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10 Abstract 

11 Seismic surveys successfully imaged a small scale C02 injection (1 600 tons) conducted 

12 in a brine aquifer of the Frio Formation near Houston, Texas. These time-lapse bore- 

13 hole seismic surveys, crosswell and vertical seismic profile (VSP), were acquired to 

14 monitor the C02 distribution using two boreholes (the new injection well and a pre- 

15 existing well used for monitoring) which are 30 m apart at a depth of 1500 m. The 

16 crosswell survey provided a high-resolution image of the C02 distribution between the 

17 wells via tomographic imaging of the P-wave velocity decrease (up to 500 mls). The 

18 simultaneously acquired S-wave tomography showed little change in S-wave velocity, 

19 as expected for fluid substitution. A rock physics model was used to estimate C02 satu- 

20 rations of 10-20% from the P-wave velocity change. The VSP survey resolved a large 

21 (-70%) change in reflection amplitude for the Frio horizon. This C02 induced reflection 

22 amplitude change allowed estimation of the C02 extent beyond the monitor well and on 
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3 azimuths. The VSP result is compared with numerical modeling of C02 saturations 

and is seismically modeled using the velocity change estimated in the crosswell survey. 

Introduction 

The geologic storage of C02 emitted from fixed sources, such as coal or gas power 

plants, is currently considered one of the prime technologies for short term (- 50 year) 

mitigation of greenhouse gas emissions (Pacala and Socolow, 2004). Saline aquifers 

are generally considered a prime candidate for large scale storage. Initial studies have 

shown that time-lapse borehole and surface seismic surveys can be used to estimated 

the location of injected Cog in brine aquifers as well as in oil and gas reservoirs (Arts et 

al. 2002; Hoversten et al. 2003; Gritto et al. 2004; Xue et al. 2005). Monitoring of in- 

jected C02 will likely be a necessary component of any long term storage program. 

Therefore, understanding the seismic response of saline aquifers to injected C02 is an 

important goal. 

As part of a U.S. Department of Energy (DOE) funded project on geologic sequestration 

of C02, we acquired borehole seismic surveys before and after injection of about 1600 

tons of C02 into a saline aquifer. These time-lapse surveys consisted of crosswell and 

vertical seismic profile (VSP) experiments. These experiments were part of an inte- 

grated suite of scientific studies with many contributing institutions including the Texas 

Bureau of Economic Geology who performed the site selection process (Hovorka et al. 

2006). 



43 The VSP and crosswell are intermediate scale (1 - 100's m) geophysical surveys provid- 

44 ing information in-between the large scale of surface seismic (km's) and the smaller 

45 scale of well logs and core measurements (mm to m). As such, they are useful tools for 

monitoring small scale injections and for understanding larger scale surface measure- 

ments. A summary of the VSP method and its uses is given in Balch and Lee (1984) 

and the crosswell method is described in Hardage (2000). 

VSP and crosswell use different acquisition geometries, have different capabilities and 

are typically used for different goals. Figure 1 a shows the VSP geometry has a surface 

source and borehole sensors recording direct and reflected energy. VSP data typically 

has higher resolution (about 10 - 30 m) than surface seismic (30 - 100 m) because the 

sensors are below the near surface, which is highly attenuative. Since VSP allows 

54 measurement of upgoing (reflected) and downgoing (direct) waves within the borehole 

55 depth range, it improves the tie of surface seismic to borehole measurements. The up- 

56 going waves are those reflected from interfaces and correspond to the reflections im- 

57 aged with surface seismic. Figure 1 b shows the crosswell geometry, which has borehole 

58 sources and borehole sensors. The crosswell survey has higher resolution (about 1-5 

59 m) because the subsurface source allows higher frequency propagation over (typically) 

60 shorter distances than surface source data. However the crosswell is limited to the in- 

61 terwell volume while the VSP can potentially image on any azimuth. Crosswell acquisi- 

62 tion allows tomographic imaging of seismic velocity between the boreholes. 



