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Abstract of the Dissertation

A Unified Approach to Concept Learning
by
Pedro Morais Delgado Domingos
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1997
Professor Dennis F. Kibler, Chair

This dissertation proposes a unification of two leading approaches to concept
learning: rule induction and instance-based learning.

Current rule induction algorithms based on the “separate and conquer” pa-
radigm suffer from the fragmentation of the training set produced as induction
progresses, and from high error rates in rules covering few examples (the “small
disjuncts problem”). Current instance-based learners are unable to select different
attributes in different regions of the instance space. The limitations of either
approach can be addressed by bringing in elements of the other.

In this dissertation, the two paradigms are unified by noting the relationship
between the representations they use, and introducing a new algorithm to learn
concept descriptions in the unified representation. Instances and rules are unified
syntactically by viewing instances as maximally specific rules, and semantically by
allowing rules to match examples approximately. The RISE algorithm learns rules
by gradually generalizing instances until no improvement in accuracy is obtained.
Theoretical analysis shows this approach to be efficient and asymptotically optimal.
An extensive empirical study using benchmark datasets shows that RISE consis-
tently succeeds in improving on the predictive accuracy of its parent paradigms,
and also on the accuracy of state-of-the-art decision tree learners. Lesion studies
verify that each of RISE’s components is essential to its performance. Studies
in carefully controlled artificial domains show that RISE’s advantage relative to
other rule induction algorithms is at least partly due to its ability to reduce the
fragmentation and small disjuncts problems, and that its advantage relative to
other instance-based learners is at least partly due to its ability to select different
attributes in different regions of the instance space.

The application of RISE to large databases is made possible through the
use of sampling techniques, most notably partitioning, which can sometimes si-
multaneously reduce running time and improve accuracy. Finally, a data mining
algorithm based on RISE’s “conquering without separating” strategy is introduced,
and shown to have linear worst-case running time in all the relevant parameters,
while achieving accuracies at the level of more expensive state-of-the art systems,
producing much simpler output, and being highly robust with respect to noise.
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Chapter 1
Introduction

1.1 Empirical Multistrategy Learning

Induction is one of the central problems in artificial intelligence, psychology.
epistemology, pattern recognition, and statistics. It can be defined in one form
as the explicit or implicit creation of general concept or class descriptions from
examples. In a typical induction problem, a training set of preclassified examples
is given, where each example is described by a vector of attributes or in some
other language, and the goal is to form a description that can be used to clas-
sify previously unseen examples with high accuracy. Other factors, like speed and
comprehensibility of the description, can also be important. The last decade has
witnessed renewed interest in this area, partly due to its relevance to the “knowl-
edge acquisition bottleneck” problem: the costliest component in the creation and
deployment of an expert system is the construction of the knowledge base, and
if this construction can be partly automated by the use of induction techniques,
the bottleneck will be greatly reduced. A newer, and even more powerful, source
of impetus has been the explosion of information available in computerized form
that has taken place in recent years. As large databases have become the norm
in many fields (including astronomy, molecular biology, finance, marketing, health
care, and many others), the use of induction techniques to discover patterns in
them has become a potentially very productive enterprise. Many companies are
staking a large part of their future on these “data mining” applications, and look-
ing to the research community for solutions to the fundamental problems they
encounter (Fayyad & Uthurusamy, 1995; Simoudis, Han & Fayyad, 1996).

Given the long history and recent growth of the field, it is not surprising that
several mature approaches to induction are now available to the practitioner. These
include induction of decision trees (Quinlan, 1993a), rule induction (Michalski,
1983), instance-based learning (Aha, Kibler & Albert, 1991), Bayesian classifica-
tion (Buntine, 1990), neural networks (Rumelhart, Hinton & Williams, 1986),
genetic algorithms (Booker, Goldberg & Holland, 1989), and statistical methods
(Agresti, 1990). Empirical comparison of these different approaches and their vari-
ants in a wide range of application domains has shown that each performs best in
some, but not all, domains. This has been termed the selective superiority problem
(Brodley, 1995), and presents a dilemma to the knowledge engineer approaching a
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new task: which induction paradigm should be used? One solution is to try each
one in turn, and use cross-validation to choose the one that appears to perform
best (Schaffer, 1994a). This is a long and tedious process, especially considering
the large number of algorithms and systems now available, and the fact that each
typically has options and parameters that themselves need to be fine-tuned by
cross-validation or a similar method before the system can be said to be doing its
“best.”

Another approach, known as multistrategy learning (Michalski & Tecuci,
1994), attempts to combine two or more different paradigms in a single algorithm.
Most research in this area has been concerned with combining empirical (i.e.,
purely inductive) approaches with analytical ones (e.g., (Pazzani & Kibler, 1992:
Ourston & Mooney, 1994; Towell & Shavlik, 1994); see also (Michalski & Tecuci,
1993)). The expression “empirical multistrategy learning” will therefore be used to
distinguish the case where all the components are empirical (e.g., (Brodley, 1995;
Zhang, 1990; Wolpert, 1992; Breiman, 1996d)). Ideally, an empirical multistrat-
egy learning algorithm would always perform as well as the best of its “parents,”
obviating the need to try each one and simplifying the knowledge acquisition task.
Even more ambitiously, there is hope that this combination of paradigms might
produce synergistic effects (e.g., by allowing different types of frontiers between
classes in different regions of the example space), leading to levels of accuracy that
neither atomic approach by itself would be able to achieve. Indeed, in many ap-
plication domains the classification accuracy of even the best methods is far below
100%, and the question of whether it can be improved, and if so how, is an open
and important one.!

Unfortunately, this approach has often been only moderately successful. The
resulting algorithms are prone to be cumbersome, and often achieve accuracies
that lie between those of their parents, instead of matching the highest.? Here a
theoretical question arises. It is well known that no induction algorithm can be
the best in all possible domains; each algorithm contains an explicit or implicit
bias (Mitchell, 1980) that leads it to prefer certain generalizations over others,
and it will be successful only insofar as this bias matches the characteristics of the
application domain. Further, recent results show that performance over the set of
all possible domains is subject to a “conservation law” (Schaffer, 1994b) or “no
free lunch theorem” (Wolpert, 1996): if one algorithm is better than another in
some domains, then there are necessarily other domains in which this relationship
is reversed. The average accuracy of an algorithm over all domains is a constant,

'One part of answering this question is determining the maximum accuracy achievable by
any learner in the application domain (or, conversely, the minimum error rate, known as the
Bayes rate (Duda & Hart, 1973)). If existing learners do not reach this level, new approaches
are needed. Although this problem has received substantial attention (e.g., (Dasarathy, 1991;
Cortes, 1995; Tumer & Ghosh, 1996)), no generally reliable method has so far been demonstrated.

2However, if multiple models of the same type are combined (e.g., multiple decision trees),
as opposed to models from different paradigms (e.g., decision trees and instance-based learning),
significant improvements in accuracy often result (Breiman, 1996a; Freund & Schapire, 1996)).
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independent of the algorithm. Should we conclude, then, that empirical multi-
strategy learning is doomed to failure?

Not necessarily. A distinction should be made between all the mathematically
possible domains, which are simply a product of the representation languages used,
and the domains that occur in the real world, and are therefore the ones of primary
interest (Rao, Gordon & Spears, 1995). Without doubt there are many domains
in the former set that are not in the latter, and average accuracy in the real-world
domains can be increased at the expense of accuracy in the domains that never
occur in practice. Indeed, achieving this is, in a nutshell, the goal of inductive
learning research. It is still true that some algorithms will match certain classes of
naturally-occurring domains better than other algorithms, and so achieve higher
accuracy than them, and that this may be reversed in other real-world domains;
but this does not preclude an improved algorithm from being as accurate as the
best in each of the domain classes.

Two induction paradigms that appear to have largely complementary str-
engths and weaknesses are rule induction and instance-based learning (IBL). IBL
algorithms are able to induce complex frontiers from relatively few examples and
are naturally suited to numeric domains, but can be very sensitive to irrelevant
attributes. Conversely, rule induction algorithms perform well at finding simple
axis-parallel frontiers, are well suited to symbolic domains, and can often dispose
easily of irrelevant attributes; but they can have difficulty with non-axis-parallel
frontiers, and suffer from the fragmentation problem (i.e., the available data dwin-
dles as induction progresses (Pagallo & Haussler, 1990)) and the small disjuncts
problem (i.e., rules covering few training examples have a high error rate (Holte,
Acker & Porter, 1989)). Of course, the two paradigms also share a number of char-
acteristics, most notably the assumption that the example space contains large con-
tinuous regions of constant class membership—the similarity hypothesis (Rendell,
1986).

Instances and rules also form the basis of two alternative approaches to rea-
soning: case-based reasoning (Kolodner, 1993) and the rule-based reasoning more
often found in expert systems. In recent years, case-based reasoning has gained
popularity as an alternative to rule systems, but its proponents recognize that

there is a wide spectrum from specific cases to the very general rules typically
used (Riesbeck & Schank, 1989), and it deserves to be further explored.

This dissertation unifies rule induction and instance-based (or case-based)
learning into a single, simple and coherent learning model. This unification rests
on two key observations. One is that an instance or case can be regarded as a
maximally specific rule (i.e., a rule whose preconditions are satisfied by exactly one
instance). Therefore, no syntactic distinction need be made between the two. The
second observation is that rules can be matched approximately, as instances are
in an instance-based classifier (i.e., a rule can match an example if it is the closest
one to it according to some similarity-computing procedure, even if the example
does not logically satisfy all of the rule’s preconditions). A rule’s extension, like
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an instance’s, then becomes the set of examples that it is the most similar rule
to, and thus there is also no necessary semantic distinction between a rule and an
instance.

This idea is given a practical, computationally efficient realization in the
RISE algorithm. RISE starts with a rule base that is simply the training set itself,
and gradually generalizes each rule to cover neighboring cases, as long as this does
not decrease the rule base’s accuracy on the known cases. If no generalizations are
performed, RISE acts as a pure instance-based learner. If all cases are generalized
and the resulting set of rules covers all regions of the instance space that have
nonzero probability, it acts as a pure rule inducer. More generally, it will produce
rules along a wide spectrum of generality; sometimes a rule that is logically satisfied
by the target case will be applied, and in other cases an approximate match will be
used. This unified model is more elegant and parsimonious than the subprocedure-
style combination often found in multistrategy learning systems. Experiments with
a large number of benchmark classification problems, reported in this dissertation,
have also shown it to consistently outperform either of the component approaches
alone, and lesion studies and experiments in artificial domains have confirmed that
its power derives from its ability to simultaneously harness the strengths of both
components.

It is often the case in computer science that practice runs far ahead of theory.
Solutions are found, and systems are built, that perform useful functions but are
not amenable to clean theoretical analysis. This does not mean that rigor should
be abandoned, however: it means that it should be sought in the systematic em-
pirical evaluation and investigation of the approaches proposed. This dissertation
is mainly an instance of this type of work.

1.2 Overview of this Dissertation

This dissertation is structured as follows:

o Chapter 2 introduces the basic notions and terminology of inductive learning,
describes the two paradigms that this dissertation unifies—rule induction and
instance-based learning—and briefly reviews other approaches to induction.

e Chapter 3 presents the RISE algorithm—its representation scheme, search
strategy, and classification procedure. It then derives an upper bound for its
time complexity, and bounds for its large-sample error rate. Finally, RISE is
compared with previous work.

o Chapter 4 describes the empirical evaluation of RISE that was carried out:
the application domains used, the experimental methodology followed, the
results obtained in terms of accuracy, learning time, and output simplicity,
and their interpretation, aided by lesion (ablation) studies and instrumenta-
tion of the algorithm.
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Chapter 5 considers RISE as a rule induction algorithm, compares its prop-
erties to those of previous approaches through studies in carefully designed
artificial domains, and describes and evaluates its combination with other
forms of rule induction.

Chapter 6 considers RISE as an instance-based learner, derives from it a
novel solution to the crucial problem of attribute selection, and compares
this solution to classic methods through studies in artificial and benchmark
domains.

Chapter 7 focuses on the application of some of the ideas developed in this dis-
sertation to data mining problems, where speed of learning is a major consid-
eration. Two methods for speeding up RISE—windowing and partitioning—
are described and empirically compared. CWS, an algorithm that embodies
RISE’s approach to rule induction in a form that guarantees linear learning
time, is presented and evaluated in terms of speed, accuracy, and compre-
hensibility of the results produced.

Chapter 8 reviews the main contributions of this dissertation, and outlines
directions for future research.



Chapter 2
Approaches to Concept Learning

2.1 Overview

This chapter defines the concept learning problem, presents a framework
for viewing approaches to it, describes in some detail the two paradigms that
this dissertation unifies—rule induction and instance-based learning—and briefly
reviews other major approaches.

2.2 The Supervised Concept Learning Problem

Strictly speaking, any form of inference in which the conclusions are not de-
ductively implied by the premises can be thought of as induction. This dissertation
deals with one specific form of inductive inference, often referred to as supervised
concept learning or classification learning. Although many types of induction exist,
supervised concept learning can be considered a key one. Along with regression
and probability estimation, it is one of the most studied, and arguably one of those
with the greatest practical relevance. Solutions to it are often building blocks of
solutions to other induction and learning problems. The usefulness of progress in
this area is potentially multiplied many times by its effects on other areas, both
within machine learning and in applications.

To learn a concept is to infer its general definition from a number of specific
examples of it. This definition may be either explicitly formulated or left implicit,
but either way it assigns each possible example to the concept or not. Thus a con-
cept can be formally regarded as a function from the set of all possible examples to
the Boolean set {True, False} or {1, 0}, or equivalently {Concept, Not_Concept }.*

The set of all possible examples is called the instance space. Examples can be
described in a variety of languages. Most frequently, they are described by means
of vectors of attributes. An attribute is simply a variable, which can typically

!When an example’s description does not uniquely determine whether it belongs to the con-
cept, the concept is probabilistic, and can be regarded as a function from the set of all possible
examples to the [0, 1] interval. The function’s output is the probability that the example belongs
to the concept. This important case is discussed in more detail below.



be symbolic or numeric. A symbolic attribute can take only a finite number of
values, among which there is no ordering relationship. For example, the attribute
“Body_Covering” with values {Hair, Scales, Feathers, None} is a nominal one.
Symbolic attributes are often also referred to as nominal or categorical. A symbolic
attribute which takes values only in the set {True, False} is said to be Boolean. By
extension, any symbolic attribute that can take only two values is often also called
Boolean. A numeric attribute is one that takes values in the set of real numbers, or
a subset of it. If the attribute can take non-integer values, it is also referred to as
continuous or linear; if its values are ordered, but the difference between successive
values is not well-defined, it is referred to as ordinal.

An attribute to which a specific value has been assigned is often called a fea-
ture. For example, “Body_Covering = Hair” is a feature of mammals. Confusingly,
the word “feature” is sometimes also used interchangeably with “attribute.” The
intended meaning of the word should be inferable from the context.

Besides being definable as a function, a concept can also be formally re-
garded as a subset of the instance space. For practical purposes, this definition
is equivalent to the previous one. Finally, a concept can be regarded as a logical
predicate; examples that satisfy the predicate (i.e., for which the predicate is true)
are members of the concept.

The set of examples from which the concept is to be induced is called the
training set or sample. If the examples in the training set are labeled with their
concept membership, the problem is one of supervised concept learning. If the
concept membership of the training examples is not given, and the goal is to for-
mulate new concept descriptions that have some desired properties, the problem
is one of unsupervised concept learning, also known as clustering or concept forma-
tion (Everitt, 1980; Fisher, 1987). The subject of this dissertation is supervised
concept learning; for brevity, from here on this will be referred to simply as concept
learning.

In supervised learning, the concept to be learned is called the target concept.
Examples of the concept in the training set are called positive examples. Examples
in the training set that do not belong to the target concept are called negative
examples. If the examples in the training set are presented and used all at once,
learning is said to be batch or offline. If the examples are presented one at a time,
and the concept definition evolves over time as successive examples are incorpo-
rated, learning is said to be incremental or online. This dissertation concentrates
on batch learning.

When several concepts are mutually exclusive (i.e., each example belongs
to at most one concept) and are learned concurrently, these concepts are also
known as classes,®> and supervised concept learning can then be referred to as
classification learning (Duda & Hart, 1973). In this case the goal is to learn a

’In the most frequent formulation, the set of classes is also exhaustive (i.e., each example
belongs to at least one class); however, a “Reject” or “None of the above” option is sometimes
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function from the instance space to the set of classes. Conversely, the problem
of learning a single isolated concept can be viewed as a two-class classification
problem, where the two classes are the concept and its negation. In this framework,
concept and classification learning are equivalent; the two expressions will be used
interchangeably in this dissertation. However, in some areas (e.g., linguistics and
cognitive psychology) more significance may be attached to the notion of a concept
than the simple one of a subset of instances or a function from instance space to
the set {True, False}, and similarly for the notion of a class. In this case the above
equivalence may break down.

In the limit, an infinite number of classes may be present. This will be the
case if the target class variable is real-valued. In this view, concept learning also
encompasses the tasks of regression and probability estimation (Draper & Smith,
1981; Weiss & Indurkhya, 1995; Good, 1965). The induction of such “continuous”
concepts will not be addressed here.

A concept learning algorithm can be viewed as having three components: rep-
resentation, search, and evaluation (Fayyad, Piatetsky-Shapiro & Smyth, 1996).
The representation component is the formal language in which concepts are de-
scribed; the output of the learning algorithm is a statement in this language.® The
search procedure is the process by which the learning algorithm finds the concept
description in the space of possible descriptions defined by the representation lan-
guage. In simple cases this process may be a one-time computation not explicitly
involving search. The evaluation component takes a candidate concept description
and returns a measure of its quality. This is used to guide the search, and possibly
to decide when to terminate it. Often, different evaluation procedures are used for
these two purposes.

Associated with every concept learning algorithm is a corresponding perfor-
mance component, which uses the model (i.e., the class definitions) produced by
the learner to infer the class of each example that is submitted to it. A system
that does this is often called a classifier. Figure 2.1 shows in diagrammatic form
the main components of a concept learning system and their relationships.

The main goal of a classification learning system is typically (but not always)
to produce a classifier that will assign previously-unseen examples (i.e., examples
not in the training set) to the corresponding classes with high accuracy.* The

also allowed, whereby the classifier can decline to assign an example to any of the classes, either
because it would not make sense to do so, or because the classifier is unable to make the decision
with a minimum degree of confidence.

3Note that concepts and examples will in general be represented in different languages; some
learning algorithms use the same language for both purposes.

“Alternatively, the goal can be stated as accurately classifying any examples, whether previ-
ously seen or not. However, in most practical applications exact repetitions of previously-seen
examples are very unlikely to appear, rendering the two definitions equivalent. Also, accuracy on
training examples is a performance measure of doubtful utility, since it can be trivially maximized
by simply storing the examples and looking them up as needed; the real test of a classifier is how
well it generalizes to new examples.
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Figure 2.1. Components of a concept learning system.

accuracy of a classifier is defined as the probability that it will correctly classify
a new, unlabeled example. This accuracy can be estimated by presenting the
classifier with unlabeled examples from a test set. For example, if the classifier is
presented with 100 test examples and correctly classifies 75, its accuracy can be
estimated as 75%.

Ideally, given a complete description of an example (i.e., given the values
of all its attributes), its class should be unambiguously determined. In practical
learning tasks, however, the available attributes will often not contain all the infor-
mation necessary to do this. The training set may contain examples with the same
attribute values, but different classes. Also, examples may appear with erroneous
class values, or with erroneous attribute values, or both. These errors may stem
from a wide diversity of sources, including limitations of measuring instruments,
and human error while typing examples into a computer. All these phenomena are
referred to collectively as noise, and limit the achievable accuracy in an induction
problem. A learning system’s degree of robustness with respect to noise is one of
its most important characteristics.

It also occurs often in practice that the values of certain attributes for certain
examples are simply not available. These are called missing values, and again a
practical induction system must be able to handle them.

A great many important problems can be viewed as concept learning. Many
examples are given in Section 4.2, and used as applications in this dissertation.
They come from the fields of medical diagnosis, molecular biology, finance, social
science, engineering and others.

Induction is only one type of learning. In general, any change in a system
that causes its performance to improve can be considered learning (Simon, 1983).
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Other types of learning are described in (Mitchell, Keller & Kedar-Cabelli, 1986;
Minton, 1990; Sutton, 1992; Michalski, Carbonell & Mitchell, 1983; Bellman, 1961;
Widrow & Stearns, 1985) and elsewhere. Inductive and non-inductive aspects can
be combined in a single learning algorithm (e.g, (Pazzani & Kibler, 1992)).

2.3 Rule Induction

Rule induction algorithms are characterized by representing the target con-
cept as a set of “IF ... THEN ...” rules (Michalski, 1983; Michalski, Mozetic, Hong
& Lavrac, 1986; Rivest, 1987; Weiss, Galen & Tadepalli, 1987; Clark & Niblett,
1989; Pagallo & Haussler, 1990; Clearwater & Provost, 1990; Goodman, Higgins,
Miller & Smyth, 1992; Segal & Etzioni, 1994; Cohen, 1995). A rule is composed of
a consequent and an antecedent part or body. The consequent or “THEN” part is
the predicted class. The body or “IF” part is a conjunction of antecedents. Each
antecedent is typically a condition involving the value(s) of a single attribute. For
symbolic attributes, this condition is most often a simple equality test; in some al-
gorithms, negation and disjunction of values are possible. For numeric attributes,
the condition is typically inclusion in a one-sided interval. An example of a rule is
“IF Organic = False AND Mobile = True AND IQ > 75 THEN Robot” where the
attributes in the first two conditions are Boolean and the attribute in the third
condition is numeric. The previous definitions are valid for “flat” propositional
rule induction, on which this dissertation concentrates. “Flat” refers to the fact
that no rule chaining is performed; all rules make a direct class prediction, as
opposed to possibly having intermediate concepts as consequents, which will in
turn be used (directly or indirectly) to predict the target concept. “Propositional”
refers to the fact that the expressive power of these rule sets is equivalent to that
of propositional logic (or approximately so, depending on the exact formulation).
In relational rule induction algorithms (Muggleton & Feng, 1990; Quinlan, 1990),
the antecedents and consequent are predicates in first-order logic. In either case,
a rule is said to cover an example, and conversely the example is said to satisfy it,
if all the antecedents in the rule are true for the example.

Rule induction algorithms typically employ a set covering or “separate and
conquer” search strategy. This strategy derives its name from the fact that it forms
a class definition by constructing a rule that covers many positive examples, and
few or no negative ones, then “separating out” the newly covered examples and
starting again on the remainder. It is summarized in pseudo-code in Table 2.1.°
The “best” rule in each covering cycle (see table) may also be found by beam
search (e.g., (Clark & Niblett, 1989; Clearwater & Provost, 1990)). In this case a
list of the b best rule bodies found so far is maintained, instead of a single body.
At each step, specialization of each of those bodies with each possible antecedent

SVariations of this approach optimized for efficiency will be discussed in Chapter 7.
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is attempted, and the best b bodies are selected to continue the search. At the end
the best rule body overall is selected.

Another alternative is (near-)exhaustive search, where all (or nearly all) pos-
sible rules are attempted, using pruning techniques to avoid unnecessary computa-
tion (Weiss, Galen & Tadepalli, 1987; Goodman, Higgins, Miller & Smyth, 1992;
Rymon, 1993; Segal & Etzioni, 1994; Webb, 1995). This approach can have high
computational cost, and often hurts generalization accuracy instead of improving
it. This is essentially due to the fact that, when a very large space of possible
rule sets is exhaustively searched, there is a high probability of finding a rule set
that is highly accurate on the training data purely by chance. This rule set will
be chosen over others that are in fact more accurate outside the training set, lead-
ing to poorer results (Quinlan & Cameron-Jones, 1995). Because of its cost and
problematic effect on accuracy, exhaustive search is seldom used in practice.

The choice of evaluation heuristic H (see Table 2.1) is of some importance to
the performance of a “separate and conquer” algorithm. Given a rule, H should
increase with eg, the number of positive examples that satisfy the rule, and de-
crease with eg, the number of negative examples that satisfy it. The AQ series
of algorithms (Michalski, Mozetic, Hong & Lavrac, 1986) uses apparent accuracy
(i.e., the accuracy of the rule on the training set):

e
H(eGB)ee) = eo fee (21)

The CN2 system (Clark & Niblett, 1989) originally used the entropy of the
rule (Quinlan, 1986). However, the problem with both these measures is that they
tend to favor overly specific rules: they attain their maximum value with a rule
covering a single example. This can be overcome by use of the Laplace correction

(Niblett, 1987; Good, 1965):

€@+1

ey (2.2)
€q + €g + c

H(eg,eq) =

where ¢ is the number of classes. This measure approaches the uncorrected ac-
curacy when the rule has strong statistical support (i.e., when it covers many
examples), but approaches 1/¢ (i.e., “maximum ignorance”) when it covers few.
It is used in recent versions of CN2 (Clark & Boswell, 1991). An alternative ap-
proach is to use a measure that takes into account the rule’s probability of match-
ing an example ((eg + €g)/e, where € is the training set size), as in (Goodman,
Higgins, Miller & Smyth, 1992). Further rule evaluation measures are described in
(Piatetsky-Shapiro, 1991).

Classification of a new example is performed by matching each rule against
it, and selecting those it satisfies. If there is only one such rule, its class is assigned
to the example. If there are none, the generally adopted solution is to use the
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Table 2.1: General structure of “separate and conquer” rule induction algorithms.

Input: ES is the training set.

Procedure Rule_Induction (ES)
Let RS = 0.
For each class C
Let @ = {E € ES | Class(E) = C}.
Let 6 = {E € ES | Class(E) # C}.
Repeat
Let R = Find_Best Rule (C, &, 8).
Let ®=@® - {E € ® | R covers E}.
Let RS = RS U {R}.
Until @ = 0 or R = Nil.
Return RS.

Function Find_Best_Rule (C, &, 6)
Let Body = True.
Let R be the rule: Body = C.
Repeat
For each possible antecedent A
Let B4y = Body A A.
Let e = #({E € @ | E satisfies B4}).
Let eg = #({E € & | E satisfies B4 }).
Let Body = B4 that maximizes some heuristic H(eg, eg).
Until no antecedent causes a significant improvement in H(eg, eg).
Return R, or Nil if Body = True.
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so-called “default rule” (i.e., to assign the example to the class that occurs most
frequently in the entire training set, or among those examples not covered by any
rule). Finally, if more than one rule covers the example, then two strategies are
possible. One is to order the rules into a decision list, typically in the order in
which they were induced, and select only the first rule that fires (Rivest, 1987).
This is equivalent to having an “IF ... THEN ... ELSEIF ... THEN ... ELSE ..."
statement, with an “ELSE IF ...” branch for every rule after the first, and a final
“ELSE ...” for the default. The other strategy is to let the different rules vote, and
select the class receiving the highest vote. Recent versions of CN2 attach to each
rule the number of examples of each class that it covers, and use these numbers
as votes at classification time (Clark & Boswell, 1991). Other voting schemes
are possible (e.g., (Michalski, Mozetic, Hong & Lavrac, 1986; Goodman, Higgins,
Miller & Smyth, 1992)). The use of unordered rules has been found to generally
produce higher accuracy (Clark & Boswell, 1991), and also has the advantage
of greater comprehensibility, since in a decision list each rule body is implicitly
conjoined with the negations of all those that precede it.

