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APS/123-EQD

Reduced Basis Method for Nanodevices Simulation

George S.H. Pau∗
Lawrence Berkeley National Laboratory,

1 Cyclotron Road MS 50A-1148,
Berkeley, CA94720.

(Dated: May 23, 2008)

Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled
Schrödinger-Poisson system of equations, is usually computationally intensive. Here, we propose
coupling the reduced basis method with the subband decomposition method to improve the over-
all efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy
sampling algorithm, we are able to design an algorithm where the computational cost is reduced
significantly. In addition, the computational cost only grows marginally with the number of grid
points in the confined direction.

PACS numbers: 02.70.-c, 75.40Mg, 73.23.Ad

I. INTRODUCTION

As size of electronic devices shrinks to nanometer scale, ballistic charge transport becomes increas-
ingly important in describing the transport phenomena in these devices [1]. However, ballistic charge
transport simulation is usually computationally intensive — it involves self-consistently solving a
coupled Schrödinger – Poisson system of equations [2–4]. Described in greater details in Section II,
the iterative procedure involves repetitively solving a Schrödinger equation with open boundary con-
ditions [2] at many different energy states within each iteration. The large number of states required
to accurately determine the distribution of the electron density and the number of self-consistent
iterations needed to achieve convergence lead to the large computational cost usually associated
with ballistic charge transport simulation. A more efficient method to solve the Schrödinger equa-
tion can thus greatly improve the overall efficiency of ballistic charge transport simulation. Note
that another popular approach to ballistic transport simulation involves solving the non-equilibrium
Green’s function equations (NGEF) – Poisson system of equations [5, 6]. In this paper, we will con-
centrate on the approach based on the Schrödinger equation although the methodology we describe
can potentially be applied to the approach based on the NGEF formalism as well.

The finite difference method and the finite element method are most widely used to approximate
the Schrödinger equation due to their flexibility [3, 4, 7–9]. However, a direct application of these
methods, especially in higher spatial dimensions, can lead to a large algebraic system of equations,
of which the solution is computational expensive. The subband decomposition method [10, 11] or
more commonly known as the coupled-mode approach [5, 12] attempts to reduce the computational
cost by decomposing the Schrödinger equation into two smaller subproblems, resulting in a bounded
Schrödinger equation in the confined directions and an open Schrödinger equation in the transport
direction. In particular, by first solving the bounded Schrödinger equation at different locations
along the transport direction, we are able to obtain a smaller algebraic system of equations for the
open Schrödinger equation, which can then be solved more efficiently; the procedure is then effective
in the limit where we need to solve the Schrödinger equation at large number of different energy
levels. The efficiency can be further improved by a WKB approximation of the open Schrödinger
equation [11]. Nevertheless, solving the bounded Schrödinger equation, which involves solving an
eigenvalue problem at different locations along the transport direction, can still be potentially ex-
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pensive, especially when strong confinement of the electron demands a finely discretized simulation
domain. This paper proposes an efficient method based on the reduced-basis approach to reduce
the computational cost of solving the bounded Schrödinger equation.

The reduced basis method is a model-order reduction technique which exploits dimension reduc-
tion afforded by the smooth and low-dimensional parametrically induced solution manifold. Instead
of using general basis sets such as finite element, an approximation to a solution of an underlying
parameterized partial differential equation is obtained by a projection onto a finite and low dimen-
sional vector space spanned by a basis sets consisting of solutions at a number of judiciously selected
parameter points. The reduced basis method was first introduced in the late 1970s in the context of
nonlinear structural analysis [13, 14] and subsequently abstracted, analyzed, and extended to a much
larger class of parameterized partial differential equations [15–19]. In the more recent past the re-
duced basis approach and in particular associated a posteriori error estimation procedures have been
successfully developed for many different types of PDEs that are affine in the parameters [20–26],
general nonaffine PDEs [27, 28], and linear eigenvalue problem [21, 29]. We will elaborate further the
methodology in Section III. In particular, we extend the methodology described in [29] to eigenvalue
problem that is nonaffine in the parameter, and describe how reduced basis methodology can be
incorporated into the overall solution procedure for the Schrödinger – Poisson system of equations.

This paper is organized as follows. We first describe the problem that we would like to solve.
To simplify the presentation of the methodology, we will use the double-gate MOSFET as a model
problem. We then provide the weak formulation of the equations involved and briefly describe the
subband decomposition method. This serves as a platform for us to describe the reduced basis
method, and how it fits into the overall solution procedure. We conclude with some numerical
results and comparison to the subband decomposition method.

II. PROBLEM STATEMENT

With the effective mass approximation [30], the electron is described by a wavefunction ψ(E)
∈ H1(Ω) ⊂ C2 which for a given E, satisfies the following schrödinger equation:

−∇ ·
(

1
2m∗
∇ψ(E)

)
+ Veff(ψ)ψ(E)− Eψ(E) = 0, (1)

with appropriate open boundary conditions [2]. The potential Veff ∈ L2(Ω) is given by

Veff(ψ) = −φ(ψ) + Vxc(ψ) + Vb, (2)

where φ ∈ H1(Ω), Vxc ∈ H1(Ω) and Vb ∈ L2(Ω). We ignore the exchange-correlation term Vxc for
simplicity but the methodology described will easily accommodate the Vxc term; and Vb describes
the potential gap between the insulator and the semiconductor. The potential φ in turn satisfies a
Poisson equation given by

−∇ · [ε∇φ] = −n(ψ) +ND, (3)

with appropriate boundary conditions. Here, ε is the dielectric function of the materials, n(ψ) is the
density of free electrons, and ND is the concentration of donor impurities; we ignore contribution of
hole and acceptor impurities for simplicity. Equation (1) and (2) are thus coupled through the term
n(ψ), which can be defined as

n(ψ) = C

∫ ∞
0

f−1/2

(
Ef − E
T

)
|ψ(E)|2dE, (4)

where C is a model-dependent coefficient and f−1/2(·) is the Fermi-Dirac integral of order −1/2.
Here, Ef is the fermi level of the electrons entering the system.
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FIG. 1: A model problem based on the double-gate MOSFET.

To solve the above coupled system of equations, an iterative scheme is needed. We utilize a relaxed
fixed-point method. Starting from an initial guess n0, we construct the sequence nk where

nk = αnk−1 + (1− α)nf ,

α is an adjustable parameter to improve convergence, and nf is determined from (4) with ψk

computed from (1) with Veff = φk + Vb. We note that (4) must be evaluated numerically, and
thus (1) must be evaluated many times. We then solve (3) for φk+1 with the new value of nk.
The procedure is repeated until ‖φk − φk−1‖ ≤ εtol, where εtol is our desired tolerance. Clearly,
even if numerical approximation of (1) is not particularly expensive, the cumulative effects due to
the iterative nature of the algorithm and numerical approximation of (4) can be computationally
challenging.

