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When a biological population expands into new territory, genetic drift develops an enormous
influence on evolution at the propagating front. In such range expansion processes, fluctuations
in allele frequencies occur through stochastic spatial wandering of both genetic lineages and the
boundaries between genetically segregated sectors. Laboratory experiments on microbial range
expansions have shown that this stochastic wandering, transverse to the front, is superdiffusive due
to the front’s growing roughness, implying much faster loss of genetic diversity than predicted by
simple flat front diffusive models. We study the evolutionary consequences of this superdiffusive
wandering using two complementary numerical models of range expansions: the stepping stone
model, and a new interpretation of the model of directed paths in random media, in the context
of a roughening population front. Through these approaches we compute statistics for the times
since common ancestry for pairs of individuals with a given spatial separation at the front, and we
explore how environmental heterogeneities can locally suppress these superdiffusive fluctuations.

INTRODUCTION10

In evolutionary biology, changes in an allele’s frequency11

in a population are driven not only by Darwinian selec-12

tion but also by random fluctuations, the phenomenon of13

genetic drift. Selectively neutral or even deleterious alle-14

les can rise to prominence purely by chance. In many sce-15

narios an individual competes directly only with a small16

subset of the population, e.g. due to spatial proximity,17

and this small effective population size increases the in-18

fluence of genetic drift [1].19

Range expansions provide an important example:20

When a population expands spatially into new territory,21

as during species invasion or following environmental22

changes, the new territory is dominated by the descen-23

dants of a few ancestors at the expansion front. Genetic24

drift is amplified by the small effective population size at25

the front [1] – the founder effect – and by the related phe-26

nomenon of gene “surfing”, in which alleles that happen27

to be present at the front spread to high frequency in the28

newly occupied space, despite being selectively neutral29

or even deleterious [2, 3].30

Genetic drift in range expansions strongly ties fluctua-31

tions in allele frequencies to spatial fluctuations. In lab-32

oratory experiments, Hallatschek et al. [2] have shown33

that microbial range expansions develop, after a short34

demixing time, genetic sectors containing almost exclu-35

sively the descendants of a single individual. Thereafter,36

genetic drift occurs through spatial fluctuations of the37

sector boundaries, with a sector lost from the front each38

time two sector boundaries intersect. Similarly, the ge-39

nealogical ancestry tree traced backward in time from the40

front becomes a tree of space curves that fluctuate trans-41

versely to the front propagation direction and coalesce42

upon intersection [4]. (See Fig. 2.)43

The reverse-time coalescence of lineages is of central44

importance in population genetics, particularly in the45

approach known as coalescent theory [5, 6]. One of the46

key estimates of interest in coalescent theory is the ex-47

pected number of pairwise site differences Π between two48

sampled genomes, which is proportional to the expected49

time since common ancestry of the two sampled individ-50

uals, T2, under the assumption that neutral mutations51

have accumulated in the (very long) genome at a con-52

stant rate since the two lineages diverged. The relation53

Π ∝ T2 allows inferences to be made about the popu-54

lation’s recent evolutionary past from measured genomic55

differences in the present, given reliable models of geneal-56

ogy. The structured coalescent, which extends coalescent57

theory to populations with spatial structure (as opposed58

to well-mixed populations) [7], typically assumes migra-59

tion rules that produce diffusive dynamics for gene flow.60

Theoretical studies of the genealogical structure of range61

expansions have similarly assumed diffusive spatial fluc-62

tuations of genetic boundaries (as would be appropriate63

to a flat front range expansion model; see below) in the64

interests of analytical tractability [1]. Flat front models65

are equivalent to conventional stepping stone models [8]66

and many exact results are available [9].67

However, there is strong evidence that evolutionary dy-68

namics in range expansions are often driven by superdiffu-69

sive spatial wandering of both genetic sector boundaries70

and lineages. Hallatschek et al. [2] measured the mean-71
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square transverse displacement of sector boundaries in E.72

coli growing across hard agar Petri dishes, and found it73

to scale with the expansion distance y as y2ζ with wan-74

dering exponent ζ = 0.65 ± 0.05, greater than the value75

of ζ = 1/2 characterizing diffusive wandering. In both76

E. coli and the yeast species Saccharomyces cerevisiae,77

genetic lineages similarly fluctuate with wandering ex-78

ponent ζ ≈ 2/3 [4]. The same superdiffusive wandering79

exponent was found numerically for genetic lineages in80

an off-lattice model of microbial colony growth [4] and81

for sector boundaries in a two-species Eden model [1, 10].82

Consequently, the number of distinct sectors decreases as83

y−ζ , with ζ measured to be ≈ 0.67 [10], a progressively84

faster loss of genetic diversity than the y−1/2 scaling that85

would result from diffusive dynamics [1]; see Fig. 2, where86

genetically neutral strains are competing.87

The underlying cause of this superdiffusive behavior88

is that the population front profile has a characteristic89

roughness that increases with time. Because the range90

expansion causes the front to advance along its local nor-91

mal direction, stochastically generated protrusions in the92

front are self-amplifying, and the lineages and genetic sec-93

tor boundaries moving with these protrusions experience94

a faster-than-diffusive average lateral motion.95

Such roughening fronts are characterized by the96

Kardar-Parisi-Zhang (KPZ) equation [11, 12]97

∂th(x, t) = ν∇2h+ λ(∇h)2/2 + η(x, t) , (1)

