Lawrence Berkeley National Laboratory

Recent Work

Title
THE PSEUDO-FREE 32 VERTEX MODEL
Permalink
https://escholarship.org/uc/item/9tg1t81w

Author

Samuel, Stuart.
Publication Date
1978-11-01

TWO-WEEK LOAN COPY

This is a Líbrary Círculating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

THE PSEUDO-FREE 32 VERTEX MODEL

November 1978

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

THE PSEUDO-FREE 32 VERTEX MODEL*

by

Stuart Samuel

Lawrence Berkeley Laboratory University of California Berkeley, California 94720

November 7, 1978

ABSTRACT

A new two-dimensional statistical mechanics model is solved. It is a general model with 18 free parameters and includes Ising-like spin systems and ferroelectric systems as subcases. The solution uses integrals over anticommuting variables.

[^0]
I. INIRODUCIION

This paper discusses and solves a new two-dimensional statistical mechanics problem called the pseudo-free 32 vertex model. It is a generalization of the free-fermion model, which, in turn, is a generalization of the Ising model (certain values of the parameters reproduce these two models). In addition, it includes several Ising-like models on various types of lattices as well as ferroelectric systems on the triangular lattice. This very general model involves eighteen parameters and yet it is exactly solvable. Section III computes the partition function. For Ising-like subcases, there is a simple way to calculate the vacuum expectation value of an arbitrary product of spins. An example is illustrated in sec. VI.

This paper is a computational one. It uses integrals over anticommuting variables. The techniques were developed in two previous papers ${ }^{1,2}$. They were pedagogical in nature and formed the basis for this work. I recommend the study of these two papers for those readers interested in understanding the methods of this paper.

Paper I reviewed integrals over anticommuting variables and showed how they could be applied to statistical mechanics problems. In general, what resulted was an integral over an action, or equivalently a fermionic-like field theory. Several models had quadratic actions such as the Ising model. These models were called pseudo-free and were exactly solvable. This is why the Ising model is solvable; it is a fermionic free field theory. Paper II stressed calculational techniques. The partition function of several models were evaluated in II. Graphical methods and a set of computational rules
were obtained. This allowed one to quickly solve the solvable (quadratic action) models. In general, the evaluation of a partion function was reduced to solving a miniature dimer problem (MDP). Using this, general rules were derived for solving a class of two dimensional close-packed dimer problems. Finally, paper II reduced the calculation of anticomuting variable correlation functions to solving modified miniature dimer problems (MMDP's). For Ising-like cases, these results can be used to calculate the vacuum expectation value of any product of spin variables.

Papers I and II dealt with models previously solved by other means. They formed the testing ground to see how the methods worked. This paper solves a new model never before considered. Papers I and II have stressed the importance of finding exactly solvable models as a first step for approaching unsolved models.

The 32 vertex model is quite complicated, having 18 free parameters. The partition function involves calculating 265 terms and the anticommuting variable correlation calculations have over 1000 terms, however simplifying tricks are used. Without these, the problem would be too tedious to solve. Furthermore, the results could not be presented in publishable form because equations would be too long. The anticommuting variables allow systematic evaluation and compactification of algebra. This causes roughly a seven-fold reduction in algebra. Computationally, the anticommuting variables are powerful objects.

Section II introduces the model. The anticommuting variable action is given in Eqs. (2.1) - (2.5). The 32 different configurations and their weights are shown in table 1.

Section III calculates the partition function. Its value is given in Eq. (3.6t The key function is L which is the determinant in Eqs. (3.4) and (3.5). The rest of the section is devoted to explicitly calculating L. Equation (3.31) writes L as a sum of three other functions, L^{1}, L^{2}, and L^{3}. Equations (3.8), (3.13), and (3.30) give L^{1}, L^{2}, and L^{3}.

Section IV and V evaluate the anticommuting variable correlations in momentum space and coordinate space. These results are presented in Eqs. (4.9) - (4.30) and Eqs. (5.1) - (5.21). This second set of equations is useful for solving problems related to the pseudo-free 32 vertex model. Section VI uses them to calculate the correlation function of two vertical spins in the triangular Ising model.

II. THE MODEL

The two-dimensional Ising model is equivalent to the partition function of closed polygons ${ }^{3}$ where sides may intersect but cannot overlap. There is a Boltzmann factor per unit length of side. The Ising model is not the most general easily solvable model. The corners of polygons may also be weighted, resulting in the so-called freefermion model ${ }^{4,5}$ described by the action of Eq. (I.4.4) whose weights are given in Fig. I. 11. Let ${ }^{w}(p)$ be the weight of Figs. I. $11 p$. Then, the following constraint, known as the free-fermion constraint, is satisfied.

$$
\begin{equation*}
{ }^{w}(a)^{W}(h)^{+w}(b)^{W}(c)={ }^{w}(a)^{W}(f)+{ }^{w}(e)^{w}(g) \cdot \tag{2.1}
\end{equation*}
$$

Because of Eq. (2.1) the free-fermion model is not the most general eight-vertex model, although it is the most general easily solvable
model.
Slightly more complicated than the basic Ising model would be to include next nearest neighbor interactions. Consider adding one set of diagonal interactions. Using bond variables leads to the closed polygon partition function drawn on the lattice of Fig. la. In the same sense that the free-fermion model is the solvable generalization of the square lattice Ising model, the pseudo-free 32 vertex model is the generalization of the triangular lattice (Fig. lb) Ising model. The corners are weighted in addition to the sides. In short, the 32 vertex model is the partition function for closed polygons drawn on the lattice of Fig. la where sides and corners are weighted. This model contains many others: Mentioned already are the square and triangular lattice Ising models. In addition, duality enables the Ising model on the hexangonal lattice of Fig. lc to be included. By setting diagonal couplings equal to zero, the usual free-fermion model is obtained.

Such a general model is, indeed, complicated. It involves 18 parameters (the simpler free-fermion model has 8). The phase diagram will be more complicated since $i t$ is an 18 dimensional space, and will have an interesting set of phase transitions and critical phenomenon. None of these topics, however, is analyzed in this paper. For a model of interest or for a given choice of parameters, the thermodynamics of the system is determined by the partition function [Eq. (3.6)] or the free energy per unit site [Eq. (3.7)]. Taking temperature derivatives will yield the energy and specific heat.

In I and II anticommating variables were used to draw polygons on a square lattice. This lead to a Grassmann integral over a quadratic action, an exactly solvable fermionic-like pseudo-free
field theory. The action consisted of three pieces: a Bloch wall piece, a corner piece, and a monomer piece. The Bloch wall action drew the walls, the corner action formed the corners, and the monomer piece filled in all unfilled sites. Likewise, in dealing with polygons on the lattice of Fig. la, three terms are needed:

$$
\begin{align*}
& A_{32}=A_{\text {wall }}+A_{\text {comers }}+A_{\text {monomers }} . \tag{2.2}\\
& A_{\text {wall }}=\sum_{\alpha \beta}\left(z_{h} h_{\alpha \beta}^{\eta^{\dagger} \eta_{\alpha+1 \beta}}+z_{v} v_{\alpha \beta}^{v^{\dagger}}{ }^{\eta_{\alpha \beta+1}} z_{\alpha} \eta_{\alpha \beta}^{\alpha^{\dagger} \eta_{\alpha+1}^{\alpha} \beta+1}\right) . \tag{2.3}\\
& A_{\text {corners }}=\sum_{\alpha \beta}\left[a_{1} \stackrel{h}{n}^{\dagger}{ }_{\alpha \beta}^{\eta} v_{\alpha \beta}+a_{2} \eta_{\alpha \beta} v^{\dagger} \eta^{\dagger}{ }_{\alpha \beta}^{\dagger}+a_{3} v_{\alpha \beta}^{v^{\dagger}} \eta_{\alpha \beta}^{h}+a_{4} \eta_{\alpha \beta}^{v} \eta_{\alpha \beta}^{h}\right. \\
& +b_{2} \eta_{\alpha \beta}^{d^{\dagger}} \eta_{\alpha \beta}^{v}+b_{2} \eta_{\alpha \beta}^{v^{\dagger}}{ }^{a^{\dagger}}{ }_{\alpha \beta}^{\dagger}+b_{3}{ }^{\eta} v_{\alpha \beta}^{\dagger} \eta_{\alpha \beta}^{\alpha}+b_{4} \eta_{\alpha \beta}^{v} \eta_{\alpha \beta}^{d} \tag{2.4}\\
& \left.+c_{1} \eta_{\alpha \beta}^{\dagger} \eta_{\alpha \beta}^{\eta}+c_{2} \eta_{\alpha \beta}^{\eta^{\dagger} \eta_{\alpha \beta}^{\dagger}}+c_{3} \eta_{\alpha \beta}^{\alpha^{\dagger}} \eta_{\alpha \beta}^{h}+c_{4} \eta_{\alpha \beta}^{\alpha} \eta_{\alpha \beta}^{h}\right] . \\
& A_{\text {monomer }}=\sum_{\alpha \beta}\left[b_{h} \eta_{\alpha \beta}^{h} \eta_{\alpha \beta}^{h^{\dagger}}+b_{v} \eta_{\alpha \beta}^{v} v^{v_{\alpha \beta}^{\dagger}}+b_{d} \eta_{\alpha \beta}^{d}{ }^{\eta} d_{\alpha \beta}^{\dagger}\right] \text {. } \tag{2.5}
\end{align*}
$$

Three types (horizontal, vertical, and diagonal) of anticommuting variables are used at each site denoted by the superscripts, "h", " v ", and " d ". The subscripts " α " and " β " label the lattice sites and take on integer values. They are respectively the x and y coordinates of a site. The variables z_{h}, z_{v}, and z_{d} are the horizontal, vertical, and diagonal Boltzmann factors. The a's, b's, and c's are just constants. Each term in Eq. (2.3) and Eq. (2.4)
has the graphical representation of Fig. 2 and Fig. 3. As in I and II, the following conventions are used: Arrows indicate the order of variables, "o"'s and "x"'s respectively refer to undaggered and daggered variables, and a horizontal, vertical, or diagonal line attached to a variable indicates whether it is a horizontal, vertical, or diagonal type.

There are 32 possible vertex configurations. These are shown in table l. It is straightforward to calculate their weights using the action of Eq. (2.2). These are also given in table 1 with Bloch wall Boltzmann factors extracted. No minus signs result from reordering of anticormuting variables for non self-intersecting polygons. This can be proven by induction on the area of a polygon ${ }^{6}$. When lines intersect, however, a minus sign does result from reorderings. This is because of "fermi statistics" and is discussed in I. A few examples are shown in Fig. 4. This accounts for the extra minus signs in boxes (xvii), (xviii), (xix), (xxi), (xxiii), (xxiv), (xxvi), (xxviii), (xxx), and (xxxii) of table l. In calculating the weights of boxes (v) through (xvi), one must be careful to include the possibility of two corners forming a third. For example, in box (v) an a_{1} corner and a diagonal monomer could be used, but, for example, a c_{1} corner followed by a b_{1} corner can also be used, in which case all variables at the site are used up and no monomers are needed. The weight is $b_{1} c_{1}$. Likewise a c_{2} corner followed by a b_{4} corner may be used. This accounts for all the weight factors in box (v). In calculating the weights of configurations (i) through (iv) one must be careful to include the
possibility that two corners can "act like" two monomers. For example, in box (iii) all horizontal and vertical sites must get filled.

Although this could be done using the vertical and horizontal monomers, the corners a_{1} and a_{3} or a_{2} and a_{4} also combine to fill up the unoccupied sites.

Equations (2.2) - (2.5) and table 1 summarize the results for the pseudo-free 32 vertex model.

