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Effect of Overturning Circulation on Long Equatorial Waves:
A Low-Frequency Cutoff
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Department of Mathematics, University of California, Davis, Davis, California

(Manuscript received 7 June 2017, in final form 18 February 2018)

ABSTRACT

Zonally long tropical waves in the presence of a large-scalemeridional and vertical overturning circulation are

studied in an idealizedmodel based on the intraseasonal multiscalemoist dynamics (IMMD) theory. Themodel

consists of a system of shallow-water equations describing barotropic and first baroclinic vertical modes coupled

to one another by the zonally symmetric, time-independent background circulation. To isolate the effects of the

meridional circulation alone, an idealized background flow is chosen to mimic the meridional and vertical

components of the flow of theHadley cell; the background flowmeridionally converges and rises at the equator.

The resulting linear eigenvalue problem is a generalization of the long-wave-scaled version of Matsuno’s

equatorial wave problem with the addition of meridional and vertical advection. The results demonstrate that

the meridional circulation couples equatorially trapped baroclinic Rossby waves to planetary, barotropic free

Rossby waves. The meridional circulation also causes the Kelvin wave to develop an equatorially trapped

barotropic component, imparting a westward-tilted vertical structure to the wave. The total energy of the linear

system is positive definite, so all waves are shown to be neutrally stable. A critical layer exists at latitudes where

themeridional background flow vanishes, resulting in aminimum frequency cutoff for physically feasiblewaves.

Therefore, linear Matsuno waves with periods longer than the vertical transport time of the meridional circu-

lation do not exist in the equatorial waveguide. This implies a low-frequency cutoff for long equatorial waves.

1. Introduction

While interactions between atmospheric waves and

purely zonal background flows have been the focus of ex-

tensive research dating back to Charney (1947), the same

cannot be said of the dynamics of waves in the presence of

purely meridional background flow. Zonal winds are widely

understood tobe sources of shear instability, bothbarotropic

and baroclinic, and the stability theory of rotating flows in

thepresenceof zonal shear is far tooextensive to summarize.

The main theoretical framework of tropical tropo-

spheric dynamics is Matsuno’s theory of neutrally stable

waves (Matsuno 1966), which arise as perturbations of a

wind-free tropical atmosphere. Tropical dynamics tend

to support waves, in contrast to the geostrophically

balanced, transport-dominated dynamics of the middle

latitudes. Since climatological mean zonal winds tend to

occur poleward of the tropics in the upper-tropospheric

subtropical jet or the weaker lower-troposphere trade

winds, and since the meridional gradient of planetary

potential vorticity at the equator is stabilizing against

shear instability, shear instability due to zonal winds is a

less common mechanism in the tropics. Nonetheless,

ageostrophic instabilities (Sakai 1989) have been shown

to excite both equatorial Rossby waves and the equatorial

Kelvin wave if the vertical and meridional shear is strong

enough. These instabilities tend to affect smaller length

scale waves (e.g., Kelvin–Helmholtz instabilities tend to

occur at the highest resolved zonal wavenumbers) or

synoptic zonal length scale waves (e.g., in baroclinic in-

stabilities of the subtropical jet). For typical climatological

winds in the subtropics, the most relevant effect of zonal

wind shear is the coupling of equatorial and midlatitude

Rossby waves either through linear instability (Xie and

Wang 1996) or through resonant coupling (Wang and Xie

1996; Majda and Biello 2003; Biello and Majda 2004).

However, the deep tropics is the location of the ITCZ,

which is the most meridionally concentrated rising air

within the troposphere, and the mean zonal winds tend
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to be much weaker there than poleward of the ITCZ. This

is why, in the Wheeler–Kiladis diagram (Takayabu 1994;

Wheeler and Kiladis 1999), the observed wave spectrum

can be plotted superimposed with the theoretical Matsuno

dispersion relation to show that linearwaves in the absence

of climatological zonal wind shear account for much of the

spectral power in the observations.

This suggests that in the tropical band, the strong

meridional circulation could potentially have a greater

effect than the comparatively weaker zonal winds. The

observed climatological background invites the follow-

ing question: given the quiescent background (Matsuno

1966) and the zonal wind shear background (Xie and

Wang 1996; Wang and Xie 1996), both having been well

studied, what is the effect of the meridional convergence

and rising air on the classical Matsuno waves?

Matsuno’s theory is generally appropriate for tropical

waves since the mean zonal flow nearly vanishes in the

deep tropics and, as was already mentioned above, ob-

servational studies (Takayabu 1994; Wheeler and

Kiladis 1999) use Matsuno’s theoretical dispersion re-

lation to sort and classify the observed wave spectrum.

While observed dispersion relations do match the the-

oretical framework over a broad range of zonal wave-

numbers and time scales, there is significant discrepancy

at the longest time scales and largest zonal scales. Ex-

amples of this discrepancy include the Madden–Julian

oscillation (MJO) (Zhang 2005), the lack of Kelvin

waves at the longest scales, and the sparseness in signal

associated with zonally long Rossby waves (Kiladis et al.

2011). In the following, we will show that it is precisely

on the longest zonal tropical waves that the meridional

convergence in the climatology has its greatest effect.

Biello and Majda (2010) developed the intraseasonal

multiscale moist dynamics (IMMD) theory in order to

understand which scales in the tropics are affected by

background shear and which scales are affected by up-

scale fluxes of momentum, temperature, and moisture

from the synoptic scales. It is a generalization of Majda

and Klein’s intraseasonal planetary equatorial synoptic-

scale dynamics (IPESD) framework (Majda and Klein

2003), which was used in Biello and Majda (2004) to

study the effects of upscale transport of temperature and

momentum from synoptic to planetary scales as a model

of theMJO. Beyond its applicability to theMJO, IMMD

is a long-time-scale theory of tropical circulation that

uses multiple scale asymptotics to extend the linear

theory of Matsuno (1966) to intraseasonal time scales

and includes the effects of zonal and meridional clima-

tological winds arising from the Hadley circulation.

On the zonally long scales, the equatorial waveguide

creates waves that are meridionally confined. The

planetary-scale waves in the IMMD theory are described

by the long-wave-scaled equatorial primitive equations in

the presence of advection by a background, incompressible

flow with components in all three dimensions (zonal, me-

ridional, and vertical):

U
›

›x
1V

›

›y
1W

›

›z
, where

›U

›x
1

›V

›y
1

›W

›z
5 0:

(1)

In any long-wave theory, the meridional coordinate is

measured in units of the equatorial deformation scale of

1500km, reflecting the confinement of the equatorial

waveguide. The vertical coordinate is measured in units of

5km, reflecting the fact that the troposphere is approxi-

mately 5p’ 16 kmhigh in the tropics (the factor ofp arises

from projecting on vertical baroclinic modes). Since we

wish to describe zonally long waves, the zonal coordinate is

measured in units of 10 times the deformation scale,

15000km. This ratio is determined by the observed ratio of

the strength of diabatic heating resolved on the planetary

scale compared to that resolved on the synoptic scales. The

details of this scaling and the multiscale theories that result

can be found in Biello and Majda (2010).

One of the most important results of the IMMD as-

ymptotic theory, and a result thatmany researchers have

not yet appreciated, is that the anisotropic scaling de-

scribed in the previous paragraph also creates an aniso-

tropic scaling of the three components of the velocity field.

