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ORIGINAL ARTICLE

1264
A20 and ABIN1 Suppressio
n of a Keratinocyte
Inflammatory Program with a Shared Single-Cell
Expression Signature in Diverse Human Rashes

Paymann Harirchian1, Jerry Lee1, Stephanie Hilz2, Andrew J. Sedgewick3, Bethany E. Perez White4,
Michael J. Kesling5, Thaddeus Mully6, Justin Golovato3, Matthew Gray3, Theodora M. Mauro1,
Elizabeth Purdom7, Esther A. Kim8, Hani Sbitany8, Tina Bhutani9, Charles J. Vaske3, Stephen C. Benz3,
Raymond J. Cho9,10 and Jeffrey B. Cheng1,10
Genetic variation in the NF-kB inhibitors, ABIN1 and A20, increase risk for psoriasis. While critical for he-
matopoietic immune cell function, these genes are believed to additionally inhibit psoriasis by dampening
inflammatory signaling in keratinocytes. We dissected ABIN1 and A20’s regulatory role in human keratinocyte
inflammation using an RNA sequencingebased comparative genomic approach. Here we show subsets of the
IL-17 and tumor necrosis factorea signaling pathways are robustly restricted by A20 overexpression. In contrast,
ABIN1 overexpression inhibits these genes more modestly for IL-17, and weakly for tumor necrosis factorea.
Our genome-scale analysis also indicates that inflammatory program suppression appears to be the major
transcriptional influence of A20/ABIN1 overexpression, without obvious influence on keratinocyte viability
genes. Our findings thus enable dissection of the differing anti-inflammatory mechanisms of two distinct
psoriasis modifiers, which may be directly exploited for therapeutic purposes. Importantly, we report that
IL-17einduced targets of A20 show similar aberrant epidermal layer-specific transcriptional upregulation in
keratinocytes from diseases as diverse as psoriasis, atopic dermatitis, and erythrokeratodermia variabilis,
suggesting a contributory role for epidermal inflammation in a broad spectrum of rashes.

Journal of Investigative Dermatology (2019) 139, 1264e1273; doi:10.1016/j.jid.2018.10.046
INTRODUCTION
Specific blockade of immune cell signaling pathways has
sharply expanded the efficacy and diversity of dermatologic
therapies in the past 2 decades. Systemic biologic treatments
that block tumor necrosis factor (TNF)-a and IL-17 function
(e.g., infliximab and secukinumab, respectively) now repre-
sent some of the most effective psoriasis therapies (Langley
et al., 2014; Reich et al., 2005). The cytokine TNF-a,
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produced mainly by activated macrophages, is increased in
psoriatic skin and believed to accelerate epidermal immune
cell infiltration and induce dendritic cell activation (Uchi
et al., 2000). IL-17, a cytokine produced by T helper type
17 and innate lymphoid cells (Cua and Tato, 2010), poten-
tiates inflammatory states by stimulating keratinocyte secre-
tion of proinflammatory mediators and recruiting neutrophils
and other inflammatory cells (Ogawa et al., 2018). In in-
flammatory skin diseases such as psoriasis, TNF-a and IL-17
synergistically augment dysregulated immune response
(Krueger and Brunner, 2018).

These infiltrating immune cells clearly play a fundamental
role in cutaneous inflammation. However, recent attention has
turned to the immunologic role of target tissues in inflammatory
disease. In psoriasis, keratinocytes themselves influence and
establish the inflammatory milieu by producing an array of in-
flammatory cytokines, such as TNF-a, ILs, and IFNs (Rupec
et al., 2010), while also undergoing abnormal differentiation
and hyperproliferation. Molecular abnormalities occurring
primarily in the epidermis cause other rashes, including pityri-
asis rubra pilaris, ichthyoses, and erythroderma keratodermia
variabilis. These conditions,which share the clinical phenotype
of inflammatory scaly plaques, all show histopathologically
scant immune cell infiltrates, underscoring the importance of
keratinocyte-driven inflammation (Hanifin, 2009).

NF-kB activation, a common pathway downstream of both
TNF-a and IL-17, has been implicated recurrently in
keratinocyte-driven rashes. Gain-of-function mutations in
CARD14, an NF-kB activator, underlie familial forms of
uthors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.

https://doi.org/10.1016/j.jid.2018.10.046
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pityriasis rubra pilaris (Fuchs-Telem et al., 2012). The rare
inherited ichthyoses, often caused by genes important for
epidermal barrier establishment, typically manifest early in
childhood with cutaneous inflammation, diffuse scaling, and
barrier defects. It has recently been noted that ichthyotic skin
displays a strong IL-17 dominant immune profile, also sug-
gestive of a link between epidermal-based dysfunction and
NF-kBemediated inflammation (Paller et al., 2017). Eryth-
rokeratodermia variabilis is a rare genetic disorder charac-
terized by migratory erythematous scaly plaques. The
majority of cases are due to loss-of-function connexin gap
junction mutations (Scott et al., 2012), which appear to
activate keratinocyte-autonomous inflammatory programs,
although NF-kB has not been established as the central
pathway.