where h(x, t) is the height of the front at position x and98

time t, subject to diffusion, growth in the front’s local99

normal direction, and a stochastic noise η(x, t). The front100

roughness ∆h ≡
√
〈h2〉 − 〈h〉2 initially grows with time101

as tβ , before saturating for a strip of width L as Lβ/ζ .102

The scaling exponents, β = 1/3 and ζ = 2/3 are known103

analytically in d = 1+1 dimensions [13, 14]; this value of104

the wandering exponent ζ nicely matches the measured105

value from experiments and simulations of the microor-106

ganism range expansions discussed above.107

Throughout this work, we choose the stochastic noise108

η(x, t) to be Gaussian white noise with Dirac delta corre-109

lation 〈η(x, t)η(x′, t)〉 ∝ δ(x−x′)δ(t− t′). The exponent110

β is known to be modified in the case of heavy-tailed111

noise [15], or, in higher dimensions, noise with bounded112

support [16].113

There exists a wealth of literature on the KPZ equa-114

tion and its rich universality class [17–19], including on115

the scaling behavior of structures analogous to the bac-116

terial genealogical trees in the context of ballistic deposi-117

tion [20, 21]. However, there does not yet exist a similar118

understanding of the rate statistics of coalescing space119

curves – here, lineages and genetic sector boundaries –120

whose superdiffusive wandering is driven by KPZ rough-121

ening. We term these curves “KPZ walkers” in contrast122

to diffusive random walkers. In developing a quantitative123

understanding of neutral evolution in a biological range124

expansion, we are thus led to new questions in statistical125

physics.126

In this work, we numerically investigate the genealogi-127

cal structure of populations with superdiffusive migration128

of the KPZ walker type, driven by roughening fronts.129

We are chiefly interested in how the expected time since130

common ancestry T2 for a pair of individuals depends131

on spatial separation ∆x0 at the front, as well as in132

the probability per unit time J(τ |∆x0) of lineage co-133

alescence at time τ in the past, whose first moment134 ∫∞
0
dτ τJ(τ |∆x0) equals T2(∆x0). As a first approach to135

this problem, our work focuses on neutral evolution from136

a linear inoculation, avoiding effects such as selection,137

mutualism/antagonism, and geometrical inflation [22],138

interesting topics of future study.139

We employ a complementary pair of simulation ap-140

proaches: The first, a lattice-based stepping stone model,141

introduces front roughness through stochasticity in repli-142

cation time. In our second approach, we reinterpret the143

problem of directed paths in random media (DPRM) [23],144

a simple and widely-used model from the KPZ univer-145

sality class [24–26], as a model for range expansions146

with stochastic variation in organism size. The DPRM147

approach can be simulated at large scales with much148

less computational expense than our stochastic stepping149

stone model. We also apply analytical results from the150

DPRM problem to rationalize the measured asymptotic151

coalescence behaviors. Finally, we study numerically how152

environmental heterogeneities temporarily suppress the153

wandering of KPZ walkers, an effect observed recently in154

experiment [27].155

METHODS156

The stepping stone model [8] imagines a biological pop-157

ulation arranged on a spatial lattice of individually well-158

mixed subpopulations called “demes”, each containing N159

individuals, with exchange of individuals between neigh-160

boring demes. We implement the stepping stone model161

on a triangular lattice with N = 1 individual per deme,162

which models cases in which local fixation of one allele163

occurs rapidly compared to spatial diffusion [1].164

As an initial condition, we take the lattice of demes165

in two dimensions to be unpopulated except for a lin-166

ear inoculation “homeland”. Once a deme is populated,167

its allele remains unchanged thereafter, as in the micro-168

bial experiments on agar plates, where cell divisions oc-169

cur only near the frontier, so that the spatial pattern170

of alleles is effectively frozen behind the front [2]. We171

choose as our update rule that of the Eden model [28]172

for two-dimensional growth processes: One site is cho-173

sen at random from among all occupied sites with some174

empty neighbor site, and the allele is copied from the cho-175

sen occupied site into a randomly chosen empty neighbor176

(Fig. 1a) [29]. By introducing stochasticity in the replica-177
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FIG. 1. Illlustrations of the the update rules in our numerical
models of range expansions. (a,b) The stepping stone model
with deme size N = 1 on a triangular lattice, using (a) rough
front and (b) flat front update rules. We visualize each indi-
vidual on the initial line and its descendants with a distinct
color. (c) DPRM model of range expansion. At horizontal
position x, the height of the front in the y-direction, h(x, t),
is increased by a quantity that depends on the two adjacent
heights, namely max{h(x− t, t− 1) + η, h(x+ 1, t− 1) + η′},
where η, η′ are zero-mean stochastic Gaussian white noise
terms that cause front roughness. The nearest neighbor cell
which maximizes the above relation is chosen to reproduce,
and passes on its allele label (denoted by the color), as repre-
sented by white arrows in the illustration.

tion time, this procedure generates an irregular interface178

between the occupied and empty regions (see Fig. 2a),179

simulating a rough front range expansion. By contrast,180

the expansion front remains flat (Fig. 2b) if the update181

rule fills an entire row in parallel (Fig. 1b), with each182

newly filled site inheriting the allele marker of one of its183

two filled neighbors below, chosen randomly with equal184

probability. The dynamics in Fig. 1b is equivalent to185

a one-dimensional stepping stone model in discrete time186

with deme size N = 1.187

The second model, DPRM [23], arises from the prob-188

lem of finding a minimal-energy directed path through189

a random energy landscape η(x, t). Directed paths must190

propagate in the ‘time’ direction t, but can fluctuate in191

the spatial direction x.192

We can reinterpret DPRM as an alternative model of193

range expansions with roughening fronts. In Fig. 1c, we194

illustrate that the accumulated “energy” of the directed195

path, characterized by the KPZ equation, can be mapped196

to the height of a range expansion front. In this mapping,197

the stochastic noise η corresponds to fluctuations in the198

FIG. 2. Range expansions generated by the stepping stone
model, using the (a) rough front and (b) flat front update
rules, with periodic boundary conditions in the horizontal di-
rection. The colors represent allele labels, while the black
lines mark the genetic lineages. Time runs upward in both
cases. Note that there are fewer sectors at the top (genetic
coarsening), but fewer lineages at the bottom (lineage coales-
cence). Typical coalescence rates are much larger in (a) than
in (b).

