis (DREAM)

algorithm. This algorithm uses differential evolution as genetic algorithm for population

evolution, with a Metropolis selection rule to decide whether candidate points should replace

their respective parents or not. DREAM is a follow up on the DE-MC method of ter Braak

(2006), but contains several extensions to increase search efficiency and acceptance rate for

complex and multimodel response surfaces with numerous local optimal solutions. Such

surfaces are frequently encountered in hydrologic modeling. The DREAM algorithm has it

roots within DE-MC but uses subspace sampling and outlier chain correction to speed up

convergence to the target distribution. Subspace sampling is implemented in DREAM by

only updating randomly selected dimensions of θi
t−1 each time a proposal is generated. If A

is a subset of D-dimensions of the original parameter space, RD ⊆ R
d, then a jump in the

ith chain, i = {1, . . . , N} at iteration t = {2, . . . , T} is calculated using different evolution

Storn and Price (1997); Price et al. (2005)

dθi,A =(1D + λD)γ(δ,D)

δ∑
j=1

(
θ
r1j ,A

t−1 − θ
r2j ,A

t−1

)
+ ζD

dθi, �=A =0,

, (2.11)

where γ = 2.38/
√
2δD is the jump rate, δ denotes the number of chain pairs used to generate

the jump (default is 3), and r1 and r2 are vectors consisting of δ integer values drawn without

replacement from {1, . . . , i− 1, i+ 1, . . . , N}.

The values of λ and ζ are sampled independently from UD(−c, c) and ND(0, c
∗) with, typ-

ically, c = 0.1 and c∗ small compared to the width of the target distribution, c∗ = 10−12

say. With a probability of 20% we set the jump rate to 1, or p(γ=1) = 0.2 to enable jumping

between disconnected posterior modes. The candidate point of chain i at iteration t then

18



becomes

θi
p = θi

t−1 + dθi, (2.12)

and the Metropolis ratio is used to determine whether to accept this proposal or not.

In DREAM a geometric series of ncr different crossover values is used, CR = { 1
ncr

, 2
ncr

, . . . , 1}.
The selection probability of each crossover value is assumed equal at the start of simulation

and defines a vector pcr with ncr copies of
1
ncr

. For each different proposal the crossover, cr

is sampled randomly from a discrete multinomial distribution, cr = F(CR, 1,pcr). Then, a

vector z = {z1, . . . , zd} with d standard uniform random labels is drawn from a standard

multivariate uniform distribution, z ∼ Ud(0, 1). All those dimensions j for which zj ≤ cr are

stored in A and span the subspace that will be sampled. In the case that A is empty, one

dimension of θt−1 will be sampled at random.

The number of dimensions stored in A ranges between 1 and d and depends on the actual

crossover value used. This randomized strategy, activated when cr < 1, constantly introduces

new directions that chains can take outside the subspace spanned by their current positions.

This relatively simple randomized selection strategy enables single-site Metropolis sampling

(one dimension at a time), Metropolis-within-Gibbs (one or a group of dimensions) and

regular Metropolis sampling (all dimensions). In principle, this allows using N < d in

DREAM, an important advantage over DE-MC that requires N = 2d chains to be run in

parallel ter Braak (2006).

2.4 Models and data

To illustrate the rainfall estimation method discussed herein, we use historical data from the

Leaf River watershed in the USA. The data consists of mean daily precipitation (mm/d),
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Figure 2.3: Schematic overview of the SAC-SMA watershed model

potential evapotranspiration (mm/d), and streamflow (m3/s). A two-year record of stream-

flow data is used for inference of the rainfall multipliers and model parameters. In this 2

year calibration time series, a total of m = 126 storm events were identified.

We consider the Sacramento soil moisture accounting (SAC-SMA) model introduced by

Burnash et al. (1973) in the early 1970s and used by the US National Weather Service (NWS)

for flood forecasting throughout the United States. The model is one of the components of

the NWSRFS used to convert precipitation input into streamflow outputs. A schematic

overview of the SAC-SMA model is given in Figure 2.3. The parameters of the SAC-SMA

model are listed in Table 2.1 along with their prior uncertainty ranges.