NF-kB signaling is critical for both innate and adaptive
immunity, as well as epidermal homeostasis. In its baseline
inactive state, the NF-kB transcription factor complex is
bound to the inhibitory protein IkBa and sequestered in the
cytoplasm (Mitchell et al., 2016). Canonical NF-kB activation
occurs through phosphorylation of IkBa by the IkB kinase
complex (Mercurio et al., 1997). IkBa is then ubiquinated
and degraded by the proteasome, releasing NF-kB for nuclear
translocation and subsequent transcriptional activation.
Multiple human linkage studies and mouse models have
demonstrated a role for NF-kB signaling pathway alterations
in autoimmune disease and inflammatory skin disease (Sun
et al., 2013). For example, genome-wide association studies
in psoriasis, rheumatoid arthritis, and systemic lupus ery-
thematosus have identified the NF-kB signaling pathway
genes ABIN1 (G’Sell et al., 2015; Nair et al., 2009), A20
(Catrysse et al., 2014), and CARD14 (Jordan et al., 2012) as
disease susceptibility loci.

The NF-kB inhibitors A20 (encoded by TNFAIP3) and
ABIN1 (encoded by TNIP1) are well established as regulators
of hematopoietic immune cell activity (Zhou et al., 2011).
The adapter protein ABIN1 physically links the A20 deubi-
quitinase to the IkB kinase complex, where A20 deubiqui-
nates and inactivates IkB kinase to prevent phosphorylation
and inactivation of the NF-kB inhibitor IkBa. Immune cell-
specific deletions of A20 or ABIN1 in mice produce a wide
variety of systemic hyperinflammatory phenotypes, reminis-
cent of systemic lupus erythematosus and rheumatoid
arthritis (Catrysse et al., 2014; G’Sell et al., 2015). Recently,
however, experimental manipulation has also revealed a role
for A20 and ABIN1 in keratinocyte-mediated inflammation.
In response to inflammatory stimuli (imiquimod and IL-17),
ABIN1 epidermal depletion in mice enhances chemokine
expression (Ippagunta et al., 2016). Correspondingly, HaCaT
human keratinocyte cultures exposed to the double-stranded
RNA mimic Poly (I:C) markedly increase inflammatory gene
expression when ABIN1 is depleted (Rudraiah et al., 2018).
While a link between A20 depletion and epidermal inflam-
mation has not been shown yet, its overexpression in HaCaT
cells represses a small set of profiled cytokines when exposed
to Poly (I:C) (Sohn et al., 2016).

Inhibition of target tissue inflammation may improve a
broad range of rashes and could potentially lead to localized
treatments that avoid the serious side effects that can
accompany systemic immunosuppression. While localized
repression of NF-kB signaling may represent one such strat-
egy, a full accounting of the ability for A20 and ABIN1 to
suppress keratinocyte inflammation has not been reported,
nor has their potential non-inflammatory effects. Here we
report a global transcriptional analysis of the inflammation
repressing effects of the NF-kB inhibitory binding partners,
A20 and ABIN1, in human keratinocytes. We show that
overexpressed A20 is a more potent inhibitor of keratinocyte
inflammation than ABIN1, in the context of IL-17A or TNF-a
cytokine stimulation. Single cell RNA sequencing of
epidermis from diverse rashes revealed a common inflam-
matory gene expression signature, the genes of which were
repressed by A20 overexpression in primary keratinocyte
culture.

RESULTS
We utilized lentivirus to overexpress A20 and ABIN1 in pri-
mary normal human epidermal keratinocyte (NHEK) culture,
leading to a w1,300 and 500% increase in protein expres-
sion, respectively (Supplementary Figure S1 online). RNA
sequencing was performed on mock-infected (GFP), A20, or
ABIN1 overexpressing NHEK cells to assess global expression
patterns. The edgeR software package (Robinson et al., 2010),
which uses an overdispersed Poisson model to address bio-
logical and technical variability, was used to identify genes
differentially expressed between treatment conditions. We
first examined downregulation of inflammation-related
genes, given the known roles of A20 and ABIN1 in sup-
pressing inflammation. Under standard (no cytokine stimu-
lation) culture conditions, expression of relatively few
inflammatory genes, or genes overall, were repressed by A20
or ABIN1 overexpression in NHEK cells (Figure 1). A20
overexpression downregulated 53 genes (log2 fold-change
[FC] < e0.5, false discovery rate [FDR] < 0.05)
(Supplementary Table S1a online), among these were several
inflammatory genes, such as CXCL1, C1R, IL24, IL32,MMP9,
and SAA1. ABIN1 repressed fewer genes (31 overall genes
with log2 FC < e0.5, FDR < 0.05) (Supplementary
Table S1b), including a subset of the A20 repressed inflam-
matory genes (C1R, IL32, MMP9, and SAA1), with similar or
slightly greater effect than A20.

Given the relatively modest gene regulatory effects exerted
by overexpression of these two genes under standard culture
conditions, we next sought to understand their regulatory
power when challenged with inflammatory stimuli. We uti-
lized the pro-inflammatory cytokines IL-17A and TNF-a,
given their known roles and specific blockade by biological
therapeutics in cutaneous inflammatory disease. To better
understand the specific roles for A20 and ABIN1 in each of
these cytokines’ signaling pathways, we stimulated keratino-
cytes with single cytokine exposure. RNA sequencing was
performed on mock-infected (GFP), A20, and ABIN1 over-
expressing NHEK cells that were cytokine stimulated with
either IL-17A or TNF-a for 1 or 24 hours.

