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Brief Communications

Opioid Modulation of Ventral Pallidal Afferents to Ventral
Tegmental Area Neurons

Gregory O. Hjelmstad, Yanfang Xia, Elyssa B. Margolis, and Howard L. Fields
Ernest Gallo Clinic and Research Center, Wheeler Center for the Neurobiology of Addiction, and Department of Neurology, University of California, San
Francisco, Emeryville, California 94608

Activation of mu opioid receptors within the ventral tegmental area (VTA) can produce reward through the inhibition of GABAergic
inputs. GABAergic neurons in the ventral pallidum (VP) provide a major input to VTA neurons. To determine the specific VTA neuronal
targets of VP afferents and their sensitivity to mu opioid receptor agonists, we virally expressed channel rhodopsin (ChR2) in rat VP
neurons and optogenetically activated their terminals in the VTA. Light activation of VP neuron terminals elicited GABAergic IPSCs in
both dopamine (DA) and non-DA VTA neurons, and these IPSCs were inhibited by the mu opioid receptor agonist DAMGO. In addition,
using a fluorescent retrograde marker to identify VTA-projecting VP neurons, we found them to be hyperpolarized by DAMGO. Both of
these actions decrease GABAergic input onto VTA neurons, revealing two mechanisms by which endogenous or exogenous opioids can
activate VTA neurons, including DA neurons.

Introduction
Neurons within the ventral tegmental area (VTA) control the
motivational and rewarding actions of palatable food and drugs
of abuse (Wise, 1996; Everitt and Robbins, 2005; Fields et al.,
2007; Berridge, 2009). Mu opioid receptors (MORs) within the
VTA play a critical role in these behaviors. For example, MOR
agonists are self-administered directly into the VTA (Bozarth and
Wise, 1981; Devine and Wise, 1994) and, when microinjected
into the VTA, produce conditioned place preference (Phillips
and LePiane, 1980; Bals-Kubik et al., 1993), increase feeding
(Jenck et al., 1986; Mucha and Iversen, 1986) and food seeking
(Kelley et al., 1989), and reinstate drug seeking (Stewart, 1984).
MOR antagonists injected into the VTA decrease consumption of
ethanol (Margolis et al., 2008) and palatable food (Lamonte et al.,
2002), GABAB-receptor-agonist-induced feeding (Khaimova et
al., 2004), and cocaine conditioned place preference (Soderman
and Unterwald, 2008). VTA opioids have been proposed to pro-
duce their reinforcing effects through the disinhibition of VTA
dopamine (DA) neurons (Johnson and North, 1992). In fact,
inhibitory control of midbrain DA neurons can robustly control
behavior. For example, microinjection of a GABAA receptor an-
tagonist into the VTA increases locomotor activity, and this is
antagonized by a systemic DA receptor antagonist (Mogenson et
al., 1979). Likewise, intra-VTA GABAA receptor antagonists pro-

duce conditioned place preference (Laviolette and van der Kooy,
2004; Laviolette et al., 2004), which can be blocked by in-
tranucleus accumbens (NAc) DA antagonists in opioid-
dependent animals (Laviolette et al., 2004). Finally, animals will
self-administer GABAA receptor antagonists directly into the
VTA (David et al., 1997; Ikemoto et al., 1997). Until recently, the
most widely accepted model to explain these data was that a
population of VTA GABAergic interneurons tonically inhibits
VTA DA neurons and that reducing this inhibition activates DA
neurons (Johnson and North, 1992; van Zessen et al., 2012).
However, VTA DA neurons also receive dense GABAergic inputs
from extrinsic sources and opioid control of these extrinsically
derived inputs also robustly controls VTA DA neuron firing (see
below).