The second model used in our analysis involves the five-parameter Hydrologic Model, also

referred to in the literature as HYMOD. This model, developed by Boyle (2000), consists

of a relatively simple rainfall excess model, described in detail by Moore (1985), connected

with two series of linear reservoirs (three identical quick reservoirs, and a single reservoir for
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Figure 2.4: Schematic representation of the HYMOD conceptual rainfall-runoff model

Table 2.2: Prior ranges of the HYMOD model parameters

Parameter Description Ranges

Cmax Maximum storage in watershed 1-500
bexp Spatial variability of soil moisture storage 0.1-2.0
Alpha Distribution factor between two reservoirs 0.1-0.99
Rs Residence time slow flow reservoir 0-0.1
Rq Residence time quick flow reservoir 0.1-0.99

the slow response). Figure 2.4 present a schematic description of HYMOD. The parameters

this model are listed in Table 2.2.

As third model we use the TOPMO model Oudin et al (2005). This eight-parameter hydro-

logic model is derived from TOPMODEL Beven (1979). The model is schematically depicted

in Figure 2.5 and the parameters and their prior uncertainty ranges are summarized in Table

2.3.

For each of the model parameters we assume a uniform (flat) prior distribution using the

ranges listed in each of the Tables.
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Figure 2.5: Schematic overview of the TOPMO watershed model

Table 2.3: Prior ranges of the TOPMO model parameters

Parameter Description Ranges

X1 Recession coefficient of the exponential store 0-10
X2 Capacity of the interception store 0-10
X3 Topography index parameter 0-10
X4 Time delay 0-1
X5 Capacity of the routing store 0-10
X6 Evaporation parameter 0-10
X7 Groundwater exchange coefficient 0-10
X8 Capacity of the production store 0-10
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Chapter 3

Result and discussion

3.1 Case study A

In this case study, we fit the precipitation data using only discharge data. The likelihood

function is Gaussian described as Equation 2.7. Here we use the 3 different models introduced

above(HYMOD, TOPMO and SAC-SMA) to calibrate by 2 years precipitation data for Leaf

River.

Figure 3.1 is created by calibration using DREAM with population N=5 chains and a gen-

eration number of 50,000. This figure presents the 95 percent streamflow uncertainty range

for the selected period for Leaf River basin. With the red dot representing the observed

discharge data and the RMSE Table 3.1, they indicate that we obtain a good match in all

three models. This is because we adjusted the rainfall multipliers to runoff and the value of

multipliers can vary to get the best fit. As a result, the boxplot of each multiplier in Figure

3.2 shows that the multipliers have a relatively large uncertainty range. Furthermore, we can

find that the mean values of many multiplier distributions indicate that we have adjusted

the original rainfall data too much. The multipliers cannot be larger or smaller than one too
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Table 3.1: RMSE of HYMOD, SAC-SMA and TOPMO conceptual watershed models in
Case study A

Model RMSE(mm/day)

HYMOD 0.522
TOPMO 0.970
SACSMA 0.568

much based on physical meaning. The deviation between multipliers and the original rainfall

data is shown in the Figure 3.3, which plots the residuals between reconstructed rainfall data

and original rainfall data.

HYMOD simulation results with a 95 percent uncertainty range are shown in the top panel

of Figure 3.1. Most of the peak streams are clearly identified by the simulation, and the

mismatch between observation and simulation is relatively small in the figure. But when

it comes to the multipliers distribution, we find that many multipliers have a relatively

large uncertainty range in Figure 3.2 compared to the other case study. Several multipliers

have relatively large mean values like β = 23, 47..... The mean value > 4 indicate we have

adjusted the original rainfall data by increasing 3 times. Such a value is unrealistic in the

natural environment since the measurement error cannot be so large. The problem is further

discussed in case study C. Similar to HYMOD, SAC-SMA model suffers almost the same

issue. β = 25, 26, 29.... at the middle panel of Figure 3.2 also have a large, unrealistic

mean value. But the multipliers optimized by the SAC-SMA model are different from the

multipliers optimized by HYMOD. The bottom panel is the TOPMO model simulation

results, which are not as good as those in the other two. We can identify some mismatches

in Figure 3.1. As they are distinct from from HYMOD and SAC-SMA model, the multiplier

distributions of the TOPMO model have very small mean value, which indicates no storm

events. This is also unrealistic even if we consider the measurement error. This inconsistency

of the boxplot results of these three models indicate that the optimized rainfall records have
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a significant dependence on model structure.

