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EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

JHEP 09 (2017) 084 CERN-EP-2017-108
5th October 2017

Search for supersymmetry in final states with two
same-sign or three leptons and jets using 36 fb−1 of
√

s = 13 TeV pp collision data with the ATLAS
detector

The ATLAS Collaboration

A search for strongly produced supersymmetric particles using signatures involving multiple
energetic jets and either two isolated same-sign leptons (e or µ), or at least three isolated
leptons, is presented. The analysis relies on the identification of b-jets and high missing
transverse momentum to achieve good sensitivity. A data sample of proton–proton collisions
at
√

s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 and
2016, corresponding to a total integrated luminosity of 36.1 fb−1, is used for the search. No
significant excess over the Standard Model prediction is observed. The results are interpreted
in several simplified supersymmetric models featuring R-parity conservation or R-parity vi-
olation, extending the exclusion limits from previous searches. In models considering gluino
pair production, gluino masses are excluded up to 1.87 TeV at 95% confidence level. When
bottom squarks are pair-produced and decay to a chargino and a top quark, models with
bottom squark masses below 700 GeV and light neutralinos are excluded at 95% confid-
ence level. In addition, model-independent limits are set on a possible contribution of new
phenomena to the signal region yields.

c© 2017 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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1 Introduction

Supersymmetry (SUSY) [1–6] is one of the best-motivated extensions of the Standard Model (SM). A
general review can be found in Ref. [7]. In its minimal realization (the MSSM) [8, 9] it predicts a new
bosonic (fermionic) partner for each fundamental SM fermion (boson), as well as an additional Higgs
doublet. If R-parity [10] is conserved (RPC) the lightest supersymmetric particle (LSP) is stable and can
be the lightest neutralino1 χ̃0

1. In many models, the LSP can be a dark-matter candidate [11, 12] and
produce signatures with large missing transverse momentum. If instead R-parity is violated (RPV), the
LSP decay can generate events with high jet and lepton multiplicity. Both RPC and RPV scenarios can
produce the final-state signatures considered in this article.

In order to address the SM hierarchy problem with SUSY models [13–16], TeV-scale masses are re-
quired [17, 18] for the partners of the gluons (gluinos g̃) and of the top quarks (top squarks t̃L and t̃R),
due to the large top Yukawa coupling.2 The latter also favours significant t̃L–t̃R mixing, so that the mass
eigenstate t̃1 is lighter than all the other squarks in many scenarios [19, 20]. Bottom squarks (b̃1) may
also be light, being bound to top squarks by S U(2)L invariance. This leads to potentially large production
cross-sections for gluino pairs (g̃g̃), top–antitop squark pairs (t̃1 t̃∗1) and bottom–antibottom squark pairs
(b̃1b̃∗1) at the Large Hadron Collider (LHC) [21]. Production of isolated leptons may arise in the cas-
cade decays of those superpartners to SM quarks and neutralinos χ̃0

1, via intermediate neutralinos χ̃0
2,3,4

or charginos χ̃±1,2 that in turn lead to W, Z or Higgs bosons, or to lepton superpartners (sleptons, ˜̀). Light
third-generation squarks would also enhance gluino decays to top or bottom quarks relative to the generic
decays involving light-flavour squarks, favouring the production of heavy-flavour quarks and, in the case
of top quarks, additional isolated leptons.

This article presents a search for SUSY in final states with two leptons (electrons or muons) of the same
electric charge, referred to as same-sign (SS) leptons, or three leptons (3L), jets and in some cases also
missing transverse momentum, whose magnitude is referred to as Emiss

T . Only prompt decays of SUSY
particles are considered. It is an extension of an earlier search performed by the ATLAS experiment [22]
with

√
s = 13 TeV data [23], and uses the data collected in proton–proton (pp) collisions during 2015

and 2016. Similar searches for SUSY in this topology were also performed by the CMS experiment at
√

s = 13 TeV [24–26]. While the same-sign or three-lepton signatures are present in many scenarios of
physics beyond the SM (BSM), SM processes leading to such final states have very small cross-sections.
Compared to other BSM searches, analyses based on these signatures therefore allow the use of looser
kinematic requirements (for example, on Emiss

T or on the momentum of jets and leptons), preserving
sensitivity to scenarios with small mass differences between the produced gluinos/squarks and the LSP, or
in which R-parity is not conserved. This sensitivity to a wide range of BSM physics processes is illustrated
by the interpretation of the results in the context of twelve different SUSY simplified models [27–29] that
may lead to same-sign or three-lepton signatures.

For RPC models, the first four scenarios studied focus on gluino pair production with decays into on-
shell (Figure 1(a)) or off-shell (Figure 1(b)) top quarks, as well as on-shell light quarks. The latter are
accompanied by a cascade decay involving a χ̃±1 and a χ̃0

2 (Figure 1(c)) or a χ̃0
2 and light sleptons (Fig-

ure 1(d)). The other two RPC scenarios target the direct production of third-generation squark pairs with

1 The SUSY partners of the Higgs and electroweak gauge bosons, the electroweakinos, mix to form the mass eigenstates known
as charginos (χ̃±l , l = 1, 2 ordered by increasing mass) and neutralinos (χ̃0

m, m = 1, . . . , 4 ordered by increasing mass).
2 The partners of the left-handed (right-handed) quarks are labelled q̃L(R). In the case where there is significant L/R mixing (as

is the case for third-generation squarks) the mass eigenstates of these squarks are labelled q̃1,2 ordered by increasing mass.
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Figure 1: RPC SUSY processes featuring gluino ((a), (b), (c), (d)) or third-generation squark ((e), (f)) pair pro-
duction studied in this analysis. RPV SUSY models considered are gluino pair production ((g), (h), (i), (j)) and
t-channel production of down squark-rights ((k), (l)) which decay via baryon- or lepton-number violating couplings
λ′′ and λ′ respectively. In the diagrams, q ≡ u, d, c, s and ` ≡ e, µ, τ. In Figure 1(d), ˜̀ ≡ ẽ, µ̃, τ̃ and ν̃ ≡ ν̃e, ν̃µ, ν̃τ.
In Figure 1(f), the W∗ labels indicate largely off-shell W bosons – the mass difference between χ̃±1 and χ̃0

1 is around
1 GeV.

subsequent electroweakino-mediated decays (Figures 1(e) and 1(f)). The former is characterized by final
states with bottom squark pairs decaying to tt̄WWχ̃0

1χ̃
0
1. The latter, addressed here by looking at a final

state with three same-sign leptons, is a model that could explain the slight excess seen in same-sign lepton
signatures during Run 1 [30]. Finally, a full SUSY model with low fine-tuning, the non-universal Higgs
model with two extra parameters (NUHM2) [31, 32], is also considered. When the soft-SUSY-breaking
electroweakino mass, m1/2, is in the range 300–800 GeV, the model mainly involves gluino pair produc-
tion with gluinos decaying predominantly to tt̄χ̃0

1 and tbχ̃±1 , giving rise to final states with two same-sign
leptons and Emiss

T .

