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ABSTRACT	OF	THE	DISSERTATION	

	
Bug	Report	Quality	Prediction	and	

the	Impact	of	Including	Videos	on	the	Bug	Reporting	Process	

by	

Elahe	Paikari	

Doctor	of	Philosophy	in	Software	Engineering	

University	of	California,	Irvine,	2023	

Professor	André	van	der	Hoek,	Chair	

	
	

Many	newly-submitted	bug	reports	are	not	actionable:	they	do	not	have	sufficient	

and	clear	information	for	developers	to	start	the	process	of	understanding	and	fixing	them.	

The	presence	of	such	non-actionable	bug	reports	leads	to:	(1)	a	waste	of	developers’	time	

as	they	have	to	come	up	with	the	right	questions	to	ask	bug	reporters	in	order	to	

understand	the	essence	of	these	bug	reports,	(2)	slower	overall	progress,	and	(3)	negative	

effects	on	the	overall	quality	of	software.	Therefore,	effective	bug	reporting	is	crucial,	

especially	in	projects	where	a	large	number	of	bug	reports	are	submitted	on	a	regular	basis	

and	a	significant	portion	of	the	overall	software	development	lifecycle	is	spent	addressing	

these	reports.	

To	address	this	issue,	the	dissertation	first	looks	at	understanding	the	overall	

quality	of	bug	reports,	contributing	the	implementation	of	a	model	that	classifies	bug	

reports	as	actionable	or	non-actionable.	Second,	through	an	empirical	study	of	2,814,599	

bug	reports	across	five	systems,	the	dissertation	answers	the	question	of	whether	the	

inclusion	of	videos	in	bug	reports	may	lead	to	tangible	potential	incentives	for	the	

reporters	(i.e.,	reduced	time	to	resolution,	leading	to	an	actual	fix,	or	reduced	number	of	



	
	

xv	

back-and-forth).	Third,	the	dissertation	examines	whether	certain	characteristics	(e.g.,	the	

presence	of	voice	over,	clear	highlighting	with	the	mouse,	a	video	contains	steps	to	

reproduce)	might	differentiate	videos	that	have	a	positive	impact	on	the	bug	resolution	

process	from	those	that	do	not,	by	studying	how	developers	react	to	videos	with	different	

characteristics	and	whether	these	different	characteristics	have	potentially	observable	

benefits.		

The	main	contributions	of	this	dissertation	include:	(1)	a	machine	learning	model	

that	with	a	92%	accuracy	(F-measure	of	0.91)	separates	actionable	from	non-actionable	

bug	reports,	which	is	significantly	higher	than	the	best	results	to	date,	(2)	new	findings	

concluding	that	the	inclusion	of	videos	in	bug	reports	does	not	always	translate	to	tangible	

benefits	for	reporters:	bug	resolution	time	is	barely	impacted,	the	percentage	of	bug	

reports	being	successfully	resolved	with	a	patch	is	lower	for	bug	reports	with	videos,	and	

back-and-forth	is	higher	for	bug	reports	with	videos,	and	(3)	new	findings	about	videos	

with	different	characteristics:	bug	reports	with	videos	that	are	less	than	30	seconds	or	

contain	actual	results	appear	to	have	observable	benefits	for	bug	reporters.	The	findings	

can	serve	as	a	basis	for	future	research	and	developing	tools	that	assist	reporters	in	

improving	their	bug	reports	before	final	submission,	either	by	helping	reporters	to	turn	

their	non-actionable	bug	reports	into	actionable	ones	or	by	supporting	them	in	attaching	

helpful	videos	exhibiting	the	characteristics	found	to	be	beneficial	to	both	developers	and	

bug	reporters.	
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1 CHAPTER	1:	INTRODUCTION	
 
A	bug	report	refers	to	a	report	filed	manually	by	an	end-user	or	a	tester	of	software	about	a	

fault	or	defect	 [1].	Bug	reports	are	essential	 in	software	development	because	they	allow	

users	to	inform	developers	of	the	problems	encountered	while	using	a	software.	Bug	reports	

typically	contain	a	detailed	description	of	a	software	failure	and	ideally	hint	at	the	location	

of	the	fault	in	the	code	(in	the	form	of	patches	or	stack	traces)	[2].		

Bug	 reports	 vary	 in	 their	 quality	 of	 content;	 they	 often	 provide	 inadequate	 or	 incorrect	

information	 [3],	 [4].	 A	 possible	 reason	 could	 be	 that	 reporters	 have	 different	 levels	 of	

experience	or	knowledge	about	the	underlying	software	that	has	a	bug	and	what	they	need	

to	tell	the	assigned	developer	about	the	bug	in	order	to	resolve	it	[5],	[6].	It	could	also	be	that	

the	information,	which	is	most	useful	for	a	developer	resolving	a	bug	report	(e.g.,	steps	to	

reproduce,	actual	results,	and	test	cases)	is	often	the	most	difficult	information	for	reporters	

to	provide	[7],	[8],	[9].	Some	researchers	identified	that	inadequate	tool	support	is	one	of	the	

main	reasons	for	inaccurate	bug	reports	[7],	[10].	

With	the	rapid	development	of	software	(i.e.,	especially	open	source	software),	vast	amounts	

of	 bug	 reports	 have	 been	 produced	 [11]	 and	 research	 shows	 that	 the	 lack	 of	 important	

information	in	bug	reports	is	a	main	reason	for	low	quality	bug	reports	[12].	The	presence	

of	 such	 low	quality	bug	reports	 lead	 to	developers	having	 to	spend	more	 time	and	effort	

understanding	bug	descriptions	 and	 seek	 significant	 clarification	or	 important	 additional	

information	[13],	[14].	Breu	et	al.	[15]	explored	the	questions	asked	during	the	resolution	of	

bug	 reports	 and	 found	 that	 a	 significant	 proportion	 of	 these	were	 related	 to	missing	 or	

inaccurate	information.	Yet,	when	the	developers	ask	reporters	to	clarify	certain	aspects	of	

their	 reports,	 they	 do	 not	 always	 receive	 a	 response	 [15].	 This	 in	 turn	 leads	 to	 non-

reproduced	bugs	[7],	unfixed	bugs	[16],	and	additional	bug	triage	effort	[7],	[15]–[17].	

A	good	bug	report	is	a	key	ingredient	to	effective	bug	triaging	and	fixing	[18].	As	a	result,	

understanding	what	makes	for	good	bug	reports	has	been	the	subject	of	extensive	study.	For	

instance,	 a	 number	 of	 researchers	 have	 studied	 the	 key	 elements	 that	 contribute	 to	 the	

quality	of	the	bug	reports	being	submitted	[14],	[19]		by	surveying	developers	working	on	

different	 systems	 (e.g.,	 Apache,	 Eclipse,	 and	Mozilla).	 Their	 results	 show	 that	 developers	
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considered	information	such	as	code	examples	or	an	explanation	of	the	difference	between	

the	expected	and	observed	behaviors	(e.g.,	 [20],	 [21])	as	 important	(while	reporters	only	

add	stack	traces	and/or	test	cases	to	the	bug	reports).		

Figure	1	shows	extracts	from	Mozilla	bug	id	5375071,	which	is	an	example	of	a	good	(or	in	

terminology	 of	 this	 dissertation	 actionable)	 bug	 report.	 The	 description	 of	 the	 report	

contains	enough	details	and	clear	information	about	what	happened,	what	the	user	expected	

to	happen,	and	how	to	reproduce	 it	 (Figure	1	(part	1)).	More	 importantly,	 the	developer	

could	understand	and	submit	a	patch	that	fixes	the	bug	without	asking	for	any	significant	

additional	information	or	clarifications	(Figure	1	(part	2)).		

 
1 https://bugzilla.mozilla.org/show_bug.cgi?id=537507 
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Figure	1.	Example	of	an	actionable	bug	report	(cropped).	
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On	the	other	hand,	Mozilla	bug	id	9665952,	shown	in	Figure	2	(part	1)	is	an	example	of	a	bug	

report	that	is	not	good	(non-actionable	in	the	terminology	of	this	dissertation).	Even	though	

its	 description	 seems	 to	 have	 all	 the	 information	 needed	 to	 resolve	 the	 bug,	 it	 lacks	 in	

providing	what	 the	developer	needs	 to	 feel	 comfortable	proceeding.	As	Figure	2	 (part	2)	

shows,	right	after	the	bug	report	was	submitted	the	developer	had	to	ask	the	reporter	to	

provide	 "some	 more	 information”,	 because	 otherwise	 they	 are	 unable	 to	 reproduce	 the	

problem	 and	 process	 the	 report.	 Then,	 after	 a	 few	months,	 in	 light	 of	 no	 response,	 the	

developer	chose	to	close	the	bug	report	as	INVALID.	

 
2 https://bugzilla.mozilla.org/show_bug.cgi?id=966595 
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Figure	2.	Example	of	a	non-actionable	bug	report	(cropped).	

To	address	the	problems	surrounding	non-actionable	bug	reports,	many	researchers	have	

proposed	potential	solutions.	Some	studies	focus	on	assisting	in	processing	newly	submitted	

bug	reports	by	predicting,	for	instance,	their	severity	or	priority	(e.g.,	[22]–[24]),	whether	a	

bug	report	can	be	resolved	within	a	given	time	[25],	or	whether	a	new	bug	report	represents	

a	duplicate	(e.g.,	[26]–[28]).	Other	research	aims	to	assist	in	improving	aspects	of	new	bug	

reports	prior	to	submission,	for	instance	by	predicting	the	values	of	missing	data	fields	such	

as	the	operating	system	or	product	version	[29],	by	identifying	weak	titles	(e.g.,	[30],	[31]),	

by	flagging	weak	descriptions	[32],	by	identifying	whether	a	description	contains	observed	

behavior,	expected	behavior,	and	steps	to	reproduce	[33],	[34],	or	by	giving	an	overall	sense	

of	bug	report	quality	to	the	reporter	together	with	generic	suggestions	for	improvements	

[32],	[35].	
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Some	studies	suggest	that	reporters	should	be	encouraged	to	submit	relevant	videos	as	part	

of	 their	bug	reports	 to	convey	additional	 context	 for	understanding	bugs	 [36],	 [89].	Such	

research	 emphasizes	 that	 videos	 can	 visually	 communicate	 bugs	 and	 help	 developers	

comprehend	any	events	that	may	have	led	to	the	manifestation	of	the	bug	[39]–[41].	In	game	

applications,	for	instance,	developers	attempt	to	learn	more	about	the	problems	that	gamers	

encounter	by	studying	gameplay	videos,	as	they	often	offer	important	context	surrounding	

a	bug	[42].	In	the	past	few	years,	using	videos	to	report	bugs	is	also	supported	by	many	bug	

reporting	services	for	mobile	applications	[37],	[38],	[43],	[44],	[45].	As	a	results,	approaches	

have	been	introduced	for	automatically	analyzing	videos	into	replayable	scenarios	in	order	

to	assist	developers	in	effectively	processing	and	making	sense	of	video	content	(e.g.,	[46],	

[47]).	

This	dissertation	complements	this	continuously	expanding	body	of	bug	report	research	by	

addressing	the	following	three	research	questions:	

RQ1.	Is	it	possible	to	predict	the	overall	quality	of	bug	reports	in	terms	of	whether	they	are	

actionable	or	non-actionable	with	sufficiently	high	accuracy?	

As	 repeatedly	observed	 in	prior	 research,	 the	overall	quality	of	bug	 reports	 is	one	of	 the	

aspects	that	should	be	improved	in	order	to	help	bug	reporters	during	the	bug	triaging	and	

resolution.	There	 is	an	opportunity	 for	 tools	 that,	 before	 final	 submission,	 could	 flag	bug	

reports	of	low	quality	and	guide	reporters	toward	improving	the	quality	of	their	bug	reports.	

In	 order	 to	 design	 such	 tools,	 a	 classifier	 is	 needed	 to	 distinguish	 bug	 reports	 that	 are	

actionable	and	can	be	submitted	as	is	from	those	that	are	non-actionable	and	thus	need	work.	

Unfortunately,	the	performance	of	bug	report	quality	predictors	to	date	is	insufficient	to	be	

practically	useful	for	such	tools.	Among	them,	Cuezilla	[35]	and	the	approach	of	Schuegerl	et	

al.	[32]	provide	the	best	results,	with	the	former	achieving	a	50%	accuracy	in	classifying	bug	

reports	as	good,	neutral,	or	bad,	and	the	latter	being	fairly	close	with	an	accuracy	of	44%	in	

classifying	reports	on	a	scale	of	1	(very	high	quality)	to	5	(very	low	quality).		

Therefore,	this	research	question	focuses	on	revisiting	the	question	of	predicting	the	overall	

quality	of	bug	reports,	 though	with	the	objective	of	 just	a	binary	classification:	actionable	

versus	non-actionable.	To	do	so,	1,423	bug	reports	from	all	of	the	Mozilla	Firefox	projects	
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(e.g.,	Firefox,	Firefox	Build	System,	Firefox	for	FireTV)	were	manually	classified	as	actionable	

or	non-actionable,	 using	 characteristics	 of	 high-quality	 and	 low-quality	 bug	 reports	 from	

previous	works	as	a	guide	(e.g.,	[48],	[49]).	Then,	supervised	learning	was	conducted	using	

four	different	machine	 learning	 classifiers,	 namely	Naive	Bayes,	 Support	Vector	Machine,	

Decision	Tree,	and	Random	Forest	with	a	variety	of	different	input	configurations	(e.g.,	solely	

the	 text	 from	 the	 bug	 report,	 the	 text	 from	 the	 bug	 report	 with	 whether	 or	 not	 it	 was	

submitted	by	an	end-user	or	developer,	the	text	from	the	bug	report	and	whether	or	not	it	

has	an	attachment),	and	the	one	that	performed	best	was	selected.	

To	examine	whether	 the	best-performing	model	 is	portable	 (i.e.,	 performing	well	 on	one	

dataset	does	not	necessarily	mean	performing	well	 on	 another),	 cross-project	 prediction	

was	conducted.	That	is,	the	model	with	the	best	results	from	the	training	on	bug	reports	from	

Mozilla	Firefox	projects	was	applied	on	an	existing	dataset	of	bug	reports	from	Apache	and	

Eclipse.	

A	short	survey	was	conducted	among	Mozilla	developers	to	complement	the	results	of	the	

best-performing	 classifier.	 The	 main	 goal	 of	 the	 survey	 was	 to	 understand	 developers’	

perspectives	on	the	quality	of	newly	submitted	bug	reports	today	as	compared	to	the	quality	

of	newly	submitted	bug	reports	in	prior	years,	as	well	as	what	might	have	caused	a	change	

in	the	quality	being	submitted	according	to	the	developers.	

Together,	 the	 classifier	 and	 survey	 shed	 light	 on	 concerns	 for	 future	 tools	 that	 assist	

reporters	 in	turning	their	non-actionable	bug	report	 to	an	actionable	one	before	they	are	

eventually	submitted.	

	

RQ2.	Does	the	presence	of	videos	in	bug	reports	impact	the	overall	bug	resolution	process,	

beyond	helping	developers	understand	the	reports?	

This	research	question	answers	whether	the	inclusion	of	videos	in	bug	reports	may	lead	to	

benefits	for	those	who	report	bugs.	Especially	since	the	practice	of	including	videos	in	bug	

reports	has	been	steadily	increasing	over	the	past	years	and	with	prior	work	encouraging	

reporters	 to	 submit	 videos	 along	 their	 bug	 reports	 to	 convey	 additional	 context	 for	

understanding	 bugs,	 this	 research	 question	 studies	 whether	 there	 is	 actually	 a	 tangible	
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incentive	for	reporters	to	spend	the	extra	effort	of	creating	and	submitting	videos	alongside	

their	bug	reports.	

If	such	benefits	exist,	they	may	provide	an	incentive	for	reporters	to	submit	videos	as	part	of	

their	bug	 reports,	 because	 it	would	appear	 to	 increase	 their	 chances	of	 getting	 their	bug	

report	resolved	faster,	with	a	higher	chance	of	being	resolved	with	a	patch,	and/or	lower	

number	of	back-and-forth).	

This	research	question	is	answered	through	a	quantitative		empirical	study	that	assesses	the	

impact	of	the	presence	of	videos	in	bug	reports	on	the	overall	resolution	process.	It	examines	

2,814,599	bug	reports	from	five	systems,	namely	Mozilla,	Android,	LibreOffice,	IntelliJ,	and	

Minecraft,	and	examines	the	impact	of	the	presence	of	videos	in	bug	reports	in	terms	of	a	

potential	reduction	in	average	time	to	resolution,	a	potential	increment	in	the	percentage	of	

bug	reports	being	resolved	with	a	patch,	and	a	potential	reduction	in	the	average	number	of	

back-and-forth.	

In	answering	the	research	question,	the	analysis	also	includes	a	 look	at	other	factors	that	

might	play	a	role	in	and	perhaps	even	mask	the	phenomena	observed:	whether	it	matters	if	

videos	are	submitted	by	developers	on	the	project	or	by	end-users,	whether	the	type	of	bug	

being	reported	with	a	video	may	have	an	impact,	and	whether	the	effect	of	including	videos	

differs	depending	on	the	assigned	priority	and/or	severity	of	the	bug	report.	This	deep	dive	

again	 analyzed	 the	observable	 impact	of	 these	 factors	 in	 terms	of	 time	 to	 resolution,	 the	

percentage	 being	 resolved	 as	 FIXED,	 and	 back-and-forth,	 as	 determined	 by	 examining	

Mozilla	bug	reports	only.	

Together,	 the	 findings	 give	 rise	 to	 a	 number	 of	 important	 research	 questions	 from	 the	

perspective	of	 finding	motivation	 for	 reporters	 to	produce	and	 submit	 videos	along	with	

their	bug	reports.	Any	additional	incentive	for	bug	reporters	might	increase	the	number	of	

videos	attached	to	bug	reports,	and	thereby	benefit	everyone.	

	

RQ3.	What	sets	videos	that	are	more	effective	apart	from	videos	that	are	less	effective,	 in	

terms	of	their	content?	
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The	third	research	question	focuses	on	understanding	the	role	of	various	characteristics	of	

videos	attached	to	bug	reports	on	the	potential	benefits	for	bug	reporters.	If,	for	instance,	

bug	reports	with	video	that	 include	certain	specific	characteristics	 (e.g.,	 showing	steps	 to	

reproduce,	 presence	 of	 voiceover,	 and	 highlighting	 with	 the	 mouse)	 are	 resolved	 more	

quickly	 or	 appeared	 to	 be	 perceived	 as	 helpful	 by	 developers,	 this	 may	 provide	 further	

guidance	 for	 reporters	 to	 produce	 videos	 with	 such	 characteristics	 as	 part	 of	 their	 bug	

reports.	 Moreover,	 if	 certain	 characteristics	 prove	 particularly	 helpful,	 it	 might	 be	

worthwhile	 to	 design	 tools	 that	 assist	 reporters	 in	 easily	 producing	 videos	 with	 these	

characteristics.	

To	answer	this	question,	the	contents	of	videos	attached	to	1,045	Mozilla	bug	reports	were	

manually	analyzed	to	catalogue	a	range	of	different	characteristics.	Then	the	back-and-forth	

after	video	submission	were	examined	to	understand	how	developers	reacted	publicly	to	the	

videos.	Next,	 in	 a	 quantitative	 approach,	 the	 impact	 of	 videos	 that	 contain	 various	 video	

characteristics	 was	 assessed	 by	 correlating	 the	 presence	 and	 non-presence	 of	 each	

characteristic	with	whether	or	not	 the	developers	perceived	 the	corresponding	videos	as	

helpful,	as	well	as	by	comparing	the	time	to	resolution,	percentage	of	being	fixed	with	a	patch,	

and	amount	of	back-and-forth.	Particularly,	in	terms	of	whether	different	characteristics	of	

the	 video	 appeared	 to	 be	 perceived	 as	 helpful	 or	 not	 by	 developers	 and	 whether	 those	

characteristics	may	have	 observable	 effects	 on	 the	 bug	 report	 resolution	process	 (i.e.,	 in	

reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth	following	a	

bug	report	submission).	

To	place	the	findings	in	context,	the	dissertation	includes	a	survey	that	was	conducted	among	

IntelliJ	 developers.	 The	 survey	 was	 designed	 to	 get	 a	 first-hand	 understanding	 of	 how	

developers	feel	about	different	characteristics	of	videos	as	a	part	of	bug	reports.	Particularly,	

the	 survey	 asked	 how	 developers	 characterize	 the	 content	 of	 the	 video	 attachments	 in	

relation	 to	 the	 corresponding	 textual	 descriptions	 and	what	 kinds	 of	 video	 content	 they	

believe	helps	certain	videos	be	more	or	less	useful	in	understanding	bugs.	

Together	 the	 findings	 can	 serve	as	 a	basis	 for	developing	 tools	 that	 support	 reporters	 in	

attaching	videos	with	characteristics	 that	provide	 incentives	 for	both	developers	and	bug	

reporters.	
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1.1 Dissertation	Structure	
This	dissertation	is	organized	into	six	chapters.	The	remaining	chapters	are	structured	as	

follows:	

	

Chapter	2	–	Background		

This	 chapter	 presents	 an	 overview	 of	 the	 terminology	 used	 and	 introduces	 relevant	

background	material	in	bug	reporting	research	and	the	role	of	videos	in	bug	reporting.	

	

Chapter	3	–	Bug	Report	Quality	Prediction:	Actionable	versus	Non-Actionable	Bug	Reports	

This	chapter	discusses	the	approach	designed	to	answer	RQ1,	a	classifier	that	can	distinguish	

actionable	from	non-actionable	bug	reports	with	sufficiently	high	results.	This	chapter	also	

presents	the	findings	of	RQ1	and	places	the	results	in	the	broader	context	of	work	to	date.	

The	 chapter	 concludes	with	a	discussion	of	 the	 threats	 to	validity,	 a	 summary	of	 the	key	

findings,	and	an	outlook	at	future	work.	

	

Chapter	4	–	An	Analysis	of	Video	Submissions	in	Bug	Reporting	

This	 chapter	 presents	 the	 approach	 and	 the	 results	 from	 studying	 RQ2:	 whether	 the	

inclusion	 of	 video	 in	 bug	 reports	 impacts	 the	 bug	 resolution	process	 in	 terms	of	 time	 to	

resolution,	resolution	with	a	patch	aiming	to	fix	the	reported	bug,	and	the	amount	of	back-

and-forth.	 In	 this	 chapter,	 the	 key	 findings	 are	 also	 placed	 in	 the	 broader	 context	 of	 the	

literature	 to	 date.	 The	 chapter	 concludes	with	 the	 threats	 to	 validity,	 a	 summary	 of	 key	

findings,	and	future	work.	

	

Chapter	5	–	A	Content-Based	Analysis	of	Video	Submissions	in	Bug	Reporting	

This	chapter	presents	the	methodology	designed	to	answer	RQ3:	what	sets	videos	that	are	

more	effective	apart	from	videos	that	are	less	effective,	in	terms	of	their	content?	The	chapter	



 

	
	

11	

discusses	the	key	findings	and	places	the	results	in	the	broader	context	of	the	work	to	date.	

Then,	the	chapter	presents	the	threats	to	validity,	conclusion,	and	future	work.	

	

Chapter	6	–	Conclusion	

This	 chapter	 takes	 a	 step	 back	 and	 holistically	 considers	 the	 lessons	 learned	 across	 all	

aspects	of	the	studies	presented	in	the	prior	chapters.	It	particularly	discusses	the	high-level	

takeaways,	key	 individual	results,	and	overall	 implications.	This	chapter	also	summarizes	

the	contributions	and	presents	future	work.	
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2 CHAPTER	2:	BACKGROUND	
	

	 In	 this	 section,	 I	 first	 provide	 an	 overview	 of	 the	 bug	 reporting	 process	 and	 then	

discuss	relevant	prior	research	in	the	context	of	bug	reports	and	their	associated	videos.	

	

2.1 Terminology	
In	this	section,	I	explain	key	terms	used	in	bug	report	analysis	and	describe	the	life	cycle	of	

bug	reports.	

 

2.1.1 Bug	

A	software	bug	is	an	error,	 flaw,	or	fault	 in	a	computer	program	or	system	that	produces	

unexpected	results	or	behavior.	There	is	a	distinction	between	a	“bug”	and	an	“issue”.	An	

issue	 could	be	 a	bug	but	 is	not	 always	 a	bug.	 It	 can	also	 concern	a	 feature	 request,	 task,	

missing	documentation,	and	so	on	[2].	The	process	of	finding	and	removing	bugs	is	called	

“debugging”.	Bugs	may	be	caused	by	tiny	coding	errors,	but	the	results	of	bugs	can	be	serious,	

making	finding	and	fixing	bugs	a	rather	challenging	task.	

	

2.1.2 Bug	Report	

A	 bug	 report	 is	 a	 software	 document	 describing	 a	 software	 bug	 and	 is	 submitted	 by	 a	

developer,	a	tester,	or	an	end-user	[50].	Bug	reports	have	many	other	names,	such	as	“defect	

reports”,	 “fault	 reports”,	 “failure	 reports”,	 “error	 reports”,	 “problem	 reports”,	 “trouble	

reports”,	and	so	on	[1].	Bug	reports	generally	include	some	sort	of	description	of	the	problem	

and	 may	 optionally	 include	 attachments,	 in	 the	 form	 of,	 e.g.,	 patches,	 test	 cases,	 and	

screenshots.		
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2.1.3 Bug	Tracking	System	

A	bug	tracking	system	(also	called	an	issue	tracking	system)	manages	bug	reports	to	support	

the	 developers	 who	 fix	 bugs	 [4].	 Bug	 tracking	 systems	 are	 designed	 to	 track	 reported	

software	bugs.	Bugs	are	stored	in	a	bug	repository,	which	is	the	major	component	of	a	bug	

tracking	system.	To	enable	submission	and	the	tracking	of	the	resolution	of	bugs,	developers	

of	many	popular	open-source	projects	(e.g.,	Mozilla3,	Eclipse4,	and	Linux	kernel5)	use	bug	

tracking	systems	(e.g.,	Bugzilla6,	Jira7,	Mantis8).	For	example,	Mozilla	uses	Bugzilla	as	its	bug	

reporting	system.	

	

2.1.4 Bug	Report	Fields	

Depending	on	the	bug	tracking	system, a	bug	report	contains	a	set	of	fields.	Typically,	a	bug	

report	has	 an	 identification	number,	 title,	 date	 and	 time	when	 it	 is	 reported,	developer’s	

information	as	to	who	is	assigned	to	fix	the	bug,	description	of	the	bug,	additional	comments,	

attachments,	 and	 more.	 To	 make	 bug	 reports	 consistent,	 often	 default	 templates	 are	

provided	in	project	repositories,	where	certain	required	or	at	least	recommended	fields	are	

specified	to	be	filled	out	by	the	reporters.	For	example,	Figure	3	shows	Bugzilla	Helper	[51],	

which	 is	a	custom	bug	entry	 form	that	guides	users	 to	 include	steps	 to	reproduce,	actual	

results,	and	expected	results	in	Mozilla	bug	reports.	Below	the	common	fields	in	most	bug	

tracking	systems	are	introduced.	

	

2.1.4.1 Description	

A	 bug	 report	 usually	 contains	 a	 detailed	 description	 of	 the	 failure.	 This	 description	 is	 a	

generic	 field	 that	 can	 contain	 various	 types	 of	 information	 such	 as	 build	 version,	 crash	

 
3	https://mozilla.com/	
4	https://www.eclipse.org/	
5	https://www.kernel.org/	
6	https://bugzilla.mozilla.org/	
7	https://jira.com/	
8	https://www.mantisbt.org/	



 

	
	

14	

description,	reproducing	steps,	and	so	on.	Below	are	a	set	of	fields	that	are	recommended	by	

previous	studies	to	be	included	in	the	bug	description:	

	

Figure	3.	Mozilla	custom	bug	entry	form.	

Steps	to	reproduce.	A	clear	set	of	instructions	or	a	list	of	items	that	developers	can	use	to	

reproduce	 the	bug	on	 their	 own	machine.	 For	 example:	 “1)	View	any	web	page	 (such	as	

https://www.google.com/);	 2)	 While	 holding	 down	 the	 mouse	 button,	 drag	 the	 mouse	

pointer	downwards	 from	any	point	 in	 the	browser’s	 content	 region	 to	 the	bottom	of	 the	

browser’s	content	region.”	[52]	
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Observed	behavior.	What	the	user	saw	happened	in	the	application	because	of	a	bug.	Users	

often	have	to	provide	at	least	a	minimal	amount	of	detail	about	what	the	application	did	after	

performing	the	steps	to	reproduce.	For	example:	“The	application	crashed.”	[52].	

Expected	 behavior.	 What	 the	 user	 expected	 to	 happen,	 were	 the	 bug	 not	 present.	 For	

example:	“The	window	should	scroll	downwards.	Scrolled	content	should	be	selected.	Or,	at	

least,	the	application	should	not	crash.”	[52].	

Additional	information.	Any	other	information	that	could	help	developers	identify	the	root	

of	 the	problem.	For	example,	 information	about	 the	platform,	browser,	operating	system,	

release	version	of	code	being	used,	build	information,	etc.	

	

2.1.4.2 Severity	

Severity	indicates	how	important	the	problem	is	to	the	health	of	the	project.	For	example,	in	

Bugzilla,	the	severity	can	vary	from	blocker	(far	ranging	impact,	limiting	development	and	

usage),	 to	 critical	 (known	 to	 cause	 crashes,	 can	 lead	 to	 loss	 of	 data),	 to	 major	 (certain	

functionality	is	not	working	properly),	with	other	intermediate	levels	all	the	way	down	to	

trivial	(minor	cosmetic	issue).	Severity	can	also	be	set	to	enhancement	to	indicate	a	request	

for	new	functionality.	The	severity	field	is	expected	to	be	used	by	developers	to	classify	bugs	

according	to	their	importance.	Not	all	important	bugs	are	fixed	right	away,	however.		

	

2.1.4.3 Priority	

While	severity	indicates	the	seriousness	of	the	defect,	priority	defines	the	order	in	which	a	

bug	should	be	fixed.	Priority	can	be	first	set	by	a	bug	reporter	and	then	typically	is	adjusted	

by	 bug	 triagers.	 For	 instance,	 in	 Bugzilla,	 priority	 can	 range	 from	 P1	 (to	 be	 fixed	 in	 the	

current	release	cycle),	to	P2	(to	be	fixed	in	the	next	release	cycle),	all	the	way	down	to	P5	

(no	active	plans	to	fix).	An	incorrect	description	can	lead	to	a	decreased	bug	priority.	
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2.1.4.4 Status	

The	status	of	a	bug	report	tracks	its	current	state	when	it	comes	to	processing	it.	The	initial	

status	 for	 bug	 reports	 for	 the	Mozilla	 projects	 is	 always	 UNCONFIRMED	when	 it	 is	 first	

submitted	and	the	final	status	is	typically	one	of	RESOLVED,	VERIFIED,	or	CLOSED	as	set	by	

the	bug	assignee	once	they	are	done	[53].		

Figure	4	shows	the	valid	transitions	along	the	various	statuses	that	are	possible	in	Bugzilla.	

When	a	bug	is	first	reported,	the	bug	report	is	marked	as	UNCONFIRMED.	When	a	triager	has	

verified	that	the	bug	is	not	a	duplicate	and	indeed	a	new	bug,	the	status	is	set	to	NEW.	Then	

the	 triager	 assigns	 the	 bug	 report	 to	 a	 relevant	 developer,	 and	 the	 status	 is	 changed	 to	

ASSIGNED.	The	assigned	developer	reproduces	the	bug,	localizes	it,	and	tries	to	fix	it.	When	

the	bug	has	been	addressed,	the	bug	report	is	marked	as	RESOLVED.	After	that,	if	a	tester	is	

not	satisfied	with	the	solution,	the	bug	should	be	reopened	with	the	status	set	to	REOPEN;	if	

a	tester	has	verified	that	the	solution	worked,	the	status	is	changed	to	VERIFIED.	The	final	

status	of	a	bug	report	is	CLOSED,	which	is	set	when	no	occurrence	of	the	bug	is	reported.	

This	 bug,	 however,	might	 get	REOPENED	 later	 if	 the	 resolution	 is	 deemed	 incorrect.	 For	

example,	a	WORKSFORME	bug	is	REOPENED	when	more	information	shows	up	and	the	bug	

is	now	reproducible.		
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Figure	4.	The	life	cycle	of	a	bug	report	in	Bugzilla9.	

Note	that	the	status	RESOLVED	has	an	important	associated	field	that	captures	how	it	was	

resolved:	the	bug	report	could	represent	a	real	bug	and	it	was	FIXED;	the	bug	report	could	

be	a	DUPLICATE;	the	bug	report	could	represent	a	possible	real	bug	but	it	has	been	decided	

that	 it	will	not	be	 fixed	(WONTFIX);	 the	bug	report	could	represent	a	bug	that	cannot	be	

reproduced	by	triagers	(WORKSFORME);	the	issue	described	in	the	bug	report	could	be	not	

a	bug	(INVALID,	e.g.,	the	reporter	is	requesting	a	new	or	modified	feature,	what	the	reporter	

is	believing	is	a	bug	is	actually	by	design,	or	the	bug	is	not	Mozilla	related	and	needs	to	be	

taken	up	with	another	organization);	the	bug	report	is	now	being	worked	on	but	has	been	

relocated	to	another	issue	tracker	(MOVED);	and	the	bug	report	may	describe	a	valid	bug	

but	there	is	not	enough	information	at	this	point	in	the	bug	report	to	tell	whether	the	bug	is	

still	present	or	not	(INCOMPLETE).	

Although	other	bug	reporting	systems	use	somewhat	different	terminologies	and	life	cycles,	

Bugzilla	and	its	life	cycle	are	representative	of	what	typically	transpires.	Of	note	is	that	many	

submitted	bug	reports	tend	to	stay	in	the	status	NEW,	when	they	are	not	yet	processed	or	

have	been	 looked	at	but	are	not	easily	comprehensible,	 incomplete,	or	simply	not	of	high	

 
9 Adapted from [2], [54]. 
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priority.	They	stay	in	the	bug	tracking	system	and	sometimes	are	known	as	UNCONFIRMED	

bug	reports	[55].	

	

2.1.4.5 Attachments	

Depending	on	the	nature	of	the	bug,	the	developer	may	need	different	types	of	attachments	

to	clearly	depict	the	occurrence	of	the	bug.	Below	are	the	commonly	used	ones:	

Stack	Trace.	A	stack	trace	is	a	list	of	the	method	calls	that	the	application	was	in	the	middle	

of	when	an	exception	was	thrown.	A	stack	trace	often	is	produced	by	the	application	when	it	

crashes.	Because	a	stack	trace	may	contain	hints	as	to	the	origin	of	the	problem,	reports	that	

include	stack	traces	can	be	very	valuable	to	developers	when	debugging	a	problem.	In	many	

ways,	a	stack	trace	is	a	more	specific	form	of	an	error	report,	which	is	itself	a	more	specific	

form	of	observed	behavior.	

Error	Report.	An	error	report	is	often	produced	by	an	application	when	a	bug	occurs.	Error	

reports	 can	 include	 stack	 traces,	 and	any	 time	when	a	quoted	error	message	appears	on	

screen,	as	well	as	any	detailed	logs	(e.g.,	Java	core	dumps).		

Screenshot.	A	screenshot	of	the	application,	while	the	bug	is	occurring,	can	also	be	useful	to	

developers	 to	 decipher	 what	 the	 user	 was	 doing	when	 the	 bug	 arises.	 Usually,	 only	 the	

screenshots	of	the	application	with	the	bug	are	considered,	not	of	other	applications	or	of	

proposed	changes.	

Screen	Recording.	A	video	file	of	the	screen	that	shows	the	bug	and	what	actions	led	up	to	it.	

A	screen	recording	can	be	more	useful	than	a	static	screenshot	since	it	provides	developers	

an	opportunity	to	understand	how	a	user	interacts	with	the	system,	examine	the	behavior	of	

the	system	in	the	context	of	what	the	user	did,	and	comprehend	any	events	that	may	have	

contributed	to	the	manifestation	of	the	bug.	

Test	Case.	A	 test	 case	demonstrates	 that	 the	 system	 is	 functioning	incorrectly,	 or	at	 least	

according	to	the	user	who	reported	the	bug.	A	good	test	case	will	include	steps,	data,	and	the	

conditions	for	the	test	in	order	to	understand	and	check	the	expected	versus	actual	results.	
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Patch.	The	common	format	of	a	patch	is	the	uniform	diff	format.	A	patch	represents	a	small	

piece	 of	 software	 designed	 to	 update	 or	 fix	 problems	 with	 a	 computer	 program	 or	 its	

supporting	 data.	 Sometimes	 reporters	 attach	 a	 patch,	 which	 can	 make	 the	 life	 of	 the	

developer	a	lot	easier	because	now	they	only	need	to	check	if	the	patch	is	of	good	quality	and	

indeed	fixes	the	bug	being	reported.		

Source	 Code.	 Small	 to	medium-sized	 code	 examples	 are	 sometimes	 used	 by	 reporters	 to	

illustrate	 a	 problem,	 describe	 the	 environment	 in	 which	 a	 problem	 occurred,	 or	 even	

represent	a	sample	fix	to	the	problem	described	in	the	report.	

	

2.1.5 Discussions	

After	the	submission	of	a	bug	report,	developers	and	end-users	frequently	participate	in	a	

discussion	 by	 posting	 comments.	 These	 comments	 can	 include	 both	 discussions	 about	

possible	solutions	to	 the	bug	and	comments	such	as	a	user	posting	“updating	the	status”.	

Because	a	significant	number	of	comments	can	result,	especially	taking	into	account	that	a	

developer	could	be	 resolving	multiple	bug	reports	at	 the	same	 time,	 in	Bugzilla	Mozilla10	

users	can	set	up	their	accounts	to	filter	out	all	emails	about	the	bug	report	except	the	reports	

in	which	their	name	is	explicitly	mentioned.			