For the purpose of this paper, we will consider a 2-dimensional nanodevice (a double-gate MOS-
FET) shown in Figure II. Given a source potential, VS , a drain potential VD and a gate potential
VG, we would like to determine the current flow I in the x1-direction. The simulation domain
Ω ≡ [0, a]× [0, b] ⊂ R2 can be further divided into 5 subdomains denoted by Ωi, i = 1, . . . , 5; (x1, x2)
denotes a point in Ω. The material properties we will be using is that of Si in Ω1, Ω2 and Ω3,
and SiO2 in Ω4 and Ω5. In addition, Ω2 and Ω3 are doped to provide free carriers for the charge
transport. We assume the crystal structure of the device is oriented such that x1 is in the 〈100〉
direction and x2 is in the 〈001〉 direction. The axes are then aligned with the principal axes of the
six equivalent ellipsoids of the conduction band. Based on the effective mass approximation, we then
have three configurations for m∗ ≡ (m∗1,m

∗
2,m

∗
3) and

∇ ·
(

1
2m∗
∇ψ
)

=
∂

∂x1

(
1

2m∗1

∂

∂x1
ψ

)
+

∂

∂x2

(
1

2m∗2

∂

∂x2
ψ

)
+

∂

∂x3

(
1

2m∗3

∂

∂x3
ψ

)
.

The three configurations of m∗ are given by (ml,ml,mt), (mt,ml,ml), (ml,mt,mt); mt and ml are
the transverse and longitudinal masses of the material. We assume mt and ml for Si and SiO2 are
the same. Finally, we assume we have a two dimensional electron gas with a parabolic dispersion
relation in the x3 direction.

A. Abstract Formulation

We now derive the weak formulation for (1) and (3) for the model problem described in Section II.
For (1), the weak formulation is: given E ∈ R, find ψ ∈ Y ≡ H1(Ω) such that
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1
2m∗1

∫
Ω

∂ψ

∂x1

∂v∗

∂x1
+

1
2m∗2

∫
Ω

∂ψ

∂x2

∂v∗

∂x2

+
∫

Ω

ψVeffv
∗ − E

∫
Ω

ψv∗ =
1

2m∗1

∫
ΓS∪ΓD

∂ψ

∂x1
v∗, ∀v ∈ Y. (5)

where ΓS and ΓD are respectively the boundaries in contact with source and drain electrodes. Based
on the quantum transmitting boundary method [2], we expand the R.H.S of (5): for g = S,D,∫

Γg

∂ψ

∂x1
v∗ =

Ng∑
m=1

i 2agmk
g
m

∫
Γg

χgmv
∗ +

∫
Γg

χgmv
∗
∫

Γg

χgmψ

−
∞∑

m=Ng+1

kgm

∫
Γg

χgmv
∗
∫

Γg

χgmψ, (6)

where (ξgm, E
g
m), 1 ≤ m ≤ ∞ are the eigenstates along Γg; kgm =

√
2m∗(E − Egm); Ng is the largest

m for which E > Egm, bgm, 1 ≤ m ≤ Ng are the coefficients of outgoing traveling-wave states, and
bgm, m > Ng are coefficients of the evanescent states. For a particular problem, agm is a parameter
that we can vary while bgm and Ng is determined as part of the solution.

To facilitate the variational formulation, We now define the following functional forms : ∀ w ∈ Y ,
v ∈ Y , V ∈ L2, χg ∈ H1

0 (R),

a0(w, v;α) =
∫

Ω

α∇w ∇v∗, (7)

a1(w, v;m∗) =
1

2m∗1

∫
Ω

∂w

∂x1

∂v∗

∂x1
+

1
2m∗2

∫
Ω

∂w

∂x2

∂v∗

∂x2
, (8)

a2(w, v;V ) =
∫

Ω

w V v∗, (9)

a3(w, v) =
∫

Ω

w v∗, (10)

c(w, v;χg) =
1

2m∗1

∫
Γg

χgw

∫
Γg

χgv∗, (11)

b(v;χg) =
1

2m∗1

∫
Γg

χgv∗. (12)

The abstract formulation is then: given E ∈ R, find ψ ∈ Y that satisfies

a1(ψ, v;m∗) + a2(ψ, v;Veff)− Ea3(ψ, v)

−
∑
g=S,D

Ng∑
m=1

ikgmc(ψ, v;χgm) +
∑
g=S,D

∞∑
m=Nk+1

kgmc(ψ, v;χgm)

= −
∑
g=S,D

Ng∑
m=1

i 2agmkgmb(v;χgm), ∀v ∈ Y. (13)

For (3), the weak formulation is: given n(ψ), the solution φ ∈ H1(Ω) is given by∫
Ω/Γ0

ε∇φ∇v∗ +
∫

Γ0

ε∇VG∇v∗ =
∫

Ω

(−n(ψ) +ND)v∗, ∀v ∈ Y,
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where Γ0 is the boundary in contact with gate electrode. We have imposed the following boundary
conditions:

φ|Γ0 = 0, and
dφ

dx1

∣∣∣
ΓS∪ΓD

= 0.

Let f(v;V ) =
∫

Ω
V v∗, and h(v;V ) =

∫
Γ0
ε∇V∇v∗. Then, the abstract formulation is: given n(ψ),

the solution φ ∈ Y is given by

a0(φ, v; ε) = f(v;−n(ψ) +ND)− h(v;VG), ∀v ∈ Y. (14)

For the current problem where we have assumed a 2-dimensional electron gas, the charge density
n is given by [6]

n(ψ) =
2
π

√
2m∗3T
π

∫ ∞
0

f−1/2

(
Ef − E
T

)
|ψ(E)|2dE, (15)

and this is sum over the three different configuration of m∗. We assume Ef = 0 at zero bias. Finally,
the current intensity I is given by

I =
∫ b

0

j1(x1, x2;ψ)dx2 (16)

where j1, the current density in the x1 direction, is defined as

j1(ψ) =
1
m∗1

2
π

√
2m∗3T
π

∫ ∞
0

Im
(
ψ̄(E)

∂ψ(E)
∂x1

)
f−1/2

(
Ef − E
T

)
dE. (17)

Numerical approximation of (13) – (14) based on, say, finite element method, can however be
computationally very expensive since (13) must be solved many times in a single iteration in order
to numerically determine the density n. In particular, suppose we substitute the unbounded upper
limit in (15) by Emax and subdivide the interval [0, Emax] into nE intervals. We then use Gauss
quadrature formulation within each interval to arrive at the following approximation of n:

n(ψ) ≈ 2
π

√
2m∗3T
π

∑
g=S,D

Ng∑
m=1

nE∑
i=1

Q∑
q=1

f−1/2

(
Ef − Eiq

T

)
|ψ(Eiq; a

g
m)|2wq (18)

where Ng is the number of modes considered at Γg; a
g′

m′ = 1 if m′ = m and g′ = g, and 0 otherwise;
Eiq are the quadrature points in interval i; wq is the quadrature weight; and Q is the number
of quadrature points used per interval. Then, in each iteration, the maximum number of times
we must solve (13) is (NS + ND)nEQ. This can be somewhat smaller by excluding E for which
f−1/2((Ef − E)/T ) is negligibly small.