In rule induction algorithms that do not deal with noise, construction of a
new rule stops only when all negative examples are excluded. In noise-tolerant
ones, a measure of statistical significance may be used to halt growth (as in CN2).
Irrelevant attributes tend to produce no significant improvement in the evaluation
heuristic, and thus to be excluded. However, attributes that are relevant only in
combination with other attributes may also be discarded. Alternatively, a later
post-pruning step may be used to remove superfluous antecedents and/or rules
(e.g., GROVE (Pagallo & Haussler, 1990)).

The fact that most rule learners only use single-attribute tests in constructing
rules means that the decision boundaries they produce will necessarily be parallel
to the coordinate axes (i.e., class definitions can only be unions of hyperrectangles),
leading to inaccurate definitions when boundaries are non-axis-parallel and only
a limited number of examples is available. Another shortcoming of “separate and
conquer” rule induction is that it causes a dwindling number of examples to be
available as induction progresses, both within each rule and for successive rules.
This splintering of the training set may cause later rules, and later antecedents
within each rule, to be induced with insufficient statistical support, leading to
greater noise sensitivity and missing or incorrect rules/antecedents. This is known
as the fragmentation problem (Pagallo & Haussler, 1990).

Rule induction algorithms also suffer from the small disjuncts problem, first
observed by Holte et al. (1989): rules covering few training examples (less than
five, say) tend to be highly error-prone, but removing them often increases the
global error even further. For example, the global accuracy may be 95%, and the
accuracy of a given small disjunct 75%, but when this disjunct is removed the
larger ones that now classify the uncovered examples have an accuracy of 60% on
them, decreasing the global accuracy. Some small disjuncts correspond to rare
cases of the concept, and are intrinsically difficult to learn, because only a small
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Figure 2.2: A simple concept illustrating the fragmentation and small disjuncts
problems.

sample of them is available. However, other small disjuncts may be at least partly
a product of the fragmentation problem. This is illustrated by the example in
Figure 2.2, where the instance space is the XY plane, the target concept is the
square doughnut region between the two closed solid lines, and + and — indicate
the positive and negative examples in the training set, respectively. Some of the
examples are labeled with letters (a to z). This concept can be represented by the
following decision list (where the rules are numbered in the left margin):

IF X < z; THEN —
ELSE IF X > z, THEN —
ELSE IF Y <y, THEN —
ELSE IF Y > y, THEN —
ELSE IF X < z; THEN +
ELSE IF X > z; THEN +
ELSE IF Y > y; THEN +
ELSE IF Y < y, THEN +
0 ]

Rules 1 and 2 are easily induced. However, when inducing rule 3, only
examples ¢ and h are available; examples f and i should ideally also be used,
but they have been discarded because they were covered by the previous rules.
This complicates induction of rule 3. Similar considerations apply to rule 4. The
problem is even more acute after rules 5 and 6 have been induced: only example b is

—
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now left to induce rule 7, when all the five examples a to e should be. The chances
of the correct rule being induced are small. Rule 8 will be similarly affected. The
rules that will actually be induced may appear to be small disjuncts, when in fact
they should cover enough examples to make their reliable induction possible. The
small disjuncts here do not correspond to rare cases, but are an artifact of the
fragmentation problem.

This example, with only two features present (X and Y'), understates the
seriousness of the problem; in the high-dimensional domains commonly found, the
sparseness of training data is much greater, even if training sets are large, and
there are correspondingly more opportunities to make the wrong decision.

Rule induction algorithms have several advantages, the most notable one of
which is perhaps that, of all representations currently in use in concept learning,
rules are arguably the one most easily understood by humans (Michie, Spiegelhalter
& Taylor, 1994; Quinlan, 1993a). This is important not only in adding to the use-
fulness and acceptability of the learner’s output, but in improving the loop of
interaction between automatic system and human developer that is at the root
of most practical applications of machine learning. Thus the comprehensibility of
rule sets is an important feature not only in its own right, but also as a means to
improved accuracy.

Other advantages of rule induction algorithms include: their ability to effi-
ciently select relevant attributes in high-dimensional instance spaces, and to auto-
matically use different attributes in different regions of the space; when designed
to handle noise, their robustness with respect to it when the target concept is sim-
ple; and their natural suitability for symbolic domains, and ability to easily mix
symbolic and numeric attributes.

2.4 Instance-Based Learning

Instance-based learning® is based on the idea of letting the examples them-
selves form an implicit representation of the target concept (Cover & Hart, 1967;
Duda & Hart, 1973; Stanfill & Waltz, 1986; Porter, Bareiss & Holte, 1990; Aha,
Kibler & Albert, 1991; Dasarathy, 1991; Salzberg, 1991; Cost & Salzberg, 1993;
Ram, 1993; Aha, 1997). In the simplest case, learning is performed by simply stor-
ing all the observed examples. A test example is classified by finding the nearest
stored example (i.e., the “nearest neighbor”) according to some similarity function,
and assigning the latter’s class to the former. The stored examples used to classify
new ones are referred to as instances, cases or exemplars. These, together with
the similarity function used, implicitly define a partition of the instance space into

5This phrase will be used in this dissertation to refer to a family of learning approaches that
also includes, or is also known as, exemplar-based, memory-based, case-based, experience-based,
kernel-based, nearest-neighbor, local, and lazy learning.
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regions of each class: a point in instance space belongs to the class of the nearest
stored instance. The performance of IBL depends critically on the similarity (or,
conversely, distance) metric used. In numeric domains (i.e., domains where all
the features are real-valued), city-block and Euclidean distance are natural can-
didates. The component distance é(z;,z;) between two values z; and z; of an
attribute is then simply the absolute value of their difference; however, this can
lead to attributes with a large spread of values having undue weight in the result,
compared to attributes with smaller spreads. This can be avoided by normalizing
the distance along each attribute by the attribute’s standard deviation (Michie,
Spiegelhalter & Taylor, 1994). Another commonly used approach (e.g., (Aha,
Kibler & Albert, 1991; Salzberg, 1991)) is to normalize the difference by its largest

observed value:

Ty — I

Hetnz:) = P
( J) Tmar — Tmin ( )
If there are a attributes, the distance between two instances E; = (ey3, €12, .. ., €14,
C1) and E; = (e21,€22,...,€24,C2) can then be defined as:
A(Ey, Ep) = 25 €1i, €2i) (2.4)

with s = 1 yielding city-block distance and s = 2 the square of Euclidean distance.

Symbolic attributes pose a more difficult problem. Most IBL systems (e.g.,
(Aha, Kibler & Albert, 1991)) use a simple overlap metric:

0 ifi=y

bl ag) = { 1  otherwise (2:5)

This measure is obviously less informative than its numeric counterpart, and,
although it is appropriate in some cases, its use can lead to poor performance
(Cost & Salzberg, 1993). A more sophisticated alternative consists of considering
two symbolic values to be similar if they make similar predictions (i.e., if they
correlate similarly with the class feature). This was first proposed by Stanfill and
Waltz (1986) as part of their value difference metric (VDM) for a memory-based
reasoner. Here we will consider a simplified version of VDM, which defines the
distance between two symbolic values as:

8(z:, z;) = SVDM(z;, z;) Z (Chl|zi) — P(Chlz;)|? (2.6)

where ¢ is the number of classes, C}, is the hth class, and ¢ is a natural-valued
parameter (¢ = 1,2,3,...). The latter can be determined ad hoc or empirically.
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Notice that é6(z;,z;) is always 0 if : = j. The total distance A(E,, E;) is com-
puted as before. Different variants of this metric have been successfully used in
pronunciation, molecular biology and other tasks (Stanfill & Waltz, 1986; Cost &
Salzberg, 1993; Biberman, 1994).

Instance-based learners are conceptually simple, and yet able to form com-
plex decision boundaries in the instance space even when relatively little informa-
tion is available. They combine naturally with analogical reasoning, apply easily
to numeric domains, and with distance measures such as VDM can also outper-
form other approaches in symbolic ones. Special cases that may be missed by
abstraction-forming approaches can be retained and recognized. Learning is often
simple to perform, because it involves mainly storing the examples, possibly with
some selection and indexing.

IBL approaches have some shortcomings, however. The memory cost of the
class descriptions they produce is typically greater, and they can be harder for
a human to understand. Classification can also take longer, even with suitable
indexing schemes (e.g., (Friedman, Bentley & Finkel, 1977)). However, the most
significant problem for IBL is arguably that posed by irrelevant attributes (i.e.,
attributes that give no information about the target concept, either directly or
in combination with others). The contributions of these attributes to the global
distance constitute noise as far as the classification task is concerned, and they
can swamp out the relevant components. If many such attributes are present in
the example descriptions, instance-based learners will be confused by them when
they compare examples, resulting in a possibly severe degradation of accuracy.
A natural solution to this problem is identifying the irrelevant attributes, and
discarding them before storing the examples for future use. Several algorithms
have been proposed for this purpose (see (Kittler, 1986) for a survey), of which
two of the most widely known are forward sequential selection (FSS) and backward
sequential selection (BSS) (Devijver & Kittler, 1982). Many variations of these
exist (e.g., (Aha & Bankert, 1994; Moore & Lee, 1994)).” Their use can have a

large positive impact on accuracy.

The forward sequential selection algorithm (FSS) starts with an empty fea-
ture set and repeatedly adds the “best” feature to it until no further improvement
is possible, or all features have been included. The backward sequential selection
algorithm (BSS) operates similarly, but starts with the full feature set and repeat-
edly removes the “worst” feature from it. The two algorithms are described in
pseudo-code in Figures 2.2 and 2.3. In both cases, the final feature set can be
empty and all examples assigned to the default class, if this leads to the highest
accuracy.

" Another approach is to assign a weight to each feature, with a weight of zero being equivalent
to deletion. This is more flexible, but requires more data to be safely applied. Approaches of
this type are discussed in Chapter 6.
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Table 2.2. The forward sequential selection (FSS) algorithm.

Input: F'S is the set of features used to describe examples.

Procedure FSS (FS)

Let SS = 0.
Let BestFval = 0.
Repeat

Let BestF = None.
For each feature F' in F'S and not in SS
Let S§8'= SSU{F}-
If Eval(SS’) > BestEval
Then Let BestF = F,
Let BestEval = Eval(SS’).
If BestF # None
Then Let SS = SS U {BestF}.
Until BestF = None or SS = FS.
Return SS.

Table 2.3. The backward sequential selection (BSS) algorithm.

Input: F'S is the set of features used to describe examples.

Procedure BSS (F'S)

Let §5 = FS.
Let BestEval = Eval(SS).
Repeat

Let WorstF' = None.
For each feature F in 5§
Let S§' =SS — {F}.
If Eval(SS') > BestEval
Then Let WorstF = F',
Let BestEval = Eval(S5').
If WorstF' # None
Then Let SS =SS — {WorstF}.
Until WorstF = None or SS = 0.
Return SS.




19

The evaluation function Eval() can be a heuristic measure, typically of the
quality of the class separation produced by the feature set, or it can be the actual
accuracy obtained by applying the classifier using those features. If Eval() is
a heuristic measure, the feature selection algorithm acts as a filter, extracting
features to be used later by the main algorithm; if it is the actual accuracy, it acts
as a wrapper around that algorithm (John, Kohavi & Pfleger, 1994). The wrapper
strategy has been found to often yield the best results (Aha & Bankert, 1994),
and this is attributable to the fact that its learning bias is that of the classifier
itself, avoiding a possible mismatch between the feature selection and classification
biases.

A limitation of FSS and BSS, and of all of their many variants, is that they
ignore the fact that some attributes may be relevant only in context (i.e., given the
values of other attributes). They may discard attributes that are highly relevant
in a restricted sector of the instance space because this relevance is swamped by
their irrelevance everywhere else. They may retain attributes that are relevant in
most of the space, but unnecessarily confuse the classifier in some regions.

Consider, for example, an instance space defined by a set of numeric at-
tributes A, and a class composed of two hyperrectangles, one of which is defined
by intervals a; € [v;1, vi2] in a subset A; of the attributes, and the other by intervals
in a subset A disjoint from the first. Current attribute selection algorithms would
retain all attributes in A; and A,, because each of those attributes is relevant to
identifying examples in one of the hyperrectangles. However, the attributes in A,
act as noise when identifying examples defined by A;, and vice-versa. Instead of
storing the same set of attributes for all instances, a better algorithm would dis-
card the attributes in A, from the stored instances of the first hyperrectangle, and
the attributes in A; from those of the second one.

As another example, consider Figure 2.3, where the concept to be learned is
the rectangle delimited by the solid line, and + and - indicate the positive and
negative examples in the training set, as before. The basic one-nearest-neighbor
algorithm with Euclidean distance would produce the boundary shown as a dashed
line, resulting in a large error. A context-free attribute selection algorithm would
retain both attributes, producing the same boundary, or delete one of them, col-
lapsing the plane to a line and resulting in an even greater error. A context-
sensitive algorithm, on the other hand, would ignore attribute X when Y > y;,
or Y < y;, because in those areas all examples are negative irrespective of the X
coordinate, and it would take X into consideration when y; < Y < y,, because
here examples are positive if z; < X < z,, and negative otherwise. X is thus
relevant or not depending on the context (i.e., on the value of Y), and recognizing
this leads to the correct boundary being induced.

Another issue in IBL methods is their sensitivity to noise. Incorrect instances
are liable to create a region around them where new examples will also be mis-
classified. Several methods have been successfully introduced to deal with this
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Figure 2.3. A simple concept requiring context-sensitive attribute selection.

problem. IB3 (Aha, Kibler & Albert, 1991) retains only reliable instances, relia-
bility being judged by the instance’s classification performance over a “probation
period.” Cameron-Jones (1992) uses instead a criterion based on the minimum
description length principle to decide which instances to retain. PEBLS (Cost
& Salzberg, 1993) assigns weights to instances, making their apparent distance to
new examples increase with their misclassification rate.

Given two instances of different classes, the frontier between classes induced
by them is a hyperplane perpendicular to the line connecting the two instances, and
bisecting it. With multiple instances of each class, the frontier will be composed of a
number of hyperplanar sections, and can thus become quite complex even when few
instances are present (Aha, Kibler & Albert, 1991). The introduction of weights
further increases this complexity, turning the hyperplanes into hyperquadrics (Cost
& Salzberg, 1993).

Another variation of the basic IBL paradigm consists in using the k& nearest
neighbors for classification, instead of just the nearest one (Duda & Hart, 1973).
The class assigned is then that of the majority of those k neighbors, or the class
receiving the most votes, with a neighbor’s vote decreasing with its distance from
the test example. The best value of k for a given application is difficult to predict
a priori, and in practice it is typically determined by cross-validation (Michie,
Spiegelhalter & Taylor, 1994). If feature selection is also being performed, the
combined cost of determining the best k and feature subset can become quite
significant. Use of the k nearest neighbors also slows down the classification of
new examples.

It is important to note that, even though the stored instances used in classi-
fication are syntactically identical to examples, their semantic content (i.e., their
extension) is quite different. An example is a single point in the example space,
whereas a stored instance represents the entire region that it wins over in the
competition with other instances.



2.5 Other Approaches

Besides rule induction and instance-based learning, several other approaches
to concept learning exist. This section will briefly review some of the main ones:
decision tree induction, neural networks, genetic algorithms, and Bayesian meth-

ods.

Decision tree induction is probably the most widely-used approach in machine
learning (Quinlan, 1986; Quinlan, 1993a; Breiman, Friedman, Olshen & Stone,
1984). In a decision tree, each node contains a test, in the simplest and most
frequent case involving the value of a single attribute. Examples are classified by
passing them from the root of the tree down to a leaf, according to the outcomes
of the tests along the path. Each leaf contains a class prediction. Figure 2.4 shows
a decision tree for the concept of “robot.” Each node is labeled with the attribute
it tests, and its branches are labeled with the corresponding values.

A decision tree is in effect a sequence of nested “IF ... THEN ...” statements.
For example, the tree in Figure 2.4 corresponds to the sequence:

IF Organic = True THEN Not_a_Robot
ELSE IF Organic = False THEN
IF Mobile = False THEN Not_a_Robot
ELSE IF Mobile = True THEN
[F IQ <75 THEN
IF Functionality = Fixed THEN Not_a_Robot
ELSE IF Functionality = Programmable THEN Robot
ELSE IF Functionality = Learnable THEN Robot
ELSE IF IQ > 75 THEN Robot

Decision tree induction is closely related to rule induction. Each path from
the root of a decision tree to one of its leaves can be transformed into a rule
simply by conjoining the tests along the path to form the antecedent part, and
taking the leaf’s class prediction as the consequent. The resulting rule set can
then be simplified to improve its comprehensibility to a human user, and possibly
its accuracy (Quinlan, 1987a; Quinlan, 1987b). The search process most often
used to learn decision trees, known as “divide and conquer”, is also closely related
to the “separate and conquer” method used in rule induction, and has similar
difficulties: nodes are added one at a time, using an evaluation heuristic to choose
the test, and each node further subdivides the training set into smaller subsets,
leading to a lack of data for later induction steps. Thus decision trees will tend to
perform well if a few highly relevant attributes exist, but less so if many complex
interactions are present.

Neural network methods are based on representing the concept as a network
of nonlinear units (Anderson & Rosenfeld, 1988). The most frequently used type
of unit, incorporating a sigmoidal nonlinearity, can be seen as a generalization
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Figure 2.4. A decision tree for the concept of “robot.”



23

of a propositional rule, where numeric weights are assigned to antecedents, and
the output is graded, rather than binary (Towell & Shavlik, 1994). Many search
methods can be used to learn these networks, of which the most widely applied
one is backpropagation (Rumelhart, Hinton & Williams, 1986). This method
efficiently propagates values of the evaluation function backward from the output
of the network, which then allows the network to be adapted so as to obtain
a better evaluation score. Radial basis function (RBF) networks employ units
with a Gaussian nonlinearity (Moody & Darken, 1989), and can be seen as a
generalization of nearest-neighbor methods with an exponential distance function
(Poggio & Girosi, 1990). Neural networks tend to perform better than decision
trees when no highly relevant attributes exist, but many weakly relevant ones are
present. The cost of this is the often-long time they take to train, both in terms of
CPU time, and of manually finding parameter settings that will enable successful
learning. Another disadvantage of neural network models is that, being rather
opaque, they afford little insight about the underlying domain.

Genetic algorithms are a search method that can be applied to learning many
different representations, of which the most frequently used one is probably rule sets
(Booker, Goldberg & Holland, 1989). Genetic algorithms maintain a population of
classifiers during learning, as opposed to just one, and search by applying random
mutations to them, and exchanging parts between pairs of classifiers that obtain
high evaluation scores. This endows them with a potentially greater ability to
avoid local minima than is possible with the simple greedy search employed in
most learners, but can lead to high computational cost, and to higher risks of
finding poor classifiers that appear good on the training data by chance.

Bayesian approaches employ probabilistic concept representations, and range
from the simple Bayesian classifier (Domingos & Pazzani, 1996) to Bayesian net-
works, which learn the full joint probability distribution of the attributes and class,
as opposed to just the class prediction (Heckerman, 1996). Bayesian networks have
the benefit of a clearer semantics than more ad hoc methods, and provide a natural
platform for combining domain knowledge (in the initial network structure) and
empirical learning (of the probabilities, and possibly of new structure). However,
inference in Bayesian networks can have a high time complexity, and as tools for
classification learning they are not yet as mature or well-tested as other approaches.
More generally, as Buntine (1990) notes, the Bayesian paradigm extends beyond
any single representation, and forms a framework in which many learning tasks
can be usefully studied.

Further details and pointers to the literature on these concept learning pa-
radigms can be found in the references given.
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2.6 Summary

This dissertation addresses the problem of supervised concept learning, where
the goal is to form a definition of a concept from a set of labeled training examples,
such that it will be possible to determine with high accuracy whether new examples
are instances of the concept. Two of the leading approaches to this problem are
rule induction, where the concept is represented as a set of “IF ... THEN ...” rules,
and instance-based learning, where the concept is implicitly represented by a set of
examples, together with a similarity measure. Other approaches include induction
of decision trees, neural networks, genetic algorithms and Bayesian classification.



Chapter 3
The RISE Algorithm

3.1 Overview

This chapter introduces the RISE algorithm, which unifies rule induction
and instance-based learning, and thereby reduces some of the problems of each by
bringing in features of the other. RISE’s unified representation scheme and classi-
fication procedure are presented. RISE’s search strategy, used to induce concept
descriptions in the unified representation, is then described. Some simple exam-
ples of RISE’s application are shown, highlighting the improvements it produces
over IBL and rule induction. Next, efficiency considerations are addressed, by in-
troducing several optimizations to RISE, and deriving worst-case bounds for its
running time. RISE’s large-sample error rate is then shown to be at most twice
the optimal. Finally, several pieces of related research are contrasted with RISE.

3.2 Representation and Classification

“RISE” stands for “Rule Induction from a Set of Exemplars”. This chap-
ter describes version 3.1 of the RISE system; earlier versions are described in
(Domingos, 1994a; Domingos, 1994b; Domingos, 1995).

A rule in RISE is composed of a consequent that is the predicted class, and
an antecedent part that is a conjunction of conditions, as in other rule induction
systems. Each condition involves only one attribute; for symbolic attributes it is
an equality test (e.g., z; = @), and for numeric attributes it is membership in an
interval closed on both sides (e.g., 3.5 < z3 < 7.7). In each rule there is at most
one condition involving each attribute, and there may be none. An instance is
simply a rule in which the consequent is the instance’s class, there is exactly one
condition per attribute, and all the intervals are degenerate (e.g., 4.1 < z, < 4.1,
i.e., zg = 4.1). Thus, syntactically, an instance can be regarded as simply a
maximally specific rule. In the remainder of this dissertation, the word “rule” is
used to refer indiscriminately to instances and to rules of the more general type.

RISE classifies a new example by assigning it the class of the nearest rule
in the knowledge base. The distance between a rule and an example is defined
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as follows. Let £ = (ej,€e2,...,€4,,CEg) be an example with value ¢; for the ith
attribute and class Cg. Let R = (A, As,..., A.,CR) be a rule with class Cr and
condition A; on the zth attribute, where A; can have three forms: if there is no
condition on z, A; is True; if there is a condition on i and ¢ is symbolic, A4; is ¢; = ;,
where r; is a symbolic value in attribute ¢’s domain; and if there is a condition on
¢ and ¢ is numeric, A; iS Tilower < €i < Tiupper, Where r; jouer < €; and i nipper BT
numeric values in attribute :’s domain. The distance A(R, E) between R and F
is then defined as:

A(R,E) = ié’(i) (3.1)

where s is a natural-valued parameter (s = 1,2,3,...), and the component distance
6(7) for the 7th attribute is:

0 if A; = True
8(1) = SVDM(r;,e;) ifiis symbolic and A; # True (3.2)
Baumli) if 7 is numeric and A; # True

where in turn SV.DM(r;,e;) is the simplified value difference metric as defined in
Equation 2.6, and:

0 if Tilower _<_ €; S Ti,upper
€i—Ti upper H . s
6num(i) == €i,maz —€i,min lf € > ri'upper (3_3)

Ti,lower —€i <
_Itlower ¢ : 5
= ] if €i < Tilower
t,mazx 1, min

€i,mazr and €;min being respectively the maximum and minimum values for the
attribute found in the training set.

The distance from a missing numeric value to any other is defined as 0. This is
a “least commitment” strategy: it lets an example with a missing numeric value be
matched by all rules with conditions on the corresponding attribute, and defers the
decision on which rule is most appropriate to the conflict resolution procedure (see
below). Conversely, an instance/rule with a missing numeric value is effectively
treated as having no condition on the attribute, allowing it to match examples
regardless of their value for that attribute, and the decision on whether this rule
is better than nearby ones with specified values for the attribute is deferred to
the evaluation procedure described in the next section. If a symbolic attribute’s
value is missing, it is assigned the special value “?”. This is treated as a legitimate
symbolic value, and its SVDM to all other values of the attribute is computed and
used. In the context of VDM-type metrics, this is a sensible policy: a missing value
is taken to be roughly equivalent to a given possible value if it behaves similarly
to it, and distinct from that value if it does not. Other approaches to handling
missing values are described in (Quinlan, 1993a; Ripley, 1996).
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The question arises of how to choose the winning rule when several are equally
near. This is of more importance in RISE than in IBL, because it can frequently
occur that several rules cover the example (i.e., are at distance zero from it). This
corresponds to the multiple-match case in rule induction systems. RISE selects the
rule with the highest Laplace accuracy (Equation 2.2). This means that neither
very general nor very specific rules are unduly favored; rather, preference goes to
rules with high apparent accuracy as well as strong statistical support. In the
event the accuracies are the same, RISE chooses the most frequent class among
those represented, and if there is still a draw, the winner is chosen at random.
Other policies were also tried, and a comparative evaluation is described in the
next chapter.

A rule is said to cover an example if all its conditions are true for the example;
a rule is said to win an example if it is the nearest rule to the example according
to the distance metric and conflict resolution policy just described. A rule can
cover an example and not win it. The extension of a rule is constituted by all
the points in the example space that it wins, whether or not it covers them, and
therefore depends not only on the rule itself but on all the other rules. Thus, the
semantic content of rules in RISE is similar to that of instances in an instance-based
learner. Considering instances to be maximally specific rules unifies instances and
rules syntactically; applying rules in the best-match way described unifies instances
and rules semantically, completing the unification of the two.

3.3 Search Procedure and Evaluation

Unlike conventional rule induction algorithms, RISE does not construct one
rule at a time, but instead induces all rules in parallel. In addition, heuristic
evaluation is not performed for each rule separately, but for the whole rule set at
once. Changes to an individual rule are evaluated in terms of their effect on the
global accuracy of the rule set. This “conquering without separating” strategy
differs markedly from the earlier “separate and conquer” one; the aim is to atten-
uate the fragmentation problem as much as possible. Another major difference
is that RISE’s direction of search is specific-to-general. Rules are generalized by
dropping conditions on symbolic attributes, and broadening intervals for numeric
ones. This is not done one attribute at a time, but rather by a clustering-like
approach: each rule repeatedly finds the nearest example of its class that it does
not yet cover, and attempts to minimally generalize itself to cover it. If the ef-
fect of this on global accuracy is positive, the change is retained. This process
stops when no further change causes any improvement. The initial rule set is the
training set itself (i.e., each instance is a candidate rule). In the worst case no
generalizations are accepted, and the final rule set is still the training set, leading
to a pure instance-based algorithm. At the other extreme, the rules generated may
completely cover the instance space (or all regions of it with non-zero probability),
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Table 3.1. The RISE algorithm.

