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ABSTRACT OF THE DISSERTATION 
 
 

Computational Comparative and Epigenomic Approaches  

to Improve Genome Interpretation  

 

by 

 

Soo Bin Kwon 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2021 

Professor Jason Ernst, Chair 

 

Systematic analysis of sequence or mappings of biochemical activities can reveal 

biologically relevant information that may be otherwise overlooked. Such information can be 

elusive in a large collection of genomic data from varied sources. We therefore propose and apply 

computational methods that detect complex relationships among data from different genomic loci 

within or across genomes and generate annotations that highlight notable patterns. 

First, we focus on locating genomic regions with conserved properties by scoring cross-

species similarity between two regions from different species based on their functional genomic 

datasets. To do so, we develop a method, Learning Evidence of Conservation from Integrated 

Functional genomic annotations (LECIF). When we apply LECIF to thousands of human and 

mouse datasets, we learn a score that highlights human and mouse loci with shared properties, 

which is expected to be useful in mouse model research.  

Building on this work, we also develop a method that scores association between two 

regions within the same genome based on epigenomic and TF binding data. We apply this 

approach to thousands of human datasets and learn a score that highlights regions with similar 
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or associated properties within human, which we expect to be useful in studying multiple loci 

together. 

Lastly, motivated by the COVID-19 pandemic, we apply an existing comparative genomics 

approach to coronavirus sequences and annotate the SARS-CoV-2 genome. Specifically, we 

apply ConsHMM, a hidden Markov model method that learns conservation states that capture 

recurring patterns in an alignment of sequences, to alignments of coronavirus sequences. We 

then analyze the learned state annotations using external annotations of genes, protein domains, 

SARS-CoV-2 mutations, and other regions of interest and demonstrate that the states reflect 

biologically relevant information for interpreting the SARS-CoV-2 genome. 

Overall, our work aims to learn meaningful patterns in large genomic datasets from diverse 

sources and provide annotations for interpreting important DNA elements and their relationships. 

All methods we present are flexible and scalable, making them applicable to newer and larger 

datasets that will be made available in the future. We expect our methods and genomic 

annotations to be useful resources for studying various genomes.  
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Chapter 1. Introduction 

Large amounts of genomic sequences and genome-wide mappings of open chromatin, 

histone marks, transcription factor binding, and transcription have become available1–4. Identifying 

notable patterns in such data within a genome or across multiple genomes can provide novel 

insight for genome interpretation. This provides an opportunity to develop and apply systematic 

computational methods that can leverage large-scale genomic data from diverse sources and 

highlight notable patterns in an interpretable manner.  

 In Chapter 2 we present Learning Evidence of Conservation from Integrated Functional 

genomic annotations (LECIF). We were motivated by the challenge of discovering genomic loci 

with properties shared by two species when there are large collections of functional genomic 

annotations for both species from diverse cell types and assays. Given experiments between 

human and mouse, for example, matching the experiments across species by origin and data 

type can be difficult and sometimes infeasible. Moreover, comparing experiments that do not 

necessarily match by their data type or source may reveal additional information. LECIF thus 

scores similarity in pairs of regions from two species by comparing their functional genomic 

datasets without requiring them to be matched across species. When applied to human and 

mouse, LECIF captures correspondence of similar human and mouse experiments without prior 

knowledge and highlights human and mouse loci with similar properties, which we expect to be 

useful in mouse model research.  

In Chapter 3 we modify LECIF to analyze epigenomic data within one species, focusing 

on within-species association rather than across-species conservation. When studying multiple 

genomic loci jointly for their role in gene regulation or contribution to disease risk, it is helpful to 

examine multiple epigenomic datasets to infer which regions are associated or similar. We thus 

modify LECIF to score pairwise association between two genomic windows within a species with 

their distances varying from 1 kb to 100 kb. When applied to human, the modified approach learns 

a score that highlights loci with similar or associated properties, such as loci within the same gene 
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or potential enhancer-gene pairs, which may be useful in understanding how linearly distal loci 

closely cooperate to influence gene regulation or disease risk.  

 In Chapter 4 we apply an existing comparative genomics method to alignments of 

coronavirus sequences to annotate the SARS-CoV-2 genome. Ernst lab previously developed 

ConsHMM, which applies a hidden Markov model to multi-species sequence alignment to learn 

conservation states that summarize recurring patterns in the alignment. Motivated by the recent 

need to better understand the SARS-CoV-2 genome, we apply ConsHMM to alignments of 

coronaviruses and learn conservation state annotations. To understand the information captured 

by the state annotations, we study them with respect to external annotations and prior studies 

that were not provided as input to ConsHMM. We observe that many of the learned states capture 

information relevant to genes, host interaction, pathogenicity, and SARS-CoV-2 mutations 

accumulating in the current pandemic.  
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Chapter 2. Learning a genome-wide score of human-mouse conservation at the functional 

genomics level  

Abstract 

Identifying genomic regions with functional genomic properties that are conserved between 

human and mouse is an important challenge in the context of mouse model studies. To address 

this, we develop a method to learn a score of evidence of conservation at the functional 

genomics level by integrating information from a compendium of epigenomic, transcription factor 

binding, and transcriptomic data from human and mouse. The method, Learning Evidence of 

Conservation from Integrated Functional genomic annotations (LECIF), trains neural networks 

to generate this score for the human and mouse genomes. The resulting LECIF score highlights 

human and mouse regions with shared functional genomic properties and captures 

correspondence of biologically similar human and mouse annotations. Analysis with 

independent datasets shows the score also highlights loci associated with similar phenotypes in 

both species. LECIF will be a resource for mouse model studies by identifying loci whose 

functional genomic properties are likely conserved. 

Introduction 

Many studies interrogate human loci of interest, such as those implicated in genome-

wide association studies (GWAS), by perturbing their homologous loci in mouse5–8. A key 

question in this context is the extent to which the homologous loci in mouse is expected to have 

similar roles to the human loci. Conversely, loci associated with phenotypes can be discovered 

in mouse first, raising the question of the degree to which their properties are shared with 

human9. 

A relatively large percentage of the human genome, approximately 40%, has a 

homologous locus in the mouse genome as determined by human-mouse pairwise sequence 

alignment10. However, a much smaller fraction of bases in these aligning pairs of loci are 
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constrained at the sequence level11–14. This is because many bases are within regions whose 

sequences are similar enough to be aligned between species, but not necessarily constrained, 

which is defined at a higher resolution and generally has even greater sequence similarity. In 

general, it is unclear to what extent human and mouse loci that align to each other have similar 

properties, in particular, functional genomic properties. With large-scale functional genomic 

resources of genome-wide maps of chromatin accessibility, transcription factor binding, histone 

modifications, gene expression data across diverse cell and tissue types that have become 

available in mouse2,15 in addition to human1,4,16, there is an opportunity to systematically and 

confidently detect evidence of conservation at the functional genomics level between these 

species.  

Previous work comparing cross-species functional genomics data to infer conservation 

have largely focused on comparing pairs of matched experiments for the same assay in a 

corresponding cell or tissue type across species17–22. While useful, data from a pair of 

experiments from two species provides limited information for differentiating evidence of 

conservation from similarity observed by chance. Studies that jointly compare multiple pairs of 

experiments from different biological conditions have additional information available for 

inferring conservation of functional genomic properties18,19,21,22. However, such approaches have 

often relied on manually matching corresponding experiments and have not been scaled to 

leverage the vast amounts of diverse data available in both human and mouse. The challenge in 

taking advantage of such data is that many experiments do not have an obvious corresponding 

experiment, and even when one is assumed there could in practice be confounding differences. 

Previous work partly addressed some of these issues2,23–28, but still limited their work to one 

data type at a time and thus only utilized a small fraction of the available data to find evidence of 

conservation. Given the increasingly diverse functional genomic resources available for human 

and mouse, there is a need for an integrative method to better leverage those resources to infer 

evidence of conservation at the functional genomics level between human and mouse.  
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Thus, here we develop Learning Evidence of Conservation from Integrated Functional 

genomic annotations (LECIF), a supervised learning approach that quantifies evidence of 

conservation based on large-scale functional genomic data from a pair of species, which we 

apply to human and mouse. While LECIF leverages data from diverse cell types collected by 

various assays, it does not require explicit matching of experiments from different species by 

biological source or data type. LECIF uses pairwise sequence alignment data only to label 

training examples, inferring conservation from functional genomics data and not from DNA 

sequence. We apply LECIF to a compendium of thousands of human and mouse functional 

genomic annotations and learn the LECIF score for every pair of human and mouse regions that 

align at the sequence level. The score captures correspondence of biologically similar 

annotations between human and mouse, even though LECIF was not explicitly given such 

information. While the LECIF score is moderately correlated with sequence constraint scores, it 

captures distinct information on conserved properties. The LECIF score is preferentially higher 

in regions previously shown to have similar phenotypic properties in human and mouse at the 

genetic and epigenetic level. Overall, we observe that the score can complement sequence 

conservation annotations in capturing human-mouse conservation and contribute to locating 

pairs of sequence-aligning regions whose functional genomic properties are likely conserved. 

We thus expect the human-mouse LECIF score will be an important resource for studies using 

mouse as a model organism. 

 

Results 

Overview of LECIF  

LECIF quantifies evidence of conservation between human and mouse genomic regions 

at the functional genomics level based on a large and diverse set of functional genomic 

annotations (Fig. 2.1). LECIF uses functional genomic features as input to an ensemble of neural 

networks where sequence alignment information is used to label training data, but not as features 
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(Methods). For training data, positive examples are pairs of human and mouse regions that align 

at the sequence level while negative examples are randomly mismatched pairs of human and 

mouse regions that do not align to each other (Fig. 2.1a). All human and mouse regions included 

in negative examples align somewhere in the mouse and human genomes, respectively, which 

allows LECIF to learn pairwise characteristics of aligning human and mouse regions instead of 

the characteristics of regions that align to the other genome in general. LECIF assumes that 

positive examples are more likely to be conserved at the functional genomics level than negative 

examples. Since neighboring bases are likely annotated by the same annotations and for 

computational considerations, training examples and predictions were generated at every 50 bp 

within each pairwise alignment block (Methods). As a result, we provided the classifier with more 

than >2 positive and >2 negative training examples, which covered up to 90 Mb of the human and 

mouse genomes. 

For each example, there were >8000 human and >3000 mouse functional genomic 

features defined. Among these features were binary features corresponding to whether a genomic 

base overlapped with peak calls from DNase-seq experiments, ChIP-seq experiments of 

transcription factors (TF), histone modifications and histone variants, and Cap Analysis of Gene 

Expression (CAGE) experiments. Additionally, there were binary features corresponding to each 

state and tissue combination of ChromHMM29 chromatin state annotations and numerical features 

corresponding to normalized signals from RNA-seq experiments. These data covered a wide 

range of cell and tissue types and were generated by the ENCODE1, Mouse ENCODE2, Roadmap 

Epigenomics Project4, or FANTOM530 consortia (Methods; Supplementary Data 2.1). We did 

not provide pairwise alignment or DNA sequence information as features to the classifier so that 

LECIF infers conservation specifically at the functional genomics level rather than at the sequence 

level.  

After training, we used the classifier to make genome-wide predictions at 50 bp 

resolution or finer, annotating the 40% of the human genome that aligns to mouse and those 



 7 

aligning regions in the mouse genome with the LECIF score (Figs. 2.1b and 2.2a). We 

weighted negative examples 50 times more than positive examples during training because we 

wanted the LECIF score to highlight regions with strong evidence of conservation at the 

functional genomics level. As a result, a small fraction of the aligning regions was highlighted 

with high LECIF score whereas most aligning regions would have scored high if the score was 

learned with positive and negative examples weighted equally (Fig. 2.2b; Supplementary Fig. 

2.1a). 

 

Comparative evaluation of LECIF’s predictive performance 

 We evaluated LECIF at predicting whether pairs of regions that were held out from 

training align at the sequence level. LECIF had strong predictive power for this with an area 

under the receiver operating characteristic curve (AUROC) of 0.87 and an area under the 

precision-recall curve (AUPRC) of 0.23 compared to a random expectation of 0.50 and 0.02, 

respectively (Fig. 2.2c,d). Additionally, scores that were trained on non-overlapping sets of 

chromosomes had strong agreement with each other with a Pearson correlation coefficient 

(PCC) of 0.90 (Methods).  

We compared LECIF to alternative methods that used random forest (RF), canonical 

correlation analysis (CCA), deep canonical correlation analysis (DCCA), or logistic regression 

(LR) instead of an ensemble of neural networks (Fig. 2.2c,d). When classifying held-out test 

examples, LECIF outperformed these methods with statistically significantly better AUROC and 

AUPRC values (RF AUROC: 0.82; CCA AUROC: 0.81; DCCA AUROC: 0.81; RF AUPRC: 0.13; 

CCA AUPRC: 0.06; DCCA AUPRC 0.07; LR AUROC: 0.50; AUPRC: 0.02; Wilcoxon signed-

rank test P<0.0001). LR had no predictive power as expected, since it only considers features 

marginally and the positive and negative examples were defined such that each feature has an 

identical marginal distribution in positive and negative data.  
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We next evaluated LECIF design choices by comparing the LECIF score to predictions 

based on alternative choices. We first compared the LECIF score with a score computed at a 

single base resolution and confirmed they were strongly correlated (PCC: 0.99; Methods). We 

also compared the LECIF score to scores learned with different weightings of positive and 

negative examples and confirmed that relative ranking of predictions and predictive power for 

aligning regions were robust (Supplementary Fig. 2.1). We used LECIF with an ensemble of 

100 neural networks and confirmed it led to better performance than using fewer networks, 

although fewer networks could be used to save computational cost with a small decrease in 

performance (Supplementary Figs. 2.2-2.3). We also compared the LECIF score to scores 

learned separately for the coding and non-coding genomes and observed that the scores were 

relatively well-correlated with the original LECIF score in the coding (PCC: 0.71) and non-coding 

(PCC: 0.95) genomes (Supplementary Fig. 2.4; Methods).  

In addition, we evaluated the effect of the number of mouse features on LECIF’s 

performance by learning two models with fewer mouse features (Methods). A score learned 

with 10% of the mouse features had strong agreement with the original LECIF score (PCC: 

0.88; Spearman correlation coefficient (SCC): 0.80) and slightly weaker predictive performance 

(AUROC: 0.83 vs. 0.86; AUPRC: 0.16 vs. 0.21; Supplementary Fig. 2.5). However, a score 

learned with 1% of the mouse features had substantially weaker agreement with the original 

LECIF score (PCC: 0.66; SCC: 0.18) and weaker predictive performance for aligning pairs 

(AUROC: 0.66; AUPRC: 0.07). 

 

Predictive power when including adjacent non-aligning mouse regions 

 The LECIF method can also score pairs of human and mouse regions that do not align 

at the sequence level. Previous comparative studies have reported movements of regulatory 

elements during evolution, where homologous regulatory activity of a human region is found in a 

region near the aligning region in another species instead of the aligning region17,31,32. We thus 
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investigated whether it is advantageous for LECIF to consider also the scores at non-aligning 

mouse regions proximal to the mouse region aligning to human. Specifically, for a given aligning 

pair of human and mouse regions we took the maximum LECIF score from pairs consisting of 

the human region and any mouse region located within a window centered around the aligning 

mouse region (Methods; Supplementary Fig. 2.6). We varied window sizes and repeated the 

same AUROC evaluations for predicting aligning regions as above (Supplementary Fig. 2.7). 

We found that as we expanded the window size the predictive power decreased overall. 

We saw similar results when we repeated the evaluation with pairs stratified by the LECIF score 

at the aligning regions except for pairs with the lowest LECIF score (Supplementary Fig. 2.8). 

When we trained LECIF with an alternative set of negative examples selected from a genome 

background and repeated the evaluations (Methods), the expanded window still had decreased 

predictive power overall (Supplementary Fig. 2.7). These results suggested that applying 

LECIF to non-aligning regions would result in a substantial increase in false positive predictions, 

which indicates that sequence alignment provides strong prior information in detecting evidence 

for conservation at the functional genomics level. Moreover, non-aligning regions in general 

tend to be less conserved and exhibit different properties at the functional genomics level than 

aligning regions on which LECIF was trained2, making LECIF relatively less applicable to such 

regions. We thus focused our initial application of LECIF to aligning regions. We note that 

because of the resolution at which the LECIF score is defined, even without explicitly expanding 

the window the score may still be capturing small movements of regulatory sites, which cannot 

be explicitly detected in the coarse-resolution functional genomics data currently available to 

LECIF.  

 

Distribution of LECIF score in chromatin states 

To characterize DNA elements highlighted by LECIF, we investigated the distribution of 

the LECIF score overlapping the chromatin state annotations that were provided to LECIF as 
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input features. When we computed the mean LECIF score for each chromatin state across 

epigenomes4 (Fig. 2.2e; Methods), chromatin states associated with strong regulatory or 

transcriptional activity tended to have a higher mean LECIF score than other states, with the 

highest of 0.71 for an active transcription start site (TSS) state and the lowest of 0.07 and 0.08 

for the heterochromatin and quiescent states, respectively. Candidate enhancer states outside 

of transcribed regions had an intermediate mean LECIF score ranging from 0.18 to 0.32, which 

was lower than the mean scores of promoter associated states, 0.53 to 0.71, and consistent 

with previous findings that enhancers tend to evolve faster than promoters20. We also observed 

similar trends with other input features and external gene annotations in both human and mouse 

(Supplementary Figs. 2.9-2.11).  

 

LECIF highlights shared functional genomic activity 

To validate that the LECIF score reflects expected cross-species similarity in functional 

genomic features, we investigated the LECIF score in relation to human and mouse genomic 

annotations jointly. We first matched a subset of human and mouse ChIP-seq experiments of 

H3K27ac by their tissue of origin for 14 tissue type groups (Methods). We then quantified the 

cross-species similarity of the peak calls for each pair of regions jointly across the 14 tissue type 

groups using a weighted Jaccard similarity coefficient (Methods). We saw that the LECIF score 

was positively correlated with the weighted Jaccard similarity coefficient (PCC: 0.45; Fig. 2.3a). 

This is despite LECIF not being given any information regarding tissue of origin of the 

experiments in the compendium of functional genomic annotations.  

To provide further evidence that the LECIF score reflects expected cross-species 

similarity in functional genomic annotations, we examined the LECIF score in relation to the 

chromatin state annotations of pairs of human and mouse regions. We used the state 

annotations from a concatenated model of ChromHMM29 where a shared set of states were 

learned for human and mouse2. For different ranges of the LECIF score, we correlated the 
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chromatin state frequency between human and mouse across regions in that score range 

(Methods). High-scoring pairs of regions tended to be annotated with similar sets of states in 

human and mouse epigenomes (Fig. 2.3b,c, Supplementary Fig. 2.12). Low-scoring pairs of 

regions were annotated with dissimilar sets of states in human and mouse and the quiescent 

state more frequently than high-scoring pairs (Fig. 2.3b,d, Supplementary Figs. 2.12-2.14).  

We also investigated the LECIF score at topologically associated domain (TAD) 

boundaries that were previously identified in human and mouse cell types33 as they represent 

an important regulatory genomic feature not provided to LECIF. Human regions overlapping a 

TAD boundary in any human cell type had a mean LECIF score of 0.17 compared to the 

genome-wide mean of 0.14 (Mann-Whitney U test P<0.0001). Pairs with human and mouse 

regions both overlapping a TAD boundary in a matched cell type had an even higher mean of 

0.20, scoring significantly higher than pairs with either human or mouse region or neither 

regions overlapping a TAD boundary in the cell type (Supplementary Fig. 2.15; Mann-Whitney 

U test P<0.0001).  

We also verified the advantage of integrating human and mouse data by generating a 

human-only baseline score. The score was learned using human functional genomics data with 

human regions that align to mouse as positive examples and the rest as negative examples 

(Methods). The human-only baseline score was weakly correlated with the human-mouse 

LECIF score with a PCC of 0.13 and did not reflect cross-species similarity in functional 

genomic features as strongly as the LECIF score (Supplementary Figs. 2.12, 2.15, 2.16). 

These results support the contribution of mouse data to identifying conserved functional 

genomic properties. 

 

Relationship to sequence-based conservation annotations 

We next analyzed the relationship between the LECIF score and various sequence-

based annotations of conservation within aligning regions. We note that while human regions 
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that align to mouse at the sequence level do show some increase in sequence constraint 

relative to the entire genome, the majority of aligning regions do not show high levels of 

sequence constraint (Supplementary Fig. 2.18). We found that human regions overlapping 

sequence constrained elements had a greater average LECIF score, ranging from 0.19 to 0.22 

across different element sets, than the mean among human regions that align to mouse in 

general (0.14) (Fig. 2.4a). When compared to five sequence constraint scores and additionally 

the percent identity between human and mouse, the LECIF score was moderately correlated 

with PCCs ranging from 0.18 to 0.25 for 50-bp windows with each score averaged across 50 

bases (Fig. 2.4c, Supplementary Fig. 2.19; Methods). This moderate correlation may reflect 

biological difference between sequence conservation and functional genomics conservation34, 

although potentially also the coarse resolution and incompleteness of functional genomics data.  

To provide evidence that most high LECIF scores observed in regions with low 

sequence constraint scores are unlikely LECIF’s false positives, we analyzed human and 

mouse chromatin state annotations in regions where the two scores strongly disagreed. 

Specifically, for pairs of regions where the LECIF score was high and the PhyloP score12 was 

low in all bases within 500 bp of the human region, we computed the correlation of chromatin 

state frequencies as described above (Fig. 2.4d, Supplementary Fig. 2.20). We found that 

such pairs had strong cross-species similarity for all states, often as strong as pairs that scored 

high in both scores. In comparison, pairs of regions with low LECIF score and high PhyloP 

score had weaker cross-species similarity of frequency in all states. This suggests that the 

LECIF score can capture conservation at the functional genomics level even in regions that 

align, but have limited sequence constraint among aligning regions, potentially detecting 

signatures of conservation not captured by sequence constraint scores defined from multi-

species sequence alignments.  

 To further understand the differences between the LECIF score and constraint scores, 

we next identified patterns within a multi-species sequence alignment that may correspond to 
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those differences. To do this, we leveraged the ConsHMM35 conservation state annotation of 

the human genome, which annotates each human genomic base based on alignment and 

matching patterns with vertebrate genomes in a 100-way sequence alignment (Supplementary 

Fig. 2.21). Among a hundred conservation states, the state with the highest average LECIF 

score corresponded to human bases that align and match to many vertebrate genomes with a 

moderate probability, indicating signatures of conservation across many vertebrates. This state 

was previously shown to most strongly enrich for promoter and CpG islands out of all 

conservation states. In contrast, this state had only the 12th highest average PhyloP score. This 

suggests that the disagreement between the LECIF score and constraint scores could be partly 

explained by constraint scores not capturing signatures of conservation that are actually present 

in the multi-species sequence alignment, and further supports that the LECIF score can provide 

complementary information to sequence constraint scores about conservation.  

 Since the LECIF score prioritized the conservation state most enriched for CpG islands, 

which are known to have varying evolutionary dynamics at the sequence level, we analyzed the 

LECIF score of human CpG islands previously grouped by their distinct regimes during primate 

sequence evolution36 (Fig. 2.4b). CpG islands in general scored high with a mean LECIF score 

of 0.53, and the score positively correlated with the likelihood of a CpG island being classified 

as slowly evolving as opposed to quickly evolving (Supplementary Fig. 2.22; PCC: 0.50). 

Slowly evolving CpG islands characterized by low rate of C-to-T deamination had higher LECIF 

scores with a mean of 0.65. In contrast, quickly evolving CpG islands had lower LECIF scores 

with a mean of 0.35. Although LECIF scores CpG islands higher than the rest of the genome in 

general, the score reflects the distinct evolutionary dynamics among them. 

