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ARTICLE

Evolution of gene knockout strains of E. coli reveal
regulatory architectures governed by metabolism
Douglas McCloskey1,2, Sibei Xu1, Troy E. Sandberg 1, Elizabeth Brunk1, Ying Hefner1, Richard Szubin1,

Adam M. Feist 1,2 & Bernhard O. Palsson 1,2

Biological regulatory network architectures are multi-scale in their function and can adap-

tively acquire new functions. Gene knockout (KO) experiments provide an established

experimental approach not just for studying gene function, but also for unraveling regulatory

networks in which a gene and its gene product are involved. Here we study the regulatory

architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE)

to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema

describing the process of adaptation whereby perturbations in metabolite concentrations lead

regulatory networks to produce suboptimal states, whose function is subsequently altered

and re-optimized through acquisition of mutations during ALE. These results indicate that

metabolite levels, through metabolite-transcription factor interactions, have a dominant role

in determining the function of a multi-scale regulatory architecture that has been molded by

evolution.
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B iological response to gene loss can be evaluated on multiple
time-scales. The immediate response to genetic perturba-
tion is studied by measuring an organism’s phenotypic

response to a gene knockout (KO)1–4. For example, entire KO
strain collections have been generated and used to define essential
genes5–8. Besides assessing gene function, gene knockouts can be
studied at the systems level through the integration of multi-
omics data sets (i.e., metabolomics, fluxomics or network reaction
rates, proteomics, and transcriptomics) to better understand the
regulatory architecture that relies on the gene product. For
example, it has been found that perturbations to the metabolic
network are rapidly compensated for by flux re-routing caused by
adjustments made at the regulatory level that re-tune enzyme
level1, 9. Specifically, these studies found that regulatory changes
(and in particular, changes in metabolite levels) occurred in
proximity to the network lesion that a gene KO created. However,
the extent to which distant regulatory changes relative to the
location of the network lesion occurred was not discussed1, 9. In
addition, the adaptive consequences of gene loss were not
investigated.

The adaptive response to genetic perturbation is studied by
measuring changes in physiological function after perturbation
and during adaptation10–12, and then characterizing the muta-
tions that are required for the organism to regain the ability to
grow optimally under the given conditions13–26. For example, it
has been shown in bacteria and yeast that the likelihood of
accumulating compensatory mutations is a function of the fitness
cost of the KO22–24. Importantly, compensatory mutations often
require the rewiring of existing regulatory networks to regain
fitness, thus revealing the role of the lost gene in the regulatory
architecture of the biological system26. Despite the potential to
reveal novel insights into the regulatory architecture, to the best
of our knowledge, a comprehensive systematic study looking at
the rewiring of the regulatory network in response to gene loss
has not been performed.

Previous work implemented a novel experimental design that
involved gene knockouts (KOs) and adaptive laboratory evolution
(ALE) in a pre-evolved Escherichia coli K-12 MG1655 strain
(Fig. 1) to reveal detailed and mechanistic KO-specific adaptive
responses to the loss of a gene27–30. Here, bioinformatics were
implemented to reveal commonalities of how biological systems
and specifically regulatory networks respond and adapt to gene
KO at a systems level. First, the experimental design was con-
firmed through control evolutions of the pre-evolved strain.
Second, multivariate statistical data decomposition methods
found that the dominant modes of the data involved the drive
towards regaining optimal fitness, while independent replicate
evolutions revealed diversity in the adaptive paths selected in
pursuit of optimal fitness. In this context, “optimal” indicates the
biochemical state that allows for the maximal growth rate that the
organism can achieve given the current environmental and
genetic conditions. Third, biochemical pathway integration with
multi-omic data sets revealed a common model of adaptive
evolution. In this schema, network perturbation from gene KO
altered metabolic flux, leading to perturbations in metabolite
concentrations, which in turn triggered regulatory network
responses altering gene expression. Gene expression responses
were subsequently modified through mutations selected for dur-
ing adaptation that improved fitness via ameliorated metabolic
flux.

Results
Evolution experiment implementation. A wild-type E. coli K-12
MG1655 strain previously evolved under glucose minimal media
at 37 °C31 (denoted as “Ref”) was used as the starting strain in

order to isolate biological changes caused by adaption to the loss
of a gene product from those caused by adaption to the growth
conditions of the experiment (Fig. 1e). Ref was a non-mutator
strain and had the fewest number of mutations among the
replicate adaptive laboratory evolution (ALE) endpoints
generated.

Perturbations consisting of five separate metabolic gene KOs
that were predicted to result in large metabolic rearrangements
based on computational metabolic network analysis (see
Methods, Supplementary Data 1) were implemented in Ref.
Genes (see Methods) encoding enzymes for the reactions of
GND (gnd, 6-phosphogluconate dehydrogenase), GLCptspp
(genes ptsH, ptsI, and crr corresponding to enzymes HPr, EI,
and EIIA, respectively), SUCDi (genes sucA, sucB, sucC, and
sucD corresponding to the enzyme succinate dehydrogenase),
TPI (tpiA, triosphosphate isomerase), and PGI (pgi, phospho-
glucose isomerase) were removed to generate strains uGnd,
uPtsHIcrr, uSdhCB, uTpiA, and uPgi, respectively (denoted
“unevolved knockout strains” or “uKO”). GND generates D-
ribulose-5-phosphate (ru5p-D), which is used in nucleotide
biosynthesis, and re-charges NADPH, which is used for
biosynthesis, in the final step of the oxidative Pentose
Phosphate Pathway (oxPPP). ptsH, ptsI, and crr are primary
components of the phosphotransferase system (PTS), which is
the primary route for carbon import in E. coli, and aids in
conserving energy by utilizing phosphoenolpyruvate (pep) to
phosphorylate glucose instead of ATP. SUCDi couples the
TCA cycle to respiration by charging and donating quinones to
the electron transport chain (ETC) via Complex II. TPI avoids
bifurcation of lower glycolysis by isomerizing dihydroxyace-
tone phosphate (dhap) to glyceraldehyde-3-phosphate (g3p)
for subsequent enzymatic convert to pyruvate (pyr) via upper
glycolysis. PGI converts glucose 6-phosphate (g6p) to fructose
6-phosphate (f6p) in the first committed step through upper
glycolysis, thus controlling the flux split between the oxPPP
and upper glycolysis.

Replicates of the five knockout strains, as well as Ref, were
simultaneously evolved on glucose minimal media at 37 °C in an
automated ALE platform31, 32 denoted “evolved knockout strains”
or “eKOi” where i denotes the replicate number. The number of
replicate endpoints were the following: 2 for “evolved reference
strain” (denoted eRef), 3 for eGnd, 4 for ePtsHIcrr, 3 for eSdhCB,
4 for eTpiA, and 8 for ePgi. Intracellular metabolite levels, gene
expression levels, flux levels, and mutations (i.e., system
components) were measured for the ref, uKO, and eKO strains
during exponential growth. Intracellular metabolite levels con-
sisted of close to 100 absolute and relative quantitative amounts
of metabolites from glycolysis, the pentose phosphate pathway,
the TCA cycle, energy and redox metabolism, cofactors,
nucleotide metabolism, and amino acid metabolism33, 34. Gene
expression levels consisted of relative fold changes from global
RNA sequencing. Flux levels consisted of absolute intracellular
flux values computed by metabolic flux analysis (MFA) using a
genome-scale model from 13C isotope-labeling experiments35, 36.
Mutations consisted of DNA resequencing mapped onto the
reference E. coli K-12 MG1655 genome.