In the case of non-zero RPV couplings in the baryonic sector (λ′′i jk), as proposed in scenarios with minimal
flavour violation [33–35], gluinos and squarks may decay directly to top quarks, leading to final states
with same-sign leptons [36, 37] and b-quarks (Figures 1(g) and 1(h)). Although these figures illustrate
decay modes mediated by non-zero λ′′313 (resp. λ′′321) couplings, the exclusion limits set for these scenarios
also hold for non-zero λ′′323 (resp. λ′′311 or λ′′322), as these couplings lead to experimentally indistinguishable
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final states. Alternatively a gluino decaying to a neutralino LSP that further decays to SM particles via a
non-zero RPV coupling in the leptonic sector, λ′, or in the baryonic sector λ′′, is also possible (Figures 1(i)
and 1(j)). Lower Emiss

T is expected in these scenarios, as there is no stable LSP, and the Emiss
T originates

from neutrinos produced in the χ̃0
1 and top quark decays. Pair production of same-sign down squark-

rights3 (Figures 1(k) and 1(l)) is also considered. In all of these scenarios, antisquarks decay into the
charge-conjugate final states of those indicated for the corresponding squarks, and gluinos decay with
equal probabilities into the given final state or its charge conjugate.

2 ATLAS detector

The ATLAS experiment [22] is a multipurpose particle detector with a forward-backward symmetric cyl-
indrical geometry and nearly 4π coverage in solid angle.4 The interaction point is surrounded by an inner
detector (ID) for tracking, a calorimeter system, and a muon spectrometer (MS). The ID provides preci-
sion tracking of charged particles with pseudorapidities |η| < 2.5 and is surrounded by a superconducting
solenoid providing a 2 T axial magnetic field. It consists of silicon pixel and silicon micro-strip detectors
inside a transition radiation tracker. One significant upgrade for the

√
s = 13 TeV running period is the

presence of the insertable B-Layer [38], an additional pixel layer close to the interaction point, which
provides high-resolution hits at small radius to improve the tracking and vertexing performance. In the
pseudorapidity region |η| < 2.5, high-granularity lead/liquid-argon electromagnetic sampling calorimet-
ers are used. A steel/scintillator tile calorimeter measures hadron energies for |η| < 1.7. The endcap
and forward regions, spanning 1.5 < |η| < 4.9, are instrumented with liquid-argon calorimeters for both
the electromagnetic and hadronic measurements. The MS consists of three large superconducting toroids
with eight coils each and a system of trigger and precision-tracking chambers, which provide triggering
and tracking capabilities in the ranges |η| < 2.4 and |η| < 2.7, respectively. A two-level trigger sys-
tem is used to select events [39]. The first-level trigger is implemented in hardware. This is followed
by the software-based high-level trigger, which can run algorithms similar to those used in the offline
reconstruction software, reducing the event rate to about 1 kHz.

3 Data set and simulated event samples

The data used in this analysis were collected during 2015 and 2016 with a peak instantaneous luminosity
of L = 1.4 × 1034 cm−2s−1. The mean number of pp interactions per bunch crossing (pile-up) in the data
set is 24. After the application of beam, detector and data-quality requirements, the integrated luminosity
considered corresponds to 36.1 fb−1. The uncertainty in the combined 2015+2016 integrated luminosity
is 3.2%. It is derived, following a methodology similar to that detailed in Ref. [40], from a preliminary
calibration of the luminosity scale using x–y beam-separation scans performed in August 2015 and May
2016.

3 These RPV baryon-number-violating couplings only apply to S U(2) singlets.
4 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Rapidity is defined as y = 0.5 ln

[
(E + pz)/(E − pz)

]
where E denotes the energy and pz is the component of the momentum along the beam direction. The transverse momentum
pT, the transverse energy ET and the missing transverse momentum Emiss

T are defined in the x–y plane.
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Monte Carlo (MC) simulated event samples are used to model the SUSY signals and to estimate the
irreducible SM background with two same-sign and/or three “prompt” leptons. Prompt leptons are pro-
duced directly in the hard-scattering process, or in the subsequent decays of W, Z and H bosons or
prompt τ leptons. The reducible background, mainly arising from tt̄ production, is estimated from the
data as described in Section 5.1. The MC samples were processed through a detailed ATLAS detector
simulation [41] based on Geant4 [42] or a fast simulation using a parameterization of the calorimeter
response and Geant4 for the ID and MS [43]. To simulate the effects of additional pp collisions in the
same and nearby bunch crossings, inelastic interactions were generated using the soft strong-interaction
processes of Pythia 8.186 [44] with a set of tuned parameters referred to as the A2 tune [45] and the
MSTW2008LO parton distribution function (PDF) set [46]. These MC events were overlaid onto the
simulated hard-scatter event and reweighted to match the pile-up conditions observed in the data. Table 1
presents, for all samples, the event generator, parton shower, cross-section normalization, PDF set and the
set of tuned parameters for the modelling of the parton shower, hadronization and underlying event. In
all MC samples, except those produced by the Sherpa event generator, the EvtGen v1.2.0 program [47]
was used to model the properties of bottom and charm hadron decays.

Physics process Event generator Parton shower Cross-section PDF set Set of tuned
normalization parameters

Signal
RPC MG5_aMC@NLO 2.2.3 [48] Pythia 8.186 [44] NLO+NLL NNPDF2.3LO [49] A14 [50]
RPV except Fig. 1(j) MG5_aMC@NLO 2.2.3 Pythia 8.210 or NNPDF2.3LO A14
RPV Fig. 1(j) Herwig++ 2.7.1 [51] Herwig++ 2.7.1 NLO-Prospino2 [52–57] CTEQ6L1 [58] UEEE5 [59]

tt̄ + X
tt̄W, tt̄Z/γ∗ MG5_aMC@NLO 2.2.2 Pythia 8.186 NLO [60] NNPDF2.3LO A14
tt̄H MG5_aMC@NLO 2.3.2 Pythia 8.186 NLO [60] NNPDF2.3LO A14
4t MG5_aMC@NLO 2.2.2 Pythia 8.186 NLO [48] NNPDF2.3LO A14
Diboson
ZZ, WZ Sherpa 2.2.1 [61] Sherpa 2.2.1 NLO [62] NNPDF2.3LO Sherpa default
Other (inc. W±W±) Sherpa 2.1.1 Sherpa 2.1.1 NLO [62] CT10 [63] Sherpa default
Rare
tt̄WW, tt̄WZ MG5_aMC@NLO 2.2.2 Pythia 8.186 NLO [48] NNPDF2.3LO A14
tZ, tWZ, ttt̄ MG5_aMC@NLO 2.2.2 Pythia 8.186 LO NNPDF2.3LO A14
WH, ZH MG5_aMC@NLO 2.2.2 Pythia 8.186 NLO [64] NNPDF2.3LO A14
Triboson Sherpa 2.1.1 Sherpa 2.1.1 NLO [62] CT10 Sherpa default

Table 1: Simulated signal and background event samples: the corresponding event generator, parton shower, cross-
section normalization, PDF set and set of tuned parameters are shown for each sample. Because of their very small
contribution to the signal-region background estimate, tt̄WW, tt̄WZ, tZ, tWZ, ttt̄, WH, ZH and triboson are summed
and labelled “rare” in the following. NLO-Prospino2 refers to RPV down squark models of Figures 1(k) and 1(l),
as well as the NUHM2 model.