Therefore advection by a 50ms21 zonal wind, a 5ms21

meridional wind, and a 1.6 cms21 vertical uplift each cor-

respond to a similar-sized term in the linear theory of

equatorial waves. This is a consequence of the fact that the

time scales of the parcel trajectories that these different

components of advection describe are all the same,

50m s21

15 000 km
;

5m s21

1500 km
;

1:6 cm s21

5 km
; (3:6 days)21, (2)

which they must be in order for each to have the po-

tential to participate equally in the incompressibility

constraint [Eq. (1)]. Put more succinctly, a parcel of fluid

in such a three-dimensional flow would traverse one-

third of the vertical extent of the troposphere, 1500km

in the meridional direction and 15 000 km in the zonal

direction, all in the same time. In this paper, we restrict

our attention to a zonally symmetric meridional circu-

lation that would create zonally symmetric subtropical

jets and trade winds. Therefore, the zonal derivative of

the zonal wind is zero in all the cases we consider,

meaning that the background circulation is incompressible

in the meridional–vertical plane.

In Earth’s troposphere, the meridional transport of

angular momentum by the Hadley cell generates a siz-

able zonal wind manifested in the subtropical jets and
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lower-troposphere trade winds. The specific structure of

the subtropical jets and trade winds depends on the form

of the angularmomentumdissipation through baroclinic

instability (Schneider 2006). Observations show (see

Fig. 1) that, averaged over intraseasonal time scales and

planetary length scales, the subtropical zonal jets attain

speeds of 30ms21 whereas the maximum meridional

velocities range from 2.5m s21 near the bottom to

3.5m s21 near the top of the troposphere. That these

magnitudes are consistent with the relative magnitudes

of the long-wave scaling is no coincidence since the

tropics do have the necessary separation of magnitudes

of diabatic heating that justifies this ratio. What is clear

from Fig. 1 is that the strongest meridional velocities

occur within 1500 km of the equator. On the other hand,

comparable zonal velocities are only attained in the

upper troposphere (300 hPa) at distances of about

3000km from the equator.

The equatorial Kelvin and the first baroclinic equa-

torialRossbywaves are both generated and trappedwithin

one equatorial deformation radius (1500km) of the

equator. Much research (e.g., Wang and Xie 1996; Biello

and Majda 2004) has focused on the effect of zonal winds

(both vertical and meridional shear) on equatorially trap-

pedwaves. Zonal wind imparts instability to the equatorial

Rossby waves and provides a source of coupling to mid-

latitude Rossby waves. However, equatorial Kelvin waves

are notoriously robust against realistic zonal winds; unless

there is a strong vertical wind shear near the equator,

Kelvin waves are stable (Sakai 1989).

There has been no systematic understanding of the

effect of the meridional/vertical circulation on these

equatorially trapped waves, probably because this

component of the circulation is, in an absolute sense,

weaker than the zonal component. However, as we have

argued, the strength of the background circulation has to

be normalized to the direction of travel, and in that

sense, the meridional circulation is as important as the

zonal wind when studying planetary-scale equatorial

waves. Furthermore, data show that themeridional wind

convergence is equatorially confined in the lower tro-

posphere, exactly where the equatorial waves have most

of their power. This paper is a first attempt to under-

stand the effect of meridional circulation on planetary-

scale equatorial waves. To do so, we neglect the effect of

zonal winds for two reasons. First and foremost, the ef-

fective zonal wind is concentrated in the subtropical jets,

high in the troposphere and away from the equatorial

Kelvin and Rossby waves, and its effects have been well

studied (Wang and Xie 1996; Biello and Majda 2004).

The results of these studies show that zonal winds cause

synoptic-scale instabilities on the poleward ends of the

subtropical jets and coupling of equatorial and mid-

latitude Rossby waves. Unless the subtropical jets are

exceedingly strong and close to the equator, the equa-

torial Kelvin wave remains remarkably robust and sta-

ble against the zonal wind (Sakai 1989). Second, the

well-studied instabilities associated with the zonal winds

select for synoptic and smaller scales whereas the me-

ridional circulation (as will be shown below) has its most

FIG. 1. NCEP reanalysis of averaged (a) zonal and (b) meridional winds plotted from 458S to 458N, throughout the depth of the

troposphere, from 1000 to 150 hPa (Kalnay 1996). The average is taken over the autumnal equinox months of September, October, and

November 2016 and over the Eastern Hemisphere (08–1808E). Images are provided by the NOAA/ESRL Physical Sciences Division,

Boulder, Colorado (http://www.esrl.noaa.gov/psd/). In the long-wave scaling, 3 m s21 meridional flow has the same effect on the linear

theory as 30m s21 zonal flow. It also is clear that the strongest meridional flow is closer to the equator than the strongest zonal flow, and

thereby should have an important effect on long equatorial waves.
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significant effect at the largest zonal length scales in the

problem. In this paper we focus on planetary zonal

length scales only.

In section 2 of this paper, the IMMD framework is

used to derive a simplified set of equations describing

the behavior of equatorial atmospheric waves in the

presence of a planetary-scale overturning meridional–

vertical circulation. A two-layer equatorial shallow-

water system is constructed in the IMMD theory, the

solutions of which—barotropic planetary Rossby waves,

equatorially trapped, baroclinic Rossby waves, and

Kelvin waves—do not interact in the absence of the

background circulation but couple to each other in the

presence of a meridional/vertical background flow.

We study the linear eigenvalue problem of the meridi-

onally advected tropical long-wave theory in section 3.We

show that the two-vertical-mode model, coupled through

meridional advection, is skew self-adjoint; therefore all

solutions are neutrally stable. This is in stark contrast to

equatorial wave perturbations in the presence of zonal

shear flow,where barotropic andbaroclinic instabilities are

common. We will also describe three novel effects of the

meridional circulation on the classical Matsuno modes,

First, by coupling to barotropic Rossby waves that have a

significant midlatitude projection, the circulation creates a

mechanism through which equatorial Rossby waves leak

into midlatitude Rossby waves. Second, the Kelvin waves

in the coupled model acquire a barotropic component.

This barotropic component has easterly barotropic wind

collocated with the maximum of the equatorial Kelvin

wave’s lower-tropospheric convergence, resulting in west-

ward tilt with height of theKelvin wave. Third, we will find

that the meridional circulation causes a complete break-

down of the wave eigenfunctions of the lowest-frequency

waves at the latitude where the background meridional

flow vanishes. This feature, meridional convergence ex-

ceeding wave frequency, establishes aminimum frequency

cutoff for linear equatorial Rossby andKelvin waves in the

presence of meridional circulation.

In section 4, we interpret our results in the context of

observations and discuss future directions of study, es-

pecially including the subtropical jets and meridional

circulation in the long-wave IMMD theory.

2. The model

a. IMMD

Majda and Klein (2003) used self-consistent, sys-

tematic asymptotic methods to develop the theory of

intraseasonal planetary equatorial synoptic-scale dy-

namics, which describes large-scale atmospheric mo-

tions on two interacting spatial scales: synoptic and

zonally long-wave planetary scales. The IPESD scales

are appropriate to model planetary-scale dynamics

coupled to synoptic-scale (Gill 1980) dynamics. Biello

and Majda (2010) extend IPESD in their IMMD the-

ory to allow for stronger mean heating on planetary

scales, sufficient to drive a Hadley cell.

The derivation of IMMD begins with nondimensionalizing

the variables and scales of the equatorial primitive equations

appropriate to tropospheric conditions. The Coriolis force

is a linear function of distance from the equator with con-

stant of proportionality b5 2VR21 5 2:273 10211 m21 s21

(where R5 6400 km is Earth’s radius and V5 2p day21 is

its frequency of rotation). The horizontal velocity variables

are measured in units of the dry gravity wave speed

c5 50 ms21, meridional lengths in units of the equatorial

deformation radius LE 5 (c/b)1/2 ’ 1500 km, and time in

units of the synoptic time scale TE 5 (cb)21/2 ’ 8:3 h. The

vertical height scale is the height of the tropical troposphere

divided by p, HT /p’ 5 km. IMMD also makes use of a

planetary zonal length scale LP 5 10LE ’ 15000km and

intraseasonal time scale TI 5 10TE ’ 3:3 days to study

large-scale intraseasonal variations in the tropics, with mean

heating rates on the planetary scale of 10Kday21. In the

present study,we focuson theplanetary-scalewaves evolving

on the intraseasonal time scale.