 

Relationship to phenotype-associated variation  

 To investigate if the LECIF score enriches for biologically important genomic loci linked 

to phenotype, we analyzed the relationship between the LECIF score and phenotype-associated 
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genetic variation (Fig. 2.5a). We observed that regulatory disease variants from Human Gene 

Mutation Database (HGMD)37 enriched for regions with high LECIF score. In contrast, we saw 

small depletions for common variants38 in those high-scoring regions. We saw that high-scoring 

regions also exhibited enrichment of Genome-wide Association Studies (GWAS) Catalog39 

variants and expression quantitative trait loci (eQTLs) from GTEx40. 

 We also conducted a heritability partitioning analysis with the LECIF score for 12 

complex traits41. Specifically, we applied heritability partitioning with an annotation of bases with 

a LECIF score in the top 5% in the context of a baseline set of annotations42, which we 

extended to also include annotations of human regions that align to mouse and top 5% regions 

based on the human-only baseline score. We note that the baseline annotation set includes 

multiple sequence constraint annotations. We observed that the top 5% regions based on the 

LECIF score resulted in enrichments of heritability with statistical significance for several traits 

(Fig. 2.5b). Furthermore, we observed overall stronger enrichments for the LECIF annotation 

than the human-only baseline annotation and the annotation of human regions that align to 

mouse.  

 

LECIF highlights regions in mouse QTL relevant to disease  

 To demonstrate how LECIF could be applied to translating biological findings, 

particularly in mapping trait-associated loci between mouse and human, we analyzed mouse 

insulin secretion quantitative trait loci (QTL) and human diabetes GWAS variants43. Previously, 

it was shown that human regions syntenic to the mouse insulin secretion QTL were enriched for 

the human diabetes GWAS variants. However, mouse QTL in general can span several 

megabases, making it difficult to identify likely causal variants within the loci for the trait of 

interest9. We thus mapped the mouse insulin secretion QTL to the human genome based on 

sequence alignment and asked whether the LECIF score could provide information in locasting 
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regions within the mapped mouse insulin secretion QTL that correspond to human diabetes 

GWAS variants.  

 We observed that human genomic windows within the mapped mouse insulin secretion 

QTL that overlap the human GWAS variants had a statistically higher distribution of mean 

LECIF scores than windows within the mouse QTL not overlapping the variants or windows 

overlapping the variants (Mann-Whitney U test P<0.0001; Fig. 2.6a, Supplementary Fig. 

2.23b,c). Additionally, we saw that the human diabetes GWAS variants that lie within the 

mapped mouse QTL had a higher distribution of mean LECIF scores than human GWAS 

variants outside the mouse QTL in addition to human bases within the mouse QTL that are not 

the human GWAS variants (Mann-Whitney U test P<0.0001; Supplementary Fig. 2.23a). 

These results indicate LECIF’s potential value in locating regions within mouse QTL that are 

more likely relevant to a given trait in human.  

 

LECIF highlights conserved methylation patterns linked to phenotype 

 To further illustrate potential applications of LECIF, we also evaluated the ability of the 

LECIF score to prioritize epigenetic features conserved between human and mouse in a 

disease relative context. Specifically, we considered data from an epigenetic study on 

differential methylation in diabetic phenotypes in human and mouse44, which was independent 

of the data provided to LECIF. The study identified conserved differentially methylated regions 

(DMRs) associated with obesity by first finding DMRs in high-fat-fed and low-fat-fed mice and 

then testing their homologous human regions for differential methylation between obese and 

lean patients. The LECIF score was significantly higher in conserved DMRs in comparison to 

mouse-specific DMRs (Mann-Whitney U test P<0.01; Fig. 2.6b). This supports the potential 

value of the LECIF score for prioritizing among all loci with epigenetic associations with 

phenotype in one species the specific loci whose associations are more likely to be shared in 

the other species.  
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Discussion 

We presented LECIF, a method that scores evidence for conservation between human 

and mouse based on a compendium of functional genomic annotations from each species. To 

do so, LECIF trains neural networks to differentiate aligning pairs of regions from mismatched 

pairs of the same set of regions based on their functional genomic annotations without using 

sequence information as features. The functional genomic annotations include maps of open 

chromatin, transcription factor binding, gene expression signals, and chromatin state 

annotations. The resulting score captures evidence of conservation at the functional genomics 

level that is based on a diverse set of annotations and thus not specific to one class of DNA 

elements.  

We applied LECIF with more than 10,000 functional genomic annotations from human 

and mouse to learn the human-mouse LECIF score. The LECIF score had greater predictive 

power than several baseline scores at discriminating pairs of human and mouse regions that 

align to each other from mismatched pairs of aligning regions. Using H3K27ac samples 

matched by their tissue of origin and separately using chromatin state annotations learned 

jointly between human and mouse, we showed that the LECIF score reflects the relationships 

between biologically similar human and mouse functional genomic annotations. LECIF was able 

to do this without any explicit information provided about the relationship between different 

features within or across species. Furthermore, LECIF was able to do so even in regions where 

sequence constraint was low, supporting that the LECIF score provides complementary 

information to sequence constraint annotations. Regions with high LECIF score were enriched 

for phenotype-associated variants from curated databases and also for heritability of complex 

traits. Using matched DNA methylation samples between human and mouse and separately 

using matched GWAS and QTL data sets, both in the context of a diabetes trait, we showed that 
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the LECIF score has preference for human and mouse regions with shared associations with 

the trait.  

These results support the potential value of the LECIF score in various applications in 

the context of model organism research. For example, given a set of phenotypic-associated loci 

identified in a mouse model, which are increasingly available through efforts like the Mouse 

Phenome Database45, the highest-scoring loci could be prioritized for experimental validation in 

human cells if possible. Conversely, given human genomic variants or candidate regulatory 

elements with known associations with a trait, those with the highest LECIF scores could be 

prioritized for testing in mouse models. In addition, when loci exhibit signals of interest in both 

species, those with the highest LECIF scores could be prioritized for follow-up experiments.  

While we expect LECIF to be useful, we do note a few limitations. LECIF only scores 

evidence of conservation at the functional genomics level. There thus could be regions that are 

conserved at the functional genomics level, but have a low LECIF score, since the evidence 

was not present in the data currently available to LECIF. This makes it difficult to distinguish the 

case of human-specific regulatory activity from insufficient evidence in the aligning mouse 

region’s annotations based on a low LECIF score. Fortunately, the interpretation of high LECIF 

scores is less ambiguous. We also note that the LECIF score’s resolution is limited by the 

resolution of the input functional genomic annotations and thus does not have the base 

resolution that sequence-based conservation annotations can have. Additionally, LECIF is 

designed to aggregate information across multiple tissues and cell types and thus does not 

provide direct information about a particular tissue. 

In addition, we note that currently the LECIF score is only available for pairs of regions 

that align to each other. While in principle LECIF can be applied to score any pairs of regions, 

more false positive predictions are expected as a result, compared to our presented strategy of 

restricting to regions that align at the sequence level. Although we explored an alternative 

strategy that considered non-aligning regions in a neighborhood of each pair of aligning regions, 
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this did not lead to improvements in our evaluations over considering only the aligning regions. 

However, future work could develop other strategies that lead to improvements.  

While here we focused on human and mouse, as mouse is a widely used model 

organism for human and there is substantial data available for both, LECIF can be applied to 

compare human to any species with a genome-wide pairwise sequence alignment to human 

and functional genomics data. Applying LECIF to human and mouse with mouse features down-

sampled demonstrated that a few hundred annotations from the non-human species may be 

sufficient to capture a large portion of conservation at the functional genomics level, although 

the quality of the score will depend on the coverage of the data available for the non-human 

species. As functional genomics data from a more diverse set of species, cell types, and assays 

continues to become available, the utility of LECIF will continue to grow for identifying regions 

conserved at the functional genomics level and transferring findings from mouse and other 

model organism research to human biology. 

 

Methods 

Pairwise sequence alignment  

For the pairwise sequence alignment, we used the chained and netted alignment10 

between the human genome (hg19) and the mouse genome (mm10), with human as the 

reference genome for the alignment. Given multiple mouse genome segments that map to a 

single human genome segment, we chose the mouse segment with the highest alignment score. 

This alignment was obtained from the UCSC Genome Browser3.  

 

Functional genomics data used for input features 

ChromHMM29 chromatin state annotations for human were from the 25-state model 

learned for 127 cell and tissue types based on imputed data from the Roadmap Epigenomics 

Project4 and for mouse from the 15-state model learned for 66 cell and tissue types from 
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ENCODE46. Peak calls for DNase-seq and ChIP-seq experiments of transcription factors, histone 

modifications, and histone variants were from Roadmap Epigenomics4, ENCODE1, and Mouse 

ENCODE2. Peak calls for Cap Analysis Gene Expression (CAGE) experiments were from 

FANTOM530. RNA-seq signal data were from ENCODE1 and Mouse ENCODE2. For ENCODE 

and Mouse ENCODE data, we used the uniformed processed version available from the 

ENCODE portal. Additional information including the specific source of each dataset used is listed 

in Supplementary Data 2.1. 

 

Defining pairs of human and mouse regions for training and prediction 

To define pairs of human and mouse regions for training and prediction for LECIF, we first 

identified alignment blocks from the pairwise alignment. We defined alignment blocks as pairs of 

human and mouse genomic segments without any alignment gap, meaning the human and 

mouse genomic segments both had a nucleotide present at each base in the block. We then for 

each alignment block defined non-overlapping windows of 50 bp starting from the first base in the 

alignment block. Each 50-bp window defined a region. If the alignment block ended within the 50-

bp window, we truncated the window to the end of the block to define the region. This resulted in 

some regions being shorter than 50 bp. To define negative examples, we randomly paired up 

human and mouse regions included in the positive examples. With this procedure, all human 

regions included in the negative examples aligned somewhere else in the mouse genome, and 

all mouse regions in the negative examples aligned somewhere else in the human genome.  

 

Defining subsets of pairs of regions for training and evaluation  

All human and mouse chromosomes, except for Y and mitochondrial chromosomes, were 

used. X chromosomes were excluded from training, validation, and test, but included for prediction 

and downstream analyses. To generate predictions for all pairs of human and mouse regions that 

included a human region from an even chromosome or X chromosome, we trained LECIF on 
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pairs of human and mouse regions such that both the human and mouse regions came from a 

subset of odd chromosomes for its respective species (Supplementary Data 2.2). To form a 

validation set, which we used for hyper-parameter tuning and early stopping during training, we 

used pairs of regions such that the human region came from a subset of odd chromosomes not 

used in training and likewise for mouse. To form a test set, which we used to generate the receiver 

operating characteristic (ROC) and precision-recall (PR) curves, we used all pairs of regions such 

that both the human and mouse region were from an even chromosome. To generate predictions 

for all pairs that included a human region from an odd chromosome, we took an analogous 

approach as above (Supplementary Data 2.2). There was no overlap in genomic regions used 

for training, validation, and test. To assess the agreement between a model trained on odd 

chromosomes and a model trained on even chromosomes, we used pairs of regions that were 

from a subset of chromosomes not used in training or validation of either model (Supplementary 

Data 2.2).  

 

Feature representations 

For each pair of human and mouse regions, we generated two feature vectors. The two 

vectors were based on annotations overlapping the first base of the human and mouse regions, 

respectively, which were at most 50 bp. For computational considerations, we only used the first 

base of each region to provide the LECIF score for all bases in the region. To evaluate the effect 

of this, we computed the Pearson correlation coefficient (PCC) between a score defined at base 

resolution for 1 million randomly sampled pairs of human and mouse bases that align to each 

other and the LECIF score, which was defined at every 50 bp within each alignment block, for the 

same set of 1 million pairs.  

Each peak call corresponded to one binary feature. If a base overlapped a peak call for 

an experiment, the corresponding value in the feature vector was encoded as a 1, otherwise it 

was encoded as a 0. While real-valued signals are also available for these experiments with peak 
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calls, we used the binary peak calls for improved scalability and reduced potential for overfitting. 

Chromatin state annotations were one hot-encoded such that there was a separate binary feature 

representing the presence of each chromatin state in each cell or tissue type. Each RNA-seq 

experiment corresponded to one continuous feature. For human RNA-seq experiments, to also 

have the features in the range 0 to 1, we first computed the maximum and minimum signal value 

at any base in any of the human RNA-seq experiments. We then normalized values by subtracting 

the minimum signal value and dividing by the difference between the maximum and minimum 

signal values. We separately did the same normalization for mouse RNA-seq experiments. In 

total, we used 8,824 human features and 3,113 mouse features. Number of features from each 

data type are reported in Supplementary Data 2.1. 

 

LECIF Classifier 

The classifier that LECIF uses is an ensemble of neural networks where each neural 

network had a pseudo-Siamese architecture47 (Supplementary Fig. 2.24). A Siamese neural 

network consists of two identical sub-networks followed by a final sub-network that combines the 

output from the two sub-networks to generate a final prediction48. A pseudo-Siamese network is 

similar except it uses two distinct sub-networks instead of identical sub-networks. In LECIF, the 

two sub-networks corresponded to human and mouse. Human and mouse feature vectors were 

given to the human and mouse sub-networks, respectively, as input. We also evaluated using a 

fully-connected neural network, but found that it led to highly similar predictions (PCC: 0.95) while 

taking longer to train.  

Hyper-parameters of a neural network consisted of number of layers in each sub-network 

and the final sub-network, number of neurons in each layer, batch size, learning rate, and dropout 

rate. To set the values of the hyper-parameters, we conducted a random search, where we 

generated 100 neural networks, each with different randomly selected combinations of hyper-

parameters (Supplementary Data 2.3). Each neural network was trained on the same set of 
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randomly selected 1 million positive and 1 million negative training examples. We applied 50 times 

more weight to our negative examples than positive examples during training so that a high LECIF 

score corresponds to strong evidence of conservation. We identified the best-performing 

combination of hyper-parameters based on maximizing the AUROC on the validation examples.  

With the best-performing combination of hyper-parameters, we then trained a new set of 

100 neural networks each provided with different subsets of 1 million positive and 1 million 

negative training examples randomly selected from a pool of all training examples (>2.2 million 

positive and >2.2 million negative). While the same genomic regions in each species appear in 

both positive and negative examples given all available training examples, a single neural network 

may not necessarily encounter the same set of regions in its positive and negative examples due 

to random sampling. We applied the same increased weighting of negative examples as above. 

The final prediction of the ensemble was the average of the predictions from the 100 trained 

neural networks.  

For both hyper-parameter search and training, we stopped training if there were no 

improvements in AUROC evaluated on the validation examples over three epochs. We saved the 

classifier from the epoch with the highest AUROC on the validation examples. The maximum 

number of epochs we allowed during training was 100 and the maximum training time we allowed 

was 24 hours.  

We also generated a version of the LECIF classifier, LECIF-GB, which was trained in the 

same way as LECIF except the negative examples were pairs of human and mouse regions that 

were both randomly selected from anywhere in their respective genomes as opposed to being 

constrained to aligning regions.  

We used PyTorch (version 0.3.0.post4)49 for implementation of the neural networks.  

 

Random forest baseline 
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 We trained, applied, and evaluated random forest using the same procedure as explained 

above, except we used a decision tree in place of a neural network. We also did hyper-parameter 

selection as explained above, but for a set of hyper-parameters unique to decision trees 

(Supplementary Data 2.3). We used Scikit-learn (version 0.19.1)50 for implementation.  

 

Canonical correlation analysis baseline 

We trained an ensemble of canonical correlation analysis (CCA) mappings using the same 

procedure as above, except using a CCA mapping in place of a neural network and positive 

examples only. We applied and evaluated the ensemble using the same procedure as explained 

above. We also did hyper-parameter selection as explained above, but for a set of hyper-

parameters unique to CCA mapping (Supplementary Data 2.3) and through a grid search instead 

of random search. We used Pyrcca51 for implementation. Similarly, we also trained an ensemble 

of deep canonical correlation analysis (DCCA) mappings52. We did hyper-parameter selection as 

done for CCA, but for a set of hyper-parameters unique to DCCA mapping and through a random 

search (Supplementary Data 2.3). We used a MATLAB implementation of DCCA from prior 

work53.  

 

Logistic regression baseline 

 We trained, applied, and evaluated an ensemble of logistic regression classifiers using the 

same procedure as above, except we used a logistic regression classifier in place of a neural 

network. We also did hyper-parameter selection as for the neural networks, but for a set of hyper-

parameters unique to logistic regression models (Supplementary Data 2.3) and through a grid 

search instead of random search. We used Scikit-learn (version 0.19.1)50 for implementation. 

 

LECIF scores separately learned for coding and non-coding bases 
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We trained, applied, and evaluated two models using separate training data from coding 

and non-coding bases. Training examples used to learn the original LECIF score were grouped 

into coding and non-coding examples based on whether each example’s human region 

overlapped GENCODE annotation of coding sequence (CDS). Given non-coding training 

examples, the same learning procedure used to learn the original LECIF score was used to learn 

a score from non-coding regions. For coding training examples, all available training and 

validation examples (~40,000 training and ~20,000 validation examples) were used for 

hyperparameter search. Given optimized parameters, each classifier was trained on 10,000 

positive and 10,000 negative training examples, instead of 1 million for each. These adjustments 

were made specifically for training a model on coding regions because there were much fewer 

regions to use.  

 

LECIF scores with fewer mouse features 

 We trained, applied, and evaluated two models that used the same human features as 

LECIF, but used fewer mouse features. One of the models used 10% of the original set of mouse 

features and the other used 1%. Except for down-sampling features, model training and hyper-

parameter search were done the same way as LECIF with the full set of features. To select mouse 

features for the 10% model, we first randomly selected 6 out of 66 epigenomes in the 15-state 

mouse ChromHMM chromatin state annotations, resulting in 90 one-hot encoded features 

corresponding to chromatin states. We then randomly sampled 221 features from features 

corresponding to mouse DNase-seq, ChIP-seq, RNA-seq, and CAGE annotations, resulting in 

331 mouse features in total. For the 1% model, we randomly sampled 31 features from those 

corresponding to mouse DNase-seq, ChIP-seq, RNA-seq, and CAGE annotations. We did not 

use any features corresponding to chromatin state annotations in the 1% model. This allowed us 

to simulate LECIF’s application to a non-human species with limited functional genomic data 

where chromatin state annotations are not available. As in training, only the selected mouse 
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features along with the full set of human features were used for prediction and evaluation for these 

scores based on fewer mouse features. 

 

Human-only baseline 

We trained, applied, and evaluated a human-only baseline, which used the same human 

features as LECIF, but did not use any mouse features and used a different set of positive and 

negative examples for training. The positive examples were human regions that align to the 

mouse genome and the negative examples were human regions that do not align to the mouse 

genome. We otherwise used the same procedure for training, prediction, and evaluation as for 

LECIF except we used an ensemble of fully-connected neural networks. We also did hyper-

parameter selection as for LECIF, but for a set of hyper-parameters of a fully-connected neural 

network (Supplementary Data 2.3). We used PyTorch (version 0.3.0.post4)49 for implementation. 

 

Area under the ROC and PR curves 

 To compute each classifier’s classification performance based on area under the receiver 

operating characteristic (ROC) curve and precision-recall (PR) curve, we used Scikit-learn’s 

implementation50.  

 

Defining LECIF score including adjacent non-aligning mouse regions 

To generate a LECIF score for each pair of a human region and its aligning mouse region 

with adjacent non-aligning mouse regions also considered, we computed LECIF scores for 

additional pairs that consisted of the same human region and distinct 50-bp mouse regions 

located within a neighborhood of W bases centered around the aligning mouse region 

(Supplementary Fig. 2.3). The non-aligning mouse regions were defined by sliding a 50-bp 

window from the first base of the aligning mouse region in both the 5’ and 3’ directions. We then 

took the maximum over these LECIF scores to produce a score which we refer to as the region-
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neighborhood LECIF score. We varied W between 0 and 20kb. We note that W of 0 corresponds 

to the original LECIF score.  

 

Computing mean LECIF score for chromatin states 

 To compute the mean LECIF score for each chromatin state in the 25-state ChromHMM 

annotation across 127 human epigenomes4,29, for every pair of chromatin state and epigenome, 

we first averaged the LECIF score in all aligning regions annotated by the state in the epigenome. 

We then for each chromatin state computed the average of 127 mean scores, each coming from 

an epigenome.   

 

H3K27ac activity similarity 

 To define the H3K27ac activity similarity between human and mouse based on known 

biology, we took all human and mouse H3K27ac experiments used for features and manually 

grouped them into the following 14 tissue type groups based on available annotations of the 

experiments: adipose, bone element, brain, embryo, heart, intestine, kidney, limb, liver, lung, 

lymph node, spleen, stomach, thymus. Supplementary Data 2.1 specifies which experiment was 

assigned to which group, but we note that information about these groups were not used in 

learning the LECIF score. The 14 groups listed above were represented in at least one H3K27ac 

experiment in both species. For the analysis, we discarded experiments that did not belong to any 

of the tissue groups. 

 For each pair of human and mouse regions, we then defined vectors h and m of length 14 

where hi and mi correspond to the fraction of experiments in the i-th group with peak calls that 

overlapped the human and mouse regions, respectively. Finally, for each pair of human and 

mouse regions, we computed the weighted Jaccard similarity coefficient54 between these two 

vectors. The weighted Jaccard similarity coefficient is defined as: 
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𝐽(ℎ,𝑚) =
∑ min(ℎ! , 𝑚!)!
∑ max(ℎ! , 𝑚!)!

																(2.1)	

Any pair with an undefined similarity coefficient due to the denominator summing up to zero was 

removed from the analysis. 

 

Chromatin state frequency correlation 

 To analyze cross-species agreement of chromatin state frequencies as a function of the 

LECIF score, we first grouped pairs of human and mouse regions based on their LECIF score. 

When binning based on either score, five or ten equal-width bins were used with varying numbers 

of pairs in each bin. We repeated the procedure when using the human-only baseline score in 

place of the LECIF score. We also binned based on the percentile rank of scores, where either 

five or ten bins were used with nearly the same number of pairs in each bin. 

 To compute the chromatin state frequency correlation across a set of pairs of human and 

mouse regions defined as described above, we used a chromatin state model jointly learned from 

both human and mouse genome2. For each of the seven chromatin states, we defined vectors for 

human and mouse. An element of a vector for human corresponds to the fraction of epigenomes 

in which one of the human regions is annotated with the state, and similarly for the mouse vector 

and regions. We then computed the PCC between the two vectors for each chromatin state, 

resulting in seven PCC values. 

 

Correlation between the LECIF score and sequence constraint scores 

 To compute the correlation between the LECIF score and sequence constraint scores, we 

slid a 50-bp genomic window in 10-bp increment across the human genome. For each window, 

we computed the mean of each score (LECIF or sequence constraint). For each sequence 

constraint score, we computed the PCC and SCC between the LECIF score and the sequence 

constraint score for windows with at least n bases annotated by the two scores, with n ranging 
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from 1 to 50. The two scores were not required to be defined on the same set of bases within the 

50-bp window.  

 

Heritability partitioning analysis 

 To perform the heritability partitioning analysis, we used the LD-score regression software 

ldsc (v1.0.0)41. We generated an annotation of all human regions that align to the mouse genome 

and have a LECIF score above the 95th percentile. We used this annotation in the context of the 

baseline annotation set (v2.1) from Gazal et al.42 along with another annotation generated based 

on the human-only baseline score instead of the LECIF score as well as an annotation of human 

regions that align to the mouse genome. We also included 500-bp windows around each 

annotation to dampen the inflation of heritability in neighboring regions due to linkage 

disequilibrium, following the procedure in Ref. 41. 

 We applied ldsc to this extended set of 60 annotations for the following 12 traits41: age at 

menarche, body mass index (BMI), coronary artery disease, education attainment, HDL 

cholesterol level, height, LDL cholesterol level, rheumatoid arthritis, schizophrenia, smoking, 

triglyceride level, and type 2 diabetes.  