The SUSY signals from Figure 1 are defined by an effective Lagrangian describing the interactions of a
small number of new particles [27–29]. All SUSY particles not included in the decay of the pair-produced
squarks and gluinos are effectively decoupled. These simplified models assume one production process
and one decay channel with a 100% branching fraction. Apart from Figure 1(j), where events were gener-
ated with Herwig++ [51], all simplified models were generated from leading-order (LO) matrix elements
with up to two extra partons in the matrix element (only up to one for the g̃ → qq̄(``/νν)χ̃0

1 model)
using MG5_aMC@NLO 2.2.3 [48] interfaced to Pythia 8 with the A14 tune [50] for the modelling of
the parton shower, hadronization and underlying event. Jet–parton matching was realized following the
CKKW-L prescription [65], with a matching scale set to one quarter of the pair-produced superpartner
mass. All signal models were generated with prompt decays of the SUSY particles. Signal cross-sections
were calculated at next-to-leading order (NLO) in the strong coupling constant, adding the resummation
of soft-gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [52–56], except for the RPV
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models of Figures 1(k) and 1(l) and the NUHM2 model where NLO cross-sections were used [52, 66].
The nominal cross-sections and the uncertainties were taken from envelopes of cross-section predictions
using different PDF sets and factorization and renormalization scales, as described in Refs. [21, 57]. Typ-
ical pair-production cross-sections are: 4.7 ± 1.2 fb for gluinos with a mass of 1.7 TeV, 28 ± 4 fb for
bottom squarks with a mass of 800 GeV, and 15.0±2.0 fb for down squark-rights with a mass of 800 GeV
and a gluino mass of 2.0 TeV.

The two dominant irreducible background processes are tt̄V (with V being a W or Z/γ∗ boson) and
diboson production with final states of four charged leptons `,5 three charged leptons and one neutrino, or
two same-sign charged leptons and two neutrinos. The MC simulation samples for these are described in
Refs. [67] and [62], respectively. For diboson production, the matrix elements contain the doubly resonant
diboson processes and all other diagrams with four or six electroweak vertices, such as W±W± j j, with
one (W±W± j j) or two (WZ, ZZ) extra partons. NLO cross-sections for tt̄W, tt̄Z/γ∗(→ ``)6 and leptonic
diboson processes are respectively 0.60 pb [60], 0.12 pb and 6.0 pb [62]. The processes tt̄H and 4t, with
NLO cross-sections of 507.1 fb [60] and 9.2 fb [48] respectively, are also considered.

Other background processes, with small cross-sections and no significant contribution to any of the signal
regions, are grouped into a category labelled “rare”. This category contains tt̄WW and tt̄WZ events gener-
ated with no extra parton in the matrix element, and tZ, tWZ, ttt̄, WH and ZH as well as triboson (WWW,
WWZ, WZZ and ZZZ) production with fully leptonic decays, leading to up to six charged leptons. The
processes WWW, WZZ and ZZZ were generated at NLO with additional LO matrix elements for up to
two extra partons, while WWZ was generated at LO with up to two extra partons.

4 Event reconstruction and selection

Candidate events are required to have a reconstructed vertex [69] with at least two associated tracks with
pT > 400 MeV. The vertex with the largest Σp2

T of the associated tracks is chosen as the primary vertex
of the event.

For the data-driven background estimations, two categories of electrons and muons are used: “candidate”
and “signal” with the latter being a subset of the “candidate” leptons satisfying tighter selection criteria.
Electron candidates are reconstructed from energy depositions in the electromagnetic calorimeter which
were matched to an ID track and are required to have |η| < 2.47, pT > 10 GeV, and pass the “Loose”
likelihood-based identification requirement [70]. Candidates within the transition region between the
barrel and endcap electromagnetic calorimeters, 1.37 < |η| < 1.52, are not considered. The track matched
with the electron must have a significance of the transverse impact parameter d0 with respect to the
reconstructed primary vertex of |d0|/σ(d0) < 5. Muon candidates are reconstructed in the region |η| < 2.5
from muon spectrometer tracks matching ID tracks. All muon candidates must have pT > 10 GeV and
must pass the “Medium” identification requirements [71].

Jets are reconstructed with the anti-kt algorithm [72] with radius parameter R = 0.4, using three-dimensional
topological energy clusters in the calorimeter [73] as input. All jets must have pT > 20 GeV and |η| < 2.8.
For all jets the expected average energy contribution from pile-up is subtracted according to the jet

5 All lepton flavours are included here and τ leptons subsequently decay leptonically or hadronically.
6 This cross-section is computed using the configuration described in Refs. [48, 68].
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area [74, 75]. Jets are then calibrated as described in Ref. [75]. In order to reduce the effects of pile-
up, a significant fraction of the tracks in jets with pT < 60 GeV and |η| < 2.4 must originate from the
primary vertex, as defined by the jet vertex tagger (JVT) [76].

Identification of jets containing b-hadrons (b-tagging) is performed with the MV2c10 algorithm, a mul-
tivariate discriminant making use of track impact parameters and reconstructed secondary vertices [77,
78]. A requirement is chosen corresponding to a 70% average efficiency for tagging b-jets in simulated tt̄
events. The rejection factors for light-quark/gluon jets, c-quark jets and τ → ν + hadron decays in simu-
lated tt̄ events are approximately 380, 12 and 54, respectively [78, 79]. Jets with |η| < 2.5 which satisfy the
b-tagging and JVT requirements are identified as b-jets. Correction factors and uncertainties determined
from data for the b-tagging efficiencies and mis-tag rates are applied to the simulated samples [78].

After the object identification, overlaps between the different objects are resolved. Any jet within a
distance ∆Ry ≡

√
(∆y)2 + (∆φ)2 = 0.2 of a lepton candidate is discarded, unless the jet is b-tagged,7 in

which case the lepton is discarded since it probably originated from a semileptonic b-hadron decay. Any
remaining lepton within ∆Ry = min{0.4, 0.1 + 9.6 GeV/pT(`)} of a jet is discarded. In the case of muons,
the muon is retained and the jet is discarded if the jet has fewer than three associated tracks. This reduces
inefficiencies for high-energy muons undergoing significant energy loss in the calorimeter.

Signal electrons must satisfy the “Medium” likelihood-based identification requirement [70]. In regions
with large amounts of material in the tracker, an electron (positron) is more likely to emit a hard brems-
strahlung photon; if the photon subsequently converts to an asymmetric electron–positron pair, and the
positron (electron) has high momentum and is reconstructed, the lepton charge can be misidentified (later
referred to as “charge-flip”). To reduce the impact of charge misidentification, signal electrons must sat-
isfy |η| < 2.0. Furthermore, signal electrons that are likely to be reconstructed with an incorrect charge
assignment are rejected using the electron cluster and track properties including the impact parameter,
the curvature significance, the cluster width, and the quality of the matching between the cluster and its
associated track, in terms of both energy and position. These variables, as well as the electron pT and η,
are combined into a single classifier using a boosted decision tree (BDT) algorithm. A selection require-
ment on the BDT output is chosen to achieve a rejection factor of 7–8 for electrons with a wrong charge
assignment while selecting correctly measured electrons with an efficiency of 97%. Correction factors
to account for differences in the selection efficiency between data and MC simulation are applied to the
selected electrons in MC simulation. These correction factors are determined using Z → ee events [80].

Signal muons must fulfil the requirement |d0|/σ(d0) < 3. Tracks associated with the signal electrons or
muons must have a longitudinal impact parameter z0 with respect to the reconstructed primary vertex
satisfying |z0 sin θ| < 0.5 mm. Isolation requirements are applied to both the signal electrons and muons.
The scalar sum of the pT of tracks within a variable-size cone around the lepton, excluding its own track,
must be less than 6% of the lepton pT.

