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Abstract

Fetoplacental endothelial cells reside under physiological normoxic conditions (~2–8% O2) in

vivo. Under such conditions, cells are believed to sense O2 changes primarily via hypoxia

inducible factor 1 α(HIF1A). However, little is known regarding the role of HIF1A in

fetoplacental endothelial function under physiological normoxia. We recently reported that

physiological chronic normoxia (PCN; 20–25 day, 3% O2) enhanced FGF2- and VEGFA-

stimulated proliferation and migration of human umbilical vein endothelial cells (HUVECs) via

the MEK/ERK1/2 and PI3K/AKT1 pathways compared to standard cell culture normoxia (SCN;

ambient O2: ~ 21% O2). Here, we investigated the action of HIF1A in regulating these cellular

responses in HUVECs. HIF1A adenovirus infection in SCN-cells increased HIF1A protein

expression, enhanced FGF2- and VEGFA-stimulated cell proliferation by 2.4 and 2.0 fold

respectively, and promoted VEGFA-stimulated cell migration by 1.4 fold. HIF1A adenovirus

infection in SCN-cells did not affect either basal or FGF2- and VEGFA-induced ERK1/2

activation, but it decreased basal AKT1 phosphorylation. Interestingly, HIF1A knockdown in
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PCN-cells via specific HIF1A siRNA transfection did not alter FGF2- and VEGFA-stimulated cell

proliferation and migration, or ERK1/2 activation; however, it inhibited FGF2-induced AKT1

activation by ~ 50%. These data indicate that HIF1A differentially regulates cell proliferation and

migration, and ERK1/2 and AKT1 activation in PCN- and SCN-HUVECs. These data also suggest

that HIF1A critically regulates cell proliferation and migration in SCN-, but not in PCN-HUVECs.
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Endothelial cells; hypoxia; HIF1A; growth factors; protein kinases

INTRODUCTION

The normal growth and development of placental vasculature is critical for maternal and

fetal exchanges of oxygen, nutrients, and wastes to support the growing embryo and fetus

[1–3]. Formation and development of placental vasculature take place in low O2

environments in vivo throughout pregnancy. The O2 levels within the placenta are ~ 1.5–

3.3% at ≤8–10 weeks of gestation, ~ 8% between 8–10 weeks, and ~ 6% at the end of the

third trimester [3,4]. These O2 levels are substantially lower than those either in ambient air

(~ 160 mmHg pO2, ~21% O2 at sea level) or in a main artery (~ 100 mmHg pO2, ~13% O2).

The O2 levels in the human umbilical vein are also low, ~ 3.5% O2 (range 2.4–4.6%) at the

end of gestation [5]. This physiological normoxia in placentas is vital for the growing

embryo and fetus as alterations of O2 tension markedly affect placental vascular and

trophoblast growth and development, and ultimately placental function [2–7]. Consistently,

emerging evidence has also shown that many endothelial dysfunction-related diseases,

including preeclampsia, are generally associated with severe hypoxia (< 2% O2) [5–9].

The mammalian cells are believed to sense O2 fluctuation mainly by prolyl hydroxylases

and their downstream targets, the hypoxia inducible factors (HIFs), a family of

transcriptional factors consisting of HIF1A, 2A, 3A and a constitutively-expressed subunit

1B [8,9]. As one of the most extensively studied HIFs, HIF1A is known to activate

expression of many hypoxia-inducible genes critical for regulation of cell function [8,9]. For

example, previous studies of HIF1A deficient mice have indicated that HIF1A is essential

for early vascular development during the embryonic stage [10]. In placentas, both HIF1A

and HIF2A are involved in regulating trophoblast and endothelial function during normal

placental development [11–14]; however, overexpression of HIF1A and 2A in human

placentas is associated with fetal growth restriction and preeclampsia [15–18], indicating

critical roles for HIF1A and HIF2A in placental growth and function.

Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are

potent growth factors critically regulating a number of key endothelial function including

proliferation and migration as well as production of vasoactive factors [19–22]. The cellular

responses to FGF2 and VEGFA are mediated by binding and activating their high affinity

receptors, which in turn activate a serial of downstream signaling cascades of protein

kinases, including the MEK/ERK1/2 and PI3K/AKT1 [19–22]. Acute hypoxia (3% O2, 24

hr) enhances cell proliferation in human placental artery endothelial cells independent of
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further activation of ERK1/2 and AKT1 [23], although acute hypoxia (1% O2, ≤ 10 min)

alone can activate ERK1/2 in human microvascular endothelia in vitro [24].