Reference strain evolution confirmed the experimental design.
An insignificant fitness change and the fewest number of net-
work changes were found in eRef strains compared to all eKO
strains (Fig. 1e). The average numbers of significant component
changes per eRef replicate at the metabolite, transcript, and flux
levels were 2.0 ± 0.0, 35.0 ± 5.7, and 0.0 ± 0.0 (ave ± stdev, n=
2), respectively. These changes in systems components were far
fewer than in any of the other eKO strains, where the minimum
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number of corresponding changes were 19, 341, and 158 (the
average number of corresponding changes were 27.7 ± 7.7,
1051.6 ± 513.7, and 307.9 ± 123.2 (ave ± stdev, n= 24)). The
average number of mutations per eRef replicate was also the
lowest of all lineages, and were primarily found in cell wall
biosynthesis genes. The average number of mutations per eRef
was 6.5 ± 0.7, while the average number of mutations per
all other eKO strains was 12.8 ± 4.5 (ave ± stdev).
Overall, these findings demonstrated that the use of a pre-
evolved strain minimized the number of confounding
component changes.

Evolution to optimal fitness was captured by the data. Multi-
variate statistical analysis was performed on the data sets gener-
ated. Partial least squares discriminatory analysis (PLS-DA)
revealed that the primary adaptive response to the gene KO
involved a drive towards recovery of the optimal state (i.e., system
re-optimization), followed by a secondary adaptive response that
described unique alternate states that could be found at the newly
evolved state. For almost all cases analyzed, the first most
explanatory mode of PLS-DA (Fig. 2) separated Ref and eKO
strains from the uKO strain (74% of eKOs from all data types and
lineages, see Methods). This result indicated that the primary
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Fig. 1 Evolution of knockout (KO) strains from a pre-evolved (i.e., optimized) wild-type strain. a Experimental design using adaptive laboratory evolution
(ALE) and enzyme knockouts to investigate system re-optimization following major metabolic perturbations. b An isolated wild-type (wt) E. coli (MG1655
K-12) previously evolved on glucose minimal media at 37 °C31 was used as the starting strain for knockouts of key metabolic genes and subsequent re-
evolution, or systems re-optimization. c Reactions disabled by the enzyme knockouts included the phosphotransferase sugar import system (ptsHIcrr),
phosphoglucose isomerase (pgi), 6-phosphogluconate dehydrogenase (gnd), triophosphate isomerase (tpi), and succinate dehydrogenase complex
(sdhCB). d Adaptive laboratory evolution trajectories of the initial reference knockout and evolved knockout lineages. e Counts of significantly different
system components found for each evolved knockout relative to the unevolved knockout. Counts of metabolomic, transcriptomic, and fluxomic data are
given as the average and standard deviation of the percent of significant features compared to all features measured for the lineage; counts for mutations
are given as the average and standard deviation of the number of significant features (see Methods for criteria for significance)
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mode of the data accounted for a dominant transition between
the Reference state, perturbed state, and evolved fitness states (i.e.,
captured systems fitness properties). This result was also reflected
in the system component profiles themselves where the majority
of component levels were restored or partially restored to

reference levels (Fig. 3). For almost all cases analyzed, the second
most explanatory mode of PLS-DA separated the Ref and eKO
strains. This result indicated that the secondary mode of the data
accounted for alternate evolved states (i.e., capturing systems
diversity, or a ‘plateau’ in the evolutionary landscape37). These
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Fig. 2 A multivariate analysis of biological network components as represented by different omics data types. a Partial least squares discriminatory analysis
(PLS-DA) revealed a common trend in the two most dominant components: the primary component (PC1) most often corresponded to a movement away
from (dashed line) and back to (solid line) evolved optimal fitness (i.e., optimal system configuration), while the secondary component (PC2) most often
corresponded to a diversity among evolved optimal fitness states of different lineages (i.e., optimal system configurations). PLS-DA scores plots of the
reference strain, initial knockout, and evolved endpoints for each lineage for metabolomics (b), transcriptomics (c), and fluxomics (d) data. The strain
lineages denoted on the top of b also refer to the corresponding graphs below in c and d. All of the KO lineages matched the trend described above in the
metabolomics data, one eKO did not match the trend in four of the five KO lineages in the expression data (i.e., all but eSdhCB), and one or more eKO did
not match the trend in each of the KO lineages in the fluxomics data (see Methods for thresholds)
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alternate states were a result of divergences in trajectory paths
that led each replicate evolution towards a unique optimal state.
This characteristic was further reflected in the unique distribution
of component profiles between each of the eKOs.

Component profiles reveal systematic variations. In order to
dissect the drive towards fitness (mode 1) and generation of
diversity (mode 2) further, changes in each system component
(i.e., metabolite, transcript, and flux level) between Ref, uKO, and
eKO strains were grouped into six profiles (Fig. 3a, see Methods):
novel, overcompensated, partially restored, reinforced, restored,
and unrestored. The distribution between these six profiles for
each component type are shown with horizontal bar charts in
Fig. 3b–d. Several trends were found based on these six profiles.

First, the occurrence of profiles varied between omics data
types. Overall, the metabolite levels were the most distributed

between the six profiles (i.e., had the least deviation). The ave ±
stdev of the relative standard deviation (RSD) between profiles (n
= 12, + and − directions for each of the six profiles) and across
lineage (n= 22) was 39.9 ± 14.1, 132.1 ± 45.9, and 84.0 ± 12.7%
for metabolites, transcripts, and fluxes, respectively. In contrast,
the transcript levels were dominated by the restored profile, and
flux levels were dominated by the restored and unrestored profile.
For example, the pgi lineages had an ave ± stdev of restored
profiles of 50.9 ± 5.0, 80.1 ± 8.3, and 66.9 ± 3.1% for metabolites,
transcripts, and fluxes, respectively. The more even metabolite
distribution compared to the transcript levels or flux levels
indicated that the changes in metabolite levels were less
constrained than the gene expression and fluxes.

Second, distribution amongst the profiles varied between KOs.
The lineages with the greatest initial loss of fitness had a greater
percentage of novel, overcompensated, reinforced, and unrestored
profiles than the lineages with a smaller initial loss of fitness. This
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difference was most evident for the transcript levels (ave ± stdev
of 2.7 ± 0.4, 8.2 ± 3.7, 31.3 ± 23.4, 20.3 ± 10.9, and 18.6 ± 1.8%,
and fitness change across evolution of 11.9 ± 3.9, 11.1 ± 2.9, 365.2
± 20.0, 337.8 ± 73.8, and 244.3 ± 7.1% for the gnd, sdhCB, pgi,
ptsHIcrr, and tpiA lineages; Pearson’s R= 0.94, P-value < 0.017,
Supplementary Fig. 1). This observation suggests that the larger
the loss in fitness, the greater the number of Innovative (as
opposed to restorative) network changes required to regain
fitness. Future work with larger sample sizes will be needed to
confirm this trend.

Third, the distribution amongst profiles also varied between
evolved strain lineages. For example, the eight ePgi endpoints had
varying levels of fitness (ave ± stdev of 0.68 ± 0.006, 0.61 ± 0.015,
0.65 ± 0.008, 0.72 ± 0.009, 0.64 ± 0.008, 0.69 ± 0.018, 0.67 ± 0.006,
0.69 ± 0.015 h−1), and noticeable differences in the distribution of
profiles among endpoints. This highlighted the biochemical
differences in evolved network configurations during adaptation
to overcome the perturbation.