B. Subband Decomposition Approach

The subband decomposition method is first described in [5, 10]. Assuming that the wavefunction
is bounded in the x2-direction, we can write Y as X1 × X2 where X1 = H1(Ω1 ≡ [0, a]) and
X2 = H1

0 (Ω2 ≡ [0, b]). Then, we can express ψ ∈ Y as

ψ(x;E) =
∞∑
i=1

ϕ(x1;E)ξi(x2;x1), ϕ(x1;E) ∈ X1, ξi(x2;x1) ∈ X2. (19)
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Here, ξi(·;µ ≡ x1) ∈ X2, i = 1, . . . ,∞ are solutions to the following eigenvalue problem:

ã1(ξi(µ), v;m∗2) + ã2(ξi(µ), v;Veff(µ)) = λi(µ)ã3(ξi(µ), v),
1 ≤ i ≤ ∞, ∀v ∈ X2, (20)

ã3(ξi(µ), ξj(µ)) = δij , 1 ≤ i, j ≤ ∞; (21)

where Veff(µ) = Veff(x2;µ ≡ x1); and

ã1(w, v;α) =
∫

Ω2

1
2α
∇w∇v, ã2(w, v; t) =

∫
Ω2
x t v, ã3(w, v) =

∫
Ω2
w v, (22)

for w ∈ X2, v ∈ X2 and t ∈ L2(Ω2).
Substituting (19) into (13), we obtain a one dimensional problem for ϕi(E):

∞∑
i=1

1
2m∗1

{∫
Ω1

dϕi(E)
dx1

dt

dx1
ã3(ξi(x1), ξj(x1)) +

∫
Ω1

dϕi(E)
dx1

t(x1)ã3(ξi(x1),
∂ξj
∂x1

(x1))

+
∫

Ω1
ϕi(x1;E)

dt(x1)
dx1

ã3(
∂ξi
∂x1

(x1), ξj(x1))

+
∫

Ω1
ϕi(x1;E)t(x1)ã3(

∂ξi
∂x1

(x1),
∂ξj
∂x1

(x1))
}

+
∫

Ω1
(λi(x1)− E)ϕi(x1;E)t(x1)δij −

∑
g=S,D

Ng∑
m=1

ikgm
ϕi(xg)t(xg)

2m∗1
δmiδmj

+
∑
g=S,D

Ng∑
m=1

kgm
ϕi(xg)t(xg)

2m∗1
δmiδmj

= −
∑
g=S,D

Ng∑
m=1

i2agmkgm
t(xg)
2m∗1

δmj , ∀t ∈ X1, 1 ≤ j ≤ ∞. (23)

This is simply the weak form for the following one-dimensional Schrödinger equation [10]:

− d

dx1

(
1

2m∗1

d

dx1
ϕi

)
−
∞∑
j=1

aij(x1)
m∗1

d

dx1
ϕj −

∞∑
j=1

(
bij(x1)
2m∗1

− λiδij + E

)
ϕj = 0, (24)

for i = 1, . . . ,∞ with the appropriate open boundary condition; aij(x1) =
∫

Ω2
ξi(x1) {∂ξj(x1)/∂x1}

and aij(x1) =
∫

Ω2
ξi(x1){∂2ξj(x1)/∂x2

1}. It is further found that only finite number of ξi is needed,
which we denote as ne. If these ne ξi(x1) are known, this one-dimensional problem can be solved
very efficiently.

To achieve self-consistency, each fixed point iteration now consists of three parts: (i) determination
of the subbands ξi(x2;x1), 1 ≤ i ≤ ne for finite points in Ω1, (ii) determination of n(ψ) by solving
(23) for (NS+ND)nEQ different combination of E and agm, and (iii) determination of φ(ψ) by solving
(14) given n(ψ). In [10], finite element method is used to approximate the solutions at all stages
of the algorithm. It is hope that the computational overhead incurred in part (i) will significantly
reduce the computational cost of solving the open Schrödinger equation needed to determine the
electron density. However, part (i) can be computationally expensive, especially if very fine mesh is
needed to resolve the strong confinement of the electrons in the x2-direction or when (20) must be
solve at large number of points if finer mesh is needed in the x1-direction. Our goal is to speed-up
the determination of ξi for any given x1 through the reduced basis method.

Before we proceed, we describe how we can determine ∂ξi/∂µ. Let ∂ξi/∂µ ∈ X2. Then, by taking
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FIG. 2: ξ1 and ξ8 for three different values of x1 based on FE approximation for VD = 0.015 .

the derivative of (20) with respect to µ, we obtain

ã1(
∂ξi
∂µ

(·;µ), v;m∗2) + ã2(
∂ξi
∂µ

(·;µ), v;Veff(·;µ))− λi(µ)ã3(
∂ξi
∂µ

(·;µ), v)

= − ã2(ξi(·;µ), v;
∂Veff(·;µ)

∂µ
) +

dλi(µ)
dµ

ã3(ξi(·;µ), v),

1 ≤ i ≤ ∞, ∀v ∈ X2. (25)

In addition, by letting v = ξi, and invoking (20), we obtain

dλi(µ)
dµ

= ã2(ξi(·;µ), ξi(·;µ);
∂Veff(·;µ)

∂µ
). (26)

Finally, by substituting (26) into (25), we can solve for ∂ξi/∂µ. At present ∂Veff/∂µ is computed
using a difference formula. In Appendix A, we describe a formulation that is more consistent with
the finite element approximation space of φ; it however leads to a higher computational cost. We
also note that since Vb does not depend on x1, ∂Veff/∂µ = −∂φ/∂µ .