Numerous studies have demonstrated the importance of HIF1A in different types of cells

cultured and expanded under a standard cell culture condition (~ 21% O2) and then exposed

to acute low O2 (4–120 hr; 2–5% O2) [8,9]. However, little is known about the potential role

for HIF1A in regulating endothelial function in response to FGF2 and VEGFA or the

involvement of underlying signaling mechanisms under physiological chronic normoxia.

Recently, we have reported that physiological chronic normoxia (3% O2, 20–25 days)

dramatically elevates protein expression of HIF1A, but not HIF2A, and enhances endothelial

proliferation and migration in responses to FGF2 and VEGFA via enlarging ERK1/2 and

AKT1 activation in human umbilical vein endothelial cells (HUVECs) [25]. To determine

the role of HIF1A in regulating endothelial function under physiological chronic normoxia,

we tested the hypothesis that elevation of HIF1A protein levels in HUVECs cultured under

physiological chronic normoxia is critical to these physiological chronic normoxia-enhanced

cellular responses (FGF2- and VEGFA-induced cell proliferation and migration, as well as

ERK1/2 and AKT1 activation).

MATERIALS AND METHODS

Endothelial Cell Cultures

HUVECs were isolated from human umbilical cords of normal term pregnant patients who

did not have medical complications immediately (≤ 1 hr) after Caesarean section as previous

described [25,26]. The umbilical cord collection was approved by the Institutional Review

Board of Meriter Hospital, and the Health Sciences Institutional Review Boards, University

of Wisconsin-Madison. After isolation, cells obtained from the same vein were split equally,

cultured, and expanded steadily under standard cell culture normoxia (37°C, 5% CO2, 95%

air; designated as SCN) or physiological chronic normoxia (37°C, 5% CO2, 3% O2, 92%

N2; designated as PCN) up to 25 days. Cells were cultured in RPMI 1640 medium

supplemented with 10% FBS, 1% penicillin/streptomycin, 0.1 μg/ml heparin, and 37.5 μg/ml

endothelial cell growth supplement (EMD Millipore, Billerica, MA). Cells were sorted by

flow cytometry based on their expression of platelet and endothelial cell adhesion molecule

1 (PECAM 1 or CD31), and further characterized by their morphology, formation of

capillary-like tube structures, and uptake of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-

indocarbocyanine perchlorate (DiI-Ac-LDL) as previously described [25,26]. Only cell

preparations in which ≥ 96% of the cells were positive for CD31 and exhibited DiI-Ac-LDL

uptake, and were capable of forming capillary-like tube structures were utilized in this study.

Cells at passages 4–5 (~20–25 days after isolation) were used for all studies. Paired SCN-

and PCN-cell preparations, each of which was derived from the same vein, were used for all

experiments. All 3% O2 experiments were performed in a heated oxygen controlled glove

box (Coy Laboratory Products, Grass Lake, MI) and media were pre-purged with N2 and

equilibrated to 3% O2 before addition to cells. Dissolved O2 in media was monitored using a

dissolved oxygen meter (Mettler Toledo, Columbus, OH). Low cellular O2 was also

confirmed by increased protein levels of HIF1A, as well as BCL2/adenovirus E1B 19kDa

interacting protein 3 (BNIP3), and solute carrier family 2 (facilitated glucose transporter),
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member 3 (SLC2A1; also known as glucose transporter 3 [GLUT3]), two of major HIF1A

downstream genes as previously described [9, 25–28].

Western Blot Analysis

Western blot analysis was performed as described [25,26]. Proteins (10 or 20 μg/sample)

were separated on 10% SDS-PAGE gels and electrically transferred to PVDF membranes

(100 V, 60 min). Non-specific binding was blocked with 5% fat-free milk in Tris buffer (50

mM Tris-HCl, pH 7.5, 0.15 M NaCl, 0.05% Tween-20) for 60 minutes. The binding of

specific antibodies on the membranes (Supplemental Table 1) was detected using enhanced

chemiluminescence (ECL) or ECL plus reagents (Amersham Biosciences, Piscataway, NJ).

ECL was measured using an Epson Perfection 4990 Photo Scanner (Long Beach, CA) and

analyzed using NIH Image J software.

