Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

SPUTTERING -EROSION ESTIMATES FOR NBETF BEAM DUMPS

Permalink

<https://escholarship.org/uc/item/9tk667pg>

Author

Wekhof, A.

Publication Date

1981-10-01

Peer reviewed

LEL--13515 DE82 004558

Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Accelerator & Fusion Research Division

Presented at the 9th Symposium on Engineering Problems of Fusion Research, Chicago, IL, October 26-29, 1981

SPUTTERINOEROSION ESTIMATES FOR NBETF BEAM DUMPS

A. Wekhof and K.H. Berkner

October 1981

A. Wekhof and K. H. Berkner

Lawrence Berkeley Laboratory University of California Berkeley, California 94730

Abstract

To stop multi-second high-energy hydrogen or deuterium beams in neutral injection systems,
thin-skin-actively-cooled-dumps-made-of-Cu,-Mo,-or-W are contemplated. For the Neutral Beam Engineering
Test Facility (NBETF), the design goal for the life of the beam dumps is 25,000 thirty-second pulses,
with a fluence of 10²³ deuterons/cm². From a review of the literature on sputtering and blistering, we estimate that an erosion allowance of 0.13 cm for Cu, 0.02 cm for Mo, and 0.004 cm for W has to be incor orated in the beam-dump design.

I. Introduction

The development of high-energy hydrogen and deuterium beams for neutral injection systems has to deal not only with the problem of generating and directing such beams but also with the problem of how to stop them. For example, the Neutral Beam
Engineering Test Facility (N"ETF) at the Lawrence
Berkeley Laboratory has been designed for the development of deuterium neuiral-beam sources with energies up to 170 keV, currents of 65 A, and pulse
lengths uf 30 sec with a 10% duty cycle. I The long pulses dictated the choice of actively cuoled heat absorption panels - thin metal surfaces backed by $\frac{1}{2}$ A nticipated peak power densities normal to the beam and the beam as A and A as A and A and A are as A and A and A are as A and A and the during of the contract in the surfaces to
the design value of 2 kW/cm², will be exposed to
fluxes of 0.7 x 10¹⁷ deuterons/cm²-sec for 170
keV beams or 1.4 x 10¹⁷ deuterons/cm²-sec for 80 $dev = 2$ beams (indences of $\frac{2}{5}$ to $\frac{4}{5}$ $\frac{2}{5}$ in expected and pulses . The NBETF design goal for part if the is 25,000 beam puises. Which an expected
cumulative fluence of 10²³ cm⁻² during the life or a panel, erosion of the thin surface by deuteron
bombardment has to be considered in the design of the heat absorption panels, along with the usual heat-transfer, thermal-stress and water-channelerocion considerations. Our goal was to specify an erosion allowance - the additional thickness of material required on the surface facing the beam to compensate for the erosicn expected after a fluence of 10^{23} deu'erons/cm² - for the panels.

The candilate materials for the heat absorption panels are Cu, Mo, and W because of their high
thermal conductivity. We were unable to find, in the literature, sputtering data directly applicable to the design conditions of thes. dumps. In this paper we consider information in the literature on the fluence and angle-of-incidence dependence of sputtering and the exroliation of blisters. From this we estimate on erosion allowance for the NBETF beam dumps.

This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development and Technology Division, of the U.S. Department of
Energy under Contract No. W-7405–EN3–48.

II. Sputtering at Normal Incidence

Recent review articles³⁻⁸ on sputtering by light ions summarize the current status in detail. rfost muttering measurements have been made for ncidence. For Mo and W experimental results norma lable only to 10 keV;³ for Cu results
reported to several MeV.⁵ A ical model can be used to extrapolate to $nerg$ ies;⁸ the energy dependence tends
at high energies. The fluences used for measurements for hydrogen and deuterium
• quite high - typically 1020 - 1021 \overline{c} - because of the small sputtering coefficients. Sputtering coefficients for Cu, Mo, and W bombarded by H⁺ or D⁺ are shown in Fig.
and W bombarded by H⁺ or D⁺ are shown in Fig. are havebr semi-en
higher
toward E⁻ sput'erir tend to

Fig, 1: Sputter yields (atoms/incident ion) for
normal-incidence H⁺ and D⁺ bombardment of Cu, Mo, and W. The solid lines represent experimental data
from the literature: H* on Cu (Refs. 9, 10); D*
on Cu (Refs. 11, 12); H*, D* on Mo (Ref. 13);
H*, D* on W (Refs. 4, 14). The dashed linns are extrapolations.

Sputtering rates are influenced by surface roughness of the Larget. In general, sput aring rates for polished surfaces increase with fluence (by as much as a factor of 4) as the surface is roughened

by sputtering,' but appear to reach a steady-state
value for fluences above 10¹⁹ cm"². For W a
decrease in sputtering with increased fluence has been observed/ The sputtering coefficients shown in Fig. 1 are the results of high-fluence measurements which should be representative of steady-state (rough-surface) conditions applicable to
fluences as high as the 10²³ cm⁻² of interest for the beam dumps.