3.2 Case study B

In this case study, we fit the precipitation data by also only considering discharge, but we use

the Laplace likelihood function. This means we use the sum of absolute residuals instead of

the sum of squared residuals, as introduced in equation 2.9. The data, models and settings

of DREAM are same the as in case study A.

As Figure 3.4 and Table 3.2 shows, the simulation results are also good fit with the runoff

data, but this is not the case for SAC-SMA model. Another finding is that the uncertainty

range for each rainfall multiplier is narrow, which demonstrates that the multipliers are more

well-defined, as shown in Figure 3.5. This method encounters the same problem as case A.

The deviation between multipliers and the original rainfall data is shown in the Figure 3.6,

which plots the residuals between reconstructed rainfall data and original rainfall data. This

study also indicates that we need to consider the deviation between multipliers and the

original rainfall data in the likelihood function. Still, there is variance in the multipliers

created by three models.

Compared with Case study A, Laplace - the L1 norm of sum of absolute residuals- indicates

the larger residual will not dominate the likelihood, as we do not square the residuals.

Therefore, it will make residuals take on the same effect as in the optimization. As shown in

the simulation results presented in Figure 3.4, the HYMOD and TOPMO model all perform

well. There is no significant mismatch discovered in the top and bottom panel, but the SAC-

SMA model in the middle panel misses many peak streams in the observation. When it comes

to the boxplot of the multiplier distributions of each model(see Figure 3.5), in contrast to

Case A, the uncertainty range are very small. The better definition of multipliers in this
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Table 3.2: RMSE of HYMOD, SAC-SMA and TOPMO conceptual watershed models in
Case study B

Model RMSE(mm/day)

HYMOD 0.656
TOPMO 0.722
SACSMA 0.842

figure shows that the L1 norm has an advantage over L2 norm because of its well-defined

parameter values.

Although the multipliers are well-defined, the inconsistency of the boxplot results for those

three models occurs similarly to case A. The fit of each model is presented by its multipliers,

and these multipliers vary significantly. We can easily observed this phenomenon in Figure

3.5. When β = 3, the HYMOD at the top panel shows has a multplier distribution mean

value larger than 4, but the SAC-SMA and TOPMO model indicate that the same multiplier

β = 3 has an mean value less than 1. This is an obvious example of the contrast between

models. The same conclusion that we can obtain from case A is that the optimized rainfall

records have a significant dependence on model structure itself. The complexity, assump-

tions in the models, hydrology basis of each model make optimized rainfall record relatively

sensitive.

Also the same issue as case A, Many multipliers distribution have a relatively large or small

mean value compared with 1, that is the original rainfall data, for instance β = 26, 27 of the

HYMOD model at top panel in Figure 3.5, β = 30, 45 of the SAC-SMA model at middle

panel and β = 23, 63, 66, 67 of the TOPMO model at bottom panel. These all reflect to the

error in assumption of likelihood function that the multipliers can vary freely to get the best

fit of runoff observation.
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3.3 Case study C

In this case study, we not only fit the precipitation data using the discharge but also using

the original rainfall data as the likelihood function shown in equation 2.10. This method

can avoid reconstructed rainfall deviated too much from measured data by adding an op-

timization part in the likelihood function to evaluate the distances between original and

reconstructed rainfall records, which are shown in Figure 3.9.

The 95 percent streamflow uncertainty range for the selected period in Figure 3.7 and the

RMSE Table 3.3 shows that we still have a good fit on observation data even if we include

the evaluation part of distance between original and reconstructed rainfall for both 3 models.

We can clear identify that the multipliers distributions mean are all around one in Figure 3.8.

These results shows that the reconstructed rainfall data are not deviated too much from the

original precipitation data. Also, the multipliers distributions are not too wide in the figure

because of well-defined multipliers, and the multipliers of three models is relatively similar

to each other. This similarity is because we include original rainfall data in the likelihood

function. This similarity does not means that the model structure has no influence on the

optimized rainfall data since there are still some differences between the multipliers with

these models(but not so obvious compared with case A and B).