Adenovirus Infection and siRNA Transfection

Adenoviruses carrying HIF1A (Ad-HIF1A) or green fluorescent protein (Ad-GFP) were

purchased from Cell Biolabs (San Diego, CA). Amplification and infection of adenoviruses

were conducted as previously described [29]. Briefly, subconfluent (50–60%) SCN-

HUVECs were infected with pre-determined multiplicity of infection (MOI) of Ad-HIF1A

or with Ad-GFP in complete RPMI 1640 medium and cultured for up to 3 days.

The siRNA transfection was carried out as described [30]. HIF1A siRNA (sense 5′-

CUGAUGACCAGCAACUUGAdTdT-3′ and antisense 5′-

UCAAGUUGCUGGUCAUCAGdTdT-3′) was designed based on the human HIF1A coding

sequence (GenBank # NM_001530) and synthesized by IDT (Coralville, IA). This HIF1A

siRNA has been reported to successfully suppress HIF1A expression in HUVECs [31]. The

inverted HIF1A siRNA (sense 5′-AGUUCAACGACCAGUAGUCdTdT-3′ and antisense 5′-

GACUACUGGUCGUUGAACUdTdT-3′) and scrambled siRNA (sense, 5′-

AGUUUGACCUGCUCUCCAUTT-3′ and antisense 5′-

AUGGAGAGCAGGUCAAACUTT-3′) 5′ conjugated with Cy3 were used as controls. The

transfection efficiency was monitored by the induction of Cy3 under fluorescence

microscope. Subconfluent (50–60%) PCN-HUVECs were transfected with siRNA. The

siRNA (a final concentration at 40 nM) was prepared in Lipofectamine RNAiMAX

transfection reagent (Invitrogen, Grand Island, NY). Briefly, cells were washed and cultured

in serumfree RPMI (sf-RPMI) for 30 min. siRNA was mixed with Lipofectamine

RNAiMAX transfection reagent, diluted in sf-RPMI, and incubated for 15 minutes at room

temperature. This siRNA transfection mixture was added to cells. After 3 hours of

transfection, equal volume of cell culture medium supplemented with 20% FBS was added

to cell cultures. The cell culture media was changed the next day.

After the adenovirus infection and siRNA transfection, HIF1A and BNIP3 protein levels

were monitored by Western blot. Additional infected or transfected PCN- or SCN-HUVECs

were used to determine their proliferative and migratory responses to bovine FGF2 (FGF2;

R & D Systems, Minneapolis, MN) or human VEGFA165 (VEGFA; PeproTech, Rocky Hill,

NJ).
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Cell Proliferation and Migration Assays

After 40 hours of adenoviral infection or siRNA transfection, the cells were serum starved

for 8 hours, followed by proliferation and migration assays. Cell proliferation was measured

using a fluorometric BrdU kit (EMD) as previously described [25,26,32]. Cells seeded in

96-well plates (8000 cells/well) were cultured for 16 hours. After 8 hours of serum

starvation, cells were treated with 10 ng/ml of FGF2 or VEGFA for 16 hours. We recently

reported that these doses of FGF2 and VEGFA are optimal for stimulating proliferation and

migration of HUVECs and HUAECs [25,26]. The cells were then labeled with BrdU for 8

hours, fixed and probed with anti-BrdU antibody. The fluorescent signals were detected

using a microplate reader (Synergy HT Multi-Mode, BioTek, Winooski, VT).

Cell migration was evaluated using a 24-multiwell FluoroBlok transwell insert system (8 μm

pores; BD Biosciences) [25,26]. After 8 hours of serum starvation, cells were seeded into

inserts, followed by adding 10 ng/ml of FGF2 or VEGFA to the bottom wells. After 16

hours of incubation, the fluorescent dye calcein acetoxymethyl ester (Invitrogen) was added

to the bottom wells at a final concentration 0.5 μg/ml and incubated for 30 minutes.

Migrated cells were evaluated (four randomly chosen fields/well) under a Nikon inverted

microscope connected with a CCD camera. Cell numbers were counted using the

Metamorph image analysis software (Molecular Devices).

Statistical Analyses

Data from other studies were analyzed using One Way Analysis of Variance (ANOVA)

(SigmaStat, Jandel Co., San Rafael, CA). When an F test was significant, data were

compared with their respective control by Student Newman-Keuls test.