Input: ES is the training set.

Procedure RISE (ES)
Let RS be ES.
Compute Acc(RS).
Repeat
For each rule R in RS,
Find the nearest example F to R not already covered by it,
and of R’s class.
Let R’ = Most_Specific_Generalization(R, E).
Let RS’ = RS with R replaced by R'.
If Ace(RS') > Acc(RS)
Then Replace RS by RS’,
If R’ is identical to another rule in RS,
Then Delete R’ from RS.
Until no increase in Acc(RS) is obtained.
Return RS.

leading to a pure rule induction algorithm. Thus RISE has pure IBL and pure rule
induction as special cases of its behavior, either of which will be produced if the
search procedure described finds it appropriate. More generally, however, the final
rule set may contain some ungeneralized exemplars as well as more abstract rules,
leading to a broad spectrum of behavior between the two extremes.

Table 3.1 summarizes this process in pseudo-code. In the course of general-
ization two rules may become identical, in which case they are merged. In each
cycle the new rule set is adopted even if its apparent accuracy is the same as the
old one’s. This is a direct application of Occam’s razor: when two theories appear
to perform identically, prefer the simpler one.

Table 3.2 shows in pseudo-code how a rule is minimally generalized to cover
an example previously outside its scope. In a nutshell, all conditions on symbolic
attributes that are not satisfied by the example are dropped, and all intervals are
extended to include the example attribute’s value at the border, if necessary. This
is indeed the most specific generalization that will work, given the representation
language used (e.g., internal disjunction is not permitted). Missing values are
treated in a fashion consistent with the definition of distance above: a missing
numeric value is considered to match any other value, and a missing symbolic value
in the example or in the rule (but not both) causes the corresponding condition to
be dropped.

The accuracy Acc(RS,ES) of a rule set RS on a set of examples ES is
defined as the fraction of those examples that it correctly classifies. A rule set



Table 3.2. Generalization of a rule to cover an example.

Inputs: R = (A, As,...,Aq, Cr) is a rule, E = (e1,€z,...,€,,Cg) is an example.
A; is either True, e; = r;, oF i jower < €i < Tiupper-

Function Most_Specific_Generalization (R, E)
For each attribute ¢,
If A; = True
Then Do nothing.
Else if ¢ is symbolic and e; # r;
Then A; = True.
Else if ¢ is numeric and e; > ; upper
Then 14wy = &
Else if ¢ is numeric and e; < 7 jower
Then Tilower = €4.

classifies an example correctly when the nearest rule to the example has the same
class as it. Whenever the example set ES is simply the whole training set this
will be left implicit (i.e., the accuracy will be denoted by Acc(RS)). There is no
need to use the Laplace correction when comparing the accuracy of different rule
sets on a training set, because the denominator of the accuracy (i.e., the number
of examples matched) is exactly the same for all rule sets (being the size of the
training set).

Accuracy is measured using a leave-one-out methodology: when attempting
to classify an example, the corresponding rule is left out, unless it has already been
expanded to cover other examples as well. This method would not be efficient if
the accuracy of the entire rule set had to be computed from scratch every time
an individual change is considered. This would involve repeatedly matching all
rules (or all but one) against all examples, leading to a clearly unacceptable time
cost. Fortunately, at each step only the change in accuracy AAce(RS) needs to be
considered. Each example memorizes the distance to the nearest rule (i.e., the rule
that wins it) and that rule’s identification. The memory cost of this is O(1) per
example, and is therefore negligible. With this information, all that is necessary
when a rule is generalized is to match that single rule against all examples, and
check if it wins any that it did not before. Its effect on these is then ascertained.
If a previously misclassified example is now correctly classified, the numerator of
Acc(RS) is incremented; if the reverse takes place, it is decremented. Otherwise
there is no change. If the sum of increments and decrements is greater than or equal
to 0, the new rule is adopted, and the relevant structures are updated; otherwise
it is rejected.



Figure 3.1. Rules formed by RISE for the rectangle concept.

3.4 Three Examples

We can now revisit the two examples described in the previous chapter, and
see what RISE will do in each case. A third example will illustrate how RISE
combines rule induction and IBL in its inductive behavior.

RISE’s solution to the problem of Figure 2.3 is shown in Figure 3.1. RISE
generalizes the three positive examples to the straight-line segment shown as a
dotted line inside the rectangle: each positive example is first generalized to a
segment joining it and the nearest example that is also positive (the middle one,
for the left and right examples, and either the left or the right one, for the middle
example), and then to a segment joining all three, at which point the three rules
coalesce into one. Similarly, the negative examples are generalized to the four
segments shown outside the rectangle.

Test examples are now classified according to which segment is nearest, result-
ing in an almost perfect reproduction of the target rectangle. The only difference is
a slight rounding of the corners, reflecting the fact that the set of points at the same
distance from a point and a line is a parabola (in this case, the point being the tip
of the inner straight-line segment, and the line being either of the outside segments
nearest the corner). Notice that, for classification purposes, each segment outside
the rectangle is effectively equivalent to the infinite straight line that includes it.
Thus attribute X is effectively dropped from the negative instances below y; (lower
horizontal segment) and above y, (upper), and similarly Y is effectively dropped
from the negative instances on the left and right. This simple example shows
how RISE can (at least in some cases) overcome the context-dependency problems
exhibited by instance-based learners.

RISE’s solution to the problem of Figure 2.2 is shown in Figure 3.2. The four
negative instances in the center are generalized to the square with dotted bound-
ary shown, and similar generalizations are formed for the remaining positive and
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Figure 3.2. Rules formed by RISE for the square doughnut concept.

negative instances. For illustrative purposes, two of the rectangles produced (R,
and R;) are shown with solid boundaries. Again, an almost perfect reproduction of
the target square doughnut is obtained, with only a slight rounding at the corners
(for the same reasons as before). The fragmentation problem is reduced, and no
false small disjuncts appear, because each example can “see” all other examples
when trying to generalize itself into a rule.

In subsequent chapters, the question of whether or not RISE performs better
than IBL and rule induction algorithms for the reasons hypothesized will be ex-
amined more systematically, using more realistic target concepts. However, these
two examples show in a simple setting how RISE can improve on the behavior of
those algorithms.

The following example illustrates RISE’s ability to behave as either IBL or
rule induction, and to transition smoothly between the two, as well as its ability
to induce nonlinear frontiers. Let the instance space be the plane, as before, and
consider a training set composed of the three positive and two negative training
examples in Figure 3.3. From this training set, a typical rule learner will induce a
frontier similar to the one shown in Figure 3.4: a horizontal straight line, with the
region below it labeled positive, and the region above it labeled negative. The one-
nearest-neighbor classifier with Euclidean distance will produce the zigzag frontier
shown in Figure 3.5. RISE will generalize the two negative examples to a straight-
line segment with the two examples as the endpoints, and will generalize the three
positive examples to another straight line segment, with the rightmost and leftmost
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Figure 3.3. A training set.

examples as endpoints. The resulting frontier is shown in Figure 3.6. Between
points b and c it is a straight line, identical to the frontier produced by the rule
learner. To the left of a it is a diagonal line, identical to the frontier produced
by the nearest-neighbor classifier; and similarly to the right of d. Between a and
b it is an arc of a parabola with it focus at the leftmost negative example. This
arc transitions smoothly between the nearest-neighbor frontier to its left and the
rule-induction frontier to its right. Between ¢ and d a similar transition occurs.
Thus RISE behaves like an instance-based classifier in some parts of the instance
space, and like a rule learner in others; and it transitions smoothly between the
two, creating non-linear frontiers in the process.

3.5 Time Complexity of RISE

It is possible to derive an upper bound for the time complexity of RISE,
showing that its worst-case efficiency is comparable to that of other rule induction
algorithms. Let e represent the number of examples in the training set, a the num-
ber of attributes used to describe each, v, (v,) the maximum number of observed
values per symbolic (numeric) attribute, r the number of rules, and ¢ the number
of classes into which the examples fall. Assume for now that all attributes are
symbolic. The initialization phase of the algorithm consists of three operations.
The first is copying the examples to the rules, and takes O(ea) time. The second

- - -

Figure 3.4. Frontier induced by a rule learner.
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Figure 3.5. Frontier induced by an instance-based learner.

Figure 3.6. Frontier induced by RISE.
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is compiling a table of SVDM distances, taking O(ea + avic) (ea to run through
all the examples, for each one noting the correspondence between each attribute’s
value and the class, and av?c to sum the results for all classes, for each pair of
values of each attribute). The third operation is finding each example’s closest
rule and computing the initial accuracy of the rule set, which involves matching
all rules against all examples, and so takes O(e%a) time. The total time necessary
for initialization is therefore O(e%a + av?c).

The heart of the algorithm consists of four steps: finding a rule’s nearest
example, generalizing the rule to cover it, comparing the altered rule to all examples
to see if any are newly won, and (if the change is adopted) comparing the rule to
all other rules to check for duplications. These operations consume respectively
O(ea), O(a), O(ea) and O(ra) time, for a total of O(ea+ra). Since each “Repeat”
cycle (see Table 3.1) consists of doing this for all r rules, each such cycle takes
at worst O[r(ea + ra)] time. In RISE each example produces at most one rule;
therefore r < e, and this time is at worst O(e%a).

How many “Repeat” cycles can the algorithm perform in the worst case? Two
answers are possible, depending on how the stopping criterion is interpreted. If it is
applied individually (i.e., generalization of a given rule stops as soon as covering the
nearest example produces no improvement), then the “Repeat” cycle is performed
at worst O(a) times, since each cycle must remove at least one condition, and a rule
contains at most a conditions, this being true for each rule. On the other hand, if
the stopping criterion is applied globally (i.e., generalization of a given rule stops
only when no change to any rule produces an improvement), the “Repeat” cycle
can in theory be performed up to O(ea) times, because in the worst case only
one condition of one rule will be dropped in each entire cycle, each time causing
some currently-unprofitable change in another rule to become profitable in the
next round. However, this is extremely unlikely. The two policies were empirically
compared (see next chapter), showing no appreciable difference between the two
in accuracy or time. Multiplying the values above by the cost of a single “Repeat”
cycle yields a total time complexity of O(e?a?) or O(e®a?) respectively. Since
e > vy, and assuming that a > ¢, which is generally the case, the smaller of these
values dominates the complexity of the initialization phase, and both therefore
constitute upper bounds on the time complexity of the whole algorithm in their
respective situations.

The time complexity of CN2 and AQ-style algorithms is O(be?a?), where b
is the beam size, an integer-valued internal parameter of the algorithm (Clark &
Niblett, 1989).! The worst-case complexity of growing a decision tree is O(ea?)
when only symbolic attributes are present (Utgoff, 1989b), but becomes quadratic
or worse in e with numeric ones, mainly due to the need for repeated sorting
operations (Catlett, 1991). The final pruning stage used in C4.5 and several rule

'The computations in this reference are only for the basic step of the algorithms, which is
embedded in loops that may run O(ea) in the worst case, leading to the bound shown.



induction systems may also in general be worse than quadratic in e (Cohen, 1995).
Thus RISE’s worst-case time complexity is comparable to that of other rule and
decision tree learners.? Average-case time is also likely to be substantially smaller
than the worst case, because some of the assumptions above are overly pessimistic
(e.g., in general r will seldom remain equal to e, but will instead shrink rapidly;
attributes will be dropped several at a time, and not all will be removed; increasing
e may not increase the number of “Repeat” cycles, even with a global stopping
criterion; etc.).

The introduction of numeric values simply increases the values above by a
factor of vy, since the single-step removal of a condition may now be replaced by at
most O(vy) steps of expanding the corresponding interval. Again, in practice only
a small number of steps may actually be required. However, in the case of real-
valued attributes for which arbitrarily fine distinctions are possible, and therefore
as many different values as there are training examples may occur, this can lead
to some inefficiency. This problem is only potentially significant in large datasets,
since the number of observed values of an attribute is bounded from above by
the number of training examples. To obviate it, in datasets with more than 3000
examples the generalization of a rule to cover an example (Table 3.2) is adapted
as follows. When extending an interval to include an example value above it (or
below), the interval’s upper (lower) limit is not set to the example’s value, but
to that value plus (minus) a delta which is set by default to 5% of the maximum
range the value was observed to vary over. In addition to potentially reducing the
running time of the algorithm, this policy can have a positive effect on its accuracy,
by avoiding overfitting. This was indeed observed in the empirical study described
below.

RISE 3.1 has been optimized with respect to running time in two additional
ways: pruning and windowing. Pruning is performed by sometimes cutting short
the computation of the distance between a rule and an example; this is akin to
reducing search by means of branch-and-bound techniques. This is possible in
two situations (see Table 3.1). When a rule searches for its nearest example, it
can discard a candidate as soon as its distance becomes larger than the shortest
one found so far. Similarly, when a tentatively-generalized rule searches for the
examples it now wins, its distance to each example needs to be computed only
until it becomes larger than the current winning rule’s one. This form of pruning
has no effect on the algorithm’s output, and in general will also not change its
worst-case time complexity, but can significantly reduce its average running time.

In datasets with more than 3000 examples, windowing is used. It is applied
to RISE in a fashion similar to C4.5’s (Quinlan, 1993a), and proceeds as follows.
Initially, only 2/e examples randomly extracted from the training set are used for
learning. This sample is stratified (i.e., it contains approximately equal proportions

*Recently, a number of algorithms have been proposed with the specific goal of reducing
this time complexity while maintaining accuracy (Fiirnkranz & Widmer, 1994; Cohen, 1995).
Chapter 7 describes one such algorithm based on RISE.
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of all classes); this makes it possible to still learn classes that have few representa-
tives in the original training set. If the remaining training examples are correctly
classified by the resulting rule set, this set is output. Otherwise, the misclassified
examples are added to the initial example set, and this process repeats until it
produces no improvement in accuracy on two successive expansions. This policy
of requiring two successive failures to stop has been verified empirically to lead to
better results in the case of RISE than the policy followed by C4.5, of stopping
as soon as there is no improvement in accuracy. The latter is more prone to pre-
mature stopping (i.e., stopping at a local minimum of the accuracy improvement
curve).

In the best case, only O(,/€) examples are used, and the algorithm becomes
linear in the training set size. In the worst case, the window grows to include
the entire training set (or nearly so), and the process is more costly than learning
directly on that set. This is particularly likely in noisy domains, where it has been
observed to lead to serious performance degradation in the case of C4.5 (Catlett,
1991). To avoid this, the implementation used in RISE also limits the number of
times the window is grown to a prespecified maximum (5 by default). This should
help prevent the system from attempting to fit the noise in domains where this is
a problem, and has been found empirically to sometimes achieve large reductions
in running time compared to the unlimited-expansion version, without seriously
affecting accuracy. The use of windowing and other methods to speed up RISE is
further discussed in Chapter 7.

3.6 Large-Sample Properties of RISE

Although it is the small-sample behavior of learning algorithms that is of
most practical interest, it is still comforting to know that a learner behaves “well”
in the large-sample limit. To make this notion of “good behavior” more precise,
the following definitions are needed. The large-sample error rate of a classifier is
the limit its error rate approaches when the sample size tends to infinity, if such
a limit exists. The Bayes rate €* for a domain is the lowest error rate achievable
by any classifier in that domain (Duda & Hart, 1973). The Bayes classifier for
a domain is the classifier that achieves the Bayes rate in that domain. Thus, no
classifier can be more accurate than the Bayes classifier. However, given a large
enough sample, it should be possible to get close to this limit. The sample size
required for this may be very large; even millions or billions of examples is not
necessarily enough. An algorithm that is “well behaved” in the large-sample limit
is one whose large-sample error rate is guaranteed (with probability one) to be
close to the Bayes rate, for example by being only a small multiple of it. Large-
sample convergence properties have been proved for nearest-neighbor algorithms
(Cover & Hart, 1967) and decision-tree learners (Gordon & Olshen, 1984), but
so far not for “separate and conquer” rule learners. However, because of RISE’s
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relation to IBL, properties similar to those of nearest-neighbor algorithms can be
derived for it, as follows.

Let enyn be the large-sample error rate of the nearest-neighbor classifier, and
¢ be the number of classes. Then € < exyy < €(2 — ce*/(c — 1)) (Cover &
Hart, 1967). In other words, the large-sample error rate of the nearest-neighbor
classifier is at most twice the Bayes rate. This result applies in metric spaces,
which includes numeric domains when Equation 2.4 is used as the metric, and also
includes symbolic or mixed domains when the overlap metric (Equation 2.5) is
used. Let RISEp be RISE using the overlap metric for symbolic attributes, and
Equation 3.3 for numeric ones. Then the result above also holds for RISEp. More
precisely, if €rrsg, is the large-sample error rate of RISEp, and ¢ is the number
of classes, then € < eprsp, < €(2 — ce”/(c —1)). This is due to the following
(see Table 3.1). Initially (before the “Repeat” cycle begins) RISEp acts as a
pure nearest-neighbor classifier, so its error rate is the same as nearest-neighbor’s.
Thereafter, each generalization step is performed iff it does not decrease RISEp’s
accuracy measured on the training sample. However, with a large enough sample,
this estimate becomes arbitrarily close to RISEp’s true accuracy, by the central
limit theorem. Thus each generalization step is performed iff it does not decrease
RISEp’s true accuracy. Since RISEp is initially as accurate as nearest neighbor
and each generalization step can only maintain or increase its accuracy, RISEp’s
final accuracy is greater than or equal to that of nearest neighbor, by induction.
Thus the upper bound for nearest-neighbor applies also to RISEp. The lower
bound applies by definition of Bayes rate.

It is not possible to prove a similar result when using the SVDM measure
(Equation 2.6), since in this case the metric assumption that VE,, E, (E; # E, =
A(Ey, E;) > 0) does not hold, and RISE’s or nearest neighbor’s error will be that of
random guessing if no individual attribute values are correlated with the class. For
example, when attempting to learn the Boolean parity function (1 when an even
number of attributes is 1, and 0 otherwise), in the large-sample limit the SVDM
distance between the 0 and 1 values of any attribute is zero, since either class
occurs 50% of the time given either value. Thus the distance between all examples
is zero, and the classifier’s performance is equivalent to random guessing.

RISE(’s large-sample convergence can also be understood by decomposing
predictive error into bias and variance (Kong & Dietterich, 1995; Kohavi &
Wolpert, 1996; Tibshirani, 1996; Breiman, 1996b; Friedman, 1996). Since RISEo
includes nearest neighbor as a special case, RISEp’s bias cannot be greater than
the latter’s. Thus RISEp’s error can only be greater than nearest neighbor’s if its
variance is greater. However, in the large-sample limit the variance becomes zero,
and so in this limit RISEp cannot be less accurate than nearest neighbor.
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3.7 Related Work

Recent years have seen much research combining multiple learning paradigms.
The crucial conceptual difference between RISE and this work is that RISE unifies
rather than combines its parent approaches. Typical multistrategy learning sys-
tems include the component learners as subprocedures, resulting in a learner that
is more complex than the sum of the individual algorithms. RISE, in contrast,
is a single algorithm, that is as simple as its parents (or simpler). This has both
scientific and technical advantages. The model of learning embodied in RISE is
more parsimonious than that of a combined learner, and leads to a deeper under-
standing of the relations between the unified paradigms. Because of its simplicity,
the algorithm is easier to understand and implement than a combined learner and
its subprocedures.

Perhaps the earliest rule induction system to employ best-match classification
was AQ15 (Michalski, Mozetic, Hong & Lavrac, 1986); a more recent version is
AQ17-HCI (Wnek & Michalski, 1994). It differed from RISE in that it was a
general-to-specific, separate-and-conquer system that learned purely logical rules,
and only introduced the best-match policy in a post-processing step, with the goal
of removing rules from the set without adversely affecting accuracy. It also used
a different distance measure. Its approach is carried further in the FCLS system
(Zhang, 1990), which combines rules with exemplars in an attempt to alleviate the
small disjuncts problem. Unlike RISE, FCLS employs different representations
for rules and exemplars, and it uses the separate-and-conquer strategy of its AQ
ancestors.

RISE addresses the fragmentation problem in rule induction by employing
a “conquering without separating” induction strategy. Other approaches to this
problem include constructing new attributes (Pagallo & Haussler, 1990) and con-
verting decision trees to decision graphs (Oliveira & Sangiovanni-Vincentelli, 1995;
Kohavi & Li, 1995).

Viewed as an instance-based learner, RISE performs context-sensitive feature
selection, which can be seen as an extreme form of context-sensitive feature weight-
ing. A number of methods of this type have been proposed in the literature (Aha
& Goldstone, 1992; Hastie & Tibshirani, 1996; Atkeson, Moore & Schaal, 1997).
These are reviewed in more detail in Chapter 6. Non-metric, context-sensitive
distance measures for IBL are discussed in (Biberman, 1994). Another important
aspect of RISE is its policy for combining numeric and symbolic attributes, using
SVDM for the former and Euclidean distance for the latter. Alternative approaches
have been explored by Ting (1994) and Mohri and Tanaka (1994).

MCS (Brodley, 1995) has perhaps the most similar aims to RISE’s, but uses
an entirely different approach (applying meta-knowledge to detect when one al-
gorithm should be used instead of another), and combines instead decision trees
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with IBL and linear discriminant functions. Golding and Rosenbloom (1991) de-
signed a system that gainfully combined case-based and rule-based reasoning, but
it did not learn, it matched rules exactly, and it used different representations
and match procedures for cases and rules, instead of RISE’s unified approach.
Quinlan (1993b) has successfully combined IBL with trees and other methods,
but for the purpose of regression as opposed to classification, performing this com-
bination only at classification time, and in a way that depends critically on the
predicted value being continuous. Several induction algorithms proposed in the
literature can be seen as empirical multi-strategy learners, but combining different
paradigms from RISE’s: decision trees and rules (Quinlan, 1987a), decision trees
and perceptrons (Utgoff, 1989a), rules and Bayesian classification (Goodman,
Higgins, Miller & Smyth, 1992), backpropagation and genetic algorithms (Belew,
Mclnerney & Schraudolph, 1992), instances and prototypes (Scott & Sage, 1992),
decision trees and kernel density estimation (Smyth, Gray & Fayyad, 1995), deci-
sion trees and simple Bayesian classifiers (Kohavi, 1996), etc. (see (Michalski &
Whnek, 1996) for several recent examples).

In form, the most similar system to RISE in the literature is EACH (Salzberg,
1991), which generalizes instances to hyperrectangles, and classifies each test exam-
ple according to its nearest hyperrectangle. Its measure of the distance between an
example and a hyperrectangle is similar to Equation 3.3. EACH differs from RISE
in many ways: it is applicable only in purely numerical domains, is an incremen-
tal algorithm, never drops attributes, uses different heuristics and search strate-
gies, always prefers the most specific hyperrectangle, etc. Recently Wettschereck
and Dietterich (1995) carried out a detailed comparison of EACH and k-nearest-
neighbor (kNN), and designed an algorithm that combines the two (Wettschereck,
1994), but does not achieve greater accuracy than kNN alone. They found EACH
to be less accurate than kNN in most of the domains studied, and the chief cause of
this to be EACH’s use of overlapping rectangles. Since RISE and EACH use similar
representations in the case of numeric attributes, this warrants closer examination.

Two issues are involved in Wettschereck and Dietterich’s study, and they
should be clearly distinguished. One is whether using a single nearest neighbor is
preferable to using several. This has been studied for many years in the nearest
neighbor literature (e.g., (Cover & Hart, 1967)). Another issue, of more interest
here, is whether or not generalization of instances to hyperrectangles is beneficial.
Unfortunately, the study does not decouple the two issues, and it is not possible
to determine which of the two factors (or both) is responsible for the observed
differences in performance. EACH (and RISE) can be extended to use the k
nearest rules for classification; doing so and comparing the resulting approaches
with kNN is a worthy topic for future research. Here we will discuss our results on
the issue of whether or not to generalize instances to rules, in the context of using
the single nearest rule for classification.

In the cross-validation studies reported in the next chapter, RISE’s tie-
breaking policy based on Laplace accuracy was compared with one selecting the
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most specific rule as in EACH, and found to be clearly superior. This can be
understood as follows. In regions of overlap, EACH arbitrarily assigns all exam-
ples to the class of the most specific hyperrectangle. In contrast, RISE’s learning
strategy approximates the optimal decision rule of placing the boundary between
two classes at the point where the density of examples from one overtakes that
of the other (Duda & Hart, 1973). This is because a rule is started from each
example, and its generalization halts when it would include more examples of other
classes than of the example’s one. When rules overlap, the use of Laplace accu-
racy implies that, given similar-sized samples, each rule prevails in regions where
the density of examples of its class is greater. RISE’s batch-learning approach
also avoids the problems that EACH’s incremental learning one was observed to
suffer from. As reported in the next chapter, RISE outperformed two one-nearest-
neighbor algorithms (PEBLS and RISE’s own IBL component) in a large-scale
empirical study. All these facts support the conclusion that generalizing instances
to rules can indeed produce substantial improvements in accuracy, if done in an
appropriate manner.

3.8 Summary

The RISE algorithm differs from most multistrategy learners in that it unifies,
rather than combines, its parent approaches. RISE employs a uniform representa-
tion for rules and instances, by treating instances as maximally specific rules and
applying rules in a best-match fashion. RISE employs a specific-to-general, “con-
quering without separating” search strategy, in which rules are learned by gradually
generalizing instances until no improvement in accuracy is obtained. This allows
it to combat the fragmentation and small disjuncts problems that previous rule
induction approaches suffer from. RISE is also able to selectively generalize and
drop attributes from instances, and thus to combat the context-dependency prob-
lems that can affect instance-based learners. Theoretical analysis shows that RISE,
properly optimized, is as efficient in the worst case as other induction algorithms,
and that RISE using the overlap metric has a large-sample error rate of at most
twice the Bayes rate.



Chapter 4
Empirical Evaluation of RISE

4.1 Overview

An extensive empirical study was carried out with the goals of refining RISE,
comparing its performance to that of previous approaches, and determining the
role of its main components in that performance. This chapter describes the char-
acteristics and reports the results of this study.