In the IMMD theory, motions on planetary scales are

described by the trade winds/Hadley (TH) equations.

The large-scale flows are in hydrostatic and meridional

geostrophic balance, and advective nonlinearity is as

important as the linear Coriolis and stratification terms.

The TH equations are the long-wave, nonlinear equa-

torial primitive equations

D

Dt
U2 yV1P

x
52D , (3a)

yU1P
y
5 0, (3b)

P
z
5Q , (3c)

D

Dt
Q1W5H2R , (3d)

U
x
1V

y
1W

z
5 0, and (3e)

D

Dt
5

›

›t
1U

›

›x
1V

›

›y
1W

›

›z
, (3f)

forced by diabatic heatingH, momentum dissipationD ,

and radiation R, all of which are filtered on the largest

scales. In this regime, the zonal U, meridional V, and

vertical W velocities are measured in units of 50m s21,

5m s21, and 1.6 cm s21, respectively. The potential

temperature Q and the Exner function P (like geo-

potential height or a scale pressure) are measured in

units of 33K and 2500m2 s22, respectively (Biello and

Majda 2010). These magnitudes of the velocity field are
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consistent with the subtropical (zonal) winds and the

meridional component of the Hadley circulation. De-

spite describing a vector field whose zonal, meridional,

and vertical components are of significantly different

magnitudes, all three components of the velocity field

are present in the advective derivative since the anisot-

ropy in the zonal, meridional, and vertical derivatives’

scaling is in inverse proportion to the zonal, meridional,

and vertical velocity scaling, respectively.

IMMD separates the zonally long planetary-scale

anomalies from the mean TH system. The equations

for the anomalies are

D

Dt
u1 (uU)

x
1 (yU)

y
1 (wU)

z
2 yy1p

x
5Fu , (4a)

yu1 p
y
5 0, (4b)

p
z
5 u , (4c)

D

Dt
u1w1 (uQ)

x
1 (yQ)

y
1 (wQ)

z
5Fu, and

(4d)

u
x
1 y

y
1w

z
5 0: (4e)

The planetary-scale zonal u, meridional y, and verticalw

wind anomalies are measured in units of 5, 0.5, and

0.16m s21, respectively—which is an order of magnitude

less than the mean flows. The zonal momentum and the

potential temperature of the planetary-scale fluctua-

tions are advected by the climatology (the TH veloci-

ties) and forced by upscale fluxes of zonal momentum

FU and temperature Fu from the synoptic scales.

The IMMD theory closes the system of equations for

the synoptic-scale fluctuations thereby providing an ex-

plicit expression for the upscale fluxes. Since this paper will

not deal with the synoptic-scale fluctuations, the reader is

referred toBiello andMajda (2010) for a description of the

synoptic-scale theory. Briefly, the synoptic-scale theory

consists of Matsuno’s linear equations in the presence of

zonal wind, forced by diabatic heating, but not damped in

the manner of Gill (1980).

In the multiscale models of the MJO (Biello and Majda

2004), the planetary-scale organized flow exists as a packet

of modulated synoptic-scale activity and, as such, is de-

scribed by the equations of the planetary-scale anomalies

[Eqs. (4)]. In the originalmultiple scale theory, the envelope

was envisioned as a planetary-scale perturbation of a zero

flow background state forced by the upscale fluxes. How-

ever, in the derivation of IMMD (Biello andMajda 2010) it

was noted that a nontrivial background state could have

significant implications for the initiation and propagation of

the MJO. It is this question, the initiation and evolution of

planetary-scale anomalies in the presence of a meridional

overturning circulation, which motivates this study.

b. Planetary-scale anomalies with overturning
circulation

Mean zonal winds near the equator are much smaller

than the 50ms21 that is described by the IMMDtheory, yet

mean meridional velocities are on the order of 2–3ms21

there (see Fig. 2). An asymptotic theory like IMMD sets an

upper limit on the strength of the flow that it can describe.

This means that flows of jUj’ 1 (i.e., 50ms21) can be

consistently described by IMMD. However, the observa-

tional result we exploit throughout this paper is that equa-

torialwinds aremuch smaller than 50ms21 (more like a few

meters per second), so that the U term in IMMD can be

safely discarded when considering the longest equatorially

confined waves. Effectively, jUj, 0:1, but jVj’ 0:6 near

the equator; therefore it is an acceptable first approxima-

tion to neglect the zonal velocity when considering the

meridional convergence effects near the equator. To study

the effect of an overturning meridional and vertical back-

ground flow, especially near the equator, the zonal flow U

is neglected in the equations governing the climatology

[Eqs. (3)], and the remaining variables are assumed to be

constant in time and in the zonal direction. The pressure

variation P of the IMMD is driven by the zonal wind

through geostrophic balance and is itself an anomaly from

the atmosphere’s mean pressure profile. Requiring U5 0

thus yields P5 0. It further follows from hydrostatic bal-

ance that the potential temperature variation Q must also

be zero. The meridional and vertical wind can then be

modeled by the incompressibility constraint alone,

FIG. 2. Meridional profile of the meridional velocity V(y) with

maximum amplitude of 1m s21. The examples in this paper useL5 1,

which corresponds to the maximum meridional velocity occurring at

1500 km north or south of the equator. This flow is chosen so that it is

convergent in the lower troposphere at the equator (and ascending

there) and descends poleward of 1500 km from the equator.
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V
y
1W

z
5 0, (5a)

along with the weak temperature gradient approximation

W5H2R[ Su , (5b)

in which large-scale uplift W is proportional to the net

heating rate Su.

In the equations of planetary-scale anomalies [Eqs.

(4)], imposing U5Q5 0 and neglecting the upscale

fluxes yields the zonally long-wave, incompressible, hy-

drostatic, linear equatorial primitive equations advected

by the meridionally overturning background flow:

u
t
1Vu

y
1Wu

z
2 yy1p

x
5 0, (6a)

yu1 p
y
5 0, (6b)

p
z
5 u , (6c)

u
x
1 y

y
1w

z
5 0, and (6d)

u
t
1Vu

y
1Wu

z
1w5 0: (6e)

This is the long-wave Matsuno theory on a meridional

background circulation governed by the weak temper-

ature gradient with zonally symmetric heating, and it

conserves a positive definite form of energy, specifically

›

›t

�
1

2
(u2 1 u2)

�
1= �

�
1

2
(u2 1 u2)U1 pu

�
5 0, (7)

where U5Vj1Wk.

c. Two-layer model

The three-dimensional system of planetary-scale

anomalies in the presence of an overturning meridional–

vertical background circulation [Eq. (6)] can be projected

onto a two-layer model in the vertical [similar to the

two-level method applied by Wang and Xie (1996) and

equivalent to the Galerkin truncation of Majda and

Biello (2003)], yielding coupled systems of shallow-

water equations,

›
t
u
1
2 yy

1
1 ›

x
p
1
52V›

y
u
0
, (8a)

yu
1
1 ›

y
p
1
5 0, (8b)

›
x
u
1
1 ›

y
y
1
1 ›

t
p
1
5 0, (8c)

›
t
u
0
2 yy

0
1 ›

x
p
0
52›

y
(Vu

1
) , (8d)

yu
0
1 ›

y
p
0
5 0, and (8e)

›
x
u
0
1 ›

y
y
0
5 0, (8f)

where the 0 subscripts indicate the barotropic fields and

the 1 subscripts the baroclinic fields. In projecting onto

vertical modes, the variable W has been eliminated via

the incompressibility constraint [Eq. (5a)]. The pro-

jection is presented in appendix A.

When the background circulation, now wholly repre-

sented byV in Eqs. (8a) and (8d), is omitted, the baroclinic

and barotropic systems decouple; the decoupled baroclinic

solutions are the classical long-wave Matsuno modes,

while the barotropic component describes Rossby waves.