RESULTS

Regulation of HIF1A Protein by Changing O2 Levels

We performed Western blot analysis to examine if different O2 levels differentially regulate

HIF1A protein expression in HUVECs (Fig. 1). Two bands of HIF1A at ~ 120 kDa were

detected as previously observed [24,33]. The lower band appears to be the major form of

HIF1A in SCN-HUVECs, whereas the upper band is the predominant one in PCN-HUVECs

(Fig. 1). Overall basal HIF1A protein levels (Day 0) in PCN-cells were significantly higher

(4.9 fold; p < 0.05) than those in SCN-cells. Exposure of SCN-cells to 3% O2 for 1 day

increased HIF1A protein levels (1.9 fold; p < 0.05); however, further exposure up to 5 days

decreased HIF1A protein levels to the basal level in SCN-cells. In contrast, exposure of

PCN-cells to 21% O2 rapidly and markedly decreased HIF1A protein to the basal level seen

in SCN-cells, starting on Day 1 and continuing at this level up to 5 days (Fig. 1). Also, the

basal levels of total and phosphorylated ERK1/2 and AKT1 did not change between SCN-

and PCN-cells, over 5 days of changed O2 levels (Fig. 1).

HIF1A Overexpression in SCN-HUVECs Enhances FGF2- and VEGFA-Stimulated Cell
Proliferation and VEGFA-Stimulated Cell Migration

To examine the role of HIF1A in regulating endothelial adaptations to different O2 levels,

cell proliferation and migration in response to FGF2 and VEGFA were measured in SCN-
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HUVECs after infection with Ad-HIF1A to overexpress HIF1A. The dose and time

responses of HIF1A protein levels after Ad-HIF1A infection were first determined (Fig. 2A

and B). We observed that after 2 and 3 days of infection with Ad-HIF1A at 100 MOI,

HIF1A protein levels were elevated (p < 0.05) by 2.3 and 5.2 fold, respectively, which were

comparable to the overall increase (4.9 fold) in HIF1A protein levels seen in PCN-cells vs.

SCN-cells (Fig. 1). After 2 days of infection with either 200 or 500 MOI of Ad-HIF1A,

HIF1A protein levels were increased by ~ 10 and ~40 fold, respectively (Fig. 2A). Thus, to

elevate HIF1A protein in SCN-cells to levels comparable to those seen in PCN-cells, Ad-

HIF1A at 100 MOI was used for the cell proliferation, cell migration, and kinase

phosphorylation assays.

We next determined the effects of Ad-HIF1A on SCN-cell proliferation and migration (Figs.

2C and D). Both FGF2 and VEGFA treatment alone significantly (p < 0.05) stimulated cell

proliferation and migration in SCN-cell compared with the no growth factor control. Ad-

HIF1A alone did not affect cell proliferation and migration in SCN-cells compared with Ad-

GFP control (Supplemental Fig. 1 A and B). In cell proliferation assays, Ad-HIF1A further

enhanced (p < 0.05) FGF2- and VEGFA-stimulated cell proliferation by 2.4 and 2.0 fold,

respectively, compared with the Ad-GFP control (Fig. 2C). In cell migration assays, Ad-

HIF1A promoted VEGFA-stimulated cell migration by 1.4 fold; however, it did not

significantly alter FGF2-stimulated cell migration (Fig. 2D).

We also examined if further upregulation of HIF1A protein promoted additional cell

proliferation. We observed that 200 MOI of Ad-HIF1A did not induce additional cell

proliferation in response to FGF2 and VEGFA compared with either Ad-GFP or to mock

control (Supplemental Fig. 2A). Moreover, 500 MOI of Ad-HIF1A and Ad-GFP attenuated

(p < 0.05) FGF2-, but not VEGFA-stimulated cell proliferation (Supplemental Fig. 2B).

These data suggest that HIF1A regulation of endothelial proliferation is likely highly

dependent on the HIF1A level and external stimuli, e.g., responses to different growth

factors.

Regulation of ERK1/2 and AKT1 Activation by HIF1A in SCN-HUVECs

To investigate if HIF1A regulates ERK1/2 and AKT1 activation in SCN-HUVECs,

phosphorylation of ERK1/2 and AKT1 after Ad-HIF1A infection was examined by Western

blot. In cells infected with Ad-HIF1A and Ad-GFP, stimulation with FGF2 or VEGFA (10

ng/ml) for up to 10 min increased (p < 0.05) phosphorylation of ERK1/2 (Thr202/Tyr204).