4.2 Application Databases

Thirty databases from the UCI repository (Merz, Murphy & Aha, 1997) were
used in the study. An attempt was made to include every available dataset that
has been widely used in inductive learning studies, and beyond that to provide
a wide sampling of: symbolic, numeric and mixed datasets; small, medium and
large datasets; datasets of varying difficulty, as expressed in the highest accuracy
previously achieved; and datasets from a wide range of application areas. Reasons
for excluding datasets in the UCI repository from the study were:

e Some datasets are inappropriate for this type of algorithm. This includes:
datasets involving relational data, domain theories, structured instances, or
variant instances; datasets intended for psychological studies, and therefore
minuscule; and datasets intended for regression tasks (i.e., where the pre-
dicted value is numeric).

o In some cases there are multiple datasets from the same domain, and dupli-
cate datasets. In this case only the most widely used dataset was included.

e There are many more purely numerical datasets than symbolic or mixed
datasets in the repository. Use of all would result in a higher proportion
of this type of dataset than is usually the case in machine learning studies,
undermining comparisons with previous literature.

e Some datasets are inadequately documented and/or formatted.

e Some datasets are artificially generated ones, without correspondence to any
real-world problem.

41
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e In some datasets there is no clear feature to use as the class.

Essentially all the datasets in the UCI repository at the time of this study
that did not fall under one of these restrictions were included. Table 4.1 lists these
datasets in alphabetical order of code-name, and summarizes some of their main
characteristics. Datasets included in the listing of empirical results in (Holte,
1993) are referred to by the same codes. The filenames of the datasets used, and
any conversions that had to be performed, are listed in Appendix A.

4.3 Variations on RISE

Once the main features of an algorithm have been laid down, many detailed
design decisions still need to be made. Accordingly, in the first phase of the
empirical study, the first 15 datasets in Table 4.1 (from breast cancer to wine)
were used to compare different versions of RISE, and select the best one by 10-
fold cross-validation. In this procedure, the dataset is randomly divided into 10
equal-sized subsets, and 10 runs of each version of the algorithm are carried out.
In each of the 10 runs a different subset of the data is left out, and training is
carried out on the remaining nine. The accuracy of each version of the algorithm
is then measured on the subset that was left out, and the average accuracy for the
10 runs is computed.

For the sake of conciseness, tables containing numerical results for each com-
parison are omitted, but the main observations are of interest, not only to RISE
but also in the wider context of the issues they address, and are therefore sum-
marized below. In each case, only the general trend is reported; almost invariably,
exceptions to it were also observed. Whenever no significant difference in accu-
racy was observed, the simpler version of the algorithm was chosen; otherwise the
more accurate one prevailed. In general, differences in accuracy (averaged over all
datasets) of less than 1% were not considered significant. The comparisons made
and respective conclusions were as follows.

o Use of weights on exemplars. Two versions were compared: no weights, and
each rule weighted by the inverse of its Laplace accuracy, leading unreliable
rules to appear farther from new instances. This is similar to the weighting
scheme used in PEBLS (Cost & Salzberg, 1993), but slightly more sophis-
ticated because the Laplace correction is used. Note that this correction is
indeed justified when dealing with individual rules. No significant difference
was observed. This may be due to the fact that the datasets are not too
noisy, to the fact that RISE’s basic approach to induction is successful by
itself in combatting noise, or to both. No weights is the default in RISE 3.1.

o Tie-breaking. When more than one rule was equally near the test exam-
ple, ties were broken by choosing the one with highest Laplace accuracy, by
choosing the most specific one, and by frequency-based voting as done in



43

Table 4.1: Datasets used in the empirical study. The columns are, in order: name
of the dataset; 2-letter code used to refer to it in subsequent tables; number of
examples; number of attributes; number of numeric attributes; number of classes:
percentage of missing values; and whether or not the dataset includes inconsistent
examples (i.e., identical examples with different classes).

Dataset Code | Exs. Atts. Num. Classes Missing Incons.
Breast cancer BC 286 9 4 2 0.3 Yes
Credit screening | CE | 690 15 6 2 0.6 No
Chess endgames | CH | 3196 36 0 2 0.0 No
Pima diabetes DI 768 8 8 2 0.0 No
Hepatitis HE 155 19 6 2 5.7 No
Iris IR 150 4 4 3 0.0 No
Labor negotiat. | LA 57 16 8 2 35.7 No
Lung cancer LC 32 56 0 3 0.3 No
Liver disease LD 345 6 6 2 0.0 No
Contact lenses LE 24 4 0 3 0.0 No
Lymphography LY 148 18 3 4 0.0 No
Primary tumor PT 339 17 0 | 3.9 Yes
Soybean SO 47 35 0 4 0.0 No
Voting records VO | 435 16 0 2 5.6 No
Wine WI 178 13 13 3 0.0 No
Audiology AD 200 69 0 24 2.1 No
Annealing AN | 798 38 9 5 64.9 No
Echocardiogram | EC 131 7 6 2 44 Yes
Glass GL 214 9 9 6 0.0 No
Heart disease HD 303 13 6 2 0.2 No
Horse colic HO 300 22 7 2 24.3 Yes
Thyroid disease | HY | 3163 25 7 2 6.7 Yes
LED LI 100 7 0 10 0.0 Yes
Mushroom MU | 8124 22 0 2 1.4 No
Post-operative PO 90 8 8 3 0.4 Yes
DNA promoters | PR 106 57 0 2 0.0 No
Solar flare SF 323 12 3 6 0.0 Yes
Sonar SN 208 60 60 2 0.0 No
Splice junctions | SP | 3190 60 0 3 0.0 Yes
Zoology Z0 101 16 1 7 0.0 No




CN2. The best-performing alternative was Laplace accuracy. Use of speci-
ficity had a clear negative effect on accuracy, contradicting heuristics used in
some other systems (e.g., EACH (Salzberg, 1991)). Tie-breaking when the

accuracies are also identical was described in the previous chapter.

Distance computation. Values of ¢ = 1 and ¢ = 2 (see Equation 2.6) were
tried, each combined with values of s = 1 and s = 2 (see Equation 3.1).
No appreciable difference was observed, confirming previous results (Cost
& Salzberg, 1993). The default values for RISE 3.1 are ¢ = 1 and s = 2
(Euclidean distance).

Treatment of numeric values. The following versions were compared: normal-
ization by the attribute’s observed range, as in Equation 3.3; normalization
by 3 and 4 times the standard deviation for the attribute; discretization into
equal-sized intervals up to a maximum of 10; and intervalization by entropy
minimization, i.e., ordering the values and successively choosing the splitting
point that most reduces the entropy, until a maximum number of intervals is
reached (10, 100) or the reduction obtained is at or below a given minimum
(10%, 1%, 0%). The latter approach is similar to Catlett’s (1991).! The
two first methods were in general clearly superior to the latter two, although
this was reversed in some datasets. The entropy-based method also caused
a noticeable increase in computation time for the larger datasets. The two
types of normalization performed very similarly; range was chosen, due to
its greater simplicity.

Treatment of missing values. Missing symbolic values were treated in two
ways: as legitimate symbolic values (see earlier discussion), and matching
every value as done for numeric values. The first alternative proved superior.

Search. Two types of search were attempted: finding only the nearest ex-
ample and attempting to cover it, and finding the 3 nearest examples, at-
tempting to cover each and choosing the best result (or no change, as before).
The latter alternative produced no substantial improvement, as well as being
predictably slower. The first was chosen.

Final search. Two alternatives were tried when the generalization of a rule to
the nearest example does not improve accuracy. One was to do nothing. The
other was to attempt generalization to all other examples of the rule’s class
in order of increasing distance from it, until an improvement was obtained
or the examples were exhausted. Again, this variation produced a slowdown
and no overall improvement in accuracy, and was not adopted.

Stopping criterion. Two stopping criteria were compared: local, where a
rule’s generalization is terminated as soon as an attempt to generalize it
fails, and global, where this termination only occurs when such attempts
have failed for all rules. There was no significant difference between the

1A related approach using the minimum description length principle is described in (Fayyad
& Irani, 1993).
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two in running time, and global stopping tended to produce slightly higher
accuracies, so this policy was chosen.

e Merging rules. Three policies for merging rules were compared: deleting
duplicate rules, deleting subsumed rules (i.e., rules logically implying the
subsuming rule), and deleting subsumed rules only if they were not more
accurate than the subsuming rule. The rationale for the last policy is that in
RISE a subsumed rule can have a positive effect on overall accuracy, because
it may win examples that the subsuming rule would not. The two latter
approaches produced some speedup and somewhat more compact rule sets,
but also had a noticeable negative effect on accuracy. The default for RISE
is therefore deleting only duplicated rules.

o Simplification. Two post-processing techniques that further simplified the fi-
nal rule set were tested, individually and in combination. One was to delete
all rules that won no examples. The other was to delete all attributes in a rule
that did not have different values in examples of other classes. Both strate-
gies were successful in simplifying the rule sets, particularly the first, with
the greatest reductions predictably produced by the combination of the two;
compression rates in excess of 90% for the whole algorithm were common.
However, this simplification was accompanied by a small overall decrease in
accuracy, and post-processing is thus not the default in RISE. These ob-
servations stand in contrast to studies on decision tree learners (Quinlan,
1987b) and rule induction systems (Michalski, Mozetic, Hong & Lavrac,
1986), where simplification was accompanied by an increase in accuracy.
Together with the results in (Murphy & Pazzani, 1994), (Webb, 1996) and
(Domingos, 1997b) that suggest the most accurate decision tree is not al-
ways the simplest, this may indicate that the relationship between accuracy
and simplicity is not as simple as is sometimes assumed (e.g., (Blumer,
Ehrenfeucht, Haussler & Warmuth, 1987; Cheeseman, 1990)).

4.4 Other Systems

In the second part of the empirical study, RISE was compared with a rep-
resentative of each of its parent approaches: PEBLS for IBL (Cost & Salzberg,
1993), and CN2 for rule induction (Clark & Niblett, 1989). PEBLS is a state-of-the
art system, as opposed to the skeleton nearest-neighbor implementations typically
used in empirical comparisons. PEBLS 2.1’s inability to deal with missing values
was overcome by grafting onto it an approach similar to the one selected for RISE
(see previous chapter). A recent version of CN2 (6.1) was used, one incorporating
Laplace accuracy and unordered rules (Clark & Boswell, 1991). To gauge its posi-
tion in the overall spectrum of induction methods, RISE was also compared with a
system that learns rule sets by way of decision trees, C4.5/C4.5RULES (Quinlan,
1993a). The default classifier (always choosing the most frequent class) was also
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included in the study to provide a baseline. Backpropagation (Rumelhart, Hinton
& Williams, 1986), although a widely-used learning algorithm, was left out be-
cause its need for extensive fine-tuning and very long running times would make a
large-scale study of this type difficult to carry out.

To ensure a fair comparison, the 15 datasets used in the first phase of the
study to select among different versions of RISE were also used to fine-tune the
other algorithms, again choosing the most accurate version of each by 10-fold cross-
validation. Since a complete factor analysis would be too expensive, the relevant
parameters were instead varied one at a time, starting with the ones thought to
be most critical, and selecting the best value for each parameter before going on
to the next one. When no clear differences were present, the default was retained.
In PEBLS, the number of intervals for each numeric attribute has to be set by the
user, and it is recommended that it be kept small for best results. The policy was
adopted of using the number of observed values up to a maximum of m, and the
optimum m found was 15. All other parameters retained their default values. In
CN2, the only non-default choice produced was that of accuracy instead of Laplace
accuracy for the evaluation function.? In C4.5, a major question is whether to
output trees or rules. C4.5RULES produced slightly better results, and was the
version chosen. It also has the advantage of being the one most directly comparable
to RISE. The non-default choices made were: use windowing (growing 10 trees,
the default), require a minimum of 4 examples (instead of 2) in two branches of a
test, and use a confidence level of 37.5% for rule pruning (instead of 25%).

The fine-tuned algorithms were then tested on the remaining 15 datasets
in Table 4.1 (from audiology to zoology). Note that this procedure is somewhat
unfavorable to RISE, since some of these datasets were previously used in the devel-
opment of the other algorithms, as reported in the references above. Each dataset
was randomly divided 50 times into a training set containing two-thirds of the
examples, and a testing set containing the remainder. All of the algorithms were
trained on each of the 50 training sets and tested on the corresponding testing set.
The results reported are averages of these 50 runs. For the sake of completeness
the algorithms were also rerun in these conditions on the 15 tuning datasets.

7

4.5 Accuracy Comparisons

The average accuracies and sample standard deviations obtained are pre-
sented in Table 4.2. The first half of the table shows results on tuning datasets,
and the second half shows results on test datasets. Superscripts indicate confidence
levels for the difference between RISE and the corresponding algorithm, using a
one-tailed paired ¢ test. The ¢ test is appropriate because the accuracies being com-
pared, being means of random samples, are normally distributed, according to the

2Clark and Boswell (1991) observed Laplace accuracy to outperform entropy in the context
of CN2, but conducted no comparison of Laplace accuracy with uncorrected accuracy.
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central limit theorem (DeGroot, 1986), and the variances are unknown and also
being estimated; the one-tailed test is preferred over the two-tailed one because the
goal is to determine in each case whether RISE is better than the corresponding
algorithm, not just whether the two are different. The more sensitive paired test
is made possible by, in each run, testing all the algorithms on the same sample.
Since 120 individual significance tests are reported, it is possible that some of the
differences reported as significant are in fact not so (for example, with 100 tests
we can expect 5 non-significant differences to be reported as significant at the 95%
confidence level by chance). However, most of the confidence levels obtained are
very high, making this effect unlikely. *

Although many results in individual datasets are interesting in themselves,
these tables are more easily understood if their results are summarized in a few
global measures of comparative performance. Five such measures and their values
are presented in Table 4.3. They can be described and interpreted as follows.

o Number of wins. The first and most obvious test is simply to count the
number of datasets where RISE achieved higher average accuracy than the
second algorithm, count those where its accuracy was lower, and compare
the two (ties, which rarely occur, are not counted either way). The first line
of Table 4.3 shows this: for example, RISE performed better than PEBLS in
10 test datasets, and worse in 4 (there was 1 draw). As can be seen, RISE
outperformed every other algorithm in this respect by a ratio of roughly 2 to
1.

o Number of significant wins. The previous measure is clearly imperfect, for
some of the differences can be very small and of no real significance. A
good alternative is then to count only those datasets where the difference
was significant at a confidence level of 95% or higher (see Table 4.2). This
yields roughly similar ratios, with all values somewhat reduced as might be
expected, confirming the previous observation that RISE performs substan-
tially better than every other algorithm.

o Wilcoron test. The goal of machine learning is not in general to produce
algorithms targeted to one specific domain, but rather to produce algorithms
that are accurate across broad classes of domains. In trying to answer the
question “Is RISE a more accurate system?” it is then useful to look at
the 15 (or 30) datasets used in this study as a sample of size 15 (or 30)

3These confidence levels should be interpreted with caution, due to the t test’s assumption of
independently drawn samples. Thus a 99% level for a dataset means that RISE can be expected
with high confidence to outperform the corresponding algorithm on training sets drawn at random
from that dataset, since the accuracy results were obtained by independently drawing training
sets from the dataset. This is useful for cross-checking the results of this study with previous ones
on the same datasets. However, no conclusions can be drawn regarding different datasets drawn
at random from the same domain the UCI dataset was, because with respect to the domain the
training sets used here are not independent, being overlapping subsets of the same dataset. See
(Dietterich, 1996) for more on this issue.
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Table 4.2: Empirical results: average accuracies and standard deviations. Super-
scripts denote confidence levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is
90%, and 6 is below 90%.

Dataset RISE Default PEBLS CN2 C4.5
BC 67.7+4.5 68.5+6.8°  64.9+4.0! 65.9+4.7! 67.9+5.1°
CE 83.342.4  56.7+3.7! 81.6+2.0 82.3+2.2! 84.542.5!
CH 98.240.6  52.3+1.8! 96.8+0.7! 98.74+0.7! 99.240.2!
DI 70.44+2.5 65.4+2.4} 70.942.68 73.6+2.41 73.14+2.5!
HE 78.3+5.7 79.1+3.66  80.3+5.1°  80.9+3.6'  81.0+5.32
IR 94.0+2.8 26.3+3.8" 93.243.5*  90.84+4.4'  93.5+2.8%
LA 87.247.8  66.1+£10.2' 91.1+5.1'  82.8+7.6'  81.4+6.1!
LC 44.7416.4 24.7+15.5' 42.0+15.2% 32.7+13.6'  44.5+14.1°
LD 62.4+4.6 57.8+3.2! 61.24+4.2°  66.84+4.7! 65.1+4.5
LE 77.2412.8 60.8+13.1'  72.5+12.6' 67.8+412.4!  63.7+18.4!
LY 78.7+5.9  55.5+6.9" 81.7+£5.41  80.245.5°  76.6+5.73
PT 40.3+4.8  24.3+3.4! 31.44+4.1'  41.445.3° 38.9+4.9*
SO 100.0+0.0  25.9416.2' 100.0+0.0°  97.3+4.9 97.4+3.1!
VO 95.241.5  60.7£3.0! 94.6+1.3°  95.54+1.5° 95.4+1.5%
WI 96.942.0  36.9+8.6! 96.5+2.1°  90.54+5.5! 93.0+4.2!
AD 77.04£5.3  20.8+3.6! 75.845.2°  63.0£6.6°  66.946.07
AN 97.440.9 76.2+2.2! 98.8+0.8'  92.9+2.1! 93.44+1.71
EC 64.6+7.0 68.1+6.9! 63.0+£5.4°  67.946.0" 65.0+6.4%
GL 70.6+5.8  31.445.0 66.7+6.2!  55.046.9" 66.447.41
HD 79.7+3.8  55.1+3.8! 78.8+3.8°  78.5+3.9° 77.34+3.5!
HO 82.6+3.9 64.1+3.8! 76.1+4.0'  82.243.65  81.04+3.8?
HY 97.5+0.4  95.3+0.5! 97.34£0.5!  98.3+0.5'  99.240.2!
LI 59.947.2  7.343.2'  53.0+7.0'  57.5+£7.72  57.148.12
MU | 100.040.2 51.840.9' 100.0+0.0° 100.040.0°  100.0+40.0°
PO 64.1+£7.0 71.0+6.2! 58.3+7.9! 59.4+7.71 67.3+9.73
PR 86.845.2 42.1+5.3! 90.6+5.2! 72.04+8.9 80.6+8.5!
SF 71.6+3.7 25.4+4.1! 68.2+3.5! 70.74£3.4*  71.5+3.76
SN 77.949.3  51.0+7.0" 75.0+5.6°  63.045.5 69.6+8.0!
SP 93.1+£1.6  52.2+1.7! 94.34£0.6'  90.941.0 93.2+1.16
70 93.943.7  40.5+6.3! 94.9+4.2° 924455  91.245.1!
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Test datasets All datasets
Measure RISE PEBLS CN2 C4.5 | RISE PEBLS CN2 C4.5
No. wins - 10-4 12-2  10-4 - 20-8 20-9 18-11
No. signif. wins - 7-4 10-2  9-2 14-7 18-6 15-7
Wilcoxon test - 96.0 99.6 98.0 - 98.0 99.6 98.0
Average 81.1 79.4 76.2 78.6 | 79.7 78.3 76.4 T77.8
Score 3.1 2.3 1.8 2.2 2.8 2.2 2.1 2.4

taken from the set of real-world datasets, consider the accuracy difference
in each dataset as a sample of a random variable, and test the hypothesis
of whether this difference is in general positive. The Wilcoxon signed-ranks
test is a procedure that addresses this issue (DeGroot, 1986). It takes
into account the signs of the observed differences, and their ranking (i.e.,
the largest difference counts more than the second largest one and so forth,
but it does not matter by how much). In each case, the results support
the hypothesis that RISE is a more accurate algorithm with a confidence in
excess of 95%. It is therefore highly unlikely that RISE performed better
than the other algorithms by chance. If the domains used constitute a good
sample of the set of real-world domains to which these algorithms will be
applied, we can then conclude with high confidence that RISE is the most
accurate one.

It should be remarked that, unlike what is common practice in the machine
learning literature, this test is being performed at the meta level: the question
being asked is “Is RISE better than the other algorithm on this ensemble of
datasets?”, as opposed to asking 30 times “Is RISE better than the other
algorithm on an ensemble of test sets from the same dataset?” Thus the use
of a large number of datasets does not undermine the conclusions reached,
but instead makes the very high confidences obtained possible.

Average. The average performance across all datasets is a measure of de-
batable significance, but it is often reported (e.g., (Quinlan, 1993b; Clark
& Boswell, 1991)) and provides additional perspective. Again RISE does
visibly better than every other algorithm. It is also interesting to note that,
although IBL (PEBLS) and rule induction (CN2) often differ by large mar-
gins in specific datasets, globally these differences tend to cancel each other
out. This is also true when comparing C4.5 with PEBLS.

Score. The score is a measure that compares all five algorithms simultane-
ously (default included), looking not only at which one is the most accurate,
but also taking into consideration that being the second is better than being
the worst, etc. Specifically, for each dataset the most accurate algorithm
receives 4 points, the second 3, the third 2, the fourth 1 and the worst 0. An



RISE/PEBLS RISE/CN2 RISE / C4.5
Figure 4.1. Comparison of accuracies: RISE vs. PEBLS, CN2 and C4.5.

algorithm’s score is then defined as the average number of points it received
(i.e., the sum of the points received, divided by the number of datasets).
RISE obtains the largest score by a wide margin.

The results for all datasets are also shown in bar graph form in Figure 4.1,
where each pair of bars compares RISE with one of the other systems. The left-
hand bar in each pair represents the number of RISE wins vs. the other system,
and the right-hand bar represents the number of the other system’s wins. The
darker portion of each bar represents the number of significant wins at the 95%
confidence level.

The same general pattern of RISE wins typically emerges if the results are
broken down by dataset size (small, medium and large, i.e., e < 100, 100 <
e < 1000, and e > 1000), dataset type (symbolic, numeric and mixed), difficulty
(easier and harder, as measured by the highest accuracy being above or below
75%, the global average), and application area (medical diagnosis, engineering,
social science, life sciences and miscellaneous). Confidence levels are of course
reduced due to the smaller sample size, and there is sometimes no clear pattern
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when the number of datasets is small, but RISE’s excellent results clearly hold
across the board.

A very significant observation is that in 14 datasets RISE’s accuracy exceeds
the highest of CN2’s and PEBLS’s (i.e., RISE not only matches the results of the
best of its parent approaches, but is able to improve on them). In nine of those
datasets this is true with a confidence level of 95% or higher, using a one-tailed
paired t test (see Table 4.2). This shows that a significant synergy can be obtained
by unifying multiple empirical learning approaches.

RISE was also compared with the CART decision tree learner (Breiman,
Friedman, Olshen & Stone, 1984) (in the IND implementation (Buntine & Caruana,
1992)) on the datasets above and others, leading to similar results. For example,
in the StatLog letter recognition dataset (Michie, Spiegelhalter & Taylor, 1994)
RISE obtained an average accuracy of 93.2%, vs. CART’s 83.8%.

4.6 Lesion Studies

The empirical results just described lead to the conclusion that RISE rep-
resents a significant advance in the state-of-the-art in empirical concept learning.
However, we would like to verify that RISE’s improved performance is indeed due
to its unification of rule induction and IBL, and, in general, to know what factors
RISE’s higher accuracy should be attributed to. To answer this, lesion studies
were conducted, and additional aspects of the algorithm’s performance were mea-
sured. Lesion study results are reported in Table 4.4. The first column shows the
full system’s accuracy, and each of the following ones represents a lesioned ver-
sion. Superscripts indicate confidence levels for the accuracy differences between
systems, again using a one-tailed paired t test. These results are summarized in
Table 4.5, and in bar graph form in Figure 4.2, using the same representation
as before. The results of performance monitoring for the full RISE system are
shown in Table 4.6. The first four columns show, respectively: the percentage of
test cases that were not matched by any rule, but had a single closest rule, or for
which all equally close rules were of the same class (No/One); the percentage not
matched by any rule, and for which there were equally close rules of more than one
class (No/Mlt); the percentage matched by only one rule, or rules of only one class
(One); and the percentage matched by rules of more than one class (Mlt). The
next four columns show RISE’s average accuracy given each of these situations
(e.g., column five shows RISE’s average accuracy on test examples that were not
matched by any rule, but had a single closest rule/class). The bottom line of the
table shows the averages of the corresponding columns over all datasets. These
observations aid in interpreting the lesion study results.

The first specific question addressed was whether there is any gain in the
rule induction process (i.e., whether RISE constitutes an improvement over pure
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Table 4.5. Summary of lesion study results.

Test datasets All datasets
Measure RISE IBL Rules Not.-b. | RISE IBL Rules No t.-b.
No. wins - 11-4 12-2 11-1 - 21-8 25-4 20-4
No. sigf. wins - 8-4 12-1 10-1 - 16-7  24-2 15-3
Wilcoxon test - 97.0 99.8 99.0 - 99.5 99.9 99.8
Average 81.1 79.3 694 80.0 79.7 T78.1 67.9 79.0
A

No. wins

23

20 T

15 T

10

5 ——

0 e

RISE/IBL  RISE/Rules RISE/No t.-b.

Figure 4.2: Comparison of RISE with its lesioned versions: IBL only, rule induction
only, and no tie-breaking.



Table 4.6. Empirical results: performance monitoring.

Match type frequency

Accuracy per match type

Dataset | No/One No/Mlt One MIt | No/One No/Mlt One  MIt
BC 334 1.5 59.1 6.0 59.7 58.6 73.5  56.1
CE 51.9 0.0 469 1.1 79.3 25.0 88.1 65.6
CH 27.6 0.1 71.4 0.9 95.5 65.0 99.5 874
DI 70.9 0.1 274 1.6 67.7 62.5 78.0 58.5
HE 55.3 0.1 43.1 1.5 70.9 33.3 88.7 53.8
IR 45.9 0.0 540 0.2 89.6 - 97.9  50.0
LA 51.8 0.2 466 14 81.9 0.0 95.0 30.8
LC 88.2 0.4 9.1 24 49.4 0.0 30.0 53.8
LD 72.7 02 240 3.0 59.5 50.0 72.6  54.1
LE 13.2 1.5 830 22 45.3 16.7 834 T7.8
LY 42.9 04 539 28 66.3 55.6 89.4 65.2
i 34.2 4.1 41.6  20.1 34.8 19.7 48.7 36.2
SO 16.9 0.0 831 0.0 100.0 - 100.0 -
VO 74 0.1 90.3 2.1 77.8 33.3 974  65.6
WI 78.1 0.0 219 0.0 96.1 - 100.0 -
AD 53.6 1.6 43.0 1.8 62.8 37.0 97.3  65.5
AN 24.1 0.0 75.6 0.2 91.7 50.0 99.8 78.8
EC 70.1 0.1 26.8 3.0 63.9  100.0 66.2  66.7
GL 71.5 0.0 272 1.3 65.5 - 84.3 674
HD 63.1 0.0 34.8 2.1 77.0 0.0 85.7 65.4
HO 39.7 0.2 554 4.6 72.5 81.8 89.8 83.5
HY 40.7 0.1 58.3 0.9 95.8 66.7 99.0 81.4
LI 14.7 45 473 33.5 34.7 324 76.2 51.6
MU 7.3 0.0 92.5 0.2 99.9 < 100.0 100.0
PO 36.5 12.2 44.7 6.6 59.3 76.1 63.4 76.8
PR 59.7 0.0 358 4.5 85.2 - 914 718
SF 16.7 29  59.9 204 59.2 55.8 81.8 54.0
SN 95.6 0.0 4.3 0.1 77.4 s 89.9 0.0
SP 67.4 0.0 299 27 92.6 50.0 95.8 75.2
Z0O 115 0.0 81.9 0.5 74.8 - 98.3 444

Average | 45.6 1.1 49.1 4.3 72.9 44.1 85.4 62.1
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instance-based learning). The “IBL” column in Table 4.4 reports the accuracies
obtained by the initial, ungeneralized instance set, and shows that generalization
often produces significant gains in accuracy, while seldom having a negative effect.
Not surprisingly, the results are similar to those of RISE vs. PEBLS.