The track isolation cone size for electrons (muons) ∆Rη ≡
√

(∆η)2 + (∆φ)2 is given by the smaller of
∆Rη = 10 GeV/pT and ∆Rη = 0.2 (0.3). In addition, in the case of electrons the calorimeter energy
clusters in a cone of ∆Rη = 0.2 around the electron (excluding the deposit from the electron itself) must
be less than 6% of the electron pT. Simulated events are corrected to account for differences in the lepton
trigger, reconstruction, identification and isolation efficiencies between data and MC simulation.

The missing transverse momentum is defined as the negative vector sum of the transverse momenta of
all identified candidate objects (electrons, photons [81], muons and jets) and an additional soft term. The

7 In this case the b-tagging operating point corresponding to an efficiency of 85% is used.
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soft term is constructed from all tracks associated with the primary vertex but not with any physics object.
In this way, the Emiss

T is adjusted for the best calibration of the jets and the other identified physics objects
listed above, while maintaining approximate pile-up independence in the soft term [82, 83].

Events are selected using a combination of dilepton and Emiss
T triggers, the latter being used only for events

with Emiss
T > 250 GeV. The trigger-level requirements on Emiss

T and the leading and subleading lepton pT
are looser than those applied offline to ensure that trigger efficiencies are constant in the relevant phase
space. The event selection requires at least two signal leptons with pT > 20 GeV (apart from two signal
regions where the lower bound on the subleading lepton pT is 10 GeV).8 If the event contains exactly
two signal leptons, they must have the same electric charge. In order to reject detector noise and non-
collision backgrounds (including those from cosmic rays, beam-gas and beam-halo interactions), events
are discarded if they contain any jet not satisfying basic quality criteria [84, 85].

To maximize the sensitivity to the signal models of Figure 1, 19 non-exclusive9 signal regions (SRs) are
defined in Table 2. The SRs are named in the form SNLMbX, where S indicates if the signal region is
targeting an RPC or RPV model, N indicates the number of leptons required, M the number of b-jets re-
quired, and X indicates the severity of the Emiss

T or meff requirements (Soft, Medium or Hard). All signal
regions, except Rpv2L0b, allow any number of additional leptons in addition to a e±e±, e±µ± or µ±µ± pair.
Signal regions with a three lepton selection can either require any lepton charge combination (Rpc3L0bH,
Rpc3L0bS) or that all three leptons have the same charge (Rpc3LSS1b). The other requirements used to
define the SRs are the number of signal leptons (Nsignal

leptons), number of b-jets with pT > 20 GeV (Nb-jets),
number of jets with pT above 25, 40 or 50 GeV, regardless of their flavour (Njets), Emiss

T , the effective
mass (meff) and the charge of the signal leptons. The meff variable is defined as the scalar sum of the pT
of the signal leptons, jets and the Emiss

T . For SRs where the Z+jets background is important (Rpc3LSS1b,
Rpv2L0b and Rpv2L2bH), events in which the invariant mass of two same-sign electrons is close to the
Z boson mass are vetoed. For SRs targeting the production of down squark pairs (Rpv2L1bS, Rpv2L2bS,
Rpv2L1bM), only events with at least two negatively charged leptons are considered, as the down squarks
decay exclusively to top antiquarks. Finally, SRs targeting signal scenarios with lepton pT spectra softer
than typical background processes impose an upper bound on the leptons’ pT. The last column of Table 2
indicates the targeted signal model. The Rpc3L1b and Rpc3L1bH SRs are not motivated by a particu-
lar signal model and can be seen as a natural extension of the Rpc3L0b SRs with the same kinematic
selections but requiring at least one b-jet.

The values of acceptance times efficiency of the SR selections for the RPC SUSY signal models, with
masses near the exclusion limit, typically range between 0.5% and 7% for models with a light χ̃0

1 and
between 0.5 and 2% for models with a heavy χ̃0

1. For RPV SUSY signal models, these values are in
the range 0.2–4%. To increase the signal efficiency for the SUSY models with low-energy leptons (Fig-
ure 1(b)), the pT threshold of leptons is relaxed from 20 GeV to 10 GeV in the SR definition.

5 Background estimation

Two main sources of SM background can be distinguished in this analysis. The first category is the
reducible background, which includes events containing electrons with mismeasured charge, mainly from

8 To ensure that the trigger efficiency is constant for selected events where the subleading lepton pT lies between 10 and 20
GeV only the Emiss

T trigger is used in this case.
9 Each signal region partially overlaps with at least one other signal region.
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Signal region Nsignal
leptons Nb-jets Njets pjet

T Emiss
T meff Emiss

T /meff Other Targeted
[GeV] [GeV] [GeV] Signal

Rpc2L2bS ≥ 2SS ≥ 2 ≥ 6 > 25 > 200 > 600 > 0.25 – Fig. 1(a)
Rpc2L2bH ≥ 2SS ≥ 2 ≥ 6 > 25 – > 1800 > 0.15 – Fig. 1(a), NUHM2
Rpc2Lsoft1b ≥ 2SS ≥ 1 ≥ 6 > 25 > 100 – > 0.3 20,10 <p`1

T ,p`2
T < 100 GeV Fig. 1(b)

Rpc2Lsoft2b ≥ 2SS ≥ 2 ≥ 6 > 25 > 200 > 600 > 0.25 20,10 <p`1
T ,p`2

T < 100 GeV Fig. 1(b)
Rpc2L0bS ≥ 2SS = 0 ≥ 6 > 25 > 150 – > 0.25 – Fig. 1(c)
Rpc2L0bH ≥ 2SS = 0 ≥ 6 > 40 > 250 > 900 – – Fig. 1(c)
Rpc3L0bS ≥ 3 = 0 ≥ 4 > 40 > 200 > 600 – – Fig. 1(d)
Rpc3L0bH ≥ 3 = 0 ≥ 4 > 40 > 200 > 1600 – – Fig. 1(d)
Rpc3L1bS ≥ 3 ≥ 1 ≥ 4 > 40 > 200 > 600 – – Other
Rpc3L1bH ≥ 3 ≥ 1 ≥ 4 > 40 > 200 > 1600 – – Other
Rpc2L1bS ≥ 2SS ≥ 1 ≥ 6 > 25 > 150 > 600 > 0.25 – Fig. 1(e)
Rpc2L1bH ≥ 2SS ≥ 1 ≥ 6 > 25 > 250 – > 0.2 – Fig. 1(e)
Rpc3LSS1b ≥ `±`±`± ≥ 1 – – – – – veto 81<me±e±<101 GeV Fig. 1(f)
Rpv2L1bH ≥ 2SS ≥ 1 ≥ 6 > 50 – > 2200 – – Figs. 1(g), 1(h)
Rpv2L0b = 2SS = 0 ≥ 6 > 40 – > 1800 – veto 81<me±e±<101 GeV Fig. 1(i)
Rpv2L2bH ≥ 2SS ≥ 2 ≥ 6 > 40 – > 2000 – veto 81<me±e±<101 GeV Fig. 1(j)
Rpv2L2bS ≥ `−`− ≥ 2 ≥ 3 > 50 – > 1200 – – Fig. 1(k)
Rpv2L1bS ≥ `−`− ≥ 1 ≥ 4 > 50 – > 1200 – – Fig. 1(l)
Rpv2L1bM ≥ `−`− ≥ 1 ≥ 4 > 50 – > 1800 – – Fig. 1(l)

Table 2: Summary of the signal region definitions. Unless explicitly stated in the table, at least two signal leptons
with pT >20 GeV and same charge (SS) are required in each signal region. Requirements are placed on the number
of signal leptons (Nsignal

leptons), the number of b-jets with pT > 20 GeV (Nb-jets), the number of jets (Njets) above a certain

pT threshold (pjet
T ), Emiss

T , meff and/or Emiss
T /meff . The last column indicates the targeted signal model. The Rpc3L1b

and Rpc3L1bH SRs are not motivated by a particular signal model and can be seen as a natural extension of the
Rpc3L0b SRs with the same kinematic selections but requiring at least one b-jet.

the production of top quark pairs, and events containing at least one fake or non-prompt (FNP) lepton.
The FNP lepton mainly originates from heavy-flavour hadron decays in events containing top quarks, or
W or Z bosons. Hadrons misidentified as leptons, electrons from photon conversions and leptons from
pion or kaon decays in flight are other possible sources. Data-driven methods used for the estimation of
this reducible background in the signal and validation regions are described in Section 5.1.

