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RESEARCH Open Access

Complement-independent retinal
pathology produced by intravitreal
injection of neuromyelitis optica
immunoglobulin G
Christian M. Felix1,2, Marc H. Levin1,3† and Alan S. Verkman2*†

Abstract

Background: Neuromyelitis optica (NMO), an autoimmune inflammatory disease of the central nervous system, is
often associated with retinal abnormalities including thinning of the retinal nerve fiber layer and microcystic
changes. Here, we demonstrate that passive transfer of an anti-aquaporin-4 autoantibody (AQP4-IgG) produces
primary retinal pathology.

Methods: AQP4-IgG was delivered to adult rat retinas by intravitreal injection. Rat retinas and retinal explant
cultures were assessed by immunofluorescence.

Results: Immunofluorescence showed AQP4-IgG deposition on retinal Müller cells, with greatly reduced AQP4
expression and increased glial fibrillary acidic protein by 5 days. There was mild retinal inflammation with microglial
activation but little leukocyte infiltration and loss of retinal ganglion cells by 30 days with thinning of the ganglion
cell complex. Interestingly, the loss of AQP4 was complement independent as seen in cobra venom factor-treated
rats and in normal rats administered a mutated AQP4-IgG lacking complement effector function. Exposure of ex
vivo retinal cultures to AQP4-IgG produced a marked reduction in AQP4 expression by 24 h, which was largely
prevented by inhibitors of endocytosis or lysosomal acidification.

Conclusions: Passive transfer of AQP4-IgG results in primary, complement-independent retinal pathology, which
might contribute to retinal abnormalities seen in NMO patients.

Keywords: NMO, Retina, Müller cells, Aquaporin-4, Complement, Autoimmunity

Background
Neuromyelitis optica (NMO) is an autoimmune inflam-
matory disease of the central nervous system (CNS) that
causes optic neuritis and transverse myelitis, leading to
loss of vision and motor function, reviewed in [1–4].
Affected tissues in NMO generally show astrocyte dam-
age with complement activation, inflammatory cell infil-
tration, and demyelination. Most NMO patients are
seropositive for immunoglobulin G autoantibodies
against aquaporin-4 (AQP4), a water channel expressed

on astrocytes. Human NMO pathology and rodent
models of NMO produced by passive transfer of anti-
AQP4 autoantibody (AQP4-IgG) suggest a pathogenesis
mechanism in which AQP4-IgG binding to AQP4 causes
primary complement- and cell-mediated astrocyte tox-
icity, with a secondary inflammatory response leading to
oligodendrocyte injury, demyelination, and axon loss.
NMO patients often manifest retinal abnormalities in-

cluding thinning of the retinal nerve fiber layer (RNFL)
and ganglion cell layer (GCL) following episodes of optic
neuritis [5–7]. During acute episodes of NMO optic
neuritis, the inner nuclear layer (INL) typically thickens
[8, 9], often coincident with inner retinal microcystic
changes [10, 11]. It has been speculated that retinal in-
jury in NMO may in part be a primary disease
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manifestation, although it has been difficult to resolve
direct retinal injury from retrograde axon degeneration
due to retrobulbar optic neuritis. These retinal abnor-
malities are also seen, albeit at lower frequency, follow-
ing optic neuritis in multiple sclerosis and a variety of
severe noninflammatory optic neuropathies [12–15].
The cellular makeup and structure of the retina is

quite different from the optic nerve, spinal cord, and
brain, where there are myelinated nerve fibers and
AQP4 expression on astrocytes [16]. In the retina, AQP4
is expressed in two types of retinal glia: Müller cells,
which are a specialized form of radial glia spanning the
retinal inner limiting to outer limiting membranes, with
the cell body lying within the INL, and astrocytes, which
are mostly localized in the RNFL along with nonmyelin-
ated axons of retinal ganglion cells (RGCs).
Here, to investigate the possibility that NMO autoanti-

bodies could produce primary retinal injury, we exposed
rat retinas to AQP4-IgG in vivo by intravitreal injection.
Rats were chosen because they have human-like serum
complement activity [17] and have been used in various
models in which AQP4-IgG produces characteristic
NMO pathology in CNS tissues [18, 19]. We found that
intravitreally delivered AQP4-IgG efficiently bound to
AQP4 on retinal Müller cells and, unexpectedly, pro-
duced unique complement-independent retinal injury,
which was further characterized by studies on ex vivo
retinal cultures exposed to AQP4-IgG.