Conservation of energy as in Eq. (7) is retained in the

projection, since

›

›t

�
1

2
(u2

0 1 u2
1 1 p2

1)

�
1= � (u

0
p
0
1 u

1
p
1
)1

›

›y
(Vu

0
u
1
)5 0:

(9)

The energy density is always positive, so solutions re-

main neutrally stable.

d. Generalized eigenvalue problem

Since the coefficients of Eqs. (6) and (8) are constant

in time and in the zonal direction, normal modes of

the form u0(x, y, t)5 û0(y) e
ik(x2ct) constitute the ei-

genfunctions of the system. By specifying the wave-

number k, the phase speed c is determined as an

eigenvalue of the system

V›
y
û
0
2 yŷ

1
1 ikp̂

1
5 ikcû

1
, (10a)

yû
1
1 ›

y
p̂
1
5 0, (10b)

ikû
1
1 ›

y
ŷ
1
5 ikcp̂

1
, (10c)

›
y
(Vû

1
)2 yŷ

0
1 ikp̂

0
5 ikcû

0
, (10d)

yû
0
1 ›

y
p̂
0
5 0, and (10e)

ikû
0
1 ›

y
ŷ
0
5 0, (10f)

for the two-layer model. Beginning in section 3, to ease

the notation, wewill drop the hats on top of the variables

when discussing the eigenfunctions. Neutral stability has

been retained in the projection onto Fourier modes in x

and t, so the eigenvalues c of the system of projected

equations [Eqs. (10)] are real.

e. Overturning background circulation

To study the zonally long anomalies in the presence

of a background flow resembling the meridional and

vertical components of a zonally symmetric, temporally

invariant Hadley cell, we consider planetary-scale

heating of the form

Su 52
V

max

L

�
12

y2

L2

�
exp

�
L2 2 y2

2L2

�
sin(z) , (11)

where the parameter Vmax controls the strength of the

background circulation, and L controls the width of the
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overturning cell. As dictated by Eqs. (5a) and (5b), this

heating drives the meridional/vertical circulation:

"
V

W

#
52

V
max

L
exp

�
L2 2 y2

2L2

�"
y cosz

(12 y2/L2) sinz

#
. (12)

In the two-layer model, the background flow is repre-

sented by the meridional component,

V
1
52

V
max

L
y exp

�
L2 2 y2

2L2

�
, (13)

since the vertical component is determined through

incompressibility. This circulation rises within jyj,L of

the equator and descends poleward of this latitude. The

meridional profile of the meridional velocity is shown in

Fig. 2, for the parameters L5 1 corresponding to

1500km and Vmax 5 1m s21. It is clear that this meridi-

onal velocity profile reaches its maximum at y5L,

converges at the equator, and attains a maximum con-

vergence of Vmax/L. Off-equatorial ITCZs may be im-

portant for teleconnections (Liu and Wang 2013), but

the consideration of more general profiles will be left for

future work.

All figures herein were produced by a background

circulation of precisely this form, with L5 1, but with

varying strengths of circulation. However, many of the

conclusions presented herein apply for much more

general background circulations; details of the precise

restrictions that lead to the various results accompany

the results themselves. Since the meridional component

of the background flow has no projection onto the baro-

tropic mode, the subscript 1 is elsewhere suppressed.

f. Numerical method and boundary conditions

Equations (10a)–(10f) constitute an eigenvalue

problem for the wave speed c and eigenfunctions

(û0, ŷ0, p̂0, û1, ŷ1, p̂1). The linear operator is a non-

constant coefficient differential operator in y, that is, it

contains derivatives with respect to y as well as the

prespecified function V(y).

At first glance there are three parameters in this ei-

genvalue problem: Vmax, L, and the zonal wavenumber

k. In fact, the parameters reduce to two since the ei-

genvalue problem can be recast in terms of Vmax/k; this

greatly reduces the size of the parameter space that we

have to study. Although it is not computationally nec-

essary to make this rescaling, the interpretation of the

results of this rescaling are illuminating, so we present it

in appendix B.

When Vmax 5 0 the solutions of the baroclinic and

barotropic problems decouple. The baroclinic solutions

are the equatorially confinedKelvin wave (eigenvalue 1)

and the long Rossby waves (negative eigenvalues)

(Biello and Majda 2004). The barotropic solutions are

sinusoidal in y, and all have negative eigenvalues. On a

beta plane of infinite length, the barotropic solutions’

eigenvalues consist of a continuous spectrum: any real

number less than zero. On a finite domain the eigen-

values and corresponding eigenmodes are countably

infinite with an accumulation point only at c5 0.

We extend the equatorial b plane far beyond its re-

gion of validity, to 16 500km north and south of the

equator. On this domain, we choose a basis of sines and

cosines and project the primitive equations onto this

basis. For the computations shown in this paper we use

212 equally spaced collocation points to perform the in-

tegrations associated with the projection. We decreased

the number of points down to 29 and did not find a no-

ticeable difference in the eigenvalues or eigenfunctions.

After projection there results a large but sparse matrix

whose eigenvalues are the wave speeds c and whose

eigenvalues are the Fourier series coefficients of the

eigenfunctions. This is easily inverted in Matlab.

By using a Fourier series representation of the equa-

tions, we are effectively periodizing the b plane. However,

if the eigenfunctions are localized away from the jump

discontinuity in the Coriolis parameter at y5616500km,

then the Fourier convergence theorem guarantees that the

numerically calculated solutions converge to the actual

solutions in the limit of infinite collocation points. This

explains the choice of extremely large meridional extent,

which ensures that the effects of periodizing the problem

are not felt by the equatorially trapped eigenfunctions.We

will find that, for negative waves speeds, the barotropic

components of the eigenfunctions are not localized near

the equator. This, too, does not pose a problem for the

convergence of the spectral numerical method since we

expect barotropic modes to not be equatorially confined.

We confirm that the baroclinic components of these cou-

pled eigenfunctions are always equatorially confined.

One final technical detail follows. The spectrum of

the uncoupled baroclinic modes is known to be

c5 1,21/3, 21/5, . . . etc., with all the negative odd in-

tegers in the denominators. These are the Kelvin wave

and the long equatorial Rossby waves traveling at speeds

50, 50/35 16:66, 50/55 10, . . . ms21. The spectrum of

the uncoupled barotropic problem is doubly degenerate

with eigenvalues c5D/pn, where D is the poleward ex-

tent of the domain in units of the equatorial deformation

radius D 5 16500/1500 5 11and n is a positive integer.

We have chosen D to ensure that there is not an exact

resonance between the uncoupled barotropic waves and

the lowest few baroclinic waves. This avoids any spurious

solutions that are an artifact of the periodization and

would not occur on Earth.
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3. Results

a. Stability

In a midlatitude context, Rayleigh (1880) considers

instabilities in meridionally sheared zonal flow; Charney

(1947) and Eady (1949) study the conversion of mean-

flow available potential energy into growing distur-

bances for a vertically sheared zonal flow. Xie andWang

(1996) investigate baroclinic instability in the equatorial

context. While all of these studies demonstrate that

sheared zonal background flow produces instabilities in

its perturbation flows, it transpires that the same is not

true of purely meridional and vertical background flows

that obey the three-dimensional incompressibility con-

straint. An immediate consequence of requiring that the

zonal flow component of the climatology [Eq. (3)] and

the upscale fluxes be identically zero is the neutral sta-

bility of the resulting system of zonally long anomalies

[Eq. (6)]; the energetics [Eqs. (7) and (9)] admit only

solutions that are periodic zonally and temporally. As a

result, given a real wavenumber k, Eqs. (10) for wave

speed and amplitude admit only real speeds c.

b. Critical layers

When V(y)5 0 everywhere, the baroclinic and baro-

tropic ODEs are second order in y. In fact, in the ab-

sence of V, Eqs. (10) do not contain any derivatives of

u0,1 with respect to y. The introduction of V(y) 6¼ 0 also

introduces derivatives of u0,1 with respect to y; the de-

rivatives are multiplied by V(y). The coupled system is

not a fourth-order system (the sum of the two second-

order systems) but rather a sixth-order system of ODEs.