The second background category is the irreducible background from events with two same-sign prompt
leptons or at least three prompt leptons and is estimated using the MC simulation samples. Since diboson
and tt̄V events are the main irreducible backgrounds in the signal regions, dedicated validation regions
(VR) with an enhanced contribution from these processes, and small signal contamination, are defined
to verify the background predictions from the simulation (Section 5.2). Section 5.3 discusses the sys-
tematic uncertainties considered when performing the background estimation in the signal and validation
regions.

5.1 Reducible background estimation methods

Charge misidentification is only relevant for electrons. The contribution of charge-flip events to the
SR/VR is estimated using the data. The electron charge-flip probability is extracted in a Z/γ∗ → ee data
sample using a likelihood fit which takes as input the numbers of same-sign and opposite-sign electron
pairs observed in a window of 10 GeV around the Z boson mass. The charge-flip probability is a free
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parameter of the fit and is extracted as a function of the electron pT and η. These probabilities are around
0.5% (1%) and 0.1% (0.2%) for the candidate and signal electrons for |η| < 1.37 (|η| > 1.52), respectively.
The former is used only in the FNP lepton background estimation. The event yield of the charge-flip
electron background in the signal or validation regions is obtained by multiplying the measured charge-
flip probability with the number of events in data regions with the same kinematic requirements as the
signal or validation regions but with opposite-sign lepton pairs.

Two data-driven methods are used to estimate the FNP lepton background, referred to as the “matrix
method” and the “MC template method”. The estimates from these methods are combined to give the
final estimate. These two methods are described below.

The first estimation of the FNP lepton background is performed with a matrix method similar to that
described in Ref. [86]. Two types of lepton identification criteria are defined: “tight”, corresponding to
the signal lepton criteria described in Section 4, and “loose”, corresponding to candidate leptons after
object overlap removal and the charge-flip BDT selection described also in Section 4. The matrix method
relates the number of events containing prompt or FNP leptons to the number of observed events with
tight or loose-not-tight leptons using the probability for loose prompt or FNP leptons to satisfy the tight
criteria. The probability for loose prompt leptons to satisfy the tight selection criteria (ε) is obtained
using a Z/γ∗ → `` data sample and is modelled as a function of the lepton pT and η. The efficiencies
for electrons (muons) rise from 60% (80%) at low pT to almost 100% at pT above 50 GeV – apart
from endcap electrons, for which they reach only 95%. The probability for loose FNP leptons to satisfy
the tight selection criteria (FNP lepton rate, f ) is determined from data in SS control regions enriched
in non-prompt leptons mostly originating from heavy-flavour hadron decays in single-lepton tt̄ events.
These regions contain events with at least one b-jet, one well-isolated muon (referred to as the “tag”),
and an additional loose electron or muon which is used for the measurement. The rates f are measured
as a function of pT after subtracting the small contribution from prompt-lepton processes predicted by
simulation and the data-driven estimation of events with electron charge-flip.10 For electrons, and muons
with |η| < 2.3, f is constant at around 10% for pT < 30 GeV (20% for muons with |η| > 2.3) and increases
at higher pT. With these values of ε and f , the method has been demonstrated to correctly estimate the
FNP lepton background.

The second method for FNP lepton estimation is the MC template method described in details in Refs. [86,
87]. It relies on the correct modelling of the kinematic distributions of the FNP leptons and charge-
flipped electron processes in tt̄ and V+jets samples. These samples were simulated with the Powheg-Box
generator [88–91] and the parton shower and hadronization performed by either Pythia 6.428 [92] (tt̄)
or Pythia 8.186 (V+jets). The FNP leptons are classified in five categories, namely electrons and muons
originating from b- and light-quark jets as well as electrons from photon conversions. Normalization
factors for each of the five sources are adjusted to match the observed data in dedicated control regions.
Events are selected with at least two same-sign signal leptons, Emiss

T > 40 GeV, two or more jets, and
are required not to belong to the SRs. They are further split into regions with or without b-jets and with
different lepton flavours of the same-sign lepton pair, giving a total of six control regions. The global
normalization factors applied to the MC samples for estimating the reducible background in each SR
vary from 1.2 ± 1.1 to 2.9 ± 2.0, where the errors account for statistical uncertainties and uncertainties
related to the choice of event generator (see Section 5.3).

Since the FNP lepton predictions from the MC template and matrix methods in the signal and validation
regions are consistent with each other, a weighted average of the two results is used. With this approach,

10 For muons with pT < 20 GeV, f is parameterized as a function of pT and η.
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the combined estimate is always dominated by systematic uncertainties, which is not always the case
when only the matrix method is used due to small number of events in the control regions. To check the
validity and robustness of the FNP lepton estimate, the distributions of several discriminating variables
in data are compared with the predicted background after various requirements on the number of jets and
b-jets. Examples of such distributions are shown in Figure 2, and illustrate that the data are described
by the prediction within uncertainties. The apparent disagreement for meff above 1 TeV in Figure 2(d) is
covered by the large theory uncertainty for the diboson background, which is not shown but amounts to
about 30% for meff above 1 TeV.
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Figure 2: Distributions of (a) the number of jets, (b) the number of b-tagged jets and (c), (d) the effective mass.
The distributions are made after requiring at least two jets (pT > 40 GeV) and Emiss

T > 50 GeV, as well as at least
two same-sign leptons (a, b, c) or three leptons (d). The uncertainty bands include the statistical uncertainties
for the background prediction as well as the systematic uncertainties for fake- or non-prompt-lepton backgrounds
(using the matrix method) and charge-flip electrons. Not included are theoretical uncertainties in the irreducible
background contributions. The rare category is defined in the text.