We used expression data from mock-infected (GFP
expressing) keratinocytes as a proxy for cytokine stimulation
of phenotypically normal keratinocytes. Incubation of these
keratinocytes with IL-17A for 24 hours led to greater tran-
scriptional upregulation of genes than at 1 hour (131 to 36
genes, respectively (log2 FC > 0.5, FDR < 0.05)
www.jidonline.org 1265
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Figure 1. A20 and ABIN1 repress transcription of relatively few

inflammatory genes under unstimulated conditions. Relative expression (log2
fold-change) of inflammatory genes in A20 or ABIN1 versus mock-infected

(GFP) overexpressing keratinocytes. Data shown represent edgeR RNA-

sequencing differential expression results for six replicates for each

permutation (false discovery rate < 0.05 except for non-shaded bars).
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(Supplementary Tables S1d, S1e). We thus focused our
attention on the 24-hour IL-17A cytokine stimulation time
point. Consistent with previous reports, 24-hour IL-17A
exposure upregulated genes such as antimicrobial peptides
(DEFB4A, LCN2, and S100A7), CXC chemokines (CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8), and in-
terleukins (IL1A, IL1B, IL23A, IL24, IL33, and IL36G)
(Figure 2) (Chiricozzi et al., 2011; Nograles et al., 2008).

While overexpression of A20 in NHEK culture robustly
inhibited IL-17A (24-hour) induced inflammatory genes,
ABIN1 overexpression produced more modest effects
(Figure 2, Supplementary Tables S1e, S1f). With IL-17A
exposure, most of the few inflammatory genes repressed by
A20 overexpression under unstimulated conditions
continued to be repressed by a similar magnitude; however,
repression of an extended set of inflammatory genes became
evident, for example, DEFB4A, S100A7, S100A8, CCXL1,
CXCL3, CXCL5, CXCL6, CXL8, IL24, and IL36G (Figure 2).
Most of this set of genes were lowly expressed under standard
culture conditions before IL-17A stimulation. For ABIN1
overexpressing keratinocytes exposed to IL-17A (24-hour)
stimulation, the small set of inflammatory genes down-
regulated under baseline conditions also continue to be
repressed, along with repression of a similar extended set of
inflammatory genes as with A20 overexpression, albeit with
lesser effect (Figure 2). With 1 hour of IL-17A cytokine
stimulation, a similar pattern emerged where A20 over-
expression exhibited stronger inflammatory gene repressive
activity (both in terms of number of genes and degree of
repression) than ABIN1 (Supplementary Figure S2 online,
Supplementary Tables S1d, S1g, and S1h).

We next tested the effects of A20 and ABIN1 over-
expression on NHEK cells stimulated with either 1 or 24
hours of TNF-a exposure. We noted that the greatest modu-
lation by A20 or ABIN1 of inflammatory gene expression
occurred with 1 hour of TNF-a exposure, so we focused on
this time point. In mock-infected keratinocytes, 90 genes
were upregulated with 1 hour of TNF-a exposure (Figure 3,
log2 FC > 0.5, FDR < 0.05) (Supplementary Table S1i).
Similar to previous findings, upregulated genes include
neutrophil chemoattractants (e.g., CXCL1, CXCL2, CXCL3,
CXCL5, and CXCL8), ILs (IL16, IL1A IL1B, IL20, IL23A,
IL36G, and IL6), CCL20, ICAM1, CSF1/2, and TNF itself
(Banno et al., 2004).

As in the IL-17A stimulation experiments, A20 over-
expression strongly inhibited expression of inflammatory
genes induced by 1 hour of TNF-a exposure, repressing
w79% of all induced genes (Figure 3, log2 FC< e0.5, FDR <
0.05; Supplementary Table S1j). Similar to IL-17A exposure,
genes downregulated under baseline conditions continue to
be downregulated by A20 overexpression, despite an overall
increase in their absolute expression levels with TNF-a
stimulation. A20 repressed inflammatory genes that were
evident only upon TNF-a stimulation including CSF1/2,
ICAM1, TNF, chemokines (CCL20, CXCL1, CXCL2, CXCL3,
CXCL5, and CXCL8), and ILs/IL receptors (IL16, IL1A, IL1B,
IL6, IL24, IL20, IL23A, IL36G, and IL7R). In contrast, ABIN1
overexpression produced only a small effect, repressing 4/89
TNF-aestimulated genes, (e.g., IL20, CCL20, and C3) and
continued to repress genes that were already repressed at
Journal of Investigative Dermatology (2019), Volume 139
baseline (e.g., C1R, IL32,MMP9, and SAA1, Figure 3, log2 FC
< e0.5, FDR < 0.05) (Supplementary Table S1k). Twenty-
four-hour TNF-a exposure for ABIN1 and A20 over-
expressing keratinocytes showed similar trends with A20
clearly repressing inflammatory genes, such as chemokines
and ILs, although to a slightly lesser extent than with 1 hour
of TNF-a exposure. The ABIN1 overexpression effect was still
weak, although slightly more appreciable, with extended
TNF-a stimulation (Supplementary Figure S3 online,
Supplementary Table S1l, S1m, and S1n).

Given a potential association between keratinocyte
inflammation and differentiation (Schröder et al., 2006), we
next focused on the effects of A20 and ABIN1 overexpression
on keratinocyte differentiation. We noted that A20 repressed
late differentiation genes, such as small proline-rich proteins
(SPRR; SPRR2A, SPRR2G, and SPRR3), LCE genes (LCE1B,
LCE3D, and LCE3E), as well as the early differentiation
marker KRT1. ABIN1 did not consistently repress this set of
differentiation genes (Figure 4, log2 FC < e0.5, FDR < 0.05)
(Supplementary Tables S1a, S1b).