A number of sources of GABA from extrinsic sites have been
identified, including the NAc (Nauta et al., 1978), ventral palli-
dum (VP; Haber et al., 1985), rostromedial tegmental nucleus
(RMTg) (Jhou et al., 2009) and pedunculopontine tegmental nu-
cleus/lateral dorsal tegmentum (Omelchenko and Sesack, 2005;
Good and Lupica, 2009). GABA release from afferents arising
from both the NAc shell (Xia et al., 2011) and the RMTg (Matsui
and Williams, 2011) is inhibited by MORs. Although GABAergic
inputs from the RMTg clearly target DA neurons in both the VTA
and neighboring substantia nigra (Balcita-Pedicino et al., 2011;
Matsui and Williams, 2011), we reported previously that NAc
inputs preferentially target non-DA neurons in the VTA (Xia et
al., 2011). In contrast, neither the cellular connectivity of VP
inputs to the VTA nor their opioid sensitivity has been deter-
mined. Given that activation of the VP produces reward (Tindell
et al., 2004; Smith et al., 2009), understanding this connectivity is
critical for interpreting how VP afferents control activity in the
VTA. This is particularly important because there is evidence that
the VP is a significant source of endogenous opioids for the VTA
(Kalivas et al., 1993). Therefore, the VP neurons may inhibit
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some VTA neurons directly via the re-
lease of GABA while disinhibiting oth-
ers through the inhibitory actions of
enkephalin at GABAergic terminals.

In the present study, we examined the
synaptic physiology and connectivity of
VP neuronal terminals in the VTA using a
combination of electrophysiology, immu-
nocytochemistry, and optogenetics. We
found that VP neurons target both DA
and non-DA neurons within the VTA and
are inhibited by MOR activation both at
their terminals and at their cell bodies.

Materials and Methods
Animals. Surgeries were performed on 70 –100
g male Sprague Dawley rats. Animals were
anesthetized with isoflurane. In a subset of an-
imals, AAV2/1-CAG-ChR2-tdtomato was bi-
laterally injected (500 nl in each side) using a
Hamilton syringe stereotaxically placed into
the VP (AP, �1.0 mm from bregma; ML, �1.7
mm from bregma; V, �7.7 mm from skull sur-
face). The injector was left in place for 5 min,
raised 1 mm, and left for an additional 5 min
before slowly being completely removed. Ani-
mals were then returned to their home cages
for 14 –24 d before electrophysiological exper-
iments were performed. For retrograde tracer
experiments, neuro-DiI (1 �l, 7% in ethanol;
Biotium) or Fluorogold (1 �l) was slowly in-
jected (over 5 min) into the VTA (AP, �4.7;
ML, �0.8; DV, �8.1).

Slice preparation and electrophysiology. Hor-
izontal midbrain slices including the VTA
(150 –200 �m thick) or coronal VP slices (200
�m thick) were prepared using a Vibratome
(Leica Instruments) in artificial CSF (ACSF)
containing the following (in mM): 119 NaCl,
2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 2.5 CaCl2,
26.2 NaHCO3, and 11 glucose (saturated with
95% O2/5% CO2). Slices were submerged in
ACSF and allowed to recover for �1 h at
room temperature before electrophysiologi-
cal recordings.

Individual slices were visualized under an
upright microscope (Olympus) with differen-
tial interference contrast optics and infrared
and epifluorescent illumination. Whole-cell
recordings were made with 2.5– 4 M� pi-
pettes containing the following (in mM): 123
K-gluconate, 10 HEPES, 0.2 EGTA, 8 NaCl, 2
MgATP, 0.3 Na3GTP, and 0.1% biocytin, pH
7.2, osmolarity adjusted to 275–285. Record-
ings were made using a Multiclamp 700A or
700B amplifier (Molecular Devices), filtered at
2 kHz, and collected at 5 kHz using procedures
written for Igor Pro (Wavemetrics).