Methods
Rats
Adult male Sprague-Dawley rats (age 8–10 weeks) were
purchased from Charles River Laboratories (Wilmington,
MA). CD59−/− rats were generated using CRISPR-Cas9
technology, which will be reported separately. Protocols
were approved by the University of California San
Francisco Committee on Animal Research and were in
compliance with the ARVO Statement for the Use of
Animals in Ophthalmic and Visual Research.

Intravitreal injections
Rats were anesthetized using 3 % isoflurane and topical
proparacaine (0.5 %, Akorn, Lake Forest, IL), and their
pupils were dilated with phenylephrine (2.5 %, Paragon
BioTeck Inc., Portland, OR) and atropine (1 %, Akorn).
In each eye, a full-thickness track was made through
superotemporal sclera at the pars plana with a 30-gauge
needle for intravitreal delivery of a 4-μL solution volume
using a 33-gauge beveled needle attached to a 10-μL
Hamilton syringe (Reno, NV). Microscopic examination
was performed to confirm the absence of vitreous
hemorrhage or gross lens trauma. Lubricating ophthal-
mic ointment was applied to protect the cornea until
recovery from anesthesia.

Both eyes in each rat received the same treatment
to control for potential contralateral effects of a
given treatment. The following experimental groups
were evaluated: (i) no injection, or injection of (ii)
saline; (iii) control human IgG (control-IgG; 40 μg;
Pierce Biotechnology, Rockford, IL); (iv) purified hu-
man monoclonal recombinant AQP4-IgG (rAb-53,
40 μg, ref. [20]); (v) recombinant monoclonal anti-
AQP4 “aquaporumab”-lacking effector functions
(AQP4-IgG-CDC, 4 μg, ref. [21]); or (vi) lipopolysac-
charide (LPS) from Escherichia coli (5 μg; Sigma-
Aldrich, St. Louis, MO). In some experiments, rat
complement was inactivated by intraperitoneal injec-
tion of cobra venom factor (CVF; 600 U/kg, Quidel
Corporation, Santa Clara, CA) 24 h before and 48 h
after intravitreal injection of AQP4-IgG, as described
in [19]. Rats were sacrificed 6 h, 24 h, 5 days, or
30 days after intravitreal injection. Globes were enucleated
after transcardiac perfusion with phosphate-buffered
saline (PBS) followed by 4 % paraformaldehyde, fixed for
4 h and left overnight at 4 °C in 30 % sucrose. The eyes
were embedded in OCT and sectioned axially at 20-μm
thickness.

Retinal explant cultures
Rats were deeply anesthetized with isoflurane and then
decapitated. The freshly enucleated eyes were immersed
in ice-cold Hank’s balanced salt solution (HBSS) con-
taining 1 % penicillin-streptomycin. Using a dissecting
microscope, a circumferential incision was made at the
pars plana, followed by removal of the anterior segment,
lens, and vitreous body. With Dumont forceps, the ret-
inas were separated from the sclera and separated from
the optic nerve head. Each retina was cut radially and
separated into four quadrants, which were each trans-
ferred with inner retinal surfaces facing up onto 12-mm-
diameter filters (0.4-μm pore; Sigma-Aldrich) in 12-well
plates.
Retinal explants were maintained immersed in a thin