5.2 Validation of irreducible background estimates

Dedicated validation regions are defined to verify the estimate of the tt̄V , WZ and W±W± background in
the signal regions. The corresponding selections are summarized in Table 3. The overlap with the signal
regions is resolved by removing events that are selected in the signal regions. The purity of the targeted
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Validation Nsignal
leptons Nb-jets Njets pjet

T Emiss
T meff Other

Region [GeV] [GeV] [GeV]

tt̄W = 2S S ≥ 1 ≥ 4 (e±e±, e±µ±) > 40 > 45 > 550 p`2
T > 40 GeV

≥ 3 (µ±µ±) > 25
∑

pb-jet
T /

∑
pjet

T > 0.25
tt̄Z ≥ 3 ≥ 1 ≥ 3 > 35 – > 450 81 < mSFOS < 101 GeV

≥ 1 SFOS pair
WZ4j = 3 = 0 ≥ 4 > 25 – > 450 Emiss

T /
∑

p`T < 0.7
WZ5j = 3 = 0 ≥ 5 > 25 – > 450 Emiss

T /
∑

p`T < 0.7
W±W± j j = 2S S = 0 ≥ 2 > 50 > 55 > 650 veto 81 < me±e± < 101 GeV

p`2
T > 30 GeV

∆Rη(`1,2, j) > 0.7
∆Rη(`1, `2) > 1.3

All VRs Veto events belonging to any SR

Table 3: Summary of the event selection in the validation regions (VRs). Requirements are placed on the number of
signal leptons (Nsignal

leptons), the number of b-jets with pT > 20 GeV (Nb-jets) or the number of jets (Njets) above a certain

pT threshold (pjet
T ). The two leading-pT leptons are referred to as `1,2 with decreasing pT. Additional requirements

are set on Emiss
T , meff , the invariant mass of the two leading electrons me±e± , the presence of SS leptons or a pair of

same-flavour opposite-sign leptons (SFOS) and its invariant mass mSFOS. A minimum angular separation between
the leptons and the jets (∆Rη(`1,2, j)) and between the two leptons (∆Rη(`1, `2)) is imposed in the W±W± j j VR. For
the two WZ VRs the selection also relies on the ratio of the Emiss

T in the event to the sum of pT of all signal leptons
pT (Emiss

T /
∑

p`T). The ratio of the scalar sum of the pT of all b-jets to that of all jets in the event (
∑

pb-jet
T /

∑
pjet

T ) is
used in the tt̄W VR selection.

background processes in these regions ranges from 35% to 65%. The expected signal contamination
is generally below 5% for models near the limit of exclusion in tt̄Z, WZ and W±W± VRs and about
20% in the tt̄W VR. The observed yields, compared with the background predictions and uncertainties,
are shown in Table 4. There is good agreement between data and the estimated background in all the
validation regions.

5.3 Systematic uncertainties

Statistical uncertainties due to the number of data events in the loose and tight lepton control regions are
considered in the FNP lepton background estimate. In the matrix method, the systematic uncertainties
mainly come from potentially different compositions of b-jets, light-quark jets and photon conversions
between the signal regions and the regions where the FNP lepton rates are measured. The uncertainty
coming from the prompt-lepton contamination in the FNP lepton control regions is also considered. Over-
all, the uncertainty in the FNP lepton rate f amounts to 30% at low pT, and can reach 85% for muons
with pT > 40 GeV, and 50% for electrons with pT > 20 GeV; these values are driven respectively by the
dependency of the isolation of non-prompt muons on the kinematic properties of the jets which emit them,
and the uncertainty in the proportion of non-prompt electrons from heavy-flavoured hadron decays with
respect to other sources of FNP electrons (mainly converted photons). The uncertainties in the prompt-
lepton efficiency ε are much smaller. The uncertainties in the FNP lepton background estimated with the
matrix method in each VR and SR are then evaluated by propagating the f and ε uncertainties. In the MC
template method, the systematic uncertainty is obtained by changing the generator from Powheg-Box to
Sherpa and propagating uncertainties from the control region fit to the global normalization scale factors
applied to the MC samples. The uncertainties in these scale factors are in the range 75–80%, depending
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Validation Region tt̄W tt̄Z WZ4j WZ5j W±W± j j

tt̄Z/γ∗ 6.2 ± 0.9 123 ± 17 17.8 ± 3.5 10.1 ± 2.3 1.06 ± 0.22
tt̄W 19.0 ± 2.9 1.71 ± 0.27 1.30 ± 0.32 0.45 ± 0.14 4.1 ± 0.8
tt̄H 5.8 ± 1.2 3.6 ± 1.8 1.8 ± 0.6 0.96 ± 0.34 0.69 ± 0.14
4t 1.02 ± 0.22 0.27 ± 0.14 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02
W±W± 0.5 ± 0.4 – – – 26 ± 14
WZ 1.4 ± 0.8 29 ± 17 200 ± 110 70 ± 40 27 ± 14
ZZ 0.04 ± 0.03 5.5 ± 3.1 22 ± 12 9 ± 5 0.53 ± 0.30
Rare 2.2 ± 0.5 26 ± 13 7.3 ± 2.1 3.0 ± 1.0 1.8 ± 0.5
Fake/non-prompt leptons 18 ± 16 22 ± 14 49 ± 31 17 ± 12 13 ± 10
Charge-flip electrons 3.4 ± 0.5 – – – 1.74 ± 0.22
Total SM background 57 ± 16 212 ± 35 300 ± 130 110 ± 50 77 ± 31
Observed 71 209 257 106 99

Table 4: The numbers of observed data and expected background events in the validation regions. The rare category
is defined in the text. Background categories with yields shown as “–” do not contribute to a given region (e.g.
charge flips in three-lepton regions) or their estimates are below 0.01 events. The displayed yields include all
statistical and systematic uncertainties described in Section 5.3.

on the SRs. When combining the results of the MC template method and the matrix method to obtain the
final estimate, systematic uncertainties are propagated assuming conservatively a full correlation between
the two methods.

The uncertainty in the electron charge-flip probability mainly originates from the number of events in the
regions used in the charge-flip probability measurement and the uncertainty related to the background
subtraction from the Z boson’s mass peak. The relative error in the charge-flip rate is below 20% (30%)
for signal (candidate) electrons with pT above 20 GeV.

The systematic uncertainties related to the estimated background from same-sign prompt leptons arise
from the experimental uncertainties (jet energy scale calibration, jet energy resolution and b-tagging
efficiency) as well as theoretical modelling and theoretical cross-section uncertainties. The statistical
uncertainty of the simulated event samples is also taken into account.

The cross-sections used to normalize the MC samples are varied according to the uncertainty in the cross-
section calculation, which is 13% for tt̄W, 12% for tt̄Z production [60], 6% for diboson production [62],
8% for tt̄H [60] and 30% for 4t [48]. Additional uncertainties are assigned to some of these backgrounds
to account for the theoretical modelling of the kinematic distributions in the MC simulation. For tt̄W and
tt̄Z, the predictions from the MG5_aMC@NLO and Sherpa generators are compared, and the renormal-
ization and factorization scales used to generate these samples are varied independently within a factor of
two, leading to a 15–35% uncertainty in the expected SR yields for these processes. For diboson produc-
tion, uncertainties are estimated by varying the QCD and matching scales, as well as the parton shower
recoil scheme, leading to a 30–40% uncertainty for these processes after the SR selections. For tt̄H, 4t
and rare production processes, a 50% uncertainty in their total contribution is assigned.
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Figure 3: Comparison of (a) the observed and expected event yields in each signal region and (b) the relative
uncertainties in the total background yield estimate. For the latter, “statistical uncertainty” corresponds to reducible
and irreducible background statistical uncertainties. The background predictions correspond to those presented in
Table 5 and the rare category is explained in the text.

6 Results and interpretation

Figure 3(a) shows the event yields for data and the expected background contributions in all signal regions.
Detailed information about the yields can be found in Table 5. In all 19 SRs the number of observed data
events is consistent with the expected background within the uncertainties. The contributions listed in the
rare category are dominated by triboson, tWZ and tt̄WW production11 : the triboson processes generally

11 Contributions from WH, ZH, tZ and tt̄t production never represent more than 20% of the rare background.
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dominate in the SRs with no b-jets, while tWZ and tt̄WW dominate in the SRs with one and two b-jets,
respectively.