III. REDUCED BASIS METHOD

We now present the reduced basis formulation for (20). Figure 2 shows the variation of ξ1 and
ξ8 for several different values of x1. The variation is small but nontrivial, and we can discern
a smooth variation of ξi with respect to x1. This suggests that reduced basis method can very
efficiently approximate ξi. This section describes how ξi and ∂ξi/∂x1 can be approximated by the
reduced basis method. Let µ ≡ x1, and D ≡ Ω1. In additional, for notational convenience, we have
ξi(µ) = ξi(x2;µ), φ(µ) = φ(x2;µ), dξi(µ) = ∂ξi(x2;µ)/∂µ and dφ(µ) = ∂φ(x2;µ)/∂µ.
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A. Approximation Spaces

We first introduce nested sample sets SN = (µ1, . . . , µNs), 1 ≤ Ns ≤ Ns,max and define the
associated nested reduced-basis spaces as

WN = span {ξi(µj), 1 ≤ i ≤ ne, 1 ≤ j ≤ Ns}, 1 ≤ Ns ≤ Ns,max,

= span {ζn, 1 ≤ n ≤ N ≡ Nsne}, 1 ≤ Ns ≤ Ns,max; (27)

where ξ1(µj), . . . , ξne(µj) are the solutions of (20) at µ = µj ; and ζn are basis functions obtained
after ξi(µj), 1 ≤ i ≤ ne, 1 ≤ j ≤ Ns are orthonormalized.

We also construct collateral approximation spaces for φ(µ) and dφ(µ) based on the empirical
interpolation procedure [27, 28, 31]. For p = φ(µ) and dφ(µ), we construct nested sample sets
SpM ≡ {µp1, . . . , µpM}, 1 ≤ M ≤ Mp

max, nested approximation spaces W p
M ≡ span {qp1 , . . . , qpM},

1 ≤M ≤Mp
max, and nested interpolation points T pM ≡ {tp1, . . . , tpM}, 1 ≤M ≤Mp

max.
In (27), we have assumed ξi(µj) are known exactly. In practice however, ξi(µj) must be determined

through some form of “truth” approximation — here, we use the finite element method with P1

elements. We build our reduced basis approximation on, and measure the error in the reduced basis
approximation relative to this “truth” approximation. Note that since reduced basis approximation
is build upon this “truth” approximation, it cannot perform better than this “truth” approximation.
Thus, the number of elements used to obtain our “truth” approximation, N , must usually be large.
Similarly, the Wφ

M and W dφ
M are constructed from a “truth” approximation of φ and dφ, here based

on finite element method utilizing Q2 elements.

B. The Approximation

Our reduced basis approximation to (20) is then given by: find (ξi,N,M (µ), λi,N,M (µ)) ∈ YN ≡
(WN × R), 1 ≤ i ≤ ne such that

ã1(ξi,N,M (µ), v;m∗2) + ã2(ξi,N,M (µ), v;Veff,M (µ)) = λi,N,M (µ)ã3(ξi,N,M (µ), v),
1 ≤ i ≤ ne, ∀v ∈WN , (28)

ã3(ξi,N,M (µ), ξj,N,M (µ)) = δij , 1 ≤ i, j ≤ ne, (29)

where Veff,M = Vb + φM .
Similarly, our reduced basis approximation to (25) is given by: find dξi,N,M (µ) ∈ WN , 1 ≤ i ≤ ne

such that

ã1(dξi,N,M (µ), v;m∗2) + ã2(dξi,N,M (µ), v;Veff,M (·;µ))− λi,N,M (µ)ã3(dξi,N,M (µ), v)

= ã2(ξi,N,M (µ), v; dφN,M (µ)) +
dλi,N,M (µ)

dµ
ã3(ξi,N,M (µ), v),

1 ≤ i ≤ ne, ∀v ∈WN , (30)

where

dλi,N,M (µ)
dµ

= ã2(ξi,N,M (µ), ξi,N,M (µ);φM (µ)). (31)

It is not immediately clear that dξi,N,M (µ) can be sufficiently approximated in WN . In Section IV B,
we will examine if it is necessary to replace WN by an enlarged space W d

N given by

W d
N = span {ξi(µj), . . . , ξne(µj), dξi(µj), . . . , dξne(µj), 1 ≤ j ≤ Ns},

= span {ζn, 1 ≤ n ≤ N ≡ 2Nsne}. (32)
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C. Offline-online Decomposition

We first expand our reduced basis approximation as

ξn,N,M (µ) =
N∑
j=1

ξn,N,M j(µ)ζj , 1 ≤ n ≤ ne, (33)

where ζj ∈WN , and ξn,N,M j(µ) ∈ R.
We then expand our empirical interpolation approximation for φ(·;µ) as

φM (·;µ) =
M∑
m=1

βM,m(µ)qφm(·) , (34)

where βM (µ) ∈ RM is given by

M∑
k=1

BM,φ
m,k βM k(µ) = φ(tφm;µ), 1 ≤ m ≤M ; (35)

and BM,φ ∈ RM×RM is given by BM,φ
m,k = qφm(tφk), 1 ≤ m, k ≤M . We note that {qφm, 1 ≤ m ≤M} is

pre-constructed offline based on the empirical interpolation method, and we compute βM (µ) given
any µ ∈ D. Inserting the above representations (33) and (34) into (28), we obtain the following
discrete equations

N∑
j=1

{
ANi,j +

(
M∑
m=1

CN,φ,mβM m(µ)

)}
ξn,N,M j(µ) =

λn,N,M (µ)
N∑
j=1

MN
i,jξn,N,M j(µ), 1 ≤ i ≤ N, 1 ≤ n ≤ ne ; (36)

N∑
i=1

N∑
j=1

ξn,N,M i(µ)MN
i,jξm,N,M j(µ) = δnm, 1 ≤ n,m ≤ ne ; (37)

where AN ∈ RN×N , MN ∈ RN×N , CN,φ,m ∈ RN×N , 1 ≤ m ≤M are given by ANi,j = ã1(ζj , ζi;m∗2)+
ã2(ζj , ζi;Vb), 1 ≤ i, j ≤ N , MN

i,j = ã3(ζj , ζi), 1 ≤ i, j ≤ N , and CN,φ,mi,j = ã2(ζj , ζi; qφm), 1 ≤ i, j ≤ N ,
1,≤ m ≤M respectively.

Similarly, for (30), we expand

dξn,N,M (µ) =
N∑
j=1

dξn,N,M j(µ)ζj , (38)

where ζj ∈ WN , and dξn,N,M j(µ) ∈ R. We also expand our empirical interpolation approximation
for dφ(µ) as

dφM (·;µ) =
Mdφ∑
m=1

γM,m(µ)qdφm (·) , (39)



10

where γM (µ) ∈ RM is given by

M∑
k=1

BM,dφ
m,k γM k(µ) = dφ(tdφm ;µ), 1 ≤ m ≤M ; (40)

and BM,dφ ∈ RMdφ × RMdφ

is gven by BM,dφ
m,k = qdφm (tdφk ), 1 ≤ m, k ≤ M . Inserting the above

representations (33), (38) and (39) into (30), we obtain the following discrete equations

N∑
j=1

ANi,j +

Mφ∑
m=1

CN,φ,mβM m(µ)

− λn,N,M (µ)MN
i,j

 dξn,N,M j(µ) =

N∑
j=1

dλi,N,M (µ)
dµ

MN
i,j −

Mdφ∑
m=1

CN,dφ,mγM m(µ)

 ξn,N,M j(µ),

1 ≤ i ≤ N ; (41)

where CN,dφ,m ∈ RN×N , 1 ≤ m ≤ Mdφ is given by CN,dφ,mi,j = ã2(ζj , ζi; qdφm ), 1 ≤ i, j ≤ N ,
1,≤ m ≤Mdφ, respectively.