 

Data availability 

The human-mouse LECIF score is available at https://github.com/ernstlab/LECIF. Links to data 

files used to generate input features to LECIF are listed in Supplementary Data 2.1. The human-

mouse pairwise alignment is available at 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/vsMm10/axtNet/. For TSS, gene body, intron, 

exon, coding exon, 5’ UTR, and 3’ UTR annotations, we used GENCODE annotations V31lift37 

for human and VM23 for mouse. We downloaded these annotations along with classification of 

evolutionary dynamics of CpG islands36 and common SNPs (dbSNP v7)38 from the UCSC Table 

Browser3. The HGMD variants that we used were variants annotated as ‘regulatory mutations’ in 
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the April 2012 public release of HGMD database37,55. The following URLs contain data sets that 

were used in the heritability partitioning analysis: Baseline annotation set42: 

https://storage.googleapis.com/broad-alkesgroup-

public/LDSCORE/1000G_Phase3_baselineLD_v2.1_ldscores.tgz; Age at menarche56: 

https://www.reprogen.org; Body mass index, height57: 

http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files; 

Coronary artery disease58: http://www.cardiogramplusc4d.org/data-downloads; Education 

attainment59: https://www.thessgac.org/data; HDL cholesterol level, LDL cholesterol level, 

triglyceride level60: http://csg.sph.umich.edu/willer/public/lipids2010; Rheumatoid arthritis61: 

http://plaza.umin.ac.jp/yokada/datasource/software.htm; Schizophrenia62, smoking63: 

www.med.unc.edu/pgc/downloads; Type 2 diabetes64: http://www.diagram-

consortium.org/downloads.html. 

   

Code availability 

The LECIF software is available at https://github.com/ernstlab/LECIF. 
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Figures 

 

 
 
Figure 2.1. Overview of the LECIF method. 
a. Supervised learning procedure of LECIF. For every pair of human and mouse genomic 
regions, two feature vectors are generated from their functional genomic annotations, one 
vector for the human region (beige) and the other vector for the mouse region (gray). Each 
feature vector consists of thousands of functional genomic annotations, as listed in 
Supplementary Data 2.1. Only a subset of the features are shown here. These two species-
specific feature vectors are given to an ensemble of neural networks (ENN). The ENN is trained 
to distinguish positive pairs (green), which are aligning human and mouse regions, from 
negative pairs (red), which are randomly mismatched human and mouse regions that do not 
align to each other, but somewhere else in the other species. Here we provide about two million 
positive and two million negative training examples. Feature labels (e.g. DNase in liver) and 
matching of features across species are not provided to LECIF. 
b. Genome-wide prediction procedure of LECIF. Once trained as illustrated in a, the ENN can 
estimate the probability of any given pair of human and mouse regions being classified as a 
positive pair. We consider this probability, the LECIF score, to represent the evidence of 
conservation observed in the functional genomics data annotating the given pair. Here we 
generate the LECIF score for all pairs of aligning human and mouse regions. Although not 
shown here, for model evaluation we also generate predictions for randomly mismatched 
negative pairs held out from training. When generating a prediction for a pair, LECIF uses an 
ENN trained on data excluding the pair as described in Methods and Supplementary Data 2.2. 
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Figure 2.2. Characteristics of the human-mouse LECIF score. 
a. Genome Browser3 views with the LECIF score annotating human gene CTXND1 (top) and its 
mouse ortholog Gm2115 (bottom). In each view, LECIF score is shown in the top, followed by 
net alignment annotation10 marking regions that align with colored boxes. Below the net 
annotation are RefSeq gene annotation65 and ChromHMM chromatin state annotations29 for 
different epigenomes from a model learned jointly for human and mouse2. State legend is in the 
bottom right. Below the state annotations are CpG island and PhastCons element11 annotations. 
Black lines highlight segments that largely align. The mouse genome browser view is shown in 
the reverse direction (3’-5’). 
b. Distribution of the LECIF score. Fifty equal-width bins were used. 
c. Receiver operating characteristic (ROC) curve comparing LECIF, random forest (RF), 
canonical correlation analysis (CCA), deep CCA (DCCA), and logistic regression (LR) for 
classifying pairs of regions that align at the sequence level, evaluated on a common set of held-
out test data. Legend indicates color and mean area under the ROC curve (AUROC) for each 
method. The curve of each method was obtained by classifying 100,000 positive and 100,000 
negative examples sampled with replacement from all test examples 100 times. Negative 
examples were weighted 50 times more than positive examples. For each method, standard 
deviation of the 100 AUROC values was under 0.005. 
d. Similar to c except showing precision-recall (PR) instead of ROC. Standard deviation of the 
100 area under the PR curve (AUPRC) values was under 0.005 for all methods. 
e. Left panel shows for each human chromatin state as described previously4,66 the distribution 
of mean LECIF score over different epigenomes (n=127). Mean LECIF score for a state in an 
epigenome is computed by averaging the score across regions overlapping the state in the 
epigenome. Each distribution is represented by a boxplot with median (black vertical line), mean 
(black ‘x’), 25th and 75th percentiles (box), and 5th and 95th percentiles (whisker). Right panel 
shows mean coverage of each state across human regions that align to mouse. Source data are 
provided as a Source Data file. A mouse version of this plot is in Supplementary Fig. 2.10. 
 
  



 33 

 
 
Figure 2.3. Correspondence of LECIF score to matched human and mouse annotations. 
a. Scatter plot showing with a gray dot for each aligning pair of human and mouse regions the 
LECIF score (x-axis) and cross-species similarity of H3K27ac activity (y-axis). H3K27ac activity 
for a region in a tissue type is quantified as the fraction of experiments in the tissue type with 
peak calls overlapping the region. Its cross-species similarity is quantified as the weighted 
Jaccard similarity coefficient over 14 matched tissue types (Methods). One hundred thousand 
random pairs are shown. PCC and SCC, computed from all regions, are shown in the top left. 
Black circles show the mean coefficient of pairs binned by the LECIF score using ten equal-
width bins. The circles are connected by piecewise linear interpolation. Source data are 
provided as a Source Data file. A version of this figure for the human-only baseline score is in 
Supplementary Fig. 2.16. 
b. Cross-species agreement in chromatin state2,29 frequency in aligning human and mouse 
regions for a ChromHMM model learned jointly for both species. Pairs were binned by LECIF 
score percentile rank using ten bins with similar number of pairs. For each state and percentile 
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rank bin, we computed PCC between the human and mouse state frequencies across all pairs 
in the bin (Methods). The values are shown with circles colored according to the top left legend 
from Ref. 2, which are connected by piecewise linear interpolation. Source data are provided as 
a Source Data file. Alternative versions of this plot with different binning schemes are in 
Supplementary Fig. 2.12.  
c. ChromHMM chromatin state2,29 annotations in high-scoring pairs of aligning human and 
mouse regions. Each row in top and bottom sub-panels corresponds to human and mouse 
epigenomes, respectively. Each column is a random pair of regions with high LECIF score 
(>95th percentile). Each cell shows the color of the state with which the region (column) is 
annotated in an epigenome (row) based on the same model as in b. Pairs (columns) were 
ordered based on hierarchical clustering applied to state annotations using Ward’s linkage with 
optimal leaf ordering67. A version of this figure using mismatched non-aligning pairs is in 
Supplementary Fig. 2.17. 
d. Same as c, but with pairs with low LECIF score (<5th percentile). 
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Figure 2.4. Relationship of LECIF score to sequence constraint annotations  
a. Distribution of LECIF score in human regions overlapping constrained elements called by 
GERP++, SiPhy-omega, SiPhy-pi, and PhastCons (n=5,500,681, 4,515,990, 6,277,929, and 
6,634,667 human regions, respectively)11,13,14,68. Each distribution is represented by a boxplot 
with median (orange solid line), mean (green ‘x’), 25th and 75th percentiles (box), and 5th and 95th 
percentiles (whisker). Orange and green dashed vertical lines denote genome-wide median and 
mean, respectively. Right sub-panel shows coverage of each annotation across all human 
regions aligning to mouse.  
b. Similar to a, except showing LECIF score of human regions overlapping CpG islands 
(n=950,523) as well as subsets of regions overlapping slowly and quickly evolving CpG islands 
(n=399,280 and 260,132, respectively) as defined based on primates36.  
c. Scatter plot showing with gray dots the LECIF score and PhyloP score based on a 100-way 
vertebrate alignment12. The plot displays 100,000 random human regions that align to mouse 
with all bases annotated by both scores. PCC and SCC, computed from all applicable regions, 
are shown in the top right. Mean PhyloP score of all applicable regions binned by the LECIF 
score with ten equal-width bins are shown in black circles, connected by piecewise linear 
interpolation.  
d. Cross-species agreement in chromatin state2,29 frequency in pairs where the LECIF score is 
high and PhyloP score is low or vice versa. The PhyloP score is the same as in c. The states 
are the same as in Fig. 2.3b-d. Diagonally hatched bars show PCC from pairs with high LECIF 
score (>90th percentile) and low PhyloP score (<10th) in all bases within 500 bp of the human 
region. Horizontally hatched bars show PCC from pairs with low LECIF score (<10th) and high 
mean PhyloP score (>90th) in the human region. Bars are colored according to the legend on 
the right. Similar plots with different percentile cutoffs and also including pairs with both scores 
above or below the cutoffs are in Supplementary Fig. 2.20.  
Source data for a-d are provided as Source Data files. 
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Figure 2.5. Relationship of LECIF score to genetic variants and heritability.  
a. Shown from left to right are plots of log2 fold enrichment for variants based on four different 
sets, (i) common SNPs38, (ii) HGMD regulatory variants37, (iii) GWAS catalog SNPs39, and (iv) 
GTEx cis-eQTLs40 across tissues, within human regions binned by the LECIF score with ten 
equal-width bins. Analysis was restricted to human regions that align to mouse, and a uniform 
background within these regions was used. Displayed above each subplot is the number of 
regions overlapping the variants from the corresponding set included in the analysis. Black and 
dark gray bars denote log2 fold enrichments that resulted in P values below 0.0001 and 0.001, 
respectively, based on one-sided bionomial tests.  
b. Fold enrichments for partitioned heritability of 12 phenotypes41 in human regions with high 
LECIF score. Enrichments are shown for human regions with high human-mouse LECIF score 
(>95th percentile) (blue) and additionally for comparison regions with high human-only baseline 
score (>95th percentile) (orange) and human regions that align to mouse (gray). Heritability 
partitioning41 for the LECIF score was applied in the context of a baseline set of annotations42, 
which included sequence constraint annotations and was extended to include additional 
annotations generated based on the human-only baseline score and sequence alignment 
(Methods). Error bars denote standard error around the enrichment estimates. Horizontal 
dashed line denote no enrichment (fold enrichment of 1). * and *** denote Bonferroni-corrected 
one-sided P values for the LECIF score annotation’s enrichment below 0.05 and 0.001, 
respectively. P values and standard errors were calculated using a block jackknife over SNPs 
with 200 equally sized blocks of adjacent SNPs as described in Ref. 41.  
Source data for a and b are provided as Source Data files.  
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Figure 2.6. Relationship of LECIF score to genetic and epigenetic variation associated 
with phenotypes.  
a. Distribution of mean LECIF score of non-overlapping 1-kb human genomic windows identified 
as lying within a mapped mouse insulin scretion QTL or containing a human diabetes GWAS 
variant or both43. ‘Within mouse QTL overlapping human variant’ refers to windows that lie 
within the mouse QTL mapped to human and overlap the human diabetes GWAS variant. 
‘Within mouse QTL not overlapping human variant’ refers to windows within the mapped mouse 
QTL that do not overlap any human diabetes GWAS variant. ‘Overlapping human variant’ refers 
to windows that overlap the human diabetes GWAS variant and lie in loci obtained by randomly 
permuting the locations of the mapped mouse QTL. All windows were obtained by sliding a fixed 
window aross the QTL, and any window with less than half of its bases annotated with the 
LECIF score was excluded from this analysis. Displayed after each label is the number of 
qualified windows corresponding to that label. Each distribution is represented by a boxplot with 
median (orange solid line), mean (green ‘x’), 25th and 75th percentiles (box), and 5th and 95th 
percentiles (whisker). **** denotes P value below 0.0001 based on a two-sided Mann-Whitney U 
test. Similar plots generated using different window sizes are shown in Supplementary Fig. 
2.23.  
b. Distribution of mean LECIF score in conserved differentially methylated regions (DMRs) and 
mouse-specific DMRs with respect to a diabetic phenotype44. ‘Conserved DMR’ refers to 
regions with significant differential methylation (P value<0.05) in both human and mouse and 
the same directionality with respect to the phenotype. ‘Mouse-specific DMR’ refers to regions 
with significant differential methylation in mouse, but either lacking significant differential 
methylation in human or showing inconsistent direction of methylation change between human 
and mouse. The study in which the DMRs were reported did not provide human-specific DMRs 
because it first identified mouse DMRs and then tested those in human and not vice versa. 
Displayed below each label is the number of DMRs corresponding to that label. Boxplots are 
formatted as in a. ** denotes P value below 0.01 based on a two-sided Mann-Whintey U test 
(P=0.003).  
Source data for a and b are provided as Source Data files. 
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Supplementary Figure 2.1. Effect of different weight ratios between positive and negative 
examples.  
Comparisons of the LECIF score, which was learned with negative examples weighted 50 times 
more than positive examples, to alternative versions of the score learned with different 
weighting schemes. To generate each alternative version, we repeated the hyper-parameter 
search and prediction procedures with the same dataset, but with different weigthing scheme.  
a,d,g,j. Distribution of a score learned with positive-negative example weight ratio of 1:1, 1:10, 
1:50, and 1:100, respectively. Fifty equal-width bins were used to plot this histogram. 
b,e,h,k. Scatter plot showing with a gray dot for each aligning pair of human and mouse regions 
a score learned with positive and negative examples weighted equally (x-axis) and a score 
learned with positive-negative example weight ratio of 1:1, 1:10, 1:50, and 1:100, respectively 
(y-axis). Pearson correlation coefficient (PCC) and Spearman correlation coefficient (SCC) 
between the two scores are shown in the top left. One hundred thousand pairs of human and 
mouse regions were randomly selected to be included in the scatter plot. 
c,f,i,l. ROC curve of a score learned with positive-negative example weight ratio of 1:1, 1:10, 
1:50, and 1:100, respectively, for differentiating positive and negative pairs. Mean ROC curve 
was obtained by classifying 100,000 positive and 100,000 negative examples randomly 
sampled with replacement from all available test examples 100 times Mean area under the ROC 
curve (AUROC) is shown in the bottom right corner. Standard deviation of the 100 AUROC 
values was under 0.001 for any weight ratio. 
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Supplementary Figure 2.2. Effect of ensembling and sampling training data on 
robustness.  
Analysis of the effect of the ensembling strategy of LECIF, which trains an ensemble of 100 
neural networks, where each neural network (NN) is given 1 million positive and 1 million 
negative examples that are randomly sampled from all available training data, on the robustness 
of predictions. To evaluate the effect of ensembling, LECIF’s robustness is compared to the 
average robustness of individual NN in the ensemble. Additionally, to evaluate the effect of 
sampling training data instead of using all available training data, LECIF’s robustness is 
compared to the robustness of a single NN trained on all available training data (>2.2 million 
positive and >2.2 million negative examples). We measure the robustness by computing the a. 
PCC and b. SCC between scores generated by classifiers that were trained on non-overlapping 
set of chromosomes (Methods). ‘NN (1 mil)’ refers to the mean of 100 PCC or SCC computed 
from pairs of NN where the two NN are trained on different data. The NN were paired up 
randomly. ‘NN (all)’ refers to the PCC or SCC from two NN where each NN was trained on non-
overlapping data, but without any down-sampling as done in ‘NN (1 mil)’. The scores we 
compare here were generated for pairs of human and mouse regions held out from training, 
validation, and test (Supplementary Data 2.2). The same set of scores were used to compute 
both PCC and SCC. These results confirm that LECIF leads to more robust predictions than any 
individual NN in the ensemble or a NN trained on all available data. 
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Supplementary Figure 2.3. Effect of the number of ensembled neural networks on 
predictive power and robustness.  
Analysis of the effect of the number of neural networks used in LECIF, which trains an 
ensemble of 100 neural networks (NN), on classification performance and robustness of 
predictions. LECIF’s predictive performance and robustness are compared to those of 
ensembles with fewer NN. 
a. Effect of the number of NN in an ensemble on the area under the receiver operating 
characteristic curve (AUROC). Given 100 individual NN trained in LECIF, for each number of 
NN shown in the x-axis, x, we select at most 100 different ensembles, each of which is a 
combination of x NN. If there are 100 or fewer possible combinations, all are used. Otherwise, 
100 combinations are randomly selected from all possible combinations. For each ensemble, 
we generated its prediction for test data by averaging the predictions from its NN. This test data 
was held out from training and validation of the NN. We finally computed AUROC for each 
ensemble and obtain the mean AUROC for each x by averaging the AUROCs over all 
ensembles consisting of x neural networks. Negative examples were weighted 50 times more 
than positive examples when computing AUROC. 
b. Similar to a except showing area under the precision-recall curve (AUPRC) instead of 
AUROC. The same procedure and test data were used as a. 
c. Similar to a except showing PCC between scores learned from different training data instead 
of AUROC. Ensembles were selected as done in a except we generated their predictions for 
held-out data that was excluded from all training, validation, and test (Methods). Given the 
ensembles generated for each number of NN shown in the x-axis, we computed PCC between 
scores predicted by two ensembles, each trained on non-overlapping training data. If there are 
multiple ensembles trained on different data, but with the same number of NN, then the two 
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ensembles are matched randomly. We then computed the mean PCC for each number of NN 
by averaging the PCCs over the pairs of ensembles.  
d. Similar to c except showing SCC instead of PCC. 
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Supplementary Figure 2.4. Comparison of the LECIF score to scores learned with training 
data from either non-coding or coding regions.  
To evaluate the effect of splitting training examples into coding and non-coding, we learned two 
separate scores, one from coding examples and the other from non-coding examples 
(Methods). A pair of human and mouse regions was considered coding if the human region 
overlapped any coding sequence and considered non-coding otherwise. The same procedure 
for learning the LECIF score was applied to learn a score from non-coding examples. The same 
procedure for learning the LECIF score was also done for coding examples, except, due to 
limited number of coding examples, all available training and tuning examples were used for 
hyperparameter search and then each classifier with optimized parameters was trained on 
10,000 positive and 10,000 negative training examples. The scores learned separately on 
coding and non-coding regions are largely similar to the original LECIF score. 
a. Scatter plot showing with a gray dot for a coding region its LECIF score learned from all 
regions (x-axis) and its score learned from coding regions (y-axis). Pearson correlation 
coefficient (PCC) and Spearman correlation coefficient (SCC) between the scores are shown in 
the top left. One hundred thousand pairs of human coding regions were randomly selected to be 
included in the scatter plot. 
b. Similar to a except showing with a gray dot for a non-coding region its LECIF score learned 
from all regions (x-axis) and score learned from non-coding regions (y-axis). 
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Supplementary Figure 2.5. Effect of using fewer mouse functional genomic features.  
To examine the contribution of mouse data to LECIF, we learned two alternative scores using 
LECIF, one with 10% of the original mouse features and the other with 1% (Methods). 
Specifically, to sample 10% of the mouse features, we randomly selected 6 out of 66 
epigenomes in the 15-state ChromHMM chromatin state annotations, selecting 90 chromatin 
state features. We then additionally sampled 221 features from those corresponding to mouse 
DNase-seq, ChIP-seq, RNA-seq, and CAGE experiments. To sample 1% of the mouse 
features, we randomly selected 31 features from those corresponding to mouse DNase-seq, 
ChIP-seq, RNA-seq, and CAGE experiments. Both scores were learned with all human features 
originally used in LECIF. 
a. Scatter plot showing with a gray dot for each aligning pair of human and mouse regions the 
LECIF score learned with all features (x-axis) and the alternative score learned with 10% of 
mouse features. Pearson correlation coefficient (PCC) and Spearman correlation coefficient 
(SCC) between the two scores are shown in the top left. One hundred thousand pairs of human 
and mouse regions were randomly selected to be included in the scatter plot.  
b. Similar to a except showing the alternative score learned with 1% of mouse features in the y-
axis. 
c. Bar plot showing mean AUROC of the LECIF score learned with all features and the 
alternative scores learned with all human features and 10% or 1% of mouse features for 
differentiating aligning pairs from randomly mismatched pairs. One hundred AUROCs 
were obtained by classifying 100,000 positive and 100,000 negative examples randomly 
sampled with replacement from all available test examples 100 times, as done in Fig. 
2.2c. Mean AUROC is shown above each bar. Standard deviation of the 100 AUROC values 
was under 0.001 for all scores.  
d. Similar to c except showing AUPRC instead of AUROC. 
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Supplementary Figure 2.6. Overview of generating region-neighborhood LECIF score for 
pairs of human regions and extended mouse regions. 
Illustration of how LECIF is used to generate region-neighborhood LECIF score for a pair of a 
human region and a neighborhood of a mouse region. A given 50-bp human region R is 
compared to a set of multiple 50-bp mouse regions in a neighborhood of length W bp centered 
around a mouse region r. Each comparison (pair of dashed lines) results in a region-region 
LECIF score. For a pair of human region and a neighborhood in mouse, we define the region-
neighborhood LECIF score as the maximum of all the region-region LECIF scores. In this 
example, the region-region LECIF score of the aligning human and mouse regions (blue; R and 
r) is 0.1. The maximum region-region LECIF score, 0.4, comes from the human region paired up 
with a mouse region near the aligning mouse region (orange). As a result, in this example, the 
region-neighborhood LECIF score is 0.4. We evaluated using the region-neighborhood LECIF 
score to predict aligning pairs, as an alternative to using the region-region LECIF score of the 
aligning human and mouse regions. Results of the evaluation are shown in Supplementary 
Fig. 2.7. 
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Supplementary Figure 2.7. Predictive power of region-neighborhood LECIF score for 
aligning pairs as a function of neighborhood size around each pair’s mouse region.  
We evaluate the predictive power of the region-neighborhood LECIF score of aligning human 
and mouse regions as a function of neighborhood size. We also evaluate using a LECIF-
Genome Background (LECIF-GB) score in place of LECIF score in this analysis. LECIF-GB was 
trained with ‘genome background’ negative examples, which are pairs of human and mouse 
regions randomly selected from the entire human and mouse genomes (Methods). Shown for 
LECIF (blue) and LECIF-GB (orange) is the area under the ROC curve (AUROC) for 
differentiating positive examples from negative examples as a function of the size of the 
neighborhood centered around each pair’s mouse region. Positive examples are pairs of human 
and mouse regions that align to each other. Negative examples are either a. randomly 
mismatched human and mouse regions that align somewhere in the other species (equivalent to 
the negative examples provided to LECIF) or b. genome background (equivalent to the negative 
examples provided to LECIF-GB). The neighborhood size varies from 0 to 20 kb with 
increments of 100 bp. Given a particular neighborhood size of W, the region-neighborhood 
score for each pair of human and mouse regions was the maximum region-region scores of any 
pair consisting of the human region and any mouse region within 0.5*W bp from the aligning 
mouse region of the pair (Methods; Supplementary Fig. 2.6). This region-neighborhood LECIF 
score was then used to predict aligning pairs. We note that a neighborhood size of 0 gives 
region-region LECIF and LECIF-GB scores. For each comparison, the same set of 100,000 
positive and 100,000 negative test examples, which were on chromosomes excluded from 
training and validation, were used to compute the AUROC. In this analysis, there was no 
advantage in using the region-neighborhood LECIF score, as defined, compared to using the 
region-region LECIF score and similarly for LECIF-GB. 
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Supplementary Figure 2.8. Predictive power of region-neighborhood LECIF score for 
aligning pairs binned by score percentile as a function of neighborhood size around each 
pair’s mouse region.  
Similar to Supplementary Fig. 2.7a, except we first bin aligning pairs into five bins based on 
their region-region LECIF score percentile rank at the aligning regions. For each bin, we 
evaluate the predictive power of the region-neighborhood LECIF score of aligning human and 
mouse regions as a function of neighborhood size. Each line corresponds to a percentile rank 
bin and is colored based on the color bar on the right. When measuring AUROC, for every 
positive example falling into a percentile rank bin, we provide a negative example that consists 
of the same human region of the positive example and a randomly chosen mouse region that 
aligns somewhere else in the human genome. While extending the neighborhood around each 
pair’s mouse region does not improve predictive power in general, it does help when the 
aligning regions are scoring low and hard to distinguish from randomly mismatched pairs.  
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Supplementary Figure 2.9. Distribution of mean LECIF score of peak calls provided to 
LECIF.  
a. Left panel shows for each type of functional genomic experiments listed the distribution of 
mean LECIF score over experiments of that type in human. The mean LECIF score for an 
experiment is computed based on averaging the LECIF score of regions overlapping a peak call 
from the experiment. The set of experiments are the same as provided to LECIF as input 
features. Each distribution is represented by a boxplot with median (orange solid line), mean 
(green ‘x’), 25th and 75th percentiles (box), and 5th and 95th percentiles (whisker). Green dashed 
vertical line across the entire left panel denotes the genome-wide mean LECIF score. Right 
panel shows mean coverage of each type of peak call across all human regions that align to the 
mouse genome. Human regions in all aligning pairs of human and mouse regions 
(n=32,285,361) as defined in Methods were used to generate this plot. The number of 
experiments for each peak call type is reported in Supplementary Data 2.1. Source data are 
provided as a Source Data file.  
b. Similar to a except for mouse experiments instead of human. Mouse regions in all aligning 
pairs of human and mouse regions (n=32,285,361) were used to generate this plot. Source data 
are provided as a Source Data file.  
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Supplementary Figure 2.10. Distribution of mean LECIF score in different mouse 
chromatin states.  
Similar to Fig. 2.2e except for mouse chromatin state annotations29,46 instead of human. Left 
panel shows for each chromatin state from a model learned in mouse the distribution of mean 
LECIF score over different epigenomes (n=66). The mean LECIF score for a chromain state in 
an epigenome is computed by averaging the LECIF score of regions overlapping the chromatin 
state in the epigenome. Each distribution is represented by a boxplot with median (black vertical 
line), mean (black ‘x’), 25th and 75th percentiles (box), and 5th and 95th percentiles (whisker). 
Right panel shows mean coverage of each state across mouse regions in all aligning pairs of 
human and mouse regions. Mouse regions in all aligning pairs of human and mouse regions 
(n=32,285,361) as defined in Methods were used to generate this plot. State colors were 
assigned to match the state colors of the 25-state human ChromHMM model4 shown in Fig. 
2.2e based on state descriptions. Source data are provided as a Source Data file.  
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Supplementary Figure 2.11. Distribution of LECIF score of GENCODE gene feature 
annotations.  
a. Left panel shows the distribution of LECIF score in human regions overlapping indicated 
GENCODE gene feature annotations. Each distribution is represented by a boxplot with median 
(orange solid line), mean (green ‘x’), 25th and 75th percentiles (box), and 5th and 95th percentiles 
(whisker). Dashed vertical lines in orange and green across the entire left panel denote the 
genome-wide median and mean LECIF scores, respectively. Right panel shows coverage of 
each annotation across all human regions that align to the mouse genome. Human regions in all 
aligning pairs of human and mouse regions (n=32,285,361) were used to generate this plot. 
TSS: transcription start site; CDS: coding sequence; UTR: untranslated region. 
b. Similar to a except for mouse regions overlapping mouse gene feature annotations instead of 
human. Mouse regions in all aligning pairs of human and mouse regions (n=32,285,361) as 
defined in Methods were used to generate this plot.  
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Supplementary Figure 2.12. Cross-species similarity in chromatin states in pairs binned 
by LECIF score or human-only baseline score. 
Extended version of the analysis in Fig 2.3b. a-d. Cross-species agreement in chromatin 
state2,29 frequency in pairs of aligning human and mouse regions binned by the LECIF score for 
a ChromHMM model learned jointly between human and mouse. Pairs are binned using a. 5 
equal-width bins based on the LECIF score, b. 5 bins based on the percentile rank of the LECIF 
score, c. 10 equal-width bins based on the LECIF score, or d. 10 bins based on the percentile 
rank of the LECIF score. Binning based on the percentile rank results in similar number of pairs 
in each bin, whereas binning based on the score results in varying number of pairs in each bin. 
For each state and aligning region, we computed the frequency of the state across cell and 
tissue types for human and mouse separately. We then, for each state and bin, computed the 
PCC between the corresponding human and mouse frequencies for that state across all aligning 
pairs within the bin (Methods). The values are shown with colored circles according to the 
chromatin state legend on the bottom from Ref. 2. The circles for the same state are connected 
with lines based on piecewise linear interpolation. d is identical to Fig. 2.3b. Source data are 
provided as a Source Data file.  
e-h. Similar to a-d, respectively, except using the human-only baseline score instead of the 
LECIF score.   
i-l. Shown for each chromatin state (x-axis) is the difference in the chromatin state’s PCC 
between pairs from the highest score and lowest score bin Δ(PCC), based on either the LECIF 
score (bold-colored bars) or human-only baseline score (light-colored bars). Each panel 
corresponds to the two panels above it in the same column. The ΔPCC values are shown with 
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colored bars according to the chromatin state legend on the bottom from Ref. 2 and the score 
used for binning the pairs (bold for LECIF score, light for human-only baseline score).  
This figure illustrates that pairs of human and mouse regions with high LECIF score show 
stronger cross-species agreement in chromatin state frequency than pairs with low LECIF 
score. It also highlights that pairs with high human-only baseline score do not consistently show 
stronger cross-species agreement than pairs with low human-only baseline score. 
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Supplementary Figure 2.13. Relative frequency of chromatin states in regions with low or 
high LECIF score.  
Comparing relative frequency of chromatin states2,29 for a seven state ChromHMM model 
learned jointly between human and mouse in high LECIF score (>90th percentile; blue) and low 
LECIF score (<10th percentile; orange) regions. The comparison is shown both for a. human and 
b. mouse regions. The chromatin states are the same as in Fig. 2.3b and Supplementary Fig. 
2.12. For a species, the mean relative frequency of a chromatin state in a set of regions 
satisfying the LECIF score threshold was computed by averaging over epigenomes the fraction 
of those regions overlapping the chromatin state in each epigenome. These figures illustrate 
that regions with low LECIF score are more likely to be annotated with the ‘Unmarked’ 
chromatin state in both human and mouse than regions with high LECIF score. 
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Supplementary Figure 2.14. Chromatin state similarity in low-scoring coding regions.  
As described in Supplementary Figure 2.4, we learned an alternative score using pairs with 
coding human regions. Here we examine human and mouse chromatin states in low-scoring 
coding regions based on either the original LECIF score learned from all regions or the 
alternative score learned from coding regions. Coding regions that score low according to either 
scores exhibit weak cross-species similarity in their chromatin states as expected.   
a. ChromHMM chromatin state2,29 annotations in randomly selected pairs that include a human 
coding region with low LECIF score. The pairs were selected based on whether their human 
regions overlapped GENCODE annotation of coding sequence (CDS). Each row in the top sub-
panel corresponds to a human cell or tissue type. Each row in the bottom sub-panel 
corresponds to a mouse cell or tissue type. Each column is a randomly selected pair with a 
human coding region with low LECIF score among all pairs with a human coding region (<25th 