We were curious if our focus on inflammation had caused
us to overlook other transcriptional programs controlled by
A20 and ABIN1 that might complicate clinical treatment
strategies. We performed unsupervised hierarchical clus-
tering on 861 differentially expressed genes when comparing
the A20, ABIN1, or GFP (control) keratinocyte over-
expression, with and without 24 hours of IL-17A or TNF-a
stimulation permutations (FDR < 1 � 10e5 for each condi-
tion, six replicates each). These data are depicted as a heat
map in Figure 5. As expected, we noted inflammatory gene
clusters, with three groupings that were enriched for Gene
Ontology terms, such as immune response, immune system
response, and immune system process. One cluster repre-
sents genes strongly upregulated by IL-17A and down-
regulated by A20 and ABIN1 overexpression, characterized
by genes such as DEFB4A, CXCL6, SAA2, and CSF3. A sec-
ond cluster generally encompasses genes upregulated by
both TNF-a and IL-17A, and repressed by A20 and ABIN1
(e.g., C3, CXCL5, CSF2, and CXCL3). The third cluster rep-
resents a third set of inflammatory genes, containing genes,
such as IL32, C1R, MMP9, and TNF, that are more strongly
upregulated by TNF-a and downregulated by A20 and/or
ABIN1 overexpression.



0

1

2

3

4

5

6

7

8

SA
A2

DE
FB
4A

CS
F3

IL
36

G
S1
00
A7

SA
A1

SE
RP

IN
B4 C3

CX
CL
1

CX
CL
6

CX
CL
5

CX
CL
8 PI
3

CX
CL
3

S1
00
A8

LC
N
2

S1
00
A9

CX
CL
2

IL
1B IL
24

IL
23

A
PS
O
RS
1C

2
IL
1A C1
R

IL
32

M
M
P9

-4

-3

-2

-1

0

1

Lo
g2

 fo
ld

 c
ha

ng
e

IL-1724hr vs. untreated

A20 overexpression vs. GFP (both IL-1724hr)

ABIN1 overexpression vs. GFP (both IL-1724hr)

-1

-2

Figure 2. A20 robustly and ABIN1 modestly represses IL-17A induced inflammatory transcriptional programs. Top panel depicts relative expression (log2
fold-change) of mock-infected (GFP) keratinocytes incubated with IL-17A for 24 hours versus untreated mock-infected keratinocytes. Bottom panel depicts

relative expression (log2 fold change) for either A20 or ABIN1 overexpressing keratinocytes compared to mock-infected (GFP) keratinocytes, all samples treated

with IL-17A for 24 hours. Data shown represents edgeR RNA-sequencing differential expression results for six replicates for each permutation (false discovery

rate < 0.05 except for non-shaded bars).

P Harirchian et al.
Regulatory Role of ABIN1 and A20 in Keratinocyte Inflammation
We also noted non-inflammatory gene clusters that
showed regulation by TNF-a and/or A20/ABIN1 over-
expression. A small cluster is enriched for a set of cornifica-
tion and keratinization genes, such as small proline-rich
proteins (SPRR2E, SPRR2B, and SPRR2G) that are modestly
downregulated by A20 and weakly by ABIN1. Another
cluster includes genes strongly downregulated by TNF-a
treatment and is enriched for Gene Ontology terms, such as
chromatin (e.g., HIST1H1B and HIST1H2AC) and cell pro-
liferation (e.g., CCNA2 and CDC20). This cluster of genes
likely corresponds with genes affected by TNF-mediated
reduction in cell proliferation (Banno et al., 2004; Detmar
and Orfanos 1990). Lastly, we noted a cluster enriched for
cell adhesion genes (e.g., LAMA3, LAMB3, and ITGA5),
which is strongly upregulated by TNF-a without much effect
from A20 or ABIN1 overexpression. There was no clearly
assignable function or biological process associated with the
remaining gene clusters.

Given the greater repression of inflammation by A20
compared to ABIN1, we sought to understand whether ker-
atinocytes in psoriasis and other rashes display upregulation
of the A20 repressed gene sets discovered in our NHEK ex-
periments. Such a finding would suggest a potential
inflammation-suppressive effect of A20 in certain human
rashes that could be therapeutically targeted. We generated
single-cell RNA sequencing (scRNA-seq) expression data
from epidermis freshly isolated from three normal, three
psoriasis, one atopic dermatitis, and one erythrokeratodermia
variabilis skin samples, each of which was validated by a
board-certified dermatopathologist. To assess for whole
epidermis-level expression alteration, scRNA-seq data for
keratinocytes from each sample type were aggregated in bulk
and differential expression analysis between normal skin
samples and each of the disease types was performed using
limma-trend (Law et al., 2014a). Expression for 67 genes was
strongly increased in psoriatic epidermis (log2FC > 0.9,
adjusted FDR < 0.05) (Supplementary Table S2 online). In
our NHEK experiments, 49 genes were upregulated by 24
hours of IL-17A exposure (log2FC > 0.9, FDR < 0.05)
(Supplementary Table S1c). Ten genes overlapped between
these sets (S100A7, S100A8, S100A9, SPRR2A, PDZK1I, PI3,
SAA1, CRABP2, SERPINB3, and SERPINB4). Six of these 10
genes also overlapped with upregulated transcripts in the
erythrokeratodermia variabilis and atopic dermatitis samples
(log2FC > 0.9, FDR < 0.05) (Supplementary Table S2). Of the
10 genes that were upregulated in both psoriatic epidermis
and IL-17A stimulated NHEK cells, all but two were repressed
in our A20 overexpression 24-hour IL-17A exposure NHEK
experiments, suggestive of in vivo relevance for A20-
mediated gene repression in inflammatory skin disease
(FDR < 0.05) (Supplementary Table S1e).