When

$$
\begin{aligned}
& a_{1}=a_{3}=b_{2}=b_{4}=c_{2}=c_{4}=-1 \\
& b_{v}=b_{h}=b_{d}=a_{2}=a_{4}=b_{1}=b_{3}=c_{1}=c_{3}=+1,
\end{aligned}
$$

the weights of table 1 are all -1. Thus, the closed polygon partition function on a triangular lattice with unit weights for corners is

$$
\begin{equation*}
\mathrm{Z}_{\text {closed polygon }}=(-1)^{\mathrm{N}} \int \mathrm{~d} \eta d \eta{ }^{\dagger} \exp \mathrm{A} \tag{2.7}
\end{equation*}
$$

with A given by Eq. (2.2) with the values of Eq. (2.6). The $(-1)^{\mathrm{N}}$ (N is the total \# of sites) makes the weights of table 1 positive. In calculating $Z_{\text {closed polygon' }}$ sides of polygons may not overlap. The relation between the triangular Ising model and Z closed polygon is $Z_{\Delta I \operatorname{sing}}=\left(2 \cosh \beta J_{h} \cosh \beta J_{v} \cosh \beta J_{d}\right)^{N} Z_{c l o s e d}$ polygon,
with

$$
\begin{aligned}
& z_{\mathrm{h}}=\tanh \beta J_{\mathrm{h}}, \\
& z_{\mathrm{v}}=\tanh \beta J_{\mathrm{v}}, \\
& z_{\mathrm{d}}=\tanh \beta J_{\mathrm{d}} .
\end{aligned}
$$

The J's are the coupling strengths of the spin-spin interactions. Although the main interest of this paper is the general model, the known triangular Ising model results will be used as a check. The hexangonal lattice Ising model has a similar representation (one must use disorder variables) in terms of $Z_{\text {closed polygon }}$:

$$
Z_{\text {hexangonal lattiec }}=\left[\exp \left(\beta J_{h}+\beta J_{d}+\beta J_{d^{\prime}}\right)\right]^{N} Z_{\text {closed polygon }}
$$

with

$$
\begin{align*}
& z_{v}=\exp \left(-2 \beta J_{h}\right) \\
& z_{h}=\exp \left(-2 \beta J_{d}\right) \tag{2.11}\\
& z_{d}=\exp \left(-2 \beta J_{d^{\prime}}\right)
\end{align*}
$$

The couplings J_{h}, J_{d}, and J_{d}, are the horizontal and diagonal ones of the lattice of Fig. lc.
III. EVALUATION OF THE PARTITION FUNCTION

The main results of this section are contained in Eqs. (3.4), (3.5) and (3.6).

The pseudo-free 32 vertex partition function is described by the action of Eq. (2.2). It is evaluated by going to momentum space. This partially diagonalizes the problem. The method is described in II. Formulas (II. 2.1) and (II. 2.3) are used. The result is an action in momentum variables of the form

$$
\begin{aligned}
& A_{32}=\sum_{s t}\left[\left(v_{t} a_{s t}^{v} a_{s t}^{v^{\dagger}}+h_{s} a_{s t}^{h} a_{s t}^{h^{\dagger}}+d_{s t} a_{s t}^{a} a_{s t}^{d^{\dagger}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\left(b_{1} a_{s t}^{d^{t}} a_{s t}^{v}+b_{3} a_{s t}^{v^{t}}{ }_{s t}^{d}+b_{2} a_{s t}^{v^{+}} a_{-s-t}^{d^{t}}+b_{4} a_{s t}^{v} a_{-s-t}^{d}\right)
\end{aligned}
$$

The lattice has been taken to consist of ($2 N+1$) rows by ($2 \mathrm{M}+1$) columns of sites. When the thermodynamic limit is taken, it is useful to use the momentum variables $p_{x}=\frac{2 \pi s}{2 M+1}$ and $p_{y}=\frac{2 \pi t}{2 N+1}$ and the functions

$$
\begin{align*}
v\left(p_{y}\right) & =b_{v}-z_{v} \exp \left(i p_{y}\right) \\
h\left(p_{x}\right) & =b_{h}-z_{h} \exp \left(i p_{x}\right) \tag{3.3}\\
d\left(p_{x}, p_{y}\right) & =b_{d}-z_{d} \exp \left(i p_{x}+i p_{y}\right)
\end{align*}
$$

The graphical method (described in II) will be used. The result is the miniature dimer problem (MDP) of Fig. 5. This problem has twelve sites and thirty bonds. In order not to make the figure messy, four copies have been made in Fig. 5. Each copy contains a subset of bonds and displays their weights. For the total MDP, put all bonds on the same twelve sites. By transforming $a_{-s-t}^{v} \longrightarrow a_{-s-t}^{v^{+}}$, $a_{-s-t}^{h} \rightarrow a_{-s-t}^{h^{+}}$, and $a_{-s-t}^{d} a_{-s-t}^{d^{+}}$, the problem becomes of $a a^{+}$ form. According to Eq. (I. 2.6), this is the determinant of the following matrix
$M\left(p_{x}, p_{y}\right)=\left(\begin{array}{llllll}v\left(p_{y}\right) & -a_{1} & -b_{1} & 0 & a_{4} & b_{4} \\ -a_{3} & h\left(p_{x}\right) & -c_{3} & -a_{4} & 0 & -c_{4} \\ -b_{3} & -c_{1} & d\left(p_{x}, p_{y}\right) & -b_{4} & c_{4} & 0 \\ 0 & a_{2} & b_{2} & -v\left(-p_{y}\right) & a_{3} & b_{3} \\ -a_{2} & 0 & -c_{2} & a_{1} & -h\left(-p_{x}\right) & c_{1} \\ -b_{2} & c_{2} & 0 & b_{1} & c_{3} & -d\left(-p_{x},-p_{y}\right)\end{array}\right)$.

In the thermodynamic limit, the answer is

$$
\begin{equation*}
z_{32}=\exp \left\{(2 N+1)(2 M+1) \frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, p_{y}\right)\right\} . \tag{3.6}
\end{equation*}
$$

The free energy, f, per unit site is

$$
\begin{equation*}
-\beta f=\frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln L\left(p_{x}, p_{y}\right) . \tag{3.7}
\end{equation*}
$$

A 6×6 determinant, in general, has 720 terms. The matrix, $M\left(p_{x}, p_{y}\right)$, however, has six zero entries, which reduces this number to 265 . For particular values of the parameters a_{i}, b_{i}, c_{i}, etc. one may use computers to evaluate Eq. (3.5). For general values, all 265 terms must be evaluated. This will be done using the graphical method. A brute force application would find and calculate all 265 coverings of Fig. 5, a process which is tedious, not useful, and results in an answer too cumbersome to be published. I circumvent this by using the following device: If the bonds in Figs. 5c and 5d are removed, what remains is the free fermion model. In II, the partition function and correlation functions were calculated. These result may be used as a calculational foundation. There are three types of terms: type 1 are proportional to $d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right)$, type 2 involve either $d\left(p_{x}, p_{y}\right)$ or $d\left(-p_{x},-p_{y}\right)$, and type 3 involve neither $d\left(p_{x}, p_{y}\right)$ nor $d\left(-p_{x},-p_{y}\right)$ and must use four bonds from Figs. 5 c and 5d. Each of the three types will be systematically evaluated using results from II.

Type 1. After the $d\left(p_{x}, p_{y}\right)$ and $d\left(-p_{x},-p_{y}\right)$ bonds have been used, what remains is the free fermion MDP whose value was given in Eq. (II. 3.3). The contribution of type 1 is

$$
\begin{equation*}
L^{1}\left(p_{x}, p_{y}\right)=d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right) L_{f . f .}\left(p_{x}, p_{y}\right) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{align*}
L_{f . f}\left(p_{x}, p_{y}\right) & =h\left(p_{x}\right) h\left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right)-a_{1} a_{3}\left[h\left(p_{x}\right) v\left(p_{y}\right)+h\left(-p_{x}\right) v\left(-p_{y}\right)\right] \\
& -a_{e_{2}} a_{4}\left[h\left(p_{x}\right) v\left(-p_{y}\right)+h\left(-p_{x}\right) v\left(p_{y}\right)\right]+\left(a_{1} a_{3}+a_{2} a_{4}\right)^{2} .(3.9 \tag{3.9}
\end{align*}
$$

Nine of the 265 terms are contained in L^{1}.
Type 2. These terms are proportional to $d\left(p_{x}, p_{y}\right)$ or $d\left(-p_{x},-p_{y}\right)$. They must use two bonds from Figs. $5 c$ and 5 d . When $d\left(-p_{x},-p_{y}\right)$ is used, the diagonal (s, t) sites must be covered by one bond from Figure 5 c , say b_{1}, and one from Fig. 5d, say b_{3} (see table 2, box 1 above A_{1}). What results is the modified miniature dimer problem (MMDP) used in calculating the correlation $\left\langle\mathrm{a}_{s t}^{\mathrm{v}} \mathrm{v}^{\mathrm{a}_{s t}}\right\rangle$ of the free-fermion model. The value of the MMDP, $W_{1}\left(p_{x}, p_{y}\right)$, is given in Eq. (II. 5.3). There is another way in which this MMDP can occur using $d\left(p_{x}, p_{y}\right)$ and the b_{4} and b_{2} bonds connecting to diagonal (-s, $-t$) sites (see table 2, box 1 above B_{1}). Summing these two terms yields

$$
\begin{equation*}
w_{1}\left(p_{x}, p_{y}\right)\left[a\left(-p_{x},-p_{y}\right)\left(-b_{1} b_{3}\right)+d\left(p_{x}, p_{y}\right)\left(-b_{2} b_{4}\right)\right] \tag{3.10}
\end{equation*}
$$

and, in general, yields schematically
(weight of $M M P P)\left[d\left(-p_{x},-p_{y}\right)\right.$ (bond weight for (s, t) diagonal variables
$+d\left(p_{x}, p_{y}\right)$ (bond weights for $(-s,-t)$ diagonal variables) $]$.

The sign of the bond weights is determined using the sign rules (a) and (b) of Fig. I.8.

All together there are 16 possible MMDP's. These are shown in table 2 , column 1 . Let $W_{i}\left(p_{x}, p_{y}\right)$ be the values of the coverings. The W_{i} were obtained from Figs. II. 21 - II. 32 and Eqs. (II. 5.2) - (II. 5.17) and are listed below. Let A_{i} and B_{i} be the values of bond weights for (s, t) and ($-s,-t$) diagonal sites. The numbers, A_{i} and B_{i}, are given in colums 2 and 3 of table 2. Let

$$
\begin{equation*}
c_{i}\left(p_{x}, p_{y}\right) \equiv\left[d\left(-p_{x},-p_{y}\right) A_{i}+d\left(p_{x}, p_{y}\right) B_{i}\right] \tag{3.12}
\end{equation*}
$$

then

$$
\begin{equation*}
L^{2}\left(p_{x}, p_{y}\right)=\sum_{i=1}^{16} w_{i}\left(p_{x}, p_{y}\right) c_{i}\left(p_{x}, p_{y}\right) \tag{3.13}
\end{equation*}
$$