lengths of individual microbes in the direction of average199

propagation y, about a mean length `. An allele label is200

added to each site, as in the stepping stone model. The201

height of the front h(x, t) is updated according to202

h(x, t) = ` + max{h(x− t, t−1) + η, h(x+ 1, t−1) + η′},
(2)

where η, η′ are independent and identically distributed203

Gaussian white noise random variables with zero mean204

and correlations 〈η(x, t)η(x′, t)〉 = δ(x − x′)δ(t − t′) and205

likewise for η′. Each site at time t is then filled by the206

offspring of one of its nearest neighbors from time t− 1,207

and inherits the corresponding allele label. The choice208

of competing mother cells is taken to be the cell that209

optimizes the relation in Eq. 2. Each DPRM directed210

path is interpreted as a single lineage, and the set of211

optimal directed paths to all available endpoints forms212

the lineage tree.213

Thus, while replication time is constant in this model,214

front roughness is generated by stochasticity in cell size,215

with larger size favored for propagation. While we as-216

sume that the mean cell size at time of division for the217

microbe in question has already evolved to a fitness max-218

imum, variance in the cell size leads to front roughness219

and accelerated loss of genetic diversity (Fig. 3a).220

Note that if we fix η to have zero variance, and instead221

choose the mother cell at random between the left- and222

right-neighbors, we recover a flat front range expansion223

with diffusive dynamics associated with lineages and ge-224

netic boundaries (Fig. 3b). Also, if we reduce the system225

width to a single organism, the front height h(x, t) per-226
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FIG. 3. Range expansions generated by the DPRM model,
with periodic boundary conditions in the horizontal direction,
as in Fig. 2. The colors represent allele labels, while the black
lines mark the genetic lineages. In contrast to the flat front
case (b), the rough front case (a) with the same number of
generations shows a significantly faster decrease in genetic
diversity, and much larger lineage coalescence rates, similar
to Fig. 2. The noise term η is given standard deviation 0.2
for (a) and 0 for (b) to illustrate the two cases.

forms a random walk about the deterministic value `t, the227

variance growing linearly in t with slope given by the vari-228

ance in η. A dramatic experimental realization of such229

a scenario in E. coli was demonstrated by the “mother230

machine” of Wang et al. [33]: Bacteria growing and di-231

viding in narrow channels, quasi-one-dimensionally, show232

stability in growth rate over hundreds of generations.233

In both the rough front stepping stone model and the234

DPRM model, lineages and sector boundaries have su-235

perdiffusive lateral fluctuations with wandering exponent236

ζ = 2/3 [1, 10, 13, 14, 23]. For DPRM models, this be-237

havior is well-known as the transverse fluctuations of the238

minimal-energy directed path. In contrast, for the flat239

front stepping stone model and the zero-noise variant240

of DPRM, the lateral fluctuations of lineages and sector241

boundaries are merely diffusive, ζ = 1/2.242

This superdiffusive behavior has stark consequences243

for the genetic structure of the population. Comparing244

the flat front and rough front realizations for the step-245

ping stone model in Fig. 2 and for the DPRM model in246

Fig. 3, we see striking differences in both the coalescing247

lineage trees and the decay in the number of surviving248

monoclonal sectors. Genetic diversity is lost much more249

rapidly in the rough front case, and nearby individuals at250

the front are much more likely to have a common ances-251

tor in the recent past, reflecting much larger coalescence252

rates.253

Further details about the numerical implementation of254

these two methods are given in the Supporting Informa-255

tion.256

RESULTS AND DISCUSSION257

Coalescence of lineages258

Rate of coalescence J(τ |∆x0)259

For two lineages separated by ∆x0 at the front,
J(τ |∆x0) is the probability per unit time for them to
coalesce in a common ancestor at reverse time τ . In the
diffusive case, on an infinite line, this is the well-known
coalescence rate for two diffusive random walkers with
diffusion constant D [34]:

Jdiff(τ |∆x0) =
1√
8π

1

τ

(
∆x2

0

Dτ

)1/2

exp

[
−1

8

(
∆x2

0

Dτ

)]
.

(3)