Number	of	Comments.	This	represents	the	total	number	of	times	that	developers	and	end-

users	 posted	 comments	 in	 bug	 reports.	 These	 comments	 accumulate	 and	 can	 show	 the	

progression	of	how	a	bug	is	understood	by	developers.	

Number	 of	 Back-and-Forth.	 This	 represents	 the	 number	 of	 times	 that	 the	 reporter	 was	

explicitly	 requested	 to	 answer	 a	 question	 plus	 the	 number	 of	 times	 that	 the	 reporter	

answered.	For	example,	in	Mozilla,	the	flag	“Flags:	needinfo?”	is	raised	when	the	developer	

directly	mentions	the	reporter’s	name	and	asks	for	some	information.	It	is	lowered	by	the	

reporter	 when	 they	 provide	 the	 information.	 By	 raising	 and	 lowering	 the	 needinfo	 flag,	

developers	and	bug	reporters	signal	their	messages	to	one	another,	which	gives	a	sense	of	

 
10 https://www.bugzilla.org/docs/2.18/html/hintsandtips.html 
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their	direct,	intended	interactions,	for	instance,	to	clarify	an	issue	or	obtain	some	auxiliary	

information.		

Note	 that	 the	 number	 of	 comments	 is	 different	 than	 the	 number	 of	 back-and-forth.	 The	

former	 represents	 all	 communication	 for	 a	 bug	 report,	 the	 latter	 signifies	 direct	

communication.	 For	 example,	 Figure	 5	 highlights	 that	 Mozilla	 bug	 id	 179080911	 has	 six	

comments	 in	 total;	 whereas	 the	 number	 of	 times	 that	 the	 flag	 needinfo	 was	 raised	 and	

lowered	is	two.	

 
11	https://bugzilla.mozilla.org/show_bug.cgi?id=1790809	
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Figure	5.	Comparison	between	the	number	of	comments	and	back-and-forth	in	Mozilla	bug	

id	1790809	(cropped).	
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2.1.6 Time	to	Resolve	

Time	to	resolve	captures	the	number	of	days	between	the	date	when	a	bug	report	was	first	

created	and	the	date	when	it	was	eventually	resolved.	The	number	of	days	to	resolve	a	bug	

report	 includes:	 (1)	 the	 time	 spent	 waiting	 for	 the	 assignment	 of	 the	 bug	 report	 to	 a	

developer,	 (2)	 the	number	of	days	spent	 inspecting	 the	bug,	and	(3)	 the	number	of	days	

during	which	the	assigned	developer	made	code	changes	and	verified	the	correctness	of	the	

changes.	 It	 can	 take	 longer	 to	 fix	a	bug	 lacking	details	or	having	a	description	 that	 is	not	

precise	because	it	requires	additional	time	for	problem	clarification.		

	

2.1.7 Machine	Learning		

Machine	Learning	(ML)	is	an	application	of	Artificial	Intelligence	(AI)	that	provides	systems	

the	ability	to	learn	and	improve	from	experience	without	being	explicitly	programmed	[56].	

There	 are	 two	 types	 of	 ML	 algorithms:	 predictive	 (or	 supervised)	 and	 descriptive	 (or	

unsupervised).	A	predictive	algorithm	builds	a	model	based	on	historical	training	data	and	

uses	 this	 model	 to	 predict,	 from	 the	 values	 of	 input	 attributes,	 an	 output	 label	 (class	

attribute)	for	a	new	sample.	A	predictive	task	is	called	classification	when	the	label	value	is	

discrete,	or	regression	when	the	label	value	is	continuous.	On	the	other	hand,	a	descriptive	

algorithm	explores	or	describes	a	dataset.	There	is	no	output	label	associated	with	a	sample.	

Data	 clustering	 and	 pattern	 discovery	 are	 two	 examples	 of	 descriptive	 tasks.	 In	 this	

dissertation,	predictive	algorithms	are	used.	

	

2.1.7.1 ML	Algorithms	

An	ML	algorithm	works	over	 a	dataset,	which	 contains	many	 samples	or	 instances.	 Each	

instance	is	composed	of	input	attributes	or	independent	variables,	and	one	output	attribute	

or	dependent	variable.	 Input	attributes	are	commonly	named	 features	or	 feature	vectors,	

and	the	output	attribute	is	commonly	named	class	or	category.	Next,	a	brief	description	of	

each	classification	algorithm	that	is	used	in	this	dissertation	is	presented.	
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Naïve	Bayes	(NB).	Naïve	Bayes	calculates	the	likelihood	that	every	given	data	point	falls	into	

one	or	more	of	a	set	of	categories	[57].	It	is	a	supervised	learning	approach	for	addressing	

classification	issues	that	are	based	on	the	Bayes	theorem.	It	is	a	probabilistic	classifier,	which	

means	it	makes	predictions	based	on	an	object's	likelihood	[58].	

Support	 Vector	 Machine	 (SVM).	 Support	 Vector	 Machine	 [59]	 is	 a	 supervised	 machine	

learning	 algorithm	 that	 can	 be	 used	 for	 both	 classification	 and	 regression	 challenges.	

However,	it	is	mostly	used	in	classification	problems	[60].	In	the	SVM	algorithm,	each	data	

item	is	plotted	as	a	point	in	n-dimensional	space	(where	n	is	a	number	of	features)	with	the	

value	of	each	feature	being	the	value	of	a	particular	coordinate.	Then,	the	classification	is	

done	by	finding	the	hyper-plane	that	differentiates	the	two	classes	as	best	as	possible.	

Decision	Tree	(DT).	Decision	Tree	[61]	 is	a	classification	algorithm	that	uses	a	process	of	

division	to	split	data	into	increasingly	specific	categories.	It	is	called	a	decision	tree	because	

the	 classification	process	 resembles	a	 tree's	branches	when	 represented	graphically.	The	

algorithm	works	on	a	supervised	model	[62].	

Random	Forest	(RF).	Random	Forest	[63]	is	a	supervised	learning	approach	used	in	machine	

learning	for	classification	and	regression.	It's	a	classifier	that	averages	the	results	of	many	

decision	 trees	 applied	 to	 distinct	 subsets	 of	 a	 dataset	 to	 improve	 the	 dataset's	 projected	

accuracy.	

	

2.1.7.2 Performance	Measures		

Accuracy.	 Accuracy	 relates	 the	 number	 of	 correct	 classifications	 to	 the	 total	 number	 of	

classifications.	Accuracy	is	how	close	a	measured	value	is	to	the	actual	(true)	value.	

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥) =
(𝑇𝑃! +	𝑇𝑁!)

(𝑇𝑃! +	𝐹𝑃! +	𝑇𝑁! + 𝐹𝑁!)
	

where	P	is	the	total	of	positive	class	instances,	N	is	the	total	of	negative	class	instances,	TP	is	

the	number	of	true	positives,	TN	is	the	number	of	true	negatives,	FP	is	the	number	of	false	

positives,	and	FN	is	the	number	of	false	negatives.	
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Precision.	Precision	relates	 the	number	of	 true	positives	 to	 the	 total	number	of	 instances	

classified	as	positives.	Precision	is	how	close	the	measured	values	are	to	each	other.	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑥) =
(𝑇𝑃!)

(𝑇𝑃! +	𝐹𝑃!)
	

where	TP	is	the	number	of	true	positives,	and	FP	is	the	number	of	false	positives.	

	

Recall.	Recall	(also	known	as	sensitivity)	identifies	the	fraction	of	positive	events	that	were	

predicted	correctly.	Recall	is	the	number	of	true	positives	divided	by	the	total	number	of	true	

positives	and	false	negatives.	

𝑅𝑒𝑐𝑎𝑙𝑙(𝑥) =
(𝑇𝑃!)

(𝑇𝑃! +	𝐹𝑁!)
	

where	TP	is	the	number	of	true	positives,	and	FN	is	the	number	of	false	negatives.	

	

F-score.	 F-score	 (also	 known	 as	 F1-score	 or	 F-measure)	 is	 the	 harmonic	 mean	 of	 the	

precision	and	recall.	A	perfect	model	has	an	F-score	of	1.	

F-score(𝑥)	=	2 ∗ "#$%&'&()(+)∗.$%/00(+)
"#$%&'&()(+)1.$%/00(+)

= 23!
23!1

"
#(43!145!)

	

	

ROC.	Receiver	operating	characteristic	(ROC)	is	an	alternative	measure	to	evaluate	binary	

classifiers.	A	ROC	 curve	 [64]	 is	 a	 bi-dimensional	 chart,	where	 the	X-axis	 represents	 false	

positives,	and	the	Y-axis	represents	true	positives.	The	Area	Under	ROC	Curve	(AUC),	ranging	

between	 0	 and	 1,	 is	 used	 to	 assess	 the	 performance	 of	 ML	 algorithms.	 An	 algorithm	

outperforms	another	one	if	its	AUC	value	is	closer	to	1.	

	

2.1.7.3 Hyper-Parameter	Optimization	

The	tuning	of	hyper-parameter	values	is	used	to	determine	the	values	that	will	lead	to	the	

best	 algorithm	 performance	 in	 a	 specific	 context.	 Each	 algorithm	 has	 its	 own	 set	 of	

parameters	and	the	adjustment	of	these	values	can	greatly	impact	in	algorithm	performance.	
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The	procedure	that	is	used	by	researchers	for	setting	hyper-parameters	is	to	train	the	ML	

model	with	 the	 hyper-parameters	 to	 get	 the	 optimal	model	 accuracy.	 After	 changing	 the	

hyper-parameter	 candidate	 values,	 researchers	 should	 train	 the	 model	 again	 until	 the	

predicting	model	achieves	satisfactory	prediction	accuracy.	When	this	goal	is	reached,	the	

machine	learning	model	building	process	can	be	considered	“complete”	[65].	

In	this	dissertation,	grid	search	[66]	is	used	as	the	tuning	strategy.	Basically,	the	domain	of	

the	hyperparameters	is	divided	into	a	discrete	grid.	Then,	every	combination	of	values	of	this	

grid	is	tried	by	calculating	performance	metrics	using	cross-validation.	The	point	of	the	grid	

that	maximizes	the	average	value	in	cross-validation	is	the	optimal	combination	of	values	for	

the	hyperparameters.	

	

2.1.7.4 Cross	Validation	

The	evaluation	of	a	supervised	method’s	effectiveness	is	mainly	based	on	two	datasets	with	

labeled	samples,	one	for	training	the	predictive	model	and	the	other	for	testing	this	model.	

In	order	to	obtain	more	reliable	predictive	estimates,	resampling	methods	can	be	used	to	

split	 the	entire	dataset	 into	a	training	dataset	and	a	testing	dataset.	Cross	validation,	also	

known	as	k-fold	CV,	is	a	resampling	method	that	is	used	to	train	and	evaluate	classifiers	[67].	

This	validation	approach	randomly	divides	the	manually	classified	data	set	into	k	groups	of	

equal	size.	In	each	iteration,	it	saves	a	different	fold	for	testing	and	uses	all	the	others	for	

training.	The	mean	of	the	k	executions	is	used	as	an	estimation	of	the	classifier's	accuracy.		

	

2.1.7.5 Cross-Project	Prediction		

Cross-project	 prediction	 concerns	 the	 portability	 of	 a	 learned	 prediction	 model	 among	

different	 projects	 [68].	 This	 is	 important	 to	 avoid	 the	 cold-start	 problem,	 where	 prior	

information	 is	 not	 available	 for	 training	 purposes.	 Cross-project	 prediction	 can	 fail	 for	

projects	drawn	from	the	same	domain.	For	example,	Zimmermann	et	al.	[69]	tried	to	port	

models	between	two	web	browsers	(Internet	Explorer	and	Firefox)	and	found	that	cross-

project	prediction	was	not	consistent:	a	model	built	on	Firefox	was	useful	for	Explorer,	but	
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not	vice	versa.	Additionally,	prediction	performance	may	not	even	be	generalizable	within	a	

project.	Menzies	et	al.	[70]	found	that	a	given	project’s	data	may	have	many	local	regions	

which,	when	 aggregated	 at	 a	 global	 level,	may	 offer	 a	 completely	 different	 conclusion	 in	

terms	of	both	quality	control	and	effort	estimation.		

	

2.1.8 Text	Preprocessing	

Common	ML	algorithms	cannot	directly	process	unstructured	 text	 such	as	a	bug	 report’s	

description,	because	it	contains	noise	in	various	forms	including	punctuation,	text	written	in	

numerical	or	special	character	form,	and	many	commonly	used	words.	Therefore,	during	a	

preprocessing	 step,	 these	 unstructured	 text	 fields	 are	 converted	 into	 more	 manageable	

representations.	Text	preprocessing	 is	 the	process	of	 converting	unstructured	 text	 into	a	

structure	suited	to	analysis	[71].	It	is	composed	of	three	primary	activities	[72].	

Tokenization.	Tokenization	 is	 the	action	of	parsing	a	character	stream	into	a	sequence	of	

tokens	by	splitting	the	stream	at	delimiters.	A	token	is	a	block	of	text	or	a	string	of	characters	

(without	 delimiters	 such	 as	 spaces	 and	 punctuation),	 which	 is	 a	 useful	 portion	 of	 the	

unstructured	data.	

Stop	words	 removal.	 Stop	words	 removal	 eliminates	 commonly	 used	words	 that	 do	 not	

provide	relevant	information	to	a	particular	context,	 including	prepositions,	conjunctions,	

articles,	common	verbs,	nouns,	pronouns,	adverbs,	and	adjectives.	

Stemming.	 Stemming	 is	 the	 process	 of	 reducing	 or	 normalizing	 inflected	 or	 sometimes	

derived	words	 to	 their	 word	 stem,	 i.e.,	 its	 base	 form	 (e.g.,	 “working”	 and	 “worked”	 into	

“work”).	

	

2.1.9 Bag	of	Words	

One	of	the	most	traditional	ways	of	representing	a	document	relies	on	the	use	of	a	bag	of	

words	 (unigrams)	 [71].	 In	 this	 approach	 all	 terms	 represent	 features,	 and	 thus	 the	
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dimension	of	the	feature	space	is	equal	to	the	number	of	different	terms	in	all	documents	

(i.e.,	bug	reports).	

	

2.1.10 TF-IDF	

Term	frequency-inverse	document	frequency	(TF-IDF)	is	a	statistical	measure	that	evaluates	

how	relevant	a	word	is	to	a	document	in	a	collection	or	corpus	[73].	The	tf-idf	technique	is	

used	 in	 text	mining	 to	 understand	 the	 significance	 of	 a	word	 in	 a	 document	 and	 across	

multiple	documents.	The	term	frequency	and	the	inverse	document	frequency	are	calculated	

as:	

Term	Frequency	(TF) =
Number	of	occurrences	of	a	word
Total	words	in	the	document 	

Inverse	Document	Frequency		(IDF) = 𝐿𝑜𝑔	(
Total	number	of	documents

Number	of	documents	containing	the	word)	

	

2.1.11 Statistical	Tests	

Many	scenarios	require	running	several	algorithms	to	choose	the	best	model.	Even	though	

the	performance	of	these	algorithms	may	be	shown	to	be	different	on	specific	datasets,	 it	

needs	to	be	confirmed	whether	the	observed	differences	are	statistically	significant	and	not	

merely	 coincidental	 [64].	 In	 this	 situation,	 conducting	 statistical	 tests	 is	 a	 recommended	

practice	for	reliable	comparison	between	predictive	models	under	investigation	[74].	In	this	

dissertation,	the	t-test	[64]	is	used,	which	is	a	parametric	statistical	hypothesis	test	to	assess	

whether	the	means	of	two	groups	are	statistically	different	from	each	other.	

	

2.2 Quality	of	Bug	Report	
Bug	 reports	 serve	 an	 important	 role	 in	 the	 software	 development	 process:	 they	 collect	

relevant	 information	 about	 faults	 or	 defects	 that	 end-users,	 testers,	 or	 other	 developers	

encounter	when	using	or	working	with	software	[1].	Ideally,	the	information	provided	in	a	

bug	report	is	sufficient	and	clear	for	developers	to	triage,	diagnose,	and	subsequently	fix	the	
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software	bug	 that	was	 encountered.	However,	 several	 studies	 conclude	 that	 a	 significant	

portion	of	bug	reports	lack	in	that	regard	[13],	[14].	Without	some	sort	of	major	clarification	

or	important	additional	information,	the	developer	is	unable	to	comprehend	and	process	the	

report.	As	a	result,	the	bug	report	is	either	ignored	altogether	or	the	developer	has	to	engage	

in	the	extra	effort	of	formulating	a	set	of	questions	to	the	reporter	that	hopefully	will	lead	to	

the	 insight	 that	 is	 needed	 to	 take	 the	 next	 step	with	 the	 bug	 report	 [7],	 [16],	 [20],	 [75].	

Interestingly,	such	requests	are	frequently	made	in	vain,	with	Breu	et	al.	finding	in	a	study	of	

Mozilla	bug	reports	that	50%	of	requests	to	reporters	went	unanswered	[15].	Usually,	after	

several	months	with	no	response,	one	of	the	developers	closes	the	bug	report	and	marks	it	

as	either	RESOLVED	or	WORKSFORME.	

 

2.2.1 Attributes	of	High-Quality	Bug	Reports		

What	makes	for	high-quality	(or	good)	bug	reports	has	been	the	subject	of	extensive	study.	

For	instance,	Bettenburg	et	al.	[19]	conducted	a	survey	of	Eclipse	developers,	finding	that	the	

inclusion	 of	 steps	 to	 reproduce	 and	 stack	 traces	 is	 considered	most	 important,	 whereas	

reporter	mistakes	in	specifying	the	steps	to	reproduce	and	incomplete	information	are	most	

problematic	in	successfully	triaging	and	addressing	bug	reports.	A	follow-up	survey	by	the	

same	authors	includes	Apache	and	Mozilla	developers	and	confirms	steps	to	reproduce	and	

stack	traces	are	seen	as	most	important,	with	test	cases,	observed	behavior,	and	screenshots	

next	[76].		

Zimmermann	 et	 al.	 [14]	 investigated	 the	 quality	 of	 bug	 reports	 from	 the	 perspective	 of	

developers.	To	find	out	which	features	matter	the	most,	they	surveyed	466	developers	from	

the	 Apache,	 Eclipse,	 and	 Mozilla	 projects.	 The	 responses	 reveal	 that	 most	 developers	

consider	 steps	 to	 reproduce,	 stack	 traces,	 and	 test	 cases	as	helpful.	Other	 surveys	 report	

similar	results	(e.g.,	 [16],	 [55]),	expand	the	 list	of	 information	considered	 important	with	

items	such	as	code	examples	or	an	explanation	of	the	difference	between	the	expected	and	

the	observed	behavior	(e.g.,	[20],	[21]),	or	find	a	different	order	of	importance	developers	

assign	to	different	 information	(e.g.,	 [13],	 [33]).	Somewhat	differently,	Bhattacharya	et	al.	

identify	a	long	textual	description	of	the	problem	as	an	indicator	of	a	good	bug	report	[21].	
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Laukkanen	 and	 Mantyla	 [13]	 surveyed	 74	 developers	 from	 six	 industrial	 software	

development	 companies.	 Their	 results	 showed	 that	 steps	 to	 reproduce	 and	 observed	

behavior	are	very	important	to	understanding	bug	reports	and	significant	for	reproducing	

bugs.		

In	2020,	Soltani	et	al.	[77]	interviewed	35	developers	to	gain	a	more	detailed	perspective	

into	the	importance	of	various	contents	of	bug	reports,	followed	by	a	survey	applied	to	305	

developers.	The	authors	concluded	that	the	essential	elements	are	crash	description,	steps	

to	reproduce,	test	cases,	and	stack	traces.	They	also	evaluated	the	quality	of	bug	reports	of	

the	250	most	popular	projects	on	Github.	Their	analysis	showed	that	steps	 to	reproduce,	

stack	 traces,	 and	 fix	 suggestions	 have	 a	 statistically	 significant	 impact	 on	 bug	 resolution	

times	for	33%	to	76%	of	the	projects.		

From	a	bug	reporter’s	perspective,	Karim	et	al.	investigated	the	key	features	of	high-impact	

bug	reports	(HIB)	[20].	A	HIB	is	defined	as	a	bug	that	can	significantly	affect	the	software	

development	 process	 and	 resulting	 product	 quality.	 The	 researchers	 discovered	 that	

observed	behavior,	expected	behavior,	and	code	examples	are	the	most	 frequent	features	

provided	by	bug	reporters	in	HIB	reports.	Chaparro	et	al.	also	detected	important	bug	report	

elements,	such	as	observed	behavior,	expected	behavior,	and	steps	to	reproduce	[33].	They	

manually	 analyzed	 2,912	 bug	 reports	 from	 nine	 systems	 (e.g.,	 Eclipse,	 Firefox,	 and	

LibreOffice)	 and	 found	 that,	while	 93.5%	of	 bug	 reports	 contain	 observed	 behavior	 (i.e.,	

93.5%),	 only	 35.2%	 and	 51.4%	 explicitly	 described	 expected	 behavior	 and	 steps	 to	

reproduce,	respectively.		

	

2.2.2 Missing	Information	and	Clarification	

As	opposed	to	identifying	what	information	is	important	in	high-quality	bug	reports,	some	

studies	 focus	on	what	 information	 is	missing	 from	 the	 typical	bug	 report.	While	an	early	

survey	suggests	that	approximately	half	of	the	developers	feel	that	bug	reports	are	nearly	

always	complete	[12],	a	later	study	at	Microsoft	shows	that	the	majority	of	bug	reports	are	

missing	information	and	that	a	significant	proportion	contains	inaccurate	information	[3].	

Ko	and	Chilana	 [4]	equally	 concluded	 that	 the	majority	of	bug	reports	 in	 the	Mozilla	bug	
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tracking	system	contribute	little-to-no	useful	information.	Through	a	survey,	Bettenburg	and	

colleagues	 found	 that	 screenshots,	 stack	 traces,	 and	 code	 examples	 are	 items	 that	 are	

frequently	missing	when	they	should	have	been	included	given	the	nature	of	the	bug	report	

[16][22].		

Another	reason	for	incomplete	or	inaccurate	bug	reports	is	inadequate	tool	support	for	bug	

reporting	[7],	a	 finding	that	 is	strongly	corroborated	by	a	petition	from	the	developers	of	

over	a	thousand	open-source	projects	asking	for	improvements	to	GitHub’s	infrastructure	to	

ensure	that	essential	information	is	reported	by	the	users12.	Beyond	predefined	templates,	

which	have	been	 shown	 to	help	 [33]	 (but	unfortunately	 are	 ignored	by	 reporters	 all	 too	

often),	advanced	tool	support	remains	lacking.	Reporters	simply	fill	out	suggested	fields	on	

a	form	and	submit	their	reports.	For	example,	even	though	Bugzilla	Helper	[51]	(see	Figure	

3)	aims	to	guide	users	in	including	steps	to	reproduce,	actual	results,	and	expected	results,	

it	does	not	guarantee	that	the	reporters	necessarily	provide	this	information	[33].	

Antoniol	et	al.	acknowledged	the	importance	of	bug	tracking	systems	and	source	repositories	

and	 suggested	 a	 unified	 framework	 to	 manage	 information	 extracted	 from	 source	 code,	

version	histories,	and	bug	reports	[79].	In	such	a	setting	a	much	richer	set	of	features	would	

be	available	to	users,	such	as	links	between	bug	reports	and	the	complexity	of	the	associated	

source	code	as	well	as	change	histories	for	files	and	components.	

	

2.2.3 Techniques	for	Predicting	the	Quality	of	Bug	Reports	

To	 address	 the	 problems	 surrounding	 bug	 reports,	 prediction	 techniques	 have	 been	

suggested	 as	 a	potential	 solution.	 Some	prediction	 techniques	 aim	 to	 assist	 in	 improving	

aspects	of	new	bug	 reports	prior	 to	 submission.	 For	 instance,	Wu	et	 al.	 developed	a	 tool	

called	BUGMINER	 [29],	 a	 tool	 that	 derives	 useful	 information	 from	 a	 historic	 bug	 report	

database	via	data	mining.	Using	the	information,	the	tool	performs	a	completion	check	and	

redundancy	check	on	a	newly	submitted	bug	report.	It	first	predicts	any	missing	data	(e.g.,	

product,	operating	system,	and	component)	fields	of	a	new	bug	report	by	mining	historic	

 
12	https://github.com/dear-github/dear-github	
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data	and	applying	an	SVM	model.	BUGMINER,	then,	checks	if	the	bug	report	is	a	duplicate	by	

measuring	the	similarity	between	a	new	bug	report	and	all	the	bug	reports	in	its	database	

using	KL	Divergence	[80].	The	evaluation	of	BUGMINER	on	the	bug	report	repositories	of	

Apache	Tomcat,	Eclipse,	and	Linux	Kernel	showed	that	it	can	determine	the	missing	product,	

operating	system,	and	component	field	with	an	F-score	of	99%,	81%,	and	79%,	respectively.	

Moreover,	results	showed	that	BUGMINER	can	determine	the	product,	operating	system,	and	

component	fields	with	an	accuracy	of	99%,	68%,	and	67%,	respectively.	

Chapparo	et	al.	[33]	created	a	tool	called	DeMIBuD	to	automatically	detect	the	absence	(or	

presence)	of	expected	behavior	and	steps	to	reproduce	in	bug	descriptions.	DeMIBuD	uses	

linear	N-grams	 and	 SVM	 to	 classify	 the	 description	 of	 bug	 reports.	With	 its	 best	 setting,	

DeMIBuD	was	able	 to	detect	missing	expected	behavior	(steps	 to	reproduce)	with	85.9%	

(69.2%)	average	precision	and	93.2%	(83%)	average	recall.	In	their	next	study,	Chapparo	et	

al,	[34]	proposed	Euler,	an	approach	that	automatically	identifies	and	assesses	the	quality	of	

the	steps	to	reproduce	 in	a	bug	report	and	provides	quality	annotations	to	the	reporters,	

which	they	can	use	to	improve	the	bug	report.	Euler	uses	an	engine	called	Crashscope	[81]	

which	detects	steps	to	reproduce	missing	 in	the	report.	The	evaluation	results	on	24	bug	

reports	of	six	Android	applications	showed	that	Euler	correctly	identified	98%	of	the	existing	

steps	to	reproduce	and	58%	of	the	missing	ones,	while	73%	of	its	quality	annotations	were	

correct.	

Some	 researchers	 have	 investigated	 ways	 to	 improve	 the	 quality	 of	 bug	 reports	 by	

identifying	the	quality	of	the	individual	fields	in	a	bug	report	[41].	For	example,	Ko	et	al.	[30]	

performed	a	 linguistic	analysis	of	200,000	bug	report	 titles	 from	Eclipse,	Firefox,	Apache,	

Linux,	and	OpenOffice	to	study	how	people	describe	software	problems	and	suggested	new	

designs	for	more	structured	report	forms.	In	particular,	they	applied	a	probabilistic	part-of-

speech	tagger	to	all	report	titles,	by	counting	the	nouns,	verbs,	adverbs,	and	adjectives	that	

appeared	in	those	titles,	and	proposed	several	design	ideas	motivated	by	their	results,	such	

as	soliciting	more	structured	titles.	

Gromova	 et	 al.	 [82]	 introduced	 Nostradamus	 to	 evaluate	 the	 quality	 of	 bug	 reports	 by	

calculating	the	probability	of	priority	levels,	time	to	resolve,	reject,	and	wontfix	resolution.	

The	authors	used	a	combination	of	SVM	and	SMOTE	[83],	a	method	that	can	improve	the	
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accuracy	of	classifiers	for	a	minority	class,	on	5,242	bug	reports	from	the	JBOSS	project.	Their	

best	model	could	achieve	a	mean	F-score	of	88%	and	a	mean	accuracy	of	86%.		

Considering	the	bug	report	as	a	whole,	Zimmermann	et	al.	trained	a	new	tool	by	building	a	

supervised	learning	model	called	CUEZILLA.	CUEZILLA	predicts	the	overall	quality	level	of	a	

new	 bug	 report	 (i.e.,	 bad,	 neutral,	 or	 good)	 using	 a	 readability	 measurement,	 pattern	

matching,	 and	 analysis	 of	 the	 bug	 reports’	 attachments	 [14].	 It	 also	 randomly	 provides	

relevant	 facts	 to	bug	reporters	that	were	mined	from	a	prebuilt	bug	database	 in	order	to	

encourage	 better	 reports,	 such	 as	 “Bug	 reports	 with	 stack	 traces	 are	 fixed	 sooner”.	

Evaluating	CUEZILLA	on	APACHE	bug	reports,	using	SVM	regression	with	a	 linear	kernel	

provides	 the	 top	 results,	 but	 with	 only	 50	 percent	 accuracy.	 Schuegerl	 et	 al.	 similarly	

assessed	the	overall	quality	of	bug	reports	on	a	five	point	scale	of	very	good,	good,	average,	

poor,	and	very	poor	[32].	The	authors	used	Decision	Tree	and	Naïve	Bayes	to	automatically	

flag	weak	descriptions.	The	result	of	their	evaluation	on	a	random	data	sample	of	178	bug	

reports	revealed	an	accuracy	of	44%	for	Decision	Tree	and	for	Naive	Bayes.	

Zanetti	et	al.	[84]	conducted	a	case	study	on	the	position	of	bug	reporters	in	the	collaboration	

networks	 of	 four	 Open	 Source	 Software	 communities	 (Mozilla	 Firefox,	 Eclipse,	 and	

Netbeans)	 to	 identify	 valid	 bug	 reports	 (bug	 reports	 that	 are	 actual	 software	 bugs,	 not	

duplicates,	and	contain	enough	information	to	be	processed	right	away).	The	authors	found	

that	the	position	of	bug	reporters	in	communities	is	indeed	indicative	of	whether	bug	reports	

are	valid	or	 invalid	 (are	duplicates	or	 incomplete).	More	 specifically,	 they	 found	 that	 the	

number	 of	 bug	 reports	 that	 a	 bug	 reporter	 submitted	 and	 could	 be	 fixed	 in	 the	 month	

preceding	the	submission	of	a	new	report	can	positively	influence	the	attention	received	by	

developers,	thus	affecting	the	chance	of	the	bug	report	being	taken	seriously,	prioritized,	and	

eventually	 fixed.	 Based	 on	 this	 finding,	 they	 developed	 an	 automated	 bug	 report	

classification	mechanism	using	nine	topological	measures	at	the	level	of	bug	reporters	(e.g.,	

eigenvector,	betweenness,	and	closeness)	and	an	SVM	classifier	and	could	achieve	an	F-score	

of	92%.	
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2.2.4 Bug	Resolution	Time	

The	quality	of	bug	reports	influences	the	time	of	bug	resolution	[26].	Karim	et	al.	[20]	found	

that	bug	reports	 for	which	developers	require	additional	 information	have	a	significantly	

longer	 fixing	 time	 compared	 to	bugs	 that	 do	not.	Many	 researchers	 investigated	ways	 to	

assist	in	processing	newly	submitted	bug	reports	by	predicting	whether	a	bug	report	can	be	

resolved	within	a	given	time	[25].	For	example,	Hooimeijer	and	Weimer	[25]	presented	a	

model	to	measure	bug	report	quality	based	on	27,000	Mozilla	Firefox	reports.	They	divided	

bug	reports	into	“cheap”	and	“expensive”	by	predicting	whether	bug	reports	can	be	resolved	

within	a	given	time.	Their	research	was	performed	based	on	the	assumption	that	“in	general,	

reports	of	higher	quality	are	dealt	with	more	quickly	than	those	of	lower	quality”.	Many	bug	

reports	 are	 addressed	 quickly	 not	 because	 of	 their	 quality,	 but	 because	 of	 the	 urgent	

problems	they	describe.	While	their	results	showed	that	the	presence	of	an	attachment	tends	

to	lead	to	a	faster	bug	fixing	time	and	that	the	comment	count	suggests	that	bug	reports	that	

receive	more	attention	get	fixed	faster.	Zimmermann	et	al.	[14]	also	investigated	which	bug	

reports	have	a	faster	fixing	time.	The	authors	found	that	bug	reports	that	contain	stack	traces	

and	are	easier	to	read	get	fixed	sooner.	

Zaman	et	al.	[85]	compared	bug	fix	times	of	security	and	performance	bug	reports	in	Mozilla	

Firefox.	They	found	that	security	bugs	are	fixed	faster	than	performance	bugs.	Bhattacharya	

et	al.	[21]	performed	a	similar	analysis	for	security	versus	non-security	bugs	and	showed	

that	 the	quality	 of	 security	bug	 reports	 is	 higher	 compared	 to	non-security	 bugs,	 though	

security	 bugs	 are	 fixed	 slower	 compared	 to	 other	 bugs,	which	 contradicts	 the	 finding	 of	

Zaman	et	al.	[85].	They	also	found	that	Google	Code’s	bug	tracker13,	which	is	used	by	most	

open-source	 Android	 apps,	 offers	 less	 bug	 management	 support	 (e.g.,	 for	 bug	 triaging)	

compared	 to	 other	 trackers	 such	 as	 Bugzilla	 or	 Jira.	 The	 authors	 mention	 this	 lack	 of	

information	 limits	 empirical	 analyses	 and	might	hinder	 the	bug-fixing	process	on	Google	

Code-based	projects.		

Kuramoto	et	al.	[86]	investigated	the	impact	of	including	images	and	videos	on	bug	report	

resolution	 time.	Their	 study	on	1,230	videos	 from	226,286	bug	reports	 revealed	 that	 the	

 
13	https://issuetracker.google.com	
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resolution	time	in	bug	reports	without	videos	is	longer	than	in	bug	reports	with	videos,	but	

no	statistically	significant	differences	were	observed.	

	

2.2.5 Triaging		

Triaging	is	the	process	of	reviewing	bug	reports	to	ensure	they	represent	a	real	bug	and	have	

accurate	information	that	allows	them	to	be	resolved	and	tested	[87].	Triagers	and	assigned	

developers	 spend	 a	 significant	 portion	 of	 their	 time	 comprehending	 the	 submitted	 bug	

reports	and	asking	for	missing	or	additional	information	[75].	In	response,	many	researchers	

have	 focused	on	automating	 the	 triaging	of	bug	reports.	For	example,	Antoniol	et	al.	 [88]	

applied	text	mining	techniques	to	the	description	of	bug	reports	to	determine	whether	a	bug	

report	is	a	real	bug	or	a	feature	request.	The	authors	used	techniques	such	as	decision	trees,	

logistic	regIon,	and	a	Naive	Bayes	classifier	to	achieve	this	purpose.	The	performance	of	this	

approach	 on	 three	 projects	 (Mozilla,	 Eclipse,	 and	 JBoss)	 indicated	 that	 reports	 can	 be	

predicted	to	be	a	bug	or	an	enhancement	with	an	accuracy	between	77%	and	82%.		

Bug	triaging	also	includes	the	process	of	checking	whether	the	reported	bug	is	a	duplicate	of	

an	existing	bug,	prioritizing	bug	reports,	deciding	which	developer	should	work	on	the	bug	

reports,	and	so	on.	In	the	following,	the	relevant	work	in	each	category	is	discussed.	

	

2.2.5.1 Predicting	Severity		

The	severity	of	a	bug	report	is	an	important	factor	in	determining	how	fast	it	will	take	to	fix	

the	bug	it	represents.	Menzies	and	Marcus	[89]	are	among	the	first	to	predict	the	severity	of	

bug	reports.	The	authors	adopted	a	rule	learning	technique	that	uses	the	textual	descriptions	

of	reported	bugs	[20].	The	approach	analyzes	the	textual	contents	of	bug	reports	and	outputs	

fine-grained	 severity	 levels	 used	 internally	 in	 NASA’s	 Independent	 Verification	 and	

Validation	Facility.	Their	approach	reported	precision	and	recall	values	that	varied	a	lot,	with	

precision	 between	 0.08	 and	 0.91	 and	 recall	 between	 0.59	 and	 1.00.	 Lamkanfi	 et	 al.	 [90]	

extended	the	work	of	Menzies	and	Marcus	to	predict	whether	or	not	a	bug	report	is	severe	

in	Bugzilla.	They	used	five	severity	labels	out	of	six	severity	labels	in	Bugzilla	and	drop	bug	
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reports	belonging	to	the	category	“normal”.	The	remaining	five	categories	were	grouped	into	

two	groups:	severe	and	non-severe.	They	explored	four	claIersIluding	Naive	Bayes,	Naive	

Bayes	Multinomial,	SVM,	and	Nearest-Neighbor	classItion,	and	found	that	the	Naive	Bayes	

Multinomial	 performed	 the	 best	 on	 a	 dataset	 consisting	 of	 29,204	 bug	 reports,	 with	 the	

highest	accuracy	of	93%	[91].		

Yang	 et	 al.	 [92]	 performed	 feature	 selection	 schemas	 such	 as	 chi-square,	 correlation	

coefficient,	 and	 information	 gain	 to	 choose	 suitable	 features.	 The	 features	 help	 extract	

potential	severe	(e.g.,	crash)	and	non-severe	(e.g.,	typo)	indicators	in	bug	reports.	The	auI	

then	applied	the	Multinomial	Naive	Bayes	(NB)	classification	approach.	The	experimental	

results	showed	that	these	feature	selection	schemes	perform	well	for	severity	prediction	by	

achieving	 accuracies	 of	 over	 0.77	 and	 0.84	 for	 bug	 reports	 in	 Eclipse	 and	 Mozilla,	

respectively.	The	prediction	results	also	demonstrated	that	the	reports	of	Eclipse	tend	to	use	

more	 severity-consistent	 words	 to	 describe	 the	 bug	 such	 that	 the	 indicators	 have	 high	

specificity.	In	contrast,	the	reporters	of	Mozilla	tend	to	use	less	severity	consistent	words	to	

describe	the	bugs,	which	might	be	because	of	“its	reporters’	diversified	background”,	as	the	

authors	explain.	