Finally, a decoupling between degree of fitness change and
degree of -omics data change was apparent. The tpiA, pgi, and
ptsHIcrr lineages incurred the largest loss and recovery of fitness
while the gnd and sdhCB lineages incurred only minimal changes
in fitness. However, major changes in all -omics data measured
between Ref and uKO and between uKO and eKO strains were
found in all lineages (Figs. 2 and 3). Interestingly, major changes
often occurred in common system components. Major changes
could be traced to either perturbed metabolites that act as
allosteric or transcriptional regulators (which is consistent with
previous studies38, 39) or mutations that resulted in alterations to
gene expression. The observation about commonly perturbed
metabolite levels and mutations coupled with our previous three
observations about the profile distributions indicated that changes
in fitness and -omics data were independent, given that major
alterations in gene expression and protein production could occur
as a result of perturbations in relatively few key regulators.

The system component profiles were mapped to the biochem-
ical network of E. coli and analyzed to develop a general
framework for understanding evolution at the molecular level. It
is important to highlight that the component profiles described
above were used in all of the analyses presented below. The
component profiles were assigned based on statistical criteria.
They provided a unitless metric to compare and map multiple
data types when quantitative relationships between data types
have not been fully established. The component profiles also
provided robustness by basing the analysis on change in values
between states (i.e., ref, uKO, and eKO) instead of the absolute
value found in any one state.

Changed flux distribution was most prevalent during ALE.
Changes in pathway usage between the Ref, uKO, and eKO
strains were calculated, and differences between the flux dis-
tribution in the uKO and eKO strains were grouped into changed
flux distribution (i.e., the pathway usage was changed) or changed
flux capacity (i.e., the same pathway was used but at a higher flux
level, see Methods for extended definitions, Fig. 4a–d). Changed
flux distribution was found to be more prevalent than changed
flux capacity. Changed flux distribution was found to occur 55.6%
of the time, while a change in flux capacity was found to occur
22.0% of the time across all perturbations and lineages (Fig. 4e).
The remaining 22.4% of cases were unaffected.

For example, flux was initially re-routed through the
Entner–Douderoff (ED) pathway in uGnd (Fig. 4f) in order to
generate ribose through the non-oxidative Pentose Phosphate
pathway (non-oxPPP). The ED pathway has a net yield of one
ATP, NADH, and NADPH per molecule of glucose, whereas

glycolysis has a net yield of two ATP and NADH40. Instead, the
eGnd strains limited the use of the oxidative pentose phosphate
pathway (oxPPP) and increased the flux capacity through the
higher energy and redox equivalent producing pathway of
glycolysis. Further examples are given in Fig. 4. These results
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indicated that the initial flux distribution of the uKO strains
following perturbation were often suboptimal, and required a
change primarily in flux distribution and secondarily in flux
capacity in order to restore fitness in the eKO strains.

Perturbed metabolite levels triggered TRN responses in uKOs.
Transcriptional regulatory network (TRN) responses in uKOs
that were associated with carbon metabolism, nitrogen metabo-
lism, iron regulation, oxidative stress, DNA repair, and other
stress responses that control the majority of known functions in
E. coli were linked to corresponding changes in regulatory
metabolite levels (see Methods). Perturbed metabolite levels were
traced to known TRN responses41–45 by mapping measured
metabolite profiles to metabolite-activated transcription factors
(TFs). The relationship (i.e., positive or negative) between a
metabolite profile, a TF that interacts with the metabolite, and the
expression profiles of the transcription units (TUs) regulated by
the TF (see Methods, Fig. 5) were compared. Strong evidence (i.e.,
statistically significant gene expression pattern for genes that are
regulated by a single TF, see Methods) for changed TF activation
profiles (analogous to the system component profiles, Fig. 2) were
identified for 75 TFs (Supplementary Data 2, Fig. 5). These
included 7 global TFs (i.e., CRP, Fis, IHF, ArcA, Lrp, FNR, and
HNS46) and 68 pathway-specific TFs (see Methods). The activa-
tion profiles of 15 TFs (which included the 7 global TFs and the 8
pathway-specific TFs ArgR, CpxR, Cra, Fur, NsrR, OxyR, PhoB,
and TyrR) were changed across all lineages. The remaining 60

TFs appeared to be changed in a perturbation and lineage-specific
manner.

Interestingly, TF activation and TF gene expression was not
coincidental (ave ± std 5.4 ± 3.8, 4.1 ± 2.6, and 70.5 ± 6.1% agree-
ment, disagreement, no significant change in expression profile
per lineage, respectively, Supplementary Data 3). This result
indicated that changed TF activation was mostly attributed to
changed concentrations in their metabolic activators as opposed
to changed TF gene expression levels. Similar observations have
been made for sigma factors and the expression levels of sigma
factor DNA binding operons in response to a key rpoB mutation,
where alterations in the binding of the regulator subsequently
altered gene expression of regulated operons47. For example, a
changed CRP activation was found in all lineages due to elevated
levels of cAMP in the uKOs48. CRP was not differentially
expressed in any of the lineages, but restored cAMP levels were
mirrored by restored gene expression of TUs solely regulated by
CRP-cAMP (Supplementary Data 5). ArcA provided another
example for global TF activation without a significant gene
expression change. The restored activation profiles of ArcA49 and
several other iron–sulfur cluster homeostasis TFs found in all
lineages could be linked to changes in TCA cycle intermediates as
well as quinone pools (e.g., gnd and sdhCB). The ArcAB two-
component system in particular modulates genes in response to
changes in respiratory conditions that are communicated via the
intermembrane quinone pools.

Pathway-specific TF activation was also identified in the uKOs.
A change in activation of the PurR regulator was found in pgi and
several other lineages due to changed levels of purine degradation
products. Specifically, the purR dimer binds hypoxanthine and
guanine, and regulates genes involved in purine metabolism50–52.
The concentration profiles of hypoxanthine and/or guanine
matched the expression profile for purR-target genes, while the
expression profile for purR itself did not (Supplementary Data 4).
In another example, the change in activation of TyrR in many
lineages was found to be attributed to the change in levels of L-
tyrosine and L-phenylalanine53 (Supplementary Data 4). TyrR
binds L-tyrosine and L-phenylalanine and modulates genes
involved in aromatic amino acid production and transport. The
component profile of L-tyrosine was found to match the
expression of aroF. The component profile of L-tyrosine and
aroF was also consistent with TyrR activation by L-tyrosine and
regulation of aroF gene expression, which indicates that aroF
gene expression was modulated by L-tyrosine levels via TyrR.
Expression of aroF is controlled only by TyrR54. Another example
of pathway-specific TF activation involved the use of small
regulatory RNA. A sugar phosphate toxicity response was
generated by abnormal elevations in glucose 6-phosphate (g6p)
and an imbalance of the glycolytic intermediates in uPgi. SgrR is
thought to bind hexose phosphates and induce the expression of
the small RNA sgrS55–57 (Fig. 5), which initiates the observed
response. It was found that the metabolite concentration profiles
matched sgrS expression profiles. SgrS transcriptionally regulates
a number of genes that are involved in re-balancing glycolytic
intermediates. One target of sgrS attenuation is purR, which
explains the opposing purR expression profile compared to its TF
activation profile described above. Interestingly, abnormal eleva-
tions of g6p and induction of SgrR and SgrR regulons were also
found in ptsHIcrr. Additional examples are provided in Fig. 5.