As a function of the dimensionless ratio ∆x2
0/(Dτ), this260

rate behaves as a power law in the limit of large reverse261

time or small separations at the front, and as an expo-262

nential decay in the opposite limit.263

Results such as Eq. 3, valid here for flat front mod-264

els, will serve as a useful guide to our investigations265

of more complex coalescent phenomena at rough fron-266

tiers. In population genetics, systems analogous to our267

flat front models also arise in the continuum limit of one-268

dimensional Kimura-Weiss stepping stone models [8]. As269

reviewed in Ref. [1], many exact results for quantities270

such as the heterozygosity correlation function and coa-271

lescent times are available [35–38]. The x-coordinate of272

stepping stone models represents the horizontal axis of273

flat front simulations such as those displayed in Fig. 2b274

and 3b, while its time coordinate maps on to the y-275

axis. Nullmeier and Hallatschek have used a stepping276

stone model to study how coalescent times change in 1-277

dimensional populations when one boundary of a hab-278

itable domain moves in a linear fashion due to, say, a279

changing climate [39].280

Results from this later investigation could thus be rein-281

terpreted as applicable to a two-dimensional range ex-282

pansion in a trapezoidal domain, in the flat front ap-283

proximation with diffusive genetic boundaries.284

For superdiffusive lineages, however, the full expres-285

sion for J(τ |∆x0) is not known. We focus instead on286

its asymptotic behaviors using predictions from DPRM287

and intuition gained from the diffusive case. For lattice288

models like those in Fig. 1, it will be convenient to mea-289

sure distances ∆x0 in units of the space-like direction x,290

and τ in units of the fundamental step in the time-like291

direction, which amounts to scaling out the analog of the292

diffusion constant in Eq. 3. We expect on theoretical293

grounds that J depends on ∆x0 only through the com-294

bination ∆x0/τ
ζ , with exponent ζ = 2/3 as opposed to295

ζ = 1/2 in the diffusive case. (The coefficient making296

this combination dimensionless, analogous to D, will be297

system-specific and is suppressed in our notation.)298
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First, we consider the regime τ/∆x
3/2
0 � 1, repre-299

senting rare coalescence events where lineages located far300

apart at the front can be traced back to a recent com-301

mon ancestor. For the analogous regime of τ/∆x2
0 � 1302

in the diffusive case, the coalescence rate behaves as303

Jdiff(τ |∆x0) ∼ exp[−(∆x0/τ
1/2)2]. We hypothesize a304

similar decay for the superdiffusive case, as305

J(τ |∆x0) ∼ exp

(
−
(

∆x0

τ2/3

)γ′)
= exp

(
−

(
τ

∆x
3/2
0

)γ)
(4)

for some exponent γ = − 2
3γ
′. In Fig. 4, we plot306

− ln[∆x
3/2
0 J(τ |∆x0)] vs. τ/∆x

3/2
0 for both the stepping307

stone model and DPRM on a log-log scale, so that Eq. 4308

predicts a linear plot with slope γ. At small τ/∆x
3/2
0 ,309

both sets of data appear linear, confirming the above hy-310

pothesized form. The slopes in the linear regime provide311

estimates of γ = −1.96±0.03 for DPRM and −1.93±0.02312

for the stepping stone model.313

In fact, we can analytically derive this exponential
form, including the value of γ, using the known distri-
bution of directed path endpoints in DPRM [32], in the

regime τ/∆x
3/2
0 � 1. The calculation, given in the Sup-

porting Information, shows that

J(τ |∆x0) ∼ 1

τ

(
∆x0

τ2/3

)1/2

exp

(
− c

4

(
∆x0

τ2/3

)3
)
, (5)

where c is a constant of order unity. For τ/∆x
3/2
0 �314

1, the leading asymptotic behavior of J(τ |∆x0) ∼315

exp(− 1
4c(∆x0/τ

2/3)3) thus corresponds to γ′ = 3, γ =316

−2. From the numerical results in Fig. 4, we see from317

DPRM that γ ≈ −1.96± 0.03, and from the rough front318

stepping stone model we compute γ ≈ −1.93±0.02. Both319

numerical results are in good agreement with the analyt-320

ically derived prediction.321

In the opposite regime of τ/∆x
3/2
0 � 1, we can322

again hypothesize a form for J in analogy with the323

diffusive case, for which Eq. 3 shows Jdiff(τ |∆x0) ∼324

τ−1(∆x0/τ
1/2). For KPZ walkers, the analogous form325

is326

J(τ |∆x0) ∼ 1

τ

(
∆x0

τ2/3

)α′

=
1

∆x
3/2
0

(
τ

∆x
3/2
0

)α
, (6)

for some exponent α = −(1+ 2
3α
′). Although the expres-327

sion in Eq. 5 is consistent with this form, that result is328

obtained by assuming the two KPZ walkers to be inde-329

pendent (valid at small τ/∆x
3/2
0 ), so there is no reason330

to expect the apparent value of α′ = 1/2, α = −4/3 to331

hold for τ/∆x
3/2
0 � 1.332

The rate of coalescence for the two computational ap-333

proaches in this regime is plotted in Fig. 5. The asymp-334

totic behavior is consistent with the hypothesized power-335

law decay. The exponent α is determined numerically to336

FIG. 4. Log-log plot of − ln[∆x
3/2
0 J(τ |∆x0)] vs. the KPZ-

rescaled variable τ/∆x
3/2
0 for lineages in the stepping stone

model and for DPRM. Here, we focus on the regime ∆x0 � L,
to avoid finite size effects associated with periodic boundary

conditions. Asymptotically for τ/∆x
3/2
0 � 1, the relationship

is linear, indicating an exponential form for J(τ |x0). The
fitted slopes are −1.93± 0.02 for stepping stone, and −1.96±
0.03 for DPRM, providing measurements of γ as defined in
Eq. 4. (For comparison, the DPRM theory predicts a slope
of −2.)