Tian	 et	 al.	 [93]	 used	 three	 open-source	 software	 systems	 (i.e.,	 OpenOffice,	 Mozilla,	 and	

Eclipse)	and	found	that	around	51%	of	the	duplicate	bug	reports	have	inconsistent	human-

assigned	severity	labels,	even	though	they	refer	to	the	same	software	problem.	To	address	

this	 problem,	 the	 authors	 proposed	 a	 new	 approach	 for	 assigning	 severity	 that	 agrees	

between	77%	and	86%	of	the	time	with	human-assigned	severity	labels.	

Recently,	Tan	et	al.	[94]	used	a	somewhat	different	approach	to	predict	the	severity	of	bug	

reports.	 They	 collected	 all	 question-and-answer	 pairs	 from	 the	 posts	 related	 to	 bug	

repositories	 in	Stack	Overflow	and	 then	used	BM2514	 to	get	a	 similarity	 score	between	a	

sentence	 from	 Stack	 Overflow	 and	 a	 bug	 report.	 Then	 they	 applied	 logical	 regression	 to	

predict	the	severity	of	bug	reports.	They	evaluated	their	approach	by	comparing	the	result	

of	the	severity	prediction	with	a	previous	study,	Word2Vec	[96].	The	results	showed	that	

their	approach	could	achieve	an	average	F-measure	of	over	82%	and	improve	the	average	F-

 
14 BM25 [95] is	a	ranking	system	that	helps	search	engines	identify	the	most	relevant	documents	in	a	given	set	of	
documents. 
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measure	 in	 Mozilla,	 Eclipse,	 and	 GCC	 by	 23.03%,	 21.86%,	 and	 20.59%	 compared	 to	

Word2Vec.		

	

2.2.5.2 Predicting	Priority		

To	 aid	 bug	 triagers	 in	 assigning	 priority,	 automated	 techniques	 have	 been	 proposed	 to	

recommend	priority	levels	of	bug	reports	using	information	available	in	the	bug	reports.	In	

one	of	the	early	studies,	Tian	et	al.	[97]	proposed	DRONE	to	predict	the	priority	levels	of	bug	

reports	 in	 Bugzilla.	 The	 authors	 considered	 multiple	 factors	 available	 in	 bug	 reports,	

including	bug	description,	reporter’s	information,	and	severity,	to	train	a	machine	learning	

model,	built	by	combining	 linear	 regression	with	a	 thresholding	approach	 to	address	 the	

issue	with	 imbalanced	data.	The	result	on	a	dataset	consisting	of	more	 than	100,000	bug	

reports	from	Eclipse	showed	an	average	F-measure	of	29%.	

Abdelmoez	et	al.	[98]	used	a	Naive	Bayes	classifier	to	predict	the	priority	of	bug	reports	in	

three	projects:	Mozilla,	Eclipse,	and	GNOME.	They	prioritized	the	bug	reports	according	to	

their	mean	time	into	3	quartiles:	from	fast	bug	reports	that	developers	start	with,	to	slow	

ones	that	developers	exclude	and	defer	them.	The	results	showed	varying	average	precision	

(0.44-1.00)	and	recall	(0.2-0.99).	

Alenezi	and	Banitaan	[23]	used	Naive	Bayes,	Decision	Tree,	and	Random	Forest	to	predict	

the	priority	of	bug	reports.	They	use	two	feature	sets,	one	based	on	TF-weighted	words	of	

bug	reports	and	a	second	based	on	the	classification	of	bug	report	attributes.	The	results	of	

their	evaluation	on	bug	reports	of	Eclipse	and	Firefox	showed	that	the	usage	of	the	second	

feature	set	performed	better	with	the	highest	F-score	of	0.63.	

Umer	et	al.	[99]	recently	used	a	Convolutional	Neural	Network	(CNN)	based	model	to	predict	

the	priority	of	bug	reports.	They	first	converted	each	word	into	a	vector	using	a	word2vec	

model.	Then,	they	performed	a	software	engineering	domain-specific	emotion	analysis	on	

bug	reports	and	compute	the	emotion	value	for	each	of	them.	Finally,	they	passed	both	the	

vectors	and	emotions	of	bug	reports	to	the	CNN-based	classifier.	Results	of	the	cross-project	

evaluation	suggested	that	their	approach	could	improve	the	performance	of	previous	studies	

by	increasing	the	average	F-score	by	24%.	
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2.2.5.3 Automatic	Bug	Assignment		

Machine	learning	techniques	also	have	been	used	to	predict	the	most	appropriate	developer	

for	resolving	a	new	incoming	bug	report.	This	way,	bug	triagers	are	assisted	in	their	task.	For	

example,	 Cubranic	 et	 al.	 [100]	 trained	 a	 Naive	 Bayes	 classifier	 with	 the	 history	 of	 the	

developers	who	solved	the	bugs	as	the	category	and	the	corresponding	descriptions	of	the	

bug	reports	as	the	data.	This	classifier	is	subsequently	used	by	triagers	to	manually	select	

the	most	appropriate	developer	(i.e.,	assignee)	from	the	generated	list	for	a	newly	reported	

bug.	The	results	of	an	evaluation	revealed	that	over	30%	of	the	incoming	bug	reports	of	the	

Eclipse	project	are	assigned	to	the	correct	developer	using	this	approach.	Anvik	et	al.	[101]	

used	 the	 SVM	 classifier	 and	 text	 categorization	 to	 assign	 bug	 reports	 to	 an	 appropriate	

developer.	In	this	study,	they	could	obtain	an	overall	classification	accuracy	of	57%	and	64%	

for	the	Eclipse	and	Firefox	projects	respectively.	

Zhang	 et	 al.	 [102]	 introduced	 a	 hybrid	 bug	 triaging	method	which	 is	 a	 combination	 of	 a	

probability	 and	 experience	model	 for	 assigning	 developers	 to	 a	 new	bug	 report.	 In	 their	

study,	they	used	a	smoothed	Unigram	model	(UM)	and	a	probability	model	based	on	Social	

Network	analysis	to	search	for	bug	reports	which	are	similar	to	the	newly	reported	bug.	The	

evaluation	result	on	automatic	bug	triage	of	bug	reports	in	the	JBoss	and	Eclipse	projects	

showed	the	highest	F-score	of	71%	for	JBoss	and	67%	for	Eclipse,	when	six	developers	are	

recommended	(an	F-score	between	20%	to	25%	when	one	developer	is	recommended).	

Yadav	et	al.	[103]	proposed	an	approach	that	ranks	developers	based	on	their	expertise	in	

triaging	bugs.	This	approach	generates	developer	expertise	scores	using	the	average	fixing	

time,	priority-weighted	 fixed	 issues,	 and	 index	metrics.	 It	 then	determines	 feature-based,	

cosine,	 and	 Jaccard	 similarities	 to	 compute	 the	 expertise	 scores.	 Finally,	 a	 ranked	 list	 of	

developers	for	new	incoming	bug	reports	is	produced.	They	evaluated	the	approach	on	the	

Mozilla,	Eclipse,	NetBeans,	Firefox,	and	Freedesktop	projects	covering	41,622	bug	reports	

and	could	achieve	an	F-score	of	89%.	As	a	result,	their	approach	could	reduce	the	average	

length	of	bug	tossing	sequences	by	20%.	
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Instead	of	applying	machine	learning	techniques,	Peng	et	al.	[104]	proposed	a	method	based	

on	relevant	search	techniques.	Their	method	constructs	a	search	engine	for	bug	reports	and	

ranks	a	list	of	relevant	bug	reports	for	resolving	a	newly	reported	bug.	It	then	recommends	

its	assigned	developer.	They	compared	their	results	with	two	existing	maI	learning-based	

developer	recommendation	methods	(Naive	Bayes	and	SVM)	and	could	improve	the	recall	

rate,	between	0.1-0.2,	for	both	Mozilla	and	Eclipse	projects.	

	

2.2.5.4 Duplicate	Bug	Report	Detection	

Duplicate	bug	reports	cause	an	overestimation	of	the	number	of	bug	reports	and	increase	

the	cost	of	triaging.	Some	researchers	use	textual	analysis	to	detect	duplicate	bug	reports.	

For	 example,	 Runeson	 et	 al.	 [105]	 used	 text	 similarity	 techniques	 to	 help	 automate	 the	

detection	of	duplicate	bug	reports.	By	comparing	the	similarities	between	the	description	of	

bug	 reports	 they	 could	 detect	 66%	 of	 the	 duplicate	 reports	 of	 Sony	 Ericson	 Mobile	

Communications.	

Aggarwal	 et	 al.	 [106]	 used	 hierarchical	 contextual	 information	 extracted	 from	 software-

engineering	textbooks,	project-related	software	literature,	and	project	documentation.	They	

then	 applied	 a	 BM25	 similarity	 method	 to	 detect	 duplicate	 bug	 reports	 in	 the	 Android,	

Eclipse,	Mozilla,	and	OpenOffice	projects.	The	experimental	results	showed	the	importance	

of	domain-specific	context	as	 it	 improved	accuracy	 to	over	92%	for	all	 four	projects.	The	

Kappa	scores	also	improved	by	at	least	3.8%	to	10.8%	compared	to	the	base	study	of	Alipour	

et	al.	[107].	

Machine	 learning	 is	 also	 a	 line	 of	 approach	 for	 the	 automatic	 detection	 of	 duplicate	 bug	

reports.	For	instance,	Bettenburg	et	al.	[78]	developed	an	SVM	and	a	Naive	Bayes	to	filter	out	

duplicate	bug	reports.	They	triaged	bug	reports	based	on	a	word	vector	representation	of	

the	report	titles	and	descriptions.	Their	approach	could	obtain	roughly	65%	accuracy.	

Sun	et	al.	[108]	used	SVM	and	information	retrieval	(IR)	techniques	to	retrieve	similar	bug	

reports	from	a	bug	repository.	They	considered	duplicate	bug	report	detection	as	a	binary	

classification	 problem,	 that	 is,	 given	 a	 new	 report,	 the	 retrieval	 process	 is	 to	 classify	 all	

existing	reports	into	two	classes:	duplicate	and	non-duplicate.	They	computed	54	types	of	
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textual	similarities	between	reports	and	used	them	as	features	for	training	and	classification.	

The	results	of	an	evaluation	of	bug	repositories	from	OpenOffice,	Firefox,	and	Eclipse	showed	

that	 the	 approach	 could	 outperform	 existing	 state-of-the-art	 techniques	 by	 a	 relative	

improvement	of	17–31%,	22–26%,	and	35–43%,	respectively.	

Learning	to	Rank	(L2R)	is	another	useful	machine	learning	approach	to	detect	duplicate	bug	

reports.	Based	on	L2R,	Zhou	et	al.	[109]	introduced	BugSim	which	is	based	on	learning	to	

rank	 concepts.	 It	 identifies	 textual	 and	 statistical	 features	 and	 uses	 a	 stochastic	 gradient	

descent	 algorithm	 over	 the	 training	 set.	 For	 a	 new	 bug	 report,	 BugSim	 then	 retrieves	

candidate	duplicate	reports	using	the	trained	model.	The	results	of	an	evaluation	of	45,100	

bug	reports	of	twelve	Eclipse	projects	showed	an	average	recall	rate	for	the	top	10	retrieved	

reports	of	76.11%.	The	proposed	approach	also	works	better	than	a	previous	SVM-based	

method	of	Sun	et	al.	 [108]	by	15.41%	and	the	BM25-based	method	of	Sun	et	al.	 [110]	by	

3.71%	on	the	recall	rate	of	the	top	10	results.	

	

2.2.6 Video	Submissions	in	Bug	Reports		

Videos	can	demonstrate	complex	contexts	about	bugs	and	thereby	can	offer	developers	a	

new	 opportunity	 to	 collect	 context-rich	 bug	 information	 [36].	 Videos	 help	 developers	

understand	how	users	interact	with	the	system,	process	the	current	behavior	of	the	system,	

and	comprehend	any	events	that	contributed	to	the	bug.	Several	studies	encourage	reporters	

to	 submit	 relevant	 videos	 as	 part	 of	 their	 bug	 reports	 to	 convey	 additional	 context	 for	

understanding	bugs	[39]–[41].	

	

2.2.6.1 Studies	on	Video	Bugs	in	Game	Applications	

Game	 developers	 attempt	 to	 learn	 more	 about	 the	 problems	 that	 gamers	 encounter	 by	

studying	 gameplay	 videos,	 as	 they	often	offer	 important	 context	 surrounding	 a	bug	 [42].	

Lewis	 et	 al.	 [39]	 created	a	 taxonomy	of	 video	game	bugs	by	deducing	patterns	 from	bug	

videos	on	YouTube.	They	identified	the	bug	videos	as	“a	rich	resource	that	mixes	creativity,	
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subversiveness,	 and	 pure	 chance.	 The	 videos	 available	 provide	 a	 startling	 amount	 of	

coverage.”		

Lin	et	al.	[36]	proposed	an	approach	to	automatically	identify	game	videos	that	showcase	a	

bug	using	the	metadata	available	online.	Their	process	uses	a	random	forest	classifier	to	rank	

gameplay	videos	based	on	their	likelihood	of	being	a	video	containing	a	bug.	Jacob	et	al.	[88]		

and	 Lou	 et	 al.	 [89]	 presented	 approaches	 to	 automatically	 extract	 game	 logs	 from	 game	

videos,	with	the	logs	then	used	by	game	designers	to	study	the	bugs.	Jacob	et	al.	[88]	used	

image	 processing	 techniques	 and	 predefined	 image	 patterns	 to	 extract	 game	 logs	 from	

gameplay	videos	of	the	Super	Mario	Bros.	game.	Luo	et	al.	[89]	used	convolutional	neural	

networks	 and	 transfer	 learning	 to	 extract	 game	 logs	 from	 gameplay	 videos	 of	 the	 Super	

Mario	Bros.,	Megaman,	and	Skyrim	games.	

	

2.2.6.2 Studies	on	Video	of	Bugs	in	Mobile	Applications	

In	mobile	applications,	the	practice	of	sharing	videos	containing	screen	recordings	to	convey	

additional	context	 for	understanding	bugs	has	been	steadily	 increasing	over	 the	past	 few	

years	[111].	Many	mobile	applications	allow	users	to	report	bugs	in	a	graphical	form	(not	

necessarily	video)	in	order	to	simplify	the	reporting	of	bugs	by	end-users	and	crowd-testers	

[112]–[114].	The	reporting	of	visual	data	is	also	supported	by	many	bug	reporting	services	

for	mobile	applications	[115]–[119].	

To	assist	developers	in	effectively	taking	in	video	content,	approaches	have	been	introduced	

for	automatically	analyzing	videos	to	understand	and	use	in	bug	resolution	[47].	Krieter	et	

al.	 [43]	 used	 video	 analysis	 to	 extract	 high-level	 descriptions	 of	 events	 from	 user	 video	

recordings	on	Android	apps.	Their	approach	generates	log	files	that	describe	what	events	

are	happening	at	the	app	level.	Lin	et	al.	[120]	proposed	an	approach	called	Screenmilker	to	

automatically	extract	screenshots	of	videos	of	sensitive	information	(e.g.,	a	user	entering	a	

password)	by	using	the	Android	Debug	Bridge15.	This	technique	focuses	on	the	extraction	of	

keyboard	inputs	from	“real-time”	screenshots.			

 
15 The Android Debug Bridge is a programming tool used for the debugging of Android-based devices. 
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Bao	et	al.	[121]	and	Frisson	et	al.	[122]	performed	a	behavioral	analysis	of	developers	during	

programming	tasks.	They	used	computer	vision	techniques	to	extract	the	user	interactions.	

In	a	similar	 line	of	research,	Bernal-Cárdenas	et	al.	[46]	extracted	generic	user	actions	on	

mobile	apps	 in	order	to	translate	video	recordings	of	Android	app	usages	 into	replayable	

scenarios.	Cooper	et	al.	[44]	developed	TANGO,	which	analyzes	both	video	submissions	and	

textual	information	present	in	mobile	screen	recordings	to	find	duplicate	video-based	bug	

reports.	 TANGO	 combines	 computer	 vision	 and	 text	 retrieval	 techniques	 to	 retrieve	 the	

video-based	reports	that	are	most	similar	to	the	incoming	report.		

Hu	et	al.	[45]	developed	AppFlow,	which	leverages	machine	learning	techniques	to	analyze	

Android	screens	and	categorize	types	of	test	cases	that	could	be	performed	on	them	(i.e.,	a	

sign-in	screen	whose	test	case	would	be	a	user	attempting	to	sign	in).	AppFlow	is	focused	on	

the	generation	of	semantically	meaningful	test	cases	in	conjunction	with	automated	dynamic	

analysis.		
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3 CHAPTER	3:	Bug	Report	Quality	Prediction:		
Actionable	versus	Non-Actionable	Bug	Reports	

	
Bug	 reports	 are	 vital	 to	 any	 software	development	project,	 as	 they	 inform	developers	 of	

potential	problems	encountered	with	the	software.	An	ideal	bug	report	contains	sufficient	

and	clear	information	to	be	actionable:	from	the	bug	report,	the	developer	can	determine	

whether	the	report	raises	a	valid	issue	and,	if	so,	start	the	process	of	figuring	out	what	might	

be	wrong	and	how	to	fix	it.	Some	minimal	back-and-forth	may	be	necessary	to	clarify	a	small	

issue	or	obtain	some	auxiliary	information	that	might	be	helpful	later,	but	fundamentally	an	

actionable	bug	report	is	one	where	the	developer	feels	comfortable	proceeding.	Many	newly	

submitted	bug	reports	are	non-actionable	[3],	[4].	This	is	undesirable	since	it	slows	down	

the	 process	 of	 triaging	 and	 resolving	 bugs	 and	 incurs	 significant	 additional	 effort	 on	 all	

parties	involved	[17].		

It	is	within	this	context	that	I	believe	a	significant	opportunity	exists	for	tools	that	intervene	

before	a	non-actionable	bug	report	is	submitted.	Such	tools	could	flag	newly	composed	bug	

reports	if	they	are	deemed	non-actionable	and	give	reporters	the	chance	to	improve	these	

reports,	 ideally	 with	 some	 guidance,	 before	 they	 are	 eventually	 submitted.	 A	 necessary	

precursor	to	the	design	of	these	kinds	of	tools	is	a	classifier	that	can	distinguish	actionable	

from	non-actionable	bug	reports.	However,	the	accuracy	of	existing	classifiers	is	insufficient.	

Among	them,	Cuezilla	[35]	and	the	approach	of	Schuegerl	et	al.	[32]	provide	the	best	results,	

with	the	former	achieving	an	accuracy	of	50%	in	classifying	bug	reports	as	good,	neutral,	or	

bad	and	the	latter	achieving	an	accuracy	of	44%	in	classifying	bug	reports	on	a	scale	of	1	

(very	high	quality)	to	5	(very	low	quality).	In	addition	to	this	being	too	low	an	accuracy	to	

be	practically	useful	in	the	kind	of	tool	that	is	envisioned,	such	a	tool	also	merely	needs	a	

simpler,	binary	classification,	rather	than	one	that	offers	a	more	fine-grained	scale	offered	

by	prior	work.	

This	chapter	therefore	revisits	the	problem	of	bug	report	quality	prediction	and	answers	the	

following	research	questions:	

1- Is	it	possible	to	predict	the	overall	quality	of	bug	reports	in	terms	of	whether	they	are	

actionable	or	non-actionable	with	a	sufficiently	high	accuracy?	
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2- Can	 performance	 results	 be	 further	 improved	 by	 adding	 auxiliary	 features	 (e.g.,	

whether	the	report	was	submitted	by	an	end-user	or	developer,	whether	 it	has	an	

attachment)?	

3- To	what	extent	is	the	best-performing	model	portable?	

To	 answer	 the	 research	 questions,	 I	 manually	 classified	 1,423	 bug	 reports	 from	 all	 the	

Mozilla	Firefox	projects	(e.g.,	Firefox,	Firefox	Build	System,	Firefox	for	FireTV)	as	actionable	

or	non-actionable,	 relying	on	existing	 findings	 regarding	 the	distinctive	 characteristics	of	

high-quality	 and	 low-quality	 bug	 reports	 to	 do	 so	 (e.g.,	 [48],	 [49]).	 I	 then	 conducted	

supervised	learning	with	four	different	machine	learning	classifiers,	including	Naïve	Bayes,	

Support	Vector	Machine,	Decision	Tree,	and	Random	Forest,	on	solely	the	description	field	

from	the	bug	reports.	I	compared	the	performance	of	each	classifier,	selected	the	one	that	

performed	best,	and	trained	it	again	with	a	variety	of	additional	features	(e.g.,	whether	the	

report	was	submitted	by	an	end-user	or	developer,	whether	it	has	an	attachment).	After	that,	

I	conducted	cross-project		prediction		by		applying		the	classifier	with	the	best	results	on	an	

existing	dataset	 that	was	 studied	previously	 containing	bug	 reports	 for	Apache	 (90)	 and	

Eclipse	(100).	

In	the	following	subsections,	I	first	explain	the	terminology	of	actionable	and	non-actionable	

bug	report.	Then,	I	detail	the	methodology	and	results	on	how	to	achieve	a	sufficiently	high	

accuracy	so	the	model	could	be	used	in	downstream	tools.	

	

3.1.	Actionable	and	Non-actionable	Bug	Report	
It	 is	 useful	 to	 clarify	 the	 terminology	 of	 actionable	 and	 non-actionable,	 especially	 in	 the	

context	of	prior	work,	which	uses,	among	other	things,	a	three-point	scale	of	good,	neutral,	

and	bad	[14]	and	a	five-point	scale	from	very	high	quality	to	very	low	quality	[32].	In	this	

dissertation,	 the	 terms	 actionable	 and	 non-actionable	 are	 preferred	 because	 they	 more	

accurately	 reflect	what	happens	 to	bug	 reports:	 they	are	either	 sufficiently	 complete	and	

clear	for	a	developer	to	know	what	to	do	with	them,	or	they	are	not;	the	distinction	between	

understanding	the	essence	of	a	bug	report	and	what	to	do	with	it	versus	not	understanding	

that	essence	is	the	difference	between	a	bug	report	being	actionable	or	not.	
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For	example,	Figure	6	(part	1)	shows	the	description	of	Mozilla	bug	id	54483316,	which	is	an	

actionable	bug	report.	The	report	contains	specific	information	about	what	happened,	what	

the	user	expected	to	happen,	and	how	to	reproduce	it.	By	reading	it,	another	developer	could	

also	reproduce	the	bug	on	another	system,	see	Figure	6	(part	2).	

	

Figure	6.	Example	of	an	actionable	bug	report,	bug	id	544833	(cropped).	

Figure	7	(part	1)	shows	that	the	assignee	of	the	bug	report	could	confirm	the	bug	as	well	and	

found	 another	 way	 to	 replicate	 it	 “...click	 location	 Bar,	 then	 press	 Shift+Tab	 and	 then	

 
16	https:/bugzilla.mozilla.org/show_bug.cgi?id=544833	
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pressing	Ctrl+Shift+Tab	or	Ctrl+Tab.”	and	suggested	a	patch	for	it	(Figure	7	(part	2)).	The	
patch	is	approved	by	QA	and	added	to	the	central	codebase,	see	Figure	7	(part	3).	

	

	

Figure	7.	Comments	from	bug	id	544833	(cropped).	

A	non-actionable	bug	report	lacks	in	providing	the	developer	with	the	information	needed	

to	 determine	 what	 to	 do	 next.	 In	 such	 cases,	 the	 developer	 must	 obtain	 significant	

clarification	or	important	additional	information	before	they	can	even	figure	out	what	issue	

the	bug	report	attempts	to	raise.	Mozilla	bug	id	149739917,	shown	in	Figure	8,	is	an	example	

of	a	non-actionable	bug	report.	

 
17	https:/bugzilla.mozilla.org/show_bug.cgi?id=1497399	
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Figure	8.	Example	of	a	non-actionable	bug	report,	bug	id	1497399	(cropped).	

Even	though	it	may	seem	that	its	description	has	all	the	information	needed	to	resolve	the	

bug,	the	developer	assigned	to	the	bug	report	had	to	ask	its	reporter	to	provide	a	test	case	

("Could	 you	 please	 provide	 a	 test	 case	which	 shows	 the	 issue?"),	 to	which	 the	 reporter	
replied	with	a	file	containing	a	graphical	 illustration	of	the	steps	they	took	that	led	to	the	

crash	(Figure	9	(part	1)).	However,	the	developer	still	could	not	reproduce	the	bug	("Would	
you	have	a	test	case	to	reproduce	it?	Do	you	have	a	crash	report	in	about:crashes?").	A	few	
months	 later,	 in	 light	of	no	 further	response,	 the	developer	chose	 to	close	 the	bug	report	

("Closing	for	now	as	we	don't	have	enough	information	to	act	on	it."),	see	Figure	9	(part	2).	
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Figure	9.	Comments	from	bug	id	1497399	(cropped).	

Not	all	bug	reports	are	straightforward	to	categorize	as	actionable	or	non-actionable.	For	

example,	Mozilla	bug	id	126517318,	is	an	example	of	a	bug	report	that	is	harder	to	categorize	

as	actionable	or	non-actionable.	As	shown	in	Figure	10,	the	description	of	the	bug	was	about	

a	change	in	the	color	of	active	tabs	and	URL	bar	background.	Initially	the	bug	report	looks	

actionable	since	it	got	triaged.	However,	a	closer	look	reveals	that	the	assignee	of	the	bug	

commented	 "please	 attach	 a	 screenshot	 showing	 how	 those	 colors	 are	 broken	 on	 your	
system."	It	seems	that	the	developer	either	wanted	to	obtain	some	auxiliary	information	to	
further	see	how	the	colors	were	broken	in	the	screenshot	of	reporter's	system,	or	they	did	

not	have	enough	information	to	understand	the	problem	in	the	report.		

 
18	https:/bugzilla.mozilla.org/show_bug.cgi?id=1265173	
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Figure	10.	Example	of	a	more	difficult	bug	report	to	label,	bug	id	1265173	(cropped).	

After	the	reporter	provided	the	screenshot,	another	developer	explained	that	the	color	of	

active	tabs	was	actually	an	intended	change	"This	was	changed	in	bug	1244500	in	response	
to	people	with	exactly	the	opposite	complaint:	that	the	lightness	was	inappropriate	on	dark	
themes"	and	then	asked,	"Did	you	file	this	"just"	because	there	is	a	change,	or	do	you	have	
concrete	problems	with	the	new	design?",	(Figure	11	(part	1)).	As	the	reporter	confirmed	
that	"All	of	this	is	a	bad	change",	the	assignee	provided	a	patch	and	modified	the	colors	to	fix	
the	bug	report	(Figure	11	(part	3)).	This	bug	report	is	an	example	of	a	non-actionable	report,	

because	a	critical	piece	of	information	was	missing	in	the	initial	submission	of	the	report.	
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The	developers	did	not	know	if	the	reporter	did	not	like	the	recent	change	in	the	color	or	if	

the	color	was	actually	broken	and	needed	their	attention	to	be	fixed.		

	

	

Figure	11.	Comments	from	bug	id	1265173	(cropped).	

Mozilla	bug	id	62166019	is	another	example	of	a	bug	report	for	which	at	first	glance	it	is	not	

obvious	if	it	is	actionable	or	non-actionable	,	see	Figure	12.	The	reporter	started	with	“While	
I	was	able	to	successfully	upgrade	to	this	version	from	Beta	6,	I	cannot	get	it	to	work	for	Beta	
8.”,	 continued	with	 “I	did	not	 see	 this	on	 the	 list	of	known	 issues”,	provided	 the	 steps	 to	

 
19	https:/bugzilla.mozilla.org/show_bug.cgi?id=621660	
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reproduce,	actual	results,	and	expected	results,	and	even	came	up	with	some	workaround	

for	whom	may	have	the	same	problem.		

	

Figure	12.	Example	of	a	more	difficult	bug	report	to	categorize,	bug	id	621660	(cropped).	

At	first	glance,	it	seems	that	the	bug's	description	is	clear	and	complete,	and	thus	represents	

an	actionable	bug	report.	However,	the	bug	report	involved	an	exchange	between	a	pair	of	

developers	 and	 the	 reporter	 that	 reveals	 a	 different	 story,	 see	 Figure	 13	 (part	 1).	 The	

assigned	developer	asked	for	additional	information	“…	Post	your	Error	Console	Output”,	see	
Figure	13	(part	2).	Once	the	reporter	responded	by	submitting	the	requested	information,	a	

second	developer	asked	for	yet	more	information	“Please	post	a	list	of	the	extensions	you	
have	installed.”	Once	the	reporter	provided	the	information,	the	developers	could	start	to	
figure	out	what	was	wrong	and	resolved	the	bug,	see	Figure	13	(part	3).	While	the	developers	

may	have	had	an	initial	hunch,	they	did	need	significant	additional	information	to	actually	be	
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able	to	diagnose	where	they	should	begin	the	exploration	of	this	particular	bug	report.	As	

such,	I	labeled	this	bug	report	non-actionable	while	labeling	the	training	data.	

	

	

	

Figure	13.	Comments	from	bug	id	621660	(cropped).	

	

3.2.	Methodology	
Compared	to	the	current	state	of	the	art,	this	work	differs	in	two	ways:	(1)	it	aims	to	achieve	

a	significantly	higher	level	of	accuracy	so	to	be	able	to	use	the	classifier	as	part	of	a	tool	that	

could	flag	newly	composed	bug	reports	as	actionable	or	non-actionable	and	give	reporters	

the	guidance	to	improve	the	reports,	and	(2)	it	focuses	on	actionable	versus	non-actionable,	

which	requires	a	binary	classification	rather	than	one	that	is	more	fine-grained	as	offered	by	

prior	 work.	 Instead	 of	 a	 finer-grained	 classification,	 a	 binary	 one	 is	 used	 because	 for	
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purposes	of	developing	a	tool	that	assists	reporters	in	submitting	bug	reports	that	impose	

less	work	on	developers	to	understand	and	process	them,	a	binary	distinction	is	enough.	

Figure	 14	 illustrates	 the	 process	 that	 was	 used	 to	 study	 whether	 newly	 submitted	 bug	

reports	can	be	predicted	to	be	actionable	or	non-actionable.	The	process	starts	by	collecting	

a	 sample	 of	 bug	 reports	 across	 all	 Mozilla	 Firefox	 projects,	 out	 of	 which	 a	 subset	 was	

manually	 labeled	as	actionable	or	non-actionable.	Then	typical	pre-processing	steps	were	

applied	 on	 the	 bug	 reports'	 descriptions	 by	 applying	 stemming	 and	 removing	 special	

characters	and	stop	words.	After	that,	the	bag	of	words	model	was	used	and	calculated	term	

frequency-inverse	document	frequency	(tf-idf)	[73]	to	account	for	the	frequency	of	words	

based	on	their	occurrence	in	the	entire	corpus	of	bug	report	descriptions,	which	formed	the	

basis	for	supervised	learning	with	four	different	machine	learning	classifiers:	Naïve	Bayes	

(NB),	Support	Vector	Machine	(SVM),	Random	Forest	(RF),	and	Decision	Tree	(DT).		

	

	

Figure	14.	Process	of	classifying	the	bug	reports.	

Next,	 the	 performance	 of	 these	 four	 classifiers	was	 compared	 and	 the	 one	with	 the	 best	

results	was	selected,	expanding	the	analysis	to	not	just	be	based	on	the	descriptions	of	bug	

reports,	but	additional	factors	as	well,	including,	among	others,	whether	bug	reports	were	

submitted	 by	 developers	 or	 end-users,	 whether	 bug	 reports	 included	 attachments,	 and	

readability	 scores.	Then	 the	ability	of	 the	best	 classifier	was	examined	 to	perform	cross-
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project	prediction	by	applying	it	on	a	previously	existing	dataset	containing	bug	reports	from	

Eclipse	and	Apache.	In	the	following	sections,	I	describe	each	of	these	steps	in	more	details.	

	

3.1.1 Data	Collection	

I	 collected	 1,423	 bug	 reports	 across	 all	 Mozilla	 Firefox	 projects	 (Firefox,	 Firefox	 Build	

System,	Firefox	Android,	Firefox	Echo	Show,	Firefox	FireTV,	Firefox	iOS,	Firefox	Friends,	and	

Firefox	Private	Network)	that	were	labeled	as	“resolved”,	but	not	as	“wont-fix”	or	“duplicate”.	

The	 focus	was	 specifically	 on	 resolved	 bug	 reports	 because,	 for	 purposes	 of	 training	 the	

classifiers,	 these	 have	 the	 most	 available	 information	 to	 decide	 whether	 a	 bug	 report	

appeared	 actionable	 or	 non-actionable	 to	 the	 developer.	 This	 information	 includes	 the	

eventual	resolution	(fixed,	invalid,	wontfix,	moved,	duplicate,	worksforme,	incomplete)	as	

well	as	any	back-and-forth	conversations	with	the	reporter,	which	tends	to	provide	valuable	

clues	as	to	how	a	developer	might	have	interpreted	a	bug	report	on	first	submission.	

For	unresolved	bug	reports,	making	the	determination	as	to	whether	they	are	actionable	or	

non-actionable	is	much	more	uncertain,	as	an	unresolved	bug	report	could	simply	not	have	

been	read	yet;	been	read,	deemed	actionable,	but	not	updated	 in	the	system	yet;	or	read,	

deemed	non-actionable,	and	ignored	-	with	no	information	available	as	to	which	is	which.	

This	uncertainty	led	to	select	resolved	bug	reports	only.		

Bug	 reports	with	 a	 resolution	 of	 “wontfix”	 appear	 to	 include	 some	 that	 are	 simply	 not	 a	

priority,	some	that	appear	not	relevant,	and	some	that	are	not	actionable.	Because	I	could	

not	often	tell	the	reason	with	certainty,	I	excluded	these	bug	reports	from	the	dataset.	For	

obvious	reasons,	I	equally	excluded	“duplicate”	bug	report.	

I	selected	Mozilla	Firefox	since	it	is	a	large-scale	open-source	project	on	multiple	platforms,	

and	has	been	widely	used	in	empirical	software	engineering	research	[123].	For	studying	

portability	of	the	best	model,	a	publicly	available	dataset	from	Cuezilla	was	used	[14],	which	

includes	labeled	bug	reports	for	Apache	(90)	and	Eclipse	(100).	The	dataset	also	includes	

bug	 reports	 for	Mozilla,	which	was	 ignored	 for	obvious	 reasons	 in	examining	portability.	

However,	those	bug	reports	were	used	in	a	separate	analysis	in	Section	3.2.1.1	to	examine	

the	impact	of	hyper-parameter	optimization.	



 

	
	

54	

	

3.1.2 Manual	Labeling	

Two	researchers	manually	labeled	all	1,423	bug	reports	as	actionable	or	non-actionable.	For	

labeling	purposes,	 the	researchers	analyzed:	(1)	 the	description	of	 the	bug	reports,	(2)	 if	

present,	 associated	 comments	 from	 discussions	 with	 other	 developers,	 and	 (3)	 any	

interactions	 that	 took	 place	 between	 the	 developer	 and	 the	 reporter.	 Particularly,	 the	

researchers	assessed	whether	the	developer	or	set	of	interacting	developers	could	come	to	

an	understanding	about	the	bug	report	on	their	own,	without	further	interaction	with	the	

reporter.	If	so,	the	bug	report	was	labeled	as	actionable.	If	interaction	with	the	reporter	did	

take	place,	the	nature	of	the	interaction	was	examined:	does	it	appear	that	the	developer	is	

asking	for	a	minor	clarification	or	minimal	additional	information,	clearly	within	the	context	

of	showing	an	understanding	of	the	bug	being	reported,	or	does	it	appear	that	the	developer	

is	 asking	 for	 significant	 clarification	or	 important	 additional	 information	 that	 shows	 that	

they	do	not	yet	have	a	grasp	of	what	the	bug	report	entails?	In	other	words,	has	the	primary	

diagnosis	already	taken	place,	or	is	more	needed	before	it	can	take	place?	In	the	former	case,	

the	bug	report	was	labeled	as	actionable;	in	the	latter	as	non-actionable.	

The	manual	classification	was	conducted	using	the	“negotiated	agreement”	method	[124]	by	

two	researchers	in	three	phases.	In	the	first	phase,	researcher	one	collected	the	elements	of	

good	and	bad	bug	reports	as	documented	in	prior	research	and	discussed	in	Section	2.2.1.	As	

a	reminder,	past	studies	for	instance	identified	the	importance	of	current	behavior,	steps	to	

reproduce,	and	expected	behavior	[33],	[125].	Next,	researcher	one	manually	analyzed	219	

bug	 reports,	 categorizing	 and	 grouping	 them	 in	 order	 to	 determine	 a	 set	 of	 features	 for	

identifying	and	differentiating	actionable	bug	reports	from	non-actionable	ones.	Once	a	high-

level	understanding	emerged,	the	researcher	created	a	set	of	guidelines,	as	follows:	

• Whether	or	not	 a	bug	 report	 is	 actionable	 should	be	 judged	based	on	developers'	

actions.	Could	they	understand	the	bug	report	on	their	own	and	move	ahead	with	a	

determination	and	action	without	interacting	with	the	reporter?	If	so,	the	bug	report	

should	be	labeled	as	actionable.	
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• The	presence	of	fields	indicating	quality	bug	reports	(e.g.,	current	behavior,	steps	to	

reproduce,	 expected	behavior)	 should	be	 taken	as	 an	 indication	 that	 a	bug	 report	

might	be	actionable,	but	does	not	necessarily	guarantee	that	it	is.	It	is	important	to	

verify	if	the	information	provided	appears	clear	and	complete	and	examine	it	in	the	

context	of	the	next	guideline.		