This makes it a singular perturbation because two new

solutions appear. However, the sixth-order system has

an additional peculiarity: there is a latitude y* where

V(y*)5 0 and, therefore, the coefficient of the highest

derivative vanishes at this latitude (in our examples, this

will always be the equator). ODEs in which the co-

efficient of the highest-order term vanishes at some

y5 y* are well known to have singular solutions (i.e.,

solutions that diverge at y5 y*).

These types of singular solutions constitute the con-

tinuous spectrum in Rayleigh’s equation for inviscid

zonal shear flow and create the well-known critical layers

in those flows. For barotropic zonal shear flows, these

layers are neutrally stable and occur where the wave speed

matches the flow speed. The eigenfunctions of these criti-

cal layers can have a discontinuous derivative.

To capture the essence of these critical layers in the

meridionally sheared equatorial wave equations, we

recognize the fact that a singular perturbation with a

vanishing highest-order coefficient has the possibility of

an eigenfunction with a singularity at y5 y*. We remind

the reader that a function that blows up at y* (a singular

function) has derivatives that blow up even faster (they are

more singular). To find the dominant balance of terms that

capture this singularity we must ask, when looking at sin-

gular solutions, which of (u0, y0, p0, u1, y1, p1) diverges

the most near y*?

If we hypothesize that y0 is singular, then barotropic

incompressibility [Eq. (8f)] demands that u0 be more

singular. Similarly if we hypothesize that p0 is singular,

then zonal geostrophic balance of the barotropic flow

[Eq. (8e)] demands that u0 be more singular. Therefore

u0 is more singular than y0 and p0; these latter two are

regular near y*, but have singular derivatives according

to the geostrophic and incompressibility constraints.

Therefore, in the vicinity of y* we can neglect y0 and p0

in the barotropic momentum equation [Eq. (8d)]. The

same arguments apply to the baroclinic equation, so we

can neglect y1 and p1 in Eq. (8a).

Therefore, in the two-layer eigenproblem [Eq. (10)],

in a neighborhood about the vanishing latitude y*, the

dominant terms are

V›
y
u
0
5 ikcu

1
and (14a)

›
y
(Vu

1
)5 ikcu

0
(14b)

[recall the comment after Eq. (10) that we have dropped

the hats on the variables to lighten the notation]. This

system can be reduced to a single second-order equation

in either of its unknowns, for example,

V2u
0yy

1 2VV
y
u
0y
1v2u

0
5 0, (15)

where v5 ck denotes frequency. If we assume V van-

ishes linearly [V’a(y2 y*), which is the generic case],

then Eq. (15) takes the form of Euler’s differential

equation,

~y2u
0~y~y

1 2~yu
0~y
1

v2

a2
u
0
5 0, (16)

where we have defined ~y5 y2 y*, and whence solutions

are found to be proportional to

u
0
5 ~y21/26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/42(v/a)2

p
, (17)

(and similarly for u1). When the discriminant is non-

negative, in other words when jvj$ jaj/2, the family of

solutions asymptotically approaches infinity at y5 y*,

and an arbitrary solution within the layer, matched to an

outer solution, will have unbounded energetics at the

singularity. Solutions with a negative discriminant also

have unbounded energy but oscillate rapidly as they

diverge, more slowly, toward infinity; these solutions
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have nearly finite energy, and thus the change of sign of

the discriminant represents a transition between better-

and worse-behaved solutions.

Put succinctly, physically viable eigenfunctions satisfy

the condition that the magnitude of their frequency

exceeds half the meridional convergence of the flow,

jvj. 1

2

����›V›y (y*)

���� , (18)

at each y*. The range of infeasible frequencies increases

with increasing strength of the background flow. We

emphasize that the cases we are focusing on are generic,

in the sense that we have assumed that the meridional

velocity of the background flow does not vanish at the

same latitude where the meridional convergence van-

ishes. Flows where the meridional velocity and conver-

gence vanish at the same latitude would satisfy a

different Euler-type equation than Eq. (16) and there-

fore have a different behavior than Eq. (17).

The eagle-eyed reader has noticed by this point that

the dominant terms on display in Eq. (14) are just the

projection onto the vertical bases of the terms

u
t
1Vu

y
1Wu

z
5 0: (19)

While the precise nature of the cutoff [Eq. (18)] dis-

cussed herein is a function of the vertical truncation, it is

more generally the case that near latitudes where the

meridional convergence of the meridional background

flow is strongest, or equivalently where vertical back-

ground flow is maximized, the system is characterized by

advection and does not resemble Matsuno’s equations.

Thus the traditional equatorial wave profiles are destroyed

by sufficiently strong background flow, with the lower-

frequency waves being most affected. The implications of

low-frequency wave cutoff are addressed in section 4.

c. Global barotropic response for baroclinic Rossby
waves

In the presence of overturning flows whose ampli-

tudes align with observations (less than 5ms21 zonally

averaged meridional velocities), the zonally long per-

turbed flows’ projections onto the first baroclinic mode

closely resemble the classic long-wave Matsuno modes:

equatorially trapped Kelvin and Rossby waves. The

baroclinic Rossby waves remain equatorially trapped as

in the classical theory and are coupled to barotropic

plane waves by the overturning background circulation.

Figure 3 shows the amplitudes of the horizontal ve-

locity fields for the classical Matsuno Rossby wave and

for the analogous wave in the presence of a moderate

overturning background circulation. The background

circulation has negligible effect on the baroclinic com-

ponent of the wave, which remains equatorially trapped.

However, a global barotropic response is induced

(dashed lines in Figs. 3b,d). Outside the tropics, both the

zonal andmeridional barotropic winds vary sinusoidally;

at the equator the zonal velocity and the meridional

velocity’s y derivative exhibit a global maximum in

magnitude (for waves having opposite parity about the

equator, such as the second-gravest baroclinic Rossby

wave, these statements are reversed).

The horizontal wind fields corresponding to Fig. 3 are

plotted in the upper and lower troposphere in Fig. 4. In

the absence of background flow (Figs. 4b,d), the Rossby

wave’s wind field lacks horizontal tilt. In the presence of

moderate overturning background flow (Figs. 4b,d) the

wind fields tilt eastward and poleward in the upper tro-

posphere and westward and poleward in the lower tropo-

sphere. The center of lower-tropospheric convergence

(asterisks in Figs. 4c,d), which coincides with the longitude

of vanishing zonal wind in the absence of background flow,

is shifted into a region of equatorial lower-tropospheric

easterlies by the overturning circulation.

We do not present the results in this paper, but argue

that it is clear that the ratio of the barotropic to the

baroclinic component of the eigenfunction increases

with increased coupling strength. The coupling strength

is proportional the maximum amplitude of the meridi-

onal circulation Vmax, inversely proportional to the lat-

itude of its maximum L, and proportional to the zonal

wavelength of the perturbation (} k21). For increasing

coupling strength, this mode, which was originally the

equatorially trapped Rossby wave, gains such a signifi-

cant barotropic component and loses its baroclinic

Rossby structure that it is no longer identifiable as a

Matsuno Rossby wave; effectively, the meridional cir-

culation shears the wave out of existence.

In general, a background circulation with first-

baroclinic vertical structure produces wave–wave

coupling between all consecutive vertical modes of

perturbation flows. In the two-layer study coupling takes

place between the barotropic and first-baroclinic modes.