If this set of A20 repressible inflammatory genes shared a
regulatory mechanism, indicative of a potentially targetable
common pathway, we might expect to see shared expression
dynamics corresponding with keratinocyte differentiation
(e.g., differing expression levels between basal and late
www.jidonline.org 1267
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differentiated keratinocytes). We examined our scRNA-seq
data by displaying transcript abundance for these genes and
KRT10 (which we used as a marker of keratinocyte differ-
entiation state) on a single-cell level (Figure 6). In normal
skin, these eight genes all showed decreased expression in
the most differentiated keratinocytes (as represented by
highest KRT10 expression). However, seven of these genes
showed coordinated aberrant upregulation in the most
differentiated keratinocytes in the psoriatic samples, sug-
gesting an epidermal layer-specific expression signature and
common therapeutically targetable mechanism. Many of
these genes also showed similar differentiation-related tran-
script upregulation in the erythrokeratodermia variabilis and
atopic dermatitis scRNA-seq data, suggesting that these A20
regulated inflammatory transcripts are more generally aber-
rantly expressed in diverse types of skin disease (Figure 6).

DISCUSSION
Numerous lines of evidence, from human disease linkage
analyses to mouse experimental models, attest to critical
roles for the NF-kB inhibiting partner proteins A20 and
ABIN1 in systemic and cutaneous inflammatory disease.
Given the increasing awareness of the role keratinocytes play
in potentiating inflammatory cutaneous disease, we focused
on the function of these two genes in keratinocyte inflam-
matory response. The combination of A20 and ABIN1
comparative analyses, RNA-seq, and cytokine stimulation
treatments enabled us to substantially expand upon previous
reports that focused on the effects of ABIN1 overexpression in
unstimulated HaCaT keratinocytes (Ramirez et al., 2015) or
on a small defined inflammatory gene set with A20
Journal of Investigative Dermatology (2019), Volume 139
overexpression in Poly (I:C)estimulated NHEK cells (Sohn
et al., 2016). Global transcriptional analysis of unstimulated
ABIN1 overexpressing HaCaT cells had previously identified
enrichment in repressed genes for the “immunological dis-
ease” biological process, without further exploration of spe-
cific inflammatory genes (Ramirez et al., 2015). We found
that under baseline unstimulated conditions, A20 and ABIN1
both repress a small set of inflammatory genes (e.g., C1R,
IL32, MMP9, and SAA1) (Figure 1).

More importantly, we discovered a robust and broader role
for A20 compared to ABIN1 in repressing inflammation
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BTG1
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TGFB1I1
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TRPV3
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KCTD11
MTSS1
IL1RN
PNLIPRP3
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HLA-G
ABCG1
MEG3
SERPINB7
BMP2
ABCA1
XYLT1
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TRNP1
PDIA4
ANXA6
HSPA5
ECE1
TRIM8
PXDN
CDA
CORO1A
MVP
TAPBP
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NRCAM
TRIM47
IFNAR2
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RRAS
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VAT1
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TICAM1
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Figure 5. Inflammation predominates the response to A20 and ABIN1 overexpression in the context of cytokine stimulation. Unsupervised hierarchical

clustering dendrogram and heatmap of gene RNA expression values. Each column represents RNA-sequencing counts per million values for one of six replicates

(three replicates each for two pooled keratinocyte isolates) for nine different treatment conditions (GFP-expressing [negative control], A20-overexpressing, or

ABIN1-overexpressing keratinocytes, with and without 24 hours of IL-17A or tumor necrosis factorea stimulation). Each row represents 1 of the 861

differentially expressed genes with false discovery rate <1 � 10e5. The color key represents for each row, deviation from the mean in standard deviations.

TNF, tumor necrosis factor.
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induced by the critical pro-inflammatory cytokines, IL-17A or
TNF-a. This suggests that modulating A20 activity may be a
more promising therapeutic target than ABIN1, given its
greater inflammation-repressing role. With IL-17A and TNF-a
exposure, both ABIN1 and A20 generally continued to
downregulate the few baseline repressed genes to a similar
extent, despite a greater overall expression level for cytokine
responsive genes. However, upon cytokine stimulation, dif-
ferences in A20 and ABIN1’s repressive effect on inflamma-
tory genes become more evident. With 24-hour IL-17A
simulation, a large set of inflammatory genes were repressed
by both A20 or ABIN1 overexpression:DEFB4A, C3, S100A7,
CXCL8, SAA2, CXCL5, CSF2, IL36G, SAA1, CXCL1, CXCL6,
IL24, IL74, CXCL3, S100A8, and CXCL22 (log2 FC < e0.5,
FDR < 0.05), although generally to a greater extent by A20.
However, there were a few genes uniquely repressed by A20,
including SERPINB4, S100A9, and LCN2. For TNF-a expo-
sure, common repressed genes by A20 or ABIN1 over-
expression include CCL20, IL32, C3, SAA1, IL32, IL20, and
C1R, but there were many genes uniquely repressed by A20,
including CXCL8, IL6, IL36G, CXCL5, IL1B, IL1A, CXCL1,
CXCL3, PI3, and IL23A (log2 FC < e0.5, FDR < 0.05). While
A20 repressed a large shared set of genes for both IL-17A or
TNF-a stimulation, genes that were repressed only with IL-
17A stimulation (e.g., DEFB4A, CSF3, SERPINB4, SAA2,
CXCL6, and LCN2) or only with TNF-a stimulation (e.g.,
TNF, CCL20, and ICAM1) generally had low baseline
expression levels before strong upregulation with the
respective cytokine. These results substantially expand upon
the five repressed inflammatory genes seen with A20 over-
expression in Poly (I:C)estimulated NHEK cells (Sohn et al.,
2016). For ABIN1, given its greater effect in the context of
IL-17A stimulation, genes such as CXCL5, CXCL8, DEFB4A,
IL36G, CXCL1, and CXCL3, were repressed only with IL-17A
stimulation and CCL20 was one of the few inflammatory
genes uniquely repressed in the context of TNF-a stimulation.