• The	number	and	nature	of	messages	between	reporters	and	developers	should	be	

closely	 examined:	 does	 it	 appear	 that	 the	 developer	 is	 asking	 a	 straightforward	

question	regarding	a	minor	clarification	or	minimal	additional	information,	or	is	it	a	

fundamental	question	and	is	it	related	to	the	nature	of	the	bug	report?	In	the	former	

case,	the	bug	report	should	be	labeled	actionable,	in	the	latter	case,	non-actionable.	

• Depending	 on	 the	 nature	 of	 a	 bug,	 some	 information	 is	 always	 required	 because	

otherwise	 developers	 will	 ask	 for	 it.	 For	 example,	 if	 a	 bug	 reports	 a	 crash,	 the	

developer	needs	the	crash	ID	or	stack	trace.	If	this	information	is	not	provided	in	the	

initial	bug	report,	it	should	be	labeled	non-actionable.	

In	the	second	phase,	440	bug	reports	were	randomly	selected	and	independently	labeled	by	

each	 of	 the	 two	 researchers	 using	 the	 above	 guidelines.	 The	 resulting	 labels	 were	 in	

agreement	for	403	of	the	bug	reports,	which	led	to	an	inter-rater	reliability	Cohen's	Kappa	

[126]	of	0.82,	which	indicates	“almost	perfect	agreement” [127].	For	the	remaining	37	bug	

reports,	both	researchers	reviewed	them	together,	and	for	each	bug	report	discussed	their	

respective	reasoning	and	the	source	of	disagreement.	This	led	to	one	additional	guideline:		

• If	a	bug	report	was	resolved,	 its	secondary	 label	should	not	be	directly	mapped	to	

actionable	 or	 non-actionable	 (e.g.,	 “fixed”	 to	 actionable,	 “incomplete”	 to	 “non-

actionable”).		

Our	classification,	after	all,	is	about	the	initial	bug	report,	not	about	the	state	it	eventually	

finds	itself	in.	It	might	be,	for	instance,	that	a	bug	was	fixed,	but	involved	extensive	back	and	

forth.	It	might	equally	be	that	a	bug	was	deemed	“incomplete”,	but	only	after	the	developers	

engaged	in	a	detailed	exploration	of	the	source	code	based	on	a	very	clear	bug	report	that	

eventually	was	deemed	to	point	to	a	different	issue	altogether.	In	the	former	case,	the	initial	

bug	report	should	be	labeled	non-actionable;	in	the	latter	actionable.		
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Using	the	adjusted	guidelines,	both	researchers	independently	labeled	the	37	bug	reports	

again,	resulting	in	an	inter-rater	reliability	Cohen's	Kappa	of	0.99	across	all	440	bug	reports,	

which	 indicates	 “perfect	 agreement”	 [128].	 At	 this	 point,	 the	 researchers	 felt	 sufficiently	

confident	 to	move	 to	 the	 third	phase	 to	 label	 the	remaining	983	bug	reports,	half	by	one	

researcher	and	the	other	half	by	the	other.	In	total,	41%	of	bug	reports	(583)	were	classified	

as	non-actionable	and	59%	(840)	as	actionable.	

Afterwards,	 the	 corpus	was	 queried	 to	 count	 the	 number	 of	messages	 (in	GitHub	 terms:	

comments)	attached	to	each	bug	report.	For	95%	of	the	actionable	bug	reports,	the	number	

of	messages	was	three	or	less,	with	the	average	across	all	actionable	bug	reports	seven.20	

Compared	 to	 the	 non-actionable	 bug	 reports,	 for	 which	 only	 30%	 had	 three	 of	 fewer	

comments	and	the	average	was	13,	this	is	an	indication	that	the	manual	classification	might	

indeed	reasonably	separate	actionable	 from	non-actionable	bug	reports,	 since	one	would	

expect	a	longer	thread	of	comments	for	the	latter.	

The	additional	bug	reports	from	Cuezilla	already	were	labeled	by	the	authors	of	the	Cuezilla	

study.	 The	 labels,	 however,	 were	 good,	 neutral,	 and	 bad.	 I	 mapped	 good	 to	 actionable,	

dropped	the	neutral	bug	reports	from	the	dataset,	and	mapped	bad	to	non-actionable.	As	a	

result,	this	corpus	reduced	to	69	bug	reports	for	Mozilla	(34	actionable),	54	for	Apache	(25),	

and	67	for	Eclipse	(34).	

	

3.1.3 Text	Mining	

The	 primary	 classifiers	 that	were	 explored	 are	 based	 on	 the	 description	 field	 of	 the	 bug	

reports.	That	is,	for	each	bug	report,	the	description	was	extracted	and	other	aspects	were	

ignored,	such	as	priority,	name	of	the	reporter,	title,	resolution,	secondary	labels,	and	so	on.	

Since	 the	 descriptions	 are	 primarily	 written	 in	 natural	 language,	 several	 common	 pre-

processing	steps	were	applied	to	clean	the	data	before	applying	the	four	machine	learning	

classifiers	 that	 were	 chosen	 for	 comparison.	 Then	 the	 nltk	 (Natural	 Language	 ToolKit)	

 
20	Within	 the	 remaining	5%,	 several	outliers	 contained	very	 lengthy	exchanges	among	developers	 to,	 among	others,	
identify	the	right	developer	to	address	the	bug	report,	find	a	meeting	time	for	when	to	discuss	it,	or	plan	for	which	future	
release	should	incorporate	a	fix.	These	represent	auxiliary	discussions	that	skew	the	average,	but	do	not	detract	from	the	
bug	report	being	actionable.	
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library21	 was	 used	 to	 normalize	 the	 data	 and	 apply	 Lemmatization.	 Stop	 words,	 special	

characters,	 numbers,	 and	 single	 characters	 were	 removed	 as	 well.	 Finally,	 all	 textual	

descriptions	were	converted	to	lower-case.	

Next,	every	sentence	 in	the	dataset	was	split	 into	a	 list	of	words,	with	each	distinct	word	

corresponding	 to	 a	 feature,	 the	 value	of	which	was	 set	 to	 the	number	of	 times	 the	word	

occurs	in	a	given	bug	report.	The	bag	of	words	model	was	used	from	the	scikit-learn	library	
[129]	and	then	applied	tf-idf	[73]	to	account	for	the	fact	that	words	may	be	common	across	

the	entire	corpus	of	bug	reports.		

	

3.1.4 Machine	Learning	Classifiers	

Using	the	processed	bug	report	descriptions,	four	different	machine	learning	classifiers	were	

trained,	namely	Naïve	Bayes	(NB),	Decision	Tree	(DT),	Support	Vector	Machine	(SVM),	and	

Random	Forest	(RF).	These	four	classifiers	were	selected	because	they	produced	the	best	

results	in	classifying	bug	reports	in	prior	studies	[14],	[32],	[33].	Then,	the	scikit-learn	library	
[129]	was	employed	to	implement	the	classifiers.	Next,	hyper-parameter	optimization	was	

performed	 using	 grid	 search	 [66],	 utilizing	 the	 scikit-learn	 GridSearchCV	 function	 to	
determine	the	optimal	parameter	settings	for	each	of	the	four	classifiers.	To	compare	the	

performance	of	the	various	models	that	resulted,	the	standard	measures	of	precision,	recall,	

and	F-measure	were	used.	

Using	 the	best	 resulting	model,	 I	 then	expanded	 the	 analysis	 to	not	 just	 be	based	on	 the	

descriptions	of	bug	reports,	but	additional	factors.	For	each	factor,	a	score	was	awarded	to	

the	bug	report,	which	was	either	binary	(e.g.,	attachment	present	or	not)	or	continuous	(e.g.,	

readability	score),	and	examined	if	any	of	the	factors,	alone	or	in	combination	with	others,	

could	further	improve	the	results:	

1- Presence	of	attachments.	A	binary	score	was	assigned	to	this	feature	depending	on	

whether	the	 initial	bug	report	 included	an	attachment,	regardless	of	 the	type	(e.g.,	

screenshot,	stack	trace,	patch).	

 
21	https://www.nltk.org/	
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2- Readability.	The	style	tool22	was	used	to	assign	a	readability	score	(called	the	Flesch	

score	[130])	to	each	bug	report.	

3- Submitted	by	an	end-user	or	developer.	To	determine	whether	a	reporter	is	an	end-

user	 or	 developer,	 the	 number	 of	 patches	 that	 the	 reporter	 of	 each	 bug	 report	

previously	 submitted	 to	 the	 chosen	Mozilla	 Firefox	 projects	 was	 extracted.	 If	 the	

number	 was	 zero,	 the	 reporter	 was	 identified	 as	 an	 end-user,	 otherwise	 as	 a	

developer.		

4- Length	of	bug	description.	After	text-preprocessing,	each	bug	report	was	assigned	a	

length	based	on	the	number	of	words	remaining	in	the	resulting	description.	

5- Experience	of	the	reporter.	To	determine	the	experience	level,	the	number	of	prior	

bug	 reports	 submitted	 by	 a	 reporter	 was	 extracted	 and	 set	 this	 value	 as	 their	

experience	level.	

These	 factors	 were	 extracted	 because	 they	 have	 been	 observed	 in	 previous	 research	 to	

impact	 the	 quality	 of	 bug	 reports	 (e.g.,	 [14],	 [21])	 or,	 from	 the	 experience	 of	 manually	

labeling	the	bug	reports,	seemed	like	they	may	influence	actionability	(particularly	whether	

a	bug	report	is	submitted	by	a	developer	as	opposed	to	an	end-user).	

	

3.1.5 Cross-Project	Prediction	

As	explained	in	Chapter	2	Section	2.1.7.4,	cross-project	prediction	concerns	the	portability	

of	a	learned	prediction	model	among	different	projects	[68].	This	study	examines	to	what	

extent	the	best-performing	model	that	resulted	from	the	training	on	Mozilla	Firefox	projects	

preserves	its	performance	on	other	projects,	specifically	to	bug	reports	from	Apache	(54)	

and	Eclipse	(67)	as	taken	from	the	Cuezilla	dataset.	To	train	and	evaluate	the	classifiers	[67],	

k-fold	cross	validation	was	used.	This	validation	approach	randomly	divides	the	manually	

classified	data	set	into	k	groups	of	equal	size.	The	first	group	is	treated	as	a	validation	set,	

and	the	classifier	is	fit	on	the	remaining	nine	groups.	The	mean	of	the	k	executions	is	used	as	

an	estimation	of	the	classifier's	accuracy.		

 
22	https://pypi.org/project/readability	
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3.1.6 Survey	

In	order	to	place	the	results	in	context,	I	conducted	a	short	survey	among	Mozilla	developers.	

The	goal	was	to	obtain	an	understanding	as	to	how	they	feel	the	quality	of	bug	reports	has	

or	has	not	changed	over	the	years	and,	if	it	has	changed,	what	they	believe	may	have	caused	

that	change.	Additionally,	the	survey	asked	whether	developers	felt	that	the	quality	of	bug	

reports	has	increased	over	the	years,	and	what	might	have	caused	such	improvements	(and	

vice	 versa	 if	 they	 felt	 that	 quality	 decreased,	 what	 may	 have	 caused	 the	 decline).	 The	

following	three	questions	were	specifically	asked:	

1- How	many	years	have	you	worked	on	the	Mozilla	project?		

2- How	would	 you	 characterize	 the	quality	 of	 newly	 submitted	bug	 reports	 today	 as	

compared	 to	 the	 quality	 of	 newly	 submitted	 bug	 reports	 in	 the	 early	 days	 of	 you	

working	 on	 the	 Mozilla	 project	 (significantly	 better,	 somewhat	 better,	 remained	

about	the	same,	somewhat	worse,	significantly	worse).	

3- Please	 expand	 on	 your	 answer.	 Why	 do	 you	 believe	 the	 quality	 has	 or	 has	 not	

changed?	Can	you	give	examples	of	what	aspects	of	newly	submitted	bug	reports	have	

or	have	not	changed?	If	the	quality	has	changed,	what	do	you	believe	has	caused	the	

change	in	quality	over	time?	

First,	the	survey	was	piloted	with	two	researchers	and	one	Ph.D.	student	with	experience	in	

the	area	to	get	feedback	on	the	questions	and	their	corresponding	answers,	difficulties	faced	

answering	the	survey,	and	time	to	finish	it.	Several	iterations	of	the	survey	were	conducted	

and	the	questions	were	rephrased	and	others	were	removed	to	make	the	survey	easier	to	

understand	and	answer.	The	responses	from	the	pilot	survey	were	used	solely	to	improve	

the	questions	and	these	responses	were	not	included	in	the	final	results.	The	survey	was	kept	

anonymous	but,	at	the	end,	the	respondents	could	provide	their	email	to	receive	a	summary	

of	the	study.	Then	the	survey	was	sent	to	developers	who	were	listed	as	'assignee'	for	10,000	

random	bug	reports	that	were	submitted	(and	assigned)	in	the	years	2018	and	2019.	Given	

that	assignees	can	repeat,	 I	removed	duplicates	and	thus	sent	the	survey	to	2,839	unique	

developers.	 Excluding	 324	 e-mail	 addresses	 that	 bounced,	 in	 total	 2,515	 invites	 were	
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delivered.	 Participation	 was	 voluntary,	 anonymous,	 and	 participants	 were	 allowed	 to	

discontinue	 at	 any	 time;	 participants	 did	 have	 to	 consent	 to	 participating.	 I	 received	 53	

responses	(2.1%	response	rate),	which	is	below	other	studies	in	the	field	(e.g.,	5.7%	[97],	

7.9%	[98]).	Because	the	survey	was	 intentionally	kept	extremely	short,	 I	had	hoped	for	a	

higher	response	rate.	The	survey	hit,	however,	right	at	the	time	that	Mozilla	laid	off	25%	of	

its	workforce23.	Further,	I	also	received	an	e-mail	from	the	Mozilla	security	team,	as	a	number	

of	developers	felt	their	privacy	had	been	violated,	which	led	to	a	long	internal	discussion	at	

Mozilla.	Both	factors,	I	suspect,	negatively	influenced	the	response	rate.	

	

3.2 Results	and	Discussion	
In	this	section,	I	present	the	results	of	the	study.	I	first	investigate	the	ability	to	predict	the	

quality	of	bug	 reports	 in	 terms	of	whether	or	not	 they	are	 actionable.	Next,	 I	 investigate	

additional	features	and	whether	they	can	further	improve	the	results.	Finally,	I	examine	the	

potential	of	portability	of	our	best	model.	

	

3.2.1 Predicting	Actionable	versus	Non-Actionable	

I	trained	four	machine	learning	classifiers:	Naive	Bayes	(NB),	Decision	Tree	(DT),	Support	

Vector	Machine	(SVM),	and	Random	Forest	(RF).	For	SVM,	a	sigmoid	kernel	with	standard	

values	 was	 used.	 To	 compare	 the	 performance	 of	 the	 various	 models	 that	 resulted,	 the	

standard	measures	of	precision,	recall,	and	F-measure	were	used.	Table	1	summarizes	the	

results	 of	 the	 classifiers	 on	 the	 1,423	bug	 reports	 of	 the	 corpus,	 reporting	 the	 precision,	

recall,	 accuracy,	 and	 F-measure	 of	 each	 classifier	 with	 and	 without	 applying	 hyper-

parameter	optimization.	

Table	1.	Performance	of	the	classifiers.	

MODEL	 PRECISION	 RECALL	 ACCURACY	 F-MEASURE	

 
23	https://www.cnet.com/news/mozilla-cutting-250-jobs-after-coronavirus-pandemic-cuts-revenue	
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SVM	+	tuning	 0.94	 0.89	 0.92	 0.91	

RF	+	tuning	 0.85	 0.93	 0.86	 0.89	

DT	+	tuning	 0.81	 0.92	 0.96	 0.86	

NB	+	tuning	 0.63	 0.92	 0.86	 0.74	

NB	 0.65	 0.76	 0.84	 0.69	

DT	 0.96	 0.46	 0.66	 0.62	

RF	 0.81	 0.38	 0.84	 0.50	

SVM	 0.84	 0.31	 0.62	 0.43	

	

Interestingly,	while	SVM	performs	worst	without	hyper-parameter	optimization,	it	performs	

best	with,	attaining	an	F-measure	of	0.91	(with	g	of	0.01	and	C	of	10).	RF	+	tuning	and	DT	+	

tuning	 follow	closely	with	an	F-measures	of	0.89	 (with	max_depth	of	90)	and	0.86	 (with	

max_leaf_nodes	of	100),	respectively.	

In	all	four	cases,	hyper-parameter	optimization	improves	the	predictive	capability,	which	in	

many	ways	is	not	surprising	given	its	observed	impact	in	past	studies	(e.g.,	[133]).	Especially	

for	 SVM,	 which	 is	 very	 sensitive	 to	 the	 choice	 of	 parameter	 tuning,	 hyper-parameter	

optimization	can	make	a	very	significant	difference	[134].	The	typical	values	were	studied	

for	c	(0.1	<	c	<	100)	and	gamma	(0.0001	<	g	<	10),	as	recommended	by	previous	studies	

[68][69]	 to	 tune	 the	SVM	classifier.	Note	 that	 for	 all	 four	 classifiers,	 tuning	 improves	 the	

accuracy,	F-measure,	and	recall.	Precision	on	the	other	hand	was	always	high,	regardless	of	

applying	hyper-parameter	optimization,	except	in	NB	+	tuning	where	precision	drops	but	

recall	significantly	increases.	For	completeness,	the	precision	and	recall	of	all	four	classifiers	

is	 reported	 with	 hyper-parameter	 optimization	 for	 both	 classes,	 actionable	 and	 non-

actionable	bug	reports,	in	Table	2.	
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Table	2.	Results	per	class	(hyper-parameter	optimization).	

MODEL	 LABELS	 PRECISION	 RECALL	 ACCURACY	 F-MEASURE	

SVM	+	tuning	
actionable	 0.92	 0.88	 0.97	 0.92	

non-actionable	 0.94	 0.90	 0.85	 0.91	

RF	+	tuning	
actionable	 0.86	 0.92	 0.88	 0.88	

non-actionable	 0.85	 0.93	 0.85	 0.88	

DT	+	tuning	
actionable	 0.81	 0.92	 0.96	 0.86	

non-actionable	 0.81	 0.91	 0.88	 0.85	

NB	+	tuning	
actionable	 0.68	 0.88	 0.83	 0.76	

non-actionable	 0.60	 0.95	 0.85	 0.73	

	

Compared	to	the	current	state	of	the	art,	SVM	+	tuning	achieves	the	best	results	to	date,	with	

Cuezilla	 [14]	 and	 Schuegerl	 et	 al.	 [32]	 only	 achieving	 an	 accuracy	 of	 50%	 and	 44%,	

respectively.	Note	that	Cuezilla	and	Schuegerl	et	al.	did	not	report	precision,	recall,	and	F-

measure.	 So,	 the	 performance	 results	 of	 the	 models	 can	 be	 only	 compared	 in	 terms	 of	

accuracy.	

	

3.2.1.1 Impact	of	Hyper-Parameter	Optimization	

To	better	contextualize	the	sizeable	impact	of	hyper-parameter	optimization	on	the	results,	

the	best-performing	classifier	(SVM	+	tuning)	was	chosen	and	trained	on	the	Cuezilla	dataset	

(Apache,	Eclipse,	and	Mozilla	data	-	the	only	time	the	Mozilla	data	from	the	Cuezilla	dataset	

was	used,	since	this	analysis	is	entirely	independent).	The	classifier	was	trained	both	on	the	

original	dataset	for	three	outcomes	(good,	neutral,	bad)	and	on	the	reduced	dataset	with	two	
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outcomes	(good,	bad),	to	control	for	the	fact	that	prediction	with	fewer	outcomes	tends	to	

nearly	 always	perform	better	 than	prediction	with	more	outcomes.	Table	3	presents	 the	

results	 (only	 in	 terms	 of	 accuracy,	 since	 the	 original	 Cuezilla	 paper	 did	 not	 report	 F-

measure).	Note	that,	for	all	three	of	Apache,	Eclipse,	and	Mozilla,	results	improved	compared	

to	the	original	Cuezilla	results,	signifying	that	hyper-parameter	optimization	indeed	made	a	

difference.	At	the	same	time,	the	accuracy	remains	below	the	one	reported	in	Table	1.	The	

impact	of	predicting	just	two	outcomes	presented	an	interesting	result,	in	that	the	results	

improved	for	Apache	and	Eclipse	when	compared	to	predicting	three	outcomes,	but	results	

were	worse	for	Mozilla.	This	may	be	because	of	the	relatively	small	data	sets	involved.	

Table	3.	Accuracy	of	the	best	performing	model	and	Cuezilla's	model.	

MODEL	 APACHE	 ECLIPSE	 MOZILLA	

ORIGINAL	CUEZILLA	RESULTS	 0.50	 0.45	 0.43	

SVM	+	tuning	(good,	neutral,	bad)	 0.62	 0.76	 0.82	

SVM	+	tuning	(good,	bad)	 0.83	 0.85	 0.72	

	

A	significant	difference	between	this	approach	and	that	of	Cuezilla	is	that	my	classifiers	are	

based	on	the	bag	of	words	model,	whereas	Cuezilla	uses	fewer,	higher-level	features	(e.g.,	

certain	 keywords	 appearing	 in	 the	 description	 field,	 attachments,	 readability	 score).	 In	

addition	 to	 using	 a	 significantly	 larger	 dataset,	 and	 hyper-parameter	 optimization,	 the	

difference	 in	 underlying	 approach	 chosen	 could	 be	 contributing	 to	 my	 improved	

performance	as	well.	That	said,	because	of	Cuezilla's	relative	success	in	only	using	high-level	

features,	I	investigate	whether	adding	similar	features	to	our	classifier	may	result	in	even	

better	performance	(Section	3.2.2).	
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3.2.1.2 Feature	Importance	

I	 studied	 feature	 importance	 in	 the	 SVM	 +	 tuning	 model.	 Simple	 coefficient	 statistics	

between	 each	 feature	 and	 the	 target	 variable	 could	 not	 be	 calculated,	 since	 for	 the	 SVM	

classifier,	such	calculations	only	work	with	a	linear	kernel	and	our	best	results	were	with	

sigmoid.	Hence,	 permutation	 feature	 importance	was	used	 for	 classification	 [137],	which	

calculates	 relative	 importance	 scores	 and	 is	 independent	 of	 the	model	 used.	Then,	 8,677	

unique	words	were	 extracted	 (after	 text	mining)	 from	 the	descriptions	of	 our	1,423	bug	

reports,	with	Table	4	presenting	the	20	words	with	the	highest	scores.	From	the	low	scores	

of	 importance,	 I	 believe	 that	 none	 of	 these	 are	 outliers	 that	 unduly	 dominate	 the	

classification	results	on	their	own,	especially	given	the	broad	set	of	words	involved	across	

all	the	bug	reports.		

Table	4.	Feature	importance	(sorted	by	relative	importance).	

FEATURE	(WORD)	 IMPORTANCE	

mozilla	 0.0542	

bug	 0.0136	

switch	 0.0109	

attach	 0.0105	

testcase	 0.0101	

ubuntu	 0.0096	

firefox	 0.0089	

buildid	 0.0080	

night	 0.0063	
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step	 0.0062	

will	 0.0054	

there	 0.0031	

product	 0.0026	

broke	 0.0016	

com	 0.0015	

http	 0.0015	

internet	 0.0011	

runtim	 0.0010	

stop	 0.0010	

searchbox	 0.00099	

	

With	respect	to	words	such	as	‘mozilla’	and	‘bug’	appearing	in	the	top	20,	one	can	actually	be	

positive	about	these	kinds	of	terms	having	as	low	a	feature	importance	as	they	do.	It	would	

not	have	been	surprising	had	the	importance	been	higher	since	they	can	easily	be	expected	

to	be	part	of	many	Mozilla	bug	reports.	

	

3.2.2 Additional	Features	

It	is	possible	to	predict	the	overall	quality	of	bug	reports	as	actionable	or	non-actionable	with	

a	high	level	of	accuracy	and	high	F-measure.		However,	the	goal	was	to	understand	whether	

results	could	be	further	improved,	especially	since	the	results	were	based	on	the	relatively	

straightforward	application	of	machine	 learning	using	a	bag	of	words	model	with	hyper-
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parameter	optimization.	Moreover,	in	prior	research,	adding	auxiliary	features	such	as,	for	

instance,	length	of	bug	report	description	or	presence	of	stack	traces	was	shown	to	have	a	

positive	impact	on	the	predictive	capability	of	the	resulting	models	[14],	[21].	In	the	below,	

five	 additional	 features	 were	 studied,	 both	 individually	 and	 combined:	 presence	 of	

attachments,	readability,	submitted	by	an	end-user	or	developer,	length	of	bug	description,	

and	experience	of	the	reporter.		

Each	factor	was	awarded	a	score	to	the	bug	report,	which	was	either	binary	(e.g.,	attachment	

present	or	not)	or	continuous	(e.g.,	readability	score).	Then	I	examined	if	any	of	the	factors,	

alone	on	or	in	combination	with	others,	could	further	improve	the	results.	

As	the	base	model	for	doing	so,	SVN	+	tuning	was	used,	since	it	had	the	best	results.	Table	5	

presents	 the	 augmented	 results.	 Foreshadowing	 the	 discussion	 below	 in	 the	 following	

sections,	the	base	classifier	outperforms	any	of	the	others.	The	additional	 features	do	not	

seem	to	provide	benefits,	which	is	contrary	to	prior	studies.		

Table	5.	Performance	of	the	SVN	+	tuning	model	augmented	with	additional	features,	top	

six	and	bottom	six.	

MODEL	 PRECISION	 RECALL	 ACCURACY	 F-MEASURE	

SVM	+	tuning	 0.94	 0.89	 0.92	 0.91	

SVM	+	tuning	+	D24	 0.91	 0.90	 0.92	 0.90	

SVM	+	tuning	+	A25	 0.89	 0.87	 0.92	 0.87	

SVM	+	tuning	+	D	+	A	 0.91	 0.83	 0.81	 0.86	

SVM	+	tuning	+	R26	 0.94	 0.77	 0.85	 0.84	

SVM	+	tuning	+	E27	 0.79	 0.80	 0.82	 0.79	

 
24	Developer	or	end-user	
25	Attachment	
26	Readability	
27	Reporter’s	experience	
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...	 ...	 ...	 ...	 ...	

SVM	+	tuning	+	E	+	A	+	L28	 0.69	 0.80	 0.84	 0.74	

SVM	+	tuning	+	E	+	R	+	L	 0.66	 0.83	 0.80	 0.73	

SVM	+	tuning	+	E	+	A	+	D	+	L	 0.65	 0.79	 0.83	 0.72	

SVM	+	tuning	+	R	+	A	+	D	+	L	 0.76	 0.64	 0.83	 0.69	

SVM	+	tuning	+	E	+	R	+	A	+	D	+	L	 0.68	 0.67	 0.77	 0.67	

SVM	+	tuning	+	E	+R	+	A	+	L	 0.67	 0.59	 0.73	 0.62	

	

As	backdrop	for	the	analyses	I	present	next,	I	also	extracted	180,000	bug	reports	randomly	

across	all	Mozilla	projects	from	the	years	2002	to	2019,	10,000	each	year,	and	used	them	to	

determine	potential	trends	as	related	to	the	five	auxiliary	features	that	I	analyze.	By	placing	

the	 performance	 of	 the	 augmented	 classifiers	 in	 the	 context	 of	 these	 features'	 historical	

trends,	I	can	better	hypothesize	about	why	I	might	be	seeing	the	kinds	of	results	I	found.	

	

3.2.2.1 Presence	of	Attachment	

The	 trend	 of	 bug	 reports	with	 attachments	 is	 shown	 in	 Figure	 15.	 Over	 the	 years,	 there	

clearly	is	an	increase	to,	today,	over	half	of	the	bug	reports	including	an	attachment.	Given	

that	 attachments	 are	 generally	 considered	 a	 sign	 of	 a	 good	 bug	 report	 [5][44],	 I	 thus	

extended	and	re-trained	the	SVM	+	tuning	model	to	incorporate	a	binary	feature:	does	a	bug	

report	include	an	attachment	such	as	a	screenshot,	stack	trace,	or	patch?	Contrary	to	prior	

research	[14],	this	did	not	lead	to	an	increase	in	performance.	The	resulting	accuracy	was	

92%	(the	same)	and	the	F-measure	0.87	(a	drop	of	0.04).		

 
28	Length	of	bug	description	
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Figure	15.	Percentage	of	bug	reports	which	have	attachments.	

The	decrease	in	F-measure	is	too	small	to	draw	strong	conclusions.	Nonetheless,	I	observe	

that	the	presence	of	attachments	may	not	be	as	important	a	feature	when	the	base	model	

produces	sufficiently	strong	results	on	its	own.	Its	apparent	non-importance	might	also	be	

because	a	higher	number	of	bug	reports	now	include	attachments.	A	possible	reason	could	

be	that	before,	the	inclusion	of	an	attachment	seemed	to	be	a	practice	amongst	those	who	

truly	cared	about	high-quality	bug	reports	and	thus	were	diligent	in	not	only	writing	clear	

explanations	 but	 also	 including	 as	 much	 other	 evidence.	 Today,	 however,	 including	

attachments	appears	to	be	more	of	a	rote	activity	practiced	by	many	more	reporters,	a	good	

many	 of	whom	may	 still	 be	 producing	 descriptions	 that	 lack	 significantly.	 A	 feature	 that	

covers	whether	a	bug	report	has	an	attachment,	 then,	may	have	 lost	 its	defining	value	as	

compared	to	10	years	ago.	

	

3.2.2.2 Readability	

The	 readability	 of	 a	 bug	 report	 can	 clearly	 have	 an	 impact	 on	 its	 actionability	 or	 non-

actionability.	 Indeed,	 as	 part	 of	 the	 experiments	 surrounding	 Cuezilla,	 readability	 was	

included	as	an	extra	feature	[14].	I	mimicked	this	by	using	the	style	tool29	to	assign	the	Flesch	

 
29	https://pypi.org/project/readability	
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readability	score	[130]	to	each	bug	description	and	augment	the	base	model	of	SVM	+	tuning	

with	this	score.	Both	in	terms	of	accuracy	(a	drop	of	0.07)	and	F-measure	(a	drop	of	0.07),	

the	resulting	model	did	not	perform	as	well.	

Placed	in	the	context	of	how	readability	scores	have	evolved	over	the	years	(see	Figure	16),	

no	clear	reason	emerges.	The	readability	score	has	been	relatively	constant	over	the	years,	

meaning	that	it	should	not	have	altered	the	effect	that	was	seen	in	Cuezilla.	If	anything,	the	

results	 suggest	 that	 readability	 is	 not	 a	 good	 proxy	 for	 how	 informative	 a	 bug	 report's	

description	is.		

	

Figure	16.	Average	readability	score	of	bug	descriptions.	

	

3.2.2.3 End-user	versus	Developer	

One	possible	factor,	not	previously	studied,	is	whether	bug	reports	are	submitted	by	end-

users	or	developers.	Possibly,	since	developers	are	generally	more	experienced	than	end-

users,	they	might	be	more	likely	to	submit	bug	reports	more	frequently.	Moreover,	since	they	

are	also	regularly	the	ones	having	to	process	bug	reports	submitted	by	others,	one	might	

expect	them	to	have	an	understanding	of	what	actionable	bug	reports	look	like	and	make	the	

effort	to	submit	such	bug	reports	themselves.	Especially	in	the	context	of	the	percentage	of	

bug	 reports	 being	 submitted	by	developers	having	 significantly	 increased	over	 the	 years	
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from	12%	to	52%	(see	Figure	17),	I	studied	the	inclusion	of	a	feature	as	to	whether	a	bug	

report	is	submitted	by	an	end-user	or	developer.	

	

Figure	17.	Percentage	of	bug	reporters	who	are	developers.	

The	results,	once	again,	were	not	what	was	believed	might	happen.	The	accuracy	was	92%	

(the	same)	and	the	F-measure	dropped	by	a	mere	0.01.	These	effects	are	negligible,	and	thus	

no	 conclusions	 can	 be	 drawn	 regarding	 the	 impact	 of	 including	 the	 end-user	 versus	

developer	feature	in	the	prediction	model.	

 

3.2.2.4 Length	of	Bug	Description	

Prior	 work	 observed	 that	 a	 good	 bug	 report	 often	 has	 a	 long	 textual	 description	 of	 the	

problem	[138].	Especially	in	light	of	the	average	meaningfully	declining	over	the	years	(see	

Figure	 18),	 which	 does	 show	 an	 interesting	 “recovery”	 over	 the	 past	 two	 years),	 it	 is	

worthwhile	examining	this	factor.	I	once	again	constructed	a	new	model	based	on	the	SVM	

+	 tuning	model	 and	 examined	 the	 effect.	Out	 of	 all	 the	 features	 I	 considered,	 this	model	

performed	the	worst.	Accuracy	dropped	to	82%	(-0.10%)	and	F-measure	to	0.76	(-0.15).	
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Figure	18.	Average	length	of	bug	descriptions.	

The	inclusion	of	length,	thus,	had	a	negative	impact	on	performance,	contrary	to	what	the	

prior	work	found.	I	speculate	that	a	factor	could	be	the	difference	in	study.	Bhattacharya	et	

al.	 [138]	drew	their	conclusion	based	on	 the	assertion	 that	bug	reports	 that	are	resolved	

more	quickly	 are	 good	bug	 reports.	Obtained	by	 examining	 actual	 textual	 content	of	 bug	

reports,	the	results	show	that	length	is	not	a	good	predictor,	thus	indicating	that	the	assertion	

made	by	Bhattacharya	et	al.	 is	 inaccurate	and	that	using	time	to	resolution	as	a	proxy	for	

quality	 of	 a	 bug	 report	 appears	 not	 appropriate.	 This	 corroborates	 what	 the	 authors	 of	

Cuezilla	 found,	 as	 they	 already	 had	 observed	 that	 bug	 resolution	 time	 is	 independent	 of	

quality	and	is	instead	dominated	by	the	severity/urgency	of	the	bug	at	hand.		

I	also	calculated	the	average	length	of	bug	descriptions	submitted	by	developers	versus	end-

users.	As	Figure	19	shows,	for	each	of	the	past	18	years,	developers	submitted	shorter	bug	

descriptions	on	average.	This	is	particularly	interesting	in	the	context	of	the	discussion	in	

Section	3.2.2.3.	Recent	years	saw	bug	reports	by	developers	with	an	average	of	a	mere	50	

words	(after	pre-processing).	This	is	very	short	and	could	well	explain	why	the	distinction	

between	developers	and	end-users	as	a	feature	does	not	help	the	classifier.	With	bug	reports	

that	short,	developers	may	not	be	submitting	bug	reports	that	are	as	clear	and	informative,	

and	thus	as	actionable,	at	a	rate	as	one	would	expect.	
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Figure	19.	Average	length	of	bug	descriptions	submitted	by	developers	and	end-users.	

There	is	not	a	good	explanation	for	why	the	average	length	of	bug	descriptions	increased	so	

dramatically	in	the	past	two	years	for	end-users.	I	took	an	informal	look	at	these	bug	reports	

to	 check	 for	 any	 potential	 outliers	 or	 anomalies	 in	 the	 dataset.	 However,	 no	 particular	

pattern	could	be	found.	

	

3.2.2.5 Experience	

Finally,	I	studied	the	impact	of	the	experience	of	reporters.	One	may	expect	that	having	more	

experience	would	lead	to	improvements	in	the	bug	descriptions	being	submitted	over	time,	

as	past	interactions	may	have	taught	the	reporters	the	kinds	of	information	that	developers	

typically	need.	Experience	was	approximated	with	a	 feature	 in	 the	model	 that	counts	 the	

number	of	bug	reports	a	reporter	previously	submitted	(to	the	same	Mozilla	Firefox	projects	

of	the	corpus,	so	to	not	only	limit	the	search	for	experience	but	more	importantly	represent	

experience	 in	 interaction	with	 the	developers	of	 these	systems	who	have	 their	particular	

expectations	 that	 may	 differ	 from	 those	 working	 on	 other	 systems).	 The	 revised	model	

performed	only	marginally	better	than	our	worst	model	thus	far	(length	of	bug	descriptions),	

with	an	accuracy	of	82%	and	an	F-measure	of	0.79.	
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In	the	context	of	Figure	20,	this	is	perhaps	not	a	surprising	result.	The	average	experience	is	

very	low	and	over	the	years	has	become	even	lower,	which	in	and	of	itself	is	surprising,	since	

the	percentage	of	bug	reports	being	submitted	by	developers	 is	 increasing	and	one	could	

have	expected	them	to	have	a	higher	 level	of	experience,	especially	over	 time.	This	 likely	

implies	 that	 a	 great	 many	 reporters	 are	 one-time	 submitters,	 with	 this	 fact	 probably	

drowning	out	any	positive	effect	that	experience	may	otherwise	have	on	the	results.	

	

Figure	20.	Average	experience	of	bug	reporters.	

 
I	also	studied	the	impact	of	experience	on	the	average	number	of	back-and-forth	exchanges	

between	developers	and	reporters	in	both	actionable	and	non-actionable	bug	reports.	More	

specifically,	I	examined	how	much	the	experience	of	the	bug	reporter	(whether	the	reporter	

is	a	developer	or	an	end-user)	affects	the	average	number	of	back-and-forth	exchanges	in	

actionable	and	non-actionable	bug	reports.	The	results	are	presented	in	Table	6.	To	calculate	

the	average	number	of	back-and-forth	exchanges,	I	used	the	same	180,000	bug	reports	that	

I	extracted	across	all	of	Mozilla,	from	the	years	2002	to	2019,	10,000	each	year,	and	counted	

the	number	of	times	that	developers	raised	the	flag	“Flags:needinfo?(reporter’s	email)”,	to	

either	clarify	a	small	issue	or	obtain	some	auxiliary	information,	and	the	number	of	times	

that	the	reporter	resolved	the	flag	and	responded.		