Figure 3(b) summarizes the contributions from the different sources of systematic uncertainty to the total
SM background predictions in the signal regions. The uncertainties amount to 25–50% of the total back-
ground depending on the signal region, dominated by systematic uncertainties coming from the reducible
background or the theory.

In the absence of any significant deviation from the SM predictions, upper limits on possible BSM contri-
butions to the signal regions are derived, as well as exclusion limits on the masses of SUSY particles in the
benchmark scenarios of Figure 1. The HistFitter framework [93], which utilizes a profile-likelihood-ratio
test [94], is used to establish 95% confidence intervals using the CLs prescription [95]. The likelihood is
built as the product of a Poisson probability density function describing the observed number of events in
the signal region and, to constrain the nuisance parameters associated with the systematic uncertainties,
Gaussian distributions whose widths correspond to the sizes of these uncertainties; Poisson distributions
are used instead for MC simulation statistical uncertainties. Correlations of a given nuisance parameter
between the backgrounds and the signal are taken into account when relevant. The hypothesis tests are
performed for each of the signal regions independently.

Table 5 presents 95% confidence level (CL) observed (expected) model-independent upper limits on the
number of BSM events, S 95

obs (S 95
exp), that may contribute to the signal regions. Normalizing these by the

integrated luminosity L of the data sample, they can be interpreted as upper limits on the visible BSM
cross-section (σvis), defined as σvis = σprod × A × ε = S 95

obs/L, where σprod is the production cross-
section, A the acceptance and ε the reconstruction efficiency. The largest deviation of the data from the
background prediction corresponds to an excess of 1.5 standard deviations in the Rpv2L1bM SR.

Exclusion limits at 95% CL are also set on the masses of the superpartners involved in the SUSY bench-
mark scenarios considered. Apart from the NUHM2 model, simplified models are used, corresponding
to a single production mode and with 100% branching ratio to a specific decay chain, with the masses
of the SUSY particles not involved in the process set to very high values. Figures 4, 5 and 6 show the
exclusion limits in all the models considered in Figure 1 and the NUHM2 model. The assumptions about
the decay chain considered for the different SUSY particles are stated above each figure. For each region
of the signal parameter space, the SR with the best expected sensitivity is chosen.

For the RPC models, the limits set are compared with the existing limits set by other ATLAS SUSY
searches [23, 96]. For the models shown in Figure 4, the mass limits on gluinos and bottom squarks
are up to 400 GeV higher than the previous limits, reflecting the improvements in the signal region
definitions as well as the increase in integrated luminosity. Gluinos with masses up to 1.75 TeV are
excluded in scenarios with a light χ̃0

1 in Figure 4(a). This limit is extended to 1.87 TeV when χ̃0
2 and

slepton masses are in-between the gluino and the χ̃0
1 masses (Figure 4(c)). More generally, gluino masses

below 1.57 TeV and bottom squarks with masses below 700 GeV are excluded in models with a massless
LSP. The “compressed” regions, where SUSY particle masses are close to each other, are also better
covered and LSP masses up to 1200 and 250 GeV are excluded in the gluino and bottom squark pair-
production models, respectively. Of particular interest is the observed exclusion of models producing
gluino pairs with an off-shell top quark in the decay (Figure 1(b)), see Figure 4(a). In this case, models
are excluded for mass differences between the gluino and neutralino of 205 GeV (only 35 GeV larger
than the minimum mass difference for decays into two on-shell W bosons and two b-quarks) for a gluino
mass below 0.9 TeV. The Rpc3LSS1b SR allows the exclusion of top squarks with masses below 700 GeV
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Signal Region Rpc2L2bS Rpc2L2bH Rpc2Lsoft1b Rpc2Lsoft2b Rpc2L0bS Rpc2L0bH
tt̄W, tt̄Zγ∗ 1.6 ± 0.4 0.44 ± 0.14 1.3 ± 0.4 1.21 ± 0.33 0.82 ± 0.31 0.20 ± 0.10
tt̄H 0.43 ± 0.25 0.10 ± 0.06 0.45 ± 0.24 0.36 ± 0.21 0.27 ± 0.15 0.08 ± 0.07
4t 0.26 ± 0.13 0.18 ± 0.09 0.09 ± 0.05 0.21 ± 0.11 0.01 ± 0.01 0.02 ± 0.02
Diboson 0.10 ± 0.10 0.04 ± 0.02 0.17 ± 0.09 0.05 ± 0.03 3.1 ± 1.4 1.0 ± 0.5
Rare 0.33 ± 0.18 0.15 ± 0.09 0.18 ± 0.10 0.17 ± 0.10 0.19 ± 0.11 0.17 ± 0.10
Fake/non-prompt leptons 0.5 ± 0.6 0.15 ± 0.15 3.5 ± 2.4 1.7 ± 1.5 1.6 ± 1.0 0.9 ± 0.9
Charge-flip electrons 0.10 ± 0.01 0.02 ± 0.01 0.08 ± 0.02 0.08 ± 0.02 0.05 ± 0.01 0.01 ± 0.01
Total Background 3.3 ± 1.0 1.08 ± 0.32 5.8 ± 2.5 3.8 ± 1.6 6.0 ± 1.8 2.4 ± 1.0
Observed 3 0 4 5 7 3

S 95
obs 5.5 3.6 6.3 7.7 8.3 6.1

S 95
exp 5.6+2.2

−1.5 3.9+1.4
−0.4 7.1+2.5

−1.5 6.2+2.6
−1.5 7.5+2.6

−1.8 5.3+2.1
−1.3

σvis [fb] 0.15 0.10 0.17 0.21 0.23 0.17
p0 (Z) 0.71 (–) 0.91 (–) 0.69 (–) 0.30 (0.5σ) 0.36 (0.4σ) 0.35 (0.4σ)

Signal Region Rpc3L0bS Rpc3L0bH Rpc3L1bS Rpc3L1bH Rpc2L1bS Rpc2L1bH Rpc3LSS1b
tt̄W, tt̄Zγ∗ 0.98 ± 0.25 0.18 ± 0.08 7.1 ± 1.1 1.54 ± 0.28 4.0 ± 1.0 4.0 ± 0.9 –
tt̄H 0.12 ± 0.08 0.03 ± 0.02 1.4 ± 0.7 0.25 ± 0.14 1.3 ± 0.7 1.0 ± 0.6 0.22 ± 0.12
4t 0.02 ± 0.01 0.01 ± 0.01 0.7 ± 0.4 0.28 ± 0.15 0.34 ± 0.17 0.54 ± 0.28 –
Diboson 8.9 ± 2.9 2.6 ± 0.8 1.4 ± 0.5 0.48 ± 0.17 0.5 ± 0.3 0.7 ± 0.3 –
Rare 0.7 ± 0.4 0.29 ± 0.16 2.5 ± 1.3 0.9 ± 0.5 0.9 ± 0.5 1.0 ± 0.6 0.12 ± 0.07
Fake/non-prompt leptons 0.23 ± 0.23 0.15 ± 0.15 4.2 ± 3.1 0.5 ± 0.5 2.5 ± 2.2 2.3 ± 1.9 0.9 ± 0.7
Charge-flip electrons – – – – 0.25 ± 0.04 0.25 ± 0.05 0.39 ± 0.08
Total Background 11.0 ± 3.0 3.3 ± 0.8 17 ± 4 3.9 ± 0.9 9.8 ± 2.9 9.8 ± 2.6 1.6 ± 0.8
Observed 9 3 20 4 14 13 1