percentile among coding regions). Each cell shows the color of the chromatin state with which 
the human or mouse region (column) is annotated in a specific cell or tissue type (row). The 
chromatin state model and state coloring are the same as in Fig. 2.3b and Supplementary Fig. 
2.12. Pairs (columns) were ordered based on hierarchical clustering applied to their chromatin 
state annotations using Ward’s linkage with optimal leaf ordering67. 
b. Same as a, but with pairs selected based on the alternative score learned from coding 
regions instead of the LECIF score.  
c. Shown for each chromatin state (x-axis) is the state’s PCC in low-scoring pairs with a human 
coding region based on the LECIF score (<25th percentile among coding regions; bold-colored 
bars) or the alternative score learned from coding training data (light-colored bars). Each state’s 
PCC was computed as explained in Fig. 2.3b and Supplementary Fig. 2.12 where the 
correlation is computed between the state’s frequencies in human cell or tissue types and its 
frequencies in mouse cell or tissue types across all low-scoring pairs restricted to human coding 
regions. 
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Supplementary Figure 2.15. LECIF score and human-only baseline score in topologically 
associated domain (TAD) boundaries33. 
a. Box plot showing the distribution of LECIF score of pairs with a human or mouse genomic 
region overlapping TAD boundaries in different human or mouse cell types. Top two cell types 
listed along the y-axis are human cell types, and the other two are mouse cell types. Each 
distribution is represented by a boxplot with median (orange solid line), mean (green ‘x’), 25th 
and 75th percentiles (box), and 5th and 95th percentiles (whisker). Orange and green dashed 
lines vertical lines across the entire panel denote the genome-wide median and mean LECIF 
scores, respectively. There were 1,488,669, 1,344,362, 1,731,487, and 1,995,527 pairs of 
human and mouse regions as defined in Methods overlapping TAD boundaries in human 
embryonic stem cells (hESC), IMR90, mouse embryonic stem cells (mESC), and mouse cortex, 
respectively. 
b. Similar to a but showing the distribution of LECIF score of pairs with human and mouse 
regions with respect to their overlap with TAD boundaries in embryonic stem cells (ESC). Top 
distribution corresponds to aligning human and mouse regions overlapping TAD boundaries in 
both hESC and mESC (‘Both hESC & mESC’; n=82,075). Second and third distributions 
correspond to aligning pairs with either human or mouse region overlapping TAD boundaries in 
ESC (‘hESC only’ and ‘mESC only’; n=1,406,056 and 1,234,447, respectively). Bottom 
distribution corresponds to the remaining pairs which are those with neither region overlapping 
TAD boundaries in ESC (n=29,552,172).  
c-d. Similar to a-b, respectively, except for human-only baseline score instead of LECIF score.  
These results show that LECIF score is higher at TAD boundaries than average, which are 
known to be highly conserved between human and mouse, and also higher in conserved TAD 
boundary regions than in species-specific TAD boundary regions. These patterns are not 
consistently observed with human-only baseline score. 
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Supplementary Figure 2.16. Scatter plot of the human-only baseline score and cross-
species similarity in tissue-specific H3K27ac activity.  
Similar scatter plot to Fig. 3a except for the human-only baseline score (Methods) instead of 
the LECIF score. The scatter plot shows with a gray dot for each aligning pair of human and 
mouse regions the human-only baseline score (x-axis) and cross-species similarity of matched 
tissue-specific H3K27ac activity (y-axis). The H3K27ac activity for a region in a tissue and 
species is quantified as the fraction of experiments in the tissue type of the species with peak 
calls overlapping the region. The cross-species similarity of the tissue-specific H3K27ac activity 
is quantified as the weighted Jaccard similarity coefficient over 14 matched tissue types 
(Methods). PCC and SCC computed from all aligning pairs are shown in the top right. In black 
circles the mean similarity coefficient of pairs binned by the LECIF score with ten equal-width 
bins spanning from the minimum to maximum of the human-only baseline score is shown. 
These circles are connected with lines determined based on piecewise linear interpolation. One 
hundred thousand random aligning pairs were sampled to plot the scatter plot. This analysis 
shows that the human-only baseline score exhibits weaker agreement with cross-species 
similarity in tissue-specific H3K27ac activity compared to the LECIF score (PCC: 0.08 vs 0.45 
and SCC: 0.08 vs 0.42). 
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Supplementary Figure 2.17. Chromatin states in non-aligning pairs with high or low 
LECIF scores. 
a. ChromHMM chromatin state2,29 annotations in randomly selected pairs of non-aligning human 
and mouse regions with high LECIF score. The pairs were selected from negative test examples 
which consist of randomly mismatched pairs of human and mouse regions that do not align to 
each other (Methods). All human and mouse regions included in these pairs do align 
somewhere in the other species. Each row in the top sub-panel corresponds to a human cell or 
tissue type. Each row in the bottom sub-panel corresponds to a mouse cell or tissue type. Each 
column is a randomly selected non-aligning pair with high LECIF score among all non-aligning 
pairs (>95th percentile). Each cell shows the color of the chromatin state with which the human 
or mouse region (column) is annotated in a specific cell or tissue type (row). The chromatin 
state model and state coloring are the same as in Fig. 2.3b and Supplementary Fig. 2.12. 
Pairs (columns) were ordered based on hierarchical clustering applied to their chromatin state 
annotations using Ward’s linkage with optimal leaf ordering67. 
b. Same as a, but with randomly selected non-aligning pairs with low LECIF score (<5th 
percentile). 
c. Shown for each chromatin state (x-axis) is the state’s PCC in non-aligning pairs with high 
(>95th percentile; bold-colored bars) or low (<5th percentile; light-colored bars) LECIF score. 
Each state’s PCC was computed as explained in Fig. 2.3b and Supplementary Fig. 2.12 
where the correlation is computed between the state’s frequencies in human cell or tissue types 
and its frequencies in mouse cell or tissue types across 100,000 pairs with either high or low 
LECIF scores. Pairs were randomly sampled from negative test examples as done in a and b. 
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Supplementary Figure 2.18. Distribution of PhyloP score in aligning bases.  
Comparison of the distribution of PhyloP score (100 vertebrate) in human genomic bases in 
general (gray) and bases that align to mouse (red). 1 million bases annotated by PhyloP score 
were randomly sampled from the genome. Shown in gray is the distribution of PhyloP score of 
all 1 million bases. Shown in red is the distribution of PhyloP score of bases that align to mouse 
among the 1 million bases. Twenty equal-width bins ranging from -5 to 8 were used to plot the 
histogram, covering more than 99% of the score distribution. Bins outside the range are not 
shown. This comparison demonstrates that although aligning bases have a slightly higher 
distribution of sequence constraint than all bases they still have a wide distribution of constraint. 
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Supplementary Figure 2.19. Correlation between LECIF score and sequence constraint 
scores.  
a. Shown for a set of sequence constraint scores11–13 is the PCC computed between the LECIF 
score and a constraint score. For a given constraint score, to compute the PCC, we first slid a 
non-overlapping 50-bp genomic window across the human genome and selected windows with 
all 50 bases annotated by both the LECIF score and the given constraint score. We then 
computed the mean LECIF score and mean constraint score for each selected window. The 
PCC for a constraint score is the PCC between those two sets of values. Each resulting PCC is 
shown with a bar colored according to the legend on the right. Percent identity is defined as the 
number base-pairs with matching nucleotides (e.g. G in human and G is mouse) within a given 
window divided by 50. Source data are provided as a Source Data file.  
b. PCC between the LECIF score and constraint scores as a function of the minimum number of 
bases required to be annotated in the genomic windows. Also shown is the number of windows 
selected to compute the PCC. The PCC for a constraint score is computed as described in a, 
except windows with at least n bases annotated by the LECIF score and the constraint score of 
interest are selected, where n varies from 1 to 50. The two scores being compared need not 
annotate the same set of bases in each window. The PCC are shown with colored circles 
according to the y-axis on the left and legend in the top right. The circles for the same constraint 
score are connected with lines based on piecewise linear interpolation. The rightmost values 
where the minimum number of bases annotated equals 50 correspond to the PCC shown in a. 
Black circles show the number of windows in millions that had at least n bases (x-axis) 
annotated by the LECIF score and constraint scores according to the y-axis on the right. These 
circles are connected with lines based on piecewise linear interpolation. All six comparisons of 
the LECIF score to constraint scores had the same number of selected genomic windows. 
Source data are provided as a Source Data file.   
c-d. Similar to a-b, respectively, except for SCC instead of PCC.  
These results show that the LECIF score is moderately correlated with sequence constraint 
scores, and that the correlations are weaker as we include windows with fewer bases annotated 
by the scores within each genomic window.   
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Supplementary Figure 2.20. Cross-species agreement in chromatin state frequency in 
pairs grouped based on LECIF score and PhyloP score. 
a. ChromHMM chromatin state2,69 frequency correlation between human and mouse in pairs of 
aligning human and mouse regions grouped based on whether their LECIF score and human 
PhyloP score12 (defined based on a 100-way vertebrate alignment) were high (>90th percentile) 
or low (<10th percentile). The chromatin states are the same as in Fig. 2.3b and 
Supplementary Fig. 2.12. Separate bars are shown for each combination of high or low score 
of LECIF or PhyloP as indicated based on the legend at top. For the low PhyloP case, we 
required that there be a low (<10th percentile) score at all annotated bases within 500 bp to 
ensure the low score was not driven by the higher resolution at which sequence conservation is 
defined. The frequency correlation for each state and a set of aligning pairs is quantified as the 
PCC between the human and mouse frequencies for that state across the pairs, as done in Fig. 
2.3b and Supplementary Fig. 2.12 (Methods). Any region that did not have a PhyloP score for 
all bases was discarded from this analysis. Bars for each state are colored according to the 
bottom legend, as previously defined in Ref. 2. Source data are provided as a Source Data file.  
b. Similar to a except using a percentile cutoff of 0.25 instead of 0.05. Scores above the 75th 
percentile are considered high, and scores below the 25th percentile are considered low. 
c. Similar to a except using a percentile cutoff of 0.50 instead of 0.05. Scores above the median 
are considered high, and scores below the median are considered low.  
These results demonstrate that pairs with high LECIF score exhibit strong cross-species 
agreement in chromatin state frequency even when there is a low PhyloP score in the region. In 
contrast, pairs with a high PhyloP score and a low LECIF score did not exhibit strong 
correlations. 
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Supplementary Figure 2.21. Relationship of LECIF score and PhyloP score in ConsHMM 
conservation states. 
We use a ConsHMM 100-conservation-state annotation of the human genome based on a 100-
way vertebrate sequence alignment35 to understand the relationship between the LECIF score 
and sequence constraint scores. The scatter plot shows with a dot for each ConsHMM 
conservation state the mean LECIF score (x-axis) and mean human PhyloP score12 (y-axis; 
defined based on a 100-way vertebrate alignment). For each conservation state, the mean 
LECIF or PhyloP score is computed by averaging the score of bases overlapping the 
conservation state. Each dot is colored according to the eight major groups of conservation 
states listed in the legend on the right, as previously defined in Ref. 35. Dashed line is a linear 
regression fit applied to the 100 data points. We label four noteworthy conservation states. State 
28 (blue), which is the promoter enriched state, has the highest mean LECIF score and the 12th 
highest mean PhyloP score. State 1 (red), which is the most enriched state for exons, has the 
2nd highest mean LECIF score and the highest mean PhyloP score. State 2 (orange), which is 
the state most enriched for enhancer chromatin states, has the 8th highest mean LECIF score 
and the 2nd highest mean PhyloP score. State 100 (gray), which is characterized by 
pseudogenes and putative artifacts in the multi-species sequence alignment35, has the lowest 
mean LECIF score, while having the 3rd highest mean PhyloP score. Source data are provided 
as a Source Data file.  
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Supplementary Figure 2.22. Relationship of LECIF score and log-odds score for CpG 
island being classified as slowly evolving. 
Scatter plot showing with a gray dot for each human CpG island the mean LECIF score (x-axis) 
and the log-odds score for classifying the CpG island as slowly evolving as opposed to quickly 
evolving (y-axis) from a previous study on primate CpG island sequence evolution36. In black 
circles the mean log-odds score for CpG islands binned by the LECIF score with ten equal-width 
bins is shown. These circles are connected with lines based on piecewise linear interpolation. 
One hundred thousand random human CpG islands annotated with the LECIF score were 
sampled to plot this scatter plot. PCC and SCC computed between the two scores across all 
CpG islands annotated with the LECIF score are shown in the bottom right. This illustrates that 
the LECIF score is positively correlated with the likelihood of a human CpG island being 
classified as slowly evolving as opposed to quickly evolving. Source data are provided as a 
Source Data file.  
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Supplementary Figure 2.23. Distribution of mean LECIF score of human genomic 
windows overlapping mouse insulin secretion QTL and human diabetes GWAS variant. 
a. Distribution of mean LECIF score in genomic bases identified as human diabetes GWAS 
variant or overlapping a mapped mouse insulin secretion QTL or both43. The top group refers to 
human GWAS variants that lie within the mouse QTL mapped to human. The middle groups 
refers to random genomic bases that overlap the mapped mouse QTL where the bases were 
obtained by randomly permutating the locations of the human diabetes GWAS variants. The 
bottom groups refers to human GWAS variants that do not overlap any mapped mouse QTL. 
Displayed after each label is the number of bases corresponding to that group. Each distribution 
is represented by a boxplot with median (orange solid line), mean (green ‘x’), 25th and 75th 
percentiles (box), and 5th and 95th percentiles (whisker). **** denotes P value below 0.0001 
based on a two-sided Mann-Whitney U test. Specifically, the P values for comparing the top vs. 
middle groups and top vs. bottom groups were 2e-6 and 1e-15, respectively. Source data are 
provided as a Source Data file.  
b. Similar to Fig. 2.6a, but showing the distribution of mean LECIF score in non-overlapping 
100-bp genomic windows, instead of 1-kb windows, identified as containing a human diabetes 
GWAS variant or overlapping a mapped mouse insulin secretion QTL or both43. The top group 
refers to windows that lie within the mouse QTL mapped to human and overlap the human 
GWAS variant. The middle group refers to windows within the mouse QTL that do not overlap 
the human GWAS variant. The bottom group refers to windows from the human genome that 
overlap the GWAS variant where the windows lie in loci obtained by randomly permuting the 
locations of the mapped mouse QTL. Displayed after each label is the number of windows 
corresponding to that group. Each distribution is represented by a boxplot with median (orange 
solid line), mean (green ‘x’), 25th and 75th percentiles (box), and 5th and 95th percentiles 
(whisker). All windows were obtained by sliding a fixed window across the QTL, and any window 
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with less than half of the bases annotated with the LECIF score was excluded. **** denotes P 
value below 0.0001, and ns denotes P value above 0.05 based on a two-sided Mann-Whitney U 
test. Specifically, the P values for comparing the top vs. middle groups and the top vs. bottom 
groups were 4e-54 and 7e-11, respectively. Source data are provided as a Source Data file.  
c. Similar to b, but showing the distribution of mean LECIF score in non-overlapping 10-kb 
genomic windows, instead of 100-bp genomic windows. The P values for comparing the top vs. 
middle groups and top vs. bottom groups were 5e-11 and 0.10, respectively. Source data are 
provided as a Source Data file. 
a shows that human diabetes GWAS variants that overlap mouse insulin secretion QTL tend to 
have a higher LECIF score than the GWAS variants outside of the mouse QTL or bases that are 
not GWAS variants, but within the mouse QTL. b and c show the result of Fig. 2.6a, that human 
genomic windows that overlap both mouse insulin secretion QTL and human diabetes GWAS 
variant tend to have a higher LECIF score than windows that overlap only one of them and that 
this result also holds for other window sizes.  
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Supplementary Figure 2.24. A schematic of a pseudo-Siamese neural network.  
A pseudo-Siamese neural network consists of two distinct sub-networks that do not share any 
weights47. The sub-network on the left (beige) takes in human feature vectors, Xh, and the sub-
network on the right (gray) takes in mouse feature vectors, Xm. Each feature vector consists of 
multiple features, denoted as Xhi or Xmi, with i ranging from 1 to total number of features. A final 
network (blue) takes in concatenated output vectors from the two sub-networks and generates 
the final prediction, y. Each layer within a sub-network is followed by a rectified linear unit 
(ReLU) and dropout is used in the training70. We only show a small number of input features, 
layers, and neurons here. Supplementary Data 2.3 lists the hyper-parameters that define this 
architecture. 
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Chapter 3. Learning a pairwise epigenomic and TF binding association score across the 

human genome 

 

Abstract 

According to maps of chromatin contact, quantitative trait loci, and disease-associated variants, 

genomic loci are often associated with each other in the context of gene regulation or disease 

risk. There is a growing collection of epigenomic and TF binding data, which may be useful in 

understanding such pairwise relationships. We thus develop an approach that quantifies evidence 

of association for pairs of genomic windows based on large-scale epigenomic and TF binding 

data. The approach, Learning Evidence of Pairwise Association from Epigenomic and TF binding 

data (LEPAE), trains for each distance a Siamese neural network with pairs of windows with the 

distance apart as positives and randomly mismatched pairs of the same windows as negatives. 