As	Table	6	shows,	interesting	results	emerged.	First,	actionable	bug	reports,	regardless	of	

being	 submitted	 by	 a	 developer	 or	 end-user	 and	 regardless	 of	 the	 submitter	 being	
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experienced	 or	 one-time,	 had	 the	 lowest	 average	 number	 of	 back-and-forth	 exchanges	

throughout	the	years.	This	is	considered	as	another	indication	that	the	manual	classification	

used	in	this	study	might	reasonably	separate	actionable	from	non-actionable	bug	reports,	as	

one	would	expect	a	lower	number	of	back-and-forth	exchanges	for	the	former,	and	a	higher	

number	for	the	latter.	

Table	6.	Average	number	of	back-and-forth	exchanges	over	18	years.	

	

	 BUG	REPORTS	

	

actionable	 non-actionable	

submitted	by		

developers	

submitted	by	

end-users	
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end-users	
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IN
	Y
EA
R 	

2002	 0.0	 0.0	 0.0067	 0.0015	 0.0	 0.0056	 0.0096	 0.0058	

2003	 0.0307	 0.0008	 0.0045	 0.0028	 0.0013	 0.0008	 0.0091	 0.0016	

2004	 0.0	 0.0006	 0.0009	 0.0044	 0.0042	 0.0048	 0.0072	 0.0064	

2005	 0.0	 0.0	 0.0008	 0.0009	 0.0011	 0.0058	 0.0067	 0.0088	

2006	 0.0	 0.0	 0.0053	 0.0010	 0.0086	 0.0005	 0.0084	 0.0095	

2007	 0.0	 0.0005	 0.0011	 0.0010	 0.0043	 0.0033	 0.0041	 0.0097	

2008	 0.0	 0.0025	 0.0074	 0.0080	 0.0048	 0.0009	 0.0072	 0.0060	

2009	 0.0	 0.0205	 0.0355	 0.0148	 0.0080	 0.0013	 0.0232	 0.0075	
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2010	 0.0	 0.0230	 0.0209	 0.0491	 0.0084	 0.01	 0.0323	 0.0359	

2011	 0.0	 0.0490	 0.0947	 0.0889	 0.0380	 0.0611	 0.0916	 0.0770	

2012	 0.0	 0.0473	 0.1781	 0.4934	 0.08	 0.05	 0.2932	 0.4161	

2013	 0.0	 0.1817	 0.5503	 0.9861	 0.3723	 0.6386	 0.7892	 0.9577	

2014	 0.0	 0.2489	 0.6487	 1.0287	 0.3590	 0.5	 0.7473	 1.0902	

2015	 0.75	 0.4299	 0.7230	 1.0039	 0.3190	 0.95	 0.9732	 1.2528	

2016	 0.1666	 0.4221	 0.4379	 0.9161	 0.4237	 0.75	 0.8365	 1.0896	

2017	 0.0	 0.4139	 0.3574	 0.7114	 0.2979	 0.5	 0.49315	 0.9627	

2018	 0.0	 0.3859	 0.3440	 1.0197	 0.3225	 0.55	 1.0909	 0.9852	

2019	 0.4469	 0.3730	 0.4356	 0.8244	 0.4345	 0.8181	 1.0172	 1.3333	

Second,	 experienced	 developer	 who	 submitted	 actionable	 bug	 reports	 had	 the	 lowest	

average	number	of	back-and-forth	exchanges,	when	compared	with	the	rest	of	the	results.	In	

most	of	the	years	(14	out	of	18),	the	average	was	0	and	could	go	as	high	as	0.7	in	2015.	The	

next	group	with	the	lowest	average	number	of	back-and-forth	was	one-time	submitters	who	

were	developers,	with	the	lowest	of	0	and	highest	of	0.42	in	2015.	

Third,	the	developers	who	submitted	non-actionable	bug	reports	had	a	smaller	number	of	

back-and-forth	exchanges	than	end-users	who	submitted	non-actionable	bug	reports.	That	

is,	regardless	of	their	experience	level,	developers	were	asked	a	smaller	number	of	questions	

about	their	non-actionable	bug	reports	than	end-users.	It	might	be	that	when	bug	submitters	

were	asked	to	provide	additional	information,	developers	could	provide	enough	and	better	

information	than	end-users	and	ultimately	could	avoid	further	back-and-forth	exchanges.		
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3.2.2.6 Combinations	

Apart	 from	studying	 the	addition	of	 individual	 features,	 I	 exhaustively	examined	all	 their	

combinations.	 These	 results	 are	 also	 presented	 in	 Table	 5.	 None	 of	 the	 combinations	

improved	 over	 our	 base	 model,	 with	 the	 combination	 of	 attachment	 and	 whether	 the	

reporter	is	an	end-user	or	developer	being	the	closest	to	the	base	model	after	a	drop	of	0.11	

in	 accuracy	 (81%	 versus	 92%)	 and	 0.05	 in	 F-measure	 (0.86	 versus	 0.91).	 Most	 other	

combinations	fared	poorly,	with	combinations	of	four	features	and	the	combination	of	all	five	

features	near	the	bottom	of	performance	(including	all	 five	features	 led	to	an	accuracy	of	

77%	 and	 an	 F-measure	 of	 0.67).	 From	 this,	 one	 can	 only	 conclude	 that	 combinations	 of	

features	end	up	detracting	from	the	model	performance.	This	is	ultimately	not	too	surprising,	

given	that	each	of	the	individual	features	did	not	improve	the	base	model	either.	

 

3.2.3 Cross-Project	Prediction	

Both	because	performing	well	on	one	dataset	does	not	necessarily	mean	performing	well	on	

another,	and	because	the	performance	of	DT	+	tuning	and	RF	+	tuning	was	quite	close	to	

that	of	SVM	+	tuning,	I	studied	portability	of	all	four	classifiers	(with	tuning)	as	trained	on	

Mozilla	data	and	applied	to	the	dataset	from	the	Cuezilla	study.		

As	described	in	Section	3.1.2,	I	removed	the	bug	reports	that	were	labeled	neutral	in	Cuezilla,	

so	to	create	a	correspondence	between	good	(actionable)	and	bad	(non-actionable).	I	also	

did	 not	 include	 the	 Mozilla	 dataset	 in	 the	 cross-project	 analysis,	 for	 obvious	 reasons	

(potential	of	overlap	and	conceptually	being	too	close).	

Table	7	shows	 the	results,	as	applied	 to	 the	Apache	bug	reports	and	Eclipse	bug	reports.	

Clearly,	the	performance	degrades,	though	the	results	seem	cautiously	optimistic	for	three	

reasons.	 First	 SVM	+	 tuning	 remained	 the	 top	 performing	model,	 providing	 consistency.	

Second,	I	inspected	the	incorrect	predictions	(i.e.,	false	positives	and	false	negatives	in	the	

confusion	matrix)	and	manually	went	through	the	bug	reports	that	SVM	+	tuning	wrongfully	

classified.	 No	 pattern	 of	 misclassification	 was	 found,	 meaning	 the	 model	 did	 not	 make	

predictions	based	on	noise	and	is	not	overfitted.	Third,	precision	is	quite	high.	While	recall	
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still	 is	 significantly	 lower	 than	 it	 should	be	 for	portability	 to	be	practical,	 I	 believe	 these	

results	provide	a	good	starting	point	for	further	exploration.	

Table	7.	Performance	results	of	cross-project	training	(trained	on	Mozilla).	

MODEL	

TESTING	

ON	 PRECISION	 RECALL	 ACCURACY	

F-

MEASURE	

SVM	+	tuning	

Apache	

0.95	 0.51	 0.75	 0.66	

DT	+	tuning	 0.76	 0.46	 0.65	 0.57	

RF	+	tuning	 0.53	 0.58	 0.63	 0.55	

NB	+	tuning	 0.81	 0.38	 0.78	 0.51	

SVM	+	tuning	

Eclipse	

0.80	 0.67	 0.77	 0.73	

RF	+	tuning	 0.60	 0.75	 0.73	 0.66	

DT	+	tuning	 0.60	 0.73	 0.67	 0.63	

NB	+	tuning	 0.81	 0.38	 0.62	 0.51	

	

To	be	exhaustive	in	the	comparison,	I	performed	two	additional	analyses	using	the	Cuezilla	

dataset.	First,	I	performed	an	analysis	where,	instead	of	ignoring	all	neutral	bug	reports,	all	

neutral	bug	reports	in	the	Cuezilla	dataset	were	labeled	as	non-actionable	(to	mimic	an	ultra-

conservative	 approach).	 Second,	 I	 performed	 an	 analysis	 where	 the	 Cuezilla	 tags	 were	

ignored	 and	 instead	 its	 bug	 reports	 were	 classified	 using	 our	 labeling	 guidelines	 into	

actionable	and	non-actionable	bug	reports	(to	assess	portability	more	directly	based	on	the	

understanding	of	actionable	and	non-actionable,	rather	than	a	heuristic	mapping	among	two	

labeling	systems).	Table	8	shows	the	results	of	testing	the	best-performing	SVM	+	tuning	

classifier	on	both	new	sets	of	labels.	Note	that	in	both	cases	and	for	both	Apache	and	Eclipse,	

results	in	terms	of	F-measure	improved,	increasing	the	confidence	that	the	results	of	Table	
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7	are	robust,	due	to	the	model,	and	not	accidental	to	the	choice	of	mapping	of	Cuezilla's	labels	

to	the	notions	of	actionable	and	non-actionable.	

Table	8.	Portability	with	alternative	label	mappings.	

MODEL	
TESTING	

ON	

MAPPING	

APPROACH	
PRECISION	 RECALL	 ACCURACY	 F-MEASURE	

SVM		

+	

tuning	

Apache	

Cuezilla	labels,	

neutral	ignored	
0.95	 0.51	 0.75	 0.66	

Neutral	labeled	as	

non-actionable	
0.83	 0.72	 0.71	 0.73	

With	new	labels	 0.80	 0.72	 0.70	 0.73	

Eclipse	

Cuezilla	labels,	

neutral	ignored	
0.80	 0.67	 0.77	 0.73	

Neutral	labeled	as	

non-actionable	
0.77	 0.70	 0.75	 0.75	

With	new	labels	 0.81	 0.72	 0.75	 0.76	

	

3.2.4 Survey	Results	

The	 results	 showed	 that	 it	 is	 possible	 to	 predict	 the	 overall	 quality	 of	 bug	 reports	 as	

actionable	 or	 non-actionable	with	 a	 significantly	 higher	 level	 of	 accuracy	 and	 F-measure	

compared	to	the	best	results	to	date	[14],	[32].	However,	other	than	using	the	bag	of	words	

model	and	hyper-parameter	optimization,	the	primary	cause	of	the	increase	in	performance	

results	could	not	be	found.		

To	see	 if	 there	 is	a	potential	 trend	that	developers	have	observed	collectively,	 the	results	

from	the	second	question	of	the	survey	was	analyzed	-	whether	quality	of	newly	submitted	

bug	reports	has	increased,	stayed	about	the	same,	or	decreased.	As	Table	9	shows,	56%	of	

those	surveyed	felt	that	the	quality	of	bug	reports	has	remained	about	the	same,	with	26%	

feeling	that	the	quality	of	bug	reports	has	become	somewhat	better.		
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Table	9.	Results	of	the	survey.	

Experience	

Quality	has	

become	

significantly	

worse	

Quality	has	

become	

somewhat	

worse	

Quality	has	

remained	

about	the	

same	

Quality	has	

become	

somewhat	

better	

Quality	has	

become	

significantly	

better	

Less	than	2	

years	
2%	 2%	 8%	 2%	 0	

Between	2	

and	4	years	
0%	 2%	 12%	 6%	 0	

Between	4	

and	6	years	
0%	 2%	 14%	 6%	 0	

More	than	6	

years	
2%	 6%	 22%	 12%	 2%	

Total	 4%	 12%	 56%	 26%	 2%	

	

To	determine	whether	 these	results	align	with	a	possible	real	 trend	 in	 the	quality	of	bug	

reports	 in	 terms	 of	 whether	 they	 are	 actionable	 or	 non-actionable	 over	 the	 years,	 the	

percentage	of	actionable	bug	reports	from	2002	to	2019	was	measured.	Specifically,	the	SVM	

+	tuning	model	was	run	on	the	same	180,000	bug	reports	that	were	used	previously,	10,000	

each	year.	As	Figure	21	shows,	the	number	of	actionable	bug	reports	increased	noticeably	as	

the	years	pass,	 from	about	50%	to	about	80%,	though	the	 later	years	appear	flatter.	This	

could	explain	why	the	percentage	of	developers	saying	that	the	quality	of	bug	reports	has	

somewhat	increased	is	greater	the	longer	their	tenure	with	Mozilla	(see	Table	9).	Most	of	

those	who	surveyed,	however,	felt	that	the	quality	of	bug	reports	has	remained	about	the	

same.	
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Figure	21.	Percentage	of	Actionable	Bug	Reports	over	18	Years.	

Several	 of	 the	 answers	 to	 the	 open-ended	 question	 corroborate	 this	 observation,	 for	

instance:	“In	recent	years,	looking	across	the	many	projects	I	am	involved	in,	I	am	seeing	a	
higher	 proportion	 of	 bugs	 being	 reported	 including	 at	 least	 the	 basic	 background	
information	(software	version,	OS,	detail	of	events	 leading	to	 issue	being	reported)	and	a	
higher	 proportion	 being	 reported	 with	 enough	 information	 to	 allow	 reproduction.”	 Not	
everybody	agrees,	however.	Another	respondent	believed	that,	because	more	end-users	are	

submitting	bug	reports,	the	number	of	non-actionable	bug	reports	is	actually	increasing:	“I	
think	the	quality	of	bug	reports	has	changed	because	more	non-technical	users	and	members	
of	the	general	public	are	submitting	more	bug	reports.	They	often	ignore	the	instructions	
and	do	not	fill	out	any	of	the	sections	except	saying	what	happened	and	telling	the	developers	
to	fix	it.”	The	results,	however,	contradict	this	perception.	First,	as	Figure	21	shows,	over	the	
years	 the	 number	 of	 actionable	 bug	 reports	 was	 actually	 increasing.	 Second,	 the	 results	

suggested	that	the	percentage	of	end-users	who	submit	bug	reports	was	actually	decreasing	

(see	Figure	17).		

Whether	end-users	or	developers	submit	bug	reports	matters	to	those	who	process	them.	

One	respondent	stated:	“The	origin	makes	a	big	difference.	Mozillians	are	largely	consistent	
in	reporting	bugs	with	clear	repro	steps	(or	a	comment	about	why	they	aren't	available).	
They	sometimes	attach	relevant	logs	or	config	data	(maybe	50%	of	the	time).	Community	
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users,	instead,	usually	mention	what	they	were	doing	when	the	bug	appeared	(e.g.,	the	web	
address,	their	actions	with	the	input	device,	but	not	repro	steps).	They	may	mention	what	
OS	they	are	running	but	that	is	usually	the	extent	of	their	initially	supplied	config	data.”	While	
it	 does	 not	matter	 from	 a	 prediction	 performance	 point	 of	 view	 according	 to	 the	 results	

(Section	3.2.2.3),	clearly	to	those	processing	bug	reports,	they	prefer	developers	to	report	

bugs	because	the	resulting	reports	in	their	eyes	seem	more	complete.	

One	respondent	provided	a	humane	counterpoint:	“Generally	 I	 look	at	performance	bugs.	
Often	the	quality	of	a	bug	reported	by	someone	new	to	reporting	perf	bugs	is	just	expectedly	
low,	because	they	are	not	familiar	with	any	of	the	tools,	we	use	to	get	more	information	about	
performance	 problems.	 This	 is	 honestly	 fine.	 If	 we	 were	 asking	 them	 to	 commit	 to,	 for	
example,	 profiling	 the	 application	while	 it	 is	 being	 slow,	 prior	 to	 even	 submitting	 a	 bug	
report,	we	might	discourage	them	from	submitting.	However,	 if	 they	submit	the	bug	with	
vague	information	and	then	a	friendly	real	human	asks	them	for	a	little	information,	it	feels	
like	they	are	having	an	 impact	and	the	exchange	 is	more	personal,	and	they	will	be	more	
likely	to	provide	the	necessary	information”.	Note	that	they	mention	“a	little	information”,	
implying	that	the	initial	report	should	at	least	be	actionable.	

Interestingly,	the	increase	in	actionable	bug	reports	corresponds	nicely	with	the	increase	in	

percentage	of	bug	reporters	who	are	developers	(see	Figure	17).	One	observation	especially	

stood	 out	 in	 this	 regard:	 “Many	 reports	 of	 bugs	 in	 the	 browser	 (as	 opposed	 to	 feature	
requests,	 task-planning	 bugs,	 etc)	 are	 generated	 by	 Continuous	 Integration	 (e.g.,	
intermittent	 tests,	 tests	 run	 on	 rare	 architectures).	 Nearly	 all	 others	 are	 reported	 by	
Mozillians,	and	a	handful	are	from	the	community”.	This	comment	not	only	affirms	that	many	
bug	 reports	 are	 submitted	 by	 developers	 (“Mozillians”),	 but	 also	 points	 out	 that	 some	

percentage	of	the	bug	reports	being	submitted	by	‘developers’	is	actually	being	submitted	by	

bots.	What	percentage	that	is,	and	what	impact	this	has	on	the	predictability	of	actionable	

versus	non-actionable	bug	reports	is	a	subject	of	future	study.	

Several	respondents	mentioned	that	Mozilla	has	already	undertaken	steps	in	an	attempt	to	

improve	the	quality	of	bug	reports.	In	particular,	the	Bugzilla	Helper30	offers	a	template	that	

 
30	https://www-archive.mozilla.org/events/dev-day2001/community-testing/bugzilla-helper	
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specifically	asks	users	about	steps	to	reproduce,	actual	results,	and	expected	results.	While	

bug	reporters	are	not	 required	 to	 fill	out	 these	 fields,	 their	mere	presence	 is	 intended	 to	

guide	them	to	write	a	more	effective	bug	description.	This	form	was	not	always	met	with	a	

uniformly	positive	reaction.	One	developer	said:	“A	major	problem	in	bug	reports	from	non-
expert	 contributors	 is	 always	 getting	 details	 about	what	 exactly	 they	 did	 and	what	 they	
expected	to	happen	that	didn't	happen.	This	has	become	less	of	a	problem	because	we	added	
a	 form	 for	 new	 Bugzilla	 accounts	 to	 fill	 out	 that	 specifically	 addresses	 those	 questions.	
Getting	 sufficient	 detail	 to	 diagnose	 the	 problem	 is	 still	 an	 issue,	 though”.	 Another	
complained:	“A	simple	report	form	leads	to	simple	reports,	lacking	necessary	detail”.	

To	see	 if	bug	reporters	are	actually	 filling	out	 the	 fields	 suggested	by	Bugzilla	Helper,	an	

analysis	was	performed	to	calculate	the	percentage	of	bug	reports	that	had	a	combination	of	

“steps	to	reproduce:”,	“Actual	results:”,	and	“Expected	results:”	strings	in	their	descriptions.	

The	search	strings	were	case	sensitive	and	specifically	included	colon	symbols	to	replicate	

the	way	Bugzilla	Helper	lists	the	fields.	Figure	22	presents	the	result.	Clearly,	the	template	

has	had	impact,	though	the	fact	that,	today,	only	about	25%	of	newly	submitted	bug	reports	

use	it	is	disappointing.	On	the	other	hand,	one	respondent	said:	“We	*might*	have	started	
pasting	in	a	markdown	template	for	new	bugs	about	2	or	3	years	ago	--	I'm	not	sure	--	but	
many	new	bugs	clear	out	the	template.	That's	what	I	do	when	I	submit	a	bug,	is	to	clear	out	
the	 template”.	 They	 continue	on:	 “Once	 a	user	has	 internalized	what	makes	 a	useful	 bug	
report,	and	the	template	reinforces	that,	that	user	seems	to	create	useful	reports	whether	or	
not	the	template	is	retained”.	This	may	in	fact	be	true.	While	the	template	use	is	low,	Figure	
21	indicates	that	the	number	of	actionable	bugs	has	gone	up,	nonetheless.	This	may	be	from	

the	learning	effect	from	the	template.	
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Figure	22.	Percentage	of	Bug	Reports	that	Contained	“Steps	to	Reproduce:”,	“Actual	

Results:”,	and	“Expected	Results:”.	

A	final	interesting	observation	comes	from	a	developer	on	the	accessibility	team:	“I	work	in	
a	rather	exotic	department,	in	accessibility.	Our	bug	reports	either	come	from	us,	the	team	
members,	or	web	accessibility	experts.	Those	have	usually	done	some	research,	provide	code	
samples	 to	 reproduce	 the	 bug,	 etc.	 And	 that	 hasn't	 changed	 since	 the	 early	 days.”	 The	
respondent	continues	with:	“We	don't	often	get	reports	from	end	users.	They	usually	contact	
us	through	other	means	(social	media,	e-mail,	etc.),	and	we	convert	them	into	actionable	bug	
reports”.	Note	that	the	word	actionable	was	used.	This	might	explain	the	negligible	effects	of	
developers	 submitting	 bug	 reports	 on	 the	 performance	 results	 (Section	 3.2.2.3).	 Also,	 it	

would	be	 interesting	to	study	these	kinds	of	 translations	 from	social	media	and	e-mail	 in	

more	detail;	what,	 if	any,	 interactions	with	 the	users	 take	place	and	what	 is	 the	resulting	

quality	of	the	bug	reports?		

	

3.3 Discussion	
This	 chapter	 focuses	 on	 overall	 bug	 report	 quality	 prediction.	 Among	 previous	 works,	

Cuezilla	[35]	and	the	approach	of	Schuegerl	et	al.	[32]	provide	the	best	results	in	predicting	

bug	report	quality,	with	the	former	achieving	an	accuracy	of	50%	in	classifying	bug	reports	

as	good,	neutral,	or	bad	and	the	latter	achieving	an	accuracy	of	44%	in	classifying	bug	reports	
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on	a	scale	of	1	(very	high	quality)	to	5	(very	low	quality).	This	work	improves	the	results	by	

achieving	a	significantly	higher	level	of	accuracy	so	to	be	able	to	use	the	classifier	as	part	of	

a	future	tool	that	assists	reporters	in	improving	the	quality	of	bug	reports	that	are	deemed	

non-actionable.	

Further	 exploration	 of	 the	 results	 showed	 that,	 similar	 to	 Menzies	 et	 al.	 [89],	 hyper-

parameter	optimization	had	an	important	role	in	the	improvements	of	the	results.	This	was	

further	confirmed	when	the	best	model	(SVM	+	tuning	with	an	accuracy	of	92%)	was	run	on	

Cuezilla's	 training	data	 (i.e.,	 only	Mozilla	bug	 reports)	 and	achieved	an	accuracy	of	75%,	

which	 was	 25%	 higher	 than	 before,	 with	 an	 F-measure	 of	 0.64.	 This	 reiterates	 the	

importance	for	optimization	and	how	the	community	should	pay	more	attention.		

The	 improvement	 in	 the	results	are	also	explained	by	 the	 fact	 that	prediction	with	 fewer	

outcomes	tends	to	nearly	always	perform	better	than	prediction	with	more	outcomes.	This	

work	focuses	on	two	outcomes,	actionable	versus	non-actionable,	which	requires	a	binary	

classification	rather	than	one	that	is	more	fine-grained	as	used	in	prior	work.	The	envisioned	

tool	merely	needs	a	simpler,	binary	classification,	rather	than	one	that	offers	a	more	fine-

grained	scale	offered	by	prior	work.	

This	work	further	employed	many	experiments	in	an	attempt	to	improve	the	results	of	the	

best	model	(SVM	+tuning).	The	analyses	were	both	based	on	previous	research	to	account	

for	the	factors	observed	to	be	essential	to	the	quality	of	bug	reports	(see	Section	2.2.1)	and	

intuitively	based	on	the	experience	 in	manually	 labeling	bug	reports	(see	Chapter	5).	For	

instance,	experience	of	bug	reporters	was	explored	as	a	potentially	important	factor	when	it	

comes	to	bug	report	being	actionable	or	non-actionable,	since	inexperienced	reporters	often	

submitting	 ambiguous	 or	 difficult	 to	 understand	 bug	 reports	 [5],	 [6],	 [13].	 However,	 the	

results	 indicated	 that	 adding	 input	 features	 to	 the	 bag	 of	 words	 actually	 decreased	 the	

performance	of	 the	best	model	 (SVM	+	 tuning).	These	decrements	 in	 results	were	 small	

enough	to	prevent	drawing	conclusions	out	of	these	experiments,	though	they	indicate	that	

some	of	these	input	features	might	not	be	as	important	as	they	are	mentioned	in	previous	

research.	For	example,	the	model	which	included	the	length	of	bug	reports	as	another	feature	

had	the	second	lowest	F-measure	of	0.84,	even	though	length	of	description	was	considered	

very	important	to	the	quality	of	bug	reports	[138].	
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These	input	features	were	additionally	analyzed	to	see	how	they	have	evolved	over	time.	By	

placing	 the	 performance	 of	 the	 augmented	 classifiers	 in	 the	 context	 of	 these	 features'	

historical	trends,	the	reason	why	such	results	were	achieved	could	be	better	understood.	The	

results	 showed	 that	 from	 2002	 to	 2019,	 more	 reporters	 are	 including	 attachments,	 the	

readability	of	bug	reports	has	not	really	changed,	more	developers	are	reporting	bugs	rather	

than	end-users,	the	average	length	of	bug	descriptions	has	not	changed,	and	the	experience	

of	bug	reporters	has	slightly	reduced.	The	increase	in	number	of	developers	reporting	bugs	

rather	than	end-users	can	be	because	Mozilla	is	a	mature	product	and	more	bug	reports	are	

reported	 internally.	 Based	 on	 one	 of	 the	 responses	 from	 the	 survey,	 there	 are	 some	

departments	 in	Mozilla	 that	do	not	often	get	 reports	 from	end-users:	 "I	work	 in	a	 rather	
exotic	department,	in	accessibility.	Our	bug	reports	either	come	from	us,	the	team	members,	
or	web	accessibility	experts."	

An	interesting	final	observation	was	the	increase	in	the	percentage	of	actionable	bug	reports	

over	the	years.	This	might	be	because	of	the	learning	effect	from	the	use	of	Bugzilla	helper,	

as	shown	in	Section	3.2.4.	Additional	investigations	are	needed	to	understand	the	effect	of	

the	template	on	the	quality	of	bug	reports.	

This	study	differs	from	the	study	by	Zanetti	et	al.	[84],	which	predicts	whether	bug	reports	

are	 valid	 or	 invalid.	 In	 their	 approach,	 they	 automatically	mapped	 bug	 reports	with	 the	

resolution	 status	 of	 fixed	 and	wontfix	 to	 valid,	 and	 duplicate,	 incomplete,	 and	 invalid	 to	

invalid.	Their	approach,	however,	introduces	limitations.	First,	it	is	unclear	as	to	whether	the	

bug	 itself	 is	 invalid	or	 the	bug	report	 is	 invalid.	 It	might	be	 that	 the	bug	report	was	high	

quality	and	helped	developers	discover	that	the	bug	itself	is	invalid.	For	example,	in	some	

projects	such	as	Mozilla,	a	resolution	status	of	invalid	can	mean	that	the	problem	that	the	

report	is	explaining	is	actually	a	feature	request	rather	than	a	real	bug.	Second,	bug	reports	

with	the	resolution	status	of	fixed	might	not	necessarily	be	high	quality.	For	example,	a	bug	

report	 might	 have	 a	 low	 quality	 when	 submitted,	 but	 after	 much	 back-and-forth	 with	

developers	and	providing	additional	information	it	can	end	up	being	resolved	as	fixed.		

Taken	together,	the	results	are	sufficiently	accurate	that	they	can	serve	as	a	reliable	basis	for	

developing	 a	 tool	 that	 assists	 reporters	 in	 improving	 bug	 reports	 that	 are	 deemed	 non-

actionable.	 Future	 investigations	 include	 exploring	 such	 tools	 and	 studying	 additional	
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directions	related	to	quality	prediction.	First	and	foremost	is	the	question	of	portability:	is	it	

possible	to	develop	models	that	more	reliably	transfer	to	bug	reports	for	unseen	software	

systems?	This	 is	an	 important	desirable	property	and,	despite	our	 results	being	stronger	

than	any	to	date	in	terms	of	portability,	the	results	have	room	for	improvement.	Second	is	

the	 question	 of	 whether	 the	 results	 can	 be	 further	 improved.	 A	 particularly	 interesting	

direction	in	this	regard	is	the	recent	trend	to	include	videos	in	bug	reports:	whether	video-

based	bug	reports	are	more	actionable	and,	if	so,	whether	this	can	be	leveraged	in	the	model.	

Finally,	 it	 is	necessary	to	dive	deeper	 into	the	properties	of	bug	reports	that	the	machine	

learning	classifiers	pick	up	on.	 Identifying	 these	 features	could	 lead	 to	new	insights	as	 to	

what	makes	bug	reports	actionable.	

	

3.4 Threats	to	Validity	
While	this	study	was	structured	to	avoid	introducing	bias	and	worked	to	eliminate	the	effects	

of	 random	 noise,	 it	 remains	 possible	 that	 the	 mitigation	 strategies	 may	 not	 have	 been	

effective.	This	section	reviews	the	threats	to	validity	to	the	study.	

A	threat	to	construct	validity	exists	with	respect	to	the	concept	of	actionable	versus	non-

actionable	bug	reports.	The	assessment	of	what	is	actionable	in	this	study	may	differ	from	

what	a	professional	developer	might	determine	it	to	be.	In	response,	note	that,	first,	the	two	

researchers	 involved	 in	 the	 manual	 labeling	 each	 have	 multiple	 years	 of	 experience	 as	

professional	 developers.	 Second,	 the	 labeling	 is	 based	 on	 what	 the	 Mozilla	 developers	

actually-and-publicly	did	when	they	processed	bug	reports	as	part	of	their	work,	as	opposed	

to	merely	 their	perceptions	 that	one	might	obtain	 if	 one	were	 to	 ask	developers	 to	 label	

sample	bug	reports	as	actionable	or	non-actionable.	Because	this	concept	is	rooted	in	real	

actions	displayed,	I	feel	that	this	risk	is	significantly	reduced.		

The	dataset	used	for	the	study	contained	bug	reports	from	a	set	of	projects	that	are	all	related	

to	Mozilla	Firefox.	As	a	result,	the	findings	may	not	be	generalizable	to	all	OSS	projects,	or	

commercial	projects,	which	represents	a	threat	to	external	validity.	Sampling	bug	reports	

from	a	number	of	Firefox	projects,	rather	than	a	single	one,	however,	means	that	the	dataset	

includes	 software	 in	multiple	 languages	and	across	multiple	operating	systems.	Together	
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with	the	large	number	of	bug	reports	included	in	the	corpus,	I	believe	this	ameliorates	this	

threat	to	a	degree.	The	portability	of	the	classifier	to	other	projects,	with	results	that	improve	

over	 the	 original	 study	 of	 Cuezilla,	 provides	 further	 evidence	 that	 this	may	 be	 less	 of	 a	

problem.	That	said,	further	study	is	needed	to	assess	whether	similarly	accurate	results	can	

be	obtained	for	a	broader	range	of	projects.	

A	primary	threat	to	the	internal	validity	of	this	study	is	the	possibility	of	faults	in	the	Python	

code	that	was	implemented	to	perform	the	study.	This	threat	was	addressed	by	extensively	

testing	the	implementation	and	verifying	its	results	against	a	smaller	dataset	for	which	the	

correct	results	were	manually	determined.	

The	training	and	testing	data	were	labeled	manually,	which	represents	a	threat	to	internal	

validity	as	it	could	have	introduced	bias	or	mistakes	due	to	a	lack	of	domain	expertise.	To	

address	 this	 concern,	 two	 researchers	 used	 the	 negotiated	 agreement	method	 to	 label	 a	

significant	 portion	 of	 the	 data.	 Because	 of	 the	 high	 inter-rater	 reliability	 that	 resulted,	 I	

believe	 that	 this	 risk	 is	 reduced	 considerably.	 Further,	 the	 stark	 difference	 in	 average	

number	 of	messages	 posted	 for	 actionable	 bug	 reports	 compared	 to	 non-actionable	 bug	

reports	provides	further	confidence	in	the	labeling.	

The	choice	to	only	 include	resolved	bug	reports	 in	the	dataset	may	represent	a	 thread	to	

internal	validity	if	the	nature	of	the	content	of	these	bug	reports	differs	significantly	from	

those	of	 resolved	bug	reports.	Given	 the	discussion	 in	Section	3.1.1,	 I	believe	 this	 to	be	a	

necessary	tradeoff	for	labeling	(and	thus	training)	accuracy.		

In	the	analysis	of	the	impact	of	reporters'	experience,	experience	was	verified	by	treating	

each	unique	e-mail	address	as	one	person	(e.g.,	jack@mozilla.org	and	jack@gmail.com	are	

counted	 as	 two	 persons).	 A	 common	 step	 is	 to	 unify	 these	 two	 addresses	 based	 on	 the	

assumption	 that	 they	 represent	 a	 single	 person,	 Jack.	 this	 study	 did	 not	 do	 so,	 since	 the	

analysis	 showed	 relatively	 few	 common	 e-mail	 names	 across	 multiple	 domains	 for	 the	

reporters	 in	 the	 dataset	 and,	 in	 those	 cases,	 the	 domains	were	 sufficiently	 different	 and	

specialized	that	it	was	difficult	to	speculate	on	whether	they	represented	the	same	person.	

Hence,	the	possibility	remains	that	experience	was	under-assessed	in	a	few	cases.	Across	the	

entire	dataset,	I	believe	the	impact	is	relatively	minimal,	however.	



 

	
	

88	

The	SVM	+	tuning	model,	that	was	trained	on	only	Mozilla	Firefox	bug	reports,	was	run	on	

180,000	bug	reports	from	across	all	Mozilla	projects.	To	make	sure	that	the	results	of	the	

classifier	 can	 be	 trusted,	 the	 SVM	+	 tuning	model	was	 checked	 to	 see	 if	 it	 is	 "internally	

portable".	That	is	if	a	model	that	is	trained	on	some	parts	of	a	project	still	works	with	high	

accuracy	if	tested	on	the	other	parts.	To	do	that,	50	bug	reports	were	randomly	selected	from	

180,000	bug	reports	from	across	all	Mozilla	projects,	excluding	Firefox,	manually	classified	

them	to	actionable	or	non-actionable,	and	compared	the	results	with	the	labels	that	SVM	+	

tuning	 model	 had	 already	 assigned.	 The	 results	 suggested	 that	 the	 model	 is	 “internally	

portable”	and	can	predict	the	overall	quality	of	the	bug	reports	in	terms	of	whether	or	not	

they	are	actionable	with	a	F-measure	of	0.96.	I	assume	the	risk	of	our	classification	model	

not	being	internally	portable	is	minimal.	

Finally,	since	all	survey	respondents	were	related	to	Mozilla,	the	survey	responses	may	not	

be	representative	across	OSS	and	commercial	projects	as	the	characteristics	of	developers	in	

other	 OSS	 projects	may	 be	 different	 from	 those	 included	 in	 this	 study.	 This	 risk	 can	 be	

reduced	by	repeating	the	survey	across	other	constituencies	of	developers.	

	

3.5 Conclusion	
This	chapter	revisited	an	older	problem,	that	of	bug	report	quality	prediction.	Particularly	

the	study	manually	labeled	the	bug	reports	as	actionable	or	non-actionable,	since	the	concept	

of	actionable	more	accurately	reflects	what	happens	to	bug	reports:	they	are	either	sufficient	

and	clear	to	know	what	to	do	with	them,	or	they	are	not.	The	results	significantly	improved	

over	the	state-of-the-art	and	that,	through	detailed	analyses	of	whether	auxiliary	features	

can	 further	 improve	 the	results,	 challenge	 long-held	beliefs	on	 the	value	of	 incorporating	

those	features	in	the	prediction	model.	The	primary	results	are:	

• A	 significant	 improvement	 over	 the	 state	 of	 the	 art	 in	 bug	 quality	 prediction	 to	 a	

precision	of	94%,	recall	of	89%,	and	F-measure	of	0.91.	The	primary	cause	of	 this	

improved	performance	appears	 to	be	 a	 combination	of	needing	a	binary	 classifier	

only,	 using	 a	 bag-of-words	 approach	 rather	 than	 higher-level	 features,	 hyper-

parameter	optimization,	and	a	large	training	dataset.	
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• Portability	of	the	resulting	model	that	has	better	predictive	capabilities	than	the	best	

models	to	date	that	were	specifically	trained	on	those	other	systems.	

• An	absence	of	improvement	in	performance	with	the	inclusion	of	auxiliary	features	

(alone	 or	 together)	 that,	 to	 date,	 had	 improved	 classification	 accuracy.	 With	 a	

sufficiently	 strong	 base	 model,	 the	 impact	 of	 including	 these	 features	 seems	 to	

disappear.	

• A	survey	among	Mozilla	developers	to	get	an	understanding	as	to	how	they	feel	the	

quality	of	bug	reports	has	or	has	not	changed	over	the	years,	with	the	results	showing	

that	they	believe	the	quality	stayed	the	same	with	a	small	percentage	saying	it	has	

become	better.	
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4 CHAPTER	4:	An	Analysis	of	Video	Submissions	in	Bug	Reporting	
	
	 Effective	bug	 reporting	and	resolution	 is	essential	 to	any	software	project,	 since	a	

significant	portion	of	the	overall	software	development	life	cycle	is	spent	addressing	bugs	

[75].	 Being	 efficient	 in	 this	 process	 is	 crucial,	 especially	when	projects	mature	 and	 large	

numbers	 of	 bug	 reports	 are	 submitted	 on	 a	 regular	 basis.	 The	 resulting	 volume	 creates	

challenges	in	processing	them	all	quickly	and	with	the	right	outcomes	[11],	which	in	turn	

leads	to	wasted	effort	by	developers,	delays	overall	progress,	and	can	have	a	detrimental	

effect	on	the	overall	quality	of	the	software	[35].	