Finally, the linear functional ã3 is simply approximated by

ã3(wn(µ), vm(µ)) ≈ ã3(wn,N,M (µ), vm,N,M (µ))

=
N∑
i=1

N∑
j=1

MN
i,jwn,N,M i(µ)vm,N,M j(µ) (42)

when we want to compute the ã3 terms in (23).
The computational decomposition is then clear. At the beginning of each inner iteration, we

generate nested reduced-basis spaces WN , 1 ≤ N ≤ Nmax, nested approximation spaces Wφ
M , 1 ≤

M ≤Mφ
max and W dφ

M , 1 ≤M ≤Mdφ
max, and the associated nested sets of interpolation points TφM and

T dφM . For determining ξi,N,M , 1 ≤ i ≤ ne, we form and store AN ,MN , BM,φ, CN,φ,m, 1 ≤ m ≤Mφ
max

and CN,dφ,m, 1 ≤ m ≤Mdφ
max. This is equivalent to the offline stage in a more typical reduced-basis

formulation. The computational cost is (to leading order) O(NN • + neNN † + M2N2N ), where •
and † depend on the complexity of the eigenvalue solver and linear solver used, M = max(Mφ,Mdφ),
and N is the dimension of our “truth” approximation.

In the online stage — during construction of discrete matrices for (23) — we solve (36) – (37) for
ξn,N,M j(µ), 1 ≤ j ≤ N , 1 ≤ n ≤ ne, and dξn,N,M j(µ), 1 ≤ j ≤ Ndξn , 1 ≤ n ≤ ne, and evaluate (42).
The computational costs for each µ is then O((neN)3 + neN

3 +MN2), which is then independent
of N .

D. A Posteriori Error Estimation

The derivation of the a posteriori error estimator follows [29]. We note that the eigenvalues λi
are of multiplicity one but ã(v, v;Veff(µ)) = ã1(v, v;m∗2) + ã2(v, v;Veff(µ)) is not strictly positive for
all µ ∈ D.

For i = 1, . . . , nb, we define the residual as

Ri(v;µ) = ã(ξi,N,M (µ), v;Veff(µ))− λi,N,M (µ)ã3(ξi,N,M (µ), v), (43)

for ∀v ∈ Y where ã(w, v;Veff(µ)) = ã1(w, v) + ã2(w, v;Veff(µ)). We also define a reconstructed error
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êi in Y , such that

â(êi, v) = Ri(v;µ), ∀v ∈ Y, (44)

where

â(w, v) = ã1(w, v;m∗2) + ã2(w, v;Vb) + (γ + max
µ∈D,x2∈Ω2

φ(x2;µ))ã3(w, v); (45)

γ =
∣∣∣∣ min
µ∈D,x2∈Ω2

φ(x2;µ)
∣∣∣∣ ; (46)

‖Ri( · ;µ)‖ ≡ sup
v∈Y

Ri(v;µ)
â(v, v)1/2

= â(êi, êi)1/2; (47)

and ‖ · ‖ = â( · , · )1/2.
We now define ã+(w, v;Veff(µ)) = ã(w, v;Veff(µ)) + γã3(w, v) and introduce the following eigen-

value problem: for µ ∈ D, find (ξ+
i (µ), λ+

i (µ)) ∈ Y × R, 1 ≤ i ≤ ne such that

ã+(ξ+
i (µ), v;Veff(µ)) = λ+

i (µ)ã3(ξ+
i (µ), v), ∀v ∈ Y, 1 ≤ i ≤ ne, (48)

ã3(ξ+
i (µ), ξ+

j (µ)) = δij , 1 ≤ i ≤ j ≤ nb. (49)

It is clear that ξ+
i (µ) = ξi(µ) and λ+

i = λi + γ.

Proposition 1. Given â(w, v) as defined in (45), we have

â(v, v) ≥ ã+(v, v;Veff(µ)) ≥ ã3(v, v) ≥ 0, (50)

for all µ ∈ D.

Proof. We first prove left inequality. Let f(·) = max
µ∈D,x2∈Ω2

φ(x2;µ). By expanding ã+, we obtain

ã+(v, v;Veff(µ)) = ã1(v, v;m∗2) + ã2(v, v;Vb) + ã2(v, v;φ(µ)) + γã3(v, v)
≥ ã1(v, v;m∗2) + ã2(v, v;Vb) + ã2(v, v; f) + γã3(v, v), (51)

since ã1(v, v;m∗2) ≥ 0; ã2(v, v;Vb) ≥ 0 as Vb ≥ 0, ã3(v, v) ≥ 0, and γ ≥ 0. Since the R.H.S of (51) is
equivalent to â(v, v), left inequality is proven.

To prove the right inequality, we first note that

ã(v, v;Veff(µ)) ≥ λ1(µ)ã3(v, v),

and λ1(µ) ≥ min
x2∈Ω2

{Vb(x2) + φ(x2;µ)}. Then,

ã+(v, v;Veff(µ)) = ã(v, v;Veff(µ)) + min
µ∈D,x2∈Ω2

φ(x2;µ)ã3(v, v)

≥ (min
µ∈D

λ1(µ) + min
µ∈D,x2∈Ω2

φ(x2;µ))ã3(v, v)

≥ ã3(v, v), (52)

since minx2∈Ω2 Vb(x2) = 0. This concludes the proof for Proposition 1.

Hypothesis 1. Assuming our reduced-basis approximation is convergent in the sense that

λi,N,M (µ)→ λi(µ), 1 ≤ i ≤ ne, as N →∞. (53)
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Then, for sufficiently large N ,

i = arg min
1≤j≤N

∣∣∣∣∣λi,N,M (µ)− λj(µ)
λ+
j (µ)

∣∣∣∣∣ . (54)

Proposition 2. Assume our reduced-basis approximation is convergent in the sense given by (53).
Then, for large N and i = 1, . . . , ne,∣∣∣∣λi,N,M (µ)− λi(µ)

λi(µ) + γ

∣∣∣∣ ≤ ‖Ri( · ;µ)‖
(λi,N,M (µ) + γ)1/2

(55)

In addition, for λi,N,M (µ) of multiplicity one and associated uN,i(µ), we have

‖ui,N,M (µ)− ui(µ)‖ ≤ ‖Ri( · ;µ)‖
di

, (56)

and

|λi,N,M (µ)− λi(µ)| ≤ ‖Ri( · ;µ)‖2
d2
i

, (57)

where di = min
j 6=i

∣∣∣λj,N,M (µ)−λi,N,M (µ)
λj,N,M (µ)+γ

∣∣∣.
Proof. The proof utilizes Proposition 1 and details of the proof can be found in [29].