The converse question is whether the instance-based component is really
necessary. Simply assigning examples not covered by any rule to a default class, as
done in most rule induction systems, might be sufficient. The “Rules” column in
Table 4.4 shows the results obtained using this policy, and confirms the importance
of “nearest-rule” classification in RISE. The sum of the “No” columns in the left
half of Table 4.6 is the percentage of test cases assigned to the default class. This
is often very high, the more so because RISE tends to produce rules that are more
specific than those output by general-to-specific inducers. The use of nearest-
rule is thus essential. Note that the results reported in the “Rules” column are
for applying the default rule during both learning and classification; applying it
exclusively during classification produced only a slight improvement.

Another important component of RISE whose utility needs to be determined
is the conflict resolution policy, which in RISE consists of letting the tied rule with
the highest Laplace accuracy win. This was compared with simply letting the
most frequent class win (“No t-b.” column in Table 4.4). The sum of the “MIt”
columns in the left half of Table 4.6 is the percentage of cases where tie-breaking
is necessary. This is typically small, and the increase in accuracy afforded by
RISE’s conflict resolution strategy is correspondingly small (0.7% on average, for
all datasets). However, this increase is consistently produced, as evinced by the
fact that RISE is more accurate than its lesioned version with a 99.8% confidence
by the Wilcoxon test.

Taken together, the lesion studies show that each of RISE’s components is
essential to its performance, and that it is their unification in one system that is
responsible for the excellent results obtained by RISE vis-d-vis other approaches.

The question now becomes one of whether RISE’s unified approach is supe-
rior to the individual ones for the reasons hypothesized in the previous chapters,
and, in general, under what conditions the unified approach will lead to supe-
rior performance. This was investigated by conducting experiments with artificial
datasets. These studies are described in the next two chapters.

The performance monitoring results (Table 4.6) are also of interest in them-
selves. For example, they show that RISE is more accurate when a single rule/class
wins the example (No/One and One) than when conflict resolution is necessary
(No/Mlt and Mlt), and that RISE is more accurate when rules cover the example
(One and MIt) than when they are at some nonzero distance from it (No/One
and No/MIt), with the multiplicity effect being stronger than the distance effect.
Thus, Acc(One) > Acc(No/One) > Acc(Mult) > Acc(No/MIt), forming a natural
progression from the less ambiguous cases to the more ambiguous ones. Intuitively,
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when rules of a single class match the example there is more confidence in the re-
sulting class prediction than when conflict resolution is necessary, and when there
is a perfect match between the winning rule and the example there is more confi-
dence in the prediction than when the match is only approximate. Comparing the
number of domains in which each match type is more accurate than each other
leads to the same conclusions. Finally, comparing the two halves of Table 4.6 shows
that RISE is more accurate in the situations that occur most often, which is the
most desirable outcome with respect to the goal of maximizing global accuracy.

4.7 Space and Time Comparisons

Besides accuracy, two variables of interest are output size and running time.
These are listed in Tables 4.7 and 4.8. Output size is measured by counting one
unit for each antecedent of a rule, plus one for the consequent. The size for PEBLS
is simply that of the the training set (i.e., e(a + 1), in the notation of Section 3.5).
Running times were obtained on a Sun 670 machine, with all algorithms imple-
mented in C and similarly compiled. All values shown are averages of 50 runs.

With respect to output size, RISE occupies an intermediate position between
the IBL and rule induction representatives. It obtains large savings compared to
PEBLS, and these increase with training set size (see, e.g., the MU dataset).
We can thus expect RISE to be at a significant advantage relative to unedited
IBL methods in applications where a large number of examples is available, and
the target concept is comparatively simple. On the other hand, RISE’s output
is still generally much larger than CN2’s. The number of rules produced (not
shown) is typically similar, but RISE’s rules tend to be substantially more specific;
this is consistent with the search direction and best-match policy it uses. An
important fact is that, if rules that do not win any training examples are discarded,
the resulting decrease in RISE’s accuracy is minimal (0.05% on average) and has
practically no effect on the comparison with CN2, but the output size is reduced by
50% or more, and the average number of rules becomes smaller than CN2’s in every
dataset (except VO, where it is about the same). Thus, when simplicity of the
output is a goal, RISE can often come quite close to CN2 without compromising
accuracy. However, the simplest results are always those obtained by C4.5RULES.
(The pruned tree sizes (not shown) are comparable to those of CN2’s and RISE’s
pruned rule sets.)

With respect to running time, RISE is typically slower than PEBLS. This
is to be expected, since RISE essentially does everything that PEBLS does, and
more. More surprising is the fact that RISE is still faster than PEBLS on eight
datasets, including several purely symbolic ones. This suggests that PEBLS’s
implementation could be further optimized. RISE is faster than CN2 on most
datasets, but this advantage tends to be concentrated in the smaller ones, raising
the possibility that CN2 will be at a considerable advantage in larger datasets than
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Table 4.7. Empirical results: average output sizes.

Dataset | RISE PEBLS CN2 C4.5
BC 1045.4 1910 410.2 17.5
CE 4110.9 7392  679.4 51.0
CH 3063.8 79217 843.1 96.2
DI 3048.8 4626  802.0 69.3
HE 1231.9 2060 1128  20.5
IR 382.9 500 63.2 9.9
LA 305.7 646 42.3 10.0
LC 403.3 1197 39.6 7.8
LD 1156.8 1617  436.1  63.6
LE 16.7 80 25.5 6.1
LY 756.4 1881 131.7 254
PT 2076.7 4086 653.6 61.1
SO 106.2 1116 18.8 9.9
VO 541.0 4947 113.2 159
WI 896.3 1666 87.6 14.3
AD 4165.8 9380 236.4 40.7
AN 13527.3 20826 420.4 62.0
EC 550.2 696 137.7 19.7
GL 696.2 1430 245.8 47.0
HD 1460.5 2842  320.8 429
HO 2111.6 4623 268.6 194
HY 7465.9 55094  430.7 14.5
LI 217.3 536 125.8 40.3
MU 398.1 125189 176.8 38.6
PO 470.3 540 1329 4.5
PR 1198.6 4118 82.5 16.0
SF 1316.2 2808  326.3 35.2
SN 3756.4 8479 2240 33.9
SP 8350.7 130357 1360.5 211.3
Z0 196.2 1139 41.3  20.0




Table 4.8: Empirical results: average running times (in minutes and seconds), and
ratio of running times of PEBLS, CN2 and C4.5 to running time of RISE (PB/R,

CN/R and C4/R, respectively).

Dataset | RISE PEBLS CN2 C4.5 PB/R CN/R C4/R
BC 0:15.11  0:03.16 0:22.86 1:31.41 0.2 1.5 6.0
CE 4:31.25 0:16.11 2:05.30 2:53.67 | 0.1 0.5 0.6
CH 10:39.67 11:59.41 6:41.85  4:00.51 1.1 0.6 0.4
DI 4:15.37  0:12.30 2:13.93  4:02.76 | 0.0 0.5 1.0
HE 0:10.93 0:02.32 0:07.42 0:08.24 | 0.2 0.7 0.8
IR 0:05.42 0:01.74 0:03.01 0:02.09 | 0.3 0.6 0.4
LA 0:01.30 0:01.60 0:02.42 0:01.96 | 1.2 1.9 1.5
LC 0:00.69 0:01.70 0:04.64 0:02.07 | 2.5 6.7 3.0
LD 1:31.02 0:02.82 0:28.21 1:06.12 | 0.0 0.3 0.7
LE 0:00.13 0:01.78  0:00.55 0:01.31 | 13.7 4.2 10.1
LY 0:04.88 0:02.21 0:07.77 0:06.07 | 0.5 1.6 1.2
PT 0:14.38  0:06.07 1:58.39 1:55.04 | 0.4 8.2 8.0
SO 0:00.50 0:01.64 0:01.46 0:01.74 | 3.3 2.9 3.5
VO 0:27.71  0:07.07  0:06.47  0:03.41 0.3 0.2 0.1
WI 0:15.31 0:02.77  0:10.30  0:11.18 0.2 0.7 0.7
AD 0:11.20 0:07.14 1:10.47 0:24.18 | 0.6 6.3 2.2
AN 4:26.07 1:46.58  4:34.74  2:46.27 0.4 1.0 0.6
EC 0:04.84  0:02.70 0:07.16  0:13.05| 0.6 1.5 2.0
GL 0:11.03 0:02.75 0:28.22 1:41.71 0.2 2.6 9.2
HD 0:26.35  0:03.71 0:24.85 1:53.25 0.1 0.9 4.3
HO 1:39.64 0:05.77 1:42.63 0:24.29 0.1 1.0 0.2
HY 14:45.96  8:36.18 11:53.69 1:54.54 | 0.6 0.8 0.1
LI 0:00.60 0:01.68 0:02.42 0:02.89 | 2.8 4.0 4.8
MU 10:07.22 45:37.28  4:16.37 18:29.79 | 4.5 0.4 1.8
PO 0:01.49 0:01.46 0:05.28 0:02.53 | 1.0 3.5 1.7
PR 0:07.85 0:02.94 0:15.03 0:06.28 | 0.4 1.9 0.8
SF 0:08.97 0:04.19 0:20.03 0:28.49 | 0.5 2.2 3.2
SN 2:35.81  0:09.76  2:39.08 5:15.54 | 0.1 1.0 2.0
5P 51:28.15 19:25.15 32:15.24 24:20.94 | 0.4 0.6 0.5
Z0 0:01.11  0:01.76  0:02.03 0:02.16 1.6 1.8 1.9
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those used here, provided the concept description is still sufficiently simple (if not,
CN2’s time will grow to the worst-case bound discussed in the previous chapter,
equivalent to RISE’s). RISE is also typically faster than C4.5 in this comparison,
but this is due to the fact that the windowing option is being used in C4.5; even
though each tree is typically grown faster with windowing, this gain tends to be
swamped by the fact that 10 trees are being grown, and rules are being selected
from all of them.

We conclude that, for datasets of very large size, and/or when comprehen-
sibility is paramount, a system like C4.5 will still be the first choice.® If, on the
other hand, accuracy is the dominant goal, the results of previous sections indicate
that RISE may be a more appropriate algorithm to use.

4.8 Summary

The unified approach to concept learning embodied in RISE has been val-
idated by extensive empirical testing. RISE is significantly more accurate than
state-of-the-art representatives of the approaches it unifies (PEBLS and CN2) in
a large number of application datasets, and often more accurate than the best
of the two. RISE also significantly outperforms an advanced decision-tree learner
(C4.5) on most datasets used. Lesion studies show that each of RISE’s aspects is
essential to its performance; neither by itself would achieve it. RISE’s output size
is typically larger than CN2’s and smaller than PEBLS’s. Running times are com-
parable for all systems, with RISE being typically somewhat slower than PEBLS,
and faster than CN2.

4Assuming output size is a reasonable measure of comprehensibility.




Chapter 5
RISE as Rule Induction

5.1 Overview

This chapter investigates empirically how RISE’s behavior differs from that
of other rule induction algorithms, and extends RISE with methods for combining
its output with the output of those algorithms. Studies in artificial domains show
the use of RISE to be particularly advantageous when the concepts to be learned
are fairly to highly specific. The combination of RISE with general-to-specific rule
learners, resulting in two-way tnduction, is observed empirically to lead to further
gains in accuracy.

5.2 Experiments in Artificial Domains

Compared to “divide and conquer” or “separate and conquer” systems like
C4.5 and CN2, RISE’s higher accuracies can be hypothesized to be due to several
factors:

e RISE’s “conquering without separating” induction strategy makes it less sen-
sitive to the fragmentation problem.

e RISE’s specific-to-general search direction allows it to identify small excep-
tion regions that may go undetected (or be more poorly identified) by general-
to-specific learners.

e RISE is able to form complex non-axis-parallel frontiers, and is thus at an
advantage when these are appropriate.

RISE’s advantages should be particularly apparent when attempting to learn
concepts that are fairly to highly specific. These are concepts that cover only
small, fragmented regions of the instance space (semantic specificity), and /or whose
descriptions include a large fraction of the attributes used to describe examples
(syntactic specificity). If a region whose frontiers are non-axis-parallel contains few
examples, approximating those frontiers should be harder for axis-parallel learners
than if the region contains many examples, since, on average, a region containing
fewer examples will contain proportionally fewer examples close to the frontier,

60
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where they are critical for correct induction. Concepts of significant specificity
should also be more strongly affected by the fragmentation problem than more
general ones, since they will encounter earlier on the lack of examples produced
by fragmentation. Finally, as in any search process, finding the target tends to be
harder when it lies farther from the search’s starting point, which in the case of
general-to-specific learners like C4.5 and CN2 is the null concept description. When
this happens, the opportunities for the search to take the wrong path accumulate,
and the probability of an incorrect end result increases. As a result, if the concept
description is fairly specific, systems like C4.5 and CN2 may have trouble finding
it in concept space. A specific-to-general learner like RISE, on the other hand,
should have less difficulty inducing fairly specific descriptions, since it starts from
specific examples and is thus closer to the target. By the same logic, however, it
can be at a disadvantage when the target concepts are general: since search has to
start from specific examples, noise in these can more easily interfere with learning
general rules; early decisions, based on little evidence, can be wrong and difficult
to correct later on.

This section describes a test of the hypothesis that RISE will be more ac-
curate than a “divide and conquer” algorithm when the target concepts are fairly
to very specific, with the advantage increasing with specificity. The independent
variable of interest is thus the specificity of the target concept description. A
good operational measure of it is the average length of the rules comprising the
correct description: rules with more conditions imply a syntactically more specific
concept; additionally, if the distribution of examples in instance space is approx-
imately uniform, they will also imply a semantically more specific concept. The
dependent variables are the out-of-sample accuracies of RISE and “divide and con-
quer” algorithms; C4.5RULES (Quinlan, 1993a) was chosen as a representative
of these. Concepts defined as Boolean functions in disjunctive normal form were
used as targets. The datasets were composed of 100 examples described by 16 at-
tributes. The average number of literals C' in each disjunct comprising the concept
was varied from 1 to 16. The number of disjuncts was set to Min{2°~!, 25}. This
attempts to keep the fraction of the instance space covered by the concept roughly
constant, up to the point where it would require more rules than could possibly
be learned. Equal numbers of positive and negative examples were included in
the dataset, and positive examples were divided evenly among disjuncts. Thus,
until the maximum of 25 disjuncts is reached, the distribution of examples in the
instance space is approximately uniform.! In each run a different target concept
was used, generating the disjuncts at random, with length given by a binomial
distribution with mean C' and variance C'(1 — £); this is obtained by including
each feature in the disjunct with probability 1%' Twenty runs were conducted, with
two-thirds of the data used for training and the remainder for testing.

The results are shown graphically in Fig. 5.1. The most salient aspect is
the large difference in difficulty between short and long rules for both learners.

! Approximately, and not exactly, because there may be overlap between disjuncts.
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Figure 5.1. Accuracy as a function of concept specificity (16 features).

Concepts with very few (approx. three or less) conditions per rule are so simple that
both RISE and C4.5RULES are able to learn them easily. In separate experiments,
corrupting the data with 10% and 20% class noise degraded the performance of the
two algorithms equally, again giving no advantage to C4.5RULES. At the other
end, however, RISE has a clear advantage for concepts with 12 or more conditions
per rule; all differences here are significant with 95% confidence using a one-tailed
paired ¢ test.?

The slight upward trend in C4.5RULES’s curve for C' > 10 was investigated
by repeating the experiments with 32 attributes, 400 examples, a maximum of 50
rules and C = 1,...,32. The results are shown in Fig. 5.2. C4.5RULES’s lag in-
creases, but the upward trend is maintained; on inspection of the rules C4.5RULES
produces, this is revealed to be due to the fact that, as the concept rules become
more and more specific, it becomes possible to induce short rules for its negation.
The hardest concepts, for which both the concept and its negation have necessarily
long rules, are for intermediate values of C.

2These confidence levels apply to the accuracy difference in the entire domain class studied,
not just a particular dataset, since the training sets were drawn independently from the domain
class.
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Figure 5.2. Accuracy as a function of concept specificity (32 features).

In summary, the results of this experiment support the hypothesis that the
specificity of the regions to be learned is a factor in the difference in accuracy be-
tween RISE and “divide and conquer” rule induction systems, with greater speci-
ficity favoring RISE.

5.3 An Extension of RISE: Two-Way Induction

In practice, most concepts appear to be best described, not by general rules
alone or by specific ones alone, but by a combination of the two. In datasets
from the UCI repository, RISE, CN2 and C4.5RULES all typically produce such
a mixture of rules. When both specific and general rules are needed to describe
a concept, both general-to-specific and specific-to-general approaches can be ex-
pected to have problems, since the presence of rules of one type is likely to interfere
with learning rules of the other. General-to-specific learners may not recognize the
exception areas, and specific-to-general ones may induce only imperfect, corrupted
versions of the general rules. A natural solution would then be to combine the
two search directions in a single two-way induction system, allowing both the in-
duction of rules starting from the null description and from specific examples, and
employing some conflict resolution strategy in parts of the instance space where
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Figure 5.3. Two-way induction using RISE.

rules’ predictions disagree. This section describes and evaluates one realization of
this idea, using RISE as the specific-to-general learner, and C4.5RULES and CN2
in turn as the general-to-specific one. The resulting multistrategy learner, called
TWI, is shown graphically in Figure 5.3.

Applying the RISE algorithm to a training set produces a set of rules which
will henceforth be called the S rules (for “specific”). Applying the general-to-
specific learner produces a set of G rules. Two algorithms for combining the S and
G rules were designed, TWI-Y and TWI-U. In TWI-Y, the sets of S and G rules
are merged to form a single set, deleting any duplicates. The Laplace accuracy of
each rule on the examples that it covers is then measured, and the classification
procedure is applied to each training example in turn; each rule memorizes the
number of examples it won, and how many of them it classified correctly. At the
end, the Laplace accuracy of each rule on the examples that it won is computed,
and this is the value retained. The earlier estimates were necessary to break ties
during the classification cycle that produced the final ones. At classification time,
the procedure described in the previous section is applied without any distinction
between S and G rules. The nearest rule to the test example wins; if two or more
rules are equally near, the one with the highest Laplace accuracy prevails. This
algorithm, TWI-Y, is shown graphically in Figure 5.4, where the Y structure that
gives it its name is apparent.
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Figure 5.4. The TWI-Y algorithm.

In the TWI-U algorithm, the sets of S and G rules are kept separate, and the
Laplace accuracy of each rule on the training examples that it covers is measured.
At classification time, the two sets of rules are first applied separately. A winner
among the S rules is found by the procedure previously outlined. To select the
G winner, the G rules are matched against the test example. If only one G rule
covers it, that rule is chosen as the G winner. If more than one rule covers the
example, the one with the highest Laplace accuracy wins. If no G rule covers the
example, the default rule is chosen as the G winner. Of the two finalists (S and
G), the one with the highest accuracy then wins and classifies the example. This
algorithm is shown graphically in Figure 5.5.

An empirical study was conducted to evaluate the performance of the two-
way induction system relative to its individual components. The default settings
for C4.5, C4.5RULES and CN2 were kept. All results for C4.5RULES (abbreviated
C4.5R) and CN2 below are those obtained using their own classification procedures,
not the one above for G rules. Twenty-four datasets from the UCI repository were
used (see Section 4.2), and 20 runs were conducted for each dataset, with two-thirds
of the data used for training. The default classifier (assigning examples to the most
frequent class) was included as a baseline. The results are shown in Table 5.1 for
C4.5RULES used as the G component, and in Table 5.2 for CN2. The average
accuracy and sample standard deviation are tabulated for each algorithm in each
domain. The superscripts denote confidence levels for the difference in accuracy
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Figure 5.5. The TWI-U algorithm.

between TWI-U and the corresponding algorithm, using a one-tailed paired ¢ test.
For example, in the horse colic domain in Table 5.1, TWI-U obtains an accuracy
of 83.8% with a standard deviation of 3.5%, is better than C4.5RULES with 99%
confidence, and better than RISE with 99.5% confidence.

Table 5.3 summarizes these results. The first line shows the number of do-
mains in which TWI-U achieved higher accuracy than the corresponding system,
vs. the number in which the reverse happened. The second line considers only
those domains in which the observed difference is significant with at least 95%
confidence, and shows that most of the previous “wins” were indeed significant.
For example, when G was C4.5RULES, TWI-U did better than C4.5RULES in
17 domains overall, and worse in 7; with 95% confidence it did better in 12 and
worse in 2. All other comparisons are similarly favorable to TWI-U. The third
line shows the results of applying a sign test to the values of line one. This con-
sists of considering the number of wins as a binomial variable, and asking how
unlikely the value obtained is if TWI-U is assumed to be no more accurate than
the corresponding algorithm. For example, 17 wins in 24 trials has a probability of
occurrence of only 3%. This test shows that all the numbers of wins obtained are
significant at the 95% confidence level, resulting in high certainty that TWI-U is
a more accurate learner than either component alone, in the set of learning tasks
of which the domains used constitute a sample.
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Table 5.1: Experimental results when G is C4.5RULES. Superscripts denote con-
fidence levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below

90%.

Dataset | TWI-U TWI-Y C4.5R RISE Default
AD 78.94+4.3 66.3+£6.6° 70.6L£5.7' T77.3+4.9' 21.3+2.6!
BC 69.4+4.5 67.5+£5.5* 67.846.6° 68.2+4.2° 67.6+7.6°
CE 83.54+1.7 84.2+2.95 84.842.5° 83.1+2.0° 57.4+3.8"
DI 70.843.0 73.04+3.12 74.3£3.0 70.443.0*  66.0+2.3"
EC 68.1+4.9 67.3+£8.26 65.9+7.6° 67.4+4.9° 67.8+6.6°
GL 70.24+6.5 64.1+10.12 64.9+9.2' 69.7+6.1°  31.7+5.5
HD 79.843.7 76.6+£3.1' T77.844.3* 79.6+3.9° 55.0+3.4!
HE 78.1+5.4  78.843.7% 78.6+5.3%° 76.9+5.3° 78.1+3.1°
HO 83.8+3.5 81.2+6.3° 81.24+4.4° 81.94+3.2! 63.6+3.9
IR 93.0+2.7 93.6+£2.7¢ 93.24+2.5% 92.942.8% 26.5+5.2!
LA 83.7+9.9 81.6+10.7% 86.3+8.6%° 89.2+10.6° 65.0+9.5
LC 48.6+15.1 40.5+14.0* 40.5+14.0* 50.5+15.2° 26.84+12.31
LD 64.0+5.6 65.8+4.6° 64.44+3.95 63.4+5.4* 58.1+3.4
LI 69.5+4.0 69.1+3.8° 69.0+3.8%° 67.9+3.6° 9.9+3.0!
LY 78.44+6.2 76.9+£3.9° 75.6+4.9* 80.2+6.8' 57.3+5.4!
PO 67.8£6.0 T71.0+5.2% 68.2+6.95 62.3+9.1! 71.24:5.22
PR 87.745.8 80.6+10.1' 80.44+10.0' 87.74+5.5° 43.1+4.2!
PT 41.444.6 35.445.4' 37.5£5.7'  39.845.3! 24.6+3.2!
SF 71.9+3.1  71.2+4.1° T71.1+4.1° 70.842.77 25.244.4!
SN 74.7+12.1 64.3+9.4' 65.4+7.1' 76.0+11.4°> 50.8+7.6!
SO 83.1+£6.8 75.1+£5.8' 78.9+£5.9' 84.846.5! 9.1+£2.1!
VO 95.9+1.6 95.7+£1.7¢ 95.841.3%° 95.5+1.5° 60.5+3.1"
WI 96.3+2.3 91.3+£5.6' 91.84+5.6' 96.9+1.8° 36.44+9.9
Z0O 93.5+3.8 90.0+£5.2!  89.6+4.7' 93.24+3.7°  39.4+6.4"
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Table 5.2: Experimental results when G is CN2. Superscripts denote confidence
levels: 1 is 99.5%, 2 is 99%, 3 is 97.5%, 4 is 95%, 5 is 90%, and 6 is below 90%.