The common perturbation of TFs by small molecules indicated
that the majority of transcriptional changes observed may not be
beneficial to fitness compensation, but a consequence of “hard-
coded” regulatory circuits selected for through evolution that
were triggered by perturbations to key metabolite regulators.
Many of the hard-coded regulatory circuits were revealed
through ALE.

Fig. 4 Suboptimal pathway usage limits allocation of carbon to biomass
precursors. Toy network schematic of flux distribution in Ref (a) and in uKO
(b). A reaction knockout is highlighted in red. The flux distribution in eKO
could be categorized as c changed flux distribution (i.e., the pathway usage
was changed) or d changed flux capacity (i.e., the same pathways was used
but at a higher level, see Methods). Four examples of changed flux
distribution and changed flux capacity for f gnd, g sdhCB, h ptsHIcrr, and i
pgi lineages. f flux was initially re-routed through the ED pathway after
removing the gnd gene The ED pathway has a net yield of one ATP, NADH,
and NADPH per molecule of glucose, whereas glycolysis has a net yield of
two ATP and NADH40. Instead, the evolved gnd endpoints limited the use
of the PPP and increased the flux capacity through the higher energy and
redox equivalent producing pathway of glycolysis. g flux was initially re-
routed through the TCA cycle in uSdhCB by diverting flux through the
anaplerotic reactions phosphoenolpyruvate carboxylase (PPC) and
inverting the direction of flux through malate dehydrogenase (MDH). The
eSdhCB re-inverted the direction of malate dehydrogenase towards
production of nadh or quinone reduction, and downregulated flux through
the rest of the TCA cycle. h A significant portion of flux was bifurcated
between the methylglyoxal pathway and lower glycolysis in uPtsHIcrr in
response to elevated levels of dihydroxyacetone phosphate (DHAP) and
depletion of lower glycolytic intermediates that inhibit the activity of
methylglyoxal synthase114, 115. The flux through the methylglyoxal pathway
was essentially eliminated in endpoints 2 and 4, and significantly decreased
in replicates 1 and 3, in order to utilize the less toxic and more energy and
redox producing lower glycolytic pathway. i The abnormally high levels of
flux directed through the oxidative Pentose Phosphate Pathway (oxPPP) in
uPgi was initially re-routed through the ED pathway. Several evolved pgi
endpoints retained the flux through the ED pathway to varying degrees, but
most re-distributed flux through GND, and all increased the flux capacity
through the non-oxidative Pentose Phosphate Pathway (non-oxPPP). Green
and orange colored reaction lines in f–i correspond to the grouping of
changed flux distribution or changed flux capacity shown in the bar plot in
h. Color bars for all flux values are shown next to their corresponding
reaction(s)
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Component profiles revealed competing layers of regulation.
Cells contain multiple levels of counteracting regulatory
mechanisms that often overlap. For example, a relatively low
agreement between changes in gene expression profiles and
metabolic flux profiles (i.e., gene–protein–reaction association,
GPR) within each lineage was found (Supplementary Data 2).
Specifically, an average agreement of 27.5% (stdev= 17.4%, n=
22) and average disagreement of 11.5% (stdev= 6.8%, n= 22)
was found. A similarly low agreement between types of literature-
derived regulation were found (Supplementary Data 2). These
findings are consistent with previous work and can be explained
by the actions of multiple and competing layers of
regulation58, 59.

Competing levels of regulation can be measured through the
disagreement between changes in system components and
literature-derived networks of biomolecular interactions (Fig. 5).
Disagreements were found to categorize into three main groups:
(1) counteracting regulatory mechanisms, (2) evidence for
inaccurate or incomplete knowledge of regulatory networks60–
63, and (3) changes to regulation introduced through fixed
mutations. Evidence of competing layers of regulation for 89

regulators (i.e., any biological component that can affect a change
in another component, e.g., TF or small-molecule) across 5887
regulated entities (i.e., any biological component that is subject to
regulation, e.g., TU or enzyme) were found. Evidence of
inaccurate or incomplete knowledge of the regulatory network
in 38 regulators across 631 regulated entities were found
(Supplementary Data 3). While it is infeasible to investigate each
discrepancy here, specific examples are given that illustrate the
above three mechanisms.

In an example of counteracting regulatory mechanisms, a
hierarchy of TF control over gene expression was recapitulated.
The activation profile of Fis64–66 was found to conflict with its
consensus activation profile of the pyrD promoter in all of the
pgi lineages, whereas the PurR activation profile was found to
agree with pyrD expression profile52, 64, 65. This indicated that
pyrD expression was dominated by PurR regulation. In another
example, a restored activation of sgrS found in the pgi lineages
and a novel activation of sgrS found in the ptsHIcrr endpoints 1
and 3 negated the transcription factor regulation of sgrS target
genes67, 68. In another example, the activation profile of cAMP-
CRP was found to conflict with its consensus activation profile
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Fig. 5 Mapping between network components and annotated regulation. a An algorithm for determining agreement and disagreement between system
components categories and annotated biochemical pathways and regulation. 1. The algorithm inputs include the component profiles, the network
components, and the network interactions. 2. An on/off Boolean interaction network that describes the biochemical and/or regulatory relationship
between two components is constructed. 3. The component categories and on/off interaction between each component can then be determined. 4. For
components that were not directly measured, a consensus category and confidence score can be determined. b Example of metabolite-mediated
transcription factor activation between tyr-L, TyrR, and aroF53. c Example of an unresolved discrepancy involving Fur regulation. d Example of transcription
factor hierarchy between cAMP-CRP and Cra
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on the gapA promoter in all of the tpiA lineages, whereas the Cra
activation profile was found to agree with gapA expression
profile (Fig. 5d)69, 70. cAMP-CRP and Cra bind upstream of the
promoter region of gapA; CRP-cAMP promotes gapA transcrip-
tion while Cra inhibits gapA transcription69, 70. This finding
indicated that inhibition of gapA expression by Cra was
dominant over the promotion of gapA expression by cAMP-
CRP, as is consistent with recently reported data71. In another
example, the activation profile of the TF Nac, which acts as a
global regulator of nitrogen metabolism,72 was found to conflict
with its consensus activation profile for the expression of gabP
on the csiD promoter in tpiA replicates 1 and 2. Expression of
gabP is controlled by cAMP-CRP, CsiR, HNS, and Lrp41, 73.
Only the activation profile of Lrp matched, indicating that the
expression of gabP was dominated by Lrp in those two
replicates. In another example, the transcription attenuation
by UTP was found to dominate the regulation of pyrLBI operon
by ppGpp74, 75.

Unresolved discrepancies in regulatory annotations were
found. The expression profiles of regulons that were controlled
only by Fur76–78 were found to be inconsistent. Specifically, the
expression profiles for entS, exbB, exbD, fecI, fepC, fepD, fhuA,
fhuE, ryhB, and yjjZ, conflicted with that of crl (Fig. 5c). The
discrepancies indicated that another TF or transcriptional
regulator is present that also controls the transcript levels of that
gene or Fur can act as a dual regulator similar to entS79. In fact,
crl has been shown to also be regulated by ArgR45 and positively
regulated by CsrA80. In addition, yjjZ has also been shown to be
positively regulated by OxyR81 and positively and negatively
regulated by Fnr43. In another example, the yeiP gene was
annotated to be regulated only by cAMP-crp41, 70. However, the
expression profile of yeiP conflicted with the consensus activation
profile of cAMP-crp across all lineages.