layer of serum-free culture medium at an air/medium
interface in a 5 % CO2 incubator at 37 °C. Culture media
contained neuronal growth medium (Neurobasal A) sup-
plemented with 2 % B27, 1 % N2, L-glutamine (0.8 mM),
and 1 % penicillin-streptomycin. One half of the media
was replaced after 24 h in culture. AQP4-IgG (final
20 μg/mL) was added to some wells after the initial 24 h
in culture. Some explants were also incubated with
dynasore hydrate (inhibitor of dynamin-dependent endo-
cytosis; 50 μM) or chloroquine (inhibitor of lysosomal
degradation; 10 μM). At 24 h later, explants were fixed
in 4 % PFA for 24 h and then placed in 30 % sucrose for
24 h at 4 °C before embedding in OCT. Sections were
cut at 10-μm thickness perpendicular to the full-
thickness retina.

Felix et al. Journal of Neuroinflammation  (2016) 13:275 Page 2 of 12



Immunofluorescence
Frozen sections were incubated in blocking solution
(PBS, 1 % bovine serum albumin, 0.2 % Triton X-100)
for 1 h prior to overnight incubation (4 °C) with primary
antibodies against the following: AQP4 (1:200, Santa
Cruz Biotechnology, Santa Cruz, CA), glial fibrillary
acidic protein (GFAP, 1:100, Millipore), glutamine syn-
thetase (GS, 1:500, Sigma-Aldrich), Brn3a (1:100, Santa
Cruz Biotechnology), ionized calcium-binding adaptor
molecule-1 (Iba1; 1:1000; Wako, Richmond, VA), C1q
(1:50, Abcam, Cambridge, MA), or C5b-9 (1:50, Hycult
Biotech, Uden, Netherlands), followed by appropriate
species-specific Alexa Fluor-conjugated secondary anti-
body for 1 h at room temperature (1:200, Invitrogen,
Carlsbad, CA). Rinsed sections were mounted with VEC-
TASHIELD with 4’,6-diamidino-2-phenylindole (DAPI)
(Vector Laboratories, Burlingame, CA). Staining with
hematoxylin and eosin (H&E) was done using standard
procedures. Sections were visualized on a Leica epifluor-
escence microscope (Wetzlar, Germany) or Nikon con-
focal fluorescence microscope (Melville, NY).
AQP4, GFAP, and Iba1 immunofluorescence were

quantified in ×20 fields of central retina, 50 μm from the
optic nerve head. AQP4 and GFAP fluorescence were
defined using the polygon drawing tool and quantified
using ImageJ (NIH, Bethesda, MD). For AQP4 quantifi-
cation, retinal layers were segmented into RNFL + GCL,
inner plexiform layer (IPL) + INL, and outer plexiform
layer (OPL) + outer nuclear layer (ONL). GFAP was
measured in two segments: (RNFL + GCL) and (IPL +
INL + OPL + ONL). Data are presented as a percentage
of area of immunofluorescence loss normalized to
untreated retinas.
RGCs were counted at day 30 after intravitreal injec-

tion of AQP4-IgG or control-IgG as the density of
Brn3a-positive nuclei in fluorescence micrographs of ret-
inal flat mounts. After transcardiac perfusion, the eyes
were enucleated and the retinas were removed and im-
munostained in culture wells on a shaker. Four radial
relaxing incisions were made, and the retinas were flat-
tened and coverslipped with VECTASHIELD mounting
media. A total of 12 nonoverlapping images (×20 magni-
fication), each including nonoverlapping posterior, mid-
dle, or anterior retina of one quadrant, were taken using
the epifluorescence microscope. Brn3a-positive nuclei
were counted semi-automatically using cell-counting
plugins from ImageJ software.

Optical coherence tomography and fundoscopy
Rats were induced and maintained under isoflurane gas
anesthesia, and the eyes were numbed and dilated as be-
fore. The corneas were lubricated with 2.5 % Goniovisc
(Accutome Inc., Malvern, PA) for direct contact with the
imaging lens. The eyes were examined using the Micron

III retinal imaging system (Phoenix Research Labs,
Pleasanton, CA), and raw fundus photographs were cap-
tured. Spectral-domain optical coherence tomography
(SD-OCT) horizontal line scans were acquired on a
micron image-guided SD-OCT system (Phoenix Re-
search Labs) by averaging 10 scans. Potential inner ret-
inal atrophy was evaluated in vivo as longitudinal
changes in thickness of the ganglion cell complex (GCC,
encompassing RNFL, GCL, and IPL). GCC and total ret-
inal thicknesses at single points 1500 μm from the nasal
and temporal optic nerve head margins were averaged as
a single point per eye.