Crosswell seismic methods have been successfully applied to C02 injection monitoring, 

initially as part of enhanced oil recovery (EOR) (e.g. Harris et al.1995; Lazaratos and 

Marion 1997; Gritto et al. 2004) and more recently as part of a sequestration pilot test 

(Xue et al. 2005; Spetzler et al. 2006). These studies were successful in detecting 

changes in seismic velocity caused by Cop injection into reservoirs. In the case of oil 

reservoirs the interpretation can be more difficult because of multi phase fluids (e.g. 

methane, brine, oil and C02, as described in Hoversten et al. 2003). In sequestration 

pilots, the C02 is typically injected into brine aquifers (Arts et al. 2002; Xue et al. 2005). 

Xue et al. (2005) found a velocity reduction of about 3% from crosswell tomography and 

a reduction of up to 23% at the well bore via sonic logging. Arts et al. (2002) present 

surface seismic monitoring results that show reflection amplitude change in the C02 

injection volume. The VSP method is useful for interpreting surface seismic and was 

used in this way at the Weyburn field Cop EOR project (Majer et al. 2006). 

The goals of the crosswell survey were to spatially map the C02 between the wells us- 

ing P- and S-wave velocity tomographic imaging, and to use these properties to esti- 

mate the C02 saturation between the wells. The goals of the VSP were to spatially map 

the C02 beyond the well pair and to image nearby structures such as faults. The time- 

lapse VSP and crosswell surveys were acquired together, with pre-injection surveys in 

July 2004 and post-injection surveys in late November 2004, about 1.5 months after the 

C02 injection. 



In the following sections we will describe the geologic background, the data acquisition 

and analysis, interpretation of the results and then give a summary and conclusions. 

Site Background and Characterization 

The Frio site was chosen for a small scale pilot test of C02 injection into a brine aquifer 

specifically to study sequestration issues. The pilot study had goals to safely inject an- 

thropogenic C02, model the expected flow, sample the fluid in an up-dip observation 

well and monitor the resulting plume (Hovorka et al. 2006). The selection and charac- 

terization of the Frio site, along with stratigraphic figures, has been described in Ho- 

vorka et al. (2006) and in this issue (Doughty et al. 2006) and will be summarized here. 

The injection site was selected in 2003 after characterization of 21 representative saline 

formations in the onshore United States. The selected aquifer is part of the on-shore 

Gulf of Mexico Frio formation sandstone, near Houston, TX. The experimental site is in 

an oil field, where site access, use of an idle well as an observation well, wireline well 

logs, 3-D seismic, and production data were donated by the operator, Texas American 

Resources. A new well was drilled for injection about 30 m offset from the existing ob- 

servation well. The C02 injection took place over 10 days in October 2004 with about 

1600 tons of supercritical C02 injected into the upper C-sand of the Frio Formation at a 

depth of 1528.5 - 1534.7 m (501 5 to 5030 ft). The downhole pressure was about 150 

bars with about 2-3 bar variation during injection (Hovorka et al. 2006). The downhole 

temperature was about 55OC. At these conditions the C02 is in a supercritical liquid 
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state with density of 653 kglm3 and P-wave velocity of 335 mls (National Institute of 

Standards and Technology 2006). The injected Cog is expected to displace the brine 

with some amount dissolving into the brine. 

Sandstones of the Oligocene Frio Formation are a potential target for large-volume stor- 

age because they are part of a thick, regionally extensive sandstone trend that underlies 

a concentration of industrial sources and power plants along the Gulf Coast of the 