In	practice,	bug	reports	often	lack	information	[8],	[9],	containing	only	a	stack	trace,	overly	

detailed	logs	but	little	else,	or	just	a	brief,	non-structured,	natural	language	description	of	the	

bug	[139].	Previous	studies	show	that	the	information	that	is	most	useful	for	a	developer	in	

resolving	a	bug	report	is	often	the	most	difficult	information	for	reporters	to	provide	[7].	

Within	this	context,	an	interesting	phenomenon	has	emerged:	that	of	the	inclusion	of	videos	

in	bug	reports	[111].	Videos	can	visually	communicate	bugs	and	what	actions	led	up	to	them,	

offering	developers	a	new	opportunity	to	obtain	and	inspect	context-rich	bug	information	

[36].	Videos	help	developers	understand	how	users	 interact	with	the	system,	process	 the	

current	behavior	of	the	system,	and	comprehend	any	events	that	may	have	contributed	to	

the	 manifestation	 of	 the	 bug	 [35],	 [140]–[142].	 Several	 studies	 conclude	 that	 reporters	

should	 be	 encouraged	 to	 submit	 relevant	 videos	 as	 part	 of	 their	 bug	 reports	 to	 convey	

additional	context	for	understanding	bugs	[39]–[41].	

An	important	question	that	has	not	been	answered	to	date	is	whether	the	presence	of	videos	

in	bug	reports	may	have	a	further	effect	on	the	overall	bug	resolution	process?	That	is,	does	

the	inclusion	of	videos	in	bug	reports	also	lead	to	benefits	for	those	who	report	bugs?	If,	for	

instance,	bug	reports	that	include	video	are	resolved	more	quickly,	this	may	provide	tangible	

incentive	for	reporters	to	submit	videos	as	part	of	their	bug	reports.	The	extra	work	they	

would	incur	in	producing	a	video	would	then	not	only	benefit	the	developers	processing	the	

bug	report,	but	also	provide	a	tangible	benefit	to	the	reporter	themselves	in	getting	their	bug	

report	resolved	faster.	
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In	 this	 chapter,	 the	 results	 from	 the	 study	 of	 2,814,599	 bug	 reports	 from	 five	 systems	

(Mozilla,	Android,	LibreOffice,	IntelliJ,	and	Minecraft)	are	presented.	The	study	assesses	the	

impact	of	the	presence	of	videos	in	bug	reports	on	the	overall	resolution	process.	The	study	

is	 quantitative,	 comparing	 three	 outcomes	 for	 bug	 reports	 that	 include	 videos	 with	 bug	

reports	that	do	not,	answering	the	following	questions:	

RQ1:	Does	including	videos	in	bug	reports	lead	to	a	reduction	in	the	average	time	to	

resolution?	If	so,	this	would	be	a	potential	benefit	for	bug	reporters	who	include	video,	

since	their	chances	of	having	closure	on	their	bug	report	sooner	increase	compared	to	

those	who	do	not	include	video.	

RQ2:	Does	including	videos	in	bug	reports	lead	to	a	higher	percentage	of	bug	reports	

being	resolved	with	a	patch,	that	is,	actually	fixed?	If	so,	this	would	be	a	potential	benefit	

for	bug	reporters	who	include	video,	as	their	chances	of	having	their	issue	actually	fixed	

increase	compared	to	those	who	do	not	include	video.	

RQ3:	Does	including	videos	in	bug	reports	lead	to	a	reduction	in	the	average	back-and-

forth	that	occurs	once	the	report	has	been	submitted?	If	so,	this	would	be	a	potential	

benefit	for	bug	reporters	who	include	video,	as	they	are	more	likely	to	have	to	answer	

fewer	requests	by	triagers	and	developers,	which	means	fewer	interruptions	of	their	

regular	work	and	less	mental	effort	to	re-engage	with	the	bug.	

Beyond	answering	these	questions,	the	study	performs	a	deep	dive	to	understand	whether	

other	factors	may	have	an	effect	on	overall	bug	resolution	process.	The	deep	dive	particularly	

examines	whether	it	matters	if	videos	are	submitted	by	developers	on	the	project	or	by	end-

users,	whether	the	type	of	bug	being	reported	with	a	video	may	have	an	impact,	and	whether	

the	effect	of	including	videos	differs	depending	on	the	assigned	severity	of	the	bug	report.	

This	part	of	the	study	only	focuses	on	Mozilla,	with	the	exception	of	analysis	of	severity,	for	

two	reasons.	First,	only	Mozilla	publicly	provides	adequate	user	statistics	(e.g.,	number	of	

patches	submitted)	to	determine	if	the	video	submitter	is	a	developer	or	end-user.	Second,	

in	Chapter	5,	Mozilla	bug	reports	were	already	studied	and	provided	necessary	information	

to	determine	the	type	of	the	bugs.	To	classify	the	type,	manually	labeling	bug	reports	was	
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selected	 rather	 than	 applying	 an	 automatic	 approach	 [143],	 as	 the	 automatic	 approach	

wrongfully	classified	many	bug	reports.		

In	the	remainder	of	this	chapter,	I	detail	the	methodology	and	report	the	results.	Then	I	place	

the	results	in	the	broader	context	of	the	literature	to	date.	

	
	
4.1. Methodology	
The	goal	 is	 to	understand	whether	 the	presence	of	 videos	 in	bug	 reports	has	 a	potential	

impact	on	factors	that	may	be	of	concern	to	those	submitting	bug	reports:	time	to	resolution,	

bug	reports	being	successfully	resolved	with	a	patch	(i.e.,	bugs	being	fixed),	and	the	amount	

of	back-and-forth	discussion.	To	do	so,	a	multi-year	selection	of	bug	reports	was	downloaded	

for	 five	 different	 systems,	 extracted	 relevant	 metadata,	 determined	 for	 each	 bug	 report	

whether	 it	 had	 one	 or	 more	 videos	 attached	 as	 well	 as	 if	 any	 videos	 appeared	 in	 the	

subsequent	 back-and-forth,	 and	 performed	 a	 range	 of	 statistical	 analyses.	 I	 detail	 the	

methodology	below.	Figure	23	illustrates	the	overall	process	that	was	used	for	the	analysis.	

	

Figure	23.	Overall	process	of	studying	the	role	of	videos	in	bug	reporting.	
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4.1.1 Data	Collection	

I	collected	2,814,599	bug	reports	across	five	different	systems:	Mozilla,	Android,	LibreOffice,	

IntelliJ,	 and	 Minecraft,	 from	 2010	 to	 2021.	 These	 projects	 were	 selected	 because	 they	

represent	different	domains,	including	a	web	browser,	an	operating	system,	an	office	suite,	

a	development	environment,	and	a	game,	providing	necessary	breadth	for	the	findings	to	be	

at	 least	 somewhat	 generalizable.	 Moreover,	 they	 use	 different	 bug	 tracking	 systems,	

including	 Bugzilla,	 YouTrack,	 and	 Google	 Issue	 Tracker.	 All	 available	 metadata	 was	

downloaded	either	through	the	API	associated	with	the	issue	tracker	(e.g.,	the	BugZilla	REST	

API3)	 or	 by	 creating	 a	 custom	web	 scraping	 tool.	 The	metadata	 was	 used	 to	 detect	 the	

presence	of	video	attachments.	

Table	10	displays	the	details	of	the	experimental	dataset.	As	shown	in	the	table,	the	dataset	

spans	 from	2010	 to	2021.	The	 total	number	of	downloaded	 issues	was	2,814,599.	Out	of	

those,	2,039,221	were	closed.	Bug	reports	with	a	resolution	status	of	NEW,	UNCONFIRMED,	

REOPENED,	 and	 ASSIGNED	were	 considered	 as	 open,	 and	 bug	 reports	with	 a	 resolution	

status	of	RESOLVED,	VERIFIED,	and	CLOSED	as	closed	(while	certain	individual	bug	reports	

may	constitute	an	exception	to	this	interpretation	of	open	and	closed,	the	number	tends	to	

be	small	and	the	convention	set	by	other	studies	was	followed,	e.g.,	[144],	[145]).		

Table	10.	Experimental	Dataset.	

Ecosystem	 Domain	

Bug	

tracking	

system	

Number	of	

bug	reports	

downloaded	

Number	

of	closed	

bug	

reports31	

Number	of	

closed	bug	

reports	with	

videos	

Date	of	

first	

bug	

report	

Mozilla	

web	

browser	

with	many	

significant	

extensions	

Bugzilla	 893,073	 794,383	 10,594	
2010-

01-01	

 
31	(RESOLVED,	VERIFIED,	CLOSED)	
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Android	

platform	

operating	

system	

Google	

code	

issue	

tracker	

308,273	 174,782	 3,706	
2010-

01-01	

LibreOffice	 office	suit	
Bugzilla,	

Redmine	
172,088	 81,050	 1,488	

2010-

09-30	

Minecraft	 game	

Mojang	

studios	

(Jira)	

402,990	 388,689	 24,011	
2012-

09-06	

IntelliJ	
development	

environment	
YouTrack	 1,038,175	 600,317	 9,862	

2010-

01-01	

	

	

4.1.2 Identifying	Videos	

A	custom	web	scraping	tool	was	created	using	Python	that	visited	the	webpages	of	all	bug	

reports	from	our	dataset	to	identify	the	bug	reports	that	included	video	attachments.	The	

crawler,	 in	 particular,	 searched	 for	 attachments	 with	 the	 following	 extensions	 most	

commonly	used	for	videos	files:	‘webm’,	‘mpg’,	‘mp2’,	‘mpeg’,	‘mpe’,	‘mpv’,	‘ogg’,	‘mp4’,	‘m4p’,	

‘m4v’,	‘avi’,	‘wmv’,	‘mov’,	‘qt’,	‘flv’,	‘swf’,	‘avchd’.	In	total,	49,661	bug	reports	were	identified	

that	contained	a	video	attachment,	distributed	across	the	five	systems	per	the	second	to	the	

last	column	of	Table	10.	

	

4.1.3 Collecting	Bug	Report	Details	

Table	11	shows	an	example	of	some	of	the	metadata	associated	with	one	of	the	bug	reports	

involved	in	our	study	(note	that	its	history	of	status	transitions	is	not	shown).	
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Table	11.	Excerpt	of	some	relevant	bug	report	data.	

Bug	report	ID	 132963332	

Creation	year	 2017	

Number	of	days	to	resolve	 4	

Priority	 Not	set	

Severity	 normal	

Resolution	status	 RESOLVED	INVALID	

Reporter	ID	 258347	

Number	of	comments	 1	

	

It	is	important	to	note	that	a	bug	report	being	resolved	does	not	always	mean	that	a	fix	was	

produced.	Resolution	also	can	concern	bug	reports	that	are	not	fixed	(as	in	the	case	of	the	

example)	or	that	are	deemed	to	work	for	the	development	team.	As	such,	the	time	to	bug	fix,	

which	is	frequently	studied	from	the	perspective	of	prediction	as	to	how	long	it	may	take	

(e.g.,	 [146]–[148])	 is	 different	 from	 the	 time	 to	 resolution,	 since	 the	 latter	 applies	 to	 a	

broader	category	of	bug	reports.	In	this	study,	bug	resolution	time	was	used.		

Also	note	that	bug	reports	with	a	status	of	VERIFIED	or	CLOSED	in	almost	all	cases	have	a	

preceding	status	of	RESOLVED	and,	in	cases	when	not,	still	should	have	been	tagged	prior	as	

RESOLVED	before	applying	VERIFIED	and/or	CLOSED.	For	this	reason,	they	were	included	

in	the	set	of	bug	reports	being	studied.	

Across	the	five	systems	that	were	studied,	standard	priority	levels	used	in	the	bug	tracker	

were	different:	

• Android:	P0,	P1,	P2,	P3,	P4.	

 
32	https://bugzilla.mozilla.org/show\_bug.cgi?id=1329633	
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• IntelliJ:	 showstopper,	 critical,	 blocker,	 major,	 high,	 medium,	 minor,	 nice	 to	 have,	

unclassified.	

• Minecraft:	blocker,	critical,	important,	normal,	low,	blank.	

• LibreOffice:	highest,	high,	medium,	low,	lowest.	

• Mozilla:	not	set,	P1,	P2,	P3,	P4,	P5.	

The	Mozilla	levels	were	used	as	the	base	upon	which	to	map	the	others.	All	but	one	(IntelliJ)	

had	five	levels	and	were	therefore	trivial	to	map	(if	a	priority	had	not	been	assigned	yet,	it	

was	mapped	to	not	set).	For	IntelliJ,	showstopper	and	critical	was	mapped	to	P1,	blocker	and	

major	to	P2,	high	to	P3,	medium	and	minor	to	P4,	nice	to	have	to	P5,	and	unclassified	to	not	

set.	Then	the	bug	reports	were	grouped	into	two	priority	groups:	high	priority	(P1,	P2,	P3)	

and	low	priority	(P4,	P5,	not	set).	

Apart	from	the	details	related	to	bug	reports	shown	in	Table	11,	the	following	information	

was	collected:	

• Number	of	back-and-forth.	This	represents	the	number	of	times	that	the	reporter	was	

requested	 to	 answer	 plus	 the	 number	 of	 times	 that	 the	 reporter	 answered.	 For	

example,	for	Mozilla,	the	number	of	times	that	the	flag	“Flags:	needinfo?”	was	raised	

in	 a	 bug	 report	were	 counted	 plus	 the	 number	 of	 times	 it	was	 lowered	when	 the	

respondent	provided	the	info.	By	raising	and	lowering	the	needinfo	flag,	developers	

and	bug	reporters	signal	 their	messages	 to	one	another,	which	gives	us	a	sense	of	

their	 direct,	 intended	 interactions,	 for	 instance	 to	 clarify	 an	 issue	 or	 obtain	 some	

auxiliary	information.	Note	that	the	number	of	back-and-forth	is	different	than	the	

number	 of	 comments.	 The	 former	 represents	 direct	 communication,	 the	 latter	 all	

communication	for	that	bug	report.	

• Video	submitted	initially	or	later.	To	determine	at	what	stage	of	bug	resolution	a	video	

was	submitted,	the	metadata	about	whether	the	video	was	attached	to	the	initial	bug	

report	or	attached	to	a	comment	later	during	the	bug	report	resolution	process	were	

collected.	The	latter	is	sometimes	at	the	prompting	of	the	developer,	other	times	the	

reporter	decides	to	include	a	video	as	part	of	the	exchange.	
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• Presence	of	steps	to	reproduce,	actual	results,	and	expected	results.	Similar	to	Davies	

et	al.	[55],	pattern	matching	was	used	to	determine	whether	the	search	strings	“steps	

to	 reproduce”,	 “actual	 results”,	 and/or	 “expected	 results”	were	present	 in	 the	bug	

report.	The	search	strings	were	case	insensitive.	

	

4.1.4 Statistical	Analysis	

In	order	to	answer	the	three	research	questions	identified	in	the	introduction,	after	checking	

for	 the	 normality	 assumption	 of	 the	 data,	 the	 Welch	 Two	 Sample	 t-test	 was	 conducted	

between	 the	 bug	 reports	 with	 and	 without	 video	 with	 respect	 to	 bug	 resolution	 time,	

percentage	of	bug	reports	being	successfully	resolved	with	a	patch	(i.e.,	as	FIXED),	and	the	

back-and-forth	 discussion	 following	 a	 bug	 report	 submission.	 Since	 multiple	 tests	 were	

performed,	 the	 significance	 value	 was	 adjusted	 accordingly	 to	 account	 for	 multiple	

hypothesis	correction.		I	used	the	Benjamini–Hochberg	corrections	[149],	which	resulted	in	

an	adjusted	p-value	of	0.14.	

Three	Generalized	Linear	Regression	(GLM)	[150]	models	were	also	built.	The	dependent	

variables	(i.e.,	time	to	resolution,	bug	reports	resolved	as	FIXED,	and	number	of	back-and-

forth)	follow	a	Poisson	distribution.	Therefore,	a	Poisson	regression	model	with	a	log	linking	

function	was	 used.	 In	 order	 to	 build	 each	model,	 factors	 that	 the	 existing	 literature	 has	

already	 identified	as	correlating	with	bug	 fix	 time	were	used,	 including	operating	system	

[151],	product,	component,	priority,	severity,	status,	platform,	resolution,	version,	cc	count,	

votes	[152],	whether	it	is	confirmed	(only	in	LibreOffice),	confirmation	status	(Confirmed,	

Null,	Plausible,	and	Unconfirmed;	only	in	Minecraft),	labels,	number	of	duplicates,	number	

of	 comments,	 number	 of	 unique	 participants	 [153],	 number	 of	 attachments,	 number	 of	

developers	[138],	number	of	unique	words	in	title	and	bug	description	[154],	and	readability	

score	(Flesch	score	[130])	[25].	Note,	once	more,	that	this	study	is	about	bug	resolution	time,	

not	 bug	 fix	 time,	 as	 studied	 by	 this	 existing	work.	 A	 corollary	 to	 this	 work,	 then,	 is	 the	

determination	of	whether	these	factors	correlate	with	bug	resolution	time	beyond	bug	fix	

time.	



 

	
	

98	

To	this	set,	the	presence	of	actual	results,	presence	of	expected	results,	presence	of	steps	to	

reproduce,	 number	 of	 videos	 in	 each	 bug	 report,	 number	 of	 back-and-forth,	 and	 video	

submitted	initially	or	later	were	added.	Finally,	each	bug	reporter's	reputation,	a	common	

feature	which	has	been	 studied	 in	previous	work	 in	mining	bug	 reports,	was	added.	The	

intuition	is	that	poor	issue	reports	may	take	longer	to	resolve	and	reporters	who	frequently	

write	such	poor	reports	will	accumulate	a	poor	reputation,	and	vice	versa.	I	used	the	reporter	

reputation	formula	of	Hooimeijer	[25].	

After	collecting	 these	metrics,	multi-collinearity	was	checked	using	 the	Variance	 Inflation	

Factor	(VIF)	of	each	predictor	in	the	model	[155].	VIF	describes	the	level	of	multi-collinearity	

(correlation	 between	 predictors).	 A	 VIF	 score	 between	 1	 and	 5	 indicates	 a	 moderate	

correlation	 with	 other	 factors,	 so	 the	 predictors	 with	 a	 VIF	 score	 threshold	 of	 5	 were	

selected.	This	step	was	necessary	since	the	presence	of	highly	correlated	factors	forces	the	

estimated	regression	coefficient	of	one	variable	to	depend	on	other	predictor	variables	that	

are	 included	 in	 the	model.	Next,	using	 the	selected	 factors,	 the	best	model	was	 identified	

using	 Akaike	 Information	 Criterion	 (AIC),	which	 estimates	 the	 information	 loss	 between	

models	in	comparison	to	the	original	[156].	It	ultimately	selects	the	best	model	based	on	both	

the	fit	of	the	model	and	the	information	lost.	Then	the	model,	identified	by	AIC	as	the	final	

model,	 was	 selected.	 This	 process	 was	 repeated	 independently	 for	 each	 of	 the	 three	

regression	models.	

	

4.1.5 Mozilla-Specific	Data	Collection	

For	 one	 system,	 Mozilla,	 several	 additional	 analyses	 were	 performed	 that	 sought	 to	

investigate	whether	other	factors	might	play	a	role	in	the	results	that	were	present	across	all	

five	systems.	For	these	analyses,	additional	data	were	used	(see	Figure	24).	
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Figure	24.	Additional	steps	to	study	the	role	of	videos	in	Mozilla	bug	reports.	

First,	two	additional	pieces	of	information	were	collected:	who	submitted	the	video	and	what	

role	they	had.	Mozilla	bug	reports	were	selected	for	this	part	of	the	study	as	they	provided	

adequate	user	information	to	find	out	if	the	video	submitter	is	a	developer	or	end-user.	To	

do	 so,	 the	 user-ID	 of	 each	 video	 submitter	 was	 cross-checked	 with	 the	 user-ID	 of	 bug	

reporters	and	bug	assignees	across	all	bug	reports.	In	case	there	was	no	match,	the	video	

submitter	was	labeled	as	“others”.	Also,	to	determine	the	role,	the	number	of	patches	that	

the	 video	 submitter	 previously	 submitted	 to	 the	 Mozilla	 projects	 was	 extracted.	 If	 the	

number	 was	 zero,	 the	 video	 submitter	 was	 identified	 as	 an	 end-user,	 otherwise	 as	 a	

developer.		

Second,	the	results	from	the	labeling	of	1,045	videos	(see	Chapter	5)	were	used	to	determine	

the	type	of	bug	being	illustrated.	These	1,045	videos	were	randomly	selected	from	all	10,594	

Mozilla	videos	and	labeled	by	two	researchers	(achieving	a	“perfect	agreement”	[127]	with	

an	IRR	of	0.87;	see	Section	5.1.2).	For	the	type	of	bug,	the	following	categories	emerged:	(1)	

UI	—	problems	related	to	the	user	interface,	(2)	system	settings	—	problems	related	to	the	

configuration	settings,	(3)	access	—problems	with	functionality	for	logging	in	or	signing	up,	

(4)	 failure	 to	 load	—	 problems	 related	 to	 the	 software	 not	 being	 able	 to	 start,	 and	 (5)	

functionality	—	problems	related	to	faulty	results	being	produced	by	the	software.	



 

	
	

100	

Third,	to	understand	if	the	video	is	helpful	for	critical	bugs,	the	severity	levels	were	grouped	

based	on	the	Least	Significant	Difference	(LSD)	test	[157],	which	determines	if	the	means	of	

the	 groups	 are	 statistically	 different.	 Then,	 high	 severity	 Mozilla	 bug	 reports	 with	 and	

without	video	were	studied.	This	analysis	was	extended	to	study	Android	and	LibreOffice	

bug	reports	as	well,	but	not	for	IntelliJ	and	Minecraft,	as	the	severity	field	in	their	bug	reports	

were	not	visible	to	readers.	

	

4.2 Results	
In	this	section,	the	results	are	presented.	To	set	the	stage,	first,	the	prevalence	of	including	

videos	as	part	of	bug	reports	is	briefly	reviewed	for	all	five	systems	of	interest.	Then	the	three	

research	questions	are	answered.	Finally,	a	deep	dive	into	Mozilla	was	performed	to	examine	

several	other	factors	that	may	be	at	play.	Because	of	the	possibility	of	sensitivity	to	the	period	

of	time	studied,	all	the	analyses	were	repeated	with	shorter	time	windows	(last	nine,	six,	and	

three	years).	

	

4.2.1 Prevalence	

First,	 the	 2,039,221	 closed	 bug	 reports	were	 examined	 to	 determine	 how	many	 of	 them	

contained	videos.	Then,	their	trend	was	plotted	over	the	years.	The	result	is	shown	in	Figure	

25.	While	the	total	number	of	bug	reports	with	videos,	49,661,	is	low	at	around	2.43	percent,	

a	clear	upward	trend	exists,	with	the	year	2021	seeing	almost	seven	percent	of,	for	instance,	

Minecraft	 bug	 reports	 involving	 videos	 (Mann-Kendall	 trend	 test,	 p-value	 <	 0.01).	 This	

confirms	the	informal	observations	made	in	prior	studies	that	videos	appear	to	be	becoming	

more	prevalent	in	and	important	to	the	bug	reporting	process	(e.g.,	[42],	[46]).	
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Figure	25.	Percentage	of	bug	reports	with	video	attachments.	

Each	video	was	labeled	as	to	whether	it	was	submitted	initially	as	part	of	the	original	bug	

report	being	filed,	or	later	(irrespectively	of	whether	by	the	reporter,	the	assigned	developer,	

or	someone	else	who	chimed	in).	Figure	26	shows	the	difference	between	the	percentage	of	

bug	reports	with	video	attachments	submitted	initially	and	the	percentage	submitted	later,	

on	a	year	by	year	basis.	The	majority	of	videos	were	submitted	initially	at	the	time	the	bug	

report	was	filed	in	four	of	the	projects,	with	Mozilla	moving	strongly	from	the	early	years	in	

which	 more	 videos	 were	 submitted	 later	 to	 the	 later	 years	 in	 which	 a	 majority	 were	

submitted	with	the	initial	bug	report.	LibreOffice	is	very	different,	however.	It	consistently	

sees	more	videos	submitted	at	a	later	time	as	compared	to	at	the	initial	submission	of	the	

bug	report.	

Observation	1.	Across	all	projects,	an	upward	trend	is	present	in	bug	reports	including	

videos.	
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Figure	26.	Difference	between	percentage	of	bug	reports	that were	submitted	initially	and	

percentage	submitted	later.	

The	means	were	compared	for	both	groups	across	all	five	projects	and	the	difference	was	

statistically	 significant,	 even	with	 the	 presence	 of	 LibreOffice	 (Welch	 Two	 Sample	 t-test,	

11.241,	df	=	21.998,	p-value	<	0.14).	This	confirms	that	the	percentage	of	videos	initially	

submitted	is	higher	than	the	percentage	of	videos	submitted	later,	but	individual	differences	

must	be	respected	as	it	is	clear,	in	this	case,	that	the	pattern	is	the	opposite	for	LibreOffice	

(Welch	Two	Sample	t-test,	t	=	-2.11,	df	=	13.02,	p-value	<	0.14).	

In	Mozilla,	the	balance	of	videos	that	were	submitted	along	with	the	initial	bug	report	versus	

as	 part	 of	 the	 follow-on	 back-and-forth	 has	 shifted	 drastically	 over	 the	 years,	 from	17%	

initially	 and	 83%	 later	 to	 79%	 initially	 and	 21%	 later.	 That	 could	 be	 because	 of	 several	

reasons,	including	a	growing	belief	among	reporters	of	the	potential	usefulness	of	including	

video,	the	ubiquitous	availability	of	cell	phones	with	cameras,	or	even	the	broader	societal	

phenomenon	of	short	videos	being	an	accepted	part	of	life.	

Observation2.	Across	all	projects,	more	videos	are	submitted	with	the	initial	bug	report	

than	 during	 the	 follow-on	 back-and-forth.	 Individual	 differences	 exist,	 however,	 and	

LibreOffice	is	an	exception	in	exhibiting	the	opposite	pattern.	
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4.2.2 Potential	Benefits	to	Reporters	

This	 section	 focuses	 on	 the	main	 objective	 of	 this	 chapter:	 to	 understand	 the	 impact	 of	

including	videos	on	the	resolution	process	in	terms	of	time	to	resolution	(RQ1),	percentage	

being	resolved	with	a	patch	and	thus	fixed	(RQ2),	and	amount	of	back-and-forth	(RQ3).	For	

each	research	question,	a	statistical	analysis	was	performed	using	Welch	Two	Sample	t-test	

and	a	regression	analysis	as	explained	in	Section	4.1.4.	The	Welch	Two	Sample	t-test	was	

performed	on	49,661	bug	reports	that	included	video	and	1,989,560	bug	reports	that	did	not	

include	video.	For	regression	analysis,	the	dataset	included	49,661	bug	reports	that	included	

video	and	99,322	bug	reports	that	did	not	include	video;	the	latter	being	a	smaller	subset	

than	 all	 bug	 reports	without	 video	 that	was	 selected:	 (a)	 to	 be	 twice	 the	number	 of	 bug	

reports	with	videos,	and	(b)	to	match	the	distribution	of	resolution	outcomes	and	priorities	

of	the	set	with	videos.	

	

4.2.2.1 RQ1:	Time	to	Resolution	

The	impact	of	including	a	video	(or	multiple	videos),	regardless	of	whether	it	was	included	

initially	or	later,	on	the	time	to	resolution	was	assessed	by	comparing	the	average	days	to	

resolve	the	bug	reports	with	and	without	video(s).	For	each	resolved	bug	report,	the	time	to	

resolution	was	calculated	as	the	number	of	days	between	the	initial	submission	of	the	bug	

report	and	when	the	status	of	the	bug	report	was	changed	to	RESOLVED.	It	is	possible	that	a	

bug	 report	was	 resolved	and	 then	 reopened,	meaning	 that	 its	history	 includes	 the	 status	

RESOLVED	multiple	times.	In	such	cases,	the	time	to	resolution	was	measured	until	the	day	

it	was	last	changed	to	RESOLVED.	In	order	to	handle	potential	outliers,	the	bug	reports	with	

time	 to	 resolution	 outside	 of	 the	 interval	 formed	 by	 the	 5th	 and	 95th	 percentiles	 were	

removed	(e.g.,	bug	reports	in	IntelliJ	with	time	to	resolution	more	than	1,135	days	and	less	

than	7	days	were	removed	from	the	dataset).	

Figure	27	shows	the	trend	for	the	average	number	of	days	to	resolve	bug	reports	with	video	

minus	the	average	days	without	video,	on	a	year	by	year	basis.	Note	that	bug	reports	with	

video	took	longer	to	resolve	than	those	without	when	comparing	the	mean	(with	342.7	days,	

without	 295.8	 days).	 The	 difference,	 however,	 is	 not	 statistically	 significant	 (Welch	 Two	
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Sample	 t-test,	 t	=	 0.57,	 df	=	 20.30,	 p-value	>	 0.14).	 The	 difference	 in	 how	much	 longer	

becomes	smaller	over	time,	with	the	average	over	the	three	most	recent	years	being	just	43	

days,	which	given	the	trend	is	unsurprisingly	also	statistically	not	significant	(Welch	Two	

Sample	t-test,	t	=	1.05,	df	=	3.75,	p-value	>	0.14).		

Note	that	only	for	the	last	six	and	three	years,	Android	and	IntelliJ	bug	reports	with	video	

had	a	longer	time	to	resolution	than	those	without.	The	difference	in	how	much	longer	was	

statistically	significant	only	for	IntelliJ	(Welch	Two	Sample	t-test,	t	=	2.55,	df	=	9.54,	p-value	

<		0.14).			
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Figure	27.	Comparing	the	average	days	to	resolve	bug	reports	with	and	without	video	

attachments.	

Because	 initially	submitted	videos	may	bring	clarity	 to	 the	bug	resolution	process	earlier	

than	videos	that	are	submitted	later,	I	studied	whether	a	difference	may	exist	in	impact	on	

time	to	resolution	for	bug	reports	with	videos	that	were	submitted	at	the	onset	versus	bug	

reports	for	which	videos	that	were	submitted	as	part	of	the	subsequent	interactions	among	

the	 assigned	 developer,	 reporter,	 and	 others.	 Figure	 28	 shows	 the	 difference	 between	

average	days	to	resolve	a	bug	report	with	a	video	submitted	initially	versus	the	average	for	

those	with	a	video	submitted	later.		

Observation	 3.	 Across	 all	 five	 projects	 it	 took	 on	 average	 a	 higher	 number	 of	 days	 to	

resolve	the	bug	reports	that	included	video	attachments	than	the	ones	that	did	not,	but	

the	difference	is	not	statistically	significant,	except	for	IntelliJ	 in	later	years.	Moreover,	

the	difference	becomes	considerably	lower	in	the	later	years.	
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Figure	28.	Difference	between	average	number	of	days	to	resolve	bug	reports	with	videos	

attached	initially	and	with	videos	attached	later.	

The	average	number	of	days	to	resolve	bug	reports	with	initially	submitted	videos	is	lower	

than	those	with	later	submitted	videos	across	all	years,	with	the	mean	for	initially	submitted	

333.5	days	and	for	later	submitted	435.1	days.	The	difference	is	not	statistically	significant	

(Welch	Two	Sample	t-test,	 t	=	-0.82,	df	=	22,	p-value	>	0.14).	Note	that	 the	difference	 is	

becoming	lower	over	the	years,	with	the	difference	changing	from	102	days	in	2010	to	48	

days	in	2016	and	26	days	in	2021.	

	

4.2.2.1.1 Priority	

High-priority	bug	reports	tend	to	get	more	attention	from	developers	than	low-priority	bugs	

reports;	if	the	typical	priority	of	bug	reports	with	videos	is	low	compared	to	those	without	

videos,	it	might	explain	why	bug	reports	with	videos	take	longer	to	resolve.	It	might	be	that	

Observation	4.	The	difference	between	the	average	number	of	days	to	resolve	bug	reports	

with	videos	initially	submitted	versus	those	with	videos	submitted	later	is	not	statistically	

significant.	Over	the	years,	the	difference	has	become	smaller.	
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videos	 attached	 to	 low-priority	 bug	 reports	 that	 are	 resolved	 slowly	 overshadow	 their	

importance	for	high-priority	bug	reports	in	the	analyses	thus	far.	Therefore,	the	bug	reports	

were	grouped	into	two	priority	groups:	high	priority	(P1,	P2,	P3)	and	low	priority	(P4,	P5,	

not	set),	as	per	Section	4.1.3.	Then	the	average	number	of	days	to	resolve	for	each	group	was	

compared,	with	and	without	video.	The	difference	was	not	statistically	significant	(Welch	

Two	Sample	t-test,	t	=	1.44,	df	=	18.17,	p-value	>	0.14)	between	the	average	number	of	days	

to	resolve	the	high	priority	bug	reports	with	video	(mean	=	454)	and	the	high	priority	bug	

reports	without	video	(mean	=	301),	indicating	that	priority	likely	does	not	play	a	role	in	the	

non-effects	 seen	 thus	 far.	 Because	 of	 the	 possibility	 of	 sensitivity	 to	 the	 period	 of	 time	

studied,	the	analysis	was	repeated	for	the	last	nine,	six,	and	three	years.	The	average	time	to	

resolution	was	still	higher	for	the	high	priority	bug	reports	with	video	(mean	=	135.36)	than	

high	priority	bug	reports	without	video	(mean	=	72.41)	for	the	three	most	recent	years,	yet	

the	difference	was	still	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	1.18,	df	=	

2.60,	p-value	>	0.14).	

	

4.2.2.1.2 Generalized	Linear	Model	

To	further	explore	whether	video	may	have	an	impact	on	bug	resolution	time,	a	Generalized	

Linear	Model	was	built	following	the	procedure	outlined	in	Section	4.1.4.	The	resulting	best	

model	used	only	11	factors	out	of	the	factors	that	were	initially	provided,	and	consisted	of	

priority,	resolution,	readability,	presence	of		steps	to	reproduce,	presence	of	actual	results,	

presence	of	expected	results,	number	of	unique	words	in	title,	number	of	unique	words	in	

description,	number	of	back-and-forth,	number	of	videos,	and	video	submitted	initially	or	

later.	The	predicted	value	is	the	average	number	of	days	to	resolve.	I	calculated	McFadden’s	

Adjusted	R2	[158]	as	a	quality	indicator	of	the	model.	The	McFadden	Adjusted	R2	of	the	model	

is	0.66,	which	means	that	the	independent	variables	used	in	building	the	regression	model	

only	contribute	to	66%	of	accurate	prediction.	The	number	of	videos	was	a	significant	factor	

in	the	model	(p	<	0.14),	with	an	estimate	of	-0.02,	which	means	that,	while	adding	videos	to	

bug	reports	reduces	the	time	to	resolution,	it	does	so	by	only	a	minimal	amount:	0.02	days,	

which	 is	 a	 mere	 15	 minutes.	 This,	 clearly,	 does	 not	 make	 a	 real	 difference	 from	 the	

perspective	of	the	reporter.	
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The	coefficient	estimate	for	priority	in	the	last	11	years	ranged	from	lowest	of	-7.957e-02	for	

P0	to	highest	of	5.887e-01	for	P5.	Moreover,	the	estimate	for	resolution	varied	from	-8.011e-

01	(inactive)	to	9.932e-01	(worksforme).	Table	12	shows	the	estimates	for	the	remaining	

factors	used	in	the	model.	

Because	 of	 the	 possibility	 of	 sensitivity	 to	 the	 period	 of	 time	 studied,	 this	 analysis	 was	

repeated	with	shorter	time	windows.	Results	indicate	a	similarly	small	impact	across	all	time	

windows,	though	it	is	interesting	to	observe	that,	for	the	time	window	of	the	past	three	years,	

a	positive	instead	of	negative	coefficient	exists	for	the	number	of	videos:	time	to	resolution	

is	predicted	to	increase,	though	only	by	about	10	minutes,	which	again	means	there	is	no	

meaningful	difference	from	the	perspective	of	the	reporter.	

Table	12.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	bug	reports.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.66	 0.66	 0.71	 0.84	

Es
tim

at
e 	

Number	of	back-and-forth	 3.020e-03	 2.498e-03	 1.046e-03	 5.071e-04	

Expected	results	 3.803e-02	 8.121e-02	 3.558e-01	 -2.305e-01	

Steps	to	reproduce	 1.037e-01	 1.208e-01	 2.024e-01	 1.600e-01	

Actual	results	 -4.261e-01	 -4.471e-01	 -6.784e-01	 3.468e-01	

Readability	 -6.248e-05	 -6.591e-05	 -7.958e-04	 -5.064e-04	

Number	of	unique	words	

in	title	
1.547e-02	 1.518e-02	 1.042e-02	 4.422e-03	

Number	of	unique	words	

in	description	
3.604e-04	 3.981e-04	 1.357e-04	 -1.857e-04	

Video	submitted		 -1.153e-01	 -1.506e-01	 -1.225e-01	 1.002e-01	
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The	following	subsections	detail	the	results	of	the	Generalized	Linear	Model	predicting	the	

time	to	resolution	of	bug	reports	for	individual	systems.	

	

4.2.2.1.3 Android	

Table	13	shows	the	results	of	a	Generalized	Linear	Model	 for	Android.	The	resulting	best	

model	used	only	11	 factors	consisted	of	priority,	 severity,	 status,	 readability,	presence	of		

steps	 to	 reproduce,	 presence	 of	 actual	 results,	 presence	 of	 expected	 results,	 number	 of	

unique	 words	 in	 title,	 number	 of	 attachments,	 number	 of	 videos,	 and	 video	 submitted	

initially	or	 later.	The	McFadden	Adjusted	R2	of	the	model	 is	0.43,	which	means	this	set	of	

factors	is	insufficient	to	build	an	accurate	model.	The	number	of	videos	is	a	significant	factor	

in	the	model	(p	<	0.14),	with	an	estimate	of	0.09.	So,	from	the	perspective	of	end-users,	no	

beneficial	incentive	exists	to	add	videos	to	bug	reports,	as	it	increases	the	time	to	resolution,	

though	only	by	a	minimal	amount:	0.09	days.	Across	all	time	windows,	as	Table	13	shows,	a	

similarly	small	impact	exists	for	the	results.	