The differential repressive potency and gene targets of A20
and ABIN1 overexpression with IL-17A and TNF-a exposure
suggest unique roles for these two genes in modulating ker-
atinocyte inflammatory response. In the context of TNF-a
signaling, ABIN1 is believed to primarily function as a
facilitative adapter protein with A20 to inhibit NF-kB
www.jidonline.org 1269
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signaling, by preventing phosphorylation and inactivation of
the NF-kB inhibitor IkBa (G’Sell et al., 2015). A20 also em-
ploys additional inhibitory mechanisms, such as restricting
TNF receptor initiation of NF-kB and JNK signaling through
TRAF2 and RIP1 (Catrysse et al., 2014). We speculate that
overexpressed ABIN1 may readily saturate endogenous levels
of A20 so that increased expression in keratinocytes only
modestly correlates with functional activity when exposed to
TNF-a.

Both ABIN1 and A20 appear to independently inhibit IL-17
signaling. A20 inhibits TRAF6, a molecule required
for IL-17einduced NF-kB and MAPK signaling (Garg
et al., 2013). A20 also directly binds to and inhibits the
IL-17 receptor, an additional mechanism for inhibiting
IL-17einduced NF-kB and MAPK activation (Garg et al.,
2013). The role of ABIN1 in IL-17 signaling (e.g., whether
and how ABIN1 and A20 cooperatively interact to inhibit NF-
Journal of Investigative Dermatology (2019), Volume 139
kB activation as in TNF signaling) is less well defined; how-
ever, ABIN1 can inhibit IL-17 signaling independent of A20
(Cruz et al., 2017). Whether ABIN1 also directly interacts
with the IL-17 receptor like A20 also remains an open
question. ABIN1’s greater inflammation-repressing effects in
the context of IL-17A stimulation (compared to TNF-a), likely
arise from its A20-independent role in IL-17 repression.
ABIN1’s lower overall activity compared to A20 may stem
from its inability to bind the IL-17 receptor or inhibit other
A20-specific functions. Alternatively, the greater levels of
A20 protein overexpression compared to ABIN1 may ac-
count for its greater overall inflammatory repression. How-
ever, this appears unlikely, given that expression levels for
both proteins are increased by at least fivefold.

Our results also punctuate the importance of keratinocyte-
mediated inflammation and thus its potential as a target for
clinical intervention. By utilizing single-cell RNA-seq on
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rash-affected epidermis, we identified a set of epidermal
layer-specific, IL-17Aeinducible inflammatory transcripts in
diverse skin diseases, such as psoriasis, eczema, and eryth-
rokeratodermia variabilis, that are repressed by A20 over-
expression. While systemic blockade of cytokine signaling
pathways, such as IL-17A and TNF-a, have had immense
therapeutic benefit in patients, the ability to specifically block
their effect in a readily accessible target tissue, such as skin,
would be highly desirable in minimizing the systemic side
effects of these potent immunosuppressants. Based on our
findings, we hypothesize that in vivo upregulation of cuta-
neous A20 activity may represent a therapeutic path to
dampen target tissue inflammation in diverse inflammatory
skin diseases.

MATERIALS AND METHODS
Keratinocyte isolation and primary culture

Primary human keratinocyte cultures were isolated from neonatal

foreskins as described previously (Lowdon et al., 2014). Written

informed consent for surgical tissue discards was obtained using

protocols approved by the University of California, San Francisco

Institutional Review Board. Briefly, skin was incubated overnight at

4�C in 25 U/ml dispase solution (Corning Life Sciences, Corning,

NY), followed by mechanical separation of epidermis from dermis.

Epidermis was incubated in 0.05% trypsin for 15minutes at 37�C.
Dissociated epidermal cells were filtered using a 100-mm nylon cell

strainer (Corning Life Sciences) and cultured in keratinocyte growth

media (KGM; Medium 154CF supplemented with 0.07mM CaCl2
and Human Keratinocyte Growth Supplement; Life Technologies,

Waltham, MA).

ABIN1 and A20 lentiviral overexpression and cytokine
treatment

ABIN1, A20, and GFP open reading frame expression vectors were

purchased from GeneCopoeia (Rockville, MD) (Supplementary

Table S3 online). Lentivirus particles were prepared by the Univer-

sity of California, San Francisco ViraCore. Briefly, HEK293T cells

were seeded at 7 � 104 cells/cm2 in 15-cm tissue culture dishes in

20 ml media (DMEM, 10% FBS; Life Technologies). Twenty-four

hours after plating, 12 mg lentiviral transfer vector was transfected

alongside 7 mg psPAX2 (Addgene #12260) and 3 mg pMD2.G

(Addgene #12259) with 50 ml jetPRIME transfection reagent (Poly-

plus, New York, NY) according to manufacturer’s protocol. Seventy-

two hours post-transfection, lentiviral supernatant was collected and

passed through a 0.45-mm filter (EMD Millipore, Burlington, MA).