United States. Detailed characterization was conducted using traditional reservoir as- 

sessment tools. From this characterization, a numerical reservoir model was created 

using LBNL's TOUGH2 code (Pruess 2004; Doughty et al. 2006). Geologically con- 

strained numerical models of injection and monitoring scenarios were prepared and 

used to optimize the experimental design, well locations and completion, and monitoring 

tool selection. The upper Frio in the study area is composed of northwest-southeast- 

elongated fluvial sandstone separated by mudstones and shales that can be correlated 

over the field but not regionally. The upper Frio "C," "B," and " A  (in lower to upper 

stratigraphic order) sandstones are part of a trend of fluvial sandstones that were in- 

creasingly reworked beneath the regionally extensive 60-m-thick (200-ft) shales and 

mudstones of the overlying Anahuac Formation. The selected injection zone, the upper 

122 half of the Frio "C" sandstone, is a 22.8-m (75-ft) upward-fining, fine-grained, poorly in- 

123 durated, well-sorted sandstone. The upper part of the "C" sandstone has porosities of 

124 30 to 35% and permeabilities of 2,000 to 2,500 md (Hovorka et al. 2006). The top "C" 

125 seal is composed of shale, sands, and siltstones that form a minor seal beneath the re- 



gional Anahuac Shale but probably a major barrier to vertical flow out of the "C" sand- 

stone. 

Structural analysis of the injection interval using logs and 3-D seismic shows that the 

upper Frio Formation at the test site is within a fault-bounded compartment that is part 

of a system of radial faults above a nearby salt dome. Dips within the injection com- 

partment are steep. Hand-picked interpretation of the FMI (formation microimager) log 

by Schlumberger measured dips of 18 degrees to the south at the injection well; inter- 

well correlation measured an average dip of 16 degrees south (Hovorka et al. 2006). 

135 Seismic Data Acquisition 

136 The data acquisition description is divided into sensors, sources and recording system. 

137 For sensors, both the VSP and crosswell surveys used an 80-level 3-component, 

138 clamping geophone string, which was supplied by Paulsson Geophysical and was de- 

139 ployed on special tubing. Each of the 80 3-component sensors was independently 

140 clamped to the borehole wall, allowing measurement of ground motion (velocity). The 

141 sensors were spaced every 7.6 m (25 ft) along the string, so the 80 sensors spanned 

142 61 0 m (2000 ft) of the borehole. Figure 2 shows the deployment depths of the sensor 

143 string. The 3-component sensors allowed optimal measurement of compressional (P) 

144 and shear (S) waves, which are orthogonally polarized. 



For the crosswell survey, the source was an orbital vibrator, supplied by LBNL The or- 

bital vibrator source is an eccentric mass rotated by an electric motor. The source is 

wireline operated and fluid coupled to the surrounding formation. The rate of rotation is 

linearly varied from 0 to 350 Hz and back to stop. Useable energy is acquired above 

about 70 Hz, giving a 70 to 350 Hz bandwidth. At each source location a clockwise and 

counter clockwise sweep is recorded. Decomposition of these two sweeps provides two 

equivalent sources with orthogonal horizontal oscillations (Daley and Cox 2001). Com- 

ponent rotation using P-wave particle motion rotates these two sources into in-line and 

cross-line equivalents, with in-line being horizontal and in the plane of the two bore- 

holes. This rotation results in a 6-component receiver gather with in-line and cross-line 

sources for the vertical and two horizontal receiver components. The in-line source gen- 

erates predominantly P-wave energy while the cross-line source generates predomi- 

nantly S-wave energy. Consistent generation of both P- and S-waves is a notable fea- 

ture of the orbital vibrator source. 

In the crosswell survey, both the source and receiver spacing was 1.5 m, with the 

sources spanning 75 m and the sensors spanning 300 m (only the deepest 40 of the 80 

sensors were recorded in the crosswell survey). The sensor string was moved five 

times at 1.5 m intervals to give 1.5 m sensor spacing from the 7.6 m fixed spacing. Five 

source 'fans' (all source depths for each of 5 sensor string locations) were thus acquired 

in the crosswell survey. The survey was conducted using the injection well for sensors 

and the monitoring well for sources. Source and sensor locations were centered on the 

injection interval. 
8 



The VSP used the same 80 level, 3-component geophone string with explosive sources. 