FIG. 5. Log-log plot of ∆x
3/2
0 J(τ |∆x0) vs. the KPZ-rescaled

variable τ/∆x
3/2
0 for lineages in the stepping stone model and

for DPRM. For τ/∆x
3/2
0 � 1, the exponent of the power-law

decay (Eq. 6) is extracted from a linear fit to the numeri-
cal data, yielding α = −1.62 ± 0.03 for stepping stone, and
α = −1.65 ± 0.01 for DPRM. As in Fig. 4, we work in the
limit ∆x0 � L to avoid effects due to periodic boundary con-
ditions.

be α = −1.62 ± 0.03 for the stepping stone model, and337

α = −1.65± 0.01 for DPRM, giving good agreement be-338

tween the two models. Furthermore, these values do not339

rule out the possibility that α = −5/3, α′ = 1, which340

would give the noteworthy conclusion that J(τ |∆x0) is341

linear in the separation ∆x0, just as in the diffusive case.342
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Expected time to coalescence T2343

For a range expansion that has proceeded for a time344

tmax after a linear inoculation, if two lineages separated345

by ∆x0 share a common ancestor on the initial line, we346

can calculate their expected time to coalescence (time347

since common ancestry) as348

T2(∆x0, tmax) ≡
∫ tmax

0
dτ τJ(τ |∆x0)∫ tmax

0
dτ J(τ |∆x0)

. (7)

Note that the denominator represents normalization by349

the probability that the two lineages do indeed coalesce.350

In the case of diffusive lineages, Eq. 3 leads to an an-351

alytic expression for T2,352

T2,diff(∆x0, tmax)

tmax
=

(
∆x2

0

8Dtmax

)
Γ
[
−1/2,∆x2

0/8Dtmax

]
Γ [1/2,∆x2

0/8Dtmax]
,

(8)
where Γ(x, y) is the incomplete gamma function. In353

Fig. 6 we compare the numerical T2 data for KPZ walkers354

in the rough front stepping stone model with the analyti-355

cal prediction from the diffusive case under the same con-356

ditions. For large ∆x0, in principle T2 approaches tmax;357

our data do not show this saturation because lineage coa-358

lescence events at τ ≈ tmax are so rare that the statistics359

become poor as ∆x0 approaches tmax. The behavior for360

small ∆x0 is controlled by the scaling in Eq. 6: an ap-361

proximately linear scaling leading to T2 ∼ ∆x0t
1−ζ
max. We362

see that lineages with the same separation ∆x0 coalesce363

much faster on average when they behave as KPZ walk-364

ers, and that this difference becomes more pronounced365

for large tmax, as is evident qualitatively from Figs. 2366

and 3. The scaling of T2 for KPZ walkers can be writ-367

ten in a form analogous to Eq. 8, and reflects the KPZ368

transverse scalings inherent in the system (see Support-369

ing Information).370

In biological terms, common ancestry is expected to371

be more recent with rough front dynamics than under372

diffusive dynamics. As a result, assuming a constant rate373

of neutral mutations, the number of differences Π(∆x0)374

between pairs of two sampled genomes at the front is375

expected to increase more slowly with separation ∆x0376

along the front. This anomaly arises because we expect377

the habitat to be populated by the offspring of a small378

number of common ancestors, which decays as t−2/3 for379

KPZ walkers, rather than the t−1/2 decay characterizing380

diffusive random walkers, where t is the time since the381

initial inoculation.382

Environmental Heterogeneities383

The presence of environmental heterogeneities in the384

habitat can have a significant impact on a range expan-385

sion, including on the front shape and propagation speed,386

FIG. 6. Average time T2 since common ancestry for pairs of
individuals with some common ancestor and with separation
∆x0 � L at the front, and for a range of system expan-
sion times tmax. Solid lines represent numerical data for KPZ
walkers in the stepping stone model, and dashed lines repre-
sent analytical predictions for diffusive walkers with the same
parameters. The plateau values are simply tmax.

and on the genetic diversity at the front. A prototypical387

example of environmental heterogeneity is the obstacle,388

a nutrient-depleted zone, that the population must grow389

around rather than through. As we show here, two dif-390

ferent types of KPZ fluctuations come into play when an391

obstacle is present.392

Range expansions around an obstacle were studied ex-393

perimentally and via simple geometrical optics ideas by394

Möbius et al. [27] (see also [40]). A notable feature of395

the experimental (and numerical) results from Ref. [27] is396

that the sector boundary which forms at the apex of the397

obstacle shows suppressed transverse fluctuations com-398

pared to all other sector boundaries. As the front prop-399

agates past the obstacle, a component of its velocity is400

directed inward from both sides. This in effect pins the401

sector boundary to the middle, at a kink in the front,402

and suppresses this sector boundary’s fluctuations.403

While we have considered only fluctuations of lineages404

until now, the fluctuations of sector boundaries are inex-405

tricably related, as a lineage necessarily remains inside406

a single sector. Since the lineage fluctuations grow in407

reverse time as τ ζ , their coalescence causes the number408

of distinct lineages to decay as τ−ζ . Thus for a front at409

time t, the number of roots that the lineage tree has in410

the initial population decays as t−ζ . As this number of411

roots equals the number of sectors, the sector boundaries412

must fluctuate in forward time as tζ .413

Here, we study the suppression of sector boundary fluc-414

tuations by obstacles in greater detail using the stepping415

stone model with a rough front. A gap of width wgap416

of unoccupied sites is left in the initially populated line,417

providing a simplified representation of a range expan-418

sion past an obstacle of such width, or the result of an419
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(a) (b)

FIG. 7. Geometries of the sector boundary between two al-
leles (labeled red and green). The initial inoculations are
marked by dashed lines. (a) Illustration of the gap geome-
try: A segment of width wgap is left unpopulated initially,
separating the two alleles which grow from an otherwise flat
initial condition. The width wgap could represent, say, the
width of a square obstacle that terminates at time t = 0, or
the size of an interval along the horizontal x-direction where
all organisms are removed by an environmental trauma. (b)
Illustration of the wedge geometry: The initial population oc-
cupies two triangular regions whose growth fronts meet at a
wedge angle θ. In both systems, the two alleles meet at a sin-
gle sector boundary, along which fluctuations are suppressed.
The front of the range expansion is illustrated for a series of
equally spaced time values t, with lighter shades representing
later times.