Statistics
Data are presented as mean ± S.E.M. The two-sided Stu-
dent’s t test was used for direct comparisons between
two means. When there were three or more groups, ana-
lysis was done using a one-way ANOVA with Dunnett
post hoc test. Analysis was performed using Prism 5
GraphPad Software package (GraphPad Software, San
Diego, CA). Significance levels were set at p < 0.05 (*)
and p < 0.01 (**).

Results
Intravitreal AQP4-IgG reduces Müller cell AQP4 expression
and causes reactive gliosis
As diagrammed in Fig. 1a, rats were administered
AQP4-IgG (or control human IgG) by intravitreal injec-
tion and then sacrificed at different times. The injected
eyes were grossly normal at sacrifice, without uveitis or
hemorrhage, and only rare focal lens opacifications. En
face immunofluorescence of retinal flat mounts showed
AQP4-IgG deposition on the retina in a membrane pat-
tern at 3 days after injection, as seen using a secondary
antibody against human IgG, with loss of AQP4 im-
munofluorescence (Fig. 1b). Human IgG binding was
not seen in astrocytes along myelinated optic nerves
(not shown), demonstrating selective exposure of the
retina to AQP4-IgG.
Immunofluorescence of frozen sections of the poster-

ior retina showed AQP4-IgG localization in a pattern
corresponding to Müller cells (Fig. 1c). There was some
loss of AQP4 immunofluorescence by 6 h, which became
more marked at 24 h and 5 days but largely returned to
initial levels by 30 days. Also notable was Müller cell
gliosis, seen as an upregulation of GFAP expression
most evident at 5 days, as well as a deposition of acti-
vated complement in an apparent perivascular pattern
seen best at 24 h and 5 days. Quantification of retinal
AQP4 and GFAP immunofluorescence is summarized in
Fig. 1d.
At higher magnification, AQP4 immunofluorescence

colocalized with the Müller cell marker GS (Fig. 2a). GS
immunofluorescence was stable even after AQP4 was
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greatly reduced, suggesting that the Müller cells
remained viable. As expected, intravitreally delivered
AQP4-IgG also localized to cell membranes of nonpig-
mented ciliary epithelia, the other major ocular site of
AQP4 expression (Fig. 2b). In contrast to the retina,
AQP4-IgG deposition in the ciliary body did not cause
loss of AQP4 at 5 days after administration nor was
there demonstrable inflammatory infiltrates as seen by
H&E staining.

Loss of Müller cell AQP4 following intravitreal AQP4-IgG
is complement independent
A large body of data in human NMO and in animal
models implicates complement deposition and activation
on AQP4-expressing astrocytes in the brain and spinal

cord in disease pathogenesis. To investigate whether
complement activation is required to produce AQP4 loss
following intravitreal AQP4-IgG injection, studies were
done in rats treated with CVF, which inactivates comple-
ment and was shown previously to prevent NMO path-
ology following intracerebral injection of AQP4-IgG in
rats [19]. At 5 days following intravitreal injection of
AQP4-IgG, the CVF-treated rats showed similar loss of
Müller cell AQP4 as seen in the untreated rats, as well
as comparable Müller cell gliosis (Fig. 3a), suggesting
that these retinal changes are complement independent.
Also in support of this conclusion was the finding that
delivery of an engineered AQP4-IgG lacking comple-
ment effector function (in place of AQP4-IgG) produced
similar AQP4 loss and Müller cell gliosis. Moreover,
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exposure of the retinas of transgenic rats lacking the
complement regulator protein CD59 to AQP4-IgG pro-
duced similar changes in AQP4 and GFAP immuno-
fluorescence as in wildtype rats. The quantification of
AQP4 and GFAP immunofluorescence is summarized in
Fig. 3b.
To show that the loss of Müller cell AQP4 is specific

