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Tyrosine sulfation is an important posttranslational modification that determines the outcome of serious diseases in plants and
animals. We have recently demonstrated that the plant pathogen Xanthomonas oryzae pv. oryzae (Xoo) carries a functional
sulfotransferase (RaxST). raxST is required for activation of rice Xa21-mediated immunity indicating the critical, but unknown,
function of raxST in mediating the Xoo/rice interaction. The raxST gene resides in the same operon (raxSTAB) as components of
a predicted type I secretion and processing system (RaxA and RaxB). These observations suggest a model where RaxST sulfates
a molecule that contains a leader peptide, which is cleaved by the peptidase domain of the RaxB protein and secreted outside the
bacterial cell by the RaxABC T1SS.

1. The Importance of Tyrosine Sulfation in
Mediating Receptor-Ligand Interactions

The modification of primary and secondary metabolites by
the addition or removal of sulfate can have a profound
influence on their biological properties. It is estimated that
about 1% of all tyrosines in eukaryotic cells are sulfated [1].
Typically, sulfated molecules are directed outside the cell,
where they serve asmediators of protein-protein interactions.
These interactions affect processes such as immunity and
development [2]. Notable examples include sulfation of a
small peptide, phytosulfokine, which is recognized by the
phytosulfokine receptor to control various developmental
processes in plants [3], the sulfation of Nod factors in
Sinorhizobium species [4, 5], and sulfation of CCR5, which
is the human chemokine coreceptor for CD4 [6]. Sulfation of
tyrosine residues in theN-terminal segment of CCR5 appears
to be critical for binding of the gp120 subunit of the envelope
glycoprotein of the human immunodeficiency virus (HIV)
[7]. In this review I address the critical role of sulfation

in mediating the interaction of a bacterial phytopathogen
with the rice XA21 pattern recognition receptor (PRR). The
microbial molecule that activates XA21-mediated immunity
has not yet been isolated [8].

2. XA21 Confers Broad-Spectrum Resistance
to the Bacterial Pathogen Xanthomonas
oryzae pv. oryzae (Xoo)

Perception of extracellular signals by cell surface receptors
is of central importance to eukaryotic development and
immunity [9]. Cell surface PRRs play an essential role in
the innate immune responses in animals and plants [10, 11].
PRRs share conserved signaling domains, such as leucine-
rich repeats (LRRs), and function via kinases, which are
either integral to the receptor (plants) or associated with the
receptor (animals) [12–14]. Many of these receptors regulate
transcription of target genes through phosphorylation events
after recognition of pathogen associated molecular patterns
(PAMPs).
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Figure 1: Working model for the synthesis and secretion of proteins required for activation of XA21-mediated immunity (encoded by
rax genes). In this model, the adenosine-5-triphosphate (ATP) sulfurylase RaxP and the adenosine-5-phosphosulfate (APS) kinase RaxQ
catalyze the production of the universal sulfuryl group donor 3-phosphoadenosine 5-phosphosulfate (PAPS). The RaxST sulfotransferase
utilizes PAPS as a substrate. We hypothesize that RaxST sulfates a molecule that contains a leader peptide, which is cleaved by the peptidase
domain of the RaxB protein and secreted outside the bacterial cell by the RaxABC T1SS.

3. Xoo Genes Predicted to Be Involved in
Small Peptide Secretion and Sulfation Are
Required for Activation of XA21-Mediated
Immunity (rax Genes)

Previous studies, using genetic approaches, led to the iden-
tification of six genes in Xoo falling into two functional
classes, which are required for activation of XA21-mediated
immunity (rax). Genes in the first class, raxA, raxB, and
raxC, encode a predicted membrane fusion protein (MFP),
an adenosine triphosphate (ATP) binding cassette (ABC)
transporter protein, and an outer membrane protein (OMP),
respectively. Together these three proteins are predicted to
comprise a type I secretion system (T1SS), a structure known
to be involved in secretion of molecules outside the bacterial
cell [15, 16]. RaxB falls into a clade of ABC-transporters
that carry a proteolytic peptidase domain in their N-termini,
termed as C39, which cleaves a characteristic double glycine
(GG) motif-containing signal peptide from substrates before
secretion [15, 17].These results suggest that the RaxABC T1SS
is involved in the secretion of peptides/proteins and that these
substrates are processed before or during secretion [18].

The second class of rax genes is involved in sulfa-
tion. raxP and raxQ, identified through a forward genetics
screen [19], encode an ATP sulfurylase and an adenosine-
5-phosphosulfate (APS) kinase. These proteins function in
concert to produce 3-phosphoadenosine 5-phosphosulfate
(PAPS), the universal sulfuryl group donor [19]. This class
also includes the raxST-encoded sulfotransferase. raxST

resides in the same operon with raxA and raxB (raxSTAB),
suggesting that this group of proteins may target similar
substrates and/or control a similar biological process [15].
Strains carrying mutations in these rax genes compromise
the ability of Xoo to activate XA21-mediated immunity. In
support of a role for these genes in a shared biological process,
we and others have demonstrated that raxST and other rax
genes are transcriptionally regulated by cell density, where
high cell density induces and low cell density represses gene
expression [20]. A model for rax gene function is shown in
Figure 1.

4. Xoo RaxST Is a Functional Tyrosine
Sulfotransferase

It has recently been shown, using a novel ultraviolet pho-
todissociation mass spectrometry (UVPD-MS) approach,
that RaxST is capable of in vitro tyrosine sulfotransferase
activity [21].This result indicates that tyrosine sulfation is not
restricted to eukaryotic species as previously hypothesized.

5. Concluding Remarks

The discovery of the RaxSTAB operon and regulators of
raxSTAB expression is an important first step in dissecting
its role in mediating the interaction of Xoo with the host.
Amino acid sequence identity examination of the raxSTAB
genomic region in publicly available sequenced genomes
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reveals that orthologs are present in the agronomically impor-
tant pathogensX. oryzaepv. oryzicola (Xoc) (98% identity), X.
campestris pv. vesicatoria (Xcv) (88% identity), X. axonopodis
pv. citrumelo (Xac) (88% identity), and X. campestris pv.
musacearum (Xcm) (>85% identity). Investigations of the role
of RaxSTAB in these other organismswill advance our under-
standing of this highly conserved but understudied operon
in these important pathogens and of the role of tyrosine
sulfation, a process not previously studied in bacteria, in
mediating interactions with agronomically important plant
hosts.

A major unknown is the identity of RaxST substrates
and the function of such modified molecules. It is also
unknown if this sulfation systemplays a role in the interaction
of bacterial pathogens with animal hosts. Furthermore, the
proposed peptidase function of theRaxBprotein has not been
demonstrated nor has the RaxB substrate been identified.
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