Discrepancies arising from changes to regulation introduced
through mutation were also identified. For example, the lon-
specific promoter is activated by GadX41, 82, 83. A mutation at the
lon-specific promoter in the ePgi replicates 1-5 silenced the
expression of lon thereby negating the regulation by GadX. This
silencing directly affected the expression of colanic acid and
biofilm producing operons that are controlled by RcsA and
RcsAB84. The Lon protease degrades RcsA85. Further examples
are given in more detail below.

These examples demonstrate the hierarchical and intercon-
nected web of regulation found in the cell, and demonstrate how
changes to one regulator can impact the regulation of biological
components at multiple system levels. In addition, the examples
given above indicated that the response of the uKO and eKOs
recapitulated the effects of known regulation, but also revealed
the effects of unknown or not fully characterized regulatory
mechanisms. The latter provide suggestions for new experimental
lines of inquiry.

Mutations altered regulation and enzymatic function. A large
number of mutations were identified in the eKOs that changed
the effects of global and pathway-specific regulators (discussed
above) or targeted specific pathways or imbalances. In total, 673
mutations were found in the eKOs (Supplementary Data 5 and 6).
The mutations were found to primarily be single nucleotide
polymorphisms (SNPs, 66%), were primarily located in coding
regions (48%), and were primarily associated with membrane
proteins and transcription factors (27 and 29%, respectively). See
Supplementary Data 5 and Fig. 6 for a detailed overview of all
mutations found in the eKO strains. The reader is directed to
McCloskey et al.27–30 for further in depth characterizations of
individual mutations discussed below.

Mutations selected during ALE changed many global regula-
tors. For example, 17% of mutations affected regulators of carbon
transport and metabolic processes that appear to offset the
activation of operons induced by CRP-cAMP. These included
mutations to galR, malT, and crr in the ePgi strains that appeared
to negate repression of galR controlled operons. The mutations
may give the evolved strains an additional route to import and
catabolize glucose because the galactose importer also has the
ability to import glucose albeit with lesser affinity than galactose.
In addition, the mutation may have improved the fitness of the
ePgi strains by increasing the availability of phosphoenolpyruvate
(pep) for aromatic amino acid production. Interestingly, muta-
tions in galR or at the galR operon in ePtsHIcrr02/04 and in
eTpiA01/03 also resulted in the upregulation of GalR controlled
genes. The prevalence of galR mutations may indicate that
expression of the gal regulon may aid in increasing fitness when
the ability to import glucose is impaired or the levels of pep are
inadequate for aromatic amino acid production. Additional
mutations that affected carbon transport processes included ptsG,
galR, and nagC in the ePtsHIcrr strains, and ptsG, galR, and nagA,
nagC, and nagE in the eTpiA strains.

A series of mutations were also identified that altered protein
homeostasis networks, two-component systems, small RNA
networks, and the sigma factor networks. These included
mutations that altered the Lon protein homeostasis network in
ePgi and the two-component system RcsA/RcsB in ePtsHIcrr that
targeted pathways involved in cell motility, acid resistance, and
cell wall biosynthesis. Mutations that altered the SPF small RNA
networks, RpoC core RNA polymerase unit, and RpoD sigma
factor networks in ePGI were found. Alterations to stress
response systems that included SoxS/SoxR in pgi and PhoB/
PhoR in tpiA involving oxidative stress and phosphate stress,
respectively, were also found.

Mutations were also identified that changed the regulation of
pathway-specific TFs. These occurred in a KO-specific manner,
and appeared to optimize specific pathways at the regulatory
level. For example, the expression of the methylglyoxal pathway
in eTpiA strains were altered to more efficiently convert
methylglyoxal to lactate through mutations that altered methyl-
glyoxal detox pathway gene expression. These examples of global
and pathway-specific regulatory shifts indicated that mutations
that affect hubs in complex regulatory networks are common in
adaptive evolution37, and provide a fitness advantage by rewiring
regulatory network responses that may no longer be optimal for
fitness.

Rarer were mutations that introduced innovations that
appeared to target-specific metabolite imbalances. For example,
the levels of nadph, which is used to drive biosynthesis, was
affected in many of the KOs. Mutations were found in the trans
hydrogenases in several of the ePgi strains and in all of the eGnd
strains to compensate for an overproduction and underproduc-
tion of NADPH, respectively. A mutation found in the active site
of seven of the eight ePgi endpoints in isocitrate dehydrogenase
appeared to alter cofactor specificity to allow for the use of nadh.

Discussion
Taken together, the combination of study design, automated ALE,
multi-omic data sets, and statistics and bioinformatics revealed
common mechanisms of adaptation whereby imbalances in
metabolite levels from altered fluxes triggered a multitude of
network responses that were readjusted by mutations selected for
during evolution (Fig. 7). The mutations that fixed during
adaptation acted to rewire many existing hardwired responses
and/or introduce novel network functions that addressed the
imbalances that the initial KO lesion created. The findings of this
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study represent a step towards developing a fundamental
understanding of how cells mechanistically adapt to gene loss
from a systems perspective that accounts for proximal and distal
relationships in the metabolic and regulatory network. Novel
mechanisms and inconsistencies, revealed through adaptation,
between measurement and known regulatory mechanisms iden-
tified in the case studies present opportunities for future discovery
(Supplementary Data 2 and 4). Specific avenues of exploration
may include the effect of regulation acting on different time-
scales (i.e., transcriptional vs. allosteric regulation) or the effect of
RNA and protein stability and degradation that were not
addressed in this study.

Methods
Biological material. A glucose, 37 °C, evolved E. coli derived from E. coli K-12
MG1655 (ATCC 700926)31, 32 served as the starting strain. Lambda-red-mediated
DNA mutagenesis86 was used to create the knockout strains. Knockouts were
confirmed by PCR and DNA resequencing. Genes gnd, ptsH, ptsI, crr, sdhC, sdhA,
sdhD, sdhC, tpiA, and pgi encoding for the reactions of 6-phosphogluconate
dehydrogenase (GND), phosphotransferase sugar import (GLCptspp), succinate
dehydrogenase complex (SUCDi), triophosphate isomerase (TPI), and phos-
phoglucose isomerase (PGI) were removed. PPC was also deleted, but resulted in

an auxotrophy for asp-L, and was not included in the study. Genes aceE, aceF, zwf,
and atpI-A encoding for the reactions of PDH, G6PDH2r, and ATPS4rpp could
not be removed using the method of Datsenko et. al86. All cultures were grown in
unlabeled or labeled glucose M9 minimal media87 with trace elements88 at 25 mL
of working volume in a 50 mL autoclaved tube. The cultures were maintained at 37
°C on a heat block and aerated using magnetics.

Materials and reagents. Uniformly labeled 13C glucose and 1-13C glucose were
from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). Unlabeled glucose
and other reagents were from Sigma-Aldrich (St. Louis, MO). LC–MS/MS reagents
were from Honeywell Burdick & Jackson® (Muskegon, MI), Fisher Scientific
(Pittsburgh, PA) and Sigma-Aldrich (St. Louis, MO).