The accurate simulation in Figure 3.7 show that the Kavetski approach Kavetski (2006a) do

not ruin best fit towards observation data. The evaluation part of residuals between original

and reconstructed rainfall does not inflect the accuracy of simulation. The HYMOD at top

panel, SAC-SMA model at middle panel and TOPMO model at bottom panel in Figure

3.7 all have a relatively high quality simulation, as there is no obvious mismatch or wrong

prediction occur. However, the boxplot results not only have a fully well-defined multipliers

as the narrow distribution shown in the figure, but also control the mean value of multiplier

distribution around 1. It is very meaningful study through the optimized multipliers so that
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Table 3.3: RMSE of HYMOD, SAC-SMA and TOPMO conceptual watershed models in
Case study C

Model RMSE(mm/day)

HYMOD 0.516
TOPMO 0.532
SACSMA 0.588

we can have a exact reflection of measurement error contained in our calibration. After

we carefully observe TOPMO model at the bottom panel in Figure 3.8, there are some

multipliers very close to 0 like β = 13, 18. These zero multipliers value indicate no rain

or no storm event in this period of time. But these values do not exist in HYMOD and

SAC-SMA model simulation, for example the β = 13, 18 I mentioned above. This variance

between models reflect the conception that the optimized rainfall record significantly depend

on model structure itself again.

3.4 Conclusion

Different from most publications in the literature, we have analyzed herein the influence of

precipitation data errors on the posterior model parameter distributions and the simulated

streamflow data. The framework used herein is based on the Bayesian paradigm and the

DREAM algorithm was used to derive the posterior distribution of the hydrologic model

parameters and rainfall multipliers used to characterize precipitation data uncertainty. The

DREAM toolbox supports parallel computing and includes tools for convergence analysis of

the sampled chain trajectories and post-processing of the results. The most important results

for the Leaf River watershed and HYMOD, SAC-SMA and TOPMO conceptual watershed

models are as follows
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1 Joint estimation of the rainfall record and model parameters significantly enhances the

quality of fit to the observed streamflow data.

2 The posterior rainfall record depends strongly on the assumed model structure used to

simulate the rainfall-runoff transformation. The rainfall multipliers of the HYMOD,

SAC-SMA and TOPMO model differ substantially - and exhibit a quite different tem-

poral pattern. The posterior rainfall record thus compensates in part for structural

(epistemic) errors in the model used to describe the rainfall-runoff transformation of

the Leaf River watershed.

3 The posterior rainfall record and model parameter distributions depend strongly on the

assumed likelihood function. The worst results are obtained if a Laplacian likelihood

function is used involving a L1-norm of the error residuals.

4 The best results are obtained if precipitation and streamflow data are jointly considered

in the likelihood function. This does require an informative prior distribution of the

standard deviation of the rainfall multipliers - otherwise the posterior distribution is

unbounded.

Subsequent work has to validate the retrieved rainfall records against precipitation

estimates from remote sensing data. This will shed light on which of the three different

models is most appropriate hydrologically - indeed that watershed model that provides

a rainfall record which is closest to the observed data exhibits the ”best” structure.

Several improvements can be made to the approach presented herein. First of all,

multiple models should be considered simultaneously in our analysis to make sure

that the rainfall record does not compensate for the weaknesses of a single watershed

model. Second, the methodology should be applied to a much longer streamflow data

set. A two year is insufficient to draw generalized conclusions - although we posit that

the conclusions of this thesis will hold for those longer records as well. Third, more

emphasis is required on the posterior parameter distributions - those have not been
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assessed in detail in the present thesis - but will be the focus on additional research.