We note that (57) will in general be a better bound due to the ‖Ri‖2 term. Numerical experiments
also indicate this is so. We thus define our error estimators based on (56) and (57) :

∆λ
N,M (µ) = max

1≤i≤ne
1
d2
i

‖Ri( · ;µ)‖2
|λi,N,M (µ)| , (58)

∆ξ
N,M (µ) = max

1≤i≤ne
1
di

‖Ri( · ;µ)‖
‖ξi,N,M (µ)‖ . (59)

We can construct efficient offline-online computational strategies for the evaluation of our error
estimators (58) – (59). From (45) and our reduced basis approximation, we have

â(êi, v) = ã1(ξi,N,M (µ), v;m∗2) + ã2(ξi,N,M (µ), v;Vb)

+
Mφ∑
m=1

βm(µ)ã2(ξi,N,M (µ), v; qφm) + ε̄M+1ã2(ξi,N,M , v; qφ
Mφ+1

)

− λi,N,M (µ)ã3(ξi,N,M (µ), v), v ∈ Y, 1 ≤ i ≤ ne. (60)

where ε̄M = maxµ∈D ε̂M (µ) and ε̂M (µ) = |φ(tφ
Mφ+1

;µ)− φM (tφ
Mφ+1

;µ)|. It then follows from linear
superposition that

êi(µ) =
N∑
n=1

ξi,N,M n(µ)

p1
n + p2

n +
Mφ∑
m=1

βmp
2+m
n + ε̄Mp

M+3
n


− λi,N,M (µ)

N∑
n=1

ξi,N,M n(µ)p0
n, (61)
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where

â(p1
n, v) = a1(ζn, v;m∗2), v ∈ Y, 1 ≤ n ≤ N,

â(p2
n, v) = a2(ζn, v;Vb), v ∈ Y, 1 ≤ n ≤ N,

â(p2+m
n , v) = a2(ζn, v; qφm), v ∈ Y, 1 ≤ n ≤ N, 1 ≤ m ≤Mφ + 1
â(p0

n, v) = a3(ζn, v), v ∈ Y, 1 ≤ n ≤ N.

Then, ‖Ri( · ;µ)‖ is given by

‖Ri( · ;µ)‖2 = â(êi, êi)

=
3+Mφ∑
k=1

3+Mφ∑
k′=0

N∑
n=1

N∑
n′=1

Θk(µ)Θk′(µ)ξi,N,M n(µ)ξi,N,M n′(µ)Âk,k
′

n,n′

+
N∑
n=1

N∑
n′=1

λ2
i,N,M (µ)ξi,N,M n(µ)ui,N,M n′(µ)Â0,0

n,n′

+
N∑
n=1

N∑
n′=1

3+Mφ∑
k=1

uN,i n(µ)λN,i(µ)Θk(µ)Âq,0n,n′ ; (62)

where Âk,k
′ ∈ RN×N , 0 ≤ q, q′ ≤ Q are given by Âk,k

′

n,n′ = â(pkn, p
k′

n′), 0 ≤ p, p′ ≤Mφ + 3, 1 ≤ n, n′ ≤
N , Θ1 = 0, Θ2 = 0, Θ2+m = βm, 1 ≤ m ≤Mφ, and ΘMφ+3 = ε̄M . We now see that the dual norm
of the residual is the sum of products of parameter-dependent functions and parameter-independent
functionals. The offline-online decomposition is now clear.

In the offline stage, we compute pkn, 0 ≤ k ≤ Mφ + 3, 1 ≤ n ≤ N , based on (60) at the cost of
O((4 +M)NN •), where the • denotes computational complexity of the linear solver used to obtain
pkn. We then evaluate Âk,k

′
at the cost of O(4 +M)N2N 2). We store the matrices Âk,k

′
at a total

cost of (4 +M)N2.
In the online stage, we simply evaluate the sum (61) for a given ξi,N,M (µ) and λi,N,M (µ), 1 ≤

i ≤ ne. The operation count is only O(neM2N2). The online complexity is thus independent of
N . Unless M is large, the online cost to compute the error estimator is then a fraction of the cost
required to obtain ξi,N,M (µ) and λi,N,M (µ).

E. Solution Method

In each fixed point iteration, part (i) of the solution method described in Section II B will now
consist of (a) constructing the reduced basis machinery required to approximate ξ(x2;x1) and λ(x1),
and their derivatives to a required level of accuracy, and (b) approximating ξi(x2;x1) and λi(x1) for
finite points on Ω1 by ξi,N,M (x2;x1) and λi,N,M (x1). In part (a), we must construct the reduced
basis approximation space WN and the relevant reduced basis matrices described in earlier sections;
we construct WN based on an adaptive greedy algorithm [23, 26] that utilize the error estimator
to very efficiently choose a good set of SN . Note that we do not need to reconstruct the reduced
basis machinery at each fixed point iteration. Armed with the a posteriori error estimators, we only
reconstruct the reduced basis machinery when the estimated errors of the solutions based on WN

of the previous iteration are above the tolerance we desired. This significantly reduces the cost of
reduced basis method by limiting the number of times we need to perform the expensive ”offline”
computation. The procedure is summarized in Figure 3.

Several variations to the above procedure. For example, a more frequent reconstruction may lead
to smaller N , thus reducing the cost of ”online” calculation. Thus, one could impose compulsory
reconstruction of WN at fixed intervals; at present we do not impose this as N required is generally
small. In addition, we do not expect N to change drastically since φ only changes slightly for each



14

Determine ξi,N,M , its derivative, and ∆λ
N,M

Converged.

∆
λ N
,M

>
to

le
ra

nc
e

An initial guess, n0

|φ
k
−
φ
k
−

1
|>

to
le

ra
nc

e
Determine φ0(n0)

Determine φk(nk)

Determine ϕ(E), ψ(E), and nk(ψ)

for ξi and its derivative

Construct RB spaces and matrices

FIG. 3: Subband decomposition procedure with reduced basis approximation in part (i).

iteration. We could also reduce the offline computational cost by reconstructing the WN based on
existing SN . While this removes the cost associated with greedy sampling procedure, we are less
certain that the approximation space will be optimal and the solutions within the tolerance we
desired.