However, Ad-HIF1A infection neither further enhanced FGF2- and VEGFA-induced such

phosphorylation (Fig. 3A) nor altered basal ERK1/2 phosphorylation (Fig. 3C). In contrast,

Ad-HIF1A infection in SCN-HUVECs inhibited (p < 0.05) the basal phosphorylation of

AKT1 by 63% without affecting total AKT1 protein levels (Fig. 3C). Stimulation with FGF2

or VEGFA for up to 10 min did not significantly induce AKT1 phosphorylation (Ser473) in

HUVECs infected with Ad-GFP (Fig. 3B). However, Ad-HIF1A infection enhanced (p <

0.05) FGF2-, but not VEGFA-induced AKT1 phosphorylation (Fig. 3B). These data indicate

that HIF1A differentially regulates ERK1/2 and AKT1 activation in response to FGF2 and

VEGFA in SCN-HUVECs.
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HIF1A Knockdown in PCN-HUVECs Did Not Affect FGF2- and VEGFA-Stimulated Cell
Proliferation and Migration

HIF1A siRNA transfection significantly (p < 0.05) and specifically suppressed HIF1A, but

not HIF2A protein in PCN-cells (Fig. 4A) as measured by Western blot. HIF1A protein

levels were similar among the vehicle, scrambled siRNA, and inverted siRNA (Fig. 4A).

Compared with the vehicle control, after 2 and 3 days of transfection, the HIF1A siRNA

suppressed HIF1A protein levels by 70%, which was similar to those observed in SCN-cells

(Figs. 1 and 2). After 4 days of HIF1A siRNA transfection, the HIF1A protein levels

recovered and returned to levels similar to those in the vehicle control. Therefore, cell

proliferation and migration assays were conducted within 3 days of transfection with the

HIF1A siRNA.

HIF1A siRNA alone did not affect cell proliferation and migration in PCN-cells compared

with vehicle, scrambled siRNA, and inverted siRNA control (Supplemental Fig. 1 C and D).

Compared with the no growth factor control, FGF2 and VEGFA enhanced (p < 0.05)

proliferation and migration in cells transfected with the HIF1A siRNA, scrambled siRNA,

and inverted siRNA, and in cells treated with vehicle control (Fig. 4B and C). However,

suppression of HIF1A did not significantly alter FGF2- and VEGFA-stimulated cell

proliferation and migration (Fig. 4B and C).

HIF1A Knockdown in PCN-HUVECs Attenuates FGF2-Induced AKT1 activation

To explore if HIF1A regulates ERK1/2 and AKT1 activation in PCN-cells, phosphorylation

of ERK1/2 and AKT1 was examined by Western blot. We observed that knockdown of

HIF1A protein by HIF1A siRNA did not alter FGF2- and VEGFA-induced ERK1/2

phosphorylation (Fig. 5A). However, knockdown of HIF1A significantly (p < 0.05)

inhibited FGF2-stimulated AKT1 phosphorylation by 44%, while it did not significantly

affect VEGFA-induced AKT1 phosphorylation (Fig. 5B). In addition, knockdown of HIF1A

did not change basal phosphorylation of either ERK1/2 or AKT1 in PCN-HUVECs (Fig.

5C).

DISCUSSION

In the current study, we have demonstrated that HIF1A overexpression in SCN-HUVECs

further enhances FGF2- and VEGFA-stimulated cell proliferation and VEGFA-stimulated

cell migration. However, in contrast to our hypothesis, HIF1A knockdown in PCN-

HUVECs does not affect FGF2- and VEGFA-stimulated cell proliferation and migration.

Moreover, our current data also suggest HIF1A differentially regulates activation of AKT1,

but not ERK1/2 in response to FGF2 and VEGFA in SCN-and PCN-HUVECs. HIF1A may

be a critical factor regulating FGF2- and VEGFA-stimulated cell proliferation and migration

in SCN-HUVECs. Nonetheless, HIF1A alone has no significant impact on these cell

responses in PCN-HUVECs. This conclusion is supported by our re-examination of the

PCN-induced differentially expressed (DE) genes in HUVECs [25] using Ingenuity Pathway

Analysis software (www.ingenuity.com/products/ipa), in which we observed that out of a

total of 62 DE genes, only 6 (~ 9.7%) were directly regulated by HIF1A (Supplemental Fig.