The explosive shot holes were about 18 m (60 ft.) deep. A single shot with about 3.5 Ibs 

of seismic explosive was recorded for each sensor string location at each shot point. 

Eight shot points were acquired (Figure 3). The sensors were interleaved to give spac- 

ings of 1.5 to 7.5 m (partially because of the needs of the crosswell recording). Smaller 

sensor spacing has the advantage of increasing spatial sampling and therefore in- 

creasing the spatial resolution of subsurface changes. The shotpoints were offset 100 to 

1500 m from the sensor well. The locations of the VSP shotpoints were chosen to moni- 

tor the estimated Cog plume location (sites 1-4 in Figure 3) and to provide structural in- 

formation at the injection site (sites 5-9 in Figure 3). Other sites were planned but not 

obtained due to permitting issues and local flooding. These sites (one to the Northeast 

and one to the South, would have allowed imaging to larger offsets (about 500 m) on 

these azimuths. 

181 Data Processing and Analysis 

182 The processing of the VSP focused on time lapse change in reflection amplitude of the 

183 reservoir horizon. Initial processing included applying time shifts to correct for shot 

184 variations (as measured with a surface geophone at each shot point), picking of arrival 

185 times at each depth, separation of down-going and up-going (reflected) wavefields, con- 

186 verting reflections to two-way travel time and enhancing the reflected energy signal us- 

187 ing frequency-wavenumber filters. A description of these standard VSP processing de- 
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tails is given in Yilmaz (1 987). Following these processing steps, an amplitude equaliza- 

tion was applied using a reflection above the reservoir (the 'control' reflection labeled in 

Figure 4. This equalization assumes that amplitude changes in a reflector are due to 

shallow sub-surface changes (such as soil moisture saturation) or changes in the seis- 

mic source amplitude. Therefore the amplitude change measured in the shallow reflec- 

tor is subtracted from all the data. Following this equalization, the time-lapse change in 

the reservoir reflection can be analyzed. The result from source site 1 is shown in Figure 

4 where we see a clear increase in the reflection strength from the Frio formation. Simi- 

lar results have been found from the sites 2, 3 and 4. For the VSP geometry, the reflec- 

tion recorded at each sensor in the well originates at a different reflection point, so we 

are able to estimate the variation in reflection strength with offset along the azimuth be- 

tween source and borehole. The VSP reflection change along three azimuths has been 

spatially mapped using ray tracing (similar to Figure 1 a) to give an estimate of the re- 

flection point location. Comparison of the VSP result with numerical modeling of C02 

saturation will be discussed in the following interpretation section. 

203 Before tomographic imaging, the travel times for P- and S-waves are determined. Typi- 

204 cally the data is sorted into different 'gathers' with a common source depth, common 

205 sensor depth, or common source-sensor vertical offset. An example common offset 

206 gather of seismograms in Figure 5 shows good quality P- and S-wave direct arrivals, 

207 allowing velocity tomography. The travel times were picked manually using the in-line 

208 source and in-line sensor for P-wave and the cross-line source and cross-line sensor for 

209 S-wave. During the post-injection travel time picking, a large change in waveforms was 
10 



21 0 observed in the injection zone (seen in Figure 5). This change was interpreted as 

21 1 'guided waves' generated by a newly formed (and Cog induced) seismic low-velocity 

21 2 zone. Because guided waves do not follow the ray-theory used in standard tomographic 

21 3 inversion, travel times within the guided-wave zone were not used for inversion of time- 

21 4 lapse changes. Using the remaining picked travel times, tomographic imaging of velocity 

21 5 was performed. 