Table	13.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	Android	bug	reports.	

Initially	

Number	of	videos	 -2.50E-02	 -6.81E-02	 -2.31E-02	 1.61E-02	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

Observation	5.	The	impact	of	including	videos	on	time	to	resolution	is	minimal.	
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4.2.2.1.4 IntelliJ	

The	 resulting	 best	model	 for	 IntelliJ	 used	 only	 10	 factors,	 including	 priority,	 readability,	

presence	 of	 steps	 to	 reproduce,	 presence	 of	 actual	 results,	 presence	 of	 expected	 results,	

number	of	unique	words	in	title,	number	of	attachments,	number	of	comments,	number	of	

videos,	and	video	submitted	initially	or	 later.	Table	14	shows	the	results	of	a	Generalized	

Linear	Model	for	IntelliJ.	The	McFadden	Adjusted	R2	of	the	model	is	0.89	but	decreases	to	

0.74	for	the	last	three	years.	The	number	of	videos	is	a	significant	factor	in	the	model	(p	<	

0.14),	with	an	estimate	of	only	0.05,	which	means	adding	videos	to	bug	reports	increases	the	

time	to	resolution	by	only	0.05	days.	The	analysis	was	repeated	with	shorter	time	windows	

and	similarly	minimal	correlations	were	found.	

	
McFadden’s	Adjusted	

R2	
0.43	 0.42	 0.41	 0.33	

Es
tim

at
e 	

Number	of	

attachments	
-2.730e-02	 -3.129e-02	 -1.423e-02	 -2.798e-03	

Expected	results	 -5.051e-02	 -1.327e-02	 -2.192e-01	 -1.594e-01	

Steps	to	reproduce	 -5.233e-02	 -1.259e+01	 1.319e-01	 7.317e-02	

Actual	results	 2.850e-02	 -1.154e-01	 -1.547e-01	 4.258e-01	

Readability	 -4.125e-03	 -3.442e-03	 -5.105e-02	 -2.100e-02	

Number	of	unique	

words	in	title	
6.925e-03	 7.925e-03	 1.261e-02	 1.060e-02	

Video	submitted	

Initially	
3.325e-01	 3.191e-01	 2.913e-01	 1.229e-01	

Number	of	videos	 9.123e-02	 1.005e-01	 5.655e-02	 2.523e-02	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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Table	14.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	IntelliJ	bug	reports.	

	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	

Adjusted	R2	
0.89	 0.78	 0.78	 0.74	

Es
tim

at
e 	

Number	of	

attachments	
-6.592e-02	 -3.802e-02	 -4.791e-02	 1.066e-02	

Number	of	

comments	
1.159e-02	 8.535e-03	 9.501e-03	 4.701e-03	

Expected	results	 -6.332e-02	 1.996e-01	 -7.498e-02	 -5.812e-01	

Steps	to	

reproduce	
-6.251e-01	 -5.299e-01	 -3.479e-01	 -3.574e-02	

Actual	results	 -4.356e-01	 -4.711e-01	 -1.431e-01	 4.915e-01	

Readability	 -3.377e-02	 -3.858e-04	 1.578e-03	 7.821e-03	

Number	of	

unique	words	in	

title	

1.639e-02	 2.158e-02	 2.995e-02	 2.849e-02	

Video	submitted		

Initially	
4.395e+00	 4.045e+00	 3.597e+00	 2.742e+00	

Number	of	videos	 5.161e-02	 6.152e-02	 8.783e-02	 1.191e-01	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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4.2.2.1.5 LibreOffice	

Table	15	shows	the	results	of	a	Generalized	Linear	Model	for	LibreOffice.	The	resulting	best	

model	used	17	factors,	including	product,	priority,	platform,	component,	severity,	resolution,	

version,	readability,	number	of	unique	words	in	title,	number	of	unique	words	in	description,	

number	 of	 attachments,	 number	 of	 participants,	 status,	 number	 of	 videos,	 and	 video	

submitted	initially	or	later.	The	McFadden	Adjusted	R2	of	the	model	is	0.52	and	the	number	

of	videos	is	a	statistically	significant	factor	(-0.03).	Thus,	the	model	cannot	be	used	to	explain	

the	effect	of	the	number	of	videos	on	number	of	days	to	resolve,	see	Table	15.	The	analysis	

was	repeated	with	shorter	time	windows	and	results	were	similar.	

Table	15.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	LibreOffice	bug	reports.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.52	 0.51	 0.47	 0.42	

	 Number	of	attachments	 -4.058e-02	 1.800e-02	 1.299e-02	 3.622e-02	

Es
tim

at
e 	

Number	of	participants	 7.884e-03	 1.618e-01	 1.609e-01	 1.756e-01	

Readability	 7.884e-03	 7.966e-03	 2.886e-03	 -8.605e-03	

Number	of	unique	

words	in	title	
6.968e-03	 2.850e-03	 4.674e-03	 7.567e-03	

Number	of	unique	

words	in	description	
2.403e-05	 4.911e-05	 6.611e-05	 1.985e-04	

Video	submitted	

Initially	
2.614e-01	 1.438e-01	 2.323e-01	 2.270e-01	

Number	of	videos	 -2.521e-02	 -9.007e-02	 -9.630e-02	 -1.158e-01	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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4.2.2.1.6 Minecraft	

The	 resulting	 best	 Generalized	 Linear	 Model	 for	 Minecraft	 used	 six	 factors,	 including	

product,	priority,	component,	resolution,	number	of	videos,	and	video	submitted	initially	or	

later.	Table	16	shows	 the	results.	The	McFadden	Adjusted	R2	of	 the	model	 is	0.61,	which	

means	that	the	independent	variables	used	in	building	the	regression	model	only	contribute	

to	61%	of	accurate	prediction.	The	number	of	videos	is	not	a	significant	factor	in	the	model	

(p	>	0.14),	with	an	estimate	of	-1.64.	It	is	interesting	to	observe	that,	for	the	shorter	time	

windows,	a	positive	instead	of	negative	coefficient	exists	for	the	number	of	videos:	time	to	

resolution	is	predicted	to	increase	by	about	1.8	days,	which	is	not	a	beneficial	incentive	for	

end-users	to	create	videos.		

Table	16.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	Minecraft	bug	reports.	

	

4.2.2.1.7 Mozilla	

Table	17	 shows	 the	 results	of	 a	Generalized	Linear	Model	 for	Mozilla.	The	 resulting	best	

model	used	15	factors	that	were	initially	provided,	and	included	product,	priority,	severity,	

component,	 status,	 number	 of	 duplicates,	 number	 of	 comments,	 resolution,	 readability,	

presence	of	actual	results,	presence	of	expected	results,	number	of	videos,	video	submitted	

initially	or	later,	bug	reporter's	reputation,	and	whether	bug	reporter	is	a	developer	or	an	

	 	 2010-2021	2013-2021	2016-2021	2019-2021	

	 McFadden’s	Adjusted	R2	 0.61	 0.59	 0.52	 0.48	

Es
tim

at
e 	

Video	submitted	

Initially	
4.3	 1.30	 3.813	 4.201	

Number	of	videos	 -1.64	 1.89	 3.075	 1.80	

	 P-value	 0.50	 0.22	 <	0.14	 0.36	
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end-user.	The	McFadden	Adjusted	R2	of	the	model	is	0.	54,	which	means	that	the	independent	

variables	 used	 in	 building	 the	 regression	 model	 only	 contribute	 to	 54%	 of	 accurate	

prediction.	The	number	of	videos	was	a	significant	factor	in	the	model	(p	<	0.14),	with	an	

estimate	of	-0.02	which	means	that,	while	adding	videos	to	bug	reports	reduces	the	time	to	

resolution,	 it	does	 so	by	only	a	minimal	 amount:	0.02	days,	which	 is	 a	mere	15	minutes.	

Results	indicate	a	similarly	small	impact	across	all	time	windows,	though	it	is	interesting	to	

observe	 that,	 for	 the	 time	window	of	 the	 past	 three	 years,	 a	 positive	 instead	 of	 negative	

correlation	 exists:	 time	 to	 resolution	 is	 predicted	 to	 increase.	 Note	 that	 across	 all	 time	

windows,	 if	 the	 bug	 reporter	 was	 a	 developer,	 rather	 than	 end-user,	 time	 to	 resolution	

dropped,	but	only	by	a	minimal	amount:	0.05	days.	

Table	17.	Generalized	Linear	Model	predicting	the	impact	on	average	number	of	days	to	

resolve	Mozilla	bug	reports.	

	 	
2010-

2021	

2013-

2021	

2016-

2021	

2019-

2021	

	 McFadden’s	Adjusted	R2	 0.54	 0.62	 0.6	 0.53	

	 Number	of	duplicates	 1.294e-01	 -1.080e-01	 3.181e-02	 -1.080e-01	

	 Number	of	comments	 2.534e-03	 1.086e-02	 7.735e-03	 1.086e-02	

	 Expected	results	 -5.522e-02	 -3.818e-01	 3.549e-01	 -3.818e-01	

	 Actual	results	 8.127e-02	 2.486e-01	 -2.903e-01	 2.486e-01	

	 Bug	reporter's	reputation	 1.123e-02	 9.949e-02	 3.181e-02	 9.949e-02	

	

Developer	or	end-user	

(developer)	
-5.256e-02	 -2.729e-01	 -1.840e-01	 -2.729e-01	

	 Readability	 -2.173e-05	 -4.059e-04	 -2.550e-04	 -4.059e-04	

Es
tim

at
e 	 Video	submitted	

Initially	
-6.008e-02	 1.843e-01	 -6.628e-02	 1.843e-01	
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4.2.2.2 RQ2:	Resolution	with	a	Patch	(FIXED)	

A	reduced	time	to	resolution	is	not	the	only	possible	desirable	outcome;	if	the	presence	of	

videos	were	to	lead	to	a	higher	percentage	of	bug	reports	being	resolved	with	a	patch	(i.e.,	

resolution	 status	 of	 FIXED),	 that	might	 serve	 as	 an	 important	 incentive	 for	 reporters	 to	

submit	videos	along	with	their	bug	reports	since	it	increases	their	chances	of	having	their	

issue	be	addressed.	

Figure	29	shows	the	difference	in	percentage	of	bug	reports	successfully	resolved	with	video	

and	without.	Comparing	 this	difference	on	all	 49,661	bug	 reports	with	video	and	99,322	

without	reveals	that,	across	all	11	years,	a	higher	percentage	of	bug	reports	without	videos	

were	resolved	with	a	resolution	status	of	FIXED.	This	difference	 is	statistically	significant	

(Welch	Two	Sample	t-test,	t	=	6.85,	df	=	21.81,	p-value	<	0.14).	The	difference,	however,	is	

no	longer	statistically	significant	over	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	3.73,	

df	=	2.16,	p-value	>	0.14).		

Number	of	videos	 -2.41E-02	 -1.47E-02	 -5.47E-02	 2.82E-02	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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Figure	29.	Difference	between	percentage	of	bug	reports	with	and	without	video	

attachments	that	were	successfully	resolved	with	a	patch.	

Examining	the	difference	on	a	system-by-system	basis,	the	results	are	different	for	different	

systems.	For	Android	and	Minecraft,	a	higher	percentage	of	fixed	and	resolved	bug	reports	

have	video	attachments,	whereas	for	Mozilla	and	IntelliJ	the	opposite	is	true	(all	results	are	

statistically	 significant	over	11	years	and	 three	years,	 except	 IntelliJ	where	 the	 last	 three	

years	are	no	longer	statistically	significant).	The	difference	in	LibreOffice	is	not	statistically	

significant.	 These	 results	 show	 that	 individual	 systems	 can	 experience	 differences	 in	

outcomes.	Android	in	particular	stands	out,	which	is	perhaps	not	surprising	because	it	is	a	

very	visual	platform.	It	is	also	interesting	to	observe	that	IntelliJ	has	clearly	trended	away	

from	videos	having	a	negative	impact.	

	

4.2.2.2.1 Priority	

Considering	only	high	priority	bug	reports	(as	defined	in	Section	4.1.3),	results	showed	that	

a	 higher	 but	 non-statistically	 significant	 percentage	 of	 high	 priority	 bug	 reports	without	

videos	were	resolved	with	a	patch	(Welch	Two	Sample	t-test,	t	=	-1.45,	df	=	18.81,	p-value	

>	0.14).	The	difference	remained	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	
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0.45,	df	=	2.5,	p-value	>	0.14)	when	only	considering	the	last	three	years.	Together,	these	

results	indicate	that	priority	does	not	appear	to	affect	findings	that	were	observed	thus	far.	

	

4.2.2.2.2 Generalized	Linear	Model	

To	further	examine	the	effect,	a	Generalized	Linear	Model	was	built.	Out	of	the	26	factors	

introduced	in	Section	4.1.4,	nine	factors	remained	to	be	included	in	the	selected	best	model,	

namely	 priority,	 readability,	 number	 of	 unique	words	 in	 title,	 presence	 of	 actual	 results,	

presence	of	 steps	 to	 reproduce,	number	of	back-and-forth,	 time	 to	 resolution,	number	of	

videos,	and	video	submitted	initially	or	later.	

The	predicted	value	is	bug	reports	being	resolved	with	a	patch,	yes	or	no.	The	McFadden	

Adjusted	R2	of	the	model	is	0.29,	which	means	that	this	set	of	factors	is	insufficient	to	build	

an	accurate	regression	model	(see	Table	18).	Note	that	priority	ranged	from	-5.753e-01	(P5)	

to	9.255e-01	(Not	set).	The	same	model	was	built	for	the	last	nine,	six,	and	three	years	and	

encountered	the	same	situation.	Because	the	p-values	are	low,	the	model	itself	is	inaccurate	

and	thus	the	effect	of	number	of	videos	on	resolution	with	a	patch	cannot	be	interpreted	or	

explained.	Overall,	then,	this	means	that	other	factors	than	the	26	are	at	work.	Until	further	

study,	the	results	only	show	that	a	meaningful	difference	exists	per	Figure	29	and	the	Welch	

Two	Sample	t-test.	

Table	18.	Generalized	Linear	Model	predicting	percentage	of	bug	reports	with	and	without	

videos	being	resolved	as	FIXED.	

	 	 2010-2021	2013-2021	2016-2021	2019-2021	

	 McFadden’s	Adjusted	R2	 0.29	 0.36	 0.42	 0.55	

Es
tim

at
e	

Number	of	back-and-forth	 1.672e-03	 1.618e-03	 1.899e-03	 3.98E-03	

Steps	to	reproduce	 -5.591e-02	 -4.962e-02	 -2.650e-02	 1.19E-02	

Actual	results	 -8.609e-02	 -9.119e-02	 -5.011e-02	 -1.66E-02	
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The	following	subsections	present	the	results	of	the	Generalized	Linear	Model	predicting	the	

percentage	of	bug	reports	being	resolved	with	a	patch	for	individual	systems.	

	

4.2.2.2.3 Android	

Table	19	shows	the	results	of	a	Generalized	Linear	Model	 for	Android.	The	resulting	best	

model	used	11	factors	consisted	of	severity,	time	to	resolution,	status,	readability,	presence	

of		steps	to	reproduce,	presence	of	actual	results,	presence	of	expected	results,	number	of	

unique	 words	 in	 title,	 number	 of	 attachments,	 number	 of	 videos,	 and	 video	 submitted	

initially	or	later.	The	McFadden	Adjusted	R2	of	the	model	is	0.63	which	means	these	factors	

were	not	 sufficient	 to	build	an	accurate	 regression	model.	The	number	of	videos	 is	not	a	

significant	factor	in	the	model	(p	>	0.14),	with	an	estimate	of	1.955e-15,	which	means	that	

the	impact	of	adding	videos	to	Android	bug	reports	on	the	chance	of	getting	resolved	with	a	

Readability	 1.541e-04	 1.389e-04	 2.219e-04	 5.25E-04	

Number	of	unique	words	in	title	 8.568e-03	 8.840e-03	 1.377e-02	 1.18E-02	

Time	to	resolution	 -4.453e-04	 -5.492e-04	 -3.501e-04	 -3.01E-04	

Video	submitted	

Initially	
1.539e-01	 1.438e-01	 -6.206e-02	 -1.80E-01	

Number	of	videos	 3.947e-02	 3.970e-02	 1.951e-02	 2.39E-02	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

Observation	6.	Overall,	including	videos	does	not	have	a	statistically	significant	impact	on	

bug	reports	being	fixed	and	resolved.	However,	individual	systems	differ,	with	Android	

and	Minecraft	seeing	a	positive	impact	on	the	number	being	fixed	and	Mozilla	and	IntelliJ	

a	negative	impact	(though	for	IntelliJ	this	impact	becomes	minimal	in	the	later	years).	
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patch	is	negligible.	This,	clearly,	does	not	make	a	real	difference	from	the	perspective	of	the	

reporter.	The	results	of	the	analysis	with	shorter	time	windows	(the	last	nine,	six,	and	three	

years)	indicated	a	similarly	small	impact	across	all	time	windows,	see	Table	19.	

Table	19.	Generalized	Linear	Model	predicting	percentage	of	Android	bug	reports	with	and	

without	videos	being	resolved	as	FIXED.		

	

4.2.2.2.4 IntelliJ	

The	resulting	best	Generalized	Linear	Model	for	IntelliJ	only	used	10	factors	and	consisted	of	

priority,	 time	 to	resolution,	presence	of	 steps	 to	reproduce,	presence	of	expected	results,	

	 	
2010-

2021	

2013-

2021	

2016-

2021	

2019-

2021	

	 McFadden’s	Adjusted	R2	 0.63	 0.58	 0.56	 0.54	

Es
tim

at
e 	

Number	of	attachments	 -9.332e-17	 -2.571e-02	 -9.332e-17	 1.633e-17	

Expected	results	 1.027e-12	 2.596e-01	 -1.298e-12	 3.373e-13	

Steps	to	reproduce	 1.257e-13	 1.650e-01	 1.257e-13	 9.816e-14		

Actual	results	 -1.298e-12	 -7.430e-01	 1.027e-12	 -3.919e-13	

Readability	 -3.533e-17	 -5.397e-02	 -3.533e-17	 -5.327e-17	

Number	of	unique	words	in	

title	
-3.931e-15	 1.145e-02	 -3.931e-15	 -3.521e-15	

Time	to	resolution	 5.955e-16	 5.955e-16	 5.955e-16	 5.425e-16	

Video	submitted	

Initially	
1.062e-14	 2.316e-01	 1.062e-14	

5.042e-15	

	

Number	of	videos	 1.955e-15	 1.304e-02	 1.955e-15	 1.488e-16	

	 P-value	 >	0.14	 >	0.14	 >	0.14	 >	0.14	
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number	of	unique	words	in	title,	number	of	unique	words	in	description,	readability,	number	

of	 comments,	 number	 of	 videos,	 and	 video	 submitted	 initially	 or	 later.	 The	 McFadden	

Adjusted	 R2	 of	 the	 model	 is	 0.89,	 which	 means	 that	 the	 independent	 variables	 used	 in	

building	 the	 regression	model	 contribute	 to	 89%	 of	 accurate	 prediction.	 The	 number	 of	

videos	is	a	significant	factor	in	the	model	(p	<	0.14),	with	an	estimate	of	0.027	(Table	20).	

That	means	adding	videos	to	bug	reports	reduces	the	chance	of	getting	resolved	with	patch,	

by	around	3%.	Though	it	 is	 interesting	to	observe	that,	while	the	number	of	videos	had	a	

similarly	small	 impact	in	shorter	time	windows,	 it	was	no	longer	a	statistically	significant	

factor	in	the	model	(see	Table	20).	

Table	20.	Generalized	Linear	Model	predicting	percentage	of	IntelliJ	bug	reports	with	and	

without	videos	being	resolved	as	FIXED.		

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.89	 0.9	 0.91	 0.9	

Es
tim

at
e 	

Time	to	resolution	 -1.053e-04	 1.953e-05	 2.572e-05	 8.989e-05	

Steps	to	reproduce	 -1.556e-01	 -8.511e-02	 -9.574e-02	 -4.518e-02	

Expected	results	 1.501e-01	 2.153e-01	 2.402e-01	 1.579e-01	

Number	of	unique	words	in	

title	
1.168e-02	 1.095e-02	 1.047e-02	 7.104e-03	

Number	of	comments	 -3.762e-03	 5.038e-04	 1.018e-04	 -2.364e-03	

Number	of	unique	words	in	

description	
2.544e-04	 1.367e-04	 5.565e-05	 4.156e-05	

Readability	 4.374e-03	 2.664e-03	 2.755e-03	 1.775e-03	

Number	of	videos	 2.734e-02	 7.874e-03	 5.513e-03	 1.330e-02	

Video	submitted	 5.457e-01	 7.823e-01	 8.972e-01	 9.172e-01	
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4.2.2.2.5 LibreOffice	

Table	21	shows	the	results	of	a	Generalized	Linear	Model	for	LibreOffice.	The	resulting	best	

model	used	11	factors	including	severity,	time	to	resolution,	readability,	number	of	unique	

words	in	title,	presence	of	actual	results,	presence	of	expected	results,	presence	of	steps	to	

reproduce,	number	of	attachments,	status,	number	of	videos,	and	video	submitted	initially	

or	later.	The	McFadden	Adjusted	R2	of	the	model	is	0.53,	which	means	that	this	set	of	factors	

is	insufficient	to	build	an	accurate	regression	model.	The	same	model	was	built	for	the	last	

nine,	six,	and	three	years	and	the	same	situation	occurred	(see	Table	21).	While	the	p-values	

are	low	(<	0.14),	the	number	of	videos	did	not	impact	the	percentage	of	bug	reports	being	

resolved	with	patch	(1.955e-15).	

Table	21.	Generalized	Linear	Model	predicting	percentage	of	LibreOffice	bug	reports	with	

and	without	videos	being	resolved	as	FIXED.		

Initially	

	 P-value	 <	0.14	 >	0.14	 >	0.14	 >	0.14	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.53	 0.53	 0.53	 0.52	

	 Time	to	resolution	 5.955e-16	 1.596e-13	 2.033e-15	 2.033e-15	

Es
tim

at
e 	

Steps	to	reproduce	 1.257e-13	 -2.839e-13	 -4.563e-14	 1.806e-14	

Expected	results	 1.027e-12	 2.993e-13	 3.030e+01	 1.679e-01	

Actual	results	 -1.298e-12	 1.256e-13	 -3.766e-12	 -3.274e-12	

Number	of	unique	words	in	

title	
-3.931e-15	 2.529e-15	 1.374e-15	 1.530e-03	

Readability	 -3.533e-17	 1.058e-14	 8.648e-15	 -1.062e-03	
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4.2.2.2.6 Minecraft	

Table	22	illustrates	the	results	of	a	Generalized	Linear	Model	for	Minecraft.	The	resulting	

best	model	used	only	five	factors	out	of	the	factors	that	were	initially	provided,	 including	

component,	confirmation	status,	labels,	number	of	videos,	and	video	submitted	initially	or	

later.	The	McFadden	Adjusted	R2	of	the	model	is	0.52,	which	means	that	these	five	factors	

are	insufficient	to	build	an	accurate	regression.	Building	the	same	model	for	the	shorter	time	

windows	led	to	similar	results	(see	Table	22).	The	number	of	videos	was	a	significant	factor	

in	 the	model	 (p	<	0.14),	with	an	estimate	of	0.012,	which	 is	a	minimal	amount	 from	the	

perspective	of	bug	reporters.		

Table	22.	Generalized	Linear	Model	predicting	percentage	of	Minecraft	bug	reports	with	

and	without	videos	being	resolved	as	FIXED.		

Number	of	attachments	 -9.332e-17	 4.895e-14	 5.083e-14	 3.162e-02	

Number	of	videos	 1.955e-15	 -1.665e-13	 -1.605e-13	 -1.006e-01	

Video	submitted	

Initially	
1.062e-14	 3.533e-13	 2.300e-13	 4.624e-01	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	
McFadden’s	

Adjusted	R2	
0.52	 0.53	 0.53	 0.52	

Es
tim

at
e	

Video	submitted	

Initially	
3.115e-02	 3.550e-02	 3.609e-02	 3.543e-02	

Number	of	

videos	
1.19E-02	 9.78E-03	 1.27E-02	 1.23E-02	
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4.2.2.2.7 Mozilla	

Table	23	shows	some	of	the	results	of	a	Generalized	Linear	Model	for	Mozilla.	The	resulting	

best	model	used	only	eight	factors	out	of	the	26	total	factors	that	were	initially	provided,	and	

included	 priority,	 status,	 number	 of	 duplicates,	 number	 of	 comments,	 number	 of	 videos,	

video	submitted	initially	or	later,	bug	reporter's	reputation,	and	whether	bug	reporter	is	a	

developer	or	an	end-user.	The	McFadden	Adjusted	R2	of	the	model	is	0.03,	which	means	that	

this	set	of	factors	is	insufficient	to	build	an	accurate	regression	model.	The	same	model	was	

built	for	shorter	time	windows	and	the	same	situation	occurred.	While	the	p-values	are	low,	

the	model	itself	is	inaccurate	and	thus	the	effect	of	number	of	videos	on	resolution	with	a	

patch	cannot	be	interpreted	or	explained.	Overall,	then,	this	means	that	other	factors	than	

the	 ones	 identified	 are	 at	work.	Until	 further	 study,	 results	 only	 show	 that	 a	meaningful	

difference	exists	per	Figure	29	and	the	Welch	Two	Sample	t-test.	

Table	23.	Generalized	Linear	Model	predicting	percentage	of	Mozilla	bug	reports	with	and	

without	videos	being	resolved	as	FIXED.		

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

	 	
2010-

2021	

2013-

2021	

2016-

2021	

2019-

2021	

	 McFadden’s	Adjusted	R2	 0.03	 0.09	 0.12		 0.12		

	 Number	of	duplicates	 0.048	 0.075	 0.053	 0.024	

	 Number	of	comments	 0.0017	 0.001	 0.004	 0.007	

	 Bug	reporter's	reputation	 0.021	 0.058	 0.056	 0.041	

	

Developer	or	end-user	

(developer)	
-0.14	 -0.39	 -0.37	 -0.40	

Es
ti

m
at
e 	

Video	submitted	 0.074	 0.029	 -0.059	 -0.074	
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4.2.2.3 RQ3:	Back-and-forth	

Another	way	in	which	videos	could	possibly	have	a	positive	impact	on	the	resolution	process	

is	 if	 they	reduced	the	back-and-forth,	 that	 is,	 if	 their	presence	 led	to	 fewer	requests	 from	

developers	to	reporters	for	clarification	or	additional	information	(see	Section	4.1.3).	Recall	

that	the	dataset	only	considers	bug	reports	that	have	been	resolved,	which	might	imply	that,	

if	bug	reports	with	video	induce	fewer	requests	by	the	developer	to	the	reporter,	the	videos	

may	answer	questions	that	developers	otherwise	would	be	asking.	A	reduction	in	back-and-

forth	would	be	beneficial	to	both	the	reporter	and	the	developer	and	potentially	increase	the	

likelihood	of	the	bug	report	being	resolved	because	some	portion	of	the	requests	to	reporters	

go	unanswered	[15].	

Figure	30	shows	that	bug	reports	with	videos	had	a	consistently	higher	average	number	of	

back-and-forth	over	the	years,	except	for	LibreOffice	in	2010	and	2013.	The	difference	was	

statistically	significant	for	each	of	the	five	projects	individually	and	for	all	together	(Welch	

Two	Sample	t-test,	t	=	5.54,	df	=	11.63,	p-value	<	0.14).	The	average	back-and-forth	for	bug	

reports	with	videos	stayed	higher,	even	when	considering	just	the	three	most	recent	years	

(an	average	of	4	extra	back-and-forth,	Welch	Two	Sample	t-test,	t	=	4.75,	df	=	3.17,	p-value	

<	0.14).		

Initially	

Number	of	videos	 0.067	 0.092	 0.084	 0.034	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

Observation	 7.	 The	 impact	 of	 including	 videos	 on	 percentage	 of	 bug	 reports	 being	

resolved	 with	 a	 patch	 is	 minimal;	 and	 in	 some	 systems	 non-existence	 (e.g.,	 Android,	

LibreOffice).	
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Figure	30.	Difference	between	average	number	of	back-and-forth	in	bug	reports	with	and	

without	video	attachments.	

	

Next,	videos	that	were	submitted	initially	or	later	were	examined	to	see	if	a	difference	might	

exist	between	the	two	groups.	Videos	submitted	later	can	be	indicative	of	a	variety	of	factors,	

including	the	initial	textual	bug	report	being	of	poor	quality	or	the	possibility	that	requests	

for	video	are	made	by	developers	because	these	bug	reports	concern	more	difficult	bugs.	

Figure	31	compares	the	averages,	showing	that	bug	reports	with	videos	initially	submitted	

on	average	had	a	 lower	number	of	back-and-forth	 throughout	 the	years	 than	videos	 that	

were	 submitted	 later.	 This	 difference	 is	 statistically	 significant	 for	 all	 five	 projects	

individually	and	also	across	all	of	them	together	(Welch	Two	Sample	t-test,	t	=	-10.48,	df	=	

14.82,	p-value	<	0.14).		

Observation	8.	Over	 the	years,	bug	reports	with	video	had	a	higher	average	back-and-

forth	than	bug	reports	without	video.	
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Figure	31.	Difference	between	average	number	of	back-and-forth	for	bug	reports	with	

videos	submitted	initially	and	those	submitted	later.	

While	changing	slightly,	it	also	remains	statistically	significant	when	considering	just	the	last	

three	years	(Welch	Two	Sample	t-test,	t	=	-9.09,	df	=	3.67,	p-value	<	0.14).	Interestingly,	a	

statistically	significant	difference	remains	even	if	all	back-and-forth,	that	takes	place	before	

videos	were	submitted,	was	ignored	(Welch	Two	Sample	t-test,	t	=	1.17,	df	=	15.10,	p-value	

<	0.14).	That	 is,	 for	bug	 reports	with	videos	 submitted	 later,	most	of	 the	back-and-forth	

happens	after	the	video	is	submitted	and	this	amount	of	back-and-forth	is	on	average	still	

greater	than	that	for	videos	initially	submitted.	Combined	with	the	fact	that	bug	reports	with	

video	tend	to	take	longer	to	resolve	(Section	4.2.2.1),	this	may	be	a	possible	indication	of	

more	difficult	videos	leading	developers	to	reach	out	and	request	videos	to	help	clarify	the	

issue	(see	Section	4.3	for	more	discussion)	.	

	

Observation	9.	 Solely	 counting	back-and-forth	 after	 videos	 are	 submitted,	 the	 average	

back-and-forth	 for	 videos	 submitted	 later	 remains	 higher	 than	 for	 videos	 submitted	

initially.	
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4.2.2.3.1 Priority	

Focusing	only	on	high	priority	bug	reports	(as	defined	in	Section	4.1.3),	results	remained	the	

same:	bug	reports	with	video	had	a	higher	average	number	of	back-and-forth	(Welch	Two	

Sample	t-test	t	=	5.91,	df	=	11.03,	p-value	<	0.14).	The	difference	was	statistically	significant	

(Welch	Two	Sample	t-test	t	=	5.91,	df	=	11.03,	p-value	<	0.14).	Considering	just	the	three	

most	recent	years,	the	average	back-and-forth	for	bug	reports	with	videos	stayed	higher	and	

the	difference	remained	statistically	significant	(Welch	Two	Sample	t-test,	t	=	3.52,	df	=	2.01,	

p-value	<	0.14).	

	

4.2.2.3.2 Generalized	Linear	Model	

To	further	study	the	effect	of	including	video	on	the	number	of	back-and-forth	associated	

with	bug	reports,	a	Generalized	Linear	Model	was	built	 following	 the	process	outlined	 in	

Section	4.1.4.	Out	of	the	26	factors	that	were	initially	considered,	10	factors	were	selected	

for	 inclusion	 in	 the	 resulting	 best	 model,	 namely	 priority,	 resolution,	 readability	 score,	

number	of	unique	words	in	title,	number	of	unique	words	in	description,	presence	of	actual	

results,	 presence	 of	 expected	 results,	 time	 to	 resolution,	 number	 of	 videos,	 and	 video	

submitted	initially	or	later.	The	predicted	value	is	the	average	number	of	back-and-forth.		

The	McFadden	Adjusted	R2	 of	 the	model	 is	 0.64,	which	means	 that	 this	 set	 of	 11	 factors	

together	is	able	to	explain	64%	of	the	variability.	The	same	model	was	built	for	the	last	nine,	

six,	and	three	years,	with	the	result	shown	in	Table	24.	The	high	McFadden	Adjusted	R2	value,	

especially	 for	 the	 last	 three	 years	 (0.82),	 indicates	 that	 these	 11	 factors	 are	 strongly	

associated	 with	 the	 average	 number	 of	 back-and-forth.	 However,	 the	 relatively	 low	 but	

statistically	significant	regression	coefficient	of	number	of	videos	indicates	that	this	factor	

alone	is	not	a	major	factor	for	number	of	back-and-forth,	with	the	increase	a	mere	0.15	per	

video	(last	three	years).	
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Table	24.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	a	bug	report.	

	

In	 the	 following	 subsections,	 the	 results	 of	 the	Generalized	 Linear	Models	 predicting	 the	

average	number	of	back-and-forth	were	detailed	for	each	systems.	

	

4.2.2.3.3 Android	

The	 resulting	 best	 Generalized	 Linear	 Model	 for	 Android	 used	 11	 factors	 consisted	 of	

priority,	 severity,	 status,	 readability,	 presence	 of	 	 steps	 to	 reproduce,	 presence	 of	 actual	

results,	 presence	 of	 expected	 results,	 number	 of	 unique	 words	 in	 title,	 number	 of	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.64	 0.69	 0.75	 0.82	

Es
tim

at
e 	

Readability	 -3.669e-04	 -3.356e-04	 -4.003e-04	 -8.182e-04	

Number	of	unique	words	

in	description	
2.079e-04	 2.035e-04	 1.339e-04	 3.074e-05	

Number	of	unique	words	

in	title	
-5.176e-03	 -4.996e-03	 -5.473e-03	 -1.431e-02	

Actual	results	 3.683e-02	 2.375e-02	 2.787e-02	 -2.623e-02	

Expected	results	 -8.722e-02	 -8.942e-02	 -1.216e-01	 -1.274e-01	

Tine	to	resolution	 2.326e-04	 1.928e-04	 1.528e-04	 3.020e-04	

Number	of	videos	 1.929e-01	 1.953e-01	 1.885e-01	 1.482e-01	

Video	submitted	

Initially	
4.057e-01	 4.082e-01	 5.931e-01	 6.977e-01	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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attachments,	 number	 of	 videos,	 and	 video	 submitted	 initially	 or	 later.	 The	 McFadden	

Adjusted	R2	of	the	model	is	0.43	(see	Table	25).	That	means	this	set	of	factors	is	insufficient	

to	build	an	accurate	regression	model.	The	same	model	was	built	for	the	last	9,	6,	and	3	and	

the	results	were	similar.	While	the	number	of	videos	is	a	significant	factor	in	the	model	(p	<	

0.14),	the	model	itself	is	inaccurate	and	thus	the	effect	of	number	of	videos	cannot	be	further	

explained.	

Table	25.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	a	Android	bug	report.	

	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	
McFadden’s	Adjusted	

R2	
0.45	 0.47	 0.53	 0.65	

Es
tim

at
e 	

Number	of	

attachments	
0.024	 0.023	 0.022	 0.021	

Steps	to	reproduce		 -0.004	 -0.084	 -0.077	 0.052	

Expected	results	 -0.0099	 -0.041	 -0.18	 0.027	

Actual	results	 0.51	 0.22	 0.35	 -0.12	

Number	of	unique	

words	in	title		
0.014	 0.014	 0.016	 0.010	

Readability		 -0.017	 -0.016	 -0.019	 -0.021	

Number	of	videos		 0.05	 0.056	 0.061	 0.025	

Video	submitted	

Initially		
-0.86	 -0.82	 -0.84	 -0.77	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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4.2.2.3.4 IntelliJ	

Table	 26	 shows	 the	 results	 of	 a	 Generalized	 Linear	Model	 for	 IntelliJ.	 The	 resulting	 best	

model	used	only	nine	factors	including	priority,	readability,	presence	of	steps	to	reproduce,	

presence	of	expected	results,	number	of	unique	words	in	title,	number	of	attachments,	Time	

to	 resolution,	 number	 of	 videos,	 and	 video	 submitted	 initially	 or	 later.	 The	 McFadden	

Adjusted	R2	of	the	model	is	0.69.	The	number	of	videos	is	a	significant	factor	in	the	model	(p	

<	0.14),	with	an	estimate	of	0.24,	which	indicates	that	this	factor	alone	is	not	a	major	factor	

for	number	of	back-and-forth	and	does	not	make	a	beneficial	incentive	from	the	perspective	

of	the	bug	reporter.	