environmental trauma (Fig. 7a). By considering only two420

“alleles” (colors), we can track the wandering of the sin-421

gle sector boundary that forms approximately above the422

center of the obstacle. We examine only times sufficiently423

early that the system’s finite width cannot affect the sec-424

tor boundary (see Supporting Information). As shown425

in Fig. 8a, the effective wandering exponent ζ is sup-426

pressed from the usual value of 2/3, to ζ ≈ 1/3 for times427

vt . wgap, where v is the average front velocity. At later428

times, as the kink in the front heals and the average front429

normals return to the vertical, ζ recovers the expected430

value of 2/3 for KPZ genetic boundaries. Notably, the431

effective ζ appears to exceed 2/3 in an intermediate tran-432

sitory regime when vt ≈ wgap.433

To gain further insight into this changing wander-434

ing exponent, we modify the numerical experiment to435

a wedge geometry (Fig. 7b). This allows us to fix the436

kink angle θ to be a constant value, as opposed to the437

gap geometry where the kink heals from some initial θ0438

toward π with increasing time. Now, the stepping stone439440

model with deme size of 1 is, in essence, identical to the441

Eden model on a triangular lattice, with the added com-442

plication of tracking different genotypes. The boundary443

between two Eden clusters meeting at an angle θ has444

previously been studied [41]. The transverse fluctuations445

scale as tζ , where t is the simulation time, and the wan-446

dering exponent ζ was conjectured to be447

ζ(θ) =

 1/3, θ < π,
2/3, θ = π,
1, θ > π.

(9)

The value θ = π corresponds to two Eden clusters grow-448

ing side by side with flat initial conditions, in which case449

one recovers the KPZ value of ζ = 2/3 as expected.450

The regime θ < π is of relevance to range expansions451

with obstacles. Heuristically, the sector boundary be-452

comes pinned by the two Eden clusters growing into each453

other, and the usual KPZ transverse fluctuations are sup-454

pressed. Instead, the fluctuations which dominate are455

those of the propagating fronts themselves, which scale456

with the KPZ growth exponent β = 1/3 rather than the457

wandering exponent ζ = 2/3.458

The original simulations which led to the estimates in459

Eq. 9 sampled only 3 points in the range θ < π, namely460

θ = π/3, π/2, and 2π/3 [41]. We expand on this previous461

work by fitting to an effective ζ(θ) for many more values462

of θ.463

The results plotted in Fig. 8b indicate a smooth464

crossover between ζ = 1/3 and ζ = 2/3 as θ increases465

from 0 to π. A heuristic explanation for this change in ζ466

is given in the Supporting Information. The results from467

the wedge geometry are qualitatively consistent with the468

ζ values measured from the “gap geometry” (Fig. 8a). As469

the range expansion propagates around an obstacle, the470

fronts from either side meet at some angle θ0 < π, which471

can be predicted by a deterministic model of constant-472

speed propagation for wavefronts in the same geometry,473

inspired by geometrical optics [27]. The incident angle474

increases up to θ = π as the kink in the front heals.475

Therefore, for the sector boundary formed after the ob-476

stacle, we expect the wandering exponent to initially take477

some value ζ < 2/3, and then slowly recover to ζ = 2/3.478

The kink has healed when the fluctuations of the front479

(perpendicular to the direction of propagation) are com-480

parable to the size of the dip.481

CONCLUSION AND OUTLOOK482

The propagating front of a range expansion is expected483

to roughen over time, and in this work we have connected484

the population genetics of such range expansions with485

new calculations in statistical physics models from the486

KPZ universality class. We have shown, through both487

DPRM calculations and a stepping stone model with488

rough fronts, that the superdiffusive “KPZ walkers” de-489

scribing genetic lineages have coalescence statistics whose490

limiting behaviors are qualitatively, but not at all quan-491

titatively, similar to those of coalescing diffusive random492

walkers. In the limit of large separation or small time493

in the past, the coalescence rate for KPZ walkers de-494

cays as J ∼ exp[−(τ/∆x
3/2
0 )−2], in contrast to the scal-495
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FIG. 8. (a) Log-log plot of fluctuations of the sector bound-

ary 〈∆x2〉1/2 vs. vertical distance along the sector boundary
vt in the gap geometry for a range of gap sizes wgap. Fits
to a power law scaling form 〈∆x2〉1/2 ∼ tζ yield exponents
varying from ζ ≈ 1/3 to ζ ≈ 2/3, with a crossover region
in between. Inset: Data collapse after rescaling with respect
to wgap. By geometrical arguments, vt/wgap, where v is the
average front speed, is a measure of the angle of incidence of
the fronts as determined by a constant speed or “geometri-
cal optics” model. We see a reasonably good collapse across
many different gap sizes, with ζ ≈ 1/3 for vt/wgap < 1, and
ζ ≈ 2/3 for vt/wgap > 1. (b) Wandering exponent ζ as a
function of the angle of incidence θ in the wedge geometry.
As θ increases from 0 to π, the wandering exponent increases
smoothly from approximately ζ = 1/3 (marked by the dashed
line) to the KPZ value of ζ = 2/3.