We apply LEPAE to thousands of human datasets and learn the LEPAE score for pairs of windows 

with up to 100 kb between them. Using chromatin contact and gene annotations, we validate that 

the score highlights loci with associated or similar properties and may complement existing 

annotations. We expect LEPAE to be a resource for studying groups of genomic loci. 

Introduction 

Genomic loci are better understood in the context of other loci than alone. Maps of 

chromatin interactions from experiments such as Hi-C demonstrate that distal DNA elements can 

be in close contact in three dimensional space, for example, giving rise to promoter-enhancer 

interactions. Similarly, quantitative trait loci (QTL) studies show that a variant can influence 

expression of a distal gene and genome-wide association studies (GWAS) show that multiple 

variants spread across the genome can jointly contribute to one’s risk for disease. Studying 

groups of variants or DNA elements together can lead to better biological context and also 

statistical power. When doing so, it can be advantageous to determine whether pairs of genomic 
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loci of interest exhibit any associated properties. Given the increasingly diverse genome-wide 

maps of histone modifications and variants, chromatin accessibility, chromatin state annotations, 

and transcription factor (TF) binding, there is an opportunity to estimate how associated pairs of 

genomic loci are based on such data.  

We thus develop a supervised method, Learning Evidence of Pairwise Association from 

Epigenomic and TF binding data (LEPAE), that scores evidence of association for pairs of 

windows across the human genome. LEPAE is a variant of Learning Evidence of Conservation 

from Integrated Functional genomics data (LECIF)71 from Chapter 2. LEPAE leverages a 

compendium of epigenomic and TF binding data from various assays and cell types. For each 

distance, LEPAE uses a Siamese neural network classifier trained to distinguish pairs of windows 

with the distance apart from randomly mismatched pairs of the same set of windows. As a result, 

we learn the LEPAE score for every pair of 1-kb windows with pairwise distances ranging from 1 

kb to 100 kb. Using external annotations not provided as input, we validate that the learned score 

reflects associated or similar properties in pairs of loci. We expect the LEPAE score to be a 

resource for understanding complex relationships among genomic loci in studying gene regulation 

or disease risk.  

Results 

Overview of LEPAE 

LEPAE quantifies evidence of association between two distinct human genomic loci based 

on epigenomic and TF binding data. Specifically, given 1-kb nonoverlapping genomic windows, 

epigenomic and TF binding data annotating those windows, and a specific pairwise distance, a 

Siamese neural network classifier is trained with pairs of windows in the same chromosome and 

with the pairwise distance apart as positive pairs and randomly mismatched pairs of the same set 

of windows as negative pairs (Methods). It is assumed that positive pairs represent windows with 

associated or similar properties given their proximity unlike the negative pairs.  
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For each pair, we provide two feature vectors corresponding to the pair’s two1-kb genomic 

windows. Each vector contains binary features corresponding to whether a window overlaps with 

peak calls from DNase-seq experiments and ChIP-seq experiments of histone modifications, 

histone variants, and TFs, all from a wide variety of human cell and tissue types and generated 

by ENCODE1 and Roadmap Epigenomics Project4. Because the same set of windows are used 

in positive and negative pairs, the classifier learns the pairwise characteristics of genomic 

windows at the specified pairwise distance based on epigenomic and TF binding data. Once 

trained, the classifier makes predictions for pairs of genomic windows from chromosomes that 

were held out from training and also at the pairwise distance for which the classifier was trained. 

This training and prediction procedure is repeated for pairwise distances ranging from 1 kb to 100 

kb with increments of 1 kb. As a result, we annotate more than 302 million pairs of 1-kb genomic 

windows with the LEPAE score (Fig. 3.1a). 

 

LEPAE’s predictive power and relationship to distance  

LEPAE has strong predictive power when differentiating positive pairs from negative pairs, 

all held out from training, particularly for pairs with small pairwise distances. We observe the 

strongest predictive power for pairs with the smallest pairwise distance, 1 kb, with a mean area 

under the receiver operating characteristic curve (AUROC) of 0.91 (Fig. 3.1b). For pairs with 

larger distances, LEPAE has weaker predictive performance as expected, with a minimum mean 

AUROC of 0.71. 

To ensure the LEPAE score is distinct from pairwise distance, we characterize the score 

with respect to 1D distance (Fig. 3.1c). The score is negatively correlated with pairwise distance 

with a Pearson correlation coefficient (PCC) of -0.15. Pairs above the 99th percentile span up to 

100 kb, the maximum pairwise distance, indicating that LEPAE can highlight pairs of windows 

that are distal but exhibit sufficient evidence of association in their epigenomic and TF binding 

data.  
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To validate that LEPAE learns information beyond similarity in input features, we compare 

the LEPAE score to Jaccard index, which was computed for every pair of windows to which 

LEPAE was applied (Methods). Specifically, for each pairwise distance we compute the 

correlation between the LEPAE score and Jaccard index for pairs of windows with the pairwise 

distance. We observe moderate correlation with a mean PCC of 0.13 (Fig. 3.3a), indicating that 

LEPAE may capture information beyond agreement in features. When differentiating positive 

pairs from negative pairs, LEPAE achieves better predictive power (LEPAE AUROC: 0.71~0.91; 

Jaccard index AUROC: 0.57~0.76; Fig. 3.1b).  

  

Relationship to chromatin contact frequency 

 We further compare the LEPAE score to chromatin interaction data to understand its 

relationship to 3D distance. Specifically, we compare to normalized 1-kb resolution chromatin 

interaction frequencies collected in a Hi-C experiment in GM12878 (Methods). As done above 

with Jaccard index, when we compute correlation between the LEPAE score and normalized Hi-

C matrix for pairs with the same pairwise distance, we observe a low mean PCC of 0.05 (Fig. 

3.3a). We observe similar results when applying logarithmic transformation to Hi-C data with a 

mean PCC of 0.06. While further validation is needed, this weak agreement suggests that LEPAE 

may provide distinct information and could potentially complement Hi-C data in studying pairwise 

relationships. 

 

High-scoring pairs highlight similar or associated loci based on external annotation of chromatin 

states and genes 

We next study the LEPAE score for pairs of DNA elements using external annotations of 

chromatin states that were not provided as input features. We specifically use a universal 

annotation of 100 chromatin states learned from integrated datasets from more than 100 human 

cell types72. In general, pairs of states associated with transcription (‘TxEx’, ‘Tx’, ‘TxEnh’) tend to 
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score high with mean LEPAE score ranging from 0.66 To 0.77 (Fig. 3.2). Using external genic 

annotations and correcting for varying gene lengths, we validate that pairs of windows within 

genes score higher than those crossing gene boundaries (Fig 3.3b; Wilcoxon signed-rank test 

P<0.0001; Methods). We further validate that this difference in stronger than the difference 

observed with Jaccard index or Hi-C data (Mann-Whitney U test P<0.0001; Methods).  

In addition, a state associated with enhancer activity in blood and thymus (‘EnhA9’) scores 

high when paired up with transcription-associated states. While the LEPAE score is 0.78 on 

average when this state is paired up with itself, similarly high scores are observed when the state 

is paired up with a state associated with transcription and enhancer activity in blood (‘TxEnh6’) 

and an active promoter state (‘PromF2’) with a mean of 0.75 and 0.74, respectively (Fig. 3.2). 

This suggests that LEPAE may highlight not only similar loci but also biologically meaningful 

relationships such as promoter-enhancer interactions.   

Discussion 

 Here we presented LEPAE, a method that scores evidence for pairwise association 

between genomic windows based on a large collection of epigenomic and TF binding annotations. 

LEPAE is a variant of LECIF71, a comparative genomics approach that scores evidence of 

conservation between two species based on functional genomics data. Instead of comparing loci 

from two different species, LEPAE compares loci within the same species using an integrated 

collection of maps of open chromatin, histone modifications and variants, transcription factor 

binding, and chromatin state annotations from various tissue and cell types. 

 We applied LEPAE with more than 3000 annotations from the human genome and learned 

the LEPAE score. The score had greater predictive power for differentiating pairs of windows at 

a fixed distance from randomly mismatched pairs of the same windows than a naïve approach of 

computing the Jaccard index of input features. Using external annotations not provided as input 

features, we validated that the LEPAE score reflects information beyond epigenomic similarity 
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and demonstrated evidence that it may capture biologically meaningful associations. Given these 

results, we expect the score to be useful in various applications such as grouping rare variants in 

burden tests and prioritizing biologically relevant Hi-C interactions73 or eQTL pairs. 

 While here we focused on learning a score with maximum pairwise distance of 100 kb, we 

plan to use LEPAE to generate scores with larger pairwise distances to interrogate additional 

long-range relationships. Moreover, although here we applied LEPAE to epigenomic and TF 

binding data from the human genome, LEPAE can integrate functional genomics data such as 

RNA-seq data and is applicable to other widely studied species such as mouse or rat. With 

abundant and diverse genomic data, we expect LEPAE to be useful in leaverging the data to find 

interesting and relevant pairs of loci to study.   

Methods 

Defining genomic windows 

We segmented all autosomal chromosomes and X chromosome into non-overlapping 1-

kb windows. We used hg38 as the genome assembly.  

 

Input features 

Each pair of windows was assigned two feature vectors, one corresponding to the 

upstream window and the other corresponding to the downstream window. For each window, 

each peak call corresponded to a binary feature. If a genomic window overlapped a peak call in 

an experiment, the corresponding value in the feature vector was set to 1, otherwise it was set to 

0. The state annotations were one-hot encoded such that each binary feature corresponded to 

the presence of a chromatin state in a cell or tissue type.  

Peak calls for DNase-seq and ChIP-seq experiments of histone modifications, histone 

variants, and TFs were from ENCODE41. ChromHMM chromatin state annotations29 were from 
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the 25-state model learned from imputed data for 127 cell and tissue types from the Roadmap 

Epigenomics Project4 that were lifted over from hg19. 

 

Defining positive and negative pairs  

For each pairwise distance d, ranging from 1 kb to 100 kb, pairs of windows with d bases 

between their first bases were defined as positive pairs. To generate negative pairs, we randomly 

shuffled the pairing of the positive pairs within the same chromosome, resulting in pairs of 

windows that are not necessarily d bases apart from each other but from another window in the 

same chromosome.  

 

Defining subset of pairs for training, validation, and test 

To generate predictions for all pairs of genomic windows from an odd chromosome or X 

chromosome, we first randomly selected three even chromosomes and defined a random subset 

(n=5000) of pairs of windows from those three chromosomes as a validation set. We defined a 

random subset (n=50,000) of pairs of windows from the remaining even chromosomes as a 

training set. To form a test set, we used a random subset (n=5000) of pairs of windows from odd 

chromosomes. To generate predictions for all pairs of windows from an even chromosome, we 

took an analogous approach as above. There was no overlap in genomic regions used for training, 

validation, and test. X chromosome was excluded from training, validation, and test, but included 

for prediction and downstream analyses.  

 

Classifier 

For each set of training pairs and a pairwise distance, one neural network classifier was 

trained to generate prediction for held-out pairs with the pairwise distance. The neural network 

had a Siamese architecture48 consisting of two identical sub-networks, which share their weights, 

followed by a final sub-network that combines the output from the two sub-networks to generate 
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a final prediction. The two input feature vectors were fed into the two sub-networks. All sub-

networks had a single hidden layer, resulting in two hidden layers in total. To set the hyper-

parameters of a classifier, we conducted a random search, where we generated 5 classifiers, 

each with different randomly selected combination of hyper-parameters. Each classifier was 

trained on the same set of training pairs and evaluated on the same set of validation pairs. Hyper-

parameters were varied as follows during random search: 

- Batch size: 16, 32, 64 

- Learning rate: 1e-8, 1e-6, 1e-4 

- Dropout rate: 0.1, 0.3, 0.5 

- Number of neurons in the initial layer: 32, 64, 128 

- Number of neurons in the final layer: 32, 64, 128 

A flipped version of each pair where its two windows are flipped, such that the upstream 

window is downstream and the downstream window is upstream, was also provided along with 

the original version. This doubled the number of input pairs provided. We identified the best-

performing combination of hyper-parameters by maximizing the AUROC on the validation pairs.  

With the best-performing combination of hyper-parameters, we then trained a new 

classifier, which was finally used to generate the score for pairs with the pairwise distance. For 

each pair, the trained classifier outputted two values, the probability of the pair being classified as 

a positive pair and the same value but for the flipped pair. The final LEPAE score of a pair was 

the average of these two values. This procedure of hyper-parameter search, training the final 

classifier, and prediction was repeated for each set of training pairs and each pairwise distance, 

resulting in 200 separately trained classifiers.  

We used PyTorch (version 0.3.0.post4)49 for implementation. 

 

Random forest baseline 
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We trained, applied, and evaluated random forest using the same procedure as explained 

above, except we used a random forest in place of a neural network. We also did hyper-parameter 

selection as explained above, but for the following set of set of hyper-parameters unique to 

random forests: 

- Maximum tree depth; 16, 32, 64, 128, 256 

- Minimum fraction of samples required to split at an internal node: 0.0005, 0.001, 0.002, 

0.005, 0.01 

- Minimum fraction of samples required to be at a leaf node: 0.0005, 0.001, 0.002, 0.005, 

0.01 

Maximum number of features to consider when looking for the best split was set to square 

root of the total number of features. Bootstrap samples were used when building trees. We used 

Scikit-learn (version 0.19.1)50 for implementation.  

 

Filtering pairs 

 In all analyses, except for reporting predictive performance, all pairs that overlap any 

assembly gap annotations in either window were excluded since most input features do not map 

well to these pairs. We downloaded the assembly gap annotation from the UCSC Genome 

Browser3. 

 

Computing Jaccard index 

 For each pair, given its two binary input feature vectors, we defined A as the set of features 

set to 1 in the first feature vector and B as the set of feature set to 1 in the other feature vector. 

The two vector’s Jaccard index was defined as:  

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

																(3.1)	

 If the numerator was zero, the pair was eliminated from our analysis. 
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Accessing Hi-C data 

 We downloaded in situ Hi-C data for GM12878 (experiment 4DNES3JX38V5)74 from the 

4DN Nucleome Data Portal75 using this link: https://4dn-open-data-

public.s3.amazonaws.com/fourfront-webprod/wfoutput/a98ca64a-861a-4a8c-92e9-

586af457b1fb/4DNFI1UEG1HD.hic. Within the downloaded file, we specifically used values with 

square root of vanilla coverage (VC_SQRT) normalization applied. We used software straw76 to 

extract the values for the pairs of our interest from the file. If no data was found for a pair in the 

file, we discarded the pair from our analysis. 

 

Computing weighted mean LEPAE score for pairs of chromatin states 

For each state pair, su and sd, its weighted mean LEPAE score was computed as follows. 

For each pair of windows, wu and wd, annotated by states su and sd, respectively, the pair’s weight 

was the product of the fraction of bases in window wu annotated by state su and the fraction of 

bases in window wd annotated by state sd. The pair’s LEPAE score was multiplied by this weight. 

The overall mean of the state pair was the sum of these weighted scores from all applicable pairs 

of windows divided by the sum of the weights. 

 

Gene analysis 

 For each protein-coding gene with length l, we set quartile length q to l divided by 4. Given 

the position of the transcription start site (TSS) and transcription end site (TES) of the gene, s1 

and s2, we defined three sets of bases for the gene as follows: 

- Upstream of TSS: s1-4q, s1-3q, s1-2q, s1-q 

- Within gene: s1, s1+q, s1+2q, s1+3q, s2 

- Downstream of TES: s2+q, s2+2q, s2+3q, s2+4q  
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 We defined pairs of these bases where at least one base in the pair is within the gene (e.g. 

s1-3q vs. s1+q). We then compared two pairs that had the same pairwise distance and shared a 

base within the gene but one pair crossed a gene boundary, TSS or TES, while the other pair did 

not (e.g. s1-q vs. s1+q compared to s1+q vs. s1+3q). This procedure allowed us to evaluate whether 

the LEPAE score, Jaccard index, or Hi-C contact frequency favors pairs of loci within genes over 

those crossing gene boundaries while correcting for varying gene lengths. 
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Figures 

 a                         Genome browser view of the LEPAE score annotating human DNA segment 

 
 

  
Figure 3.1. Characteristics of the LEPAE score 
a. Genome Browser3 view of the LEPAE score annotating multiple genes and its neighboring 
regions in human chromosome 15. The score is shown in the top as a heatmap in a format 
primarily used for visualizing Hi-C contact matrices76. Darker color corresponds to higher LEPAE 
score. Below the score are ChromHMM chromatin state annotations29 for different epigenomes 
from the Roadmap Epigenomics Project4, which were provided as input. While chromatin state 
annotations from 127 epigenomes were used as input features, here we show a subset of the 
epigenomes. State legend is on the bottom right. The state annotations are followed by 
GENCODE V38 gene annotation77.  
b. Relationship between pairwise distance and prediction AUROC. For each pairwise distance (x-
axis), mean prediction AUROC of the LEPAE score for distinguishing pairs of windows at the 
distance from randomly mismatched pairs of the same windows is shown in blue. The mean is 
computed from two classifiers trained on non-overlapping training sets (Methods). Mean AUROC 
values computed for a baseline model where random forest instead of neural network was used 
as supervised classifier are shown in orange (Methods). Mean AUROC values computed using 
Jaccard index instead of the LEPAE score to perform the same classification task are shown in 
green. Values belonging to the same method are connected by piecewise linear interpolation. 
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c. Scatter plot showing with a blue dot for each pair of windows the pairwise distance (x-axis) and 
the LEPAE score (y-axis). Ten thousand random pairs are shown. A linear regression line fitted 
to the ten thousand random pairs is shown in black and its 95% confidence interval shown in grey 
shaded area. PCC and SCC, computed from 1 million randomly selected pairs, are shown in the 
top left.  
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Figure 3.2. Heatmap of mean LEPAE score for pairs of chromatin states 
Each cell in the heatmap corresponds to a state pair, one annotating the upstream window of a 
pair of windows (row) and the other annotating the downstream window of the same pair (column). 
The states are from a universal chromatin state annotation based on more than 1000 epigenomic 
datasets from more than 100 cell types72. The ordering of states in the rows and columns are the 
same. Color shown next to the topmost row or leftmost column corresponds to the state group of 
each state along the column or row, respectively, according to the legend on the bottom left. Color 
shown in each cell corresponds to the weighted mean LEPAE score of pairs of windows annotated 
by the states specified in the row and column. For each state pair, its weighted mean LEPAE 
score was computed such that pairs of windows with more bases annotated by the states 
contribute more to the mean than windows with fewer bases annotated by the same states 
(Methods). Color legend for the score is shown on the right. One million randomly selected pairs 
of windows were included in this analysis. 
 

 
 
 

State groups
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Figure 3.3. LEPAE score’s relationship to Hi-C contact frequency and genic annotations. 
a. Shown for each pairwise distance (x-axis) is PCC of the LEPAE score with either Jaccard 
index (orange) or normalized Hi-C contact frequency (green) for pairs of windows with the 
specified distance between them. Values belonging to the same method are connected by 
piecewise linear interpolation.  
b. Shown for the LEPAE score, Jaccard index, or normalized Hi-C contact frequency is the 
distribution of percentile differences between pairs with both bases within a gene and pairs with 
only one base within a gene. The difference is computed by taking the value for a pair of bases 
within a gene and subtracting it by the value for a pair of bases crossing a gene boundary. The 
two pairs are matched by their pairwise distance and share one base located within a gene 
(Methods). A positive percentile difference indicates a preference for pairs within genes over 
pairs crossing gene boundaries.   
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Chapter 4. Single-nucleotide conservation state annotation of the SARS-CoV-2 genome       

 

Abstract 

Given the global impact and severity of COVID-19, there is a pressing need for a better 

understanding of the SARS-CoV-2 genome and mutations. Multi-strain sequence alignments of 

coronaviruses (CoV) provide important information for interpreting the genome and its variation. 

We apply a comparative genomics method, ConsHMM, to the multi-strain alignments of CoV to 

annotate every base of the SARS-CoV-2 genome with conservation states based on sequence 

alignment patterns among CoV. The learned conservation states show distinct enrichment 

patterns for genes, protein domains, and other regions of interest. Certain states are strongly 

enriched or depleted of SARS-CoV-2 mutations, which can be used to predict potentially 

consequential mutations. We expect the conservation states to be a resource for interpreting the 

SARS-CoV-2 genome and mutations. 

Introduction 

With the urgent need to better understand the genome and mutations of SARS-CoV-2, 

multi-strain sequence alignments of coronaviruses (CoV) have become available78 where 

multiple sequences of CoV are aligned against the SARS-CoV-2 reference genome. Sequence 

alignments provide important information on the evolutionary history of different genomic bases. 

Such information can be useful in interpreting mutations, as for example bases with strong 

sequence constraint or accelerated evolution have been shown to be enriched for phenotype-

associated variants41,79. While existing systematic annotations that quantify sequence constraint 

from alignments11,12 are informative, they reduce the information in the underlying alignment to a 

single univariate or binary value and thus are limited in the information they convey. Additional 

information about patterns of which sequences align to and match the SARS-CoV-2 genome at 

each base may be useful in analyzing the SARS-CoV-2 genome and mutations.  
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As a complementary approach to sequence constraint scoring methods, ConsHMM was 

recently introduced to systematically annotate a given genome with conservation states that 

capture combinatorial and spatial patterns in a multi-species sequence alignment35. ConsHMM 

specifically models whether bases from non-reference sequences align to and match each base 

in the reference genome. ConsHMM extends ChromHMM, a widely used method that uses a 

multivariate hidden Markov model (HMM) to learn patterns in epigenomic data de novo and 

annotate genomes based on the learned patterns29. Apart from the input alignments which were 

generated using phylogenetic trees, ConsHMM does not explicitly use any phylogenetic 

information and therefore does not make any strict assumptions on the phylogenetic relationship 

among sequences. This allows ConsHMM to be more flexible in capturing various patterns 

within alignments than the more commonly used comparative genomics approaches that define 

a single constraint score or binary calls of constrained elements based on phylogenetic 

modeling. Previous work applying ConsHMM to multi-species alignment of other genomes have 

shown that the conservation states learned by ConsHMM capture various patterns in the 

alignment overlooked by previous methods and are useful for interpreting DNA elements and 

phenotype-associated variants35,80.  

Motivated by the current need to better understand the SARS-CoV-2 genome and 

mutations, here we apply ConsHMM to two multi-strain sequence alignments of CoV that were 

recently made available78 and learn two sets of conservation states. The first alignment consists 

of Sarbecoviruses, a subgenus under genus Betacoronavirus in the family of Coronavirdae81. 

This alignment consists of SARS-CoV and other Sarbecoviruses that infect bats aligned to the 

SARS-CoV-2 genome. The second alignment consists of CoV that infect various vertebrates 

(e.g. human, bat, pangolin, mouse, birds) aligned to the SARS-CoV-2 genome.  

Given the two sets of conservation states learned by ConsHMM from these two 

alignments, we annotate the SARS-CoV-2 genome with the states and analyze the states’ 

relationship to external annotations to understand their properties. We observe that the states 
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capture distinct patterns in the input alignment data. Using external annotations of genes, 

regions of interest, and mutations observed among SARS-CoV-2 sequences, we observe that 

the states also have distinct enrichment patterns for various annotated regions. We generate 

genome-wide tracks that score each nucleotide based on state depletions and enrichments for 

observed mutations, which can be used to prioritize bases where mutations are more likely to 

be consequential. Overall, our analysis suggests that the ConsHMM conservation states 

highlight genomic bases with distinct evolutionary patterns in the input sequence alignments 

and potential biological significance. The ConsHMM conservation state annotations and tracks 

of state depletion of mutations are resources for interpreting the SARS-CoV-2 genome and 

mutations. 