The rainfall record that is derived using the multimodel approach should be validated

against other rainfall products. The premise of this methodology is that it can act as

ground truth for calibration of remote sensing radar retrievals. This would improve the

reliability of remote sensing precipitation data products. Note, that a better strategy

is warranted to correct the observed rainfall record - the multiplier approach works

in practice, but becomes cumbersome if a long streamflow data record is used with a

large number of storm events. Also, days with zero rainfall are not corrected in the

present analysis - which is quite a limitation as one some of these days the hydrograph

is increasing - indicating a nonzero precipitation day.
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Appendix

A

If we assume the m storm depths of the rainfall record to be corrupted with some multiplica-

tive Gaussian distribution with mean μβ and (known) variance, σ2
β the posterior probability

density function (pdf) is given by

P (θ,β, φD|D̃, Ũ, φU) ∝ N (β|μβ, σ
2
β)P (D̃|θ, Ũ,β)P (θ)P (φD), (.1)

where β is the vector of precipitation multipliers, D̃ is a n-vector with streamflow observa-

tions, Ũ is an input (forcing) data record ( n × 2 matrix with precipitation and potential

evapotranspiration values), N (·|μβ, σ
2
β) is the normal pdf with mean μβ and variance, σ2

β,

and φU = {μβ, σ
2
β} and φD are latent variables of the uncertainty distributions of the input

(rainfall) and output (streamflow) data, respectively.

If we now assume the streamflow data to have an additive Gaussian error with unknown

variance, φD = σ2
D then we yield the following formulation of the posterior pdf

P (θ,β, σ2
D|D̃, Ũ, φU) ∝ N (β|φU)N

(
D̃|F(θ, Ũ, x̃0,β)

)
P (θ)P (σ2

D), (.2)

where F(·) signifies the forward model (HYMOD, SAC-SMA or TOPMO), and x̃0 denote
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the initial states - whose uncertainty is treated implicitly through the use of a spin-up period.

Hence, explicit dependence of the posterior pdf on x̃0 is removed in the remainder of the

derivation.

If we specify a Jeffrey’s prior on the measurement error of the streamflow data, P (σ2
D) ∝ 1/σ2

D

then we derive

P (θ,β|D̃, Ũ, φU) ∝ N (β|φU)SSD(θ, D̃, Ũ)−
n
2 , (.3)

where SSD is the sum of squared residuals between the observed and simulated discharge

values

SSD(θ, D̃, Ũ) =
n∑

t=1

(
d̃t −F(θ, Ũ, x̃0,β)

)2
(.4)

When little is known about the rainfall uncertainty, it is tempting to specify a noninformative

prior on σ2
β. If we assume the rainfall to be unbiased, on average, that is μβ = 1 and assume

a Jeffrey’s prior for σ2
β, that is P (σ2

β) ∝ 1/σ2
β, the following formulation of the posterior pdf

is derived

P (θ,β|D̃, Ũ, μβ) ∝ SSU(β)
−m

2 N (β|φU)SSD(θ, D̃, Ũ)−
n
2 , (.5)

where SSU(β) =
∑m

j=1(βj − μβ)
2. Although this approach apparently incorporates a non-

informative prior on the rainfall uncertainty, a careful attempt to explore Equation (.5)

quickly runs into a fatal error: the posterior is unbounded whenever βj = μβ ∀ j, causing
the inference to degenerate and become rather meaningless.

To stabilize (bound) the inference we have assume an informative prior for σ2
β. For conve-

nience, lets assume an inverse gamma prior on σ2
β with shape parameter ν > 0 and scale
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parameter s0 > 0

P (σ2
β|ν, s0) ∝

1

σν+1
β

exp

(
− νs20
2σ2

β

)
. (.6)

If we combine this Equation with the likelihood of the input (rainfall) data we yield

P (β, σ2
β|ν, s20) ∝ P (σ2

β|ν, s20)P (β|σ2
β) ∝

1

σν+1
β

exp

(
− νs20
2σ2

β

)
1

σm
β

exp

(
−SSU(β)

2σ2
β

)
. (.7)

Integrating this Equation over σ2
β and assuming a Gaussian distribution for the streamflow

data error yields

P (θ,β|D̃, Ũ, μβ, ν, s
2
0) ∝

[
SSU(β) + νs20

]− (m+ν−1)
2 SSD(θ, D̃, Ũ)−

n
2 . (.8)

This formulation is equivalent to the log-formulation in Equation 2.10 in the thesis. This

concludes the derivation of the joint streamflow and precipitation data likelihood.
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