Dataset | TWI-U TWI-Y CN2 RISE Default
AD 77.3+4.4 63.94+7.4! 71.0+£5.11  77.3+£4.95 21.34+2.6!
BC 68.4+6.3 67.9+6.4°5 67.9+7.1° 68.2+4.2° 67.6+7.6°
CE 84.442.2 82.342.2' 82.04+2.2' 83.1+2.0! 57.4+3.8!
DI 72.34+2.7 73.7£2.9% 73.8+2.7"  70.44+3.0' 66.0+2.3!
EC 68.0+£5.3 66.0+£5.9° 68.24+7.2° 67.4+4.95 67.84+6.6°
GL 69.9+£6.8 58.9+6.3'  63.84+5.5! 69.7+6.15  31.7+5.5!
HD 81.2+4.3 T79.54+2.9° 79.7+2.9* 79.6+3.92  55.0+3.4!
HE 79.6+5.3 80.5+4.5° 80.3+4.2° 76.9+5.3! 78.1+3.1°
HO 83.1£3.6 83.0+3.6° 82.5+4.2° 81.94+3.2!' 63.6+3.9!
IR 93.4+2.7 93.242.85 93.3+3.6° 92.942.8%  26.5+5.2!
LA 87.4+10.6 82.94+8.9° 82.1+6.9* 89.24+10.6° 65.04+9.5!
LC 42.34+14.5 39.1+£14.85 38.6+13.5%° 50.5+15.2' 26.8+12.3!
LD 65.94+5.2 66.4+3.85 65.0+3.8%° 63.445.4! 58.1+3.4!
LI 69.5+4.0 68.94+4.5° 69.5+3.8° 67.94+3.6! 9.943.0!
LY 80.94+6.3 79.44+5.0° 78.844.9* 80.2+6.85 57.3+5.4!
PO 68.3+4.9  65.0+6.9° 60.84+8.2! 62.74+9.921 71.245.21
PR 85.6+6.2 78.1+9.1! 75.948.81  87.7+5.5%  43.1+4.9!
PT 41.445.2  38.945.1%7  39.845.2¢ 39.8+5.3' 24.6+3.2!
SF 71.44+2.6 69.6+3.62 70.4+3.0° 70.8+2.6° 25.2+4.4!
SN 73.8+410.6 63.24+9.0! 66.2+ 7.5 76.0+£11.4% 50.8+7.6!
SO 83.5+6.7 77.8+6.7! 77.4+7.2! 84.846.5! 9.1+2.11
VO 95.0+1.8  95.5+1.5* 95.841.6' 95.5+1.5* 60.5+3.1!
WI 95.3+2.6  91.04+4.5! 90.8+4.7" 96.9+1.8'  36.4+9.9!
Z0 93.74£3.3  90.94+5.1'  90.6+5.0' 93.2+3.7°  39.4+6.4!
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Table 5.3. Summary of TWI-U’s results vs. other algorithms.

Measure G = C4.5R G = CN2
TWI-Y C4.5R RISE | TWI-Y CN2 RISE
No. wins 18-6 17-7 17-6 20-4 19-4  16-7
No. signif. wins 11-2 12-2 11-4 14-2 13-2  10-5
Sign test 99.0 97.0 98.0 99.9 99.8  95.0

The results are also shown in bar graph form in Figure 5.6, where each pair
of bars compares TWI-U with one of the other systems. In the left-hand group,
C4.5RULES is used as the G component; in the right-hand one, CN2. As before,
within each pair the left-hand bar represents the number of TWI-U wins vs. the
other system, and the right-hand bar represents the number of the other system’s
wins. The darker portion of each bar represents the number of significant wins at
the 95% confidence level.

The utility of two-way induction is clearly shown by these results, but it is
important to understand why this advantage is observed. Inspection of the S and
G rules shows that the S rules are indeed substantially more specific than the G
ones. G rules typically contain a small number of conditions (approx. 1 to 5),
whereas S rules often contain conditions on half of all the attributes. Further,
tracing the execution of TWI-U reveals that by far the majority of S wins occur
when the test example is also covered by a G rule, but G rules are still correct on
most of the examples they cover. S rules thus encapsulate small exception areas
to the broad generalizations represented by G rules, as intended.

TWI-U performed better than TWI-Y, and this was to be expected. TWI-
Y’s naive method of combining S and G rules (merge all) has several disadvantages.
The G rules were not designed to be applied in a best-match manner. Being very
general, they easily win examples outside them over more appropriate S rules. The
S rules, conversely, were designed for best-match classification, but in the large
sections of the instance space covered by G rules, they can only win examples that
they actually cover.

TWI-U’s accuracy is bounded from below by the fraction of cases on which
the S and G components agree and are correct, and from above by 100% minus the
fraction of cases on which they agree and are both incorrect. Further, when there
are more than two classes, S and G components may differ and both be wrong.
Extracting the cases where TWI-U’s decision makes a difference, we see that it
makes the correct decision approximately two-thirds of the time, on average. This
is well above chance, but still leaves substantial room for improvement, at least in
theory.

The study above was mainly concerned with accuracy. Two other variables
of interest are speed and comprehensibility of the results. Compared to running
its components separately, the time overhead added by TWI is minimal. Because
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S =RISE

Figure 5.6: Comparison of TWI-U’s accuracy with that of TWI-Y and the S and
G components, when the G component is C4.5RULES (left) and CN2 (right).

the S rules are longer, they are harder for a human to understand; but since in
TWI-U the distinction between S and G rules is maintained, the G rules can be
seen as an approximate and accessible model of the domain, while the S rules rep-
resent second-order refinements and exceptions that should be taken into account
to achieve higher accuracy.

Mitchell’s (1982) version space approach is an early example of two-way
induction. TWI is a heuristic algorithm, in contrast to Mitchell’s exhaustive can-
didate elimination procedure, but has the advantage that its worst-case space and
time complexities are respectively linear and low-order polynomial, instead of ex-
ponential. Also, unlike the candidate elimination algorithm, TWI is able to deal
with disjunctive concepts, noise, and missing and continuous attributes.

5.4 Summary

Viewed as a rule induction system, RISE has a different bias from that of
general-to-specific, “separate and conquer” learners like AQ, CN2 and C4.5RULES.
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An initial study of this bias difference using artificial domains showed that RISE
is better adapted to learning medium- to highly-specific concepts, but did not
elucidate what conditions favor the more conventional rule inducers over it. Never-
theless, it is possible to take advantage of the complementarity of RISE’s bias and
that of these learners by designing an algorithm that combines the two. Even
though this two-way induction algorithm still necessarily obeys Schaffer’s (1994b)
conservation law, it was observed to produce improvements in accuracy compared
to the one-way approaches in a large sample of datasets from the UCI repository,
showing it can be useful in practice.




Chapter 6
RISE as Instance-Based Learning

6.1 Overview

This chapter investigates empirically how RISE’s behavior differs from that
of other instance-based learning algorithms. The context-sensitive feature selection
algorithm implicit in RISE is extracted from it, and compared with the classical
methods of forward and backward selection. It is found to lead to higher accuracy
in a large number of benchmark datasets. In experiments in artificial domains, its
advantage is observed to increase with the degree of context dependency of feature
relevance in the target concepts. RISE’s feature selection algorithm is also much
faster than forward and backward selection.

6.2 Context-Sensitive Feature Selection

If RISE has indeed a sensitivity to context that is absent from classical fea-
ture selection algorithms, as the simple example in Section 3.4 suggests, then its
use should lead to significant improvements in accuracy when context effects are
present. This advantage should increase with the degree of context dependency of
feature relevance in the domain. On the other hand, when features are either glob-
ally relevant or globally irrelevant, RISE should have no advantage. Furthermore,
if few examples are available or the data is noisy, context-free feature selection al-
gorithms should be able to detect the globally irrelevant features more easily than
RISE. This is due to the fact that they consider dropping a feature in all instances
at once, instead of in one at a time, and so produce larger swings in accuracy,
that can be more easily detected over statistical fluctuations when the examples
are noisy and/or few. This chapter tests this hypothesized difference in bias be-
tween RISE and context-free feature selection algorithms, using both benchmark
and artificial datasets.

Comparing RISE directly with FSS (forward sequential selection) and BSS
(backward sequential selection) would unduly favor RISE, because RISE incorpo-
rates several mechanisms that go beyond feature selection: it can perform instance
selection when there is duplication, expand points into intervals when dealing with
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Table 6.1. The RC feature selection algorithm.

Input: ES is the training set.
Procedure RC (E£S)

Let IS be ES.
Compute Acc(1S).
Activate all instances in 5.
Repeat
For each active instance I in IS,
Find the nearest example E to I at nonzero distance, and of I's class.
Let I' = I with all features that differ in I and F removed.
Let IS’ = IS with I replaced by I'.
If Ace(1S") > Acc(1S5)
Then Replace IS by IS,
Else Deactivate I.
Until all instances in IS are inactive.
Return IS.

numeric features, and take the interaction between induction steps into account
when using a global stopping criterion. In order to make the comparison fair, it is
thus necessary to remove all these aspects from RISE, ensuring that only the core
of context-sensitive feature selection remains. The resulting simplified algorithm
will be called RC (for Relevance in Context), and is summarized in pseudo-code
in Figure 6.1. An instance [ is an example with one or more features deleted, and
corresponds to a rule in RISE. Recall that, in keeping with the idea of context-
sensitive feature selection, different features can be present in different instances.
The activation and deactivation of instances ensures that stopping is local (i.e.,
an instance stops being simplified as soon as there is no improvement in accuracy
from simplifying it, without waiting to see if the simplification of other instances
will reverse this).

A question that arises in RC is: when should two numeric values be consid-
ered different? If two real feature values are very similar but not identical, the fact
that they differ should obviously not be construed as evidence that the feature is
irrelevant. Thus it is necessary to decide where the critical point should be. The
policy adopted was to compute the mean and standard deviation of each numeric
feature from the sample in the training set, and attempt dropping the feature only
when the values for the instance and the example differ by more than one standard
deviation.

To understand this choice, suppose that the observed values of a feature fall
into two or three clusters. Given any two values, if they differ by less than one
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standard deviation they are most likely to be in the same cluster, and if they differ
by more they are probably in different ones. Thus values in different clusters are
judged to be significantly different, and only those. If there is a large number of
clusters, the critical value should be less than one standard deviation. The choice
made thus reflects a bias towards a small number of clusters; essentially, it assumes
that the goal is either to distinguish between values above and below a certain
threshold (the two-cluster case), or between a central range and values outside it
(the three-cluster case). This is typically the case in many practical domains, like
medical diagnosis (with variables like body temperature, blood pressure, levels
of blood chemicals) and fault detection (voltage, stress, design dimensions with
tolerances). In practice, an optimum value for this parameter can be determined
by cross-validation, although this was not done in the studies described below.

The accuracy of an instance set Acc(IS) is the fraction of the training exam-
ples that it correctly classifies using a leave-one-out methodology, as before. The
pruning optimization used in RISE (see Section 3.5) was kept in RC.

6.3 Empirical Study: UCI Databases

To investigate empirically the hypothesis that RC’s advantage increases with
the context dependency of feature relevance, a measure of the latter is required.
Unfortunately, in real-world domains the “true” degree of context dependency for
a target concept is necessarily unknown. One way to circumvent this problem is to
carry out studies in artificial domains, where the degree of context dependency can
be predetermined by the experimenter, and this is done in Section 6.5. Another
approach is to find an empirical measure that is thought to correlate positively
with context dependency. One possibility is to find out how far RC strays from
selecting the same features for all instances (i.e., from doing the same as FSS and
BSS). More concretely, a possible measure is the average D for all pairs of instances
of the number of features selected by RC for one but not the other:

e i=1 a

D=y Ll X dn (6.1)

(e i=1 5=1 k=1

where ¢ is the number of training examples, a is the number of features, and d;;x
is 1 if feature k was selected for instance ¢ but not instance j or vice-versa, and
0 otherwise. This feature difference measure is necessarily imperfect, since the
context dependency effects exhibited by RC may or may not be really present,
but it is a legitimate one, in the sense that observing it can falsify the hypothesis
that RC is more accurate relative to FSS and BSS when it detects greater context
dependency. The core of the study that follows will thus be to correlate the feature
difference D with the differential accuracy of RC and the context-free algorithms.
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An empirical study was conducted using 24 datasets from the UCI repository
(see Section 4.2). Twenty runs were carried out for each domain. In each, the
training set was composed of two-thirds of the examples, chosen at random, and
the remainder were used as test examples. The evaluation function used within
FSS and BSS (see Tables 2.2 and 2.3) was the classifier’s accuracy on the training
set; it was measured using a leave-one-out methodology, as in RC. For each of
the three algorithms (RC, FSS and BSS), the test-set accuracy obtained, running
time and average number of features selected were recorded, and their averages for
the 20 runs computed. Table 6.2 shows, for each domain, the feature difference D
(Equation 6.1), the average accuracy and standard deviation for each algorithm,
and the confidence that the difference between RC and each of the context-free
algorithms is significant using a one-tailed paired t test. The domains are ordered
by decreasing feature difference.

These results are presented in a more easily comprehended form in Figure 6.1,
which shows the difference in accuracy between each of the context-free algorithms
and RC as a function of feature difference. The straight lines shown are the result of
linear regression on the empirical data points. The difference in accuracy between
RC and BSS has a significant positive correlation with the feature difference (0.44),
and similarly for FSS (0.36). We conclude that RC is indeed able to detect context
dependency effects, and from the ¢ test results in Table 6.2, that taking them into
account in feature selection can produce significant improvements in accuracy.

Further analysis of the global results is shown in Table 6.3, and confirms the
conclusion that RC is more accurate than FSS and BSS on this set of domains.
The first line shows the number of domains in which RC achieved higher accuracy
than the corresponding algorithm vs. the number in which the reverse occurred
(e.g., RC was more accurate than BSS in 20 domains and less in 4). The second
line shows the number of domains in which RC was more accurate than the other
algorithm with a confidence level of 95% or higher, vs. the number in which the
opposite occurred (i.e., in which the confidence is 5% or less). The results are
very favorable to RC. The third line shows the confidence obtained applying a sign
test to the values in line one. For example, RC’s 20 wins vs. BSS have only a
probability of occurrence of 1/1000. This results in very high confidence that RC
is a more accurate algorithm than FSS and BSS on the population of domains
from which the 24 used are drawn.

The gains obtained by using the context-sensitive algorithm, although con-
sistent, are typically moderate (around 2% on average vs. BSS, and 3% vs. FSS).
This is consistent with Holte’s (1993) observation that, for some datasets in the
UCI repository, accuracies within a small range of the best recorded values can
be obtained using only the single most relevant feature. If RC, BSS and FSS all
incorporate the “best” features, then their accuracies should not be expected to
differ by more than this amount.

The number of features that each algorithm selects on average is also an
indication of how the algorithms’ behavior differs. It is reported in Table 6.4.
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Table 6.2: Percentage accuracies of RC, FSS and BSS, and confidence levels for

the difference between RC and FSS/BSS.

Dataset | Feature diff. RC FSS Conlf. BSS Conf.
LC 14.2-4+11.1 47.74£11.0 42.3+10.3 95.0 44.5+17.2 90.0
PR 8.6+14.3 89.1£6.0 84.4+89 95.0 84.94+56  99.0
HO 8.1+2.8 80.6+4.0 75.3+6.1  99.5 78.24+3.4  99.0
AD 6.8+4.1 T7.0+4.9 71.245.7 99.5 75.4+44 975
VO 5.6+3.5 95.7+1.7 89.5+13.1 97.5 94.7+1.6 97.5
LA 5.0+2.0 91.1£6.9 87.4+6.7 95.0 85.849.2 99.0
PT 4.942.5 40.24+5.9  30.0%6.0 99.5 33.34+5.0 99.5
SO 4.442.9 100.0+0.0 94.448.8 99.0 95.0%6.3 99.5
HE 4.1+£2.2 77.1+4.8 80.5+5.2 50 75.7+3.8  90.0
LY 3.8+1.8 81.2+5.6 76.5+5.2  99.5 79.146.0  95.0
Z0O 3.1+1.9 93.2+3.8 91.0+5.1 95.0 90.3%+5.6 99.5
SF 2.4+1.8 70.6+£3.6 68.243.0 99.0 68.9+3.6  95.0
LI 2.1:£1.3 61.44+6.2 47.1+13.3 99.5 54.7+7.8 99.5
CE 2.041.2 83.7£1.9 80.94+2.3 99.5 81.24+2.5 99.5
BC 1.6+1.1 66.2+5.2  66.7+6.7 40.0 66.9+6.1 35.0
HD 1.541.1 76.8+3.5 74.845.0 90.0 76.2+2.8 70.0
EC 0.8+1.0 60.2+6.1  59.44+5.2  60.0 60.3+5.6  50.0
PO 0.54+0.5 60.8+6.1  68.5+5.0 0.5 68.0£6.9 0.5
SN 0.5+0.3 81.44+9.1 73.5+11.2 99.5 80.5+8.7 85.0
LD 0.34+0.6 60.2+3.9 58.4+5.1 85.0 60.0+4.8 55.0
DI 0.240.5 70.5+2.5 69.6+2.9 80.0 69.24+3.3 97.5
GL 0.0+0.2 69.245.0 70.848.1 25.0 71.3+7.4 15.0
IR 0.040.0 944424 92.64+2.3 99.5 92.942.9 97.5
WI 0.0+0.1 95.1+2.6 94.1+2.8 90.0 94.54+2.1 75.0

Table 6.3. Summary of accuracy results.

Measure FSS  BSS
No. wins 20-4 204
No. signif. wins | 15-2  14-1
Sign test 99.9  99.9
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Figure 6.1. Empirical accuracy as a function of context dependency.

Since RC does not select the same set of features for all instances, its feature
usage in each trial is defined as the average for all instances of the number of
features used in each instance; for example, if a feature is used in only one of the
e instances, it counts as only 1/e features. This is then averaged across all 20
trials. The average for all trials of the standard deviation within each trial of the
number of features selected is also reported. As might be expected, it correlates
positively with the feature difference, since a high value implies large variation in
the features selected, even though the reverse is not true because two instances
may have different features but the same number of features.

BSS always selects more features than FSS; this is not surprising, given their
respective search strategies. RC almost always selects the most features,! but
this observation can be misleading: direct inspection of the simplified instances
output by RC shows that it typically drops most features from just a few of the
instances, and it is these highly simplified ones that win most of the test examples;
the majority of the instances retain most of the features, but have little impact
on classification. Inspection also reveals that the most highly simplified instances
differ in the features they retain. This, together with RC’s higher accuracies, is

!The congressional voting records domain (VO) is an exception: here RC selects fewer features
per instance than either FSS or BSS, and is also significantly more accurate than either. This
suggests that strong context dependencies exist in this domain.
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Table 6.4: Average number of features selected by the algorithms, and average
feature difference of RC’s instances.

Dataset | No. feats. RC FSS BSS Feature diff.
AD 69 64.1+44 114 220 6.84+4.1
BC 9 Toi1:1 23 48 1.6+1.1
CE 15 13.5+1.2 57 9.6 2.0+1.2
DI 8 7.9+0.3 1.9 6.6 0.2+0.5
EC 7 6.610.8 1.5 44 0.8%£1.0
GL 9 9.0+0.1 4.7 56 0.0+£0.2
HD 13 12.1+0.9 46 9.3 1.5+1.1
HE 19 16.442.0 3.5 11.0 4.1+2.2
HO 22 14.84+3.4 5.7 15.6 8.1+2.8
IR 4 4.0+0.0 22 2.6 0.04£0.0
LA 16 11.3+£2.0 3.0 6.8 5.0%+2.0
LC 56 4594+11.2 3.2 9.9 14.2411.1
LD 6 5.940.5 241 4.2  0.320.6
LI 7 5.5+1.2 55 6.3 2.1+1.3
LY 18 15.24+1.9 5.2 11.3  3.841.8
PO 8 7.72+0.5 20 35 0.5+0.5
PR 57 52.1+11.7 54 16.1 8.6%+14.3
PT 17 13.5+£2.7 7.5 12.0 4.9425
SF 12 10.1+1.9 44 57 24+1.8
SN 60 59.7+0.3 5.8 37.2 0.540.3
SO 35 25.24+1.5 20 39 44429
VO 16 5.943.5 7.1 94 5.6+3.5
WI 13 13.040.1 43 84 0.0+0.1
Z0 16 13.2+1.8 58 6.4 3.1+41.9
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further evidence that it is indeed detecting context sensitivity effects. However, if
the goal is to reduce the feature set size as much as possible, even at some cost
in accuracy, RC is clearly not the algorithm of choice: not only does it retain a
higher number of features on average, but it only allows the removal of features
that do not appear in any final instance.

The post-operative patient data domain (PO) is an example of a situation
where FSS’s and BSS’s bias is more appropriate than RC’s. In this domain, most
features appear to be globally irrelevant; simply assigning all test examples to the
most frequent class, ignoring all feature information, produces higher accuracy than
all three algorithms (and also than decision-tree and rule learners; see Table 4.2).
FSS and BSS correctly discard most of the features. However, because the dataset
is small (90 examples) and noisy (as evinced by the fact that it contains inconsistent
examples) RC has difficulty detecting the global irrelevance of features, and retains
most of them for most instances.

6.4 Time Complexity

Another variable of interest is the running time of the algorithms. RC’s
worst-case running time is that of RISE with local stopping: O(e%a?), where e
is the number of examples and a is the number of features. The asymptotic time
complexity of FSS and BSS can be computed as follows. The basic step of FSS/BSS
consists of adding/deleting a single feature and checking the results. Since this
involves comparing all instances with all examples along O(a) features, the cost of
each such step is O(e?a). This step is repeated for all currently excluded/included
features and the best one is selected, which means that an O(e®a) step is repeated
O(a) times, resulting in a cost of O(e?a?). Since in the worst case all features will
be added/dropped, this cycle can be performed O(a) times, resulting in a total
cost of O(e%a®).

However, this direct implementation of FSS and BSS is inefficient, because
it unnecessarily repeats the computation of all distances along all features every
time a feature is tentatively added or removed. A more efficient version will cache,
for each example, the distances A(I, F) (Equation 3.1) of all instances to the ex-
ample, and then, when considering adding or dropping a feature, add or subtract
to each A(I, E) the distance component 6%(i;,e;) along that feature. Once the
example’s predicted class is found and compared with the correct one, the original
distance vector is reinstated, and the process repeats with the next feature. This
implementation reduces the worst-case time complexity of FSS and BSS to O(e?a?)
(the same as RC’s) and was the one used in the studies described here. Note that
it does not require O(e?) memory instead of O(e), because only the distances for
one example at a time are cached. This implies bringing the cycle that classifies
each example outside the cycle that tries each feature (i.e., “For each example,
add/delete each feature and classify the example,” instead of “For each feature,
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Figure 6.2. Running time in relation to e%a?.

add/delete the feature and classify each example”). Such a process, opening the
“black box” of the classification algorithm and bringing the feature selection al-
gorithm inside it, may not be possible for all instance-based algorithms. Also, it
is incompatible with the pruning optimization used in RC (Section 3.5), and the
latter could therefore not be applied in FSS and BSS.

Empirical running times are shown in Table 6.5. A Sun 670 workstation was
used for all runs. Figure 6.2 shows these values plotted on a log-log scale against
e?a?, the worst-case asymptotic growth rate for all algorithms. The straight lines
shown are the result of linear regression on the log-log points. RC is always faster
than FSS and BSS, sometimes by large factors (see, for example, the audiology
domain, AD). This can be partly attributed to variations in the number of features
that each algorithm actually adds/drops: since RC typically drops fewer features
than BSS, and fewer than FSS adds, it finishes in fewer cycles. Other reasons for
the observed difference in times are that the context-free algorithms have a higher
multiplicative coefficient for e?a?, and the presence of additional lower-order terms
in these. However, the most important factor is the optimization in the distance
computation that was used in RC, but is not possible in the efficient versions of
FSS and BSS.

Considering these effects, and extrapolating from the average slopes of the
log-log plots of the algorithms’ running times, we are led to hypothesize that
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Table 6.5: Average running time of algorithms (in minutes and seconds), and ratio
of running times of FSS and BSS to running time of RC.

Dataset RC FSS BSS FSS/RC BSS/RC
AD 0:10.68 4:14.60 11:15.61 23.8 63.3
BC 0:06.03 0:25.78 1:31.95 4.3 15.2
CE 1:42.25 T7:58.87  T7:44.39 4.7 4.5
DI 1:33.12 3:48.80  3:59.52 2.5 2.6
EC 0:01.21 0:03.40  0:05.53 2.8 4.6
GL 0:03.38 0:25.39  0:24.63 7.5 7.3
HD 0:08.10 1:02.13  1:06.16 1.7 8.2
HE 0:02.81 0:10.97 1:32.94 3.9 33.1
HO 0:10.06 2:54.30  2:26.87 17.3 14.6
IR 0:01.12 0:03.50  0:03.52 3.1 3.1
LA 0:00.56 0:01.76  0:04.26 3.1 7.6
LC 0:00.41 0:01.88 0:12.64 4.6 30.8
LD 0:06.47 0:25.89 1:32.14 4.0 14.2
LI 0:00.52 0:02.63  0:00.93 5.1 1.8
LY 0:02.29 0:18.56 0:21.17 8.1 9.2
PO 0:00.76 0:02.00  0:03.27 2.6 4.3
PR 0:03.40 1:34.18  2:29.97 2L.17 44.1
PT 0:09.68 2:54.47 1:14.92 18.0 1.7
SF 0:06.81 1:51.47 1:45.35 16.4 15.5
SN 0:24.32 4:47.99 14:49.84 11.8 36.6
SO 0:00.74 0:01.85 0:11.16 2.5 15.1
VO 1:44.70 3:56.94  3:31.63 2.3 2.0
WI 0:03.86 0:26.00 1:33.19 6.7 24.1
Z0 0:01.10 0:07.77  0:10.17 sl 9.2
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RC will still be a viable feature selection algorithm in domains where FSS’s and
BSS’s time cost would exclude them from consideration. In the form used here,
none of the algorithms are suitable for very large databases, since they are all
necessarily quadratic in e, even in the average case; however, more efficient versions

of FSS/BSS-style algorithms exist (Kittler, 1986; Aha & Bankert, 1994), and
similar modifications of RC can be envisioned.

6.5 Empirical Study: Artificial Domains

The question arises of whether the conclusions formulated in the previous
section are generally valid, or the favorable results obtained for RC are specific to
the domains used in the study reported in the previous section. In other words,
RC’s observed benefits might apply only when the biases represented in the UCI
repository are verified, independently of the more general hypothesis that they
are due to RC’s context sensitivity. Another question is whether the feature dif-
ference estimate used effectively corresponds to the context dependency we seek
to measure, and thus whether the results obtained are meaningful. These two
problems were investigated by carrying out experiments in artificial domains. The
hypotheses to be tested are that RC is more accurate than FSS and BSS over
a broad range of domains (“broad” in the sense that they have no common bias
save their degree of context dependency), and that the difference in accuracy in-
creases with the context dependency of feature relevance. In artificial domains,
the target concept description is known a priori, and, if it is composed of a set
of prototypes, the measure of feature difference defined in the previous section
applied to that set of prototypes constitutes a suitable measure of context depen-
dency. The empirical study thus proceeded by repeatedly selecting a value of D
(Equation 6.1), generating a large number of domains at random characterized by
that value, and observing the resulting accuracies of the three algorithms for that
sample of domains.

Two-class problems were considered, with 100 examples in each dataset, de-
scribed by 32 features. In each domain, each feature was chosen to be numeric or
Boolean with equal probability (i.e., the number of numeric features is a binomial
variable with expected value a/2 and variance a/4). Class 1 is defined by ten clus-
ters, and class 0 is the complement of class 1. Each prototype or cluster is defined
by a conjunction of conditions on the relevant features. The required value for a
Boolean feature is chosen at random, with 0 and 1 being equally probable. Each
numeric feature ¢ must fall within a given range [a;, b;], with a; being the smaller
of two values chosen from the interval [—1, 1] according to a uniform distribution,
and b; the larger one. A cluster is thus a hyperrectangle in the relevant numeric
subspace, and a conjunction of literals in the Boolean one.