Reaction knockout selection. iJO136689 was used as the metabolic model for E.
coli metabolism; GLPK (version 4.57) was used as the linear program solver.
MCMC sampling90 was used to predict the flux distribution of the optimized
reference strain. Uptake, secretion, and growth rates were constrained to the
measured average value ± SD. Potential reaction deletions were ranked by (1)
averaged sampled flux, (2) the number of immediate upstream and downstream
metabolites that could be measured, (3) the number of genes required to produce a
functional enzyme. Reactions involved in sampling loops, that were spontaneous,
were computationally or experimentally essential, or were not actively expressed
under the experimental growth conditions were not included in the analysis. Also,
reactions that would require more than one genetic alteration to abolish activity
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regions two coding genes not classified as an intergenic region (intergenic/intergenic), and repetitive elements (REP or RIP). c The class of mutation.
Classes include frameshifts, frameshifts resulted in a truncated CDS, missense, non-frameshifts, peptide truncations, and other unclassified mutations. d
The functional or structural category of the mutated gene. Categories are based on the “parent class” as found in the EcoCyc database103

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06219-9

10 NATURE COMMUNICATIONS |  (2018) 9:3796 | DOI: 10.1038/s41467-018-06219-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


were excluded. The top 9 reactions deletions from the rank ordered set of reactions
that met the above criteria were chosen for implementation.

Adaptive laboratory evolution (ALE). Cultures were serially propagated using a
100 µL passage volume in 15 mL working volume flasks. The cultures were grown
in M9 minimal medium with 4 g/L glucose and kept at 37 °C and well-mixed for
full aeration. Cultures were passed to fresh flasks during exponential growth and
with nutrient excess once they had reached an OD600 of 0.3 (Tecan Sunrise plate
reader, equivalent to an OD600 of ~1 on a traditional spectrophotometer with a 1
cm path length). Four OD600 measurements were taken for each flask, and the
relation between ln(OD600) and time was used to calculate the culture growth rates.

Phenomics. Culture density were measured at 600 nm absorbance with a spec-
trophotometer and correlated to cell biomass. Substrate uptake and secretion rate
samples were filtered through a 0.22 µm filter (PVDF, Millipore) and measured
using refractive index (RI) detection by HPLC (Agilent 12600 Infinity) with a Bio-
Rad Aminex HPX87-H ion exclusion column. The HPLC method was the fol-
lowing: injection volume of 10 µL and 5 mM H2SO4 mobile phase set to a flow rate
and temperature of 0.5 mL/min and 45 °C, respectively.

LC–MS/MS instrumentation and data processing. Metabolites were acquired
and quantified on an AB SCIEX Qtrap® 5500 mass spectrometer (AB SCIEX,
Framingham, MA) and processed using MultiQuant® 3.0.1 as described pre-
viously34. Mass isotopomer distributions (MIDs) were acquired on the same
instrument and processed using MultiQuant® 3.0.1 and PeakView® 2.235.

Metabolomics. Uniformly labeled E. coli cell extracts were used as internal stan-
dards91. The same batch of internal standards was used with all samples and
calibrators. Two sets of calibration curves (before and after all samples) were used

to correlate peak height ratio to absolute concentration. Quality Control sample
that were composed of all biological replicates were ran twice a day to check the
consistence of quantitation. Solvent blanks were injected periodically to check for
carryover. System suitability tests were injected at the start of each day to check
instrument performance.

Metabolomics samples were acquired from triplicate cultures by sampling 1 mL
of cell broth at an OD600 ~1.033. Analytical blanks were made by pooling filtered
medium that was re-sampled using the FSF filtration technique. All biological
replicates and blanks were analyzed in duplicate. Unless otherwise noted, the
intracellular values reported are derived from the average of the triplicates (n= 6).
Metabolites in the analytical blanks that had a concentration greater than 80% of
that found in the triplicate samples were not analyzed. Metabolites with a
quantifiable variability (RSD ≥ 50%) in the quality control samples or any
individual components with an RSD ≥ 80 were not used for analysis.

Missing values were imputed using Amelia II92 (version 1.7.4, 1000
imputations). Remaining missing values were approximated as ½ the lower limit of
quantification for the metabolite normalized to the biomass of the sample.
Metabolite concentrations were log normalized to generate an approximately
normal distribution using LMGene93 (version 3.3, “mult”= “TRUE”,
“lowessnorm”= “FALSE”) prior to statistical analysis. A Bonferroni-adjusted P-
value cutoff of 0.01 as calculated from a Student’s t-test was used to determine
significance between metabolite concentration levels.

Fluxomics. Fluxomics samples were acquired from triplicate cultures (10 mL of cell
broth at an OD600 ~ 1.0) using a modified version of the FSF technique as
described previously35. MIDs were calculated from biological triplicates, each ran
in analytical duplicates (n= 6). MIDs with an RSD greater than 50 were excluded.
In addition, MIDs with a mass that was found to have a signal greater than 80% in
unlabeled or blank samples were excluded. A previously validated genome-scale
MFA model of E. coli with minimal alterations was used for all MFA estimations
using INCA94 (version 1.4) as described previously36. The model was constrained
using MIDs as well as measured growth, uptake, and secretion rates. Best flux
values that were used to calculate the 95% confidence intervals were estimated from
500 restarts.

The 95% confidence intervals were used as lower and upper bound reaction
constraints for further constraint-based analyses. MFA derived constraints that
violated optimality were discarded and re-sampled. The descriptive statistics (i.e.,
mean, median, interquartile ranges, min, max, etc.) for each reaction for each
model were calculated from 5000 points sampled from 5000 steps using
optGpSampler95 (version 1.1), which resulted in an approximate mixed fraction of
0.5 for all models. A permuted P-value < 0.05 and geometric fold-change of
sampled flux values > 0.001 were used to determine differential flux levels,
differential metabolite utilization levels, and differential subsystem utilization levels
between models. Demand reactions and reactions corresponding to unassigned,
transport; outer membrane porin, transport; inner membrane, inorganic ion
transport and metabolism, transport; outer membrane, nucleotide salvage pathway,
oxidative phosphorylation were excluded from differential flux analysis. The
geometric fold-change of the mean between models and the reference model were
used for hierarchical clustering; the median, interquartile ranges, min, and max
values of each sampling distribution for each reaction and model were used as
representative samples for downstream statistical analyses.

Transcriptomics. Total RNA was sampled from triplicate cultures (3 mL of cell
broth at an OD600 ~1.0) and immediately added to 2 volumes Qiagen RNA-
protect Bacteria Reagent (6 mL), vortexed for 5 s, incubated at room temperature
for 5 min, and immediately centrifuged for 10 min at 17,500 RPMs. The super-
natant was decanted and the cell pellet was stored in the -80 °C. Cell pellets were
then incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 20% SDS for
20 min at 37 °C. Total RNA was isolated and purified using the Qiagen RNeasy
Mini Kit columns. On-column DNase-treatment was conducted for 30 minutes at
25 °C. RNA was quantified using a Nano drop and checked for quality using an
RNA-nano chip on a bioanalyzer. The rRNA was removed using Epicentre’s Ribo-
Zero rRNA removal kit for Gram Negative Bacteria. A KAPA Stranded RNA-Seq
Kit (Kapa Biosystems KK8401) was used following the manufacturer’s protocol to
create sequencing libraries with an average insert length of around ~300 bp for two
of the three biological replicates. Libraries were ran on a MiSeq and/or HiSeq
(Illumina).