3).
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Extensive in vitro investigations have demonstrated that an acute drop in O2 can rescue

HIF1A protein from ubiquitin-dependent proteasome degradation in many types of cells

normally cultured and expanded under ambient O2 [8,9]. Our current data agree with these

previous studies, showing that HIF1A protein levels in SCN-HUVECs were elevated after 1

day of exposure to 3% O2 and then decreased back to basal levels afterward up to 5 days of

exposure to 3% O2. This biphasic change in HIF1A protein levels is not surprising since it

has been found in other cultured cell types including human epithelial cells (HeLa and

Caco-2) and fibroblast cells (HT1080 and NSF cells) [34–36]. These data indicate the high

dependence of HIF1A protein levels on duration of deoxygenation in SCN-cells. To date,

the cause of the rapid decrease in HIF1A protein in SCN-cells after 2 days of exposure to

3% O2 is not known. However, it may be due to a negative feedback mechanism by which

relatively prolonged low O2 transiently promotes expression and activities of prolyl

hydroxylase domain [35], which enhances the ubiquitin-dependent proteasome degradation

of HIF1A protein. Conversely, the sustainability of HIF1A in PCN-cells is regulated by

different mechanisms such as down-regulation of HIF1A-destablizing miRNA 155 [36]. The

sustainability of HIF1A in PCN-cells could also be regulated via histone acetylation [37]

and DNA hypomethylation [38] in HIF1A promoter. Moreover, since many peptide factors

such as rennin/angiotensin, cytokines and growth factors have been reported to regulate

HIF1A expression in placenta via the oxygen-dependent or -independent mechanisms [39],

we also cannot exclude the possibility that these peptide factors play roles in maintaining

relatively high HIF1A levels in PCN-cells. Together with the observation that high HIF1A

levels are present in PCN-HUVECs, these data indicate that prolonged exposure of SCN to a

physiological O2 level cannot fully recaptulate the cells preparations derived under PCN.

It may be noteworthy that two forms of HIF1A protein were detected in HUVECs. Similar

findings were reported in human placentas [33] and human microvascular endothelial cells

[24]. As both of these forms of HIF1A were repressed by the same HIF1A siRNA (Figs. 1, 2

and 4), they possibly result from a post-translational modification, e.g., phosphorylation

induced by ERK1/2 [24], or from alternative splicing [40]. An important question raised is

whether each of these two forms of HIF1A has unique functions in HUVECs. However,

because the upper band of HIF1A, presumably the phosphorylated form [24], appears to be

the predominant form responding to both O2 changes (Fig. 1) and Ad-HIF1A infection (Fig.

2B), the upper band of HIF1A is likely to play a major role in sensing or responding to O2

changes, thereby regulating cellular responses to the O2 change in SCN-HUVECs.

Our current data firmly support a critical and differential role of HIF1A in regulating

endothelial proliferation and migration in response to FGF2 and VEGFA in SCN-HUVECs.

The failure of HIF1A overexpression to promote FGF2-stimulated cell migration is

obviously not due to an uncoupling of HIF1A overexpression and FGF2 signaling as

overexpression of HIF1A promoted both FGF2- and VEGFA-stimulated proliferation of

SCN-HUVECs. Thus, given that PCN also did not induce a robust cell migration response to

FGF2 in HUVECs as recently reported [25], these data suggest that neither PCN nor HIF1A

alone plays in an important role in regulating FGF2-stimualed cell migration in SCN-

HUVECs.
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Excessive overexpression of HIF1A (~ 10 and 40 fold by 200 and 500 MOI Ad-HIF1A) in

SCN-cells either fails to further enhance FGF2 and VEGFA-stimulated cell proliferation or

attenuates FGF2-stimulated cell proliferation (Supplemental Fig. 2A). One possible

explanation for these phenomena is that excessive overexpression of HIF1A may promote

cell apoptosis and cell growth arrest via elevating protein levels of pro-apoptosis/growth

arrest proteins BNIP3, p53 (a tumor suppressor protein), and p21 (also known as cyclin-

dependent kinase inhibitor 1) and/or via decreasing the apoptosis-inhibitor Bcl [27, 41–43].

Thus, excessive overexpression of HIF1A may adversely affect placental endothelial

growth. Indeed, aberrantly high expression of HIF1A protein has been detected in placentas

obtained from preeclamptic pregnancy [15,16], which may exhibit impaired angiogenesis,

e.g., increased branching angiogenesis [43]. Similarly, systemic Ad-HIF1A infection of

pregnant mice can also cause abnormal vasculature in placenta and reduce placental weights

compared with control mice [18]. Together, these data indicate the importance of tightly-

controlled HIF1A expression in regulating vascular growth and development.