For completeness the $W_{i}\left(p_{x}, p_{y}\right)$ are given:

$$
\begin{align*}
& w_{1}\left(p_{x}, p_{y}\right)=h\left(p_{x}\right) h\left(-p_{x}\right) v\left(-p_{y}\right)-a_{1} a_{3} h\left(p_{x}\right)-a_{2} a_{4} h\left(-p_{x}\right),(3 \tag{3.14}\\
& W_{2}\left(p_{x}, p_{y}\right)=w_{1}\left(-p_{x},-p_{y}\right) \tag{3.15}\\
& w_{3}\left(p_{x}, p_{y}\right)=h\left(-p_{x}\right) v\left(p_{y}\right) v\left(-p_{y}\right)-a_{1} a_{3} v\left(p_{y}\right)-a_{2} a_{4} v\left(-p_{y}\right), \tag{3.16}\\
& W_{4}\left(p_{x}, p_{y}\right)=W_{3}\left(-p_{x},-p_{y}\right), \tag{3.17}\\
& W_{5}\left(p_{x}, p_{y}\right)=a_{3}\left[\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(-p_{x}\right) v\left(-p_{y}\right)\right] \tag{3.18}\\
& W_{6}\left(p_{x}, p_{y}\right)=w_{5}\left(-p_{x},-p_{y}\right), \tag{3.19}\\
& W_{7}\left(p_{x}, p_{y}\right)=a_{1}\left[\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(-p_{x}\right) v\left(-p_{y}\right)\right] \tag{3.20}\\
& W_{8}\left(p_{x}, p_{y}\right)=w_{7}\left(-p_{x},-p_{y}\right), \tag{3.21}
\end{align*}
$$

$$
\begin{align*}
& W_{9}\left(p_{x}, p_{y}\right)=a_{4}\left[\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(p_{x}\right) v\left(-p_{y}\right)\right] \tag{3.22}\\
& W_{10}\left(p_{x}, p_{y}\right)=W_{9}\left(-p_{x},-p_{y}\right) \tag{3.23}\\
& W_{11}\left(p_{x}, p_{y}\right)=a_{2}\left[\left(a_{1} a_{3}+a_{2} a_{4}\right)-h\left(p_{x}\right) v\left(-p_{y}\right)\right], \tag{3.24}\\
& W_{12}\left(p_{x}, p_{y}\right)=W_{11}\left(-p_{x},-p_{y}\right), \tag{3.25}\\
& W_{13}\left(p_{x}, p_{y}\right)=a_{1} a_{4}\left[h\left(-p_{x}\right)-h\left(p_{x}\right)\right], \tag{3.26}\\
& W_{14}\left(p_{x}, p_{y}\right)=a_{2} a_{3}\left[h\left(-p_{x}\right)-h\left(p_{x}\right)\right] \tag{3.27}\\
& W_{15}\left(p_{x}, p_{y}\right)=a_{3} a_{4}\left[v\left(p_{y}\right)-v\left(-p_{y}\right)\right], \tag{3.28}\\
& W_{16}\left(p_{x}, p_{y}\right)=a_{1} a_{2}\left[v\left(p_{y}\right)-v\left(-p_{y}\right)\right] . \tag{3.29}
\end{align*}
$$

Eighty-eight of the 265 terms are in L^{2}.
Type 3. These terms involve two bonds from Fig. 5c and two bonds from Fig. 5d and cover four sites in the free-femion model (see the first column of table 3). The uncovered sites form an MMDP whose covering(s.) is shown in the second column of table 3 and whose value is called F_{i}. Let E_{i} be the value of bonds of Figs. 5 c and 5 d which go in forming the MMDP. The value of a diagram is $E_{i} F_{i}$. Therefore,

$$
\begin{equation*}
L^{3}\left(p_{x}, p_{y}\right)=\sum_{i=1}^{36} E_{i} F_{i}\left(p_{x}, p_{y}\right) \tag{3.30}
\end{equation*}
$$

$$
L\left(p_{x}, p_{y}\right)=L^{1}\left(p_{x}, p_{y}\right)+L^{2}\left(p_{x}, p_{y}\right)+L^{3}\left(p_{x}, p_{y}\right),(3.31)
$$

where $\mathrm{L}^{1}, \mathrm{~L}^{2}$, and L^{3} are given in Eqs. (3.8), (3.13), and (3.30). Although a lot of algebra has gone into evaluating $L\left(p_{x}, p_{y}\right)$, it is justified, since the next section reuses this algebra. Of interest are the values for the triangular Ising model [Eqs. (2.6) - (2.9)]:

$$
\begin{align*}
v\left(p_{y}\right) & =1-z_{v} \exp \left(i p_{y}\right) \\
h\left(p_{x}\right) & =1-z_{h} \exp \left(i p_{x}\right) \tag{3.32}\\
d\left(p_{x}, p_{y}\right) & =1-z_{d} \exp \left(i p_{x}+i p_{y}\right)
\end{align*}
$$

$$
\begin{aligned}
& A_{1}=A_{2}=A_{3}=A_{4}=A_{6}=A_{8}=A_{9}=A_{10}=A_{11}=A_{12}=A_{15}=A_{16}=-1 \\
& A_{5}=A_{7}=A_{13}=A_{14}=1, \\
& B_{1}=B_{2}=B_{3}=B_{4}=B_{5}=B_{7}=B_{9}=B_{10}=B_{11}=B_{12}=B_{13}=B_{14}=-1 \\
& B_{6}=B_{8}=B_{15}=B_{16}=1 \\
& C_{1}=C_{2}=C_{3}=C_{4}=C_{9}=C_{10}=C_{11}=C_{12}=-2+2 z_{d} \cos \left(p_{x}+p_{y}\right), \\
& C_{5}=-C_{6}=C_{7}=-C_{8}=C_{13}=C_{14}=-C_{15}=-C_{16}=2 z_{d} i \sin \left(p_{x}+p_{9}\right)
\end{aligned}
$$

$$
(3.34)
$$

The E_{i} and F_{i} values are given in table 3 . Boxes $1-6$ of table 3 have 40 terms, boxes $7-12$ have 32 terms, and boxes $13-36$ have 96 terms. Thus, L^{3} contains the remaining 168 terms.

The final result is

$$
\begin{aligned}
W_{1}\left(p_{x}, p_{y}\right) & =W_{2}\left(-p_{x},-p_{y}\right)=\left[-1+z_{h}^{2}-\left(1+z_{h}^{2}-2 z_{h} \cos p_{x}\right) z_{v} \exp \left(-i p_{y}\right)\right] \\
W_{3}\left(p_{x}, p_{y}\right) & =W_{4}\left(-p_{x},-p_{y}\right)=\left[-1+z_{v}^{2}-\left(1+z_{v}^{2}-2 z_{v} \cos p_{y}\right) z_{h} \exp \left(-i p_{x}\right)\right] \\
W_{5}\left(p_{x}, p_{y}\right) & =W_{6}\left(-p_{x},-p_{y}\right)=W_{7}\left(p_{x}, p_{y}\right)=W_{8}\left(-p_{x},-p_{y}\right)=-W_{9}\left(-p_{x}, p_{y}\right) \\
& =-W_{10}\left(p_{x},-p_{y}\right)=-W_{11}\left(-p_{x}, p_{y}\right)=-W_{12}\left(p_{x},-p_{y}\right) \cdot \\
& =\left[-1-z_{h} \exp \left(-i p_{x}\right)-z_{v} \exp \left(-i p_{y}\right)+z_{v} z_{h} \exp \left(-i p_{x}-i p_{y}\right)\right] \\
W_{13}\left(p_{x}\right) & =W_{14}\left(p_{x}\right)=-2 i s_{h} \sin p_{x}, \\
W_{15}\left(p_{y}\right) & =W_{16}\left(p_{y}\right)=2 i z_{v} \sin p_{y} .
\end{aligned}
$$

The non-zero E_{i} are

$$
\begin{aligned}
E_{1}=E_{2} & =E_{5}=E_{6}=E_{8}=E_{9}=E_{11}=E_{12}=E_{15}=E_{16}= \\
& =E_{21}=E_{22}=E_{27}=E_{28}=E_{33}=E_{34}=4 \\
F_{1}\left(p_{x}\right) & =1+z_{h}^{2}-2 z_{h} \operatorname{cosp}_{x} \\
F_{2}\left(p_{x}, p_{y}\right) & =F_{3}\left(-p_{x}, p_{y}\right)=F_{4}\left(p_{x},-p_{y}\right)=F_{5}\left(-p_{x},-p_{y}\right) \\
& =\left[-z_{h} e_{10}\left(-i p_{x}\right)-z_{v} \exp \left(-i p_{y}\right)+z_{v} z_{h} \exp \left(-i p_{x}-i p_{y}\right)\right] \\
F_{6}\left(p_{y}\right) & =1+z_{v}^{2}-2 z_{v} \cos p_{y}, \\
F_{7} & =F_{10}=F_{11}=F_{12}=-F_{17}=-F_{18}=F_{23}=F_{24}=F_{29}=F_{30} \\
& =-F_{35}=-F_{36}=1, \\
F_{8} & =F_{9}=2,
\end{aligned}
$$

$$
L^{3}=4\left[z_{h}^{2}+z_{v}^{2}+2 z_{v} z_{h} \cos \left(p_{x}+p_{y}\right)\right]
$$

$$
L=\left\{\left(1+z_{d}^{2}\right)\left(1+z_{h}^{2}\right)\left(1+z_{v}^{2}\right)-2\left(1-z_{d}^{2}\right)\left(1-z_{v}^{2}\right) z_{h} \cos p_{x}\right.
$$

$$
-2\left(1-z_{d}^{2}\right)\left(1-z_{h}^{2}\right) z_{v} \cos p_{y}-2\left(1-z_{h}^{2}\right)\left(1-z_{v}^{2}\right) z_{d} \cos \left(p_{x}+p_{y}\right)
$$

$$
\begin{equation*}
\left.+8 \mathbf{z}_{\mathrm{d}} \mathbf{z}_{\mathrm{v}} \mathbf{z}_{\mathrm{h}}\right\} \tag{3.39}
\end{equation*}
$$

The free energy per unit site, f_{Δ}, for the triangular
Ising model (or rectangular Ising model with one diagonal interaction)

$$
\begin{aligned}
& \mathrm{F}_{13}\left(\mathrm{p}_{\mathrm{x}}\right)=\mathrm{F}_{14}\left(\mathrm{p}_{\mathrm{x}}\right)=-\mathrm{F}_{15}\left(-\mathrm{p}_{\mathrm{x}}\right)=-\mathrm{F}_{16}\left(-\mathrm{p}_{\mathrm{x}}\right)=\mathrm{F}_{19}\left(-\mathrm{p}_{\mathrm{x}}\right)=\mathrm{F}_{20}\left(-\mathrm{p}_{\mathrm{x}}\right) \\
& =-F_{21}\left(p_{x}\right)=-F_{22}\left(p_{x}\right)=1-z_{h} \exp \left(i p_{x}\right), \\
& F_{25}\left(p_{y}\right)=F_{26}\left(p_{y}\right)=-F_{27}\left(-p_{y}\right)=-F_{28}\left(-p_{y}\right)=F_{31}\left(-p_{y}\right)=F_{32}\left(-p_{y}\right) \\
& =-F_{33}\left(p_{y}\right)=-F_{34}\left(p_{y}\right)=1-z_{v} \exp \left(i p_{y}\right) . \\
& L^{1}=\left[1+z_{d}^{2}-2 z_{d} \cos \left(p_{x}+p_{y}\right)\right]^{1}\left[\left(1+z_{h}^{2}\right)\left(1+z_{v}^{2}\right)+2\left(1-z_{v}^{2}\right) z_{h} \cos p_{x}\right. \\
& \left.+2\left(1-z_{h}^{2}\right) z_{v} \cos p_{y}\right], \\
& L^{2}=\left\{4 [z _ { d } \operatorname { c o s } (p _ { x } + p _ { y }) - 1] \left[z_{h}^{2}+z_{v}\left(1-z_{h}^{2}\right) \cos p_{y}+z_{v}^{2}\right.\right. \\
& \left.\left.+z_{h}\left(1-z_{v}^{2}\right) \cos p_{x}\right\}+8 z_{v} z_{d} z_{h}-8 z_{v} z_{h} \cos \left(p_{x}+p_{y}\right)\right\} \\
& \text { (3.38) }
\end{aligned}
$$

$-\beta f_{\Delta}=\frac{1}{2} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \ln \left[\left(2 \cosh \beta J_{h} \cosh \beta J_{v} \cosh \beta J_{d}\right)^{2} L\left(p_{x}, p_{y}\right)\right]$.

This agrees with the known answer ${ }^{7}$.

IV. THE MOMENTUM SPACE CORRELATIONS

This section calculates the momentum space anticommuting variable correlation functions using the graphical methods developed in II. This becomes equivalent to solving modified miniature dimer problems (MMDP's). There are 21 non-zero different correlations (15 are zero). Each involves a large number of coverings (approximately 50). If brute force methods are used, a total of roughly 1000 coverings must be found and their corresponding weights ralculated. Such a process would be tedious. Fortunately, symmetry properties of the pseudo-free 32 vertex MDP determine 15 of the non-zero correlations in terms of 6. Furthermore, the results of Sec. III eliminate the need to find the 50 coverings. Instead, less than 20 terms must be found. All in all, roughly 1000 calculations are reduced to a little more than 100. This is fortunate since without these tricks the correlations could not be presented in a compact or readable form. I will describe in detail how $\left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}} \mathrm{a}_{\mathrm{st}}^{\mathrm{v}^{\boldsymbol{t}}}\right\rangle$ is calculated. The results for the remaining five correlations will then be simply stated. Finally, symmetry properties will be used to obtain the remaining ones. Momentum variables, p_{x} and p_{y}, will be used to express the answers. To calculate $\left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}} \mathrm{a}_{\mathrm{st}} \mathrm{v}^{\dagger}\right\rangle$, insert the superbond shown in Fig. 6 and erase the bonds in Fig. 5 which connect to vertical (s, t) sites.