Results 

Annotating SARS-CoV-2 with conservation states learned from the alignment of Sarbecoviruses 

First, we annotated the SARS-CoV-2 genome with 30 conservation states learned from 

a Sarbecovirus sequence alignment, labeled as states S1 to S30 (Figs. 4.1-4.2; 

Supplementary Table 4.1; Methods). The Sarbecovirus alignment consists of SARS-CoV and 

42 other Sarbecoviruses that infect bats aligned to the SARS-CoV-2 genome (Fig. 4.2c). The 

states capture distinct patterns of which Sarbecovirus strains align to and match the SARS-

CoV-2 genome (Fig. 4.2a) and show notable enrichment patterns for external annotations of 

genes, proteins, and regions of interest within them (Fig. 4.2b, Supplementary Fig. 4.1). State 

S17 corresponds to bases where all strains align to and match SARS-CoV-2 with high 

probability and appears in the genome most frequently, covering 48% of the genome. Similarly, 

state S18 annotates bases with high align and match probabilities except it has slightly reduced 

probability of matching two strains that are most distal from SARS-CoV-2 (SARS-related CoV 

strain BtKY72 and Bat CoV BM48-31/BGR/2008). Unlike state S17, state S18 is strongly 

enriched for a region in RNA-dependent RNA polymerase (RdRp) that is known to interact with 
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the antiviral drug remdesivir (10-fold; P<0.0001). State S6 annotates bases where all strains 

align to SARS-CoV-2 with high probability but only the strain closest to SARS-CoV-2, bat CoV 

RaTG13, matches SARS-CoV-2 with high probability, highlighting bases with alleles unique to 

SARS-CoV-2 and bat CoV RaTG13 with respect to other Sarbecoviruses. As expected, state S6 

is enriched for the third codon position (2.2-fold; P<0.0001) where derived alleles are less likely 

to alter the amino acid. In contrast to state S6, state S28 corresponds to bases where bat CoV 

RaTG13 both aligns to and matches SARS-CoV-2 with high probability but has a low probability 

of aligning to other Sarbecoviruses. State S28 covers 1% of the genome and highlights bases 

unique to SARS-CoV-2 and bat CoV RaTG13 with respect to other Sarbecoviruses. Notably, 

state S28 is highly enriched for human ACE2 binding domain (22-fold; P<0.0001), which is 

consistent with recent work suggesting that this binding domain is under strong positive 

selective pressure due to its critical role in host infection82,83. State S28 also annotates a region, 

known as the PRRA motif, that may have been inserted into the SARS-CoV-2 genome, 

potentially resulting in increased infectiousness84,85. We note that state S28 also annotates the 

first five and the last seventeen bases of the genome, which may reflect technical issues with 

sequencing the genome ends in some strains86. A different state, state S13, corresponds to 

bases where all strains align to the reference with high probability, but only a specific subset of 

the strains have the same nucleotide as SARS-CoV-2 with high probability (Fig. 4.2a). This 

subset of strains includes Sarbecoviruses that are relatively distal to SARS-CoV-2 while 

excluding strains that are closer to SARS-CoV-2, corresponding to a deviation along a specific 

branch of the phylogenetic tree (Supplementary Fig. 4.2). State S29 shows strong enrichment 

of intergenic bases (36-fold; P<0.0001) and gene ORF10 (59-fold; P<0.0001), which is 

consistent with recent work suggesting that ORF10 may not be a protein-coding gene based on 

gene expression87 and phylogenetic codon modeling81.  
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Annotating SARS-CoV-2 with conservation states learned from the alignment of Coronaviruses 

infecting vertebrates 

In addition to the 30-state model learned from the Sarbecovirus sequence alignment, we 

learned another 30-state model by applying ConsHMM to the alignment of 56 CoV from 

vertebrate hosts against SARS-CoV-2 (states V1 to V30; Fig. 4.3; Supplementary Table 4.2; 

Methods). The vertebrate CoV alignment consisted of a diverse set of CoV that included not 

only Sarbecoviruses, but also CoV that are evolutionarily more diverged from SARS-CoV-2 than 

Sarbecoviruses (Fig. 4.3c). We therefore applied ConsHMM separately to the vertebrate CoV 

alignment, instead of combining the two alignments.   

The resulting conservation states correspond to bases with distinct probabilities of 

various strains of vertebrate CoV aligning to and matching SARS-CoV-2 and exhibit notable 

enrichment patterns for previously annotated regions within genes (Fig. 4.3a, Supplementary 

Fig. 4.1). State V27 annotates bases in which all 56 CoV align to and match SARS-CoV-2, with 

a genome coverage of 8%. State V19 corresponds to bases in which specifically the four strains 

most closely related to SARS-CoV-2 based on phylogenetic distance, which include two bat 

CoV (RaTG13 and BM48-31/BGR/2008), pangolin CoV, and SARS-CoV, align to and match 

SARS-CoV-2 with high probabilities. State V20 has both high align and match probabilities for 

bat CoV RaTG13 and pangolin CoV and is enriched for the spike protein’s receptor binding 

domain (RBD), where a recombination event between a bat CoV and a pangolin CoV might 

have occurred84 (6.9-fold enrichment; P<0.0001). Additionally, state V29 with high align and 

match probabilities specifically for bat CoV RaTG13 annotates the PRRA motif mentioned in the 

previous section, which is consistent with the possibility that the motif was recently introduced to 

the SARS-CoV-2 genome. 

Since the input vertebrate CoV alignment includes several CoV infecting human, the 

states learned from this alignment can be used to investigate the varying pathogenicity among 

human CoV. State V14 corresponds to bases shared among pathogenic human CoV, including 
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SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome-related CoV (MERS-CoV), but 

not shared among less pathogenic human CoV which are associated with common cold (OC43, 

HKU1, 229E, and NL63). Bases annotated by this state are candidates for contributing to the 

shared pathogenicity of SARS-CoV, SARS-CoV-2, and MERS-CoV (Supplementary Table 

4.3). We compared bases annotated by this state to positions identified in a previous study that 

located indels differentiating pathogenic CoV from common-cold-associated CoV using an 

alignment of 944 human CoV sequences under a supervised learning framework88. State V14 

overlapped with two insertions identified in that study, one of which is in the nucleocapsid 

protein and was suggested to contribute to the virus’s pathogenicity by enhancing its nuclear 

localization signals88 (overlapping positions: 29116-29124). Moreover, using state V14 we 

identify additional loci potentially unique to pathogenic CoV that were not reported in the 

previous study (Supplementary Table 4.3). While this could be explained mostly by the 

different sequences included in the alignments used here and in the previous study, we find 

among the additional loci those that are shared among all pathogenic sequences, but missing in 

all common-cold-associated sequences according to the previous study’s human CoV alignment 

(Supplementary Table 4.3; Methods). Among such additional loci that are unique to 

pathogenic sequences, but not previously reported, is an 8-bp region (positions 28416-28423) in 

the nucleocapsid protein. This protein was shown to enrich for indels specific to pathogenic CoV 

in the previous study. Overall, this demonstrates the conservation state annotations learned 

using an unsupervised approach identified additional genomic bases that may contribute to the 

pathogenicity of CoV infecting humans.  

 

Conservation states’ relationship to standard sequence constraint annotations 

To establish that conservation states contain additional information relative to standard 

sequence constraint scores, we compared to constraint scores generated by PhastCons11 and 

PhyloP12 and binary constrained elements called by PhastCons using the same alignments 
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provided to ConsHMM in their ability to predict genes and regions of interest (Methods). When 

predicting bases overlapping genes or regions of interest within them, in most cases at least 

one of the conservation states achieves substantially greater precision at the same recall levels 

than PhastCons and PhyloP annotations (Supplementary Fig. 4.3). This suggests that when 

compared to existing constraint annotations based on the same alignments, ConsHMM 

conservation states capture additional biologically relevant information. Consistent with this, 

while some states have distinct distributions of PhastCons and PhyloP scores and fractions of 

constrained bases, many states have largely overlapping distributions of them (Supplementary 

Fig. 4.4).  

 

Conservation states’ relationship to nonsingleton SARS-CoV-2 mutations observed in the 

pandemic 

We next investigated how the learned conservation states relate to nonsingleton SARS-

CoV-2 mutations observed in the current pandemic (Fig. 4.4a,c). Specifically, we analyzed the 

state enrichment patterns for mutations observed at least twice in about four thousand SARS-

CoV-2 sequences from GISAID (Global Initiative on Sharing All Influenza Data)89. To focus on 

reliable calls of mutations, we limited our analysis to nonsingleton mutations and masked 

genomic positions with known technical issues86 (Methods). In the Sarbecovirus model, as 

expected, states with high probabilities that all strains align to and match SARS-CoV-2 (S17, 

S18) are significantly depleted of mutations observed in the current pandemic (0.6-0.7-fold 

enrichment; P<0.0001) while several states (S6, S12, S19, S26, S28, S29) are significantly 

enriched for mutations (1.3-2.4-fold; P<0.001).  

The vertebrate CoV model’s conservation states exhibit additional enrichment patterns 

for nonsingleton SARS-CoV-2 mutations. The model learns several states that are depleted of 

mutations with a minimum fold enrichment of 0.2 (P<0.0001; V11), which is a stronger depletion 

than the minimum enrichment of 0.6 observed in the Sarbecovirus model. This is expected as 
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the vertebrate CoV alignment contains a more diverse set of strains and is thus likely to capture 

deeper constraint than the Sarbecovirus alignment (Fig. 4.3c). Moreover, while the states 

significantly depleted of mutations in the Sarbecovirus model have high align and match 

probabilities for all strains (S17, S18), states significantly depleted of mutations in the vertebrate 

CoV model include not only an analogous state with high align and match probabilities for all 

vertebrate CoV (V27; 0.2-fold enrichment; P<0.0001), but also several states that have high 

align and match probabilities for only a specific subset of vertebrate CoV (0.2-0.4-fold; 

P<0.0001; V10, V11). This subset excludes strains in a specific subtree in the phylogeny of 

CoV, largely consisting of CoV from avian hosts (Supplementary Fig. 4.5). This indicates that 

bases constrained among a specific subset of vertebrate CoV, which appear to have diverged in 

some of the avian CoV genomes, may be as important to SARS-CoV-2 as those constrained 

across all vertebrate CoV. In addition, the vertebrate CoV model learns states that are 

significantly enriched for mutations (1.5-1.8-fold; P<0.0001; V3, V13, V20, V30). The enrichment 

patterns for nonsingleton mutations reported here are largely consistent when we include all 

observed mutations or control for the nucleotide composition of each base being mutated 

(Supplementary Fig. 4.6). These patterns are also largely consistent when we control for 

whether each mutation is intergenic, synonymous, missense, or nonsense, indicating that the 

observed state enrichment patterns are not simply driven by mutation type (Supplementary 

Fig. 4.6). 

To understand the state annotation’s relationship to positive selection, we next examined 

state enrichment patterns for homoplastic mutations (Fig. 4.4b,d). Specifically, we examined 

198 stringently identified homoplastic mutations from a previous study90. These mutations were 

independently and repeatedly observed in separate SARS-CoV-2 lineages and are therefore 

more likely to be under positive selection than other mutations. State S6, which annotates bases 

with high align probability for all Sarbecoviruses, but high match probability specifically for bat 

CoV RaTG13 only, is enriched for homoplastic mutations (2.3-fold; P<0.001). Similarly, state 
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V13 is significantly enriched for homoplastic mutations (2.7-fold; P<0.001), significantly more so 

than for nonsingleton mutations (1.5-fold; binomial P<0.05). This state corresponds to bases 

that align to and match about a third of the vertebrate CoV, which excludes CoV with avian 

hosts and others. The state is also enriched for the nucleocapsid protein, particularly its 

dimerization and RNA-binding regions which are highlighted by UniProt91 (14-, 16-, and 17-fold, 

respectively; P<0.0001).  

Notably, state S17, which has high align and match probabilities for all Sarbecoviruses, 

is strongly depleted of nonsingleton mutations and homoplastic mutations (0.7- and 0.6- fold 

enrichment, respectively; P<0.0001). Interestingly, specific mutations that were previously 

suggested to be consequential to SARS-CoV-2 are also in this state. For example, in state S17 

is a frequently observed missense mutation (position 14408) in the coding region of RdRp that 

was previously suggested to contribute to worsening the virus’s proofreading mechanism, 

making it easier for the virus to adapt and harder for its hosts to gain immunity92. The D614G 

mutation in the spike protein that was implicated to disrupt a Sarbecovirus-conserved residue81 

and result in increased infectivity93 is also annotated by state S17. These occurrences of 

potentially consequential mutations in a state depleted of mutations are consistent with the 

notion that the state is experiencing negative selection and new mutations that do occur in the 

state are more likely to have stronger consequences than mutations introduced elsewhere. This 

depletion of potentially more consequential mutations is also seen with mutation type 

annotations, where 4% of all possible synonymous mutations are observed as nonsingleton 

mutations whereas only 0.3% of all possible nonsense mutations are observed as 

nonsingletons, reflecting their well-established difference in deleteriousness, though as noted 

above the conservation states show distinct enrichments for observed mutations even when 

conditioned on mutation type.  

 

Genome-wide tracks based on state depletion of SARS-CoV-2 mutations  



 90 

We next generated genome-wide tracks that reflect state depletion of mutations to 

highlight bases where new mutations are more likely to be consequential (Fig. 4.4e). 

Specifically, for each ConsHMM model, we generated a track that scores each genomic base by 

its state’s statistically significant depletion or enrichment of nonsingleton mutations, reflecting 

the mutation frequency among bases that likely share a common evolutionary history. To merge 

distinct information captured by the two ConsHMM models, we also generated an integrated 

genome-wide track, where given two states from different ConsHMM models annotating a base 

of interest that are both either depleted or enriched for nonsingleton mutations we annotated the 

base with the state with stronger depletion or enrichment (Methods). 

We analyzed these tracks based on state depletion of mutations with respect to 

experimentally measured mutational effect on RBD from a previous study that conducted a 

deep mutational scanning of RBD94. The study specifically measured changes in RBD 

expression and binding affinity due to each possible amino acid change within RBD, where a 

positive value denoted increased expression or affinity and a negative value denoted decreased 

expression or affinity. We observe that all three tracks based on state depletion of mutations are 

negatively correlated with measured expression changes caused by single nucleotide mutations 

(Pearson’s r: -0.24~-0.18, P<0.0001; Fig. 4.4g, Supplementary Fig. 4.7c), which is consistent 

with our expectation that mutations at bases depleted of observed mutations in general are 

likely to be more deleterious than other mutations. Furthermore, we observe significant negative 

correlation between the track based on the vertebrate CoV state annotations and binding affinity 

changes (Pearson’s r: -0.12; P<0.0001; Supplementary Fig. 4.7d). 

We further compared the state-based tracks to four sequence constraint scores that 

were learned from either alignment provided to ConsHMM using PhastCons11 or PhyloP12 

(Methods). Specifically, we examined the constraint scores’ correlation with our tracks based 

on state depletion of mutations and also with measured mutational effect on RBD expression 

and binding affinity. The constraint scores are moderately correlated with our state-based 
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genome-wide tracks (Fig. 4.4f; Supplementary Fig. 4.7a-b; Pearson’s r: 0.25-0.63). For the 

evaluation on measured mutational effect on RBD expression, we see a statistically significant 

difference with constraint scores, with two out of four constraint scores having statistically 

significantly weaker correlation than our tracks’ correlations with the mutational effect (Fig. 4.4g, 

Supplementary Fig. 4.7c; P<0.004; Methods). 

Overall, our genome-wide tracks based on significant depletion of mutations in 

conservation states show expected agreement with measured mutational effect. This suggests 

that our genome-wide tracks based on depletion of mutations could help prioritize mutations 

with strong impact on the virus’s protein expression and binding affinity or potentially other 

functionalities, but we note that this analysis does not provide direct evidence for other parts of 

the genome or other phenotypes of the virus.  

Discussion 

Here we applied a comparative genomics method ConsHMM to two sequence 

alignments of CoV, one consisting of Sarbecoviruses that infect human and bats and the other 

consisting of a more diverse collection of CoV that infect various vertebrates. The conservation 

states learned by ConsHMM capture combinatorial and spatial patterns in the multi-strain 

sequence alignments. The states show associations with various other annotations not used in 

the model learning. The conservation state annotations are complementary to constraint scores, 

as they capture a more diverse set of evolutionary patterns of bases aligning and matching, 

enabling one to group genomic bases by states and study each state’s functional relevance. 

Identifying patterns of conservation across different strains can be important potentially for 

understanding the relative pathogenicity of different coronaviruses and cross-immunity from 

prior infections95–97. It should be noted, however, that ConsHMM does not consider where bases 

in the reference strain align to in non-reference strains and is therefore not expected to capture 

large-scale rearrangements. 
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We showed that certain conservation states are strongly enriched or depleted of 

nonsingleton SARS-CoV-2 mutations. Based on this information, we generated three genome-

wide tracks that can be used to prioritize mutations of potentially greater consequence based on 

evolutionary information of the Sarbecovirus and vertebrate CoV alignments. We note that these 

tracks are generated in a transparent way directly from the fold enrichment values for 

nonsingleton mutations observed in the conservation states. Overall, we expect the two sets of 

conservation state annotations along with these tracks based on state depletion of mutations to 

be resources for locating bases with distinct evolutionary patterns and analyzing mutations that 

are currently accumulating among SARS-CoV-2 sequences.   

Methods 

Sequence alignments 

 We obtained the 44-way Sarbecovirus sequence alignment from the UCSC Genome 

Browser78 (http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/multiz44way/). We obtained 

the vertebrate CoV sequence alignment by first downloading the 119-way vertebrate CoV 

sequence alignment from the UCSC Genome Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/multiz119way/) and then removing 

SARS-CoV-2 sequences from the alignment, except the reference sequence, wuhCor1. This 

resulted in 56 CoV aligned against the reference. Both sequence alignments were generated by 

the alignment tool Multiz98. 

 

External annotations 

Mutations found in SARS-CoV-2 sequences were point mutations identified by 

Nextstrain99 (accessed on Sept 7, 2020) from sequences available on GISAID89. For our 

analysis, to minimize putative false calls we filtered out mutations if their ancestral alleles did not 

match the reference genome used by Nextstrain, MN908947.3, such as C>T at a base where T 
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is the reference allele. All the other annotations, including the annotations of genes, codons, 

and UniProt protein products and regions of interest, were accessed through the UCSC 

Genome Browser (accessed on Sept 7, 2020)78.  

 

Learning ConsHMM conservation states and choice of number of states 

Given the two input sequence alignments, we first learned multiple ConsHMM models 

from each alignment with varying numbers of states ranging from 5 to 100 with increments of 5 

and then chose a number of states that is applicable to both alignments. Specifically, we aimed 

to find a number of states that results in states few enough to be relatively easy to interpret, but 

specific enough to capture distinct patterns in the alignment data.  

To do so, for each model, we considered whether the model’s states had sufficient 

coverage of the genome to avoid having states that annotate too few bases. We additionally 

considered whether the model’s states exhibited distinct emission parameters to ensure that 

they were different enough to capture distinct patterns in the alignment data. Lastly, we 

considered whether the model’s states showed distinct enrichment patterns for external 

annotations of genes, protein domains, and mutations in SARS-CoV-2 to ensure that the 

different states annotate bases with potentially different biological roles. As a result, we chose 

30 as the number of conservation states for both the Sarbecovirus and vertebrate CoV 

ConsHMM models because the resulting states were sufficiently distinct in their emission 

parameters and association with external annotations and most of the states covered more than 

0.5% of the genome. 

 

PhastCons and PhyloP scores 

 We obtained the 44-way PhastCons and PhyloP scores learned from the Sarbecovirus 

sequence alignment from the UCSC Genome Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/). We additionally used the PHAST 
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software100 to learn PhastCons and PhyloP scores from the vertebrate CoV sequence alignment 

that we generated from the 119-way alignment as described above. To do so, we first ran 

‘tree_doctor’ to prune out SARS-CoV-2 sequences except the reference from the phylogenetic 

tree generated for the 119-way alignment. We then followed the procedure used to generate the 

44-way and 119-way scores as described on the UCSC Genome Browser. Specifically, to learn 

the vertebrate CoV PhastCons score, we used the following arguments to run ‘phastCons’: --

expected-length 45 --target-coverage 0.3 --rho 0.3. To learn the vertebrate CoV PhyloP score, 

we used the following arguments to run ‘phyloP’: --wig-scores --method LRT --mode CONACC. 

 

Masking bases 

For all but one downstream analysis, we masked problematic genomic positions listed in 

the UCSC Genome Browser track ‘Problematic Sites’ (accessed on Sept 7, 2020) as they are 

likely affected by sequencing errors, low coverage, contamination, homoplasy, or 

hypermutability86,101,102. As a result, we masked 228 bases, analyzing 29,675 out of 29,903 

bases (99.2%). The one exception was when we computed state enrichment for homoplastic 

mutations from a prior study90. For this analysis only, we masked all problematic positions 

except for those described as homoplastic or highly homoplastic. As a result we masked 175 

bases instead of 228 bases, analyzing 29,728 bases (99.4%). 

 

Fold enrichments for external annotations 

  When computing fold enrichments for annotations of genes, positions within codons, 

and regions of interest, we considered whether a genomic base is annotated or not by the 

external annotations. To compute the fold enrichment for each external annotation and each 

state, we divided the fraction of the state’s bases in the external annotation out of all bases in 

the state by the fraction of bases in the external annotation genome-wide. Because multiple 

mutations could be observed in the same genomic base, when computing fold enrichments for 
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mutations, we first generated all possible point mutations in the SARS-CoV-2 genome and then 

considered whether each of the possible mutations was observed or not. Thus, to compute fold 

enrichment for mutations in an external annotation for each state, we divided the fraction of 

observed mutations in the external annotation among possible mutations occurring at bases in 

the state by the fraction of observed mutations in the external annotation out of all possible 

mutations genome-wide. We defined nonsingleton mutations as mutations observed in at least 

two SARS-CoV-2 sequences. For homoplastic SARS-CoV-2 mutations, we used all 198 

mutations reported in a prior study90. For all fold enrichment values, we also conducted a two-

sided binomial test to report statistical significance. We applied a Bonferroni correction by 

setting the significance threshold to 0.05 divided by 30, the number of states. 

 

Correction of state enrichments for SARS-CoV-2 mutations by nucleotide composition or 

mutation type  

To show that the conservation state fold enrichment values for nonsingleton mutations 

are not simply driven by nucleotide composition or mutation type (i.e. intergenic, synonymous, 

missense, nonsense), we corrected state enrichment values by nucleotide composition or 

mutation type as follows. To control for nucleotide composition, for each nucleotide i, we first 

computed the genome-wide fraction fi of observed nonsingleton mutations out of all possible 

mutations with nucleotide i as the reference base. Then for each state and for each nucleotide i, 

we multiplied the genome-wide fraction fi and the number of possible mutations in the state with 

nucleotide i as the reference base. For each state, we summed up these values across the 

nucleotides to obtain the expected number of nonsingleton mutations based on nucleotide 

composition. Finally, the enrichment corrected by nucleotide composition for each state was 

computed as the ratio of actual and expected number of observed nonsingleton mutations.  

Similarly, to control for mutation type, for each type j we computed the genome-wide 

fraction fj of observed nonsingleton mutations out of all possible mutations belonging to mutation 
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type j. Then for each state and for each mutation type j, we multiplied the genome-wide fraction 

fj with the number of possible mutations in the state belonging to mutation type j. We then 

followed the same procedure as above.  

 

Identifying bases unique to pathogenic human CoV and missing in less pathogenic human CoV 

 We first identified bases annotated by state V14, which corresponds to high align 

probability for pathogenic human CoV (SARS-CoV, MERS-CoV) and low align probability for 

less pathogenic human CoV (OC43, HKU1, 229E, and NL63) in the vertebrate CoV sequence 

alignment. Among these bases, we then identified bases that appeared among all pathogenic 

human CoV but missing in all less pathogenic human CoV in an alignment of 944 human CoV 

sequences generated by a prior study. All the 944 sequences come from the seven human CoV 

including SARS-CoV-288.  