III. Angular Dependence of Sputtering

For sputtering by heavy ions, the sputtering
yield increases with a cos⁻¹ dependence, where is the angle with respect to normal incidence. For near-grazing incidence (0 .85⁰) the sputtering
yield falls below the cos^{-l} value. Similar behavior is observed for sputtering by hydrogen and
deuterium from low and intermediate Z targets.^{3,6}
For Mo¹⁶ (Fig. 2) and W¹⁷ the sputtering yield
can be 3 to 4 times greater than the cos⁻¹
relation would predict contributions from interactions of not only incoming ions but also reflected ions that suffer a hard
collision near the surface-3 Results for the
angular dependence of sputtering are limited to energies below 8 keV. Since the reflection coefficient decreases at high energies,¹⁸ we would expect the deviation from the cos^{*'} dependence to

Fig. 2: The variation of sputtering yield with angle
of incidence for H*, D⁺ on Mo (Ref. 16). The
dashed line indicates a cos^{-l} dependence.

IV. Blistering and Exfoliation

The bombardment of surfaces by energetic hydrogen, deuterium, blisters, which at
rupture, exfoliate, rupture, deuterium, and helium beams creates sufficiently high fluences and contribute to surface

erosion, the relevant parameters for blistering are
discussed, in the review article by Das and
Kaminsky:¹⁹ The formation, size, and exfoliation
of blisters depends on the projectile ion and its
energy, the permeability or D⁺ bombardment is not as severe as for He⁺ and most of the blistering studies have been with He beams. Blisters range in size from 10 to 1 mm and have a skin thickness of the order of 10-³ mm.
Blisters form at fluences of 10¹⁷ - 10¹⁹ cm⁻². As blisters rupture and exfoliate with increased fluence, new blisters of smaller diameters appear; this process may continue for 3-6 generations, until the surface becomes porous and blister formation ceases (usually at a fluence about
ten times greater than that for the onset of
blistering 18 Thus, erosion by blistering is blistering).¹⁸ Thus, erosion by blistering is a
self-limiting effect.

Blistering of Cu 7,21 and Mo¹⁹,22,25 has been
observed for H⁺ and D⁺ bombardment and is not considered to be a major contributor to surface
erosion.4,7,19

V. Eros ion Estimates

The NBETF will have the capability of producing deuterium beams with energies up to 170 keV, but for estimating *an* erosion allowance operation at lower energies is more significant because: 1) The sputtering yield decreases with increasing energy (Fig. 1). *2)* For optimum system efficiency, the panels will be oriented so that the power flux is *2* kW/cm²: this results in higher fluences at lower energies. For our estimates of the erosion allowance we have chosen 80 keV deuterium beams incident on the beam-dump panels inclined 85⁰ to reduce the power
density to 2 kW/cm². For these conditions
(near-grazing incidence) the flux is 1.4 x 10¹⁷ deutercns/cm²-sec, and the fluence integrated over
the design life of the panel (25,000 pulses of 30-sec
duratic.i is 10²³ cm-²

The sputtering results reported in the literature and shown in Fig. 1 were obtained at fluences of
10²⁰ to 1J²¹ cm⁻² (Sect. II). These fluences *are* about two orders of magnitude higher than those required for blister formation, henre well above the fluence required for the cessation of exfolation (Sect. IV). The sputtering results of Fig. 1, which were determined from the weight loss of the target, should therefore include exfoliation losses. The
variation with angle-has-been assumed to be cost¹ ; as discussed in Sect. III, this is a poor assumption for the low-energy results that have been reported,
but should improve at higher energies as reflection becomes less significant.

The erosion estimates are presented in Table 1. For Cu we estimate a loss of about 0.13 cm after a
fluence of 10²³ cm⁻². This is a significant loss and must be considered in the design; the extra thickness increases the temperature drop frum the
surface to the water interface and thus increases the thermal stresses and decreases the fatigue life of the panels.

For a given set of conditions, the lack of knowledge of the angular dependence of the sputtering coefficient is the main contributor to the uncertainty in the erosion estimate. However, for a development facility such as NBETF there are also
large uncertainties in the anticipated energies and
fluences. At 170 keV both the fluence and the
sputtering yield will be smaller, and the erosion

estimates will be reduced by one-third to one-fourth of the values in Table I. If the assumed beam optics are not achieved, tne power densities will be
reduced, and the panels will not be inclined as
steeply to achieve 2 kH/cm² - this will result in a reduced sputtering coefficient. On the other hand, neutra l beams *are* usuall y an admixture of hydrogen or deuterium atoms of different energies: The molecular
ions -D\$ and -D\$ produce -D⁰ at one-half and one-third the energy of D° produced from D° (at two
and three times the flux). These low-energy components also have larger sputtering coefficients than the full-energy component, since the sputtering coefficient varies roughly inversely with the beam energy. This combination of increased flux and increased sputtering yield for the low energy
fragments increases the erosion of the panels significantly. For example, a D*/D3/D3 mix of 85%/10%/5% could result in an erosion rate 1.5 times greater than a pure D⁺ beam.