S 95
obs 8.3 5.4 14.7 6.1 13.7 12.4 3.9

S 95
exp 9.3+3.1

−2.3 5.5+2.2
−1.5 12.6+5.1

−3.4 5.9+2.2
−1.8 10.0+3.7

−2.6 9.7+3.4
−2.6 4.0+1.8

−0.3
σvis [fb] 0.23 0.15 0.41 0.17 0.38 0.34 0.11
p0 (Z) 0.72 (–) 0.85 (–) 0.32 (0.5σ) 0.46 (0.1σ) 0.17 (1.0σ) 0.21 (0.8σ) 0.56 (–)

Signal Region Rpv2L1bH Rpv2L0b Rpv2L2bH Rpv2L2bS Rpv2L1bS Rpv2L1bM
tt̄W, tt̄Zγ∗ 0.56 ± 0.14 0.14 ± 0.08 0.56 ± 0.15 6.5 ± 1.3 10.1 ± 1.7 1.4 ± 0.5
tt̄H 0.07 ± 0.05 0.02 ± 0.02 0.12 ± 0.07 1.0 ± 0.5 1.9 ± 1.0 0.28 ± 0.15
4t 0.34 ± 0.17 0.01 ± 0.01 0.48 ± 0.24 1.6 ± 0.8 1.8 ± 0.9 0.53 ± 0.27
Diboson 0.14 ± 0.06 0.52 ± 0.21 0.04 ± 0.02 0.42 ± 0.16 1.7 ± 0.6 0.42 ± 0.15
Rare 0.29 ± 0.17 0.10 ± 0.06 0.19 ± 0.13 1.5 ± 0.8 2.4 ± 1.2 0.8 ± 0.4
Fake/non-prompt leptons 0.15 ± 0.15 0.18 ± 0.31 0.15 ± 0.15 8 ± 7 6 ± 6 1.3 ± 1.2
Charge-flip electrons 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.46 ± 0.08 0.74 ± 0.12 0.10 ± 0.02
Total Background 1.6 ± 0.4 1.0 ± 0.4 1.6 ± 0.5 19 ± 7 25 ± 7 4.8 ± 1.6
Observed 2 2 1 20 26 9

S 95
obs 4.8 5.2 3.9 17.5 18.1 11.4

S 95
exp 4.1+1.9

−0.4 4.0+1.7
−0.3 4.1+1.8

−0.4 16.8+5.2
−4.2 17.2+5.9

−4.2 7.3+2.5
−1.8

σvis [fb] 0.13 0.14 0.11 0.48 0.50 0.31
p0 (Z) 0.33 (0.4σ) 0.19 (0.9σ) 0.55 (–) 0.48 (0.1σ) 0.44 (0.2σ) 0.07 (1.5σ)

Table 5: Numbers of events observed in the signal regions compared with the expected backgrounds. The rare
category is defined in the text. Background categories with yields shown as a “–” do not contribute to a given
region (e.g. charge flips in three-lepton regions) or their estimates are below 0.01. The 95% confidence level (CL)
upper limits are shown on the observed and expected numbers of BSM events, S 95

obs and S 95
exp (as well as the ±1σ

excursions from the expected limit), respectively. The 95% CL upper limits on the visible cross-section (σvis) are
also given. Finally, the p-values (p0) give the probabilities to observe a deviation from the predicted background at
least as large as that in the data. The number of equivalent Gaussian standard deviations (Z) is also shown when
p0 < 0.5.
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Figure 4: Observed and expected exclusion limits on the g̃, b̃1, t̃1 and χ̃0
1 masses in the context of RPC SUSY

scenarios with simplified mass spectra. The signal regions used to obtain the limits are specified in the subtitle of
each scenario. All limits are computed at 95% CL. The dotted lines around the observed limit illustrate the change
in the observed limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. The
contours of the band around the expected limit are the ±1σ results (±2σ is also considered in Figure (e), including
all uncertainties except the theoretical uncertainties in the signal cross-section. In Figures (a)–(d), the diagonal line
indicates the kinematic limit for the decays in each specified scenario and results are compared with the observed
limits obtained by previous ATLAS searches [23, 96].
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Figure 5: Observed and expected exclusion limits on the g̃, t̃1, d̃R and χ̃0
1 masses in the context of RPV SUSY

scenarios with simplified mass spectra featuring g̃g̃ or d̃Rd̃R pair production with exclusive decay modes. The
signal regions used to obtain the limits are specified in the subtitle of each scenario. All limits are computed at
95% CL. The dotted lines around the observed limit illustrate the change in the observed limit as the nominal signal
cross-section is scaled up and down by the theoretical uncertainty. The contours of the band around the expected
limit are the ±1σ results, including all uncertainties except theoretical uncertainties in the signal cross-section (±2σ
is also considered in Figures 5(e) and 5(f)). In Figures 5(a)–5(d), the diagonal line indicates the kinematic limit for
the decays in each specified scenario. For Figures 5(e) and 5(f), theoretical production cross-sections are shown for
two different gluino masses in red (1.4 TeV) and blue (2.0 TeV).
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Figure 6: Observed and expected exclusion limits as a function of m1/2 in the NUHM2 model [31, 32]. The signal
region Rpc2L2bH is used to obtain the limits. The contours of the green (yellow) band around the expected limit
are the ±1σ (±2σ) results, including all uncertainties. The limits are computed at 95% CL.

when the top squark decays to a top quark and a cascade of electroweakinos χ̃0
2 → χ̃±1 W∓ → W∗W∓χ̃0

1
(see Figure 4(e) for the conditions on the sparticle masses).

For the RPV models with gluino pair production (Figures 5(a) – 5(d)), a generic exclusion of gluinos with
masses below 1.3 TeV is obtained. Weaker exclusion limits, typically around 500 GeV, are obtained in
models with pair production of d̃R (Figures 5(e), 5(f)).

Finally, in the NUHM2 model with low fine-tuning, values of the parameter m1/2 below 615 GeV are
excluded, corresponding to gluino masses below 1500 GeV (Figure 6).

7 Conclusion

A search for supersymmetry in events with two same-sign leptons or at least three leptons, multiple jets, b-
jets and large Emiss

T and/or large meff is presented. The analysis is performed with proton–proton collision
data at

√
s = 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider

corresponding to an integrated luminosity of 36.1 fb−1. With no significant excess over the Standard
Model prediction observed, results are interpreted in the framework of simplified models featuring gluino
and squark production in R-parity-conserving and R-parity-violating scenarios. Lower limits on particle
masses are derived at 95% confidence level. In the g̃g̃ simplified RPC models considered, gluinos with
masses up to 1.87 TeV are excluded in scenarios with a light χ̃0

1. RPC models with bottom squark masses
below 700 GeV are also excluded in a b̃1b̃∗1 simplified model with b̃1 → tW−χ̃0

1 and a light χ̃0
1. In RPV

scenarios, masses of down squark-rights are probed up to md̃R
≈ 500 GeV. All models with gluino masses

below 1.3 TeV are excluded, greatly extending the previous exclusion limits obtained within this search.
Model-independent limits on the cross-section of a possible signal contribution to the signal regions are
set.
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