ChR2 was activated by transmitting 470 nm
light (50 �s to 10 ms) through the light path of
the microscope using an LED (XR-E XLamp
LED; Cree) powered by an LED driver (Migh-
tex Systems). ChR2-evoked GABAergic IPSC
amplitudes were calculated by comparing a 2
ms period at the peak of the response with a
baseline just before light stimulation. Series re-
sistance was monitored online by measuring

Figure 1. Ventral pallidal projections to the VTA. A, Coronal section showing bilateral expression of ChR2 (red) at the injection site in the
VP. Scale bar, 500�m. B, Horizontal midbrain section showing ChR2-expressing VP fibers (red) projecting widely throughout the VTA and
medial substantia nigra (TH immunocytochemical labeling shown in green). Scale bar, 200 �m. C, High-magnification section in the VTA
showing ChR2-expressing axons (red) contacting DA neuron cell bodies (green). Scale bar, 10 �m.

Figure 2. VP inputs produce GABAA-mediated IPSCs onto VTA neurons. A, Left: Average of 10 consecutive light-evoked IPSCs recorded
under control conditions and in the presence of picrotoxin (100 �M). Right: The individual IPSCs from the average shown on an expanded
time scale (with the stimulus artifact subtracted out) indicate little trial-to-trial jitter in the onset of the current, which is consistent with a
direct, monosynaptic input. B, IPSC amplitude as a function of light duration in control conditions (filled squares, n�7) and in the presence
of TTX (1 �M; open squares, n � 4). C, Overlay of averages (5 sweeps each) of pairs of light-evoked IPSCs at intervals of 50, 100, 200, 400,
and 800 ms from an example recording. D, The PPR (50 ms interpulse interval) plotted as a function of the light duration. The dashed line is
the average of across all durations. E, Example of a TH(�) neuron that showed a light-evoked response from the VP. Left: Biocytin fill
(green);middle:TH(red); right:overlay. F,DistributionofevokedIPSCamplitudesforall identifiedTH(�)andTH(�)neurons.Verticalbars
show mean amplitude for each group. SEM is shown in gray.
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the peak of the capacitance transient in re-
sponse to a 4 mV hyperpolarizing voltage step
applied at the end of each sweep. All drugs were
applied by bath perfusion. Stock solutions of
drugs were made and diluted (typically 1 in
1000) into ACSF immediately before applica-
tion. Liquid junction potential (calculated at
15 mV) has been corrected for.

Statistical analyses were performed using the
Student’s t test or appropriate statistic as de-
scribed in the text. Data are presented as
mean � SEM. Significance is defined as p �
0.05.

Immunocytochemistry. For determining ty-
rosine hydroxylase (TH) immunoreactivity,
immediately after recording, slices were fixed
in 4% formaldehyde for 2 h and then washed
thoroughly and stored at 4°C in PBS. Sections
were preblocked for 2 h in PBS plus 0.3% (v/v)
Tween, 0.2% BSA, and 5% normal goat serum,
and then incubated for 48 h at 4°C with a rabbit
anti-TH polyclonal antibody (1:100). The
slices were washed thoroughly in PBS with
0.3% Tween and 0.2% (w/v) BSA before being
agitated overnight at 4°C with Cy5 anti-rabbit
secondary antibody (1:100) and fluorescein-
conjugated streptavidin (3.25 �l/ml). Sections
were mounted on slides using Bio-Rad Fluoro-
guard Antifade Reagent mounting media and
visualized under a Zeiss LSM 510 META mi-
croscope. Neurons were categorized as TH(�)
if they were in the same focal plane as other
TH(�) neurons but contained no antibody la-
beling.

Tissue containing the injection sites was
fixed in 4% formaldehyde and coronal sections
(50 �m) were prepared using a sliding mi-
crotome. Slices were preblocked in 10% nor-
mal goat serum for 30 min and then incubated
with a rabbit anti-RFP antibody (1:2000) for
48 h. Slices were washed thoroughly before be-
ing incubated with FITC-conjugated affinpure
goat anti-rabbit secondary antibody (1:200).

Results
Microinjection of adeno-associated virus containing ChR2-
tdtomato into the VP resulted in expression of ChR2 in VP cell
bodies and their terminal fields in the VTA and laterally in the
neighboring substantia nigra (Fig. 1A,B). In horizontal midbrain
slices containing the VTA, we found strong fluorescence in fi-
bers but not in cell bodies (Fig. 1B), which is consistent with
axonal transport of ChR2 to the terminal fields of VP neurons.
When costained with an antibody against TH, we often ob-
served fluorescent fibers apposing and sometimes appearing
to encapsulate TH(�) neurons (Fig. 1C), a phenomenon that
we did not observe after microinjection of ChR2 into the NAc
(Xia et al., 2011).