In soliciting development contracts for beam dumps we have specified erosion allowances of C.07, 0.01, and 0.01 cm 'the erosion allowance for 170 kV operation) for Cu, Mo, or W panels. We plan to implement an erosion monitoring program for the panels used on NBETF, possibly exchanging panels from high-fluence locations with those in low-fluence locations if surface erosion becomes significant.

VI. Acknowlegements

This work was supported by the Director, Office of Energy Research, Office of Fusion Energy, Development and Technology Division, of the U. S. Department of Energy under Contract No. W-7405-ENG-4R.

References

- Proposal to Upgrade the Neutral Beam System Test
Facility (NBSTF) to a 170 keV, 65 A, 30 sec. 10% Duty Factor Neutral Beam Ingineering Test Facility (NBETF), Lawrence Berkeley Labo. tory Report LB:. PUB 5038 Rev. 1 (1980).
- J.A. Paterson, G. Koehler, and R.P. wells, The
Design of Multi-Megawatt Actively Coo*led S*eam Dumps for NBETF," Paper 6509, uhis conference.
- 3. J. Roth, J. Bohdansky, and W. Ottenberger. ' ata on Low Energy Light Ion Sputtering," Max-Planck-Institut fur Plasmaphysik Report IPP 9/26 , May, 1979.
- 4. B.M.V. Scherzer, R. Behrisch, and J. Roth, Pro Intern. Symp. on Plasma Wall Interact Julich , 1976 (Pergan. Press , Oxford, 1977),p. ns,
- C.F. Barnett et. al., <u>Atomic Data for Controlled</u>
Fusion Research, Vol. II, ORNL-5207, Oak Ridge, $\overline{1977}$.
- J.B. Roberts, <u>Proc. Workshop on Sputtering Caused</u>
by Plasma (Neutral Beam) Surface Interaction,
Argonne, 1979. U.S. DOE Report CONF-790775 (1979) p. 7-1.
- K.L- Wilson and W. Bauer, Ref. 6, p. I?- ¹ .
- 8. D.L. Smith, J. Nucl. Mater. 75, 20 (1978).
- 9. C.E. Kenknignt and E.K. Wehmer, Appl. Phys. 35, 322 (1964).
- 10. R. Weissman and R. Behrisch, Radiit. Eff. 19, 69 (1973).
- 11. O.C. Yonts, C.E. Normand and D.E. Harrison, Jr., J. Appl. Phys., 31, 447 (1960).
- 12. M. Kaminsky, Adv. Mass. Spectrom. 3, 69 (1966).
- H., Bay, J. Roth and J. Bohdansky, J. Appl.
Ph. , <u>48</u>, 4722 (1977).
- D. Rosenberg and G.K. Wehner, J. Appl. Phys., 33, 134? (196/).
- 15. H. (echsner, Appl. Pnys. 3 185 (1975).
- 16. H.L. Bay and J. Bohdansky, Appl. Phys. 19, 421 (1979).
- 17. H.L. Bay, J. Bohdansky, W.O. Hofer, and J. Roth, Appl. Phys. 21, 327 (1930)
- 18. H. Verbeek, J. Appl. Phys. 46, 2981 (1975).
- 19. S.K. Das and M. Kaminskv, in Radiation Effects on So! id Surfaces, M. Kaminsky, ec. (Advances in Chemistry Series 158) (1976).
- V.M, Gusev, M.I. Guseva, Yu. V. Marfynenko, A.N.
Mansurova, V.N. Morozov, and O.i. Cheinokov, J. fluc1. Ma*er. 35 and 86, 1101 (1979).
- 2.. F.R. Anmstrong, J. Nucl. Mater. 84, 112 (1979).
- 22. H. Verbeek 36d W. Eckstein, in Applications of **iq,"** Ion Beams Lc Metals , S.T. Picraux , E.P. Eer IPP Msse , and 1970), 597. V. L . Vook, eds. (Plenum Press , N. Y. ,
	- 23. G.J. Thomas and W. Bauer, J. Nucl. Mater. 53, 134 (19/4).

Table I .

Frosion estimates for 80 keV deuterium beam
.85⁰ to reduce the power density to 2 kW/cm²,
integrated over the design life of the panels (25, incident on beam-dump panels. The angle of incidence is
h flux is 1.5 x 10¹⁷ deuterons/cm²-sec and the fluence
JC pulses of ₃0-sec duration) is 10²³ cm⁻².