RNA-Seq reads were aligned using Bowtie96 (version 1.1.2 with default
parameters). Expression levels for individual samples were quantified using
Cufflinks97(version 2.2.1, library type fr-firststrand) Quality of the reads was
assessed by tracking the percentage of unmapped reads and expression level of
genes that mapped to the ribosomal gene loci rrsA-F and rrlA-F. All samples had a
percentage of unmapped reads <7%. Differential expression levels for each
condition (n= 2 per condition) compared to either the starting strain or initial
knockout strain were calculated using Cuffdiff97(version 2.2.1, library type fr-
firststrand, library norm geometric). Genes with an 0.05 FDR-adjusted P-value
<0.01 were considered differentially expressed. Expression levels for individual
samples for all combinations of conditions tested in downstream statistical analyses
were normalized using Cuffnorm97(version 2.2.1, library type fr-firststrand, library
norm geometric). Genes with unmapped reads were imputed using a bootstrapping

Systems adaptation

iv. Mutations

ii. Metabolite-driven
interactions

iii. Regulatory network
responses

i. Changed pathway
usage

Fig. 7 A model of biological systems adaptation following the KO of key
metabolic enzymes. (i) Suboptimal pathway usage limited allocation of
carbon to biomass precursors. (ii) Perturbed metabolite levels triggered
transcription regulatory network (TRN) responses in the uKOs. (iii)
Activation of the TRN revealed a hierarchy of regulation involving
competing and overlapping regulatory interactions between various system
components including DNA, RNA, and proteins. (iv) Mutations selected
during adaptive evolution changed many regulatory networks, and also
introduced innovations that targeted specific pathway or metabolite
imbalances

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06219-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3796 | DOI: 10.1038/s41467-018-06219-9 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


approach as coded in the R package Amelia II (version 1.7.4, 1000 imputations).
Remaining missing values were filled using the minimum expression level of the
data set. Normalized FPKM values for gene expression were log2 normalized to
generate an approximately normal distribution prior to any statistical analysis. All
replicates for a given condition were found to have a pairwise Pearson correlation
coefficient of 0.95 or greater.

DNA resequencing. Total DNA was sample from an overnight culture (1 mL of
cell broth at an OD600 of ~2.0) and immediately centrifuged for 5 min at 8000
RPMs. The supernatant was decanted and the cell pellet was frozen in the −80 °C.
Genomic DNA was isolated using a Nucleospin Tissue kit (Macherey Nagel
740952.50) following the manufacturer’s protocol, including treatment with RNase
A. Resequencing libraries were prepared using a Nextera XT kit (Illumina FC-131-
1024) following the manufacturer’s protocol. Libraries were ran on a MiSeq
(Illumina).

DNA resequencing reads were aligned to the E. coli reference genome
(U00096.2, genbank) using Breseq98 (version 0.26.0) as populations. Mutations
with a frequency of <0.1, P-value >0.01, or quality score <6.0 were removed from
the analysis. In addition, genes corresponding to crl, insertion elements (i.e, insH1,
insB1, and insA), and the rhs and rsx gene loci were not considered for analysis due
to repetitive regions that appear to cause frequent miscalls when using Breseq.
mRNA and peptide sequence changes were predicted using BioPython (https://
github.com/biopython/biopython.github.io/). Large regions of DNA (minimum of
200 consecutive indices) where the coverage was two times greater than the average
coverage of the sample were considered duplications.

Structural analysis. Corresponding PDB files for genes with a mutation of
interested were downloaded from PDB99, 100. Structural models for genes for which
there were no corresponding PDB files were taken from I-TASSER generated
homology models101 or generated using the I-TASSER protocol102. The BioPython
predicted sequence changes and important protein features as listed in EcoCyc103

were visualized and annotated using VMD104.

System component statistical feature identification analyses. Network com-
ponents (i.e., RNA-seq, metabolomics, fluxomics, genomics) were pre-processed as
described above, and subjected to a feature identification analysis pipeline. Network
components for each lineage were first subjected to a differential test (ref vs. KO,
KO vs. endpoints, ref vs. endpoints, and endpoints vs. endpoints). The criteria for
significance for each of the data types are detailed below. Metabolomics: P-value <
0.01 and 0.5 < fold_change < 2.0 as calculated from a t-test of the g-log normalized
metabolite concentrations. Transcriptomics: q-value (0.05 FDR corrected P-value)
and abs (log2(fold-change)) > 1.0 as calculated by Cuffdiff. Fluxomics: P-value <
0.01 and abs (geometric fold_change) > 0.001 as calculated from re-sampled flux
distributions that were constrained by the 95% confidence intervals derived from
estimated MFA flux bounds (demand reactions and reactions in subsystems cor-
responding to unassigned, transport; outer membrane porin, transport; inner
membrane, inorganic ion transport and metabolism, transport; outer membrane,
nucleotide salvage pathway, oxidative phosphorylation were excluded). Mutations:
frequency > 0.1 (mutations in the reference strain and in repetitive regions were
excluded). Components that met the significance criteria for any combination of
comparisons from the differential test were used in the pairwise PLS-DA analyses
and profile matching. Counts of significant components for each lineage were based
on components that met the significance criteria for Ref vs. eRef, or uKO vs. eKO.

Network components for each lineage were subjected to pairwise PLS-DA
analyses (ref vs. KO, KO vs. endpoints, ref vs. endpoints, and endpoints vs.
endpoints). The components with a loadings 1 magnitude within the top 25% of all
components and correlation coefficient > 0.88 for different combinations of
comparison were selected using pairwise PLS-DA analysis.

Network components for each lineage were subjected to profile matching.
System component levels between Ref, eKO, and uKO were correlated (Pearson’s
R) to six profiles in both positive and negative directions. novel−, novel+,
overcompensation−, overcompensation+, partially restored−, partially restored+,
reinforced−, reinforced+, restored−, restored+, unrestored−, unrestored+ profiles
were encoded in integer form as 1-1-0, 0-0-1, 1-0-2, 1-2-0, 2-0-1, 0-2-1, 2-1-0, 0-1-
2, 1-0-1, 0-1-0, 1-0-0, and 0-1-1. System components were binned into profiles
when a Pearson correlation coefficient > 0.88 was calculated. Only negligible
changes in the assignment of profiles were found when using absolute or relative
component units (e.g., mmol*gDCW−1 vs. log2(FC vs. ref)) or different correlation
methods (i.e., Spearman).

System component statistical sample trend analysis. Components identified
from the differential tests (except for metabolomics) were used for sample trend
analyses. Hierarchical clustering was used to diagnose sample groupings and dis-
tances between samples (distance metric of Euclidean and linkage method of
complete). Principal component analysis (PCA) as encoded in the R package
pcaMethods105 (version 1.64.0, univariate scaling, centering, SVD PCA) was then
used as a representative unsupervised method to project samples into component
space, and confirm the relative magnitude and direction of component weights.
PCA models were first constructed for the reference, knockout, and endpoint for

each of the lineages to confirm that the primary component best separated the
reference and endpoint from the knockout, and that the second component best
separated the reference and knockout from the endpoint. PCA models were then
constructed for the reference, knockout, and all endpoints for each network per-
turbation. The PCA models were validated using cross validation (CV type of
Krzanowski, default 5 segment with 5 CV runs per segment with minimum
number of segments equal to the number of samples). Partial Least Squares Dis-
criminatory Analysis (PLS-DA) was implemented using the R package pls106

(version 2.5, univariate scaling, centering, Canonical Powered Partial Least Squares
(cppls) PLS-DA) was used to project replicate samples into component space. PLS-
DA models were first constructed for the reference, knockout, and endpoint for
each of the lineages to confirm that the primary component best separated the
reference and endpoint from the knockout, and that the second component best
separated the reference and knockout from the endpoint. PLS-DA models were
then constructed for the reference, knockout, and all endpoints for each network
perturbation. The PLS-DA models were validated using cross validation (default
10 segments with minimum number of segments equal to the number of samples).