To investigate the functional connectivity of VP afferents
within the VTA, we cut horizontal brain slices and made whole-
cell voltage-clamp recordings from VTA neurons. Optical stim-
ulation of VP fibers produced monosynaptic IPSCs that were
blocked by the GABAA antagonist picrotoxin (98.5 � 2.8%, n �
17; Fig. 2A). The amplitude of the light-evoked IPSC was depen-
dent upon the intensity and duration of the light stimulus. Light
pulses ranging in duration from 100 �s to 10 ms produced an
input/output curve with a half-maximum of 0.8 ms (Fig. 2B).

Moreover, consistent with previous observations (Cruikshank et
al., 2010; Xia et al., 2011), light-evoked responses were com-
pletely blocked by the Na �-channel blocker tetrodotoxin (1 �M;
Fig. 2B), indicating that, like electrical stimulation, light-activated
ChR2 evokes action potentials in nerve fibers, leading to the subse-
quent release of neurotransmitter.

Paired light stimuli produced paired pulse depression that was
dependent upon the interstimulus interval (Fig. 2C). The paired
pulse ratio (PPR) measured at a 50 ms interval averaged 0.57 �
0.02 (n � 40). Despite the fact that our neurotransmitter release
is action-potential dependent, it is possible that the PPR observed
when using ChR2 is not reflective of the true PPR at the synapse,
because the PPR is sensitive to residual calcium in the nerve ter-
minal and ChR2 activates a nonselective cation current that has
some permeability to calcium. To investigate this, we mea-
sured the PPR for different light stimulus durations: longer
durations should increase residual calcium through the ChR2
channel and thus might influence the PPR. However, we found
that the PPR was not influenced by the stimulus duration
except for the longest (10 ms) duration (Fig. 2D). It remains
unclear whether the increased depression at this duration is
due to a change in short-term plasticity or to a decrease in the

Figure 3. DAMGO inhibits light-evoked IPSCs. A, Bath application of the MOR agonist DAMGO (1 �M) inhibited light-evoked
IPSCs arising from the NAc (n � 23). Inset shows average of 10 consecutive sweeps under control conditions and in DAMGO from
a representative experiment. B, The magnitude of the DAMGO-mediated inhibition onto TH(�) (n � 13) tended to be smaller
than onto TH(�) (n � 10) neurons. C, The change in the coefficient of variance following application of DAMGO is correlated with
the degree of inhibition. Scatter plot of the amount of inhibition versus the change in the coefficient of variance for each individual
cell. Filled symbols are TH(�); open symbols are TH(�). Solid line is the linear regression through all of the data (R 2 � 0.74; p �
0.001).
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ability of the second stimulus to reliably produce an action
potential in the nerve fiber.

In our previous study investigating VTA inputs arising from
the NAc, we found synaptic input only onto TH(�) (i.e., non-
DA, VTA neurons; Xia et al., 2011). To confirm the apparent
direct connection of VP inputs to VTA DA neurons we observed
anatomically, we included biocytin in our microelectrode record-
ing solution and, after recordings, processed the tissue for TH
immunoreactivity (Fig. 2E). Of 52 processed neurons that
showed a light-evoked input from the VP, 28 were TH(�).
Therefore, VP inputs target both TH(�) and TH(�) neurons
within the VTA. The mean amplitude of the IPSCs onto con-
firmed TH(�) neurons was larger than onto TH(�) neurons
(128.9 � 26.2 pA vs 72.3 � 16.6 pA; Fig. 2F). However, this was
highly variable, plausibly due to differing levels of ChR2 expres-
sion across slices and/or animals. Nonetheless, a significantly
larger proportion of neurons with light-evoked IPSCs larger than
the median were TH(�) (18 of 26, p � 0.05, Pearson’s � 2 test).