Lentiviral titer was determined using the p24 ELISA kit from Takara

(Mountain View, CA). Pooled primary cultured keratinocytes from

three different individuals were transduced at a multiplicity of

infection of 10e100 as described previously (Kuhn et al., 2002).

One day prior to transduction, keratinocytes were plated at 1 � 104

cells/cm2. Lentivirus supernatants were diluted using KGM and 4 mg/
ml Polybrene (EMD Millipore). Keratinocytes were incubated with

lentivirus for 16 hours, after which they were allowed to recover for

24 hours in fresh KGM. Lentivirus infection was selected for using 2

mg/ml puromycin (Life Technologies) for 48 hours. At w80% con-

fluency, cells were incubated in fresh KGM or KGM containing

cytokine (10 ng/ml TNF-a or 200 ng/ml IL-17A; PeproTech, Rocky

Hill, NJ) for 1 or 24 hours. Samples from triplicate experiments

performed upon two distinct pooled primary cultured keratinocytes

from three different individuals (six total replicates) were harvested

for protein and RNA extraction.
Western blot

Whole-cell lysate was extracted using radioimmunoprecipitation

assay buffer with freshly dissolved protease/phosphatase inhibitor as

per manufacturer’s protocol (Life Technologies). Protein concentra-

tion was measured using DC Protein Assay (BioRad Laboratories,

Hercules, CA). Equal amounts of protein were separated using a

NuPAGE 4e12% Bis-Tris Protein Gel and transferred to poly-

vinylidene difluoride membrane (Life Technologies). Membranes

were blocked with Odyssey PBS Blocking Buffer (Li-Cor, Lincoln,

NE) for 30 minutes at room temperature and incubated with primary

antibodies against ABIN1(TNIP1) (Proteintech, Rosemont, IL;

1:1000, rabbit) and A20 (TNFAIP3) (Cell Signaling, Danvers, MA;

1:1000, rabbit). Glyceraldehyde-3-phosphate dehydrogenase (Cell

Signaling; 1:10000, mouse) was used as loading control. Anti-rabbit

and anti-mouse secondary antibody conjugated to an infrared dye

(IRDye800CW and IRDye 680RD, respectively; Li-Cor) or anti-rabbit

and anti-mouse secondary antibody conjugated to horseradish

peroxidase were used (Cell Signaling) and the images were acquired

on an Odyssey FC imaging instrument (Li-Cor) or peroxidase activity

was detected using Pierce ECL Western Blotting Substrate (Life

Technologies).

Statistical analysis for Western blot band intensity analysis

When applicable, the results are presented as mean � standard

deviation. Statistical analysis was conducted using GraphPad Prism,

version 5.0f (La Jolla, CA). Student t test was used to compare two

separate sets of independent and identically distributed samples with

a P-value < 0.05 considered as significant.

RNA isolation and RNA-seq

Total RNA was extracted using TRIzol reagent (Life Technologies) as

per manufacturer’s protocol. RNA-seq libraries were prepared with

300e1,000 ng of total RNA using KAPA Biosystems Stranded RNA-

Seq Kits with RiboErase HMR (Roche, Pleasanton, CA). Technical

duplicate sequencing libraries were generated for each RNA sample

to minimize batch effect. Total RNA samples were depleted for ri-

bosomal RNA through hybridization of cDNA oligonucleotides,

followed by treatment with RNase H and DNase to remove ribo-

somal RNA duplexed to DNA and original DNA oligonucleotides,

respectively. The resulting ribosomal-depleted RNA then underwent

RNA fragmentation using heat and magnesium. First-strand cDNA

synthesis was performed using random primers, followed by second-

strand synthesis. To the 30 ends of the double-stranded cDNA library

fragments, deoxyadenosine monophosphate was added (A-tailing).

Double-standed DNA adapters with 30 deoxythymidine mono-

phosphate was ligated to the A-tailed library fragments. Library

fragments with appropriate adapter sequences were amplified via

ligation-mediated PCR. Post-amplified cDNA libraries were quanti-

tated with either Quant-iT double-stranded DNA or Qubit double-

stranded DNA high-sensitivity assay kits (Life Technologies). Qual-

ity assessment was performed using the LabChip GX Touch HT

microfluidics platform (Perkin Elmer, Waltham, MA). A 2 � 150-bp

sequencing on a NovaSeq 6000 instrument was performed on li-

braries with a PhiX Control, version 3 (Illumina, San Diego, CA).

RNA-seq analysis

The RNA-seq by Expectation Maximization algorithm was used to

quantify gene expected counts used for differential expression analysis

and counts permillion (CPMs) used for heat-map clustering.Differential

expression analysis was performed using edgeR (version 3.22.3

[Robinson et al., 2010]; R, version 3.5.1). For each comparison, very-
www.jidonline.org 1271

http://www.jidonline.org


P Harirchian et al.
Regulatory Role of ABIN1 and A20 in Keratinocyte Inflammation

1272
low-expressing genes with a CPM �1 in 6 (the number of replicate per

treatment condition) ormore sampleswere removed. An additivemodel

formulawas then used to adjust for batch-effect differences between the

two batches of keratinocyte pools within edgeR’s glmQLFit framework

(i.e., genewise negative binomial generalized linear models with quasi-

likelihood tests, which fits a quasi-likelihood negative binomial gener-

alized log-linearmodel to count data to conductgenewise statistical tests

for a given coefficient or contrast) (Lund et al., 2012), and a quasi-

likelihood F-test (glmQLFTest) was used to identify those genes signifi-

cantly different (FDR P < 0.05 after correcting for multiple hypothesis

testing using the Benjamini-Hochberg procedure) between each pair-

wise comparison. Gene Ontology analysis was performed using Bio-

conductor’s goseq package (version 1.32.0) (Young et al., 2010).