The resulting problem is the MMDP whose weight will be called V_{1}. Analogous to the partition function, three terms contribute to V_{1} : type 1, which are proportional to $d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right)$, type 2 , which are proportional to either $d\left(p_{x}, p_{y}\right)$ or $d\left(-p_{x},-p_{y}\right)$, and type 3, which involve neither $d\left(p_{x}, p_{y}\right)$ nor $d\left(-p_{x},-p_{y}\right)$. Each will be evaluated in turn.

Type 1. After using the $d\left(p_{x}, p_{y}\right)$ and $d\left(-p_{x},-p_{y}\right)$ bonds, the diagonal sites are exhausted. What remains is the free fermion expectation $\left\langle a_{s t}^{v}{ }^{a^{v}}{ }_{s t}^{\dagger}\right\rangle_{f f}=W_{1}\left(p_{x}, p_{y}\right)$. Therefore type 1 contributes

$$
\begin{equation*}
W_{1}\left(p_{x}, p_{y}\right) d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right) \tag{4.1}
\end{equation*}
$$

This is symbolically displayed in Fig. 7.
Type 2. These involve either $d\left(p_{x}, p_{y}\right)$ or $d\left(-p_{x},-p_{y}\right)$. The other diagonal "o" and " x " must be covered by bonds of Figs. 5c or 5d or alternatively those of table 2. Only bonds which do not connect to vertical (s, t) sites may be used. These are those in boxes $2,3,4,6,8,10,12,15$ and 16 of table 2. Consider box 2 . When $d\left(p_{x}, p_{y}\right)$ is used, B_{2} bonds must be used and when $d\left(-p_{x},-p_{y}\right)$ is used, A_{2} bonds must be used. This results in the factor $C_{2}=d\left(-p_{x},-p_{y}\right) A_{2}+d\left(p_{x}, p_{y}\right) B_{2}$. In either case the resulting diagram is Fig. 8a which is an MMP with two superbonds. Its covering is in the second column of box 1 in table 3. The weight is F_{1}. The contribution is, therefore, $C_{2} F_{1}$. The nine different type 2 terms along with their weights are shown in Fig. 8. Their total contribution is (4.2)
$\mathrm{C}_{2} \mathrm{~F}_{1}+\mathrm{C}_{3} \mathrm{~F}_{2}+\mathrm{C}_{4} \mathrm{~F}_{3}+\mathrm{C}_{6} \mathrm{~F}_{13}+\mathrm{C}_{8} \mathrm{~F}_{14}+\mathrm{C}_{10} \mathrm{~F}_{15}+\mathrm{C}_{12} \mathrm{~F}_{16}+\mathrm{C}_{15} \mathrm{~F}_{17}+\mathrm{C}_{16} \mathrm{~F}_{18}$.

Type 3. These involve four bonds from Figs. 5c and 5d. They will cover up four h and v sites besides the two vertical (s, t) ones. These sites could be those in boxes $4,5,6,23,24 ; 25$, 26, 33 , and 34 of table 3. If box 4 sites were used, there would be four ways of doing this, the sum of which results in the factor E_{4}. What remains is the MMDP of Fig. 9a which has 3 superbonds. Its covering is $h\left(-p_{x}\right)$. Box 4 contributes $E_{4} h\left(-p_{x}\right)$. Figure 9 shows the nine type 3 diagrams and their contributions. They sum to $E_{4} h\left(-p_{x}\right)+E_{5} h\left(p_{x}\right)+E_{6} v\left(-p_{y}\right)-E_{25} a_{3}-E_{26} a_{1}-E_{33} a_{4}-E_{34^{a_{2}}} \quad$ (4.3) The sum of Equ. (4.1), (4.2), and (4.3) is V_{1}, which is given in box 1 of table 4.

Let V_{i} be the weights of the MMDP's associated with correlations in the $i^{\text {th }}$ box of table 4. $V_{1}, V_{7}, V_{19}, V_{25}, V_{31}$, and V_{32} were calculated using the method illustrated for V_{1}. The remaining ones are obtained by using transformations (i.e. symmetries) of the MDP of Fig. 5 Consider Fig. 5. Suppose horizontal and vertical sites are interchanged. What results is the same MDP except that bond weights get redefined. For a horizontal-vertical transformation one finds:

Transformation (i) Vertical \longrightarrow Horizontal.

$$
\begin{aligned}
& a_{1} \rightarrow a_{3}, \\
& a_{2} \rightarrow-a_{2}, \\
& a_{4} \rightarrow-a_{4} \\
& b_{1} \rightarrow-c_{4} \\
& b_{2} \rightarrow-c_{3} \\
& b_{3} \rightarrow c_{1}
\end{aligned}
$$

In Eq. (4.4) $v \leftrightarrow h$ stands for both $v\left(p_{y}\right) \rightarrow h\left(p_{x}\right)$ and $h\left(-p_{x}\right) \leftrightarrow v\left(-p_{y}\right)$. This transformation can be performed when a superbond is present, so that the V_{3} of box 3 of table 4 is obtained from the V_{1} of box 1 by Eq. (4.4). In using these transformations all functional dependence on the $a_{i}, b_{i}, c_{i}, v, h$, and d must be made manifest.

In all, there are 5 different transformations. They are used to obtain the remaining V_{i}. The others are

Transformation (ii) Horizontal \rightarrow Diagonal.

$$
\begin{align*}
& a_{i} \rightarrow b_{i}, \quad i=1,2,3, \text { or } 4 \\
& c_{1} \rightarrow c_{3} \\
& c_{2} \rightarrow-c_{2} \tag{4.5}\\
& c_{4} \rightarrow-c_{4}, \\
& h \leftrightarrow-d
\end{align*}
$$

Transformation (iii) Vertical \rightarrow Diagonal.

$$
\begin{align*}
& a_{i} \rightarrow c_{i} \\
& b_{1} \rightarrow b_{3} \\
& b_{2} \rightarrow-b_{2} \tag{4.6}\\
& b_{4} \rightarrow-b_{4} \\
& v \rightarrow d
\end{align*}
$$

Transformation (iv) Vertical-Horizontal-Diagonal-Vertical.

$a_{1} \rightarrow c_{3}$,	$b_{2} \rightarrow-a_{2}$,	$h \rightarrow d$, $d \rightarrow-$
$a_{2} \rightarrow-c_{2}$,	$b_{3} \rightarrow a_{1}$,	(4.7)
$a_{3} \rightarrow c_{1}$,	$b_{4} \rightarrow-a_{4}$,	
$a_{4} \rightarrow-c_{4}$,	$c_{i} \rightarrow b_{i}$,	
$b_{1} \rightarrow a_{3}$,	$v \rightarrow h$,	

Transformation（v）Horizontal \rightarrow Vertical \rightarrow Diagonal \rightarrow Horizontal．

$$
\begin{aligned}
& a_{1} \rightarrow b_{3}, \\
& a_{2} \rightarrow-b_{2}, \\
& a_{3} \rightarrow b_{1}, \\
& a_{4} \rightarrow-b_{4}, \\
& b_{i} \rightarrow c_{i}, \\
& c_{1} \rightarrow a_{3}, \\
& c_{2} \rightarrow-a_{2}, \\
& c_{3} \rightarrow a_{1}, \\
& c_{4} \rightarrow-a_{4}, \\
& n \rightarrow v, \\
& v \rightarrow a, \\
& d \rightarrow b,
\end{aligned}
$$

For $i \leqslant 15$ ，define $V_{2 i}\left(p_{x}, p_{y}\right)=V_{2 i-1}\left(-p_{x},-p_{y}\right)$ ．The V_{i} are the pseudo－free 32 vertex analogues of the free－fermion W_{i} ．

The results for the momentum space correlations are

$$
\begin{align*}
& \left\langle\mathrm{a}_{\mathrm{st} \mathrm{t}}^{\mathrm{a} \mathrm{v}_{\mathrm{st}}{ }^{\dagger}}\right\rangle=\mathrm{v}_{1}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / L\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) . \tag{4.9}\\
& \left\langle a_{s t}^{h} a_{s t}^{h^{\dagger}}\right\rangle=V_{3}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) 。 \tag{4.10}\\
& \left\langle a_{s t}^{d} \frac{a_{s t}{ }^{\dagger}}{}\right\rangle=V_{5}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.11}\\
& \left\langle a_{s t}^{h}{ }^{\dagger}{ }^{\dagger}{ }_{s t}\right\rangle=v_{7}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.12}\\
& \left\langle a_{s t}^{d_{s t}^{\dagger}}{ }^{2}\right\rangle=v_{9}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.13}\\
& \left\langle a_{s t}^{d_{s t}^{\dagger}}{ }^{h}\right\rangle=V_{1 I}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.14}\\
& \left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}^{\dagger} \mathrm{a}_{s t}^{\mathrm{h}}}\right\rangle=\mathrm{v}_{13}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) . \tag{4.15}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}^{\dagger}} \mathrm{a}_{\mathrm{st}}^{\mathrm{d}}\right\rangle=\mathrm{v}_{15}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \text { 。 } \tag{4.16}\\
& \left\langle\mathrm{a}_{s t}{ }^{\dagger}{ }^{\dagger}{ }_{s t}^{d}\right\rangle=V_{17}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.17}\\
& \left\langle\mathrm{a}_{\mathrm{st}} \mathrm{v}^{\dagger} \mathrm{h}^{+s-t}{ }^{+}\right\rangle=\mathrm{v}_{19}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \text { 。 } \tag{4.18}\\
& \left\langle a_{s t^{v^{\dagger}}-s-t}^{a^{\dagger}}\right\rangle=V_{21}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.19}\\
& \left\langle a_{s t}^{h^{\dagger} \cdot d^{\dagger}-s-t}\right\rangle=V_{23}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.20}
\end{align*}
$$

$$
\begin{align*}
& \left\langle a_{s t^{2}-s-t}^{\mathrm{d}}\right\rangle=v_{27}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.22}\\
& \left\langle a_{s t}^{\mathrm{h}} \mathrm{a}_{-\mathrm{s}-\mathrm{t}}^{\mathrm{a}}\right\rangle=\mathrm{V}_{29}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) . \tag{4.23}\\
& \left\langle\mathrm{a}_{\mathrm{vt}^{\dagger} \mathrm{v}^{\dagger}-\mathrm{s}-\mathrm{t}}^{\dagger}\right\rangle=\mathrm{V}_{31}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \text { 。 } \tag{4.24}\\
& \left\langle\mathrm{a}_{\mathrm{st} \mathrm{t}^{\mathrm{v}} \mathrm{v}_{\mathrm{s}-\mathrm{t}}}^{\mathrm{v}}\right\rangle=\mathrm{V}_{32}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \text {. } \tag{4.25}\\
& \left\langle a_{s t^{h^{\prime}}{ }^{\dagger}{ }^{\dagger}{ }^{\dagger}-t}\right\rangle=V_{33}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.26}\\
& \left\langle a_{s t^{2}-s-t}^{h}\right\rangle=v_{34}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{4.27}\\
& \left\langle a_{s t}^{a^{\dagger}}{ }^{\mathrm{a}^{\mathrm{a}}-\mathrm{s}-\mathrm{t}}\right\rangle=\mathrm{v}_{35}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / \mathrm{L}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) . \tag{4.28}\\
& \left\langle a_{s t}^{d}{ }^{a_{-s-t}}\right\rangle=V_{36}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) .
\end{align*}
$$