ing Jdiff ∼ exp[−(τ/∆x2
0)−1] for the diffusive case in the496

same limit.497

In the opposite limit of small separation or large498

time in the past, we find that J varies algebraically as499

τ−1(∆x0/τ
2/3)α

′
with α′ ≈ 1, whereas diffusive ran-500

dom walkers coalesce according to the form Jdiff ∼501

τ−1(∆x0/τ
1/2).502

From these numerically measured coalescence rates, we503

have calculated the expected time T2 since common an-504

cestry for pairs of individuals as a function of their spatial505

separation, an important quantity in population genet-506

ics. The superdiffusive wandering of lineages suppresses507

T2 significantly compared to estimates based on diffu-508

sive dynamics. Our results go beyond the known scaling509

difference between diffusive and KPZ lineages and ge-510

netic boundaries, and provide quantitative information511

about how front roughness leads to more recent, and512

fewer, common ancestors for the “pioneers” comprising513

the front.514

We have also used the stepping stone model to ex-515

plain how environmental heterogeneities can alter this516

superdiffusive dynamics, even leading to time regimes517

with subdiffusive dynamics. Our results explain the sup-518

pressed fluctuations of genetic sector boundaries behind519

an obstacle observed in recent experimental work, and520

connect them with prior numerical work on Eden model521

growth. The effect of obstacles can be viewed as a compe-522

tition between the usual roughening of the front, which523

favors the KPZ wandering exponent ζ = 2/3, and the524

collision of two segments of the front propagating around525

either side of the obstacle, which suppresses ζ toward the526

value of the front roughness exponent β = 1/3.527

Going forward, our calculations of J and T2 for KPZ528

walkers in a totally uniform environment will be valu-529

able as a standard against which deviations can be mea-530

sured, to reveal the effects of various realistic complica-531

tions. These complications include end effects from habi-532

tat boundaries [9, 39], selectively advantageous or delete-533

rious mutations, mutualism or antagonism between sub-534

populations [42], geometrical inflationary effects in radial535

expansions [22], and more complex heterogeneities in the536

environment [27].537

On the latter topic, we have made headway here by538

studying a simplified representation of an obstacle as a539

prototypical environmental heterogeneity, which already540

illustrates the subtle issue of locally suppressed fluctu-541

ations. It will be interesting to extend this analysis of542

Eden model growth to situations with multiple obstacles,543

and with other types of heterogeneities such as nutrient544

“hotspots” [40] and uneven topography [43]. The dynam-545

ics can also be made more sophisticated by increasing the546

number of organisms per deme above N = 1, and rein-547

troducing aspects of the original stepping stone model’s548

migration dynamics between neighboring demes [8].549

From the perspective of statistical physics, range ex-550

pansions provide not only an experimental testing ground551

for the predictions of KPZ scaling, but also an incentive552

to introduce and explore variants of rough growth. For553

example, the coalescing domain boundaries in Figs. 2 and554

3 qualitatively resemble coarsening of domains in a multi-555

component growth process [44], and should be quantita-556

tively described by the coupling of directed percolation557

(of genetic domains) to the rough interface [45].558

Finally, our results have drawn upon connections be-559

tween two quite different processes in the KPZ univer-560

sality class, the rough front stepping stone model and561

DPRM, to obtain quantitative insights about biological562

experiments that can be realized in the laboratory. We563

hope that this work will inspire future investigations to564

seek other useful links between disparate model systems565

that shed light on the evolutionary dynamics of rough566
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front range expansions, a problem with much fertile ter-567

ritory.568
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FIG. S.1. Schematic of DPRM on a square lattice with on-
site random “energies” η(x, t). As illustrated in Fig. 1c of
the main text, the η(x, t) variables represent fluctuations in
the cell size from generation to generation, and at different
points along the x-axis. The path x(t) propagates on average
in the t-direction, but is allowed to wander in the x-direction
in order to minimize the sum of random energies along the
path.

SUPPORTING INFORMATION672

Details of numerical approaches673

The stepping stone simulations (see, e.g., Fig. 1a) use674

a system width of L = 2000 sites, and are evolved until675

the front has advanced a height h = 1000 sites. Re-676

sults are taken from ensembles of 5000 realizations. The677

same parameters are used in the gap geometry simula-678

tion ensemble. For the wedge geometry, results are taken679

from ensembles of 8192 realizations with system width of680

L = 100 sites. Periodic boundary conditions are used in681

the direction transverse to the mean front propagation.682

However, in the gap and wedge geometry simulations,683

hard-wall boundary conditions are used, so that there is684

only one genetic sector boundary (instead of two), where685

the red sector meets the green sector.686

We simulate the DPRM (directed polymers in random687

media) problem on a square lattice rotated at 45◦ to the688

x, t axes (see Fig. S.1), and optimize over paths from689

the origin to any site (x, t) using the transfer matrix690

method [23]. The simulated system has width along the691

x-direction L = 216, is evolved over tmax = 104 time692

steps, and is averaged over 210 realizations. We use pe-693

riodic boundary conditions in the x direction transverse694

to the front propagation.695

In order to avoid finite size effects, we keep the system696

width L at least twice as large as the maximum time697

tmax, so that no lineage or sector boundary can wind698

completely (or even halfway) across the system.699

Analytical derivation of the coalescence rate for700

DPRM701

Here we derive the form of the lineage coalescence rate702

in rough front range expansions/DPRM, Eq. 5, using the703

DPRM endpoint distribution obtained in Ref. [32].704

Consider two directed paths x1(τ) and x2(τ) starting705

from x1(0) = 0 and x2(0) = ∆x0 > 0 at τ = 0. At a later706

time τ , for τ/∆x
3/2
0 � 1, the spatial fluctuations for each707

path are small compared to their initial separation ∆x0,708

and we can consider the two paths to be independent.709

More specifically, setting x̃ = x/τ2/3, we can take the710

rescaled x̃1 and x̃2 to be i.i.d. random variables drawn711

from the asymptotic DPRM endpoint distribution fend712

obtained in [32]. The probability distribution f21 for the713

random variable x̃ = x̃2 − x̃1 is then obtained from the714

convolution of the individual endpoint distributions, as715

f21(x̃) =

∫ ∞
−∞

fend(ỹ)fend(ỹ − (∆x̃0 − x̃)) dỹ. (S.1)