In contrast to our hypothesis, HIF1A knockdown in PCN-HUVECs did not affect PCN-

enhanced proliferation and migration in response to FGF2 and VEGFA. While the partial

knockdown of HIF1A might be insufficient to alter HIF1A’s effects, HIF1A protein levels

remaining after 2 days of HIF1A’s siRNA transfection were only 21% of those in PCN-

HUVECs (Fig. 4A), and were highly comparable to HIF1A levels in SCN-HUVECs (19%

of that in PCN-HUVECs, Fig. 1A). These data suggest that the insufficient knockdown of

HIF1A is unlikely to be the complete answer. Alternatively, the unchanged PCN-HUVECs

responses after HIF1A knockdown could be caused by the short duration of HIF1A

knockdown, which might be insufficient to affect the downstream signaling network

required for inducing cellular responses by HIF1A. This notion is supported by our current

observation showing that the protein level of BNIP3, a canonical hypoxia/HIF1A targeting

gene [9,25–27], remained unaltered even after 3 days of HIF1A knockdown in PCN-

HUVECs. Moreover, it has been reported that conditional knockout of endothelial HIF1A in

mice does not cause apparent defect in placental and systemic vasculature [44], and

hypoxia-induced angiogenesis can be regulated via pathways, e.g., a peroxisome-

proliferator-activated receptor-c coactivator-1αestrogen-related receptor-α pathway [45,46]

independent of HIF1A. Thus, we predict that acute decreases in endothelial HIF1A levels do

not have an important role in the PCN-enhanced endothelial proliferation and migration in

response to FGF2 and VEGFA, although HIF1A might closely upregulate expression of pro-

angiogenic factors in other types of placental cells such as trophoblast cells [22,47,48],

indirectly promoting placental angiogenesis.

Knockdown of HIF1A has been reported to suppress ERK1/2 and AKT phosphorylation in

breast cancer cells, suggesting the involvement of HIF1A in sustaining ERK1/2 and AKT

activation [49]. To date, effects of HIF1A on activation of protein kinases induced by FGF2

and VEGFA in endothelial functions under PCN remain undetermined. In the current study,

we focused on ERK1/2 and AKT1 since both are critical mediators of endothelial functions

[19–21]. We have also recently shown that PCN-robustly increases FGF2- and VEGFA-

induced ERK1/2, and VEGFA-induced AKT1 activation [25]. At least in part, such

increases mediate PCN-enhanced FGF2- and VEGFA-stimulated cell proliferation and
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migration in HUVECs [25]. Our current findings demonstrate that HIF1A is only involved

in basal AKT1 activation in SCN-cells and modulation of FGF2-induced AKT1 activation in

PCN-cells. Thus, PCN-enlarged ERK1/2 and AKT1 activation induced by FGF2 and/or

VEGFA in HUVECs [25] is likely to be independent of HIF1A. Currently, the mechanism

underlying differential HIF1A regulation of ERK1/2 and AKT1 activation in endothelial

cells is undetermined. One possible mechanism is that HIF1A overexpression could

upregulate PTEN, a PI3K phosphatase, which suppresses the basal phosphorylation of

AKT1 [50]. In addition, since phosphorylation of AKT1 on both Ser473 and Thr309 are

necessary for full AKT activity, further assessing phosphorylation of Thr309 will help to

understand the impact of HIF1A on AKT activity.

In conclusion, by using PCN- and SCN-HUVECs as in vitro cell models, we have provided

clear evidence showing that HIF1A has distinct roles in endothelial adaptations to

physiological and atmospheric O2. The different regulatory functions of HIF1A in HUVECs

are manifested in FGF2- and VEGFA-responsive cell proliferation and migration, as well as

in signaling pathways.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• HIF1A overexpression enhanced endothelial proliferation and/or migration in

21% O2.

• HIF1A knockdown failed to affect endothelial proliferation and migration in 3%

O2.