The zero correlations are

$$
\begin{align*}
& \left\langle a_{s t^{\prime}}^{h_{s t}^{+}} a^{\dagger}\right\rangle=\left\langle a_{s t}^{h} a_{s t}^{d}\right\rangle=\left\langle a_{s t^{v}}^{v} a_{-s-t}^{v^{+}}\right\rangle=\left\langle a_{s t^{v} a_{-s-t}}^{h^{\dagger}}\right\rangle= \\
& \left\langle a_{s t}^{v} a_{-s-t}^{a^{\dagger}}\right\rangle=\left\langle a_{s t}^{h} a_{-s-t}^{v^{\dagger}}\right\rangle=\left\langle a_{s t}^{h} a_{-s-t}^{h^{\dagger}}\right\rangle=\left\langle a_{s t^{h} a_{-s-t}}^{a^{\dagger}}\right\rangle= \tag{4.30}\\
& \left\langle\mathrm{a}_{s t^{\mathrm{a}} \mathrm{a}_{-s-t}}^{\mathrm{v}}\right\rangle=\left\langle\mathrm{a}_{s t^{\dagger} \mathrm{a}_{-s-t}}^{\mathrm{h}}\right\rangle=\left\langle\mathrm{a}_{s t^{\dagger}}^{\mathrm{d}} \mathrm{a}_{-s-t}^{\dagger}\right\rangle=0 .
\end{align*}
$$

In Eqs. (4.9)-(4.30), $p_{x}=\frac{2 \pi s}{2 M+1}$ and $p_{y}=\frac{2 \pi t}{2 N+1}$. Equation (3.5) or (3.31) give $L\left(p_{x}, p_{y}\right)$ and the V_{i} are given in table 4. The correlations in Eq. (4.30) are zero. This can be seen immediately by interchanging " x "'s and "o"'s at ($-s,-t$) sites of the MDP of Fig.5. After doing this correlations are zero unless the number of " 0 "'s equals the number of " x "'s ("fermion number conservation").
V. THE COORDINATE SPACE CORRELLATIONS

The coordinate space anticommuting variable correlation
functions can be related to the momentum space ones of Eqs. (4.9)-(4.30) using Eq. (II. 2.3):

$$
\begin{aligned}
& \left.\left.\left\langle u_{\mathrm{c} \mathrm{\beta}}^{\mathrm{v}} \mathrm{v}_{\alpha^{\prime}, \beta^{\prime}}^{v}\right\rangle=\int_{-\pi}^{\pi} \frac{\mathrm{dp}_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right)\right)_{\mathrm{x}}+i\left(\beta-\beta^{\prime}\right)\right)_{p_{y}}\right] \\
& \times V_{1}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \quad \text { (5.1) } \\
& \left\langle\eta_{\alpha \beta}^{h} \eta_{\alpha^{\prime} \beta^{\prime}}^{h^{\dagger}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \\
& x V_{3}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) .(5.2)
\end{aligned}
$$

$$
\begin{array}{r}
\left\langle\eta_{\alpha \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{d} \mathrm{~d}^{\dagger} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]\right. \\
x V_{5}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.3}
\end{array}
$$

$$
\begin{array}{r}
\left\langle\eta_{\alpha \beta^{\eta} \eta^{\prime} \beta^{\prime}}^{v}\right\rangle=-\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \\
\quad \times V_{7}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.4}
\end{array}
$$

$$
\left\langle\eta_{\alpha \beta^{\eta}}^{v} \frac{d^{\prime} \beta^{\prime}}{\dagger}\right\rangle=-\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]
$$

$$
\begin{equation*}
x V_{9}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.5}
\end{equation*}
$$

$$
\left\langle\eta_{\alpha \beta^{\prime}}^{h} \eta_{\alpha^{\prime} \beta^{\prime}}^{d^{\dagger}}\right\rangle=-\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]
$$

$$
\begin{equation*}
\times V_{11}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
x V_{13}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.7}
\end{equation*}
$$

$$
\left\langle\eta_{\alpha \beta \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{\frac{v^{\dagger}}{\dagger}}\right\rangle=, \quad \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]
$$

$$
\begin{equation*}
x V_{15}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.8}
\end{equation*}
$$

$\left\langle\eta_{\alpha \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{\alpha}\right\rangle=-\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\dagger}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]$

$$
\begin{equation*}
x^{V_{17}}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.9}
\end{equation*}
$$

$$
\left\langle\eta_{\alpha \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{\mathrm{q}^{+}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right]
$$

$$
\begin{equation*}
x v_{23}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \tag{5.12}
\end{equation*}
$$

$\left\langle\eta_{\alpha \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{v}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]$

$$
\begin{equation*}
x \mathrm{v}_{25}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) / L\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \tag{5.13}
\end{equation*}
$$

$\left\langle\eta_{\alpha \beta^{\prime}{ }^{\prime} \beta^{\prime}}^{v}{ }^{d}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]$

$$
x v_{27}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) .
$$

$\left\langle\eta_{\alpha \beta^{\eta}}^{h} \eta_{\alpha^{\prime} \beta^{\prime}}^{d}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right]$

$$
\times v_{29}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \quad(5.15)
$$

$\left\langle\eta_{\alpha \beta^{\prime} \gamma^{\prime} \beta^{\prime}}^{\mathrm{v}^{\dagger} \mathrm{v}^{\dagger}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right]$

$$
x V_{3 I}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right)
$$

$$
\begin{aligned}
& \left\langle\eta_{\alpha \beta^{+} \alpha^{\prime} \beta^{\prime}}^{\mathrm{v}^{+}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right] \\
& \times V_{19}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \quad \text { (5.10) } \\
& \left\langle\eta_{\alpha \beta^{\prime} \alpha^{\prime} \beta^{\prime}}^{\mathrm{v}^{+}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right] \\
& x_{21}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \text { (5.11) }
\end{aligned}
$$

$$
\begin{align*}
& \left\langle\eta_{\alpha \beta}^{v} \eta^{v} \alpha^{\prime} \beta^{\prime}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \\
& \times V_{32}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \text { (5.17) } \\
& \left\langle\eta_{\alpha \beta^{\prime} \gamma^{\prime} \beta^{\prime}}^{\mathrm{h}^{\dagger}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right] \\
& x_{33}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \\
& \left\langle\eta_{\alpha \beta^{n} \alpha^{\prime} \beta^{\prime}}^{\mathrm{h}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \\
& { }_{x} V_{34}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{5.19}\\
& \left\langle\eta_{\alpha \beta^{\prime} \alpha^{\prime} \beta^{\prime}}^{\mathrm{d}^{+}{ }^{+}}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d p_{y}}{2 \pi} \exp \left[i\left(\alpha^{\prime}-\alpha\right) p_{x}+i\left(\beta^{\prime}-\beta\right) p_{y}\right] \\
& \times V_{35}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) \text {. (5.20) } \\
& \left\langle\eta_{\alpha \beta^{\prime} \eta^{\prime} \beta^{\prime}}^{d}\right\rangle=\int_{-\pi}^{\pi} \frac{d p_{x}}{2 \pi} \int_{-\pi}^{\pi} \frac{d_{p_{y}}}{2 \pi} \exp \left[i\left(\alpha-\alpha^{\prime}\right) p_{x}+i\left(\beta-\beta^{\prime}\right) p_{y}\right] \\
& x_{36}\left(p_{x}, p_{y}\right) / L\left(p_{x}, p_{y}\right) . \tag{5.21}
\end{align*}
$$

These are useful formulas in the pseudo-free 32 vertex model.

VI. SPIN CORRELATIONS

This section calculates a spin-spin correlation function in the triangular Ising model using the method outlined in II. This method generalizes to the calculation of the vacuum expectation of an arbitrary product of spins in a relatively straight forward way,
although the answer is, in general, cumbersome (a Pfaffian of large order). The formulas in Sec. V are the essential ingredients. Consider $\left\langle\sigma_{\alpha \beta} \sigma_{\alpha \beta+m}\right\rangle$, i.e. two spins in the same vertical column of Fig. la. This is expressible in terms of anticommuting variables as

$$
\begin{align*}
& \left\langle\sigma_{\alpha \beta} \sigma_{\alpha \beta+m}\right\rangle=\left\langle\left[z_{v}+\left(1-z_{v}^{2}\right) \eta_{\alpha \beta}^{v^{\dagger}} \eta_{\alpha \beta+1}^{v}\right]\left[z_{v}+\left(1-z_{v}^{2}\right) \eta_{\alpha \beta+1} v^{\dagger}{ }^{\dagger}{ }_{\alpha \beta+2}\right] \cdots\right. \\
& \left.\left[z_{v}+\left(1-z_{v}^{2}\right) \eta_{\alpha \beta+m-1}^{v^{\eta}} \stackrel{v}{v}\right]\right\rangle . \tag{6.1}
\end{align*}
$$

One can choose $\alpha=\beta=0$ because of translational invariance.
Define the $2 m \times 2 \mathrm{~m}$ antisymmetric matrix, M, by

$$
\begin{align*}
M_{2 i-1,2 j-1} & =\left\langle\eta_{0, i-1}^{v^{\dagger}} \nu_{0, j-1}^{v^{\dagger}}\right\rangle\left(1-z_{v}^{2}\right), \tag{6.2}\\
M_{2 i, 2 j} & =\left\langle\eta_{0, i}^{v} \eta_{0, j}^{v}\right\rangle\left(1-z_{v}^{2}\right), \\
M_{2 i-1,2 j} & =z_{v} \delta_{i j}+\left(1-z_{v}^{2}\right)\left\langle\eta_{0, i-1}^{v^{\dagger}} \eta_{0, j}^{v}\right\rangle
\end{align*}
$$ values of Eqs. (2.6) and (2.9).

The correlation, $\left\langle\sigma \sigma^{\prime}\right\rangle$, on the hexangonal lattice can also be calculated. Again, it is a partition function on a defective

Then

$$
\begin{equation*}
\left\langle\sigma_{\alpha \beta} \sigma_{\alpha \beta+m}\right\rangle=\operatorname{Pf} \mathrm{M} \tag{6.3}
\end{equation*}
$$

In Eq. (6.2) i and j go from 1 to m. The three correlations needed are give in Eqs. (5.16), (5.17), and (5.1), with the parameter
lattice (see section VI of paper II). Dual (disorder) variables must be used. Recall that this means polygons are drawn around regions of up and down spin. To calculate $\left\langle\sigma \sigma^{\prime}\right\rangle$ draw a line on the hexangonal lattice connecting σ to σ^{\prime}. This line intersects certain bonds on the dual (triangular) lattice. To obtain the correlation as a defective partition function, change the sign of these bond weights. This means that a minus sign results, as it should, whenever a polygon encloses one spin but not the other, i.e. when one spin is in a region of up spin and the other is in a region of down spin. Such a partition function can be expressed in terms of anticommuting variable correlations using a similar technique as used in obtaining Eq. (II. 6.2). Again, this method generalizes to the case of an arbitrary product of spins.

ACKNOWLEDGMENT'S

I thank Harry Morrison for reading the manuscript and making useful suggestions. I thank Korkut Bardakci and Harry Morrison for encouragement.

REFERENCES

1. S. Samuel, The Use of Anticommuting Integrals in Statistical Mechanics I, LBL preprint 8217, September 1978. Equations and Figures referred to in this paper are prefaced by an I.
2. S. Samuel, The Use of Anticommuting Integrals in Statistical Mechanics II, IBL preprint 8300, October 1978. Equations and figures referred to in this paper are prefaced by a II.
3. B. B. van der Waerden, Z. Physik 118, 473 (1941). This is reviewed in I where a pedagogical set of references can be found.
4. H. S. Green and C. A. Hurst, Order-Disorder Theory, edited by I. Preigoine (Interscience, New York, 1964). See Sec. 5.3.
5. C. Fan and F. Y. Wu, Phys, Rev. B2, 723 (1970).
6. I have carried out this proof but omit it to keep this paper as short as possible.
7. G. H. Wannier, Phys. Rev. 79, 357 (1950). G. F. Newell, Phys. Rev. 79, 876 (1950). H. N. V. Temperley, Proc. Roy. Soc. (London) A 202, 202 (1950). R. M. F. Houtappel, Physica 16, 425 (1950). See also reference 4 , chapter 5 .