Because MOR agonists’ ability to inhibit GABA release onto
VTA DA neurons is implicated in reward, and the VP inputs
synapse onto DA neurons, we investigated whether these inputs
were inhibited by MOR activation. In neurons in which we ob-
served light-evoked IPSCs, we bath-applied the selective MOR
agonist DAMGO (1 �m). DAMGO significantly inhibited light-
evoked GABAA IPSCs onto both TH(�) and TH(�) neurons
(30.5 � 6.4%, n � 23, p � 0.001; Fig. 3A). There was a trend for
a larger inhibition onto TH(�) neurons compared with TH(�)
neurons, although this did not reach significance (44.2 � 9.8% vs
20.0 � 7.5%, respectively, p � 0.065; Fig. 3B). The DAMGO
inhibition was not associated with an increase in the PPR mea-
sured at 50 ms (0.70 � 0.07 vs 0.59 � 0.06, respectively), but was
associated with a significant increase in the coefficient of variance
of the IPSC (67 � 21% increase, p � 0.01), a measure that is
inversely correlated with the probability of release (Del Castillo
and Katz, 1954; Manabe et al., 1993). Moreover, this change in

coefficient of variance was correlated with
the magnitude of the DAMGO inhibition
(r 2 � 0.72; Fig. 3C), implicating a presyn-
aptic inhibition of GABA release.

VP neurons receive direct input from
NAc GABAergic neurons that co-contain
the endogenous opioid enkephalin (Lu et
al., 1998). In vivo, approximately half of
VP neurons are inhibited after local ion-
tophoresis of DAMGO (Mitrovic and
Napier, 1995), but it is unclear whether
the opioid-sensitive VP neurons project
to the VTA. To determine whether VTA-
projecting VP neurons are inhibited di-
rectly by DAMGO, we retrogradely
labeled VTA-projecting VP neurons by
microinjecting either DiI or Fluorogold
into the VTA. We then made whole-cell
current-clamp recordings from fluoresc-
ing VP neurons (Fig. 4A) in coronal brain
slices at the neuron’s resting membrane
potential (�56.7 � 2.4 mV). Bath appli-
cation of the MOR selective agonist
DAMGO (1 �M) produced a significant
hyperpolarization in VTA-projecting VP
neurons (�2.91 � 1.14 mV, p � 0.05, n �
15; Fig. 4B,C). Therefore, mu opioids hy-
perpolarize many VTA-projecting VP

neuronal somata directly and inhibit GABA release from VP ter-
minals within the VTA.

Discussion
This work extends our understanding of the circuitry underlying
DA-mediated opioid reward. Disinhibition of VTA DA neurons
can produce positive reinforcement, and the present study shows
that opioids can influence the inhibition of VTA DA neurons by
the VP through two separate mechanisms: inhibition of their
somata in the VP and inhibition of their GABAergic terminals on
VTA DA neurons.

The apparent direct GABAergic synaptic connection of VP
terminals to VTA cell bodies parallels earlier observations that
globus pallidus inputs onto DA neurons of the substantia nigra
often form baskets around the soma and proximal dendrites of
nigral cells (Smith and Bolam, 1990). Therefore, VP inputs are
positioned to strongly inhibit cell bodies and thus influence the
overall firing rate of midbrain neurons. Our findings also extend
our understanding of an in vivo study showing that VP GABAe-
rgic inputs control the population activity of VTA DA neurons
(Floresco et al., 2003).