A similar coupling, between the baroclinic equatorial

Rossby waves and the global (mostly extratropical) baro-

tropic Rossby wave is known to occur in the presence of

vertically sheared zonal flows In a similar two-level model,

Wang and Xie (1996) find that while meridionally sheared

zonal flows leave different vertical modes uncoupled,

vertically sheared zonal flows produce coupling between

the equatorial baroclinic Rossby waves and global baro-

tropic waves. Majda and Biello (2003) and Biello and

Majda (2004) demonstrate such a result for zonally long

waves and derived a weakly nonlinear theory for tropical–

extratropical Rossby interactions.
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Although the detailed sinusoidal structure of the

barotropic component of the wave as it approaches the

poles is a consequence of the global beta-plane ap-

proximation, in spherical geometry such waves are still

expected to escape the tropical waveguide. Therefore,

these results show that through the meridional circula-

tion the global barotropic plane wave component acts

as a conduit of Rossby wave energy between the tropics

and the extratropics. We leave to future work the ad-

ditional effect of a zonal background flow, but results

akin to those of Wang and Xie (1996) suggest that the

critical layer associated with a vertically sheared zonal

flow does not prevent the barotropic component of the

flow from penetrating to midlatitudes.

d. Kelvin waves tilted west with height

Figure 5 shows the amplitudes of a zonal wave-

number-2Kelvin wave’s horizontal wind in the absence

of all background flow (Fig. 5a) and in the presence of an

overturning circulation (zonal and meridional wind,

Figs. 5b and 5c, respectively). In the presence of a

moderate meridional circulation, the Kelvin wave

acquires barotropic zonal and meridional wind com-

ponents that are comparable in magnitude to the

Rossby wave’s barotropic wind response to a back-

ground circulation (see Fig. 3). However, while the

overturning circulation endows westward-traveling

Rossby waves with a global barotropic component,

the same is not true for the eastward-propagating

Kelvin wave; the barotropic component of the cou-

pled Kelvin wave is equatorially trapped. This is a

consequence of the fact that Rossby waves cannot

propagate eastward in the midlatitudes in the ab-

sence of shear. Put in terms of the equations, we see

that a coupled Kelvin wave has a positive (eastward)

frequency, and the barotropic equatorial equations

when solved with a positive frequency yield expo-

nentially decaying solutions.

FIG. 3. Horizontal wind amplitudes of the gravest baroclinic Rossby wave of zonal wavenumber 2 (a),(c) without

background circulation and (b),(d) in the presence of background circulation with maximummeridional velocity of

0.5m s21, showing the (top) zonal and (bottom) meridional velocity component of the waves. Solid lines indicate

baroclinic components while dashed lines indicate barotropic components. The zonal and meridional components

are not in phase; the lower-tropospheric baroclinic zonal and barotropic meridional winds attain the amplitudes

depicted 5000 km (1/4 period) east of the longitude where the lower-tropospheric baroclinic meridional and bar-

otropic zonal winds attain the depicted amplitudes.
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The Kelvin wave’s induced baroclinic meridional

wind is a full order of magnitude smaller than its induced

barotropic meridional wind. Investigating convectively

coupled waves propagating along a symmetric ITCZ,

Dias and Pauluis (2009) also find an induced meridional

wind. However, the induced meridional wind in Dias

and Pauluis (2009) increases with zonal wavenumber,

since convective coupling plays a much larger role at

small scales. The induced meridional wind in this

paper increases with decreasing wavenumber since the

meridional background circulation has the largest effect

on the largest-scale waves.

Figure 6 shows the horizontal wind fields in the upper

and lower troposphere for a Kelvin wave in the presence

of a 3.5m s21 background circulation. The Kelvin wave

in the absence of background flow is entirely first baro-

clinic, meaning that the wave displays neither eastward

nor westward tilt with height (the nodal curve of zonal

velocity is a vertical line), nor does it have a meridional

component of velocity.When the overturning circulation is

FIG. 4. Horizontal velocities and streamfunction in the (top) upper troposphere and (bottom) lower troposphere

of a Rossby wave of zonal wavenumber 2. (a),(c) The Matsuno equatorial Rossby wave in the absence of back-

ground circulation; (b),(d) baroclinic/barotropic Rossby waves coupled by a background circulation withmaximum

meridional velocity V5 0:5 m s21. In (c) and (d), asterisks indicate the center of convergence.

FIG. 5. Zonal wind amplitudes of the Kelvin wave of zonal wavenumber 2 (a) in the absence of background circulation and (b) in the

presence of background circulation withmaximummeridional velocity of 2m s21. Solid lines indicate baroclinic components while dashed

lines indicate barotropic components. (c) The meridional velocity of the Kelvin wave in the presence of a 2m s21 meridional circulation

[corresponding to the zonal velocity of (b)]. The uncoupled Kelvin wave in (a) carries no meridional velocity. The zonal and meridional

velocities are not in phase; the lower-tropospheric baroclinic zonal and barotropic meridional winds attain the amplitudes depicted

5000 km (1/4 period) east of the longitude where the lower-tropospheric baroclinic meridional and barotropic zonal winds attain the

depicted amplitudes.
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introduced, and the Kelvin wave acquires a barotropic

circulation, it also acquires a meridional velocity field

and an unambiguously westward tilt with height. The

induced barotropic component’s maxima and min-

ima lag those of the lower-tropospheric baroclinic

wave, resulting in the eastward shift of the upper-

tropospheric component relative to the lower. Since

this shift is away from a purely first-baroclinic profile,

the overall result is a westward tilt. In Fig. 6c the

westward tilt with height of the zonal wind in the

coupled Kelvin wave is evident. The tilt increases with

increasing strength of background circulation (Fig. 6)

and consequently, the coupled Kelvin wave acquires a

zonal wind in the midtroposphere where, for a solely

first-baroclinic Kelvin wave, there is none. The mid-

tropospheric wind is westward above the maximum of

lower-tropospheric convergence.

It is notable that the westward tilt coincides with that

of observed convectively coupled Kelvin waves and in

the waves embedded in the Madden–Julian oscillation

(Kiladis et al. 2011; Zhang 2005). While we do not want

to overstate the importance of this tilt, it does suggest a

mechanism for the initiation of, and constructive feed-

back to, tilted (and therefore coherent) convective

FIG. 6. Horizontal velocities and convergence in the (a) upper and (b) lower troposphere for

a Kelvin wave of zonal wavenumber 2 in the presence of background circulation having

maximum meridional velocity of 3.5m s21. Solid (dashed) contours represent divergence

(convergence). (c) The zonal velocity contours of the sameKelvin wave, meridionally averaged

in the region within 1000 km of the equator. Solid (dashed) contours represent eastward

(westward) flow.
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waves. It is also notable, albeit unphysical, that reversing

the direction of the overturning circulation, so that air

descends at the equator, results in an eastward tilt with

height for the Kelvin wave. This may suggest that trop-

ical ascent and westward tilt are inherent features of

rotating, convective systems irrespective of the convec-

tive parameterization.

e. Barotropic Rossby waves’ equatorially trapped
baroclinic response

Figure 7 shows the amplitudes of the horizontal winds

for two barotropic waves in the presence of the same

background circulation. At left is plotted a wave whose

wave speed (eigenvalue) does not match any baroclinic

solutions to the decoupled equations but falls between

two of them (it is nonresonant with a speed is 14ms21,

while two baroclinic Rossby waves have speeds of

16.67 and 10m s21). At right is plotted a wave whose

wave speed is higher than any zonally long westward-

traveling baroclinic wave. The baroclinic response to the

wave at left is an order of magnitude larger than the

response to the wave at right. Additionally, the response

to the wave at left is similar in meridional structure to a

baroclinic Rossby wave of a similar frequency (the

gravest baroclinic Rossby wave, as in Figs. 3a,c).

In the absence of background flow, the solutions to

the barotropic portion of the two-layer model [Eqs.