Figure 1. (a) The square lattice with one diagonal. (b) The triangular lattice. (c) The hexangonal lattice. Figure (b) is obtained from Fig. (a) by rotating the vertical lines counterclockwise by roughly 45°.

Figure 2. The Bloch wall operators of Eq. (2.3). These are (a) the horizontal Bloch wall operator, (b) The vertical Bloch wall operator, and (c) The diagonal Bloch wall operator. The corresponding Boltzmann factors are also indicated.

Figure 3. The corner operators of Eq. (2.4)
Figure 4. Intersection minus signs. A non self-intersecting polygon has no minus signs due to reording of anticommuting variables. When self-intersections occur, one must use the pasting construction of Fig. I. 16. This results in a minus sign for configuration (xviii) as Fig. (a) indicates. Configurations (xvii), (xix), (xxiv), (xxvi), (xxviii), and (xxx) are similar to Fig. (a) and have a minus sign. Figure (b), Fig. (c), and Fig. (d) show why minus signs result in configurations (xxi), (xxiii), and (xxxii).

Figure 5. The miniature dimer problem. For clarity the bonds have been drawn on four separate figures. One should take the bonds in Figs. (b), (c), and (d) and attach them to the "o"'s and "x"'s in Fig.(a) to obtain the miniature dimer problem. The upper left, middle left, lower left, upper right, middle right, and lower right sites respectively stand for the vertical (s, t), the horizontal (s, t), the diagonal (s, t), the vertical ($-s,-t$), the
horizontal ($-s,-t$), and the diagonal ($-s,-t$) variables. The bond weights are indicated in the figure.
Figure 6. The superbonds used to calculate $\left\langle\mathrm{a}_{\mathrm{st}^{\mathrm{v}} \mathrm{a}_{\mathrm{st}}{ }^{\dagger}}\right.$. The weight of the superbond is unity.

Figure 7. The symbolic representation of Eq. (4.1). Type 1 terms involve the $d\left(p_{x}, p_{y}\right)$ and $d\left(-p_{x},-p_{y}\right)$ bonds shown on the right. After bonds connecting to diagonal sites are erased, the free-fermion model results, and one needs $\left\langle a_{s t}^{v} \mathrm{a}_{\mathrm{st}}^{\mathrm{v}}\right.$ 〉 for the free-fermion model as shown on the left.

Figure 8. The super bonds used to calculate type 2 terms in $\left\langle a_{s t}^{v} t_{s t}^{v^{\dagger}}\right\rangle$. When two bonds are used from Figs. $5 c$ and 5 d two sites besides the vertical (s, t) sites get covered. The numbers in the upper left hand corners indicate the boxes of table 2 containing these sites and bonds. What results are MMDP's with two superbonds. The superbonds are shown here. There are nine different possibilities. The C_{i} factor is due to the bonds used from Figs. $5 c$ and $5 d$ as well as the $d\left(p_{x}, p_{y}\right)$ and $d\left(-p_{x},-p_{y}\right)$ bonds. The C_{i} are given in Eq. (3.12). The F_{i} factor is the weight of the coverings of the MMDP. They can be found
in table 3.

Figure 9. The superbonds used to calculate type 3 terms in $\left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}} \mathrm{a}_{\mathrm{st}} \mathrm{v}^{\dagger}\right\rangle$. When four bonds are used from Figs. 5 c and 5 d , four sites get covered in addition to the vertical (s, t) sites. The numbers in the upper left hand corners indicate the boxes of table 3 containing these sites.

What results are MMDP's with three superbonds. The superbonds are shown here. The E_{i} factors are due to the bonds from Figs. 5c and 5d and are given in the corresponding box of table 3. The easily calculated covering weight is the second factor $\left[\mathrm{h}\left(-\mathrm{p}_{\mathrm{x}}\right), \mathrm{h}\left(\mathrm{p}_{\mathrm{x}}\right), \mathrm{v}\left(-\mathrm{p}_{\mathrm{y}}\right)\right.$, etc.]. Figures (d) and (e) have no coverings, hence the zero.

Table l. The thirty-two possible configurations which may occur. After the Bloch wall Boltzmann factors have been extracted their weights are (i) $\left[b_{h} b_{v} b_{d}\right]+$
$\left[\left(-a_{1} a_{3}-a_{2} a_{4}\right) b_{d}+\left(-b_{1} b_{3}-b_{2} b_{4}\right) b_{h}+\left(-c_{1} c_{3}-c_{2} c_{4}\right) b_{v}\right]+$ $\left[a_{1} b_{2} c_{4}-a_{1} b_{3} c_{3}-a_{2} b_{1} c_{4}-a_{2} b_{4} c_{3}+a_{3} b_{4} c_{2}-a_{3} b_{1} c_{1}-a_{4} b_{3} c_{2}\right.$
$\left.-a_{4} b_{2} c_{1}\right]$,
(ii) $\left[b_{h} b_{d}\right]+\left[-c_{1} c_{3}-c_{2} c_{4}\right]$,
(iii) $\left[b_{v} b_{d}\right]+\left[-b_{1} b_{3}-b_{2} b_{4}\right]$,
(iv) $\left[b_{h} b_{v}\right]+\left[-a_{1} a_{3}-a_{2} a_{4}\right]$,
(v) $\left[a_{1} b_{d}\right]+\left[b_{1} c_{1}-b_{4} c_{2}\right]$,
(vi) $\left[a_{2} b_{d}\right]+\left[b_{3} c_{2}+b_{2} c_{1}\right]$,
(vii) $\left[a_{3} b_{d}\right]+\left[b_{3} c_{3}-b_{2} c_{4}\right]$,
(viii) $\left[a_{4} b_{d}\right]+\left[{ }_{1} c_{4}+b_{4} c_{3}\right]$,
(ix) $\left[b_{1} b_{h}\right]+\left[a_{1} c_{3}+a_{4} c_{2}\right]$,
(x) $\left[b_{2} b_{h}\right]+\left[a_{2} c_{3}-a_{3} c_{2}\right]$,
(xi) $\left[b_{3} b_{h}\right]+\left[a_{3} c_{1}+a_{2} c_{4}\right]$,
(xii) $\left[b_{4} b_{h}\right]+\left[a_{4} c_{3}-a_{1} c_{4}\right]$,
(xiii) $\left[c_{1} b_{v}\right]+\left[a_{1} b_{3}+a_{2} b_{4}\right]$,
(xiv) $\left[c_{2} b_{v}\right]+\left[a_{2} b_{1}-a_{1} b_{2}\right]$,
(xv) $\left[c_{3} b_{v}\right]+\left[a_{3} b_{1}+a_{4} b_{2}\right]$,

```
(xvi) \(\left[c_{4} b_{v}\right]+\left[a_{4} b_{3}-a_{3} b_{4}\right]\),
(xvii) \(\left[-b_{v}\right]\),
(xviii) \(\left[-b_{h}\right]\),
(xix) \(\left[-b_{d}\right]\),
(xx) \(\left[a_{3}\right]\),
(xxi) \(\left[-a_{4}\right]\),
(xxii) \(\left[a_{1}\right]\),
(xxiii) \(\left[\cdot-a_{2}\right]\),
(xxiv) \(\left[-b_{3}\right]\),
(xxv) \(\left[b_{4}\right]\),
(xxvi) \(\left[-b_{1}\right]\),
(xxvii) \(\left[b_{2}\right]\),
(xxviii) \(\left[-\mathrm{c}_{3}\right]\),
(xxix) \(\left[c_{4}\right]\),
(xxx) \(\left[-c_{3}\right]\),
(xxxi) [ \(\left.c_{2}\right]\),
(xxxii) [-1].
```

Table 2. The A_{i} and B_{i} values. Column 1 shows the sixteen non-zero momentum space anticomauting variable correlations of the free-fermion model. For example, box 1 is $Z\left\langle\mathrm{a}_{\text {st }^{\mathrm{v}}} \mathrm{a}_{\text {st }}{ }^{\dagger}\right\rangle$, box 2 is $Z\left\langle\hat{a}_{-s-t^{v}}^{\mathrm{a}^{\mathrm{v}^{\dagger}}-\mathrm{t}}\right\rangle$, box 5 is $Z\left\langle\mathrm{a}_{\text {st }}^{\mathrm{h}^{+} \mathrm{a}_{\text {st }}^{\mathrm{v}}}\right\rangle$, etc. These corregtions occur in two ways: when $\alpha\left(-p_{x},-p_{y}\right)$ and two bonds connecting to diagonal (s, t) sites from Figs. $5 c$ and 5 d are used or when $d\left(p_{x}, p_{y}\right)$ and two bonds connecting to diagonal ($-s,-t$) sites are used. The former are shown in the second column with the corresponding weight or A_{i} value. The latter are shown in the third column with the corresponding B_{i} weight.

Table 3. The E_{i} and F_{i} values. There are 36 non-zero four point anticommuting variable correlations in the free-fermion model. These are shown in the first column. For example, in box 1 is

$$
\begin{aligned}
& z\left\langle\mathrm{a}_{\mathrm{st}}^{\mathrm{v}} \mathrm{a}_{-\mathrm{s}-\mathrm{t}}^{\mathrm{v}}\right\rangle\left\langle\mathrm{a}_{\mathrm{st}^{\mathrm{v}^{\dagger}}{ }^{\mathrm{v}}{ }_{-\mathrm{s}-\mathrm{t}}^{\dagger}}\right\rangle \equiv \mathrm{F}_{1} .
\end{aligned}
$$

F_{1} is the value of this correlation. In graphical language, it is the weight needed to cover the rest of the " 0 "'s and "x"'s. The E_{i} values are the bond weights needed to produce these correlations. Four bonds must be chosen from Figs. 5c and 5d, or two pairs from table 2.

There are always four sets. For E_{1} these are A_{1} and B_{2} bonds, A_{2} and B_{1} bonds, A_{13} and B_{14} bonds, or A_{14} and B_{13} bonds. This is how E_{1} is calculated. The F_{i} are obtained by finding the covering of the corresponding modified miniature dimer problem. Boxes 2, 3, 4, 5, 8, and 9 have two coverings; the rest have only one.

When A_{i} and B_{i} are substituted into the E_{i} the following are obtained:

$$
\begin{aligned}
& E_{1}=\left(b_{1} b_{3}+b_{2} b_{4}\right)^{2} \\
& E_{2}=E_{5}=\left(b_{1} c_{4}+b_{4} c_{3}\right)\left(b_{3} c_{2}+b_{2} c_{1}\right) \\
& E_{3}=E_{4}=\left(b_{1} c_{1}-b_{4} c_{2}\right)\left(b_{3} c_{3}-b_{2} c_{4}\right) \\
& E_{6}=\left(c_{1} c_{3}+c_{2} c_{4}\right)^{2} \\
& E_{7}=\left(b_{1} c_{1}-b_{4} c_{2}\right)^{2} \\
& E_{8}=E_{9}=\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(c_{1} c_{3}+c_{2} c_{4}\right) \\
& E_{10}=\left(b_{3} c_{3}-b_{2} c_{4}\right)^{2}
\end{aligned}
$$