The tomography processing had the following details: limited ray angles (no ver- 

tical offsets greater than 100 m), correction for the deviation of the boreholes from verti- 

cal (about 3-5 m of lateral offset), a straight ray projection, and a static correction to al- 

low for borehole effects. Importantly, the data were inverted for the change in velocity, 

rather than inverting for each velocity field and then differencing. In this method the 

data input to the tomographic inversion is the travel time difference (postinjection time 

minus preinjection time) for each source-receiver pair. Typically, time-lapse tomography 

is done by computing two tomographic inversions with each travel time data set (the 

preinjection and the post injection) separately input to the tomographic inversion. By in- 

verting the difference data, some potential errors (such as source and sensor locations) 

are minimized or eliminated (Ajo-Franklin et al. 2006; Spetzler 2006). The inversion al- 

gorithm is an algebraic reconstruction as described in Peterson et al. (1 985). The inver- 

sion used a 2 m x 2m pixel size, with plotting interpolated to 0.5 m. The maximum spa- 

tial resolution is thus about 2m. Figure 6 shows the tomographic image of P- and S- 

wave velocity change. The P-wave tomogram shows a clear zone of change in the in- 

jection interval with P-wave velocity decreasing over 500 mls in some pixels. The S- 
11 



232 wave tomogram shows only small changes except for a small region near the injection 

233 zone where the S-wave velocity is reduced by up to 200 mls. 

Figure 7 shows a more detailed view of the P-wave velocity change within the injection 

zone, along with the well logs indicating C02 saturation near the boreholes. The well 

logs are Schlumberger's reservoir saturation tool (RST) (Adolph, et al., 1994). The C02 

plume is clearly imaged by the velocity change, and the spatial agreement between the 

well logs and the tomograms provides mutual corroboration to each of these two inde- 

pendent measures of C02. Several attributes of the C02 induced change in seismic ve- 

locity can be observed via the tomogram and will be discussed in the interpretation sec- 

tion. 

242 Interpretation 

The injection of C02 causes a fluid substitution within the pore space. For fluid substitu- 

tion with no change in matrix properties, a change in P-wave velocity is expected due to 

the change in bulk modulus (compressibility) with a minimal change in S-wave velocity 

expected due to the lack of change in shear modulus (which is a property of the rock 

matrix and not affected by pore fluid). Time-lapse tomographic imaging did map 

changes in P-wave velocity (over 500 mls) due to the C02 plume (Figure 7). The S- 

wave velocity decrease near the injection well implies that there was some change in 

rock matrix properties (the shear modulus) in the near well region which was induced by 

the C02 injection. Overall, the lack of S-wave change confirms that the observed P- 

wave change is caused by fluid substitution of C02 for brine. The small change in 
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253 pressure (about 3 bars) has a very minimal effect on velocity (about 1-10 mls) due to 

254 the effective stress change. We can therefore interpret the following observations of ve- 

255 locity change in terms of C02 saturation. 1 ) The velocity change follows the dip of the 

256 stratigraphy. This observation is expected for C02 with buoyancy causing up-dip migra- 

257 tion. 2) The velocity change is not homogeneous between the wells, with a larger 

258 change, and therefore a larger residual C02 saturation, in the downdip half of the to- 

259 mogram. 3) The velocity change does not reach the actual top of the C-sand, which is 

260 in agreement with observed permeability reduction near the top of the sand. 4) The ve- 

261 locity change on the right half of the tomogram is somewhat layered with a larger 

262 change in the lower part (about 3 m thick) of the plume. This observation implies that 

263 the lower part of the plume has higher saturations, presumably due to the presence of a 

264 low permeability zone in the center or upper part of the plume. 