to AQP4-IgG binding rather than a nonspecific effect of
ocular inflammation, retinas were examined at 5 days
after intravitreal delivery of LPS, a model that produces
uveitis with vitritis and associated Müller cell gliosis
[22]. Figure 3c shows preservation of Müller cell AQP4
despite inflammation with panuveitis and abundance of
macrophages in the vitreous, Müller cell gliosis, and
cellular infiltration (see below).

Intravitreal AQP4-IgG produces retinal microglial
activation with minimal leukocyte infiltration
Iba1 is a marker of monocytes, including brain-derived
microglia and infiltrative macrophages. Immunofluores-
cence showed a significant increase in the number of
microglia throughout the inner retinal layers, especially
in IPL, 5 days after intravitreal AQP4-IgG administra-
tion. Increased numbers of Iba1+ cells were also seen in
CVF-treated rats, again supporting a complement-
independent proinflammatory mechanism (Fig. 4a). As a
positive control, intravitreal LPS increased the number
of Iba1+ cells. Examination of individual cells at high
magnification showed a characteristic stellate appearance
indicative of microglial activation (Fig. 4b). Though
resident microglia were activated by AQP4-IgG,

comparatively few CD45+ leukocytes were seen in the
retinas (Fig. 4a); as a control, abundant CD45+ infiltrates
were seen in the retinas of the rats following intravitreal
LPS. The bright green fluorescence at the bottom of the
section (below the ONL) is due to nonspecific secondary
antibody binding to the sclera, which occasionally
remained attached to the retina during sectioning.

AQP4-IgG produces loss of retinal ganglion cells
Retinal structures were examined longitudinally by in
vivo fundus imaging. Fundus photography did not reveal
acute vascular or inflammatory pathology, including the
absence of retinal vascular occlusions, retinitis, or papil-
litis (Fig. 5a). OCT showed inner retinal thickening in
the absence of microcyst formation at day 5 at which
maximal AQP4 loss and microglial activation occurs,
with mild though significant GCC and total retinal thin-
ning at day 30 (Fig. 5b, c). As GCC layer thinning is con-
sistent with loss of RGCs and/or Müller cell somas in
the INL, Brn3a+ RGCs were quantified in whole retinal
mounts at day 30. RGC density was significantly reduced
in the AQP4-IgG- compared with control-IgG-treated
eyes (Fig. 5d).

Mechanism of AQP4-IgG-induced loss of Müller cell AQP4
studied in retinal explant cultures
Retinal explant cultures were used to investigate the
mechanism of AQP4-IgG-induced AQP4 loss in
Müller cells. Culture of untreated retinas in serum-
free media enabled preservation of retinal structures
and Müller cell AQP4 expression after 24 h in culture.
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Fig. 2 Selective loss of Müller cell AQP4 following intravitreal injection of AQP4-IgG. a AQP4 and GS immunofluorescence at 5 days after
intravitreal AQP4-IgG injection under conditions as in Fig. 1c, visualized by confocal microscopy using a ×60 oil immersion lens. b Human IgG and
AQP4 immunofluorescence and H&E staining of the ciliary body at 5 days following intravitreal AQP4-IgG injection. Images representative of four eyes
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Subsequent incubation with AQP4-IgG, without added
complement or leukocytes, produced marked, ~50 %
reduction in Müller cell AQP4 expression 24 h later
(Fig. 6a, b). To investigate whether an endocytosis
mechanism might be responsible for the reduced
AQP4 expression, the retinas were incubated during
the 24-h exposure to AQP4-IgG with an inhibitor of
clathrin-mediated endocytosis, dynasore, or an inhibi-
tor of lysosomal acidification/degradation, chloroquine.