 

Precision-recall analysis for recovery of annotated genes and regions of interest 

 For each NCBI gene65 or UniProt region of interest91, we predicted bases in each state 

from both models to be in the gene or region and computed precision and recall, resulting in 60 

pairs of precision and recall values. Similarly, we predicted all bases annotated as a PhastCons 

element11 to be in each gene or region and computed precision and recall. With PhastCons and 

PhyloP scores12, we computed precision-recall curve for predicting the bases in each gene or 

region using each score.  

 

Generating browser tracks of depletion of nonsingleton SARS-CoV-2 mutations  

 Based on the procedure of computing state enrichment of SARS-CoV-2 mutations, for 

each ConsHMM model, we selected states that exhibited statistically significant enrichment or 

depletion of nonsingleton mutations at a binomial test p-value threshold of 0.05 after Bonferroni 

correction. To generate a track for each ConsHMM model, we scored each base overlapping 
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any of the selected states in the model with –log2(v) where v is the fold enrichment value of the 

state annotating the base, such that stronger depletion of mutations corresponded to a higher 

score above 0 and stronger enrichment to a lower score below 0. Bases not annotated by any of 

the selected states were assigned a score of 0.  

We generated an integrated track of mutation depletion in states from both ConsHMM 

models as follows. If a base was annotated with two states with statistically significant 

enrichment or depletion of nonsingleton mutations, each from different ConsHMM models, and 

the two states agreed in the enrichment direction (enriched or depleted), we annotated the base 

with the –log2(v) from the state that had a higher absolute value of –log2(v). If a base was 

annotated with two of the selected states, but the states disagreed in the enrichment direction, 

we annotated the base with a score of 0. If a base was annotated by one state with statistically 

significant enrichment or depletion of nonsingleton mutations, we annotated the base with the –

log2(v) value from that state. Bases not annotated by any of the selected states were assigned a 

score of 0. 

 

Comparing correlation to mutational effect on RBD expression and binding affinity 

For each of the three aforementioned genome-wide tracks based on state depletion of 

mutations, we computed its Pearson’s r with mutational effect on RBD expression measured by 

a previous study94. For each of the four sequence constraint scores, we also computed its 

correlation with mutational effect on RBD expression and then compared it to the correlations 

computed using our genome-wide tracks, using Zou’s confidence interval test103 implemented in 

the R package cocor104. The four sequence constraint scores included PhyloP and PhastCons 

scores learned from either the Sarbecovirus or vertebrate CoV alignment. When reporting the 

significance of correlations, we applied a Bonferroni correction by setting the significance 

threshold to 0.05 divided by 7, the total number of computed correlations. When comparing 

correlations using Zou’s confidence interval test, we compared a state-based track’s correlation 



 98 

to a constraint score’s correlation if at least one of the two correlations was negative and 

statistically significant and applied a Bonferroni correction by setting the confidence level to 1 – 

0.05 / n where n is the total number of pairwise comparisons, which was at most 12. The same 

procedure was applied to compute correlations with measured mutational effect on RBD binding 

affinity.  

 

Statistics and Reproducibility 

All statistical tests performed are described in detail above. In general, Bonferroni 

correction was applied and a threshold of 0.05 was used to discern statistical significance. 

 

Data availability 

ConsHMM conservation state annotation based on the Sarbecovirus and vertebrate CoV 

alignments are available at https://github.com/ernstlab/ConsHMM_CoV/. Track annotations of 

depletion of mutations observed in conservation states from both Sarbecovirus and vertebrate 

CoV ConsHMM models or each model are available from the same URL. All annotations are 

also included in Supplementary Data 4.1. Source data for Fig. 4.2a-b, 4.3a-b, 4.4a-d,f-g, and 

Supplementary Fig. 4.7 are provided in Supplementary Data 4.2.  

 

Code availability 

We used ConsHMM v1.1 obtained from https://github.com/ernstlab/ConsHMM_CoV/.   
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Figures 

 
 
Figure 4.1. Genome browser view of ConsHMM input and output for a portion of the 
SARS-CoV-2 genome. Shown is an example portion of the Sarbecovirus sequence alignment 
input to ConsHMM and ConsHMM’s conservation state annotation of the SARS-CoV-2 genome 
as viewed in the UCSC Genome Browser78. The top row of the alignments shows the reference 
sequence, the SARS-CoV-2 genome. This is followed by 43 rows corresponding to different 
Sarbecovirus sequences aligned against the reference, representing the 44-way Sarbecovirus 
sequence alignment. In each of these rows, a horizontal dash is shown at a position if the row’s 
sequence has no base that aligns to the reference base at the position shown in the top row. A 
dot is shown if the sequence has the same nucleotide as the reference. A specific letter is 
shown if for that particular base the row’s sequence has a different nucleotide than the 
reference. Below the alignment are 30 ConsHMM conservation states learned from the 
alignment. Each row corresponds to a state. To demonstrate how bases with similar alignment 
patterns in the input data are annotated with the same state, bases annotated with state S17 
are highlighted in yellow boxes, which have most Sarbecoviruses aligning to and matching the 
reference with high probabilities. 
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Figure 4.2. ConsHMM conservation states learned from the Sarbecovirus alignment. 
a. State emission parameters learned by ConsHMM. The left half of the heatmap shows for 
each state the probability of each CoV strain having a base aligning to a base in the reference, 
which is SARS-CoV-2. The right half shows for each state the probability of each CoV strain 
having a base aligning to and matching (having the same nucleotide) a base in the reference. In 
both halves, each row in the heatmap corresponds to a ConsHMM conservation state with its 
number on the right side of the heatmap. Rows are ordered based on hierarchical clustering and 
optimal leaf ordering67. In both halves, each column corresponds to SARS-CoV or one of the 42 
CoV that infect bats. Columns are ordered based on each strain’s phylogenetic divergence from 
SARS-CoV-2 according to the phylogenetic tree shown in c, with closer strains on the left. The 
column on the left shows the genome-wide coverage of each state colored according to a 
legend labeled “coverage” on the right. 
b. State enrichment for external annotations of mutations, codons, genes, and regions of 
interest. The first column of the heatmap corresponds to each state’s genome coverage, and 
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the remaining columns correspond to fold enrichments of conservation states for external 
annotations of intergenic regions, mutations, position within codons, NCBI gene annotations65, 
and UniProt regions of interest91. Each row, except the last row, corresponds to a conservation 
state, ordered based on the ordering shown in a. The last row shows the genome coverage of 
each external annotation. Each cell corresponding to an enrichment value is colored based on 
its value with blue as 0 (annotation not overlapping the state), white as 1 to denote no 
enrichment (fold enrichment of 1), and red as the global maximum enrichment value. Each cell 
corresponding to a genome coverage percentage value is colored based on its value with white 
as the minimum and green as the maximum. All annotations were accessed through the UCSC 
Genome Browser78 except for nonsingleton mutations from Nextstrain99 and homoplastic 
mutations from a prior study90.  
c. Phylogenetic tree of the Sarbecoviruses included in the alignment. Each leaf corresponds to 
a Sarbecovirus strain included in the 44-way Sarbecovirus alignment. This tree was obtained 
from the UCSC Genome Browser78 and plotted using Biopython105. SARS-CoV-2/Wuhan-Hu-1, 
the reference genome of the alignment, is at the top. 
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Figure 4.3. ConsHMM conservation states learned from the vertebrate CoV alignment. 
a. State emission parameters learned by ConsHMM. The left half of the heatmap shows for 
each state the probability of each CoV strain having a base aligning to a base in the reference, 
which is SARS-CoV-2. The right half shows for each state the probability of each CoV strain 
having a base aligning to and matching (having the same nucleotide) a base in the reference. In 
both halves, each row in the heatmap corresponds to a ConsHMM conservation state with its 
number on the right side of the heatmap. Rows are ordered based on hierarchical clustering and 
optimal leaf ordering67. In both halves, each column corresponds to one of the 56 CoV that 
infect vertebrates, excluding SARS-CoV-2. Columns are ordered based on each strain’s 
phylogenetic divergence from SARS-CoV-2 according to the phylogenetic tree shown in c, with 
closer strains on the left. Cells in the top row above the heatmap are colored according to the 
color legend on the bottom right to highlight specific groups of CoV with common vertebrate 
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hosts. The column on the left shows the genome-wide coverage of each state colored according 
to a legend in the bottom right.  
b. State enrichment for external annotations of mutations, codons, genes, and regions of 
interest. The first column of the heatmap corresponds to each state’s genome coverage, and 
the remaining columns correspond to fold enrichments of conservation states for external 
annotations of intergenic regions, mutations, position within codons, NCBI gene annotations65, 
and UniProt regions of interest91. Each row, except the last row, corresponds to a conservation 
state, ordered based on the ordering shown in a. The last row shows the genome coverage of 
each external annotation. Each cell corresponding to an enrichment value is colored based on 
its value with blue as 0 (annotation not overlapping the state), white as 1 to denote no 
enrichment (fold enrichment of 1), and red as the global maximum enrichment value. Each cell 
corresponding to a genome coverage percentage value is colored based on its value with white 
as the minimum and green as the maximum. All annotations were accessed through the UCSC 
Genome Browser78 except for nonsingleton mutations from Nextstrain99 and homoplastic 
mutations from a prior study90.  
c. Phylogenetic tree of the vertebrate CoV included in the alignment. Each leaf corresponds to a 
vertebrate CoV strain included in the vertebrate CoV. This tree was generated by pruning out 
SARS-CoV-2 genomes except the reference from the phylogenetic tree of the 119-way 
vertebrate CoV alignment obtained from the UCSC Genome Browser78 (Methods) and was 
plotted using Biopython105. SARS-CoV-2/Wuhan-Hu-1, the reference genome of the alignment, 
is at the top. 
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Figure 4.4. State enrichment patterns for nonsingleton mutations in the current pandemic 
and their relation to other annotations.  
a. Bar graph showing enrichment values of states S1-S30 learned from the Sarbecovirus 
sequence alignment for nonsingleton mutations (n=2,201; Methods). Red and blue bars 
correspond to states that enriched and depleted, respectively, with statistical significance after 
Bonferroni correction (Methods). Above each red or blue bar is the state ID. Grey bars 
correspond to states for which the enrichment was not statistically significant. Nonsingleton 
mutations were identified from Nextstrain mutations99. 
b. Similar to a but showing state enrichment values for homoplastic mutations (n=198) instead 
of nonsingleton mutations in states S1-S30. Homoplastic mutations are mutations independently 
and repeatedly observed in separate SARS-CoV-2 lineages and were previously stringently 
identified through maximum parsimony tree reconstruction and homoplasy screen using 
thousands of SARS-CoV-2 sequences90. 
c. Similar to a but showing state enrichment values of states V1-V30 learned from the 
vertebrate CoV sequence alignment instead of states S1-S30. 
d. Similar to b but showing state enrichment values of states V1-V30 learned from the 
vertebrate CoV sequence alignment instead of states S1-S30. 
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e. Genome browser view of gene S with an integrated score of depletion of nonsingleton 
mutations in conservation states derived from both ConsHMM models and annotations of states 
from which the score is generated. Top row with black and grey vertical bars corresponds to the 
score, which is a negative log2 of the fold enrichment value of a state selected from one of the 
ConsHMM models that annotates a given base and is statistically significantly enriched or 
depleted of nonsingleton mutations at a genome-wide level (Methods). The following rows 
correspond to the states with significant enrichment or depletion.  
f. Bar graph showing correlation between our genome-wide (GW) score of state depletion of 
mutations shown in e and four sequence constraint scores listed along the y-axis. The 
sequence constraint scores were based on either the Sarbecovirus or vertebrate CoV sequence 
alignment provided to ConsHMM using either PhastCons or PhyloP as the scoring method 
(Methods). Similar plots using scores of mutation depletion in states from each ConsHMM 
model separately instead of both models together are shown in Supplementary Fig. 4.7a-b. 
g. Bar graph showing correlation between measured mutational effect on RBD expression and 
five scores which include our genome-wide score based on state depletion of mutations and the 
four sequence constraint scores from f. Correlation computed with our state-based score is 
shown in orange. Correlations computed with sequence constraint scores are shown in grey. All 
correlations were statistically significant after Bonferroni correction (Methods). Asterisk is 
shown next to a grey bar if its corresponding correlation was statistically significantly different 
than the correlation with our state-based score based on Zou’s confidence interval test103 with 
Bonferroni correction (Methods). The null hypothesis is rejected if the confidence interval 
(99.6% after correction) of a difference between two correlations excludes 0. The confidence 
intervals corresponding to the top and bottom asterisks are (-0.18, -0.01) and (-0.22, -0.05), 
respectively. Mutational effect on RBD expression was measured by a study that conducted a 
deep mutational scanning of 3,819 nonsynonymous mutations in RBD94. To compute the 
correlations, we restricted to the 1,215 mutations that were caused by single nucleotides and 
free of experimental measurements that were not determined (n.d.). A positive value indicates 
increased expression due to mutation and a negative value indicates decreased expression. An 
extended version of this plot that includes two genome-wide scores based on mutation depletion 
in states from each ConsHMM model separately is shown in Supplementary Fig. 4.7c. 
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S4 1.5 1 1 1.2 1.1 0.9 0.7 0.5 0.3 0.1 0.5 1.4 0.7 0 0.9 0.8 1.4 1.3 1.4 1.3 1.5 1.6 0.8 0.4 0.5 0.2 0.7 0 2.2 1.2 1.4 1.7
S5 0.2 0.5 0.6 0.7 0.6 0.4 0.4 0.3 0 0.1 1.1 0.2 0.5 0 0.7 0.5 0.9 2.1 3.9 5.2 2.4 2 0.8 0 1.7 0 0.3 0 0 0.1 0 0
S6 0.5 0.8 1 0.6 0.8 0.6 0.5 0.7 0.5 0.4 1.7 1.3 1.4 2.9 1.1 1.9 1.9 0.6 1.3 1.6 1 0.9 1 0 0.5 0.5 0.7 0 0.3 0.9 0.6 0.3
S7 1.6 1.7 1.1 2.7 2 2 1.1 1.5 0 0 0 0 0 0 0 0 0.2 0.8 0.4 0.3 0.5 0.5 1.5 0.5 1.3 2.2 1 1.7 0.7 0.6 0.5 1.3
S8 0.7 1.2 1.1 1.5 1.3 1.3 1.1 1 0.4 0.1 1.4 0.3 0.6 0 1 1 0.8 0.8 1 0.8 1.2 1.3 2.1 0.3 0.9 0.3 0.9 1.4 0.4 0.5 0.4 0
S9 0 0.2 0.1 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 3.8 7.2 0 0 0 0 0 0.9 0 0 27 0 0 0
S10 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0.5 6.6 9.3 3.4 2.3 4.5 0.7 0.2 0.8 0 0 0 0 0 0
S11 0.4 0.5 0.7 1 0.5 0.4 0.1 0.3 0.2 0 0.6 0.5 0.4 0 1.1 1.3 1.4 1.3 3.4 4.4 2.4 2.2 0.8 0.5 0.5 1.8 0.3 0 0 0.4 0.4 0
S12 1 1.3 1.1 1.7 1.3 1.4 1 1.1 0.5 0.2 0.4 0.7 0.8 0 0.5 1.4 1 0.7 1.1 1.1 1.2 1 0.3 0.3 0.2 1.1 0.9 0 0.2 0.6 0.9 0.3
S13 0.4 1.6 1.3 1.4 1.8 1.8 1.3 1.7 0.2 0.3 1.2 1.3 0.7 0 1.1 0.8 1 0.7 0.4 0.2 0.5 0.5 0.3 0 0.1 0 0 0 0.2 0.3 0.5 0.6
S14 1 0.7 0.9 1.2 0.7 0.3 0.4 0.8 0.3 0.1 0.3 0.5 0.9 0 1 1.2 2 2.5 1.5 1.8 1.2 1.1 1.2 1 1.2 1.2 2.1 0 0 0.9 0.4 2
S15 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 4.4 8.2 0 0 0 0 0 0 0 0 33 0 0 0
S16 0 0.1 0.1 0 0.1 0 0 0 0 0 0 0.4 0 0 0 0 0 1.6 6.5 7.3 5.5 3.8 3.8 0 0 0 0 0 0 0 0 0
S17 1 1 1.1 0.9 0.9 1.2 1.2 1.2 0.3 0.3 1 1.1 1 0.4 1.3 1.2 1.2 1.3 0.9 0.7 1.2 1.2 0.9 0.6 1.2 0.9 0.9 0.8 0 1.1 1 0.9
S18 1.2 0.6 1 0 0.1 0.4 1.1 0.9 0.3 0.8 3.5 3.1 3.4 7.6 1.1 1.1 0.7 0.3 0.1 0 0.2 0.3 0.9 7.5 1.3 0.4 0.2 0.9 0 1.7 2.2 1.9
S19 1.7 1.1 0.9 1.5 1.1 0.9 0.6 0.9 0.1 0.1 0.5 0.4 0.7 0.8 1 0.7 0.9 0.6 0.7 0.5 1 0.9 1.3 0.9 1.4 3.9 3.8 3.1 0 1.9 2 2.6
S20 1.2 1 1.2 1 1 0.9 0.8 1 0.5 0.3 0.3 1.4 1.5 0 1.3 1.8 1 1.2 0.7 0.5 0.8 1 0.8 0.5 0.6 0.3 1 0.4 0 0.7 0.7 0.2
S21 2.3 1.1 1 1.4 0.9 2 0.3 0.3 0 0.3 0 1.8 0.3 6.6 1.4 0.6 0.7 1.4 1.7 2.4 1 1.3 0.6 0 0 0 2.4 2 0 1 0.9 0
S22 1.9 1.3 1.1 2.2 1.1 1.3 1.5 0.5 0.4 0.4 0 1.3 0.5 0 1.2 0.9 1.2 0.8 0.7 0.5 1.1 1.1 0.5 0 0.6 0.6 1.6 0.8 0 0.8 1.1 1.4
S23 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 7.3 13 0.4 0.3 0.5 0 0 0 0 0 0 0 0 0
S24 0 0.2 0.1 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 2.3 4.3 0 0 0 0 0 0 0 0 47 0.3 0 0
S25 0 0.8 0.5 0.7 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.3 0.2 0.3 1.8 0 0 1.5 3 16 26 1.1 1.4 1.2
S26 0.8 1 0.8 1 1.2 1.6 1.6 0.8 0.1 0 0.7 0 0.2 0 0.6 0.2 0.8 1.7 1.3 1 1.6 1.6 2.1 0.7 1.8 1.4 3.2 2 0 1.7 2.9 1.5
S27 0 2.2 1.3 0 4.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S28 0 0.8 0.5 0.6 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 3.7 7 0 0 0.4 0 0.5 0 0 0 1.6 0 0 0
S29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0
S30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Coverage 1.8 44 71 6.4 19 5 3.1 2.9 3.3 7.9 1.1 1.4 9.3 0.1 6 5.3 3.5 3 13 6.7 5.9 4.6 2.8 0.8 2.2 0.6 1.1 0.4 1.1 4.2 1 0.7
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V1 0 0.3 1.3 0 0 0 1.9 0.6 0 0.2 0.4 3.6 2.9 0 3.1 3.1 2.6 2.4 0.6 0 1.2 1.5 0 0 0 0 0 0 0 0 0 0
V2 0 0.3 1.2 0 0 0 1.7 0.6 0.1 0.1 0.7 3.2 2.7 0 2.8 2.3 2.7 1.9 1.3 0 2.8 3.6 0 0 0 0 0 0 0 0 0 0
V3 0 0.4 1.3 0 0 0 2 1.2 0 0.1 0.9 3.6 3.3 1.6 2.9 2.8 2.3 2.1 0.5 0 1.1 1.4 0 0 0 0 0 0 0 0 0 0
V4 0 0.4 1.3 0 0 0 1.7 1.3 0 0.2 0.9 3.3 2.8 1.7 3 2.8 2.6 2 0.8 0 1.8 2.3 0 0 0 0 0 0 0 0 0 0
V5 0 0.5 1.3 0 0 0.8 2 0.9 0.5 0.5 0.5 1.9 3 1.6 3 2.1 2.6 2.2 0.4 0 0.9 1.2 0 0 0 0 0 0 0 0 0 0
V6 0 0.5 1.4 0 0 0 3.4 0.4 0.1 0.3 1.2 3.2 2.6 0 3.2 2.8 4.2 1.7 0.1 0 0.3 0.4 0 0 0 0 0 0 0 0 0 0
V7 0 0.3 1.3 0 0 0 2 0.7 0.1 0.3 0.8 2.8 3 0.7 2.8 2.6 2.8 2.5 0.7 0 1.5 2 0 0 0 0 0 0 0 0 0 0
V8 0 1.6 1.4 0 0.3 1.4 2.9 3.7 2.7 2.6 7.2 0.2 0.6 0 0.3 1.9 0.1 3.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V9 0 1.9 1.4 0 0.7 0.1 4.7 15 0.7 0.3 4.9 0.3 0.3 11 0.1 0.7 1.5 1.6 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0
V10 0 1.5 1.4 0 0.4 0.9 3.8 4.2 1.9 2 8 0.1 0.5 1.7 0.6 1.5 1.4 3.2 0.1 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0
V11 0 1.5 1.3 0 1 1.6 3.1 1.6 1.8 1.5 4.9 0.6 0.4 2.6 0.2 1.3 0.7 3.6 0.3 0 0.6 0.7 0 0 0 0 0 0 0 1.1 0 0
V12 0 0.8 0.6 0 1.6 0.1 0.1 1.2 0.3 0.1 0.9 0 0.1 0 0.1 0.1 1.3 0 3.8 0 8.2 10 0 0 0 0 0 0 0 1.8 0.2 0
V13 0 0.8 0.5 0 0.8 2.8 0.4 0.6 0 0 0.1 0 0.2 4.9 0.1 0.3 0.3 0.3 0.2 0 0.5 0.2 0 0 0 0 0 0 0 14 10 26
V14 0 0.4 0.3 0 0.5 1.1 0.2 0.1 0 0 0.1 0.3 0 0 0 0.2 0.4 0 0.4 0 0.9 1.1 0 0 14 0 0 0 0 8.2 4.8 6.2
V15 0 1.3 0.8 1.3 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9 1.4 0.3 0.3 0 11 1.6 0 0 0 0 1.4 1 0
V16 0 1.3 0.8 0 2.7 0.5 0.1 0.5 0 0 0 0 0 0 0.1 0 0.4 0 2.2 2.8 1.4 1.5 0 0 1.2 0 0 0 0 0.2 0.7 0
V17 0 1.9 1.2 0 4.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 1.5 0 0 0 0 0.5 0 0 0 0 0.6 0 0
V18 0 1.7 1.1 2.1 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 3.4 0 0 0 0 0 0 0 0 0 0 0 0
V19 8.7 1.1 0.7 3.6 0.4 0 0 0 0 0 0 0 0 0.5 0 0 0 0 1.9 3.5 0 0 2.3 0.2 0 7.9 8.3 7.4 0 0.6 1.5 0
V20 4.8 1.1 0.7 4.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 5.2 0 0 2.1 0 0 5.4 5.1 3 0 0.2 0.6 0
V21 0 1.3 0.8 1.6 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 2.2 0.5 0 5.8 1.5 0.1 0 0 0 0 0.4 1.7 0
V22 0 2.1 1.3 0 4.7 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0.1 0 0.3 0.1 0 0 1.9 0 0 0 0 0.5 0 0.7
V23 0 0.8 0.8 0 0.1 0.4 1.7 6.3 1 0.3 2.8 1 0.3 0 0.6 1.1 2.5 0.1 2.6 0 5.5 3.1 0 0 0 0 0 0 0 0.1 0.3 0
V24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 2.8 12 0
V25 0 2.1 1.3 0 1.7 12 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 1.1 0 0 0 0 0 0 0 0 0 0 0
V26 0 0.4 1.4 0 0 0 1.8 0.7 0.2 0.3 1 3 3.1 1.1 3.2 3.1 2.8 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V27 0 0.3 1.3 0 0 0 1.6 0.6 0.1 0.2 0.8 2.9 3.4 3.5 3.4 2.6 2 2.2 0.5 0 1.1 1.4 0 0 0 0 0 0 0 0 0 0
V28 0 1.6 1 8.2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 1.2 0.1 0.1 7.2 0 0 0 0 0 0 0.2 0 0
V29 0 1.7 1.1 2.8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.8 0 0 0.2 0 0 0 0 0 0 0 0 0
V30 0 0.2 0.2 0.1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 3.4 0 0 0 0 0 2.7 1.3 8.3 45 0.1 0.5 0
Coverage 1.8 44 71 6.4 19 5 3.1 2.9 3.3 7.9 1.1 1.4 9.3 0.1 6 5.3 3.5 3 13 6.7 5.9 4.6 2.8 0.8 2.2 0.6 1.1 0.4 1.1 4.2 1 0.7