• HIF1A critically regulates human endothelial function in 21% O2, but not in 3%

O2.
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Fig. 1.
Effects of different O2 levels on HIF1A protein levels in SCN- and PCN-HUVECs. SCN-

and PCN-HUVECs were cultured in 3% and 21% O2, respectively, for 0, 1, 2, 5 days. The

protein levels of HIF1A, total (t) and phosphorylated (p) ERK1/2 and AKT1, and β-actin

were analyzed by Western blot. Quantitative analysis of HIF1A is shown. Data normalized

to β-actin are expressed as means ± SEM fold of SCN. a,b,c,dMeans with different letters

differ from each other (p < 0.05, n = 4 cell preparations).
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Fig. 2.
Effects of HIF1A overexpression on FGF2- and VEGFA-stimulated cell proliferation and

migration in SCN-HUVECs. (A) SCN-HUVECs were infected with 0 to 1000 MOI of Ad-

HIF1A for 2 and 3 days under 21% O2. Protein levels of HIF1A were determined by

Western blot. (B) HUVECs were infected without or with 100 MOI of Ad-HIF1A or Ad-

GFP. After 2 and 3 days of infection, HIF1A protein levels were determined. Data

normalized to β-actin are expressed as means ± SEM fold of the corresponding mock

control. (C, D) SCN-HUVECs were infected without or with 100 MOI of Ad-HIF1A or Ad-
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GFP under 21% O2. After 40 hr infection and 8 hr serum-starvation, cells were treated with

10 ng/ml of FGF2 or VEGFA for 16 hr. Cell proliferation (C) and migration (D) were

determined by BrdU kits or FluoroBlok inserts respectively. Data are expressed as means ±

SEM fold of the corresponding no growth factor control. a,bMeans with different letters

differ from each other (p < 0.05, n = 4 cell preparations).
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Fig. 3.
Effects of HIF1A overexpression on ERK1/2 and AKT1 phosphorylation in SCN-HUVECs.

After infection with 100 MOI of Ad-GFP and Ad-HIF1A and 8 hr serum-starvation, cells

were treated without or with 10 ng/ml of FGF2 or VEGFA under ~ 21% O2. Proteins were

subjected to Western blot analysis and probed with specific antibodies against total (t) and

phosphorylated (p) ERK1/2 (A) and AKT1 (B). Data normalized to tERK1/2 or tAKT1 are

expressed as means ± SEM fold of the control. (C) After 2 days of transfection, basal levels

of pERK1/2 and pAKT1 were analyzed by Western blot. Data are normalized to tERK1/2 or
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tAKT1 are expressed as means ± SEM fold of the control. *Differ from no growth factor

control. #Differ from Ad-GFP at the same time point. p < 0.05, n = 4 cell preparations.
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Fig. 4.
Effects of HIF1A knockdown on FGF2- and VEGFA-stimulated cell proliferation and

migration in PCN-HUVECs. (A) HIF1A siRNA specifically suppressed HIF1A protein

levels in PCN-HUVE cells. Protein levels of HIF1A, HIF2A, BNIP3, and GLUT1 were

determined by Western blot after transfection with 40 nM of HIF1A siRNA (Si), inverted

siRNA (Inv), scrambled siRNA (SS) or vehicle (V) for 2, 3 and 4 days under 3% O2.

Representative images of Western blot are shown. Data normalized to β-actin are expressed

as means ± SEM of fold of the vehicle control (n = 5 cell preparations). *differ (p < 0.05)
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from the vehicle control. (B and C) Effects of HIF1A siRNA on FGF2- and VEGFA-

stimulated PCN-cell proliferation (B) and migration (C). After 48 hr transfection and 8 hr

serum-starvation, cells were treated with 10 ng/ml of FGF2 or VEGFA for 16 hr. Cell

proliferation and migration were examined by BrdU kits or FluoroBlok inserts respectively.

Data are expressed as means ± SEM fold of the no growth factor control (n = 6 cell

preparations).
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Fig. 5.
Effects of HIF1A knockdown on ERK1/2 and AKT1 phosphorylation in PCN-HUVECs.

After 48 hr transfection with 40 nM HIF1A siRNA (Si) or scrambled siRNA (SS) and 8 hr

serum-starvation, cells were treated with 10 ng/ml of FGF2 or VEGFA under 3% O2.

Proteins were subjected to Western blot analysis and probed with specific antibodies against

total (t) and phosphorylated (p) ERK1/2 (A) and AKT1 (B). Data normalized to tERK1/2

and tAKT1 are expressed as means ± SEM fold of the control. (C) After 2 days of

transfection with HIF1A Si or SS, basal level of pERK1/2 and pAKT1 were analyzed by
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Western blot. Data are normalized to tERK1/2 and tAKT1. *Differ from the no growth

factor control. #Differ from Si at the same time point. p < 0.05, n = 4 cell preparations.
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