$E_{11}=\left(b_{3} c_{2}+b_{2} c_{1}\right)^{2}$
$E_{12}=\left(b_{1} c_{4}+b_{4} c_{3}\right)^{2}$
$E_{13}=E_{19}=\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(b_{4} c_{2}-b_{1} c_{1}\right)$
$E_{14}=E_{20}=\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(b_{2} c_{4}-b_{3} c_{3}\right)$
$E_{15}=E_{21}=-\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(b_{3} c_{2}+b_{2} c_{1}\right)$
$E_{16}=E_{22}=-\left(b_{1} b_{3}+b_{2} b_{4}\right)\left(b_{4} c_{3}+b_{1} c_{4}\right)$
$E_{17}=-E_{23}=\left(b_{3} c_{2}+b_{2} c_{1}\right)\left(b_{1} c_{1}-b_{4} c_{2}\right)$
$E_{18}=-E_{24}=\left(b_{1} c_{4}+b_{4} c_{3}\right)\left(b_{3} c_{3}-b_{2} c_{4}\right)$
$E_{25}=E_{31}=\left(b_{4} c_{2}-b_{1} c_{1}\right)\left(c_{1} c_{3}+c_{2} c_{4}\right)$
$E_{26}=E_{32}=\left(b_{2} c_{4}-b_{3} c_{3}\right)\left(c_{1} c_{3}+c_{2} c_{4}\right)$
$E_{27}=E_{33}=-\left(b_{3} c_{2}+b_{2} c_{1}\right)\left(c_{1} c_{3}+c_{2} c_{4}\right)$
$E_{28}=E_{34}=-\left(b_{4} c_{3}+b_{1} c_{4}\right)\left(c_{1} c_{3}+c_{2} c_{4}\right)$
$E_{29}=-E_{35}=\left(b_{c} c_{4}-b_{3} c_{3}\right)\left(b_{3} c_{2}+b_{2} c_{1}\right)$
$E_{30}=-E_{36}=\left(b_{4} c_{2}-b_{1} c_{1}\right)\left(b_{4} c_{3}+b_{1} c_{4}\right)$
Table 4. The V_{i} values. In the boxes to the left are the correlation functions. For example, boxes $1,3,5$, and 7 are $\left\langle a_{s t}^{v}{ }^{a_{s t}{ }^{\dagger}}\right\rangle,\left\langle a_{s t}^{h}{ }^{a_{s t}}\right\rangle,\left\langle a_{s t}^{d}{ }^{a_{s t}}{ }^{\dagger}\right\rangle$, and $\left\langle a_{s t}^{h^{\dagger}}{ }^{a_{s t}}\right\rangle$, To the right are the V_{i} values of the MMDP's. For $i \leqslant 15$, $v_{2 i}\left(p_{x}, p_{y}\right) \equiv v_{2 i-1}\left(-p_{x},-p_{y}\right)$ so that these boxes are not shown. Many of the V_{i} are obtained from other V_{i} 's by one of the transformations of Eqs. (4.4)-(4.9), in which case the transformation is indicated. For example, $\mathrm{V}_{3}{ }^{-}$is written in terms of V_{1} by using transformation (i). In transforming, one must explicitly put in all the functional dependence on
the a_{i}, b_{i}, and c_{i} parameters, as well as the h, v, and d functions. This means that in obtaining V_{3} from V_{1}, $W_{1}, C_{2}, F_{1}, C_{3}, F_{2}$, etc. must be expressed in te:ms of the $a_{i}, b_{i}, c_{i}, h, v$, and d. The symbols h, v, and d stand for $h\left(p_{x}\right)$ or $h\left(-p_{x}\right), v\left(p_{y}\right)$ or $v\left(-p_{y}\right)$, and $d\left(p_{x}, p_{y}\right)$ or $d\left(-p_{x},-p_{y}\right)$.

(a)

(b)

Fig. 1

(c)

XBL78\|-12646

9
a_{1}

b_{1}

$x 2$
b_{2}

a_{3}

b_{3}

O
b_{4}
$\stackrel{8}{c_{4}}$

Fig. $3 \quad X B L 7811-12642$
(a) $x^{9} 0=-x_{x}^{9} \frac{0}{x}=-x_{x}^{i x}$
(b) $\quad 90=-\frac{90}{x}+0=-90$
(c) $x_{x}^{x-1}=-\frac{x}{x} \frac{0}{x}=-x \times 0$

Fig. 4 XBL78II-12644

$$
\begin{array}{cc}
v\left(p_{y}\right) \sigma x & \sigma x v\left(-p_{y}\right) \\
h\left(p_{x}\right) \sigma x & \sigma \times h\left(-p_{x}\right) \\
d\left(p_{x}, p_{y}\right) \sigma x & \sigma x d\left(-p_{x}-p_{y}\right)
\end{array}
$$

(a)

(c)

$0 \times \quad 0 \times$
(b)

(d)

Fig. 5

Fig. $7 \times$ BL 781I-12657

Fig. $8 \quad$ XBL 78il-12640

Fig. 9

∞	$\sqrt{0-x} \quad 0 \quad 0$	の $x \rightarrow-0$	or	$+$	ω	N	
		$\begin{array}{ccc} \sigma_{11} \\ \sigma_{1} & \times & \\ 0 & & 0 \\ 0 & 0 & 0 \end{array}$	$\left\lvert\, \begin{array}{lll} D & x \rightarrow-0 \\ 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & \bullet & 0 \end{array}\right.$	$\begin{gathered} D \\ n_{11} \\ 1 \\ n \\ n \\ 0 \end{gathered}$		$\underbrace{\infty}_{\substack{D \\ N_{1} \\ N_{0}^{\sigma}}}$	$\begin{aligned} & \text { D } \\ & -110 \\ & 1 \\ & -\infty \\ & 0 \end{aligned}$
$\left\lvert\, \begin{array}{llll} \infty \\ \infty & & & \\ 11 & \bullet & \bullet \\ 0 & & & x \\ \infty & 0 & x \rightarrow-0 \\ 0 & & \end{array}\right.$		$\left\lvert\, \begin{gathered} \infty \\ \sigma_{11} \\ 1 \end{gathered} \quad \bullet \quad \bullet \quad 0\right.$					
$\bar{\sigma} \quad 0 \cdot$	$\bar{\sim} \quad \begin{aligned} & x\end{aligned}$	$\bar{\square} \cdot 0$		\bar{N}	$=$	$=\underbrace{x}_{x}$	ω
$\begin{aligned} & \infty \\ & \sigma_{11} x \rightarrow 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & a_{n} 0-x \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} D \\ A_{11} \\ 1 \\ -\sigma \\ -\sigma \end{gathered}$			$\begin{array}{lll} = & x \rightarrow & 0 \\ = & 0 \\ -0 & 0 & 0 \end{array}$		
$\begin{array}{ccc} \sigma_{11}^{\infty} & \bullet & \rho \\ 1 & \delta \\ \omega & 0 & \\ \omega_{n} & x \rightarrow-0 & \end{array}$					$\begin{array}{lll} \infty & \\ =_{11} & 0 \\ \infty & 0 & 0 \\ \infty & x \rightarrow-0 \end{array}$		$\left\lvert\, \begin{array}{ll} \infty \\ 0 & \\ 0 & \\ 0 & x \\ 0 & 0-x \end{array}\right.$

Table 2

	$F_{f}=h\left(p_{x}\right) h\left(-p_{x}\right)$	$\begin{array}{cc} 10 \\ x & x \rightarrow x \\ E_{10}=\left(A_{7} B_{8}+A_{8} B_{7}\right)-\left(A_{13} B_{16}+A_{16} B_{13}\right) \end{array}$	$\begin{aligned} & 9 \\ & F_{10}=a_{1}^{2} \end{aligned}$
$\left.\begin{aligned} & 2 x \cdot \\ & 6 x \cdot \\ & 6 x \\ & E_{2}=\left(A_{1} B_{5} A_{3} B_{1}\right)-\left(A_{5} B_{7}+A_{7} B_{5}\right) \end{aligned} \right\rvert\,$	$F_{2}=h\left(-p_{x}\right) v\left(-p_{y}\right)-a_{1} a_{3}$	11	$F_{11}=a_{4}^{2}$
$\left\{\begin{array}{l} r^{3} x \\ E_{3}=\left(A_{1} B_{4}+A_{4} B_{1}\right)-\left(A_{9} B_{11}+A_{11} B_{9}\right) \end{array}\right.$	$\begin{aligned} & 6 x \\ & 6 x \cdot \\ & F_{3}=h\left(p_{x}\right) v\left(-p_{y}\right)-a_{2} a_{4} \end{aligned}$	$\left\lvert\, \begin{aligned} & 12 \\ & 0 \\ & 0 \end{aligned}\right.$	$F_{12}=a_{2}^{2}$
$\left\lvert\, \begin{aligned} & 4 \\ & 6 x \cdot 6 x=- \end{aligned}\right.$	$\begin{aligned} & 6 x \\ & F_{4}=h\left(-p_{x}\right) v\left(p_{y}\right)-o_{2} o_{4} \end{aligned}$	$\begin{aligned} & 6 \times 9=+\quad+0 \\ & E_{13}=\left(A_{1} B_{6}+A_{6} B_{1}\right)+\left(A_{9} B_{14}+A_{14} B_{9}\right) \end{aligned}$	$F_{13}=-o_{3} h\left(p_{x}\right)$
$\begin{aligned} & 5 \cdot \delta x=-\quad \cdot f+ \\ & E_{5}=\left(A_{2} B_{4} A_{4} B_{2}\right)-\left(A_{6} B_{8}+A_{8} B_{6}\right) \end{aligned}$	$\begin{array}{ccc} 6 x & x & \\ 6 x & \delta x & \\ F_{5}=h\left(p_{x}\right)\left(p_{y}\right)-a_{1} a_{3} \end{array}$	$E_{14}=\left(A_{1} B_{8}+A_{8} B_{1}\right)+\left(A_{11} B_{13}+A_{13} B_{11}\right)$	$F_{14}=-a_{1} h\left(p_{x}\right)$
$\left.\begin{array}{cc} 6 \\ b=0 & \cdots \\ E_{6}=\left(A_{3} B_{4}+A_{4} B_{3}\right)-\left(A_{15} B_{16}+A_{16} B_{15}\right) \end{array}\right)$	$F_{6}=v\left(p_{y}\right) v\left(-\rho_{y}\right)$	$\left\|\begin{array}{l} 15 \\ x \times x \\ E_{15}=\left(A_{1} B_{10}+A_{10} B_{1}\right)-\left(A_{5} B_{13}+A_{13} B_{5}\right) \end{array}\right\|$	$F_{15}=-a_{4} h\left(-p_{x}\right)$
7 $\left\{_{x}^{0}=-l_{x}^{0} 0\right.$ $E_{7}=\left(A_{5} B_{6}+A_{6} B_{5}\right)-\left(A_{14} B_{15}+A_{15} B_{14}\right)$	$F_{7}=a_{3}^{2}$	$\begin{aligned} & 16 \\ & E_{16}\left(A_{1} B_{12}+A_{12} B_{1}\right)-\left(A_{7} B_{14}+A_{14} B_{7}\right) \end{aligned}$	$F_{16}=-o_{2} h\left(-p_{x}\right)$
8 $E_{8}=\left(A_{5} B_{8}+A_{8} B_{5}\right)+\left(A_{10} B_{11}+A_{11} B_{10}\right)$	$F_{0}=a_{1} a_{3}+a_{2} a_{4}$	$\begin{aligned} & \operatorname{S}_{x \rightarrow x}^{17}=+\underbrace{9}_{x} \cdot \\ & E_{17}=\left(A_{1} B_{15}+A_{15} B_{1}\right)+\left(A_{5} B_{9}+A_{9} B_{5}\right) \end{aligned}$	$F_{17}=a_{3} a_{4}$
9 $\underbrace{x}_{E_{9}=\left(A_{6} B_{7}+A_{7} B_{6}\right)+\left(A_{9} B_{12}+A_{12} B_{9}\right)}$	$F_{9}=a_{1} a_{3}+a_{2} a_{4}$	$\delta_{0 \rightarrow 0}^{18}=+\underbrace{18}_{0}$	$F_{18}=a_{1} a_{2}$