(8d)–(8f)] are westward-traveling barotropic plane

waves. The effect of the overturning circulation is to

produce an equatorially trapped baroclinic component

FIG. 7. Horizontal wind amplitudes of barotropic free Rossby waves of zonal wavenumber 2 in the presence of

background circulation with maximum meridional velocity of 0.5m s21. Since there is a continuous spectrum of

barotropic Rossby waves, these panels show the waves whose wave speeds (eigenvalues) do not match the wave

speeds of the equatorially trapped (Matsuno)Rossbywaves;f in the heading is the eigenvalue (wave speed) of each

mode. Solid (dashed) lines indicate baroclinic (barotropic) components. (a),(c) Waves whose phase speed of

14m s21 falls within the range of the baroclinic Rossby waves’ speeds; (b),(d) waves whose phase speed of 25m s21

is faster than all of the baroclinic Rossby waves, with results shown for the (top) zonal and (bottom) meridional

components of the eigenfunctions. The various components are not in phase; the lower-tropospheric baroclinic

zonal and barotropic meridional winds attain the amplitudes depicted 5000 km (1/4 period) east of the longitude

where the lower-tropospheric baroclinic meridional and barotropic zonal winds attain the depicted amplitudes.
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in these flows. Similar to the effect on baroclinic Rossby

waves, the ratio of the amplitudes of baroclinic to baro-

tropic components depends on wavenumber, on the

strength of background circulation, and on the near-

ness in frequency of the uncoupled barotropic wave to

any baroclinic Rossby wave; in particular, barotropic

waves whose wave speed is faster than any baroclinic

Rossby wave develop only small projections onto the

baroclinic mode.

In the case of baroclinic and barotropic modes whose

frequencies match or nearly match, the ratio between

amplitudes of baroclinic and barotropic components is

close to unity in the presence of moderate background

circulation, and baroclinic and barotropic solutions ap-

pear similar to one another, with a relative phase shift

between barotropic and baroclinic components. Figure 8

depicts a barotropic free Rossby wave (Figs. 8a,c) and a

baroclinic equatorial Rossby wave (Figs. 8b,d) of similar

phase speeds in the presence of moderate background

circulation. Their baroclinic components are virtually

identical; the barotropic components are distinguished

by a phase shift of 1808 and a moderate decrease in

strength. The ratio of barotropic to baroclinic compo-

nents is larger for the wave moving at the speed of an

uncoupled, classical barotropic plane wave, although the

barotropic components of the two waves are approxi-

mately the same strength.

The barotropic zonal component of the barotropic

wave (Figs. 8a,c) is depressed at the equator while the

barotropic zonal component of the baroclinic wave

(Figs. 8b,d) attains its global maximum at the equator.

The corresponding horizontal wind fields are plotted in

the upper and lower troposphere in Fig. 9 (the baro-

tropic wave) and Fig. 10 (the baroclinic wave). There is a

FIG. 8. Horizontal wind amplitudes of (a),(c) a barotropic free Rossby wave and (b),(d) a baroclinic Rossby wave

with similar phase speeds; both have zonal wavenumber 2 and are in the presence of background circulation with

maximummeridional velocity of 0.5m s21. Since there is a continuous spectrum of barotropic Rossby waves, these

panels show the waves whose wave speed is nearly resonant with the equatorially trapped Matsuno Rossby wave

(which travels at 16.6m s21); f in the heading is the wave speed (eigenvalue) of each mode. Solid (dashed) lines

indicate baroclinic (barotropic) components; results are shown for (top) zonal and (bottom) meridional compo-

nents of the eigenfunctions. The various components are not in phase; the lower-tropospheric baroclinic zonal and

barotropic meridional winds attain the amplitudes depicted 5000 km (1/4 period) east of the longitude where the

lower-tropospheric baroclinic meridional and barotropic zonal winds attain the depicted amplitudes.
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distinct meridional inflow and outflow from the equa-

torial region corresponding to a meridional tilt, which

itself is more pronounced in the baroclinic wave

(Fig. 10).

4. Discussion

The IMMD theory is used to analyze zonally long

waves on an equatorial beta plane in the presence of

an overturning background circulation representing

the meridional and vertical components of an ideal-

ized Hadley cell. In the resulting linear equations, the

energy of the perturbation is both positive definite

and conserved; therefore all eigenfunctions are neu-

trally stable. In a two-layer model, solutions are found

to be modified baroclinic equatorial Rossby and

Kelvin waves along with global barotropic plane

waves. The overturning circulation produces coupling

between the baroclinic waves and compatible baro-

tropic components.

The equatorially trapped Rossby waves acquire a si-

nusoidal barotropic component that extends into the

middle latitudes. The amplitude of the barotropic wind

relative to the baroclinic wind increases with increasing

magnitude of the background circulation, with an in-

creasing zonal wavelength of the wave, and with the

proximity of the baroclinic wave frequency (the eigen-

value) to that of a barotropic plane wave solution in the

absence of background flow. In numerical studies, the

inclusion of a realistic zonally averaged zonal flow did

not prevent the barotropic component from extending

to the midlatitudes.

FIG. 9. Horizontal velocities and streamfunction in the (a) upper and (b) lower troposphere

of a barotropic free Rossby wave of zonal wavenumber 2 with background circulation having

maximum magnitude of meridional velocity V5 0:5 m s21. The meridional extent of the do-

main is such that the wave’s frequency matches that of a baroclinic equatorial Rossby wave in

the absence of background flow. In (b), asterisks indicate the center of convergence. Wind

amplitudes are plotted in Figs. 8a and 8c.
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The Kelvin wave also acquires a barotropic compo-

nent. However, its barotropic component is equatorially

trapped and does not enable energy exchange with the

extratropics. The most prominent effect of the Kelvin

wave’s coupling to its barotropic component is a west-

ward tilt with height in the resulting zonal wind field.

In numerical experiments, the Kelvin wave’s vertical

tilt is unaffected by the addition of a realistic zonal

background flow.

In observations, equatorial Kelvin waves also exhibit

westward tilt with height. Using space–time power

spectra to isolate Kelvin wave signatures in radiosonde

data, Kiladis et al. (2011) show westward-tilted zonal

wind profiles for the wave above the island of Majuro; at

the same location, Ogrosky and Stechmann (2016)

identify the Kelvin wave by its theoretical eigenvector,

including a first-baroclinic vertical structure, and find

the same westward vertical tilt. Guo et al. (2014) study

equatorial Kelvin waves over South America and the

Atlantic Ocean, finding that the magnitude of vertical

tilt varies during the various phases of the MJO, but is

always westward with height. Many studies [including

Mapes (2000)] have highlighted the role of the second

baroclinic component of convection as a primary

mechanism for creating tilt in equatorial waves. The

result of this study does not contradict previous studies,

but it provides an additional mechanism. That is to say, a

meridional circulation that is generated by convection—

convection whose zonal tilt is irrelevant because aver-

aging on the planetary scales washes out any tilts—

spontaneously creates westward tilts with height in the

Kelvin waves that travel through it.

FIG. 10. As in Fig. 9, but for a baroclinic Rossbywave. Themeridional extent of the domain is

such that the wave’s frequency matches that of a barotropic free Rossby wave in the absence of

background flow. Wind amplitudes are plotted in Figs. 8b and 8d.
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A minimum frequency cutoff for the existence of

zonally long equatorial waves depends on themagnitude

of the background flow’s meridional convergence near

latitudes where it vanishes. Whether waves in nature are

subject to such a cutoff is unclear; space–time power

spectra [as in Wheeler et al. (2000)] often display a gap

between the lowest-frequency Kelvin wave and the

MJO’s signal, but for westward-propagating waves

such a gap is not clear. On the other hand, whenOgrosky

and Stechmann (2016) undertake to identify the gravest

equatorial Rossby wave by its eigenfunction, the re-

sulting power spectrum bears little resemblance to the

theoretical dispersion relation. Therefore, it may be the

case that part of the spectrum usually associated with

Rossby waves actually corresponds to some other

structures.