The loadings distance (i.e., the difference in loadings values) between the ref
and uKO strain along axis 1 (i.e., mode 1) was used as a threshold to determine
whether an eKO strain matched the general mode 1 and mode 2 trends identified
in section 2a. A relative distance for each eKO strain along axis 1 was calculated as
follows: relative distance= distance(uKOj, eKOi,j)/distance(ref, uKOj) where i=
endpoint replicate for a particular KO lineage and j= each KO lineage. An eKO
strain with a relative distance greater than 70% along axis 1 was determined to
match the trend.

Metabolite, flux, and gene set enrichment analyses. Metabolite and gene set
enrichment analyses were conducted using the subsystem categories of iJO1366.
Flux and metabolite flux sum set enrichment analyses were conducted using the
subsystem categories of iDM2015. A P-value < 1e−3 (hypergeometric test) was
used to test for enriched subsystems. Gene set enrichment analysis on differentially
expressed genes was also performed using with R package topGO107 with GO
annotations for E. coli108. A P-value < 0.05 (Fischer statistic, parent–child algo-
rithm109) was used to test for enriched biological processes and molecular
functions.

Network distance and graph analyses. The inverse mean values from sampled
flux distributions that were constrained by the 95% confidence intervals derived
from estimated MFA flux bounds were used as weights in calculating the shortest
path from metabolite A to B. The iDM2015 network was deconstructed into a
directed acyclic graph with metabolites and reactions composing the nodes and the
connections between metabolites and reactions composing the links. Metabolites
that did not contain carbon were excluded from the graph network. In addition,
metabolites corresponding to co2, co, mql8, mql8h2, 2dmmql8, 2dmmql8h2, q8,
q8h2, thf, ACP were also excluded. Metabolites corresponding to udpglcur, adpglc,
gam6p were substituted as glycogen_c, uacgam, uacgam, respectively, as they were
not present in the lumped and reduced iDM2015 network. The A*star algorithm as
implemented in the python package networkX (https://github.com/networkx/
networkx) (version 1.11) was used to calculate the shortest path of the graph
network. The distance from metabolite A to B was calculated as half minus 1 the
computed shortest path.

A redistribution of flux was defined as a change in path or path length between
the reference and knockout and endpoint or knockout and endpoint. A change in
flux capacity was defined as a change in path or path length between the reference
and knockout, but not between the knockout and endpoint.

Nodes (i.e., metabolites) were categorized as intermediates, carriers, biomass
precursors, and/or nucleotide salvage products. The correlation (Spearman R, P-
value < 0.05) between path and path length and metabolite level was calculated
between intermediates and carriers, carriers and biomass precursors, intermediates
and biomass precursors, carriers and nucleotide salvage products, and biomass
precursors and nucleotide salvage products.

Biomass to network component correlation analysis. EcoCyc103 subsystems for
the following biomass producing pathways were used in the analysis: amines and
polyamines biosynthesis, amino acids biosynthesis, nucleosides and nucleotides
biosynthesis, fatty acid and lipid biosynthesis, cofactors, prosthetic groups, electron
carriers biosynthesis, cell structures biosynthesis, and carbohydrates biosynthesis.
Gene identifiers from these pathways were mapped onto iDM2014 via the GPR
relation to identify biomass producing reactions and metabolites. The analysis was
conducted at the level of individual lineages using the system component profiles of
restored−, novel+, overcompensation−, partially restored−, and reinforced+ to
identify positively correlated (correlation coefficient > 0.88, Pearson, r) with growth
(i.e., growth promoting) and negatively correlated (correlation coefficient <−0.88,
Pearson, r) with growth (i.e., growth inhibiting). The number of significant biomass
components were divided by the number of measured biomass components, and
expressed as a percent. A direct pairwise correlation between metabolite con-
centrations, transcript levels, and fluxes, and growth rate was also performed (units
of log2(FC vs. ref)) between the reference strain, knockout, and endpoints for all or
each knockout condition for comparison (data not shown). Components that were
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positively correlated (correlation coefficient > 0.88, Pearson, r) with growth rate or
negatively correlated (correlation coefficient > 0.88, Pearson, r) with growth rate
were identified.

Inter- and intra-component correlation analysis. A global pairwise correlation
between metabolite concentrations, transcript levels, and fluxes was performed by
comparing the agreement and disagreement between component profiles of
restored+, novel+, overcompensation+, partially restored+, unrestored+, and
reinforced+. Components with matching profiles with correlation coefficients >
0.88 (Pearson, R) were correlated; components with matching profiles with cor-
relation coefficients <−0.88 (Pearson, R) were anti-correlated. A similar global
pairwise correlation between metabolite concentrations, transcript levels, and
fluxes was performed (units of log2(FC vs. ref)) for comparison (data not shown).
Components with a correlation coefficient > 0.88 (Spearman, r) were correlated;
Components with a correlation coefficient <−0.88 (Spearman, r) were anti-
correlated.

Regulation to network component correlation analysis. Significantly correlated
components were compared to annotated gene-to-reaction, and metabolite-to-
reaction interactions annotations in iJO1366, and to annotated transcription fac-
tor-to-gene, metabolite-to-transcription factor, metabolite-to-transcription factor-
to-gene, metabolite-to-transcript, and metabolite-to-reaction regulatory interac-
tions from the EcoCyc database103. EcoCyc database identifier were mapped to
iJO1366 identifiers using a combination of ChEBI110, MetaNetX111–113, EC
numbers, InCHi strings, and manual curation. The mode of component interac-
tions were encoded as either positive for reactant-reaction, activating, or stabilizing
interactions, or negative for product-reaction, inhibiting, or de-stabilizing inter-
actions. The sign and magnitude of the correlation coefficient (Pearson, r) of
matching categories was compared to the mode of interaction to determine
agreement (correlation coefficient > 0.88 and positive mode, or correlation coeffi-
cient <−0.88 and negative mode). The inverse was used to determine
disagreement.

The classification of global regulators follows the definition given by Martinez-
Antonio et al.46 Global transcription factors are defined to include CRP, IHF, FNR,
FIS, ArcA, Lrp, and Hns. A secondary level of regulators are defined to include
NarL, Fur, Mlc, CspA, Rob, PurR, PhoB, CpxR, and SoxR. The secondary level and
lower level regulators (e.g., local transcription factors) were further broken into
classes for local and general stresses.

Regulator activation categorization. A profile for the activation status of each
regulator for each knockout evolution was determined. The analysis was first
limited to regulated entities that had only a single annotated regulator. The analysis
was then expanded to include all regulators and regulated entities. A category
weight for each regulated entity for each endpoint was calculated as follows: weight,
i,j= abs(corr,i,j)*1/(nEPs,i)*1/(nRegulators,k) where i= endpoint, j= category, k
= regulators, nEPs= number of endpoints per knockout evolution, corr= corre-
lation coefficient, nRegulators= number of regulators per regulated entity. A
confidence score for each regulator for each knockout was calculated as follows:
confidence,i= sum(weight,i,j,k) where i= knockout, j= endpoint, and k= regu-
lated gene. A higher confidence score indicates a consistently higher correlation to
the category across all regulated entities that are regulated by the regulator.

Code availability. Published software used in this study are noted in the Methods.
Custom software used for the analyses presented in this study are deposited on
Github (https://github.com/dmccloskey).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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