AQP4-IgG-induced AQP4 loss was largely prevented
by dynasore or chloroquine (Fig. 6a, b). High-
magnification confocal microscopy of retinas at 4 h
after addition of AQP4-IgG showed numerous AQP4+

puncta that were not seen in the control retinas, sup-
porting an endocytic retrieval mechanism. Together,
these data support an endocytosis and lysosomal deg-
radation mechanism for AQP4 loss on AQP4-IgG-
exposed Müller cells.
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Discussion
We found that exposure of retinal Müller cells to AQP4-
IgG can produce primary retinal pathology in the
absence of NMO optic neuritis. For these studies, we
administered a purified, recombinant AQP4-IgG to rat
eyes by an intravitreal route. AQP4-IgG diffused through
the posterior segment where it accessed the ciliary epi-
thelium and retinal Müller cells, without significant dif-
fusion to AQP4 on retrobulbar optic nerve astrocytes.
We found that intravitreal injection of AQP4-IgG pro-
duced pathology with loss of Müller cell AQP4, a gliotic
response with increased GFAP, microglial activation with
minimal leukocyte infiltration, and mild RGC loss and
thinning of the GCC. An interesting and unexpected ob-
servation was that the changes were complement inde-
pendent, which contrasts with the generally accepted

NMO pathogenesis mechanism in the optic nerve, spinal
cord, and brain. These findings have potential implica-
tions for pathogenesis mechanisms and therapy of ret-
inal abnormalities in NMO.
The reduced Müller cell AQP4 expression following

exposure to AQP4-IgG in ex vivo retinal cultures sup-
ports an endocytic retrieval mechanism with lysosomal
targeting to account for the loss of AQP4. The compar-
able reduction in Müller cell AQP4 following intravitreal
administration of an engineered AQP4-IgG lacking com-
plement and cellular effector functions supports the
conclusion that AQP4-IgG itself causes AQP4 internal-
ization, as do the retinal culture studies in which neither
complement nor effector cells were added. AQP4-IgG-
induced internalization of AQP4 is likely cell-type-,
polarization-, and, perhaps, even species-specific. While
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AQP4-IgG produces rapid AQP4 internalization in sev-
eral AQP4-transfected cell lines, and moderately fast
AQP4 internalization in nonpolarized astrocyte primary
cultures, little AQP4-IgG-dependent AQP4 internaliza-
tion was seen in astrocytes in the mouse brain in vivo
[23, 24]. Though Müller cell AQP4 expression is po-
larized, the biology of Müller cells is different from
that of astrocytes in the brain, spinal cord, and optic
nerve. It is not clear from the studies here whether
the loss of RGCs is a consequence of the loss of
Müller cell AQP4 expression, the gliotic response,
and/or intrinsic retinal inflammation.
The largely complement-independent retinal pathology

following intravitreal AQP4-IgG administration con-
trasts with that seen in other CNS tissues. In humans,
centrovascular deposition of activated complement is a

characteristic pathological feature in NMO [25], and an
initial open-label clinical study of a complement inhibi-
tor showed efficacy in reducing attacks of NMO optic
neuritis and transverse myelitis in seropositive NMO
patients [26]. Pathology following passive transfer of
AQP4-IgG to the mouse and rat brain, optic nerve, and
spinal cord is predominantly complement dependent, as
omission of added complement to mice [27–29] or in-
activation of endogenous complement in rats [18, 19]
prevents the development of NMO pathology. The
complement-independent retinal injury found here sug-
gests that complement-targeted therapeutics may have
limited efficacy in some NMO patients with anterior
visual pathway involvement.
Another interesting observation was increased GFAP