Table 3

$\left[\begin{array}{cc} 19 & 0 x \\ x & 0 \\ E_{19}=\left(A_{2} B_{5}+A_{5} B_{2}\right)-\left(A_{10} B_{14}+A_{14} B_{10}\right) \end{array}\right.$	$F_{19}=-o_{3} h\left(-p_{x}\right)$	$\begin{array}{\|c\|c\|} \hline 28 \\ 8 x & 0 \\ E_{28}\left(A_{3} B_{11}+A_{11} B_{3}\right)+\left(A_{5} B_{16}+A_{16} B_{5}\right. \end{array}$	$F_{28}=-o_{2} v\left(-o_{y}\right)$
$\left.\left\lvert\, \begin{array}{ccc} 20 & \delta x & x \rightarrow-x_{0} \\ E_{20}=\left(A_{2} B_{7}+A_{7} B_{2}\right)-\left(A_{12} B_{13}+A_{13} B_{12}\right) \end{array}\right.\right)$	$\begin{gathered} \left\{\begin{array}{c} c \\ x \\ F_{20}=-o_{1} h\left(-p_{x}\right) \end{array}\right. \end{gathered}$	$\left\lvert\, \begin{array}{cc} 29 \\ x \rightarrow \cdots & \bullet \\ 6 x & \vdots x \end{array}\right.$	$F_{29}=-o_{1} o_{4}$
$\begin{gathered} 21 \\ x \quad \sigma x=+\cdots \times x \\ x \\ E_{21}=\left(A_{2} B_{9}+A_{9} B_{2}\right)+\left(A_{6} B_{13}+A_{13} B_{6}\right) \end{gathered}$	$F_{21}=-o_{4} h\left(p_{x}\right)$		$F_{30}=-a_{2} a_{3}$
$\left.\begin{gathered} 22 \\ 0 \quad 0 \%+c o_{1} \\ E_{\overline{2} 2}\left(A_{2} B_{11}+A_{11} B_{2}\right)+\left(A_{8} B_{14}+A_{14} B_{8}\right) \end{gathered} \right\rvert\,$	$\begin{aligned} & x= \\ & \sigma_{22}=-o_{2} h\left(p_{x}\right) \end{aligned}$	$\left\lvert\, \begin{gathered} 31 \\ x \delta x \\ E_{31}=\left(A_{4} B_{5}+A_{5} B_{4}\right)+\left(A_{11} B_{15}+A_{15} B_{11}\right) \end{gathered}\right.$	$F_{31}^{x}=-a_{3} v\left(-p_{y}\right)$
	$f_{23}=-o_{3} a_{4}$	$\begin{array}{cc} 32 \\ x & \bullet \\ \sigma & =+\quad \\ E_{32}\left(A_{4} B_{7}+A_{7} B_{4}\right)+\left(A_{9} B_{16}+A_{16} B_{9}\right) \end{array}$	$F_{32}=-o_{1} v\left(-p_{y}\right)$
$\left\|\begin{array}{c} 24 \\ \bullet 0 x \\ 0 \rightarrow- \\ E_{24}\left(A_{2} B_{16}+A_{16} B_{2}\right)-\left(A_{8} B_{12}+A_{12} B_{8}\right) \end{array}\right\|$	$\underbrace{p}_{F_{24}=-a_{1} a_{2}}$	33	$F_{33}=-a_{4} v\left(p_{y}\right)$
$\left\|\begin{array}{c} 25 \cdot 9=- \\ \sigma x \neq 0 \\ E_{25}=\left(A_{3} B_{6}+A_{6} B_{3}\right)-\left(A_{12} B_{15}+A_{15} B_{12}\right) \end{array}\right\|$	$F_{25}=-a_{3} v\left(p_{y}\right)$		$F_{34}=-a_{2} v\left(\rho_{y}\right)$
$\begin{array}{\|ccc\|} \hline 26 & x & x \\ \sigma x & 0 \\ E_{26}=\left(A_{3} B_{8}+A_{8} B_{3}\right)-\left(A_{10} B_{16}+A_{16} B_{10}\right) \end{array}$	$\begin{array}{cc} \sigma x & 0 \\ \bullet & \vdots \\ F_{26}=-a_{1} v & \left(p_{y}\right) \end{array}$	$\left\|\begin{array}{l} 35 x=x \\ \bullet \sigma x \\ E_{35}=\left(A_{4} B_{13}+A_{13} B_{4}\right)+\left(A_{8} B_{9}+A_{9} B_{8}\right) \end{array}\right\|$	$\begin{aligned} & \text { For }{ }_{35}=a_{1} a_{4} \end{aligned}$
$\begin{gathered} { }^{27} \times \underbrace{x}_{x \rightarrow-x} \cdot \\ E_{27} \cdot\left(A_{3} B_{9}+A_{9} B_{3}\right)+\left(A_{7} B_{15}+A_{15} B_{7}\right) \end{gathered}$	$F_{27}=-o_{4} v\left(-p_{y}\right)$	$\left\|\begin{array}{ccc} 3_{0 \rightarrow \infty} & + & 9 \\ \bullet o x & & a x \\ E_{36}-\left(A_{4} B_{14}+A_{14} B_{4}\right)+\left(A_{6} B_{11}+A_{11} B_{6}\right) \end{array}\right\|$	$F_{36}=a_{2} o_{3}$

$6 x$	Transformation (i) applied to V_{1} $v_{3}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{1}\left(b, v, d ; a_{3},-a_{2}, a_{1},-a_{4} ; c_{3},-c_{2}, c_{2},-c_{4} ; b_{3},-b_{2}, b_{1},-b_{4}\right)$
$6 x_{5}$	Transformation (iii) applied to V_{I} $v_{5}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{1}\left(a, h, v ; c_{1}, c_{2}, c_{3}, c_{4} ; b_{3},-b_{2}, b_{1},-b_{4} ; a_{1}, a_{2}, a_{3}, a_{4}\right)$

	$\begin{aligned} & v_{7}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=w_{5} d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right) \\ & \quad+c_{2} F_{19}+c_{4} F_{31}+c_{6} F_{7}-c_{7} F_{2}+c_{8} F_{8}+c_{9} F_{17}-c_{12} F_{30}-c_{13} F_{15}+c_{16} F_{28} \quad . \\ & \quad-E_{5} a_{3}+E_{9} a_{3}+E_{10} a_{1}-E_{20^{h}\left(-p_{x}\right)-E_{c 4} a_{2}-E_{32} v\left(-p_{y}\right)+E_{35} a_{4}} . \end{aligned}$
$\left\{^{9}\right.$	Transformation (ii) applied to V_{7} $v_{9}\left(v, b, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{7}\left(v, d, b ; b_{1} b_{2}, b_{3}, b_{4} ; a_{1}, a_{2}, a_{3}, a_{4} ; c_{3},-c_{2}, c_{1},-c_{4}\right)$
	Transformation (iv) applied to V_{7} $v_{11}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{7}\left(h, d, v ; c_{3},-c_{2}, c_{1},-c_{4} ; a_{3},-a_{2}, a_{1},-a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)$
$\cdot 13$	Transformation (i) applied to V_{7} $v_{13}\left(v, b, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{7}\left(h, v, d ; a_{3},-a_{2}, a_{1},-a_{4} ; c_{3},-c_{2}, c_{1},-c_{4} ; b_{3},-b_{2}, b_{1},-b_{4}\right)$
	Transformation (v) applied to V_{7} $v_{15}\left(v, b, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{7}\left(a, v, b ; b_{3},-b_{2}, b_{1},-b_{4} ; c_{1}, c_{2}, c_{3}, c_{4} ; a_{3},-a_{2}, a_{1},-a_{4}\right)$
	Transformation (iii) applied to V_{7} $v_{17}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{7}\left(a, h, v ; c_{1}, c_{2}, c_{3}, c_{4} ; b_{3},-b_{2}, b_{1},-b_{4} ; a_{1}, a_{2}, a_{3}, a_{4}\right)$

	Transformation (ii) applied to V_{19} $v_{21}\left(v, b, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{19}\left(v, a, b ; b_{1}, b_{2}, b_{3}, b_{4} ; a_{1}, a_{2}, a_{3}, a_{4} ; c_{3},-c_{2}, c_{1},-c_{4}\right)$
${ }_{23}$	Transformation (iv) applied to V_{19} $v_{23}\left(v, b, a_{i} ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{19}\left(h, a, v ; c_{3} ;-c_{2}, c_{1},-c_{4} ; a_{3},-a_{2}, a_{1},-a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}\right)$
${ }_{25}$	
$\underbrace{0}_{27}$	Transformation (ii) applied to V_{25} $v_{27}\left(v, h, a ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{25}\left(v, a, h ; b_{1}, b_{2}, b_{3}, b_{4} ; a_{1}, a_{2}, a_{3}, a_{4} ; c_{3},-c_{2}, c_{1},-c_{4}\right)$
O_{29}	Transformation (iv) applied to V_{25} $\mathrm{v}_{29}\left(\mathrm{v}, \mathrm{~h}, \mathrm{~d} ; \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} ; \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4} ; \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right)=\mathrm{v}_{25}\left(\mathrm{c}_{3},-\mathrm{c}_{2}, \mathrm{c}_{1},-\mathrm{c}_{4} ; \mathrm{a}_{3},-\mathrm{a}_{2}, \mathrm{a}_{1},-\mathrm{a}_{4} ; \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} \mathrm{~b}_{4}\right)$

$x \rightarrow-x$	$\begin{aligned} & v_{31}\left(v, h, d_{3} a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=w_{13} d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right) \\ & +c_{3} F_{29}+c_{4} F_{35}-c_{5} F_{15}+c_{6} F_{21}+c_{11} F_{14}-c_{12} F_{20}-c_{14} F_{1}+c_{15} F_{11}-c_{16} F_{10} \\ & -E_{25} a_{4}-E_{28} a_{1}-E_{30} h\left(-p_{x}\right)+E_{31} a_{4}+E_{34} a_{1}-E_{36} h\left(p_{x}\right) \end{aligned}$
$\begin{gathered} \mathrm{O} \rightarrow-\mathrm{O} \\ \bullet \\ \bullet \\ 32 \\ \hline \end{gathered}$	$\begin{aligned} & v_{32}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4}, c_{1}, c_{2}, c_{3}, c_{4}\right)=w_{14} d\left(p_{x}, p_{y}\right) d\left(-p_{x},-p_{y}\right) \\ & +c_{3} F_{30}+c_{4} F_{36}-c_{7} F_{16}+c_{8} F_{22}+C_{9} F_{13}-c_{10} F_{19}-c_{13} F_{1}-c_{15} F_{7}+c_{16} F_{12} \\ & -E_{26} a_{2}-E_{27} a_{3}-E_{29} h\left(-p_{x}\right)+E_{32} a_{2}+E_{33} a_{3}-E_{35} h\left(p_{x}\right) \end{aligned}$
	Transformation (i) applied to V_{31} $v_{33}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{31}\left(h, v, d ; a_{3},-a_{2}, a_{1},-a_{4} ; c_{3}, c_{2}, c_{1},-c_{4} ; b_{3},-b_{2}, b_{1},-b_{4}\right)$
$\begin{gathered} \mathrm{O} \rightarrow \mathrm{O} \\ 34 \end{gathered}$	Transformation (i) applied to V_{32} $v_{34}\left(v, h, a ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{32}\left(b, v, d ; a_{3},-a_{2}, a_{1},-a_{4} ; c_{3},-c_{2}, c_{1},-c_{4} ; b_{3},-b_{2}, b_{1},-b_{4}\right)$
$x \rightarrow-x$	Transformation (iii) applied to V_{31} $v_{35}\left(v, h, d ; a_{1}, a_{2}, a_{3}, a_{4} ; b_{1}, b_{2}, b_{3}, b_{4} ; c_{1}, c_{2}, c_{3}, c_{4}\right)=v_{31}\left(d, b, v ; c_{1}, c_{2}, c_{3}, c_{4} ; b_{3},-b_{2}, b_{1},-b_{4} ; a_{1}, a_{2}, a_{3}, a_{4}\right)$
$\mathrm{O}_{36} \mathrm{O}$	$\begin{gathered} \text { Transformation (iii) applied to } V_{32} \\ \mathrm{v}_{36}\left(\mathrm{v}, \mathrm{~h}, \mathrm{a} ; \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4} ; \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4} ; \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right)=\mathrm{V}_{32}\left(\mathrm{~d}, \mathrm{~h}, \mathrm{v} ; \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4} ; \mathrm{b}_{3},-\mathrm{b}_{2}, \mathrm{~b}_{1},-\mathrm{b}_{4} ; \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right) \end{gathered}$

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

[^0]: *Supported by the High Energy Physics Division of the United States Department of Enexgy.