IV. NUMERICAL RESULTS

We consider a domain Ω = [0, 340] × [0, 120], which can be divided into subdomains detailed in
Table I, which also gives the relative dielectric constant, εr, and donor concentration, ND in each
subdomain. The source and gate voltages applied are VS = 0 and VG = 0.015 while drain voltage,
VD is allowed to vary. We consider a temperature of 10−4, and PSmax = PDmax = 8. To evaluate (18),
we use Emax = 20T since f1/2(−Emax/T ) < 10−8. In addition, nE = 50 and Q = 3.

In Section IV A and IV B, we will first look at the accuracy of reduced basis method in approx-
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extent εr = ε/ε0 ND
Ω1 [80, 260]× [20, 100] 11.7 0
Ω2 [0, 80]× [20, 100] 11.7 2.96× 10−5

Ω3 [26, 340]× [20, 100] 11.7 2.96× 10−5

Ω4 [0, 340]× [100, 120] 3.9 0
Ω5 [0, 340]× [0, 20] 3.9 0

TABLE I: Definition of Ω1 – Ω5, and εr and ND used in the model problem; ε0 = 1/4π.
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FIG. 4: φN (Left) and ∂φN /∂µ (Right) for VD = 0.015. The superscript N indicates that it is a finite
element approximation of φ.

imating ξi(x1), 1 ≤ i ≤ ne. We denote solutions obtained through finite element method as the
“truth” approximation — we build our reduced basis approximation on, and measure the error in
the reduced basis approximation relative to this “truth” approximation. Note that since reduced
basis approximation is build upon this “truth” approximation, it cannot perform better than this
“truth” approximation. In Section IV C, we compare effects of using reduced basis method in part
(i) on accuracy and efficiency of subband decomposition method. In our fixed point iterative scheme,
α = 0.1 and the convergence criteria is given by |φk − φk−1|L∞ < 10−5, following the criteria used
in [10].

A. Empirical interpolation approximation of φ and ∂φ/∂µ

We first examine the approximation of φ and ∂φ/∂µ based on the empirical interpolation method.
Figure 4 shows the solutions of φ and ∂φ/∂µ at convergence for the case VD = 0.015. We note that
the variation of φ(x2;µ) with respect to µ is nontrivial. The empirical interpolation errors of φM
and ∂φM/∂µ, denoted by ε̄φM and ε̄dφM respectively, are shown in Figure 5. The figure shows that we
have a rapidly converging approximation — with Mφ = 20 and Mdφ = 21, the error ε̄φM and ε̄dφM are
less than 10−8.

B. Convergence of the reduced basis approximation

For our convergence analysis, the test sample Ξµ is given by the number of grid points in the
x1 direction — for the test problem, the size of Ξµ is 68. We will also define the following error
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Ns N ελN,M εξN,M max
µ∈Ξµ

∆λ
N,M max

µ∈Ξµ
∆ξ
N,M max

µ∈Ξµ
ηλN,M max

µ∈Ξµ
ηξN,M

1 8 4.48 E – 3 1.02 E – 1 1.74 E – 2 8, 85 E – 2 4.38 E + 1 5.87 E + 0
2 16 1.42 E – 5 1.66 E – 3 1.79 E – 4 8.10 E – 3 4.99 E + 1 6.69 E + 0
3 24 2.02 E – 9 3.53 E – 5 9.10 E – 8 2.58 E – 4 1.48 E + 1 7.31 E + 0
4 32 5.69 E – 11 6.09 E – 6 2.09 E – 9 3.49 E – 5 6.31 E + 2 4.27 E + 1

TABLE II: Convergence of the reduced basis approximation for VD = 0.015.

measures:

ελN,M = max
µ∈Ξµ

ελN,M (µ), εξN,M = max
µ∈Ξµ

εξN,M (µ), (63)

where

ελN,M (µ) = max
1≤i≤ne

|λi,N,M (µ)− λi(µ)|
|λi(µ)| , (64)

εξN (µ) = max
1≤i≤ne

‖ξi,N,M (µ)− ξi(µ)‖
‖ξi(µ)‖ . (65)

We also define the effectivity measures as

ηλN,M (µ) =
∆λ
N,M (µ)
ελN,M (µ)

, ηξN,M (µ) =
∆ξ
N,M (µ)

εξN,M (µ)
. (66)

Table II show that our reduced basis approximation is rapidly convergent. We require only 24
basis functions to reduce the relative errors ελN,M to below 10−8 and εξN,M to below 10−4 for the case
where VD = 0.015 and Mφ = Mdφ = 25. In addition, the effectivity measures are small, indicating
that our error estimators are good surrogate to the actual errors. Although ηλN,M and ηξN,M increase
with N , ∆λ

N,M and ∆ξ
N,M also decrease — thus the absolute difference between the actual errors

and the error estimators is small.
We now look at the reduced basis error in dξi,N,M (·), dλi,N,M (·), 1 ≤ i ≤ ne and
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Ns N εdλN,M εdξN,M εã3N,M
1 8 3.94 E – 1 9.99 E – 1 2.10 E + 0
2 16 3.77 E – 4 1.15 E – 2 1.11 E – 2
3 24 8.83 E – 7 7.03 E – 6 6.59 E – 6
4 32 3.12 E – 9 7.98 E – 8 5.35 E – 8

TABLE III: Convergence of the reduced basis approximation of dλi,N,M and dξi,N,M , 1 ≤ i ≤ ne for
VD = 0.015.

Ns N εdλN,M εdξN,M εã3N,M
1 16 1.32 E – 3 1.54 E – 2 5.58 E – 2
2 32 5.40 E – 10 5.29 E – 9 4.14 E – 8

TABLE IV: Convergence of the reduced basis approximation of dλi,N,M and dξi,N,M , 1 ≤ i ≤ ne for
VD = 0.015 with W d

N .

ã3(dξi,N,M , ξj,N,M ), 1 ≤ i, j,≤ ne. We define

εdλN,M = max
µ∈Ξµ

max
1≤i≤ne

|dλi,N,M (µ)− dλi(µ)|
|dλi(µ)| , (67)

εdξN,M = max
µ∈Ξµ

max
1≤i≤ne

‖dξi,N,M (µ)− dξi(µ)‖Y
‖dξi(µ)‖Y , (68)

εã3
N,M = max

µ∈Ξµ
max

1≤i,j≤ne
|ã3(dξi,N,M (µ), ξj,N,M (µ))− ã3(dξi(µ), ξj(µ))|

|ã3(dξi(µ), ξj(µ))| (69)

From Table III, we again see the rapid convergence in the errors defined by (67) – (69). In particular,
the error in ã3(·, ·), which determines the effects of reduced basis approximation on the subband
decomposition method, decreases rapidly with N . For a relative error of 10−5, N = 24. Since the
magnitude of ã3(dξi(µ), ξj(µ)) is of order 10−4, the absolute error in the approximation is actually
very small.