Similar to inputs arising from the NAc (Xia et al., 2011) and
from the RMTg (Matsui and Williams, 2011), VTA GABAergic
terminals of VP neurons are sensitive to MOR activation. We
observed a larger, opioid-mediated inhibition of VP IPSCs on
confirmed TH(�) neurons compared with TH(�) neurons.
However, this effect was highly variable in both groups: some
TH(�) neurons showed large DAMGO-mediated inhibitions
and some TH(�) neurons had IPSCs that were unaffected by
DAMGO. This raises the possibility that opioids preferentially
inhibit VP inputs onto specific subsets of VTA neurons, based
either on neurotransmitter content (e.g., GABA vs glutamate) or
projection target (e.g., NAc-projecting vs PFC-projecting). Like-
wise, endogenous opioid release from VP terminals could diffuse

Figure 4. VP neurons retrogradely labeled from the VTA are hyperpolarized by mu opioids. A, Example of a DiI-filled VP neuron.
Left: DiI (red); middle: biocytin fill (green); right: overlay. B, The membrane potential for VP neurons (n � 15) was hyperpolarized
after bath application of the MOR-selective agonist DAMGO (1 �M). C, Scatter plot showing membrane potential change for each
individual experiment.
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within the VTA to inhibit neurotransmitter release from other
GABAergic terminals such as those arising from the RMTg.

Like the VTA, the VP has also been implicated in the reward-
ing actions of both palatable food and drugs of abuse (Hubner
and Koob, 1990; Bardo, 1998; McFarland and Kalivas, 2001; Tang
et al., 2005; Mickiewicz et al., 2009; Smith et al., 2009). For exam-
ple, lesions of the VP reduce operant responding for cocaine or
alcohol (for review, see Smith et al., 2009). Moreover, opioids
microinjected into the posterior VP enhance both the motivation
to eat and hedonic responses to food (Smith and Berridge, 2007).
Although which specific subpopulations of VP neurons are re-
quired to produce these behaviors is not yet clear, the presence of
opioid receptors on VTA-projecting VP neurons raises the pos-
sibility that the direct connection from the VP to the VTA repre-
sents a specific node in a feeding circuit.

VP neurons project to a wide number of brain regions in
addition to the VTA, including the medial dorsal thalamus, sub-
thalamic nucleus, lateral hypothalamus, and the substantia nigra,
as well as making reciprocal connections with the NAc (Haber et
al., 1985; Zahm, 1989; Groenewegen et al., 1993; Tripathi et al.,
2012). Based on cytoarchitecture, the VP can be divided into two
subregions (Zahm and Heimer, 1988). Our infections typically
spanned both subregions; however, the medial VP is the primary
source of VTA afferents, whereas the lateral VP targets the sub-
stantia nigra (Zahm, 1989). Conversely, in a recent study, inves-
tigators traced single axons from VP neurons and reported that
both medial and lateral VP neurons can target the VTA (Tripathi
et al., 2012). Moreover, they observed that individual VP neurons
targeted several brain regions and their projection patterns were
highly variable. This variability is reflected in our finding that
both DA and non-DA neurons in the VTA are targeted by the VP.
It is unclear whether the targeted non-DA neurons are GABAer-
gic or glutamatergic or both. Consistent with targeting VTA
GABA neurons, the VP projects to the RMTg (Jhou et al., 2009;
Kaufling et al., 2009), a group of GABAergic neurons that overlap
with the caudal VTA and heavily innervate DA neurons in the
VTA and substantia nigra pars compacta (Balcita-Pedicino et al.,
2011). This potential indirect pathway (either through the RMTg
or through local GABAergic interneurons) from the VP to VTA
DA neurons would excite (disinhibit) DA neurons when acti-
vated, countering the direct inhibition of DA neurons by VP.
Indeed, this indirect pathway provides a possible circuit explana-
tion for how GABAA antagonists infused into VP increase both
locomotion and DA metabolites in the NAc (Austin and Kalivas,
1991). It is also possible that the VP targets VTA glutamate neu-
rons. Intriguingly, a subset of VTA glutamate neurons innervate
the VP (Hnasko et al., 2012) raising the possibility of a reciprocal
connection between neurons in these two regions.

In summary, VP neurons projecting to the VTA are part of a
distributed MOR-sensitive network that exerts robust control
over motivated behaviors. Further elucidation of the upstream
and downstream elements of the circuit and determining the
physiological conditions under which it is activated will greatly
increase our understanding of the role of opioids in motivated
behavior and positive reinforcement.
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