The choice of relevant features for each prototype is made at random, but
in a way that guarantees that the desired value of D for the set of prototypes is
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Figure 6.3. Accuracy as a function of context dependency.

maintained on average. The details of the procedure that does this are described in
Appendix B. The feature difference D was varied from 0 to 8, the latter being the
maximum value that can be produced given the number of features and prototypes
used. Twenty domains were generated for each value of D, and two-thirds of the
examples used as the training set. The average accuracy of RC, FSS and BSS on
the remaining examples is shown graphically as a function of D in Figure 6.3.

All differences in accuracy between RC and FSS are significant at the 95%
confidence level, as are those between RC and BSS for D = 1, 2, 4, 5, and 8.
This confirms the hypothesis that RC is more accurate than FSS and BSS over
a broad range of domains. However, BSS’s performance is sometimes quite close
to RC’s. The smallest difference occurs when D = 0, as might be expected, since
this situation exactly fits BSS’s bias. More generally, due to the small number of
training examples used (100), BSS may benefit from its ability to produce larger,
more easily detected swings in accuracy when attempting to delete features, as
previously hypothesized. Increasing the training set size should increase the dis-
tance between RC and BSS, since RC will then have enough data to detect the
finer local dependencies that BSS by definition cannot. FSS’s and BSS’s time



84

limitations have precluded repeating the experiments with a significantly larger
number of examples to investigate this point.?

The variation of the algorithms’ accuracy with D is also of interest. All ac-
curacies are negatively correlated with D, but the absolute value of the correlation
is much smaller for RC (0.49) than for FSS and BSS (0.89 and 0.82, respectively).
The downward slope of the regression line for RC’s accuracy as a function of D
(-0.35) is also much smaller than that for FSS (-1.21) and BSS (-0.61). We thus
conclude that RC’s higher performance is indeed at least partly due do its con-
text sensitivity, and, pending further evidence, that using RC or RISE instead
of conventional IBL will be justified whenever feature relevance is significantly
context-dependent.

An additional hypothesis to explain RISE’s advantage vs. “pure” IBL is
that, because of its ability to simplify frontiers in the example space through
abstraction, it can detect simple frontiers more easily when they exist. Another
factor is the following. A number of IBL algorithms (e.g., PEBLS) discretize
numeric features and then apply a VDM-style metric to the resulting symbolic
descriptions. This improves their ability to cope with irrelevant features, since the
VDM for two values of an irrelevant feature will tend to be zero, while Euclidean
distance may be arbitrarily large. However, because discretization discards the
ordering information present in numeric attributes, it also loses one of IBL’s main
advantages: its ability to form non-axis-parallel frontiers. Ting (1994) found that
the discretization+VDM approach improved accuracy in a number of datasets,
which can be attributed to the first effect having prevailed. In other datasets the
opposite was observed. RISE overcomes this trade-off: it is still able to form non-
axis-parallel frontiers through its use of Euclidean distance, and at the same time
it is able to overcome irrelevant features by generalizing or entirely dropping them.

6.6 Related Work

Variations of FSS and BSS are described and evaluated in (Aha & Bankert,
1994). Beyond the pattern recognition approaches surveyed in (Devijver & Kittler,
1982) and (Kittler, 1986), many methods for feature selection have been proposed
in the artificial intelligence literature in recent years (Almuallim & Dietterich,
1991; Kira & Rendell, 1992; Schlimmer, 1993; Vafaie & DeJong, 1993; Caruana
& Freitag, 1994; John, Kohavi & Pfleger, 1994; Skalak, 1994). Cardie (1993) and
Kibler and Aha (1987) use decision trees to select features for use in an instance-
based learner. Although each path through the tree represents a context-dependent
set of relevant features, this information is discarded, and only the unstructured

2With 100 examples, 20 runs with 9 values of D take approximately 10 hours of CPU time, of
which less than 10 minutes is due to RC; 1000 examples would take on the order of (1000/100)?% x
10 hours, or 40 days. On the other hand, reducing a to allow more examples without increasing
time would further reduce the observable range of D.
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set of all the features used in the tree is passed to the instance-based component.
Another IBL feature selection method, also based on decision trees, is described in
(Langley & Sage, 1994). In this case all paths through the tree contain the same
set of features, and so the level of context sensitivity is similar to that of BSS.

A related field is that of feature weighting (Aha, 1989; Kelly & Davis, 1991;
Salzberg, 1991; Creecy, Masand, Smith & Waltz, 1992; Mohri & Tanaka, 1994;
Lowe, 1995). Feature selection can be seen as a special case of feature weighting
where each weight is either 0 or 1, and thus weighting methods are potentially
more powerful. However, because they have more degrees of freedom, they can also
be harder to apply successfully, especially when there are few training examples.
Feature weights can be supplied by the designer, as in Skalak’s Broadway system
(1992), or learned (see references above). Cain, Pazzani and Silverstein (1991) have
an intermediate approach which combines instance-based and explanation-based
learning, assigning higher weights to features that appear in the derivation of the
example’s class using a pre-existing domain theory.

Feature weighting methods also vary in what the weights can depend on,
and thus in their degree of context sensitivity. In the representationally simplest
schemes, there is one weight per feature, and they are therefore completely context-
free (Kelly & Davis, 1991; Salzberg, 1991; Lee, 1994; Mohri & Tanaka, 1994; Lowe,
1995). More flexible approaches employ one weight per feature value (Nosofsky,
Clark & Shin, 1989; Stanfill & Waltz, 1986), one weight per feature per class (Aha,
1989), or a combination of the two (Creecy, Masand, Smith & Waltz, 1992), and
thus exhibit a moderate degree of context sensitivity. In the case of continuous
features, it is also possible to take into account the relative values of the feature
in the instance and the example being classified, resulting in directional weights
(Ricci & Avesani, 1995). The most elaborate algorithms have in effect one weight
per feature per instance, and are consequently fully context-sensitive; these weights
can be assigned at classification time (Atkeson, Moore & Schaal, 1997; Hastie &
Tibshirani, 1996) or at learning time (Aha & Goldstone, 1992). Seen as a 0-1
feature weighting algorithm, RC falls into this last category.

6.7 Summary

Viewed as an instance-based learner, RISE differs from conventional feature
selection algorithms in that it has the ability to select different features for dif-
ferent instances (i.e., to select different features given different values of other
features). Thus it can be expected to produce higher accuracies when feature
relevance is significantly context-dependent. On the other hand, it can be at a
disadvantage when no context effects are present, and the data is scarce and noisy.
Both these trends were observed in an empirical study using benchmark datasets,
with context-dependency being (at least apparently) present in a large majority of
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the datasets, and RISE’s feature selection algorithm reaping the corresponding re-
wards. It was also much faster than forward and backward selection. A study using
artificial domains with controlled degrees of context dependency further confirmed
that the difference in accuracy between RISE’s feature selection and context-free
methods increases as context dependency increases.




Chapter 7
Data Mining with RISE and
CWS

7.1 Overview

Data mining seeks to extract useful knowledge from very large, and often
very noisy, databases. RISE’s quadratic running time makes it too slow for direct
application to such problems. It can be made faster through the use of sampling
techniques. Two of these are empirically studied in this chapter: windowing and
partitioning. Their effect on running time and accuracy is measured in low- and
high-noise situations. An alternative approach to achieving fast and robust induc-
tion is to design a linear-time algorithm incorporating RISE’s “conquering without
separating” strategy. The result, called CWS, is also described and evaluated in
this chapter.

7.2 Data Mining: State of the Art

Very large datasets pose special problems for machine learning algorithms. A
recent large-scale study found that most algorithms cannot handle such datasets
in a reasonable time with a reasonable accuracy (Nakhaeizadeh, 1995: Michie,
Spiegelhalter & Taylor, 1994). However, in many areas—including astronomy,
molecular biology, earth sensing, finance, retail, marketing, health care, etc.—large
databases are now the norm, and discovering patterns in them is a potentially very
productive enterprise, in which interest is rapidly growing (Fayyad & Uthurusamy,
1995; Simoudis, Han & Fayyad, 1996). Designing learning algorithms appropriate
for such problems has thus become an important research problem.

In these “data mining” applications, the main consideration is typically not to
maximize accuracy, but to extract useful knowledge from a database. The learner’s
output should still represent the database’s contents with reasonable fidelity, but
it is also important that it be comprehensible to users without machine learning
expertise. In this respect, RISE and other rule induction algorithms have the
advantage that the “IF ... THEN ...” rules they produce are perhaps the most
easily understood of all representations currently in use.

87
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A major problem in data mining is that the data is often very noisy. Besides
making the extraction of accurate rules more difficult, this can have a disastrous
effect on the running time of rule learners. In C4.5RULES, noise can cause running
time to become cubic in e, the number of examples (Cohen, 1995). When there
are no numeric attributes, C4.5 has complexity O(ea?), where a is the number of
attributes (Utgoff, 1989b), but its running time in noisy domains is dwarfed by
that of the conversion-to-rules phase (Cohen, 1995). Outputting trees directly has
the disadvantage that they are typically much larger and less comprehensible than
the corresponding rule sets.

In algorithms that let the rule set grow to fit the data completely, and then
simplify it by reduced error pruning (Brunk & Pazzani, 1991), the presence of
noise causes running time to become O(e*loge) (Cohen, 1993). Fiirnkranz and
Widmer (1994) have proposed incremental reduced error pruning (IREP), an algo-
rithm that prunes each rule immediately after it is grown, instead of waiting until
the whole rule set has been induced. Assuming the final rule set is of constant
size, IREP reduces running time to O(elog®e), but its accuracy is often lower
than C4.5RULES’s (Cohen, 1995). Cohen introduced a number of modifications
to IREP, and verified empirically that RIPPERK, the resulting algorithm, is com-
petitive with C4.5RULES in accuracy, while retaining an average running time
similar to IREP’s (Cohen, 1995).

Catlett (Catlett, 1991) has done much work in making decision tree learners
scale to large datasets. A preliminary empirical study of his peepholing technique
shows that it greatly reduces C4.5’s running time without significantly affecting
its accuracy.! To the best of our knowledge, peepholing has not been evaluated on
any large real-world datasets, and has not been applied to rule learners.

A number of algorithms achieve running time linear in e by forgoing the
greedy search method used by the learners above, in favor of exhaustive or pruned
near-exhaustive search (e.g., (Weiss, Galen & Tadepalli, 1987; Goodman, Higgins,
Miller & Smyth, 1992; Segal & Etzioni, 1994)). However, this causes running time
to become exponential in a, leading to a very high cost per example, and making
application of those algorithms to large databases difficult. Holte’s 1R algorithm
(Holte, 1993) outputs a single tree node, and is linear in a and log-linear in e, with
the logarithmic factor due to sorting of numeric values, but its accuracy is often
much lower than C4.5’s.

Ideally, we would like to have an algorithm capable of inducing accurate
rules in time linear or near-linear in e, without becoming too expensive in other
factors. One way of attempting to achieve this is to apply sampling techniques to
an existing algorithm, thus reducing its running time, in the hope that this will
not have too negative an effect on accuracy. The alternative is to design a new
algorithm with speed explicitly in mind, but incorporating at least some of the

'Due to the small number of data points (3) reported for the single real-world domain used,
it 1s difficult to determine the exact form of the resulting time growth (linear, log-linear, etc.).
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useful characteristics of existing algorithms. Both approaches are explored in this
chapter, with RISE as the starting point.

7.3 Speeding Up RISE

Windowing in RISE was described in Section 3.5. In the partitioning speedup
approach (Chan & Stolfo, 1995b), the training data is divided into a number of
disjoint subsets, and the learning algorithm is applied to each in turn. The results
of each run are combined in some fashion, either at learning or at classification
time. In RISE, partitioning is applied by pre-determining a maximum number of
examples €mq, to which the algorithm can be applied at once (100 by default).
When this number is exceeded, the training set is randomly divided into [e/énq.]
approximately equal-sized partitions, where e is the total number of training ex-
amples. RISE is then run on each partition separately, but with an important
difference relative to a direct application: the rules grown from the examples in
partition p are not evaluated on the examples in that partition (see Table 3.1
and accompanying discussion), but on the examples in partition p + 1, modulo
the number of partitions. This should help combat overfitting, and the resulting
improvement in accuracy may partly offset the degradation potentially caused by
using smaller training sets. It is not possible in systems like C4.5RULES and CN2,
where there is no connection between a specific rule and a specific example.

Because the number of partitions grows linearly with the number of training
examples, and RISE’s quadratic factor is confined to the examples within each
partition and thus cannot exceed a given maximum (e.g., 100% if e, = 100),
the algorithm with partitioning is guaranteed a linear worst-case running time.
However, depending on €.z, the multiplicative constants can become quite large.

Three methods of combining the results of induction on the individual par-
titions have been implemented and empirically compared. In the first, all the rule
sets produced are simply merged into one, which is output by the learning phase.
In the second, the rule sets are kept separate until the performance phase, and each
partition classifies the test instance independently. A winning class is then assigned
to the example by voting among the partitions, with each partition’s weight being
the Laplace accuracy of the rule that won within it (Equation 2.2). In the third
method, the rule sets are again kept separate, and Bayesian model averaging is
employed, in a form similar to that of (Buntine, 1990) and (Ali & Pazzani, 1996).
Appendix C describes the details of this procedure. The second method was found
to achieve consistently better results, and was therefore adopted. The reasons for
this heuristic approach outperforming the more principled Bayesian one are ex-
plored in (Domingos, 1997a). Many other combination schemes are possible (e.g.,

(Chan & Stolfo, 1995b)).

Windowing and partitioning were tested on seven of the UCI repository’s
largest databases (in increasing order of size: credit, Pima diabetes, annealing,
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Table 7.1. Experimental results: running times (in minutes and seconds).

Database | RISE | Windowing Partitioning
€mar =100  €mar =200 €. =500
CE 4:31 3:21 1:3% 1:11 4:38
DI 4:15 6:20 1:32 1:13 2:47
AN 4:26 2:44 1:43 2:33 247
CH 33:26 10:40 3:10 6:04 12:06
HY 105:23 14:46 5:08 10:42 24:06
] 5 110:39 51:28 5902 12:45 25:48
MU 70:07 10:07 5:55 7:26 14:32

chess endgames, hypothyroid, splice junctions, and mushroom; see Section 4.2).
Of these, at least one (Pima diabetes) is thought to be quite noisy, and at least two
(chess and mushroom) are known to be almost entirely noise-free. Partitioning was
tested with €mq- =100, 200, and 500. Ten runs were carried out for each database,
in each run randomly dividing the data into two-thirds for training and one-third
for testing. The averaged results are shown in Tables 7.1 (running times) and 7.2
(accuracies). They are also presented in bar graph form in Figures 7.1 and 7.2.

Both speedup methods are effective in reducing RISE’s running time, gen-
erally without seriously affecting accuracy (chess and annealing with partitioning,
and Pima diabetes with windowing, are the exceptions). Windowing often has
practically no effect on accuracy. Thus, overall this method appears to be more
useful in RISE than in decision tree induction (Catlett, 1991). This may be due
to several factors, including RISE’s lower sensitivity to the global proportions of
different classes, and its higher resistance to the fragmentation problem, which
enables it to correctly approximate class frontiers using fewer examples.

Partitioning’s running time is (as might be expected) sensitive to the choice
of €maz, but it appears to increase less than linearly with it. Linear growth would

Table 7.2. Experimental results: accuracies and standard deviations.

Database RISE Windowing Partitioning

Emar =100 €pae=200 e4ge=500
CE 82.6+1.5 | 83.6£1.5 86.4+1.9 86.4+1.5 82.6%1.6
DI 71.6+2.5 | 70.6+2.7 | 744421 73.6+£3.3 T72.842.6
AN 97.5+0.9 | 98.0£1.0 | 93.6+1.6 96.1+£1.6 96.5+1.1
CH 98.41+0.6 | 98.4+0.7 | 94.54£0.5 95.2+0.6  96.640.9
HY 97.940.2 [ 97.5+0.5 97.0£0.3 97.5+0.3 97.9+0.4
SP 92.5+0.8 | 92.8+£0.7 | 95.0+£0.7 94.6+0.7 94.7+0.6
MU 100.0£0.0 | 100.0+0.0 | 98.9+0.1  99.54+0.3  99.8+0.1
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Figure 7.1: Comparison of running times: RISE, RISE with windowing and RISE
with partitioning.
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Figure 7.2: Comparison of accuracies: RISE, RISE with windowing and RISE with
partitioning.
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be expected, since, if p is the number of partitions and ¢ is the total running time,
t = O(pe?,.), and since p ~ €/emez, t = O(€€maz), i.e., for a given e, t X €maz.
Examination of the rules produced shows that RISE tends to stop earlier within
each partition when the partitions are larger, presumably because the additional
information available warrants the induction of more specific rules, and while in
general-to-specific systems this means that the algorithm will take longer to run
because more antecedents will be added, in RISE the opposite is the case, since
fewer antecedents will be deleted. This will tend to partly offset the increase in

running time due to increasing partition size.

The effect of partitioning on accuracy is more variable than that of window-
ing. In some domains a trade-off between partition size and accuracy is observed;
however, only in the chess domain does increasing €,,, from 200 to 500 substan-
tially increase accuracy. More interestingly, in the credit, diabetes and splice junc-
tions domains the opposite trend is observed (i.e., partitioning increases accuracy,
and smaller partitions more so than larger ones); this may be attributed to the
reduction in overfitting derived from inducing and testing rules on different parti-
tions, to the increase in accuracy that can result from combining multiple models
(Wolpert, 1992; Breiman, 1996a; Breiman, 1996¢), and possibly to other factors.
On the splice junctions dataset, the success of applying partitioning to RISE us-
ing a simple combination scheme contrasts with the results obtained by Chan and
Stolfo for general-to-specific learners (Chan & Stolfo, 1995a). In general, the best
partition size should be determined by experimentation on the specific database
RISE is being applied to, starting with smaller (and therefore faster) values.

To test the algorithms on a larger problem, and obtain a clearer view of the
growth rate of their running times, experiments were conducted on NASA’s space
shuttle database (Catlett, 1991). This database contains 43500 training examples
from one shuttle flight, and 14500 test examples from a different flight. Each
example is described by nine numeric attributes obtained from sensor readings, and
there are seven possible classes, corresponding to states of the shuttle’s radiators.
The goal is to predict these states with very high accuracy (99-99.9%), using rules
that can be taught to a human operator.

Figure 7.3 shows the evolution of running time with the number of examples
for RISE, RISE with partitioning (using €., = 100), and RISE with windowing,
on a log-log scale. Recall that on this type of scale the slope of a straight line
corresponds to the exponent of the function being plotted. Canonical functions
approximating the asymptotic curves for RISE and RISE with partitioning are
also shown.? Windowing reduces running time, but its growth appears to remain
roughly quadratic; partitioning reduces it to linear, as expected. On the full train-
ing database, RISE consumes over a week of CPU time, while partitioning takes
less than an hour. The accuracy curves (not shown) are very similar for all systems,

2The constants a and b were chosen so as to make the respective curves fit conveniently in
the graph.
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Figure 7.3. Learning times for the shuttle database.

converging rapidly to very high values (99% by e = 1000, etc.), with partitioning
lagging slightly behind the other two (0.55% on average, with respect to RISE).

The shuttle data is known to be relatively noise-free. To investigate the effect
of noise, the three algorithms (pure RISE, partitioning and windowing) were also
applied after corrupting the training data with 20% class noise (i.e., each class
had a 20% probability of being changed to a random class, including itself). The
learning time curves obtained are shown in Figure 7.4, again on a log-log scale
and with approximate asymptotes shown. The time performance of windowing
degrades markedly, making it worse than the pure algorithm for all training set
sizes greater than 500. In contrast, partitioning remains almost entirely unaffected.
Noise reduces the accuracy of pure RISE and windowing by 3 — 8%, with the
smaller differences occurring for larger training set sizes. (Recall that noise was
added only to the training set.) The accuracy of partitioning is barely affected,
making it consistently more accurate than pure RISE at this noise level.

An interesting observation is that noise substantially reduces RISE’s running
time, even though it remains much larger than that obtained with partitioning.
This may be attributed to the difference between specific-to-general and general-to-
specific systems already discussed: noise tends to make rule induction algorithms
produce more specific rules, which take less time to induce in RISE and more
in systems like C4.5RULES (which, in addition, may then prune back those rules,
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Figure 7.4. Learning times for the shuttle database with 20% noise.

further adding to their running time; in RISE pruning and initial induction are the
same operation). This means that RISE may be more appropriate than general-
to-specific systems for noisy databases.

A potential disadvantage of partitioning when compared to windowing is that
it sometimes (but not always) tends to produce rule sets that are larger overall,
even if the individual rule sets learned from each partition are comparatively small.
However, from the point of view of output comprehensibility, this is not necessarily
a serious problem, since understanding can still be gleaned by looking at one of
the individual rule sets, or one at a time.

7.4 The CWS Algorithm

In the “separate and conquer” methodology employed by most rule learners,
each rule is induced to its full length before going on to the next one, and each rule is
evaluated by itself, without regard to the effect of other rules. Apart from its effect
on accuracy, this approach is potentially inefficient: rules may be grown further
than they need to be, only to be pruned back afterwards, when the whole rule set
has already been induced. This will be particularly likely in noisy domains, and
Cohen (1993) has shown that it is indeed the cause of the very high running times
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he observed. In contrast, RISE interleaves the construction of all rules, evaluating
each rule in the context of the whole rule set, and is thus able to achieve high
accuracies without running into this problem. The main source of inefficiency
in RISE is not overfitting and post-pruning, but the repeated computation of
distances between rules and examples. Since the number of rules is initially the
number of examples, and each rule is initially compared with all examples, a super-
linear running time is inevitable.

However, this problem can be avoided if RISE’s “conquering without sepa-
rating” approach is applied in a general-to-specific setting, with interleaved rule
induction and global evaluation as before, but with an initially empty rule set and
operators that add antecedents to a rule, as in more conventional systems. With
careful optimization of the type described in the last paragraph of Section 3.3, this
holds the promise of leading to lower running times than either RISE or “separate-
and-conquer” systems, while still achieving higher accuracies than the latter by
reducing the fragmentation and small disjuncts problems.

CWS (for “Conquering Without Separating”) is an algorithm that instanti-
ates this idea. CWS’s rules differ from RISE’s in three aspects. First, they have a
purely logical interpretation: examples not covered by any rule are assigned to the
default class (the class with the most examples in the training set®). This avoids
the distance computations that result in RISE’s quadratic running time. Second,
conditions on numeric attributes are inequalities of the form a; > v;; or a; < v;;,
as in CN2 and C4.5RULES, instead of intervals. Use of the latter, with the cor-
responding consideration of all pairs of endpoints at each induction step, would
result in a running time quadratic in the number of values per attribute. Lastly,
each rule in CWS is also associated with a vector of class probabilities computed
from the examples it covers, the predicted class being the one with the highest
probability. For class C;, P,(C;) is estimated by e,;/e,, where e, is the total num-
ber of examples covered by rule r, and e,; is the number of examples of the ith
class among them. When a test example is covered by more than one rule, the
class probability vectors of all the rules covering it are summed, and the class with
the highest sum is chosen as the winner. This is similar to the approach followed
in CN2 (Clark & Boswell, 1991), with the difference that probabilities are used
instead of frequencies. In a preliminary study, the use of probabilities was found
to lead to higher accuracies. This can be attributed to the frequency-based ap-
proach’s tendency to assign excessive weight to rules with large coverage, making
it difficult for rules representing smaller exception regions to ever have an effect.

This voting approach to conflict resolution allows an optimization similar to
that used in RISE (see Section 3.3), which would not be possible in a general-
to-specific induction setting with RISE’s “choose one winner” approach. To see
this, consider that, when a rule is generalized in RISE, it can become the new

3An alternative would be to take as default the class with the most training examples not
covered by any rule. However, this would add complexity to the learning algorithm without any
clear gain, because in CWS the default class chosen by either method tends to be the same.
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Table 7.3. The CWS algorithm.

Input: ES is the training set.
Procedure CWS (ES)

Let RS = 0.
Repeat
Add one active rule R,., with empty body to RS.
For each active rule R in RS,
For each possible antecedent AV,
Let Rav = R with AV conjoined to its body.
Compute class probabilities and predicted class for Ry .
Let RS4v = RS with R replaced by R,v.
Let AgvAcc(RS) = Ace(RSav) — Acc(RS).
Pick AV’ with maximum A 4y Acc( RS).
If AgvrAec(RS) >0
Then R = RAVr,
Else Deactivate R.
If R,., has been deactivated
Then Delete it.
Until all rules in RS are inactive.

Return RS.

closest rule to an example, but if it already is the closest rule, it cannot lose that
position, because generalization can only reduce a rule’s distance to an example.
Thus, in order to evaluate the effect of a rule generalization on the rule set’s
accuracy, all that is needed is to check whether the rule wins any new examples,
and what its effect on those is. If each example’s distance to its nearest rule is
memorized, this requires only O(ea) time (where e is the number of examples, and
a is the number of attributes), while matching all r rules would require O(rea).
Conversely, in general-to-specific induction, when a rule is specialized it cannot
gain new examples, but it can lose some that it previously won. If a “choose one
winner” conflict resolution policy is used, it then becomes necessary to find the
new winning rule, and this requires matching all the existing r rules with the “lost”
examples, leading to an O(rea) operation. In contrast, when a voting approach
is used, all that is needed is to subtract the rule’s votes from the examples it no
longer covers, and this can be done efficiently, as detailed below.

CWS is outlined in pseudo-code in Table 7.3. Initially the rule set is empty,
and all examples are assigned to the majority class. In each cycle a new rule with
empty body is tentatively added to the set, and each of the rules already there is
specialized by one additional antecedent. Thus induction of the second rule starts
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immediately after the first one is begun, etc., and induction of all rules proceeds in
step. At the end of each cycle, if a rule has not been specialized, it is deactivated,
meaning that no further specialization of it will be attempted. A rule with empty
body predicts the default class, but this is irrelevant, because a rule only starts to
take part in the classification of examples once it has at least one antecedent, and
it will then predict the class that most training examples satisfying that antecedent
belong to. A rule’s predicted class may change as more antecedents are added to
it. Ace(RS) is the accuracy of the rule set RS on the training set, as before.