The relationship between the Kelvin wave’s minimum

frequency and the features of the background circula-

tion is to be investigated in a future work as is the pos-

sible role played by the overturning background

circulation in marshaling the transition between the

MJO and Kelvin wave (Roundy and Kiladis 2006; Sobel

and Kim 2012).

The main limitation of this study is the simplicity of

the background profile, which is centered on the equator

and invariant in time and space. In reality the Hadley

cell varies in strength and space on seasonal time scales,

and the observed planetary-scale meridional wind’s

projection onto zonal wavenumber 1may exceed its

zonally averaged strength. Incompressible meridional–

vertical background flow is here shown to produce no

growing long wave disturbances. However, Powell and

Houze (2015) observe anomalous large-scale verti-

cal motion leading the MJO events recorded by the

DYNAMO field campaign. Therefore, some assump-

tions in this model will be relaxed to allow for back-

ground zonal variation in concert with destabilizing

upscale fluxes, and a source of instability, particularly

one leading to MJO initiation, sought therein. Addi-

tionally, the true Hadley cell’s overturning circulation is

coupled to a zonal component that is absent from this

study. Investigation into the effects of a background flow

that varies in space and time and has a nonzero zonal

component is needed. Work is also underway to de-

termine how upscale fluxes from the synoptic scales af-

fect solutions; results will be reported elsewhere.
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APPENDIX A

Derivation of the Two-Layer Model

We now derive in detail the two-layer system [Eq. (8)]

from the three-dimensional system of anomalies [Eq.

(6)], which, according to Eq. (5a), can be rewritten as

u
t
1 (Vu)

y
1 (Wu)

z
2 yy1 p

x
5 0, (A1a)

yu1 p
y
5 0, (A1b)

p
z
2 u5 0, (A1c)

u
x
1 y

y
1w

z
5 0, and (A1d)

u
t
1 (Vu)

y
1 (Wu)

z
1w5 0: (A1e)

We consider these equations over the domain

0# z#p. Define the characteristic functions

x
1
5 x

[p/2,p]
, x

2
5 x

[0,p/2]
; (A2)

then an orthogonal basis for a two-layer model is

given by

f
0
5 x

1
1 x

2
and (A3)

f
1
5 x

2
2 x

1
, (A4)

(f0 describes the barotropic mode and f1 the baroclinic

mode). Finally, define

l(z)5

�
z , z,p/2 ,

p2 z , z.p/2 .

Then dl(z)/dz5f1.

We consider horizontal perturbation velocities u and

y and pressure perturbations p projected onto the basis

functions f0 and f1, while the vertical velocity w and

potential temperature u are projected onto a (note that

this choice agrees with the vertical boundary conditions

discussed in section 2f):

u5 u
0
(x, y, t)f

0
(z)1 u

1
(x, y, t)f

1
(z) , (A5a)

y5 y
0
(x, y, t)f

0
(z)1 y

1
(x, y, t)f

1
(z) , (A5b)

w5w
1
(x, y, t)l(z) , (A5c)

p5 p
0
(x, y, t)f

0
(z)1 p

1
(x, y, t)f

1
(z), and (A5d)

u5 u
1
(x, y, t)l(z) . (A5e)

This is equivalent to the method of Wang and Xie

(1996), who evaluate potential temperature and vertical
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velocity at the midtroposphere and all other variables at

both the middles of the upper and lower troposphere.

We also impose that the large-scale heating is pro-

portional to a, so it is strongest at and symmetric about

the middle troposphere; as a consequence, the ver-

tical background velocity W is proportional to a,

while the meridional background velocity is pro-

portional to f1:

V5V
1
(y)f

1
(z) and (A6a)

W5W
1
(y)l(z) . (A6b)

The background incompressibility [Eq. (5a)] is then

given by

V
1y
1W

1
5 0, (A7)

which is eventually used to eliminate W.

Projecting the anomaly equations for horizontal

momentum [Eqs. (A1a) and (A1b)] and continuity

[Eq. (A1d)] onto the barotropic basis function yields

u
0t
1 (V

1
u
1
)
y
2 yy

0
1 p

0x
5 0, (A8a)

yu
0
1 p

0y
5 0, and (A8b)

u
0x
1 y

0y
5 0, (A8c)

and projecting them onto the baroclinic basis function

yields

u
1t
1 (V

1
u
0
)
y
1W

1
u
0
2 yy

1
1 p

1x
5 0, (A9a)

yu
1
1 p

1y
5 0, and (A9b)

u
1x
1 y

1y
1w

1
5 0: (A9c)

Projecting the remaining two equations onto l(z)

produces

2p
1
5 u

1
and (A10a)

u
1t
1w

1
5 0, (A10b)

which are used to eliminate w1 from Eq. (A9c):

u
1x
1 y

1y
1 p

1t
5 0: (A11)

Background incompressibility [Eq. (A7)] is now used to

eliminate the background vertical momentum from the

baroclinic zonal momentum equation [Eq. (A9a)],

u
1t
1 (V

1
u
0
)
y
2V

1y
u
0
2 yy

1
1 p

1x
5 0, (A12)

or, equivalently,

u
1t
1V

1
u
0y
2 yy

1
1 p

1x
5 0: (A13)

Finally, discarding the subscript 1 of the background

meridional circulation yields the two-layer system

[Eq. (8)].

APPENDIX B

Rescaling the Eigenvalue Problem

Define the new variables (~u0, ~y0, ~p0, ~u1, ~y1, ~p1)5
(2iû0, 2k21ŷ0, 2ip̂0, û1, 2ik21ŷ1, p̂1). The rescaled

baroclinic zonal velocity and pressure are the same as

the original zonal velocity and pressure. The barotropic

zonal velocity and pressure are rescaled by a factor

of2i, which corresponds to a quarter-period phase shift

in the zonal direction. Therefore, all the eigenfunctions

will have barotropic and baroclinic zonal wind and

pressure components that are shifted by a quarter period

from one another. The baroclinic meridional velocity is

also rescaled by a factor of 2i, so it will be shifted by a

quarter period from the baroclinic zonal velocity; this is

expected from the two components of the velocity field

of a stable wave. The barotropic meridional velocity is

shifted by a quarter period from the barotropic zonal

velocity; again, this is expected from the two compo-

nents of the velocity field of a stable wave. The last as-

pect of the rescaling is that both meridional components

of the velocity are rescaled by k. This is exactly the

scaling of the meridional velocity that occurs in the

long-wave approximation of the equatorial waves. It

is a consequence of the fact that for meridionally

trapped waves (like equatorial Rossby waves), the

meridional component of the velocity fields becomes

weaker as the zonal wavelength increases (Majda and

Biello 2003). The eigenvalue problem in the rescaled

variables is

�
V

k

�
›
y
~u
0
2 y~y

1
1 ~p

1
5 c~u

1
, (B1a)

y~u
1
1 ›

y
~p
1
5 0, (B1b)

~u
1
1 ›

y
~y
1
5 c~p

1
, (B1c)

2›
y

��
V

k

�
~u
1

�
2 y~v

0
1 ~p

0
5 c~u

0
, (B1d)

y~u
0
1 ›

y
~p
0
5 0, and (B1e)

~u
0
1 ›

y
~y
0
5 0: (B1f)

This is a system of ordinary differential equations with

real valued coefficients that, sincewe have shown that all

waves are stable, will have real eigenvalues c. The

background meridional velocity V and the zonal wave-

number of the perturbation k only appear in the
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combination V/k. This scaling feature means that a

meridional circulation with magnitude jVj5 2 will have

the same effect on a wavenumber k5 4 wave as would

a circulation of jVj5 1 on a wavenumber k5 2 wave;

this reduces the size of the parameter space.
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