265 Quantitative estimation of C02 saturation (the fractional part of the pore space filled 

266 with C02)  from the change in seismic velocity is an ultimate goal, and such estimates 

267 can be obtained using a rock physics model. For our site, core studies typically used to 

268 build a rock physics model have not yet been performed and the unconsolidated sand 

269 limited core recovery. Similarly, well log measurement of seismic velocity, which could 

270 be closely tied to well log estimates of saturation (the RST log), failed to give useable 

271 results for post-injection in the injection zone. Nonetheless, quantitative C02 saturation 

272 estimates from seismic measurements using a rock physics model allow estimation of 

273 saturation in the interwell volume. Without site specific calibration we use results from 

274 similar high porosity sands such as used in Carcione et al. (2006). The resulting uncer- 
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tainty is difficult to quantify but is probably in the range of 10% in saturation (based on 

variation with model parameters). We have built a rock physics model using recent work 

of Hoversten et al. (2003) with data from Carcione et al. (2006) (using the Utsira sand) 

and a model of fluid mixing proposed by Brie et al. (1995) to estimate the CO saturation 

from the seismic velocity. The C02 saturation is shown in Figure 8 where see 

saturations are estimated at about 20% in the region near the injection well and de- 

crease to about 10% or less near the monitoring well. The C02 plume is about 5 m 

thick with the highest saturations (up to 20%) extending 15 m from the injection well. 

The lower half of the plume has higher concentrations, implying vertical heterogeneity 

(variation in permeability or porosity). The vertical variation is at the limit of the tomo- 

graphic resolution (2 m), so greater detailed interpretation of the vertical heterogeneity is 

not possible. The saturation values are less than those observed in the RST, although 

the RST is a near-borehole measurement, not necessarily representative of the interwell 

region, and the RST had calibration problems for measurements made after the seismic 

surveys (Hovorka et al. 2006). 

Interpretation of the VSP is focused on the large change in reflection amplitude and cal- 

culating this change as a function of offset from the injection well along each azimuth of 

a VSP source. Because we do not have an estimate of saturation directly from reflec- 

tion strength, we compare the VSP result to the numerical model estimate of saturation. 

Figure 9 shows the offset dependent reflection change for a single azimuth with a com- 

parison to the CO, saturation estimated at the same offset and azimuth using the 

TOUGH2 numerical flow model to estimate the spatial distribution of C02 saturation 



297 (Doughty et al. this issue). We see a good qualitative agreement of the plume extent, 

298 about 80 m radially. Figure 10 shows this same comparison on three azimuths, North, 

299 Northwest and Northeast. We see the agreement is good to the North, moderate to the 

300 Northeast and worse to the Northwest. Since the numerical model is laterally and azi- 

301 muthally homogeneous (allowing for formation dip), the disagreement indicates lateral 

302 heterogeneity imaged by the VSP which is not captured in the model. 

The large VSP reflection response was somewhat unexpected because of the thinness 

of the Cop plume (about 5-7 m thick at 1500 m depth), and uncertainty in the expected 

velocity change. To verify the VSP result is consistent with the velocity change meas- 

ured in the crosswell survey, we developed a numerical seismic model. The modeling 

used a 2-D elastic, finite-difference wave propagation code on a 201 by 652 grid with 5 

m grid points (1 km by 3.3 km) and a 30 Hz center frequency. The initial 2-D velocity 

structure was built using horizons mapped from previous surface seismic, velocities 

measured by the pre-injection VSP, and velocity and density measured by pre-injection 

well logs. VSP data was generated using this pre-injection model. Two 'post-injection' 

VSP data sets were then calculated. The 'time-lapse' VSP response was calculated us- 

313 ing the same processing as the field data, with the exception of amplitude calibration to 

31 4 a shallower reflection, which is unnecessary for numerical data with no shallow 

315 changes. 

31 6 To obtain the post-injection model, we first applied the change in velocity, as mapped by 

31 7 the crosswell tomogram, to the 30 m wide zone between wells. This result un- 
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derestimated the reflection amplitude change measured by the VSP. We then extended 

the velocity change beyond the wells using a 400 mls velocity decrease (typical of that 

seen in the crosswell tomogram) applied to a 4 m thick zone over the horizontal dis- 

tance predicted to contain C02 by the numerical flow modeling. This result overesti- 

mated the reflection amplitude change. These two modeled time-lapse VSP responses 

are shown in Figure 11, where we see that they bound the field measurement. This re- 

sult demonstrates that velocity changes, on the order of those imaged by crosswell to- 

mography, when they are extended beyond the interwell region, are able to generate 

the large reflection amplitude change observed in the VSP. 