For ∆x̃0 � 1, we are interested in the tails of the716

fend distribution, which are known to decay as fend(z) ∼717

exp(−cz3) with c a system-specific constant [32]. This718

allows us to estimate the integral in Eq. S.1 using the719

saddle point method. The maximum of the exponent720

g(ỹ) = c|ỹ|3+c|ỹ−(∆x̃0−x̃)|3 occurs at ỹ∗ = (∆x̃0−x̃)/2,721

yielding722

f21(x̃) ∼ exp(−g(ỹ∗))√
g′′(ỹ∗)

∼ 1√
x̃0 − x̃

exp
(
− c

4
(∆x̃0 − x̃)3

)
.

The coalescence events are represented by x̃ < 0, re-
sulting in the cumulative coalescence probability

C(∆x̃0) =

∫ 0

−∞
f21(x̃)dx̃ ∼ Γ

(
1

6
,
c∆x̃3

0

4

)
.

where Γ(x, y) is the incomplete gamma function. After
properly normalizing and differentiating with respect to
τ , we obtain the rate of coalescence displayed in Eq. 5,

J(τ |∆x0) ∼ 1

τ

(
∆x

3/2
0

τ

)1/3

exp

(
−c∆x

3
0

4τ2

)
.

723

724

Scaling of expected time to coalesce T2725

Analogous to the diffusive case given by Eq. 8, the726

expected time to coalesce T2 for KPZ walkers can be727

written in the form728

T2,KPZ(∆x0, tmax)

tmax
∝ f

(
∆x

3/2
0

tmax

)
, (S.2)

where f is some scaling function which depends only on729

the combination ∆x
3/2
0 /t, thus reflecting the KPZ wan-730

dering. To make this scaling relation evident, we plot a731

high quality collapse of the data from Fig. 6 in Fig. S.2.732

Boundary fluctuations in the wedge geometry733

Here we present a heuristic justification of the smooth734

increase in the wandering exponent ζ from 1/3 to 2/3 in735

the wedge geometry, as the wedge angle θ is increased736

from 0 to π.737
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FIG. S.2. Expected time to coalesce T2 for KPZ lineages with
initial separation ∆x0, collapsed with respect to the trans-

verse scaling ∆x0 ∼ t2/3max. The lineages are taken from rough
front stepping stone simulations of size tmax = 100 to 1000.

Consider a wedge of opening angle θ, with two dis-738

tinct genotypes inoculated at its edges. In the case of739

flat front growth with velocity u, the advancing fronts740

meet at a tip which zips away from the initial apex as741

y(t) = ut/ sin(θ/2). With rough front growth the sec-742

tor boundary is no longer straight but meanders as the743

intersection of the advancing fronts is no longer deter-744

ministic. At a time t, fluctuations of the front position745

are governed by KPZ scaling, growing as t1/3. While on746

average the time for the tip to move a distance y be-747

haves as y sin(θ/2)/u, the fluctuations in this time scale748

as [y sin(θ/2)/u]1/3.749

The geometry is sketched in Fig. S.3. Height fluctu-
ations δhL, δhR push the advancing tip of the sector
boundary – the intersection of the black dashed lines –
away from x = 0, which is the zero-noise result illus-
trated by the intersection of the fainter blue dotted lines.
From Fig. S.3, we can solve for the intersection point
(x(t), y(t)) representing the advancing tip:

x(t) = −sL sin(θ/2) + hL cos(θ/2)

= sR sin(θ/2)− hR cos(θ/2)

y(t) = sL cos(θ/2) + hL sin(θ/2)

= sR cos(θ/2) + hR sin(θ/2)

The height fluctuations δhL, δhR can thus be expressed
in terms of the resulting displacements δx, δy of the tip,

as

δhL = δx cos(θ/2) + δy sin(θ/2),

δhR = −δx cos(θ/2) + δy sin(θ/2),

from which we obtain

δx =
δhL − δhR
2 cos(θ/2)

.

FIG. S.3. Illustration of fluctuations in the wedge geometry
with opening angle θ. The red (left) and green (right) sectors
meet at a sector boundary whose advancing tip, the intersec-
tion of the two dashed black lines, is pushed away from x = 0
by fluctuations in the front propagation heights hL, hR, which
grow as t1/3. The fainter blue dotted lines illustrate the zero-
noise case (flat front). Coordinates sL and sR are defined to
be orthogonal to hL and hR, respectively.

Both δhL and δhR scale as ut1/3, which at a given y value750

is u[y sin(θ/2)/u]1/3. Therefore, the fluctuations in x(t)751

for a given y-value of the tip vary as752

δx ∝ u

cos(θ/2)

(
y sin(θ/2)

u

)1/3

.

While the meandering exponent remains as ζ = 1/3,753

the overall amplitude increases with θ, diverging as the754

wedge opens up to a single flat edge for θ → π. In that755

limit, the transverse fluctuations δx scale as t2/3.756

757

758