expression in Müller cells following intravitreal AQP4-
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IgG administration, indicating a prominent gliotic re-
sponse. Müller cell gliosis may be a consequence of
intraretinal inflammation, Müller cell injury, and/or
AQP4 loss. The retinal pathology seen here of AQP4
loss with increased GFAP and with minimal early com-
plement deposition corresponds to the pathology seen in
active human NMO lesions found in the brain and
spinal cord classified as type 4 pathology [30]. Similarly,
two separate models of chronic intrathecal AQP4-IgG
infusion have shown loss of AQP4 expression in the
spinal cord with reactive gliosis in the absence of com-
plement activation [31, 32]. Thus, under conditions in
which AQP4-IgG does not activate complement, the
astrocytic response can be associated with GFAP upreg-
ulation rather than downregulation as seen when com-
plement is activated. Release of soluble factors by
activated microglia and Müller cells such as the
proinflammatory cytokines TNF and monocyte

chemoattractant protein MCP-1, which are thought to
contribute to retinal degeneration in diabetic and other
retinopathies [33], may contribute to the retinal path-
ology. Chronic functional loss of AQP4 water permeabil-
ity in Müller cells was found in AQP4 knockout mice to
produce abnormalities in retinal signal transduction as
seen by electroretinography [34], which may reflect ab-
normal potassium and glutamate homeostasis. It is not
clear whether the Müller cell gliosis and RGC loss
produced by intravitreal AQP4-IgG is due to acute and
partial loss of Müller cell water-transporting function.
Though the AQP4-expressing ciliary epithelium

strongly bound AQP4-IgG following intravitreal AQP4-
IgG administration, no pathology was seen at the light
microscopic level. This is consistent with the near
absence, albeit for a few case reports of NMO-related
myositis [35, 36], of NMO pathology in peripheral
organs in which AQP4 is expressed, including the
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skeletal muscle, stomach, kidney, airways, and exocrine
glands. High-dose systemic administration of AQP4-IgG
to mice or rats produces prompt and extensive AQP4-
IgG deposition on peripheral AQP4-expressing organs,
but with no pathology [18, 37]. Humans have been re-
ported with circulating AQP4-IgG for at least a decade
preceding clinical NMO disease [38]. Why peripheral,
AQP4-expressing tissues are not damaged in seroposi-
tive NMO, despite their exposure to AQP4-IgG, remains
unclear. It has been speculated that the unique cellular
and physical environment in the CNS may be respon-
sible for the development of NMO pathology in CNS
but not peripheral tissues, as might the presence of com-
plement inhibitor or other anti-inflammatory mecha-
nisms in peripheral tissues.
During the completion of our manuscript, a paper by

Zeka et al. [39] was published reporting that rats receiv-
ing AQP4-specific T cells developed retinitis with T cell
infiltration and axonal pathology and that loss of AQP4
on Müller cells was seen when AQP4-IgG was delivered
systemically along with the AQP4-specific T cells.
Whether the retinal changes were primary or secondary
to optic nerve pathology is unclear, as is its relevance to
retinal abnormalities in human NMO.
Though our study demonstrates that exposure of the

retina to AQP4-IgG can produce primary retinal injury
with associated RGC loss, it is not known whether such
a mechanism occurs in human NMO. Whether AQP4-
IgG can access and bind to AQP4 on Müller cells be-
yond the blood-retinal barrier has not been established.
There are no reports to our knowledge of retinal abnor-
malities in NMO without a history of optic neuritis,
making it difficult to resolve primary vs. secondary
AQP4-IgG-induced retinal injury in human NMO.
Retinal pathology has been identified in postmortem tis-
sue of patients with NMO, with mild loss of calbindin-
positive horizontal cells and moderate loss of Müller
cells and scattered loss of AQP4 immunoreactivity [40].
There were also Iba1+ microglia in the inner retina with
few CD45+ cells and little complement deposition. Our
animal model recapitulates many of these features of
retinal pathology in human NMO.

Conclusions
Passive transfer of NMO anti-AQP4 autoantibody by
intravitreal injection in rat eyes produced marked loss
of Müller cell AQP4 expression with a gliotic re-
sponse, microglial activation, and mild RGC loss. The
action of the autoantibody was largely complement
independent, which contrasts with NMO pathogenesis
mechanisms in the brain, spinal cord, and optic
nerve. The results here provide a potential explan-
ation and mechanism for the retinal pathology seen
in seropositive NMO.
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