328 Conclusions 

Sixteen hundred tons of C02 were injected into a brine aquifer at a depth of 1500 m at 

the Frio pilot site. Borehole seismic data, both VSP and crosswell, were acquired. 

Analysis of these time-lapse surveys provided in-situ estimates of the spatial distribution 

of injected Cop, with high resolution tomographic imaging between injection and moni- 

toring wells (crosswell), and lower resolution VSP reflection imaging at larger distances, 

on different azimuths. The crosswell tomogram shows seismic P-wave velocity de- 

creases up to 500 mls, while the S-wave velocity shows minimal change. The spatial 

change in P-wave velocity can be interpreted for details of the C02 saturation distribu- 

tion, including buoyant up-dip flow with some layering and less change in velocity on the 

up-dip half of the tomogram, indicating permeability heterogeneity. Initial development of 
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a rock physics model allows estimates of C02 saturation between the wells from the 

crosswell tomogram. The VSP results, using changes in reflection amplitude from the 

injection horizon, show a large increase (up to 70%) and show azimuthal variation, also 

indicating C02 flow heterogeneity. Numerical modeling of the VSP response uses the 

crosswell measurements to show that velocity changes seen in the interwell volume can 

cause the large response in the VSP reflectivity change if the velocity change is ex- 

tended beyond the wells. It is reasonable to infer that the large reflection response seen 

in the VSP would allow surface seismic monitoring of similar Cop plumes, allowing 

monitoring of small plumes away from boreholes. This result demonstrates that small 

C02 plumes (such as those migrating away from a major injection) are detectable in sa- 

line aquifers. 
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425 Figure Captions: 

Figure 1 a (left) Schematic of VSP data acquisition with direct raypaths (yellow), reflected 
raypaths (blue), and boreholes (yellow and purple vertical lines) 

1 b) (right) Schematic of crosswell acquisition with sensors (green) and sources (red) in 
separate boreholes (yellow and purple) with raypaths in yellow. 

Figure 2. Sensor string deployment depths with each line segment representing one 
deployment. FFID is the field file identification number. For the crosswell deployments 
only the bottom half of the sensors were recorded. 

Figure 3. VSP shot point locations along with the two wells (in light blue). 

Figure 4. VSP reflection amplitude comparison. A large increase in amplitude is ob- 
served for the Frio reflection. The control reflection is the one used for amplitude nor- 
malization between surveys. 

Figure 5. Comparison of zero-offset gathers from the crosswell survey. A decrease in 
travel time within the injection zone can be observed. 

Figure 6. Tomographic image of P-wave velocity change (left) and S-wave velocity 
change (right) from the crosswell survey. 

Figure 7. Detailed view of the injection region of the P-wave tomogram along with RST 
logs for each well. The RST log had multiple runs with the change shown in yellow. 

Figure 8. C02 saturation estimated from the P-wave velocity change using a rock phys- 
ics model. 

Figure 9. VSP reflection amplitude change compared with C02 saturation estimated by 
flow modeling, as a function of offset from the injection well on the Northern azimuth. 

Figure 10 VSP reflection amplitude change compared with C02 saturation estimated by 
flow modeling, as a function of offset from the injection well on three azimuths. 

Figure 11. Numerical modeling of VSP reflection amplitude change compared to field 
data. The model using the predicted plume extent extendes the velocity change over 
more than 130 m laterally, While the variable change model only had velocity change 
between the wells (about 30 m). 
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Figure 5. Comparison of zero-offset gathers from the crosswell survey. 
A decrease in travel time within the injection zone can be observed. 
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Figure I I. Numerical modeling of VSP reflection amplitude change compared 
t o  field data. The model using the predicted plume extent extendes the 
velocity change over more than 130 m laterally, While the variable change 
model only had velocity change between the wells (about 30 m). 