To generate the heat map, variation in gene expression across

samples was visualized using R’s (version 3.4.4) gplots package

(version 30.1). Pearson’s correlation distance was calculated be-

tween Z scores for each gene, and complete linkage clustering was

performed to group genes by common patterns across samples. The

resulting dendrogram was then cut to yield 14 clusters. Gene

Ontology was performed on genes in each cluster as compared to a

background of all expressed genes using R’s goseq package (version

1.28.0). The R scripts for these analyses as well as their resulting

output are available on GitHub: https://github.com/SRHilz/

ModOfKerInf_RNAseqAnalysis.

Single-cell RNA-seq

Human epidermal cells were isolated from normal surgical tissue

discards or lesional skin from psoriasis, eczema, or erythroker-

atodermia variabilis patients. Written informed consent for skin

samples was obtained using protocols approved by the University of

California, San Francisco Institutional Review Board. Skin was

incubated for 2 hours at 37�C in 25 U/ml dispase solution followed

by mechanical separation of epidermis from dermis. Epidermis was

incubated in 0.05% trypsin for 15 minutes at 37�C. Dissociated

epidermal cells were washed with KGM and filtered using a 40-mm
nylon cell strainer (Corning Life Sciences). FACS was performed on

dissociated cells to exclude debris, doublets, and DAPI-positive

cells. The sorted cells were resuspended in 0.04% BSA in phos-

phate buffered saline (Life Technologies) prior to Chromium Single

cell 30 Solution V2 (10x Genomics, Pleasanton, CA) library prepa-

ration, performed by the University of California, San Francisco

Institute for Human Genetics Core as per manufacturer’s protocol.

Four scRNA-seq sample data sets were originally published in Cheng

et al. (2018) and were re-analyzed along with the new samples as

described below.

scRNA-seq data processing and quality control filtering

Cellranger (10X genomics, version 2.0.2) was used to de-multiplex

the raw Illumina sequencing data, from scRNA-seq libraries, quan-

tify unique molecular identifiers (using the GRCh38, version 1.2.0,

reference transcriptome), and aggregate data for the eight samples.

We managed and filtered the resulting data from 59,502 cells with

Seurat (version 2.2.0 [Macosko et al., 2015]). To control for damaged

cells, we filtered out cells in the top 5th percentile of proportion of

mitochondrial unique molecular identifiers, which corresponded to

cells with >14% of total unique molecular identifiers accounted for

by mitochondrial transcripts. We used multiplet rate estimates pro-

vided by 10X genomics (https://assets.ctfassets.net/an68im79xiti/

UhAMGmlaEMmYMaA4A4Uwa/274a813b81e42cba81345d4938

0432d7/CG00052_SingleCell3_ReagentKitv2UserGuide_RevD.pdf)

to fit a linear model to estimate the percentage of multiplets in each
Journal of Investigative Dermatology (2019), Volume 139
sample based on the number of loaded cells. In order to avoid

including partial cells and multiplets in our analysis, we filtered on

the number of detected genes in each cell. On a per-sample basis,

we removed cells using a low threshold of 0.5% and high threshold

of 100 e 2* multiplet rate on the percentiles of number of genes

detected. These filters left 42,105 cells to include in our primary

analyses.

scRNA-seq dimensional reduction and data imputation

Using the pipeline described in Cheng et al. (2018), we used ZINB-

WaVE (version 1.0.0) (Risso et al., 2018) to remove confounding

signal due to the percent mitochondrial expression, the total number

of unique molecular identifiers detected (log scaled) and the sample

membership from the raw count data of highly expressed (at least

500 CPM in 0.1% of cells) genes in each cell. We used the 20-

dimensional projection of the data produced by ZINB-WaVE to

construct an affinity matrix (with adaptive distance parameters ka ¼
10 and k ¼ 30) to input to the MAGIC (Dijk et al., 2017) imputation

algorithm. For the imputation step, we set the parameter t to 10.

scRNA-seq differential expression analysis

We used limma-trend (Law et al., 2014b) to compare the single-cell

expression profiles from each disease to that in the normal skin sam-

ples. For this analysis, unique molecular identifier count data were

converted to library-size normalized CPM and log2-scaled with an

offset of 1. We performed this analysis on 10,194 moderately

expressed genes in our cohort of cells (at least 300 CPM in 0.1% of

cells). We removed melanocytes by dropping cells with PMEL

expression >500 CPM. To remove immune cells, we used an HLA-

DRA expression cutoff of >2000 CPM. Limma-trend calculates the

difference in mean log-CPM for each group of cells, and to evaluate

statistical significance, moderated t-statistics are calculated based on

an empirical Bayes approach. We use the FDR of the P-values asso-

ciated with these statistics to correct for multiple hypothesis testing.

Data access

Sequence data have been deposited at the European Genome-

Phenome Archive, which is hosted by the European Bioinformatics

Institute and the Centre for Genomic Regulation, under accession

number EGAS00001002981. Further information about European

Genome-Phenome Archive can be found on https://ega-archive.org.
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