Let e be the number of examples, a the number of attributes, v the average
number of values per attribute, ¢ the number of classes, and r the number of
rules produced. The basic step of the algorithm involves adding an antecedent
to a rule and recomputing Ace(RS4v). This requires matching all rules with all
training examples, and for each example summing the class probabilities of the
rules covering it, implying a time cost of O[re(a + ¢)]. Since there are O(av)
possible antecedents, the cost of the inner loop (“For each AV”, see Table 7.3) is
Olavre(a+ c)]. However, this cost can be much reduced by avoiding the extensive
redundancy present in the repeated computation of Ace(RS4v). The key to this
optimization is to avoid rematching all the rules that remain unchanged when
attempting to specialize a given rule, and to match the unchanged antecedents
of this rule with each example only once. Recomputing Acc(RS4y) when a new
antecedent AV is attempted now involves only checking whether each example
already covered by the rule also satisfies that antecedent, at a cost of O(e), and
updating its class probabilities if it does, at a cost of O(ec). The latter term
dominates, and the cost of recomputing the accuracy is thus reduced to O(ec),
leading to a cost of O(eavc) for the “For each AV” loop.

In more detail, the optimized procedure is as follows. Let Cprobs(R) de-
note the vector of class probabilities for rule R, and C'scores(FE) denote the sum
of the class probability vectors for all rules covering example E. Cscores(E) is
maintained for each example throughout. Let R be the rule whose specialization
is going to be attempted. Before the “For each AV” loop begins, R is matched
to all examples, those which satisfy it are selected, and, for each such example E,
Cprobs(R) is subtracted from Cscores(E). Cscores(E) now reflects the net effect
of all other rules on the example. Each possible antecedent AV is now conjoined
to the rule in turn, leading to a changed rule R4y. New class probabilities for
R4y are computed by finding which examples E4v among the previously-selected
ones satisfy AV. These probabilities are now added to Cscores(E4v) for the
still-covered examples F y. Examples that were uncovered by the specialization
already have the correct values of C'scores(FE), since the original rule’s Cprobs(R)
were subtracted from them beforehand. All that remains is to find the new winning
class for each example E. If the example was previously misclassified and is now
correctly classified, there is a change of +1/e in the accuracy of the rule set. If
it was previously correctly classified and is now misclassified, the change is —1/e.
Otherwise there is no change. Summing this for all the examples yields the global
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change in accuracy. As successive antecedents are attempted, the best antecedent
and maximum global change in accuracy are remembered. At the end of the loop
the best antecedent is permanently added to the rule, if the corresponding change
in accuracy is positive. This simply involves repeating the procedure above, this
time with permanent effects. If no antecedent produces a positive change in ac-
curacy, the rule’s original class probabilities Cprobs(R) are simply re-added to
the Cscores(E) of all the examples that it covers, leaving everything as before.
This procedure is shown in pseudo-code in Table 7.4. Note that the optimized
version produces exactly the same output as the non-optimized one; conceptually,
the much simpler Table 7.3 is an exact description of the CWS algorithm.

The total asymptotic time complexity of the algorithm is obtained by mul-
tiplying O(eavc) by the maximum number of times that the double outer loop
(“Repeat ...For each R in RS ...”) can run. Let s be the output size, measured
as the total number of antecedents effectively added to the rule set. Then the
double outer loop runs at most O(s), since each computation within it (the “For
each AV” loop) adds at most one antecedent. Thus the total asymptotic time
complexity of CWS is O(eavcs).

The factor s is also present in the complexity of other rule induction algo-
rithms (CN2, IREP, RIPPERK, etc.), where it can typically grow to O(ea). It
can become a significant problem if the dataset is noisy. However, in CWS it
cannot grow beyond O(e), because each computation within the double outer loop
(“Repeat ...For ...”) either produces an improvement in accuracy or is the last
one for that rule, and in a dataset with e examples at most e improvements in
accuracy are possible. Ideally, s should be independent of e, and this is the as-
sumption made in (Firnkranz & Widmer, 1994) and (Cohen, 1995), and verified
below for CWS.

CWS incorporates three methods for handling numeric values, selectable
by the user. The default method discretizes each attribute into equal-sized in-
tervals, and has no effect on the asymptotic time complexity of the algorithm.
Discretization can also be performed using a method similar to Catlett’s (1991),
repeatedly choosing the partition that minimizes entropy until one of several ter-
mination conditions is met. This causes learning time to become O(eloge), but
may improve accuracy in some situations. Finally, numeric attributes can be han-
dled directly by testing a condition of each type (a; > v;; and a; < v;;) at each
value v;;. This does not change the asymptotic time complexity, but may cause v
to become very large. Each of the last two methods may improve accuracy in some
situations, at the cost of additional running time. However, uniform discretization
is surprisingly robust (see (Dougherty, Kohavi & Sahami, 1995)), and can result
in higher accuracy by helping to avoid overfitting.

Missing values are treated by letting them match any condition on the re-
spective attribute, during both learning and classification.




Table 7.4. The optimized CWS algorithm.
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Input: ES is the training set.

Procedure CWS (ES)

Let RS = 0.
Let Cscores(E) =0 for all E, C.
Repeat

Add one active rule R,., with empty body to RS.
Let Cprobs(Rpew) = 0 for all C.
For each active rule R in RS,
For each example E covered by R,
Subtract Cprobs(R) from Cscores(E).
For each possible antecedent AV,
Let AqvAce(RS) = 0.
Let Raqv = R with AV conjoined to its body.
Compute Cprobs(R4v) and Rqy’s predicted class.
For each example E v covered by Ry
Add Cprobs(Ray) to Cscores(Eav).
For each example E covered by R
Assign E to class with maximum Cscore(E).
Compute A v Accg(RS) (equal to -1/e, 0 or +1/e)
Add AAvACCE(RS) to AAvACC(RS).
Pick AV’ with maximum A 4y Ace(RS).
If AAVrACC(RS) >0
Then R = Rav,
Else Deactivate R.
For each example E covered by R (R = R4y or not)
Add Cprobs(R) to Cscores(E).
If R,..., has been deactivated
Then Delete it.
Until all rules in RS are inactive.
Return RS.
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7.5 Empirical Evaluation of CWS

CWS was empirically compared with C4.5RULES and CN2 along three vari-
ables: running time, accuracy, and comprehensibility of the output. All running
times were obtained on a Sun 670 computer. Qutput size was taken as a rough mea-
sure of comprehensibility, counting one unit for each antecedent and consequent
in each rule (including the default rule, with no antecedents and one consequent ).
This measure is imperfect for two reasons. First, for each system the meaning of a
rule is not necessarily transparent: in CWS and CN2 overlapping rules are prob-
abilistically combined to yield a class prediction, and in C4.5RULES each rule’s
antecedent side is implicitly conjoined with the negation of the antecedents of all
preceding rules of different classes. Second, output simplicity is not the only factor
in comprehensibility, which is ultimately subjective. However, it is an acceptable
and frequently used approximation, especially when the systems being compared
have similar output, as here (see (Catlett, 1991) for further discussion).

A preliminary study was conducted using the Boolean concept abcVde f as the
learning target, with each disjunct having a probability of appearing in the data
of 0.25, with 13 irrelevant attributes, and with 20% class noise (i.e., each class
label has a probability of 0.2 of being flipped). Figure 7.5 shows the evolution
of learning time with the number of examples for CWS and C4.5RULES, on a
log-log scale. Canonical functions approximating each curve are also shown, as
well as elog® e, the running time observed by Cohen (Cohen, 1995) for RIPPERK
and IREP. CWS’s running time grows linearly with the number of examples, as
expected, while C4.5RULES’s is O(e?loge). CWS is also much faster than IREP
and RIPPERk (note that, even though the log-log plot shown does not make this
evident, the difference between e and elog? e is much larger than e).

CWS is also more accurate than C4.5RULES for each number of examples,
converging to within 0.6% of the Bayes optimum (80%) for only 500 examples, and
reaching it with 2500, while C4.5RULES never rises above 75%. CWS’s output
size stabilizes at 9, while C4.5RULES’s increases from 17 for 100 examples to over
2300 for 10000. Without noise, both systems learn the concept easily. Thus these
results indicate that CWS is more robust with respect to noise, at least in this
simple domain. CN2’s behavior is similar to C4.5RULES’s in time and accuracy,
but it produces larger rule sets.

The relationship between the theoretical bound of O(eaves) and CWS’s ac-
tual average running time was investigated by running the system on 28 datasets
from the UCI repository.* Figure 7.6 plots CPU time against the product eaves.

*Audiology, annealing, breast cancer, credit, chess, Pima diabetes, echocardiogram, glass,
heart disease, hepatitis, horse colic, thyroid disease, iris, labor, lung cancer, liver disease, lym-
phography, mushroom, post-operative, promoters, primary tumor, solar flare, sonar, soybean,
splice junctions, voting, wine, and zoology; see Section 4.2. CWS tends to be less accurate
than RISE on these datasets, implying that the latter is still preferable if accuracy is the main
consideration and the dataset is not too large.
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Figure 7.5. Learning times for the concept abc V def.

Linear regression yields the line time = 1.1 x 10™° eaves + 5.1, with a correlation
of 0.93 (R? = 0.87). Thus eavcs explains almost all the observed variation in CPU
time, confirming the prediction of a linear bound.®

Experiments were also conducted on the space shuttle database with 20%
class noise. The evolution of learning time with the number of training examples
for CWS and C4.5RULES is shown in Figure 7.7 on a log-log scale, with approx-
imate asymptotes also shown. CWS’s curve is approximately log-linear, with the
logarithmic factor attributable to the direct treatment of numeric values that was
employed. (Uniform discretization resulted in linear time, but did not yield the req-
uisite very high accuracies.) C4.5RULES’s curve is roughly cubic. Extrapolating
from it, C4.5RULES’s learning time for the full database would be well over a
month, while CWS takes 11 hours.

Learning curves are shown in Figure 7.8. CWS’s accuracy is higher than
C4.5RULES’s for most points, and generally increases with the number of exam-
ples, showing that there is gain in using the larger samples, up to the full dataset.
Figure 7.9 shows the evolution of output size. CWS’s is low and almost constant,
while C4.5RULES’s grows to more than 500 by e = 32000. Up to 8000 examples,
CN2’s running time is similar to C4.5RULES’s, but its output size grows to over

5Also, there is no correlation between the number of examples e and the output size s (R? =
0.0004).
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1700, and its accuracy never rises above 94%.° In summary, in this domain CWS$
outperforms C4.5RULES and CN2 in running time, accuracy and output size.

Compared to the noise-free case, the degradation in CWS’s accuracy is less
than 0.2% after e = 100, the rule set size is similar, and learning time is only
degraded by a constant factor (of a few percent, on average). Thus CWS is again
verified to be quite robust with respect to noise.

These experiments show that CWS holds promise as a data mining algorithm,
able to produce fast, accurate and comprehensible results on large, noisy databases.

7.6 Summary

RISE can be applied to large databases through the use of sampling tech-
niques like windowing and partitioning. In low-noise conditions, both of these
methods are successful in reducing running time while maintaining accuracy, and
partitioning sometimes improves accuracy significantly. In noisy conditions, the
performance of windowing deteriorates markedly, while that of partitioning re-
mains stable.

The ideal rule induction algorithm for data mining runs in linear or near-
linear time, without compromising the accuracy or comprehensibility of the results.
RISE’s “conquering without separating” approach can be used to design such an
algorithm. Empirical study shows that CWS, the result, can be used to advantage
when the underlying concept is simple and the data is plentiful but noisy.

®For e > 8000 the program crashed due to lack of memory. This may be due to other jobs
running concurrently.



Chapter 8
Conclusion

8.1 Contributions of this Dissertation

This dissertation presented a new approach to induction, unifying rule in-
duction and instance-based learning, and addressing some of the problems of each
approach by bringing in elements of the other. Its contributions include:

o Simplification via unification of rule induction and IBL. The simplification
brought about by unifying two leading induction paradigms is of value to
both the theorist and the practitioner. From a theoretical perspective, the
unification of IBL and rule induction brings a degree of order and structure
to the existing jungle of learning methods, overcomes some superficial dis-
tinctions while pointing out deeper ones, and opens up a spectrum of biases
of which the previous algorithms are only special cases. From a practical
perspective, the knowledge engineer’s task is simplified, because a single al-
gorithm can now be used instead of an IBL and a rule induction one, with
reasonable confidence that accuracy will not be reduced, and may in fact be
improved. In contrast to other empirical multistrategy learning approaches,
the new algorithm is as simple as (or simpler than) the algorithms that it
combines, and therefore as easy to understand, implement and apply.

o Improved understanding of rule induction and IBL algorithms. The frame-
work presented here clarifies the relation between rule induction and IBL, and
shows how rule and instance representations are related both syntactically
and semantically. The experiments carried out in artificial domains show how
concept specificity affects the behavior of rule induction algorithms, and how
context dependency of feature relevance affects the behavior of IBL. Thus a
better understanding of these two biases has been achieved.

o Reduction of the fragmentation problem in rule induction. RISE’s “conquer-
ing without separating” approach to rule induction is able to largely circum-
vent the fragmentation problem that “separate and conquer” approaches
suffer from. By letting each rule “see” the entire training set at each step of
its induction, the incorrect decisions that result from looking at only a small
fraction of the sample can be minimized. Although such an approach might
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at first sight seem to lead to significantly increased computational costs, care-
ful optimization makes it possible to apply it with the same asymptotic costs
as other methods.

Reduction of the small disjuncts problem in rule induction. While “separate
and conquer” rule induction algorithms find small disjuncts both when they
are really present and when they only appear to be as a result of fragmen-
tation, RISE should be mainly affected only by the true, unavoidable small
disjuncts. Studies in artificial domains varying the degree of specificity of
the target disjuncts support this conclusion, showing that RISE is indeed at
an advantage when learning small disjuncts.

First context-sensitive feature selection algorithm for IBL. A significant lim-
itation of classical methods for feature selection in IBL is that they do not
take into account the fact that some features may be relevant in some parts
of the instance space but not others, leading either to the deletion of impor-
tant features, or to retaining features that act as noise when classifying some
examples. RISE is able to select different features in different parts of the
instance space, leading to significantly more correct frontiers in the many
domains where such context effects are present. Studies in both benchmark
and artificial domains showed this at work.

Accuracy improvements resulting from all of the above. The immediate prac-
tical consequence of all the improvements above is that, in many domains,
levels of predictive accuracy are achieved that were beyond the reach of pre-
vious rule induction and IBL methods. This was verified by extensive empir-
ical studies, where, in approximately half of the domains studied, RISE not
only matched but exceeded the accuracy of the best of its parent paradigms.
Improved accuracy can translate into significant benefits in each of the ap-
plication fields.

Accuracy improvements resulting from two-way induction. Further improve-
ments in predictive accuracy were obtained by combining RISE’s specific-to-
general search for rules with the more widely-used general-to-specific search
direction. The combination of these two complementary biases is particu-
larly suited to learning in domains where both general and specific rules are
needed. These domains occur often in practice, making two-way induction a
useful tool for the knowledge engineer.

First successful application of partitioning to specific-to-general rule induc-
tion. RISE can be successfully applied to large databases through the use
of the partitioning technique, making it a viable data mining algorithm, and
extending its benefits to this type of application. By taking advantage of
RISE’s characteristics, partitioning can lead to simultaneous improvements
in running time and accuracy using very simple combination methods. This
contrasts with the more involved combination schemes that have been found
necessary in general-to-specific approaches (Chan & Stolfo, 1995a).
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e First non-trivial linear-time rule induction algorithm. Applying RISE’s “con-
quering without separating” approach in a general-to-specific setting leads
to an algorithm that, for the first time, runs in time linear in all the relevant
parameters, while achieving accuracies at the level of more computationally
expensive, state-of-the-art systems, and producing much simpler output. Its
benefits were especially apparent in noisy domains. This combination of
speed, accuracy, comprehensibility and robustness with respect to noise is
potentially of great value in data mining applications.

8.2 Directions for Future Research

Any piece of research is only a node in a tree, and itself potentially the root
of a new subtree of research. This section describes some possible new branches of
the node represented by this dissertation.

One major area for future research concerns further study of RISE’s bias.
The experiments described in Chapters 4, 5 and 6 have only begun to explore this
question. Ideally, we would like to arrive at a fairly complete picture of the as-
sumptions that RISE incorporates, its strengths and weaknesses, the factors that
influence its performance, and the conditions under which it can be expected to
learn successfully. However, this is a large task—it has not been fully carried out
for any machine learning algorithm, even much older ones than RISE. Even simple
statistical pattern recognition algorithms that derive from very clear assumptions
can have a range of applicability that is not trivially inferrable from those assump-
tions (e.g., (Domingos & Pazzani, 1996)). The method of choice for this type of
research is to carry out studies in artificial domains, systematically varying rel-
evant parameters, as was done in this dissertation. Analytical characterizations,
where feasible, would also be useful; for example, it would be good to have an
average-case analysis of RISE’s learning time, to complement the worst-case one
in Chapter 3.

One example of an aspect of RISE’s bias that has not been fully studied
is RISE’s ability to form non-axis-parallel frontiers, while also dropping features
where necessary. It would be interesting to investigate in detail how well this
approach fares relative to axis-parallel ones, and relative to IBL using different
types of similarity measure (Ting, 1994). Another example is RISE’s handling of
small disjuncts. This was investigated in this dissertation, but the picture is not
yet complete. For example, RISE’s advantage when attempting to learn a small
disjunct may also derive from the fact that it tends to generate more versions of it
in the same rule set than (say) CN2 or C4.5RULES, and thus may form a closer
approximation of the theoretical Bayesian ideal (Buntine, 1990; Madigan, Raftery,
Volinsky & Hoeting, 1996). This issue can be investigated empirically, and may
lead to ideas on learning small disjuncts that are also useful in other rule learning
contexts.
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Another direction for research is extending the current RISE framework to
include analytical as well as empirical learning. This will make it possible to per-
form theory revision and interleaved automatic/manual construction of knowledge
bases, as well as pure induction. Several possible components for this are already
in place: the basic RISE algorithm allows generalization of pre-existing rules as
well as generalization from examples (since these examples are simply very specific
cases of rules); because of RISE’s best-match procedure, semantic specialization of
rules is also possible, via syntactic generalization of competing rules and/or mis-
classified examples. The CWS algorithm allows direct specialization of existing
rules, although its evaluation procedure and RISE’s would need to be harmonized
if the two algorithms were to be applied together. TWI also allows a form of theory
revision: if an expert-supplied domain theory is used as the G component, RISE
then plays the part of refining this theory by finding exceptions to it.

In two-way induction, more sophisticated methods of combining the two com-
ponents may prove frutiful. Another potentially productive extension of TWI is
inputting unpruned rules or trees, and combining the post-pruning stage with the
specific-to-general induction process. Preliminary work has been done in this di-
rection.

Viewing RISE as an instance-based learner, an obvious extension is to allow
k-nearest-rule classification, by analogy with k-nearest neighbor. Unlike the latter,
this requires changes in both learning and performance components, and these can
be made in several ways. Experimentation should tell which are best when, and
how useful they can be.

Beyond this, many further developments of RISE are possible. These in-
clude: methods for generalizing a symbolic antecedent that stop short of deleting
it (e.g., through the introduction of internal disjunctions); alternative methods
for processing missing values; methods for incorporating different misclassification
costs and attribute measurement costs into RISE; post-processing methods for
making RISE’s output simpler and easier to understand, beyond those described
in Chapter 4; and alternative distance measures, especially in domains where rel-
evant knowledge can be incorporated into them.

Only a first pass at RISE’s application to data mining problems was made
here. Directions for future work include testing and developing more sophisticated
methods of combining the outputs of the individual partitions (e.g., (Chan &
Stolfo, 1995b)), automating the selection of partition size, and testing partitioning
on a larger variety of larger databases. It may also be possible to further speed
up RISE through the use of efficient data structures like k-d trees (Bentley, 1975;
Friedman, Bentley & Finkel, 1977). Similarly, CWS admits to much further de-
velopment. Directions for this include exploring ways of boosting its accuracy (or,
conversely, broadening the set of concepts it can learn effectively) without affecting
its asymptotic time complexity, and applying it to larger databases and problems
in different areas. Work in this direction has also been initiated.
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Another promising direction for research is to extend the RISE framework
to perform regression. Several ways of doing this are readily apparent (e.g., each
rule predicts the average value of the examples it covers, or forms a local linear
regression model from those examples). RISE’s ability to perform context-sensitive
feature selection may be of great value in large-scale nonlinear regression problems,
where a great many features are available, and different small subsets of these are
relevant in different situations.

8.3 Summary

In the quest for knowledge, induction occupies center stage. Much of every
human being’s knowledge (and indeed, some of the deepest and hardest to formal-
ize) is obtained by induction. Science proceeds largely by induction (even if not in
as pure a form as was once commonly thought). In order to build knowledge-rich
computational systems, induction from examples is often a better approach than
attempting to make an expert’s knowledge explicit, or is a key complement to this
procedure. In today’s information-rich world, induction is needed to extract gen-
eral, relevant knowledge from the vast quantities of data available. The study of
induction, the design of better algorithms for performing it and the investigation
of their properties, can thus be of great value.

Concept learning is a key form of induction. This dissertation focused on
two of the leading approaches to it: rule induction and instance-based learning. It
identified some of the current weaknesses of each, and addressed them by bringing
in elements of the other. In response to the fragmentation and small disjuncts
problems that “separate and conquer” rule learners suffer from, a “conquering
without separating” strategy was developed that relies on IBL’s use of specific
instances and similarity measures. In response to the context sensitivity problems
of the classic feature selection algorithms used in IBL, an algorithm was developed
that judges feature relevance in context, relying on rule learners’ ability to select
different features in different regions of the instance space. Extensive empirical
study showed the resulting algorithm to be remarkably successful both as rule
induction and as IBL, and demonstrated the usefulness of its ideas in learning
from large databases.

Thus, it is hoped that this dissertation will constitute another step in our
attempt to better understand and carry out induction, and, by extension, in the
quest for knowledge of which induction is a prominent part.



Appendix A
UCI Databases

This appendix lists the UCI repository file containing each database, together

with any conversions performed and any other necessary information. Instance
identification codes were deleted wherever present. The UCI repository is acces-
sible by anonymous ftp from ftp.ics.uci.edu, subdirectory pub/machine-learning-
databases, and on the World Wide Web at the URL http://www.ics.uci.edu/-
mlearn/MLRepository.html. Please see the documentation in the repository for
further details on each of these databases.

AD:
AN:
BC:
CE:
CH:

DI
EC:

GL:
HD:

HE:
HO:

HY:
IR:
LA:

LC:
LD:

audiology /audiology.standardized.data
annealing/anneal.data
breast-cancer/breast-cancer.data
credit-screening/crx.data
chess/king-rook-vs-king-pawn /kr-vs-kp.data
pima-indians-diabetes/pima-indians-diabetes.data

echocardiogram /echocardiogram.data
Class is second attribute, attributes 1 and 10-13 deleted, example with un-
known class deleted.

glass/glass.data

heart-disease/cleve.mod
Last attribute deleted to yield a two-class problem.

hepatitis/hepatitis.data

horse-colic/horse-colic.data
Class is 24th attribute, attributes 3 and 25-28 deleted.

thyroid-disease/hypothyroid.data
iris/iris.data

Quinlan’s formatting of this dataset, distributed with C4.5, was used instead
of the less standard one in the UCI repository.

lung-cancer/lung-cancer.data

liver-disorders/bupa.data
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LE:
LI:

LY:
MU:
PO:

PR:
PT:
SF:

SN:
S0:
SP:
VO:
WI:
Z0:
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lenses/lenses.data

led-display-creator/led-creator.c
Program run with the following parameters: 100 examples, seed = 1, 10%
noise.

lymphography /lymphography.data
mushroom /agaricus-lepiota.data

postoperative-patient-data/post-operative.data
Pseudo-discretized values converted to numeric (e.g., high, mid, and low
become 1, 0 and —1).

molecular-biology /promoter-gene-sequences/promoters.data
primary-tumor/primary-tumor.data

solar-flare/flare.datal
First attribute used as class.

undocumented/connectionist-bench/sonar/sonar.all-data
soybean/soybean-small.data
molecular-biology/splice-junction-gene-sequences/splice.data
voting-records/house-votes-84.data

wine/wine.data

zoo/zoo.data



Appendix B
Creation of Prototypes

This appendix describes how, for each one of p prototypes, the relevant fea-
tures are chosen at random in a way that guarantees that the feature difference
between the prototypes (Equation 6.1) is on average a pre-specified value D. The
use of these prototypes is described in Section 6.5.

If pi is the number of prototypes in which feature k is relevant, Equation 6.1
can also be written as:

2 a
b= p(p—1) k=1pk(p —Pk) B

where p corresponds to e in (6.1), and a is the number of features. Let:

Tre = pr(p — k) (B.2)

and let 7 be the average value of 7 for the a features. 7 is determined by the
desired value of D:

b —

p(p—1)

it ) :
= (B.3)

Next, k values of 7y such that their average is the value @ above can be obtained

from a uniform distribution in the interval [0, 27]. The corresponding pis are found

by solving (B.2) for px, which is possible in general iff:

a
D=
T 4(1-1)

r

(B.4)

This constrains the observable range of D given a and p. Finally, feature k is
included in each prototype with probability pi/p.
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Appendix C
Bayesian Averaging of RISE
Rule Sets

This appendix describes the use of Bayesian model averaging (Madigan,
Raftery, Volinsky & Hoeting, 1996) to combine the rule sets produced by parti-
tioning a database and running RISE on each partition separately (Section 7.3).

Given an individual partition, let e,,,, be the partition size, ¥ the examples
in that partition, ¢ the corresponding class labels, and h the rule set produced.
Then, by Bayes’s theorem, and assuming the examples are drawn independently:

. B Pr(h) Emazx ' -
Pr(h|Z,c) = Prz.0) E Pr(z;,ci|h) (C.1)

where the data prior Pr(Z,¢) is the same for all models, and can be ignored.

Pr(h) is the prior probability of A, and is assumed uniform (i.e., Dirichlet
with parameter a = 1). For each pair (z;,¢;) in the partition, Pr(z;,¢|h) is
computed as the probability of an example having class ¢; given that it is in the
region won by the rule that wins z;. This probability is estimated empirically from
the examples won by that rule. Let r be this rule, e, the total number of examples
it wins, and e, ., the number of examples of class ¢; that it wins. Then:

3 €r Cy
Pr(z;,cilh) = —=— (C.2)
This is analogous to the treatment in (Buntine, 1990), using the partition of the
instance space induced by the rules in the same way Buntine uses the partition
induced by a decision tree. Finally, if H is the set of all rule sets h induced from
the partitions, a test example z is assigned to the class that maximizes:

Pr(c|lz,H) = ) Pr(c|z,h) Pr(h|Z,c) (C.3)

heH

Note that each rule set is induced from a different partition, so, strictly
speaking, #, ¢ and their components should be indexed by k. This was omitted for
the sake of simplicity.
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