Enrichment for protein products in states learned from the Sarbecovirus alignment

Enrichment for protein products in states learned from the vertebrate CoV alignment



 107 

Supplementary Figure 4.1. Conservation state enrichment for protein products. 
a. Fold enrichment for protein products in conservation states learned from the Sarbecovirus 
model. Each row corresponds to a state. First column contains the state ID. The following columns 
contain fold enrichment values for different protein products listed at the top of each column. 
Protein product coordinates and names were from UniProt Protein Product annotation91. Last row 
reports genome coverage percentage of each protein. Each cell corresponding to an enrichment 
value is colored based on its value with blue as 0 (annotation not overlapping the state), white as 
1 to denote no enrichment (fold enrichment of 1), and red as the maximum enrichment value in 
this table. Each cell corresponding to a coverage percentage is colored based on its value with 
white as minimum and green as maximum. 
b. Similar to a, except based on states learned from the vertebrate CoV model. 
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Reference genome 

Strains with match prob. > 0.5 in states S12 and S13 
Strains with match prob.> 0.5 in state S13 but not state S12 

Strains with match prob. < 0.5 in states S12 and S13  
 
Supplementary Figure 4.2. Sarbecoviruses associated with states S12 and S13 in the 
phylogenetic tree of the 44-way Sarbecovirus alignment. Similar to Fig. 4.2c except strains 
colored according to their align and match probabilities in states S12 and S13. The strain 
colored in blue is the reference SARS-CoV-2 strain of the alignment, SARS-CoV-2/Wuhan-Hu-
1. Strains colored in black are those that have match probabilities below 0.5 for both states S12 
and S13. Strains colored in red are those with match probabilities above 0.5 for both states S12 
and S13. Strains colored in yellow are those with match probabilities above 0.5 for state S13 but 
not for state S12. All strains have high (>0.95) align probabilities for states S12 and S13. States 
S12 and S13 are likely to correspond to a deviation along the branch preceding all strains 
colored in black. 
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Supplementary Figure 4.3. Precision-recall plots for predicting genes and regions of 
interest. Shown in each subplot is a precision-recall plot for predicting bases that overlap 
external genomic annotations using ConsHMM conservation states and sequence constraint 
annotations. Above each subplot is the target annotation, which is either a gene (a-l) or a region 
of interest defined by UniProt91 (m-u). In each subplot, prediction based on ConsHMM 
conservation states for bases overlapping the target annotation is shown with circles. Prediction 
based on sequence constraint scores is shown with continuous lines. Prediction based on 
PhastCons element is shown with triangles. Circles, lines, and triangles are colored according to 
the bottom right legend. Y-axis varies from subplot to subplot because the target annotations 
have different genome coverage. In most cases, at least one of the ConsHMM states have 
substantially greater precision at the same recall level than other sequence constraint 
annotations, suggesting that it has greater correspondence with the annotated bases.  
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Supplementary Figure 4.4. Conservation states’ relationship to PhastCons and PhyloP 
annotations.  
a. Shown for each conservation state learned from the Sarbecovirus alignment (x-axis) is the 
distribution of PhastCons score learned from the same alignment (y-axis) in bases overlapping 
the state. Each  distribution  is  represented  by  a  boxplot  with  median (orange  horizontal  
line), mean (green ‘x’), Q1 and Q3 (box), and Q1–1.5 IQR and Q3+1.5 IQR (whisker), where Q1 
and Q3 represent 25th and 75th percentiles, respectively, and IQR (interquartile range) represent 
the difference between them. 
b. Similar to a except showing conservation states and PhastCons score learned from the 
vertebrate CoV alignment. 
c-d. Similar to a-b, respectively, except showing PhyloP score instead of PhastCons score. 
e. Shown for each conservation state learned from the Sarbecovirus alignment (x-axis) is the 
fraction of bases overlapping PhastCons elements based on the same alignment (y-axis). 
Indicated by the horizontal dashed line is the genome-wide coverage of the PhastCons element 
annotation. The exact coverage is reported below the line.  
f.  Similar to e except showing conservation states and PhastCons elements learned from the 
vertebrate CoV alignment. 
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 Reference genome 

Strains with align and match prob. < 0.5 in states V10 and V11 
 Strains with align prob. > 0.5 and match prob. < 0.5 in state V10 

Strains with align prob. > 0.5 and match prob. < 0.5 in state V10 and V11 
Strains with align and match prob. > 0.5 in states V10 and V11 

 

Supplementary Figure 4.5. Vertebrate CoV associated with states V10 and V11 in the 
phylogenetic tree of the vertebrate CoV alignment. Similar to Fig. 4.3c except strains 
colored according to their align and match probabilities in states V10 and V11. The strain 
colored in blue is the reference SARS-CoV-2 strain of the alignment, Wuhan-Hu-1. The strains 
colored in red are those with both align and match probabilities below 0.5 for both states V10 
and V11, which include six CoV from avian hosts and a CoV from pig. The strains colored in 
orange are those with align probabilities above 0.5 and match probabilities below 0.5 for state 
V10. The strains colored in yellow are those with align probabilities above 0.5 and match 
probabilities below 0.5 for state V11. The remaining strains in black are those with align and 
match probabilities above 0.5 for both states.   
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Supplementary Figure 4.6. Conservation state enrichment for SARS-CoV-2 mutations.  
a. Fold enrichment for SARS-CoV-2 mutations in conservation states learned from the 
Sarbecovirus model. Each row corresponds to a state. First column contains the state ID. State 
ID is shown in red if the state was significantly enriched for mutations in all six settings in which 
we computed enrichment, which are shown in the following six columns. State ID is shown in 
blue if the state was significantly depleted for mutations in all settings. Otherwise, state ID is 
shown in black. Second column contains fold enrichment values for nonsingleton mutations 
currently observed in SARS-CoV-2 mutations where the enrichment is computed as the ratio 
between the fraction of observed mutations among possible mutations in each state and the 
genome-wide (GW) fraction of observed mutations among possible mutations, as done in Fig. 
4.2b (Methods). Third column contains fold enrichment values for the same set of nonsingleton 
mutations except the enrichment is corrected by the nucleotide composition of the bases 
annotated by each state (Methods). Similarly, fourth column contains enrichment values for 
nonsingleton mutations corrected by the type (i.e. intergenic, synonymous, missense, 
nonsense) of the mutations annotated by each state (Methods). Fifth, sixth, and seventh 
columns are similar to second, third, and fourth columns except the enrichment values are 
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S1 1.0 1.2 0.8 1.1 1.3 0.9 V1 0.6 0.8 0.6 0.8 0.9 0.8
S2 1.2 1.4 0.9 1.1 1.3 0.8 V2 1.2 1.1 1.0 1.1 1.1 1.0
S3 1.3 1.4 1.0 1.3 1.5 1.1 V3 1.7 1.2 1.4 1.4 1.1 1.2
S4 1.4 1.6 1.1 1.3 1.5 1.1 V4 1.0 1.2 0.9 1.0 1.2 0.9
S5 1.4 1.4 1.1 1.3 1.4 1.1 V5 0.6 0.6 0.8 0.7 0.6 0.8
S6 2.1 1.9 1.6 1.7 1.7 1.4 V6 1.0 0.9 0.9 1.0 0.9 1.0
S7 1.2 1.3 1.0 1.2 1.3 1.0 V7 0.7 0.8 0.7 0.8 0.9 0.8
S8 1.5 1.6 1.2 1.4 1.6 1.2 V8 1.4 1.2 1.3 1.2 1.1 1.1
S9 1.7 1.6 1.6 1.8 1.7 1.7 V9 1.0 1.0 1.0 1.0 1.0 1.0
S10 1.5 1.5 1.3 1.2 1.2 1.1 V10 0.4 0.6 0.4 0.6 0.7 0.6
S11 0.9 1.2 0.7 1.1 1.3 0.9 V11 0.2 0.2 0.3 0.3 0.3 0.4
S12 1.8 1.9 1.4 1.3 1.4 1.0 V12 1.0 1.1 1.1 1.0 1.0 1.0
S13 1.2 1.5 0.9 1.0 1.2 0.8 V13 1.5 1.3 1.5 1.4 1.3 1.4
S14 1.0 1.2 0.8 1.1 1.2 0.9 V14 1.2 1.1 1.2 1.2 1.1 1.2
S15 1.7 2.0 1.5 1.5 1.7 1.4 V15 1.0 1.0 0.9 1.1 1.1 1.0
S16 1.3 1.3 1.1 1.1 1.2 1.0 V16 1.1 1.1 1.1 1.1 1.2 1.1
S17 0.7 0.6 0.8 0.8 0.7 0.9 V17 0.8 0.8 0.8 0.8 0.8 0.8
S18 0.6 0.6 0.6 0.8 0.8 0.8 V18 1.0 0.9 1.0 1.0 0.9 1.0
S19 1.3 1.2 1.2 1.2 1.1 1.1 V19 1.1 1.1 1.1 1.1 1.1 1.1
S20 1.0 1.3 0.8 1.0 1.2 0.9 V20 1.7 1.5 1.4 1.6 1.6 1.4
S21 1.5 1.7 1.2 1.5 1.7 1.2 V21 1.2 1.2 1.1 1.1 1.1 1.1
S22 0.9 1.0 0.7 1.1 1.2 0.9 V22 1.1 1.1 1.1 0.9 1.0 1.0
S23 1.2 1.5 1.4 1.0 1.2 1.2 V23 1.3 1.3 1.3 1.3 1.2 1.2
S24 1.5 1.6 1.5 1.4 1.5 1.5 V24 1.1 1.1 1.2 0.9 0.9 1.0
S25 1.1 1.1 1.2 1.1 1.2 1.2 V25 0.8 0.8 0.8 0.8 0.8 0.8
S26 2.4 2.2 2.0 1.6 1.6 1.4 V26 0.7 0.7 0.9 0.6 0.7 0.8
S27 0.9 0.9 1.0 1.0 1.0 1.0 V27 0.2 0.2 0.3 0.4 0.4 0.5
S28 2.0 1.8 2.0 1.7 1.6 1.7 V28 1.3 1.3 1.3 1.4 1.4 1.4
S29 2.4 2.2 1.3 2.1 1.9 1.3 V29 1.6 1.5 1.7 1.4 1.3 1.4
S30 0.0 0.0 0.0 0.0 0.0 0.0 V30 1.8 1.8 1.8 1.6 1.6 1.6

Enrichment for SARS-CoV-2 mutations in states 
learned from the Sarbecovirus alignment

Enrichment for SARS-CoV-2 mutations in states 
learned from the vertebrate CoV alignment

Enrichment for 
nonsingleton  mutations

Enrichment for all 
observed  mutations

Enrichment for 
nonsingleton  mutations

Enrichment for all 
observed  mutations
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computed based on all observed mutations instead of nonsingleton mutations. All mutations 
were reported by Nextstrain99 based on sequences available on GISAID89 (Methods). Each cell 
corresponding to an enrichment value is colored based on its value with blue as 0 (annotation 
not overlapping the state), white as 1 to denote no enrichment (fold enrichment of 1), and red as 
the maximum enrichment value in this table. A value is shown in bold if the associated two-
sided binomial test p-value was significant at a 0.05 threshold after Bonferroni correction.  
b. Similar to a, except based on states learned from the vertebrate CoV model. Row order in 
this figure do not have any correspondence to row order in a. 
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Supplementary Figure 4.7. Correlation with measured mutational effect for tracks based 
on state depletion of mutations and existing sequence constraint scores.  
a. Bar graph showing correlation between our genome-wide (GW) score of depletion of 
mutations in conservation states from the Sarbecovirus model and four sequence constraint 
scores listed along the y-axis. The sequence constraint scores were based on either the 
Sarbecovirus or vertebrate CoV sequence alignment provided to ConsHMM using either 
PhastCons or PhyloP as the scoring method (Methods). A similar plot using the genome-wide 
score of depletion of mutations in states from both ConsHMM models instead of only the 
Sarbecovirus model is shown in Fig. 4.4f. 
b. Similar to a, except using genome-wide (GW) score of depletion of mutations in conservation 
states from the vertebrate CoV model instead of the Sarbecovirus model.  
c. Bar graph showing correlation between measured mutational effect on RBD expression and 
seven scores, which include three genome-wide scores based on conservation state depletion 
of mutations and four existing sequence constraint scores. Correlations computed with our 
scores based on both ConsHMM models, the Sarbecovirus model, and the vertebrate CoV 
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model are shown in orange, blue, and green bars, respectively. Correlations computed with 
sequence constraint scores are shown in grey bars. Correlations with no statistical significance 
after Bonferroni correction by the total number of scores (p < 0.05/7) are shown in lighter colors 
(Methods). Black connecting lines and an asterisk are shown for pairs of a state-based score 
(colored bars) and an existing constraint score (grey bars) if at least one of the two scores has a 
statistically significant negative correlation and if the two scores also exhibit statistically 
significant difference in their correlations. Statistically significant difference in correlation was 
determined based on Zou’s confidence interval test103. The test’s confidence level was set to 
0.996 (1 – 0.05/12) after Bonferroni correction by the number of pairs of a state-based score 
and a constraint score, where at least one score in the pair has a statistically significant 
negative correlation with mutational effect on RBD expression (Methods). Mutational effect on 
RBD expression was measured by the study referenced in Fig. 4.4g that conducted a deep 
mutational scanning of 3,819 nonsynonymous amino acid mutations in RBD94. To compute the 
correlations we restricted to the 1,215 mutations that were caused by single nucleotides and 
free of experimental measurements that were not determined (n.d.). A positive value indicates 
increased expression due to mutation and a negative value indicates decreased expression. A 
subset of the correlations shown here are also shown in Fig. 4.4g. 
d. Similar to c, except showing measured mutational effect on RBD binding affinity instead of 
expression and using confidence level of 0.992 (1 – 0.05/6) for Zou’s confidence interval test 
given six pairs of correlations to compare (Methods). 
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Supplementary Tables 

 
Description State Aligns to Matches to Notable enrichments 
Unique to SARS-CoV-2 and 
RaTG13 

S28 RaTG13 RaTG13  Most enriched for human 
ACE2 binding motif; 
Enriched for nonsingleton 
mutations 

Aligns to most and matches to 
Sarbecoviruses closely 
related to SARS-CoV-2  

S9 All Sarbecoviruses RaTG13   
S6  Enriched for nonsingleton 

mutations and homoplastic 
mutations 

S7 Small subset of close 
strains including RaTG13  

 
S8 Most enriched for heptad 

repeat 1 
S10 Subset of strains including 

RaTG13 and SARS-CoV 
Most enriched for spike 
protein’s receptor binding 
domain (RBD) and gene 
ORF3a 

Deviation along a branch of 
the Sarbecovirus phylogeny  

S12 All Sarbecoviruses Subset of strains 
corresponding to a subtree 
in the phylogeny 
(Supplementary Fig. 4.2) 

Enriched for nonsingleton 
mutations 

S13  

Aligns to most and matches to 
a subset of Sarbecoviruses 

S16 All Sarbecoviruses Distinct subsets of strains 
with varying distance to 
SARS-CoV-2 

 
S11  
S15  
S5 Most enriched fusion 

peptide 1 
S24 All except several distal 

strains 
Most enriched for gene 
ORF8 

Aligns and matches to most 
Sarbecoviruses 

S4 All Sarbecoviruses All except several strains  
S3   
S2   
S1   
S26  Enriched for nonsingleton 

mutations  
S21   
S22 All except a strain 

 
 

S23 Most enriched for gene S 
S14 All Sarbecoviruses   
S17 Depleted of nonsingleton 

mutations and homoplastic 
mutations 

S18 Most enriched for gene E 
and region that interacts 
with RMP Remdesivir; 
Most depleted of 
nonsingleton mutations 

S20  
S19 All except two distal 

strains 
Most enriched for genes 
ORF6, ORF7a, and N and 
RNA-binding region; 
Enriched for nonsingleton 
mutations 

S25 All except two distal 
strains 

All except two distal 
strains 

Most enriched for gene 
ORF7b 

S27 All except two strains All except two strains Most enriched for genes 
orf1a (YP_009725295.1) 
and orf1ab 
(YP_009724389.1) 

Non-coding or putative artifact  S29 All except several close 
and distal strains 

All except several close 
and distal strains 

Most enriched for 
intergenic bases, gene 
ORF10; Most enriched for 
nonsingleton mutations  

S30  
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Supplementary Table 4.1. Summary of grouping, align and match probabilities, and notable 
enrichments of ConsHMM conservation states learned from the Sarbecovirus alignment.  
First column contains each group’s description, where a group consists of one or more states 
based on the hierarchical clustering of emission parameters as explained in Fig. 4.2a. Second 
column contains the state identifiers. Third and fourth columns describe the strains for which 
each state has align and match probabilities greater than 0.5, respectively. The last column 
summarizes notable enrichment of external annotations, as shown in Fig. 4.2b. RaTG13 refers 
to a bat CoV most closely related to SARS-CoV-2. Nonsingleton mutations mentioned in this 
table are nonsingleton mutations observed in SARS-CoV-2 sequences based on Nextstrain’s 
annotation of GISAID’s SARS-CoV-2 sequences89,99 (Methods). Homoplastic mutations 
mentioned in this table are stringently identified homoplastic mutations from a previous study90. 
All enrichment and depletion reported here have a two-sided binomial test p-value significant at 
a 0.05 after Bonferroni correction.  
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Description State Aligns to Matches to Notable enrichments 
Aligns and matches to four closest 
strains –two bat CoV (RaTG13 and 
BM48-31/BGR/2008), pangolin CoV, 
and SARS-CoV 

V22 Four closest strains and 
several others 

Four closest strains and 
several others 

 

V28 Four closest strains 
except pangolin CoV 

Four closest strains 
except pangolin CoV 

Most enriched for gene 
ORF3a 

V29 RaTG13 and SARS-
CoV 

RaTG13  

V30 RaTG13 and pangolin 
CoV 

RaTG13 and pangolin 
CoV 

Most enriched for 
nonsingleton mutations; 
Most enriched for genes 
ORF7b and ORF8 

V20 Four closest strains RaTG13 and pangolin 
CoV 

Enriched for 
nonsingleton mutations; 
Most enriched for 
receptor binding domain 
(RBD) and human ACE2 
binding domain motif 

V19 Four closest strains Most enriched for genes 
ORF6 and ORF7a 

V18 Four closest strains and 
several others  

Four closest strains  
V16  
V17 Four closest strain and a 

bat CoV 
 

V21  
V15 Four closest strains Most enriched for 

intergenic bases and 
genes E and ORF10 

Aligns and matches to about half of 
the strains, particularly to four 
closest strains  

V14 Up to half of strains, 
most close to SARS-
CoV-2 

Up to half of strains, 
most close to SARS-
CoV-2 

Most enriched for 
dimerization-associated 
region 

V13 Most enriched for gene 
N and RNA-binding 
region; Enriched for 
nonsingleton mutations 
and homoplastic 
mutations 

V23  
V24 Most enriched for gene 

M 
V12 Most enriched for gene 

S and heptad repeat 2 
V25 Most enriched for gene 

orf1a (YP_009725295.1) 
Aligns to most and matches to some 
vertebrate CoV 

V9 All except several 
strains 

Four closest strains  
V8 Most enriched for orf1ab 

(YP_009724389.1) 
V3 All vertebrate CoV Most enriched for fusion 

peptide 1; Enriched for 
nonsingleton mutations 

V2 Most enriched for 
heptad repeat 1 

V6 Four closest strains and 
several distal strains, 
most of which are from 
birds  

 

V5 Four closest strains with 
several others 

 
V4 Most enriched for fusion 

peptide 2 
Aligns to all and matches to most 
vertebrate CoV 

V1 All vertebrate CoV All except several close 
strains 

 

V7 All vertebrate CoV  
V27 Depleted of 

nonsingleton mutations 
Aligns and matches to most except 
some CoV with avian hosts 

V26 All vertebrate CoV All except several CoV, 
most of which are from 
birds (Supplementary 
Fig. 4.5) 

 
V11 All except several CoV, 

most of which are from 
birds (Supplementary 
Fig. 4.5) 

Most depleted of 
nonsingleton mutations 

V10 Depleted of 
nonsingleton mutations 



 120 

Supplementary Table 4.2. Summary of grouping, align and match probabilities, and notable 
enrichments of ConsHMM conservation states learned from the vertebrate CoV alignment.  
Similar to Supplementary Table 4.1 except showing vertebrate CoV model’s states instead of 
Sarbecovirus model’s states. 
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start end gene confirmed based 
on human CoV Gussow et al. 

7390 7450 orf1ab   
7807 7809 orf1ab   
7809 7816 orf1ab TRUE  
7816 7825 orf1ab   
7868 7871 orf1ab   
7931 7933 orf1ab   
8575 8589 orf1ab   
8640 8647 orf1ab   
8658 8660 orf1ab   
8888 8892 orf1ab   
8892 8893 orf1ab TRUE  
8893 8899 orf1ab   
8963 8968 orf1ab   
8969 8973 orf1ab   
10237 10238 orf1ab   
10797 10799 orf1ab   
10869 10871 orf1ab   
11074 11076 orf1ab   
11370 11371 orf1ab   
12912 12913 orf1ab   
13328 13331 orf1ab TRUE  
16190 16193 orf1ab   
18171 18174 orf1ab   
18230 18231 orf1ab   
19131 19134 orf1ab   
19958 19961 orf1ab   
20351 20353 orf1ab   
20391 20397 orf1ab   
23843 23844 S   
23938 23941 S   
24001 24002 S   
24226 24227 S   
24227 24229 S TRUE TRUE 
24775 24778 S   
24990 25000 S   
25322 25345 S   
26610 26611 M   
26874 26938 M   
26939 27041 M   
27043 27047 M   
27049 27067 M   
27078 27085 M   
27086 27135 M   
28396 28415 N   
28415 28423 N TRUE  
28496 28500 N   
28561 28567 N   
28680 28686 N   
28704 28706 N   
28797 28809 N   
28857 28875 N   
28946 28966 N   
29001 29002 N   
29012 29014 N   
29024 29026 N   
29115 29116 N  TRUE 
29116 29124 N TRUE TRUE 
29218 29233 N   
29241 29362 N   
29374 29400 N   
29730 29731 non-coding   
29764 29771 non-coding   
29784 29803 non-coding   
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Supplementary Table 4.3. Genomic segments unique to pathogenic human CoV and 
missing in less pathogenic human CoV identified by state V14. 
Each row corresponds to a genomic segment annotated by state V14, which corresponds to 
bases with high (>0.5) align probabilities for SARS-CoV and MERS-CoV and low (<0.5) align 
probabilities for common-cold-associated human CoV. First and second columns denote 0-
based genomic coordinates (BED format). Third column shows the gene in which the genomic 
segments are located if it is in a gene or “non-coding” if it is not a gene. Fourth column denotes 
whether the base is confirmed to be in all pathogenic human CoV and missing in all less 
pathogenic human CoV based on an alignment of 944 human CoV sequences. Last column 
denotes whether the genomic segment was identified as an insertion specific to pathogenic 
strains in a prior study88.  
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