As indicated in Section III B, we now examine the approximation of dξi(µ) in W d
N given by (32).

We note that the solutions (ξi,N,M , λi,N,M ) must also be determined in W d
N × R. From Table IV,

we indeed see a faster convergence in the errors with respect to Ns. However, the total number of
basis, N , also increases with Ns at a rate double that of WN . As such, for higher accuracy, W d

N
can indeed be a better approximation space although for the current purpose, WN appears to be
sufficient and leads to a smaller N .

C. Effects of reduced basis approach on efficiency of subband decomposition method

We denote the methods where we approximate part (i) of the subband decomposition method by
finite element method and reduced basis method as SDM/FEM and SDM/RBM respectively; part
(ii) and (iii) are approximated by finite element method for both approaches. The finite element
approximation of part (i) is implemented using P1 elements with N = 71 while the reduced basis
approximation uses the accuracy criteria given by ∆λ

N,M < 10−8.
In Table V, we compare the computational cost of the two methods for VD = 0 and 0.015. For

VD = 0, the total computational time is reduced by a factor of 2, without any appreciable loss of
accuracy — the L2 norm error of nN,M obtained through SDM/RBM is of order 10−11. If we consider
only the computational time spent in part (i), the computational savings is significant higher — the
computational time is reduced by a factor of 5. In addition, the reduced basis approximation spaces
are only reconstructed 3 times, out of the 22 fixed point iterations needed for convergence. We see
similar results for VD = 0.015. Note that the computational cost of part (i) includes the cost of
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Case Subband Reduced Basis
Time, s Time, s

Total Part (i) Total Part (i) Noffline kmax ‖nN − nN,M‖L2

VD = 0 730 546 305 112 3 22 4.03 E – 11
VD = 0.015 926 717 378 165 5 28 2.28 E – 11

TABLE V: Comparison of the computational cost for the subband decomposition method and the reduced
basis method. Here Noffline is the number of times WN is reconstructed, and kmax is the maximum number
of fixed-point iteration.
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FIG. 6: Comparison of (a) the total computational time and (b) the computational time for part time, for
the subband decomposition method and the reduced basis method with increasing mesh size. The time is
scaled with respect to total time for the SDM/RBM method at h2 = 4.

constructing the relevant matrices for use in part (ii).
We next examine how the computational time scales with respect to mesh size in the x2-direction.

Figure 6(a) compares the computational time of SDM/FEM and SDM/RBM for increasingly fine
mesh; the reported time has been scaled with respect to the total computational time of SDM/RBM
at h2 = 4, where h2 is the mesh spacing in the x2-direction. we see that the total computational
time of SDM/FEM scales exponentially with the mesh size. In particular, this exponential growth
originates from the computational time of part (i) of the algorithm, as shown in Figure 6(b), while
the computational time in part (ii) and (iii) only contribute slightly to the increase of the total com-
putational time. On the other hand, the increase in the total computational time for SDM/RBM
is slow. In particular, computational time of part (i) only increases very slightly, due to marginal
increase in the computational cost of the offline stage; there should be little or no increase in the
computational cost of the online stage. This observation strongly suggests that the reduced basis
approach is particularly suited for situations where computational cost of part (i) dominates the to-
tal computational cost. For example, fine resolution may be needed in the x2-direction due to strong
confinement of the electrons. In nanowires and nanotubes where we have a 2-dimensional confine-
ment, the higher dimension will also lead to larger mesh size, thus increasing the computational cost
of part (i).

Finally, we look at a quantity of interest, the drain current, ISD. Figure 7 shows that we have a
typical current-voltage relation for a MOSFET, where the rate of increase in ISD decreases as the
applied voltage VSD increases. We further note that SDM/RBM method gives comparable result to
SDM/FEM method.
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FIG. 7: Comparison of the computed drain current for SDM/FEM and SDM/RBM.

V. CONCLUSION

We have described how reduced basis method can improve the efficiency of the subband decom-
position approach to ballistic transport simulation in nanodevices. In particular, the novel use of
a posteriori error estimator and adaptive sampling procedure leads to a very efficient solution pro-
cedure. Numerical results based on a double-gate MOSFET show that the computational cost is
reduced by 50% – 60% for a reasonably-sized problem and depends very weakly on the mesh size in
the confined direction. We expect the computational savings to increase in cases of 2D confinement,
such as those encountered in nanowires.

APPENDIX A: DERIVATIVE OF φ

To solve (23), we must evaluate ∂ξn/∂x1; in [10], ξn, ∂ξn/∂x1 and ã3(·, ·) are evaluated at the
nodes (i, j) of the rectangular mesh, and interpolated to the quadrature points when evaluating the
functionals in (23). In addition, ∂ξn/∂x1 are evaluated by difference formula. In our approach,
∂ξn/∂x1 are determined from (25), and this involves determining ∂φ/∂x1 at the nodes (i, j). How-
ever, as we have used Q2 elements to solve for φ, its derivative is discontinuous, and thus not defined
at the nodes. So, we compute the ∂φ/∂x1 based on a difference formula. We then compute ξn,
∂ξn/∂x1 and ã3(·, ·) at the nodes (i, j) of the rectangular mesh, and interpolate to the quadrature
points when evaluating the functionals in (23).

To avoid evaluating ∂φ/∂x1 at the nodes, we can choose to compute ∂ξn/∂x1 directly at the
quadrature points used to evaluate the functionals in (23). The reduced basis approximation proce-
dure is as follows:

1. Compute ∂φ/∂x1 at (i+ 1/2, j), where i+ 1/2 is the midpoint between i and i+ 1.

2. Construct a magic point approximation for ∂φ/∂x1, and the reduced basis machinery for
∂ξn/∂x1.

3. Evaluate the terms ξn,N,M , ∂ξn,N,M/∂x1 and ã3 at the quadrature points. To evaluate ξn,N,M
and ∂ξn,N,M/∂x1, values of φM and ∂φM/∂x1 at the magic points for a given quadrature point
must first be determined. For φM , these are obtained by the interpolation of the Q2 elements.
For ∂φM/∂x1, since the gradient between node (i, tdφM ) and (i+ 1, tdφM ) is a constant, the values
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at the magic points for quadrature point falling between (i, tdφM ) and (i+ 1, tdφM ) is given by the
value at node (i+ 1/2, tdφM ); tdφM are the magic points for ∂φM/∂x1.

The above formulation should then be consistent with the Q2 elements we use. It is however
more expensive: the computational cost of part (i) is increased by 66%. Determining the accuracy
of the two approaches is also tricky. A comparison to, say, a full finite element approximation may
be necessary although approximation error of subband decomposition method may dominate. In
addition, the convergence criteria used in the fixed point iteration is not stringent, and any difference
between the two approaches may not be discernible.
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