Table	26.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	an	IntelliJ	bug	report.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	
McFadden’s	

Adjusted	R2	
0.69	 0.67	 0.66	 0.68	

Es
tim

at
e 	

Steps	to	

reproduce		
-1.478e-01	 -1.674e-01	 -1.503e-01	 -0.072	

Expected	results	 2.424e-01	 2.385e-01	 2.516e-01	 0.13	

Number	of	

unique	words	in	

title	

-2.516e-02	 -2.126e-02	 -1.405e-02	 -0.004	

Time	to	

resolution	
2.993e-04	 2.940e-04	 4.038e-04	 0.0009	

Readability	 -2.878e-03	 5.765e-03	 7.904e-03	 0.007	

Number	of	

attachments		
1.135e-01	 1.088e-01	 1.058e-01	 0.1	
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4.2.2.3.5 LibreOffice	

Out	of	all	factors	that	were	initially	considered,	the	resulting	best	Generalized	Linear	Model	

for	LibreOffice	used	17	factors:	product,	priority,	platform,	component,	severity,	resolution,	

version,	readability,	number	of	unique	words	in	title,	number	of	unique	words	in	description,	

presence	 of	 steps	 to	 reproduce,	 number	 of	 attachments,	 number	 of	 participants,	 status,	

whether	 it	 is	 confirmed,	 number	 of	 videos,	 and	 video	 submitted	 initially	 or	 later.	 The	

McFadden	Adjusted	R2	of	the	model	is	0.40,	which	means	that	this	set	of	factors	is	insufficient	

to	build	an	accurate	regression	model.	The	same	model	was	built	for	shorter	time	windows	

and	results	 indicated	a	similar	 impact	across	all	 time	windows	(see	Table	27).	Again,	 the	

model	cannot	be	used	to	interpret	the	effect	of	number	of	videos	on	number	of	back-and-

forth.	

Table	27.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	a	LibreOffice	bug	report.	

Number	of	videos		 2.343e-01	 2.445e-01	 2.415e-01	 2.415e-01	

Video	submitted	

Initially	
1.39	 1.31	 8.99	 0.88	

P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.40	 0.41	 0.39	 0.38	

	

Number	of	unique	words	in	

title		
4.806e-03	 1.578e-03	 4.478e-03	 2.492e-03	

Es
tim

at
e 	 Presence	of	steps	to	

reproduce	
4.448e-02	 1.588e-02		 3.223e-03		 1.612e-02	
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4.2.2.3.6 Minecraft	

For	Minecraft,	 the	best	Generalized	Linear	Model	used	only	seven	 factors	out	of	 the	 total	

factors	 that	 were	 initially	 provided	 and	 included	 priority,	 confirmation	 status,	 time	 to	

resolution,	labels,	resolution,	number	of	videos,	and	video	submitted	initially	or	later.	The	

McFadden	Adjusted	R2	of	the	model	is	0.32,	which	means	that	the	regression	model	is	not	

accurate	enough	to	explain	the	effect	of	number	of	videos	on	number	of	back-and-forth.	The	

same	model	was	built	for	the	last	nine,	six,	and	three	years	and	the	McFadden	Adjusted	R2	of	

the	model	dropped	(see	Table	28).	The	number	of	videos	is	a	significant	factor	in	the	model	

(p	<	0.14),	but	the	model	itself	was	inaccurate	and	thus	we	cannot	interpret	or	explain	the	

effect	of	number	of	number	of	back-and-forth.	Overall,	then,	this	means	that	other	factors	

than	the	ones	identified	are	at	work.		

Number	of	unique	words	in	

description	
9.601e-05	 8.103e-05	 9.678e-05	 1.411e-04	

Readability	 -3.194e-03	 6.877e-04	 5.799e-05	 -1.474e-03	

Number	of	participants		 1.156e-01	 1.357e-01	 1.455e-01	 1.610e-01	

Number	of	attachments		 5.181e-02	 9.620e-02	 9.986e-02	 1.234e-01	

Number	of	videos	 4.208e-02	 -6.907e-03	 -2.218e-02	 -3.208e-02	

	
Video	submitted	

Initially	
2.153e-01	 1.974e-01	 1.852e-01	 1.514e-01	

	 Is	confirmed	 2.649e-01	 2.072e-01	 1.703e-01	 1.462e-01	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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Table	28.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	a	Minecraft	bug	report.	

	

4.2.2.3.7 Mozilla	

Table	29	shows	some	of	the	results	of	a	Generalized	Linear	Model	for	Mozilla.	The	resulting	

best	model	 used	 only	 14	 factors	 out	 of	 the	 total	 factors	 that	were	 initially	 provided	 and	

included	component,	 severity,	number	of	comments,	 readability	score,	presence	of	actual	

results,	 presence	 of	 expected	 results,	 bug	 reporter's	 reputation,	 number	 of	 videos,	 video	

submitted	by	developer	or	end-user,	and	video	submitted	 initially	or	 later.	The	predicted	

value	is	the	average	number	of	back-and-forth.	The	McFadden	Adjusted	R2	of	the	model	is	

0.01,	which	means	that	this	set	of	factors	is	insufficient	to	build	an	accurate	regression	model.	

The	same	model	was	built	for	shorter	time	windows	and	the	same	situation	occurred	(see	

Table	29).	The	model	could	not	be	used	to	interpret	or	explain	the	effect	of	number	of	videos	

on	number	of	back-and-forth.	Further	study	will	need	to	discover	what	other	factors	besides	

the	14	factors	studied	may	be	causing	the	difference;	for	now,	the	results	can	only	show	a	

statistically	significant	difference	but	cannot	explain	it.	

	 	 2010-2021	2013-2021	2016-2021	2019-2021	

	 McFadden’s	Adjusted	R2	 0.32	 0.28	 0.22	 0.23	

Es
tim

at
e 	

Video	submitted	

Initially	
2.99	 2.95	 2.84	 1.56	

Number	of	videos	 1.83	 1.92	 1.95	 2.58	

	 P-value	 <	0.14	 <	0.14	 <	0.14	 <	0.14	
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Table	29.	Generalized	Linear	Model	predicting	the	impact	on	average	back-and-forth	by	the	

number	of	videos	included	in	a	Mozilla	bug	report.	

	

Overall,	with	the	relatively	low	and	limited	statistical	significance	regression	coefficient	of	

number	of	videos,	additional	evidence	would	need	be	gathered	to	be	able	to	understand	the	

effect	as	this	factor	alone	is	not	a	major	factor	for	number	of	back-and-forth	(see	Section	4.3).	

	 	
2010-

2021	

2013-

2021	

2016-

2021	

2019-

2021	

	 McFadden’s	Adjusted	R2	 0.01	 0.02	 0.03	 0.05	

Es
tim

at
e	

Number	of	duplicates	 -4.381e-03	 -3.992e-03	 -7.872e-03	 -1.370e-02	

Number	of	comments	 3.313e-04	 1.359e-04	 -1.311e-03	 -1.942e-03	

Expected	results	 -6.749e-02	 -9.135e-02	 -2.535e-02	 -8.431e-03	

Actual	results	 5.480e-02	 9.328e-02	 4.459e-02	 1.910e-02	

Bug	reporter's	reputation	 2.079e-04	 -1.910e-02	 -7.651e-03	 -1.150e-02	

Developer	or	end-user	

(developer)	
-5.176e-03	 -1.039e-02	 -3.824e-03	 3.656e-02	

Readability	 -3.669e-04	 -3.320e-05	 -1.491e-05	 8.843e-06	

Video	submitted	

Initially	
4.057e-01	 1.791e-02	 3.994e-02	 8.998e-03	

Number	of	videos	 2.76E-03	 2.44E-03	 -1.05E-02	 -4.45E-03	

P-value	 <	0.14	 <	0.14	 >	0.14	 >	0.14	

Observation	10.	The	impact	of	including	videos	on	number	of	back-and-forth	is	minimal.	
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4.2.3 A	Deeper	Dive	into	Mozilla	

The	 results	 thus	 far	 were	 surprising,	 especially	 since,	 as	 discussed	 in	 Section	 2.2.6,	

developers	seem	appreciative	of	videos	being	present	and	one	could	therefore	perhaps	have	

expected	that	this	might	translate	into	tangible	benefits	for	the	reporters	along	the	kinds	of	

effects	that	were	examined.	This	section,	therefore,	presents	the	results	of	the	deep	dive	that	

was	performed	to	examine	other	aspects	that	potentially	could	have	influenced	the	findings.	

More	 specifically,	 this	 section	 explores	 whether	 it	 matters	 if	 videos	 are	 submitted	 by	

developers	on	the	project	or	by	end-users,	whether	the	type	of	bug	being	reported	with	a	

video	may	have	an	impact,	and	whether	the	effect	of	including	videos	differs	depending	on	

the	assigned	severity	of	the	bug	report.	For	two	factors,	role	and	type,	Mozilla	bug	reports	

were	analyzed,	as	detailed	in	Section	4.1.5.	The	last	analysis	examines	the	potential	role	of	

the	severity	that	is	assigned	to	bug	reports	in	Mozilla	and	two	other	systems,	namely	Android	

and	LibreOffice.	

	

4.2.3.1 Role	of	the	Video	Submitter	

Because	developers	can	perhaps	be	presumed	to	be	more	skilled	at	writing	bug	reports	for	

colleagues	on	the	project,	 they	may	mostly	resort	to	textual	bug	reports	and	only	 include	

video	when	truly	necessary.	As	a	result,	a	different	effect	may	exist	for	developers	versus	

end-users	 submitting	 videos.	 To	 study	whether	 the	 role	 of	 video	 submitter	may	have	 an	

effect	on	the	overall	bug	resolution	process,	an	analysis	was	conducted	only	on	Mozilla,	since	

it	had	all	 the	 information	about	who	actually	 submitted	 the	videos.	The	 information	was	

examined	by	mapping	the	reporter,	assignee,	and	others	to	whether	they	are	developers	or	

end-users	 using	 the	 approach	 detailed	 in	 Section	 4.1.5.	 Such	 others	 could	 be	 other	

developers	who	have	an	interest,	might	have	some	relevant	knowledge,	or	are	the	owner	of	

relevant	code.	It	could	also	be	end-users	other	than	the	reporter.	Figure	32	illustrates	the	

resulting	counts	broken	down	into	these	categories.		
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Figure	32.	Categorization	of	videos.	Note	that	“reporter”	is	listed	twice	so	to	distinguish	

reporters	as	developers	versus	end-users	for	videos	that	were	initially	submitted	versus	

later	submitted.	

The	 figure	 shows	 that	 the	majority	 of	 videos,	 6,704,	were	 submitted	with	 the	 initial	 bug	

report,	as	already	shown	in	Figure	26.	The	remaining	3,890	were	submitted	after	the	initial	

bug	report	was	filed,	typically	after	some	back-and-forth	between	the	assigned	developer	

and	the	reporter.	Often,	the	assigned	developer	would	explicitly	ask	for	a	video	so	that	they	

could	obtain	 additional	 context	 that	may	help	 them	 in	deciding	what	 to	do	with	 the	bug	

report.	For	instance,	Figure	33	(part	1)	shows	the	description	of	Mozilla	bug	id	151718333,	

in	which	a	developer	immediately	asked	the	bug	reporter	to	“record	a	small	video”,	and	the	
reporter	attached	a	video	in	response	to	(Figure	33	(part	2)).		

 
33 https://bugzilla.mozilla.org/show_bug.cgi?id=1517183 
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Figure	33.	Example	of	video	submitted	later	because	of	developer’s	request,	bug	id	

1517183	(cropped).	
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In	some	cases,	however,	the	reporter	would	submit	the	video	unsolicited	in	an	effort	to	bring	

clarity	to	the	back-and-forth	discussion.	Bug	id	163676934	is	an	example	of	such	situations	

(Figure	34).	Even	though	it	may	seem	that	its	description	has	all	the	information	needed	to	

resolve	the	bug,	two	developers	had	to	ask	its	reporter	to	provide	more	information	(note:	

generally,	 not	 as	 a	 video	 per	 se),	 to	 which	 the	 reporter	 replied	 by	 attaching	 a	 video	

illustrating	the	needed	information	(Figure	35).	

	

Figure	34.	Example	of	video	submitted	later	voluntarily	by	bug	reporter,	bug	id	1636769	

(cropped).		

	

 
34 https://bugzilla.mozilla.org/show_bug.cgi?id=1636769 
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Figure	35.	Comments	from	bug	id	1636769	(cropped).	

Next,	the	data	about	who	actually	submitted	the	videos	was	examined,	based	on	the	bottom	

two	rows	of	Figure	32.	Clearly,	all	initially	submitted	bug	reports	(6,704)	were	submitted	by	

reporters.		Of	the	3,890	videos	that	were	submitted	later,	2,010	(51%)	were	submitted	by	

the	 reporter,	 877	 (23%)	were	 submitted	 by	 the	 assigned	 developer,	 and	 another	 1,003	

(26%)	were	submitted	by	others.	Mapping	 the	reporter,	assignee,	and	others	 to	whether	

they	are	developers	or	end-users,	in	total	4,570	videos	(45%)	were	submitted	by	developers	

on	the	projects	and	5,380	(55%)	by	end-users.	Note	that	in	a	few	cases	the	bug	reporter	was	

also	the	assigned	developer	for	the	bug,	meaning	that	the	developer	themselves	filed	a	bug	

report	that	they	not	only	worked	on	at	a	later	time,	but	also	contributed	a	video	as	part	of	

the	discussion.	In	these	cases,	they	were	categorized	as	bug	reporters,	as	a	sampling	seemed	

to	indicate	that	often	the	assignee	would	post	the	video	for	other	developers	to	understand	

the	bug	report	better.	
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Potential	trends	were	examined	in	these	distributions	over	the	years.	Figure	36	shows	the	

year-by-year	 distribution	 of	whether	 later	 videos	were	 submitted	 by	 reporters,	 assigned	

developers,	 or	 other	 persons.	 Using	 the	 Mann-Kendall	 Test	 together	 with	 Sen’s	 Slope	

Estimator	for	the	determination	of	trend	and	slope	magnitude	[159],	no	discernible	pattern	

is	detected.	Nonetheless,	the	role	of	others	is	interesting:	more	than	a	fifth	of	later	submitted	

videos	are	submitted	by	others,	consistently.	

	

Figure	36.	Who	attached	videos	later	in	the	process.	

Figure	37	explores	this	phenomenon	in	more	detail,	separating	reporters	and	others	from	

Figure	36	into	whether	they	are	developers	or	end-users.	With	the	refinement,	no	particular	

pattern	or	changes	over	time	are	apparent.	The	distribution	of	developer	versus	end-user	

for	reporters	 fluctuates	but	does	not	exhibit	a	 trend	(Mann-Kendall	 trend	 test,	p-value	<	

0.14);	the	distribution	of	developer	versus	end-user	for	others	similarly	equally	fluctuates	

and	equally	does	not	exhibit	an	underlying	trend	(Mann-Kendall	trend	test,	p-value	<	0.14).	

That	 said,	 on	 the	 surface	 one	would	not	 expect	 this	many	 end-users	 as	 there	 is	 no	 good	

reason	 for	 other	 end-users	 to	 be	 monitoring	 the	 bug	 database.	 That	 said,	 one	 possible	

explanation	might	be	that	this	concerns	bugs	that	many	people	experience	and,	once	they	

have	been	reported,	others	seeking	to	file	a	bug	report	find	the	existing	bug	report	and	add	

information,	including	videos.	
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Figure	37.	Percentage	of	developers	and	end-users	who	submitted	video	attachments	later	

in	the	resolution	of	bug	reports.	

Moreover,	the	role	of	bug	reporters	who	submitted	videos	initially,	attached	to	the	original	

bug	report,	was	studied.	Figure	38	shows	a	strong	shift	(Mann-Kendall	trend	test,	p-value	<	

0.14)	 from	primarily	 developers	 to	 primarily	 end-users.	 This	 shift	may	 be	 because	 early	

videos	by	developers	may	have	set	an	example	for	end-users	to	follow,	an	effect	that	could	

be	 slowly	 cascading	 to	 other	 end-users.	 It	 may	 also	 be	 because	 video	 is	much	 easier	 to	

capture	and	submit	today	than	it	was	a	decade	ago.	

	

Figure	38.	Percentage	of	bug	reporters	who	are	developers	or end-users.	

Next,	 the	 impact	 of	 bug	 reports	 with	 videos	 submitted	 by	 developers	 was	 analyzed	 as	

compared	to	those	with	videos	submitted	by	end-users	in	terms	of	the	three	outcomes	of	
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time	to	resolution,	percentage	being	resolved	as	fixed,	and	back-and-forth.	Several	effects	

were	found.	First,	bug	reports	with	videos	submitted	by	developers	took	longer	to	resolve	

than	those	submitted	by	end-users	(comparing	the	mean);	the	difference	however	was	not	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-0.98,	df	=	18.65,	p-value	>	0.14).	

Second,	a	higher	percentage	of	bug	reports	submitted	by	developers	were	resolved	with	a	

resolution	 status	 of	 FIXED	 than	 those	 by	 end-users,	 a	 statistically	 significant	 difference	

(Welch	Two	Sample	t-test,	t	=	4.11,	df	=	22,	p-value	<	0.14),	with	developers	having	a	mean	

of	58	and	end-users	42.	Over	the	last	three	years,	however,	the	difference	becomes	smaller	

and	is	no	longer	statistically	relevant.		

Additionally,	the	bug	reports	submitted	by	developers	with	videos	have	less	back-and-forth	

compared	to	bug	reports	submitted	by	end-users.	The	difference	was	statistically	significant	

(Welch	Two	Sample	t-test,	t	=	2.75,	df	=	21.56,	p-value	<	0.14).	It	gets	lower	over	time,	with	

the	difference	in	the	three	most	recent	years	being	three	days	(Welch	Two	Sample	t-test,	t	=	

6.04,	df	=	3.54,	p-value	<	0.14).		

Overall,	these	results	may	point	to	developers		submitting	more	difficult	bug	reports	when	

video	is	included	(leading	to	a	longer	time	to	resolution	compared	to	end-users)	with	higher	

quality	bug	reports	and/or	videos	(higher	percentage	resolved,	less	back-and-forth).	With	

limited	statistical	significance,	however,	additional	evidence	would	need	be	gathered	to	be	

able	to	conclude	this	more	strongly	(see	Section	4.3).	

	

Observation	11.	Over	the	years,		a	higher	percentage	of	Mozilla	bug	reports	submitted	by	

developers	was	resolved	with	a	resolution	status	of	FIXED.	These	bug	reports	on	average	

also	had	a	 longer	time	to	resolution	and	 less	back-and-forth,	compared	to	bug	reports	

submitted	by	end-users.	
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4.2.3.2 Bug	Type	

To	understand	if	the	type	of	the	bug	has	an	impact	on	the	bug	report	resolution	process,	the	

results	from	manually	labeling	Mozilla	bug	reports	were	used	(see	Chapter	5).	As	detailed	in	

Section	5.1.2,	 the	bugs	were	categorized	 into	the	five	categories	of	User	 interface,	System	

settings,	Failure	to	load,	Functionality,	and	Access.	From	the	1,045	labeled	videos,	videos	of	

potential	UI	bugs	dominated	at	69.86%,	which	was	not	entirely	unexpected	given	that	video	

is	an	excellent	medium	for	capturing	UI	behavior.	Therefore,	this	analysis	is	focused	on	this	

69.86%,	comparing	UI	bug	reports	with	and	without	video.	

Figure	39	shows	the	trend	for	the	average	number	of	days	to	resolve	for	UI	bug	reports	with	

and	without	video.	Note	that	UI	bug	reports	with	video	take	 longer	 to	resolve	than	those	

without	(the	difference	however	is	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	

0.68518,	 df	=	 19.044,	 p-value	>	 0.14),	which	 aligns	with	 the	 general	 trend	 discussed	 in	

Section	4.2.2.1.		

	

Figure	39.	Comparing	the	average	days	to	resolve	of	UI	bug	reports	with	and	without	video	

attachments.	

Interestingly,	 a	 higher	 percentage	 of	 UI	 bug	 reports	 without	 video	 was	 resolved	 with	 a	

resolution	status	of	FIXED	(see	Figure	40).	This	difference	is	statistically	significant	(Welch	
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Two	Sample	t-test,	t	=	-2.8504,	df	=	21.258,	p-value	<	0.14)	and	remains	so	when	examining	

just	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	-2.2785,	df	=	2.5173,	p-value	<	0.14).		

	

Figure	40.	Percentage	of	UI	bug	reports	with	and	without	video	attachments	that	were	

successfully	resolved	with	a	patch.	

	

Assuming	that	video	is	good	at	illustrating	the	important	parts	of	UI	bugs,	the	bug	reports	

with	videos	would	have	fewer	number	of	back-and-forth	and	shorter	discussion,	compared	

to	bug	reports	without	videos.	Figure	41	shows	that	UI	bug	reports	with	video	incurred	less	

back-and-forth	(Welch	Two	Sample	t-test,	t	=	3.0622,	df	=	17.341,	p-value	<	0.14).	
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Figure	41.	Average	number	of	back-and-forth	in	UI	bug	reports	with	and	without	video	

attachments.	

A	possible	explanation	for	UI	bug	reports	with	video	being	fixed	less	often	might	be	that	the	

inclusion	of	video	is	a	signal	of	the	bug	being	more	difficult.	At	the	same	time,	the	lower	back-

and-forth	for	UI	bug	reports	with	video	does	not	align	with	this,	as	one	might	reasonably	

assume	more	difficult	bug	reports	might	involve	more	back-and-forth.	Therefore,	another	

possible	explanation	is	that	a	higher	percentage	of	UI	bug	reports	do	not	represent	actual	

bugs	and	thus	are	closed	quickly.	

	

4.2.3.3 Severity	

The	last	analysis	examines	the	potential	role	of	the	severity	that	is	assigned	to	bug	reports:	

it	could	be	that	bug	reports	with	video	have	a	different	severity	than	those	without,	and	this	

may	impact	the	bug	report	resolution	process	because	of	the	implied	importance	of	fixing	

severe	bugs.		

Observation	12.	Over	the	years,	Mozilla	UI	bug	reports	with	videos	had	fewer	number	of	

back-and-forth,	compared	to	bug	reports	without	videos.	
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4.2.3.3.1 Mozilla	

As	Figure	42	shows,	the	majority	of	Mozilla	bug	reports	had	a	normal	severity	over	the	years.	

Moreover,	the	severity	of	bug	reports	with	and	without	video	attachments	appears	similar	

over	the	years.	The	mean	for	each	level	of	severity	was	calculated	and	the	difference	between	

the	average	number	of	days	to	resolve,	percentage	of	bug	reports	being	fixed,	and	average	

number	of	back-and-forth	for	the	bug	reports	with	and	without	videos	was	compared.	No	

statistically	significant	difference	was	found	for	any	of	the	possible	severity	levels.	

	

Figure	42.	Severity	of	bug	reports	with	and	without	video	attachments.	

The	severity	levels	in	Mozilla	were	grouped	based	on	Least	Significant	Difference	(LSD)	test	

[157],	which	determines	if	the	means	of	the	groups	are	statistically	different,	and	obtained	

three	 severity	 groups:	 high	 severity	 (group	 1:	 blocker,	 critical,	 and	major),	 low	 severity	

(group	 2:	 normal,	 trivial,	 minor,	 Not	 set),	 and	 request	 for	 enhancement	 (group	 3:	

enhancement).		

The	bug	reports	were	analyzed	in	group	1,	comparing	those	with	video	to	those	without.	The	

results	showed	that	a	higher	percentage	of	high	severity	bug	reports	with	video	was	fixed	

(not	 statistically	 significant	 over	 the	 last	 three	 years),	 that	 they	 were	 resolved	 slower	

(180.19	days	compared	to	111.44,	Welch	Two	Sample	t-test,	t	=	-1.69,	df	=	17.23,	p-value	<	

0.14),	and	that	they	involved	less	back-and-forth	(statistically	significant	even	over	the	last	

three	years,	Welch	Two	Sample	t-test,	t	=	-4.30,	df	=	115.36,	p-value	<	0.14).	
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This	might	perhaps	be	 the	strongest	evidence	 that	videos	could	help,	given	 that	all	 three	

outcomes	improved	and	that	severity	itself	is	not	a	factor	in	this	improvement.	This	might	

mean	that	the	reporters	of	severe	bug	reports	know	how	to	convey	the	bug	clearly,	so	it	is	

swiftly	 understood	 and	 dealt	 with.	 In	 the	 context	 of	 the	 earlier	 results	 that	 showed	 no	

conclusive	evidence,	it	is	possible	that	the	noise	of	the	many	other	bug	reports	that	are	not	

high	severity	obfuscates	this	effect.		

	

4.2.3.3.2 Android	and	LibreOffice	

To	understand	if	video	is	helpful	for	critical	bugs	in	other	systems	as	well,	the	same	analysis	

was	repeated	for	the	two	other	systems:	Android	and	LibreOffice.	Since	the	severity	levels	

were	not	publicly	available	for	IntelliJ	(e.g.,	bug	id	IDEA-30758335)	and	Minecraft	bug	reports	

(e.g.,	bug	id	MC-25889336),	they	were	not	included	in	the	further	analyses.	

LibreOffice	 bug	 reports	 were	 grouped	 into	 high	 severity	 (group	 1:	 blocker,	 critical,	 and	

major),	low	severity	(group	2:	normal,	trivial,	minor),	and	request	for	enhancement	(group	

3:	enhancement).	The	bug	reports	that	were	analyzed	were	in	group	1,	comparing	those	with	

video	to	those	without.	The	results	showed	that	over	the	years,	for	the	group	of	bug	reports	

with	high	severity,	a	higher	percentage	with	video	was	fixed	(not	statistically	significant),	

that	they	took	a	greater	number	of	days	to	resolve	(not	statistically	significant),	and	that	they	

involved	a	higher	number	of	back-and-forth	(statistically	significant,	Welch	Two	Sample	t-

test	t	=	4.81,	df	=	21.9,	p-value	<	0.14).	

 
35 https://youtrack.jetbrains.com/issue/IDEA-307583 
36 https://bugs.mojang.com/projects/MC/issues/MC-258893 

Observation	13.	Over	the	years,	a	higher	percentage	of	high	severity	Mozilla	bug	reports	

with	video	was	 resolved	with	a	 status	of	FIXED,	 compared	 to	 the	ones	without	video.	

Moreover,	high	severity	bug	reports	with	video	took	a	smaller	number	of	days	to	resolve	

and	had	fewer	number	of	back-and-forth.	
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The	severity	levels	of	Android	were	grouped	into	high	severity	(group	1:	critical,	and	high)	

and	low	severity	(group	2:	moderate,	low,	negligible	security	impact).	The	results	showed	

that	over	the	years,	bug	reports	of	high	severity	and	with	video	took	longer	to	resolve	(not	

statistically	 significant),	 a	 higher	 percentage	was	 fixed	 (not	 statistically	 significant),	 and	

involved	a	higher	number	of	back-and-forth	than	those	with	high	severity	and	no	video	(not	

statistically	significant).	

It	is	interesting	to	contrast	these	results	with	the	main	results	of	Mozilla	bug	reports	with	

high	severity.	For	bugs	of	high	severity,	the	inclusion	of	video	is	a	helpful	practice	in	Mozilla	

bug	reports,	as	compared	to	Android	and	LibreOffice	where	it	is	not.	It	is	unclear	what	may	

be	the	reason,	other	than	possibly	bug	reports	with	video	in	Android	(operating	system)	and	

LibreOffice	(office	suite)	may	be	different	kinds	of	bugs.	For	example,	LibreOffice	may	have	

more	UI	bugs	which	may	be	less	of	a	severity.	

	

4.3 Discussion	
This	chapter	began	by	citing	two	common	beliefs	surrounding	the	inclusion	of	videos	in	bug	

reports:	 that	 videos	 offer	 an	 opportunity	 to	 share	 context-rich	 bug	 information	 with	

developers	[36],	[39],	[42]	and	that,	in	doing	so,	they	help	developers	in	understanding	users'	

interactions,	see	the	actual	behavior	of	the	system	in	response	to	some	input,	and	internalize	

what	may	have	contributed	to	the	manifestation	of	the	bug	[35],	[140]–[142].	This	study	does	

not	question	this	belief,	but	asks	a	complementary	question:	does	the	inclusion	of	videos	in	

bug	reports	lead	to	other,	externally	observable	effects	in	terms	of	the	bug	resolution	process	

that	may	offer	further	benefits?	With	the	clear	increase	in	video	attachments	over	the	past	

Observation	14.	Over	the	years,	comparing	bug	reports	of	high	severity	with	video	and	

without	video,	only	three	of	the	results	were	statistically	significant:	bug	reports	of	high	

severity	with	video	in	Mozilla	had	a	slower	time	to	resolution	and	less	back-and-forth,	

and	in	LibreOffice	had	more	back-and-forth.	That	means,	severity	may	play	a	small	role	

in	individual	systems,	but	overall	does	not	appear	to	affect	the	non-effects	that	were	seen.	
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10	years	(Figure	25),	but	the	overall	percentage	of	bug	reports	with	videos	still	remaining	

low	(just	2.43%),	it	is	particularly	important	to	understand	if	any	additional	incentive	could	

make	 a	 difference	 and	 bring	 the	 percentage	 up,	 since	 they	 could	 provide	 an	 important	

incentive	for	bug	reporters	to	include	videos	if	they	themselves	would	experience	tangible	

benefits.	

In	this	context,	the	results	answer	three	research	questions:	

• RQ1:	Does	including	videos	in	bug	reports	lead	to	a	reduction	in	the	average	time	to	
resolution?	The	results	showed	that	including	videos	incurs	on	average	a	longer	time	

to	resolution.	The	difference	has	shrunken	considerably,	however,	and	over	the	last	

six	years	the	impact	has	become	minimal.	This	holds	true	when	videos	are	submitted	

as	part	of	the	initial	bug	report	submission	and	when	they	are	submitted	at	a	later	

time.	

• RQ2:	Does	including	videos	in	bug	reports	lead	to	a	higher	percentage	of	bug	reports	
being	resolved	with	a	patch,	that	is,	actually	fixed?	Mixed	results	were	found:	while	

for	some	systems	a	higher	percentage	of	bug	reports	ends	up	being	fixed	if	a	video	is	

included,	 for	other	systems	the	opposite	occurs	 in	fewer	bug	reports	being	fixed	if	

videos	are	included.	

• RQ3:	Does	including	videos	in	bug	reports	lead	to	a	reduction	in	the	average	back-
and-forth	that	occurs	once	the	report	has	been	submitted?	On	average	bug	reports	

with	videos	 incur	a	statistically	significant	higher	average	back-and-forth	than	bug	

reports	without.	For	bug	reports	that	are	submitted	later,	even	if	only	the	back-and-

forth	 after	 the	 submitted	 video	 is	 counted,	 a	 statistically	 significant	 difference	

remains	in	the	back-and-forth	still	being	higher	as	compared	to	bug	reports	without	

videos.	

Taken	 together,	 from	 the	 perspective	 of	 perhaps	 providing	 motivation	 for	 reporters	 to	

produce	and	submit	videos	along	with	their	bug	reports,	these	findings	suggest	that	the	only	

tangible	incentive	that	exists	is	an	increase	in	the	potential	for	the	bug	report	to	be	fixed	for	

two	of	the	systems	(Android	and	Minecraft).	For	the	other	systems,	no	tangible	 incentive	

seems	to	exist	and,	even	for	Android	and	Minecraft,	the	potential	for	the	bug	report	to	be	
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fixed	comes	with	the	potential	drawback	of	a	slower	resolution	process	and	more	back-and-

forth.	

These	results	should	not	be	interpreted	as	discouraging	submission	of	videos	as	part	of	bug	

reports.	The	altruistic	motivation	of	making	 the	work	of	bug	assignees	easier	 remains	as	

important	 as	 ever	 since	 bug	 triaging,	 diagnosing,	 and	 fixing	 is	 often	 still	 a	 difficult	 and	

thankless	process.	Any	small	bit	of	help	will	be	appreciated.	If	anything,	the	results	give	rise	

to	a	number	of	important	research	questions.		

First,	 beyond	 the	 factors	 we	 explored	 in	 Section	 4.2.3,	 other	 factors	 should	 be	 studied.	

Section	4.2	already	began	to	discuss	the	potential	role	of	bug	difficulty:	could	the	non-benefit	

seen	in	the	results	in	actuality	be	an	overlap	of	two	effects:	a	benefit	along	the	lines	that	were	

studied	that	is	negated	by	videos	typically	being	included	for	bugs	that	are	more	difficult	to	

resolve?	This	probably	requires	an	entire	study	in	and	of	itself:	how	is	difficulty	determined,	

is	it	a	binary	factor	or	more	nuanced,	can	it	be	reliably	classified	based	on	bug	report	and	

code	changes,	and	is	it	possible	to	perform	an	analysis	at	scale?	The	current	best	classifier	

achieves	an	AUC	of	0.612	[160],	which	would	be	too	low	for	an	automated	analysis.	

Second,	 is	 the	 question	 of	what	 sets	 aside	 videos	 that	 are	more	 effective	 than	 others	 in	

reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth	(ideally	all	

three)?	 The	 study	 reports	 on	 averages,	 which	means	 that	 some	 videos	 do	 contribute	 to	

beneficial	effects	and	others	detract.	The	deep	dive	into	the	bug	types	of	Mozilla	represents	

a	 first,	 small	 step	 into	 whether	 the	 content	 of	 videos	 might	 provide	 clues	 as	 to	 useful	

differences.	 The	 look	 at	 bug	 types,	 and	 particularly	 at	 user	 interface	 related	 bugs,	was	 a	

reasonable	place	to	start	 in	this	regard,	since	user	interface	bugs	are	visual	 in	nature	and	

thus	fit	videos	well.	Yet,	the	absence	of	a	meaningful	difference	implies	that	bug	type	may	not	

be	a	determinant.	On	the	other	hand,	the	fact	that	Mozilla	bug	reports	with	videos	submitted	

by	 developers	 are	 fixed	 at	 a	 higher	 rate	 and	 lead	 to	 less	 back-and-forth	 is	 a	 potentially	

promising	starting	point.	And,	perhaps	most	important,	the	fact	that,	within	the	class	of	high	

severity	Mozilla	bug	reports,	videos	improve	on	all	three	outcomes	seems	to	present	a	first	

clear	sense	that	videos	actually	might	be	serving	an	important	role	and	impact	externally	

visible	 outcomes.	 To	 truly	 sort	 this	 out,	 a	 deep	 empirical	 study	 is	 needed,	 in	 which	 the	

content	 of	 videos	 is	 juxtaposed	 with	 the	 written	 part	 of	 bug	 reports,	 the	 subsequent	
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discussions,	the	nature	of	the	bugs,	and	the	kinds	of	fixes	that	were	involved.	Among	others,	

factors	 to	study	are	whether	videos	are	concise,	 show	all	 the	steps	 leading	up	 to	 the	bug	

manifestation,	guide	the	developer	via	clear	highlighting	by	mouse	or	via	annotations,	and	

contain	useful	voice-overs	(see	Chapter	5).	

Third,	 it	 is	 important	to	perform	a	field	study	with	developers	to	study	how	they	process	

videos	as	part	of	bug	report	resolution.	Such	a	study	has	the	same	goal	as	the	empirical	study	

outlined	in	the	prior	point:	to	uncover	factors	that	help	certain	videos	be	more	effective	than	

others.	 A	 field	 study	would	 observe	 developers	 at	 work	 and	 talk	with	 them	 about	 their	

experiences	and	perceptions,	offering	an	important	complementary	perspective.	

A	fourth	important	direction	for	research	is	to	broaden	the	study	beyond	the	five	systems	

that	were	 studied.	 It	might	 be	 that	 some	 of	 the	 individual	 differences	 are	 related	 to	 the	

domain	of	the	systems	studied.	Video	games	are	a	particularly	interesting	example	in	this	

regard,	since	they	are	highly	visual.	Including	additional	domains	and	multiple	systems	per	

domain	would	help	to	identify	whether	such	domain-driven	differences	exist.	

	

4.4 Threats	to	Validity	
While	the	study	is	structured	so	to	avoid	introducing	bias	and	worked	to	eliminate	the	effects	

of	 random	 noise,	 it	 remains	 possible	 that	 the	 mitigation	 strategies	 may	 not	 have	 been	

effective.	This	section	reviews	the	threats	to	validity.	

Given	that	bug	reports	from	five	open	source	systems	were	examined,	the	findings	may	not	

generalize	broadly.	It	is	possible	that	the	systems	studied	are	outliers	in	the	free	and	open-

source	 software	 (FOSS)	 community	 because	 of	 their	 size	 or	 other	 properties.	 That	 said,	

several	of	these	systems	are	frequently	studied	in	the	literature	and	a	system	such	as	Mozilla	

is	often	used	as	an	exemplar,	or	role	model,	for	other	FOSS	projects.	Replication	of	the	study	

to	other	systems	and	particularly	to	commercial	projects	is	imperative.	

A	threat	to	the	internal	validity	of	the	study	is	the	possibility	of	faults	in	the	Python	code	that	

was	 implemented	 to	 perform	web	 scraping	 and	 crawling.	 This	 threat	was	 addressed	 by	

extensively	testing	the	implementation	and	verifying	its	results	against	a	smaller	dataset	for	

which	the	correct	results	were	manually	determined.	
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The	 choice	 to	 only	 include	 resolved	 bug	 reports	 to	 study	 the	 impact	 of	 videos	 in	 bug	

resolution	may	represent	a	threat	to	internal	validity	if	the	nature	of	the	content	of	these	bug	

reports	differs	significantly	from	those	of	unresolved	bug	reports.	The	results	may	also	be	

affected	if	any	of	the	unresolved	bugs	are	reopened	in	the	future.	Fortunately,	the	bug	report	

repositories	of	the	five	systems	studied	are	of	large	size	and	have	long	histories,	meaning	

that	what	used	to	be	unresolved	bug	reports	have	moved	on	to	become	resolved.	Moreover,	

the	results	were	analyzed	in	shorter	time	windows	to	study	the	effect	of	the	bug	reports	that	

were	reopened	recently.	As	such,	this	threat	is	believed	to	be	fairly	minimal.	

For	one	of	the	Mozilla-specific	analyses,	the	bug	reporters	were	categorized	into	end-users	

and	 developers.	 For	 this	 categorization,	 the	 number	 of	 patches,	 that	 were	 previously	

submitted	by	each	user	ID	to	Mozilla	projects	were	extracted.	If	the	number	was	zero,	the	

submitter	was	identified	as	an	end-user,	otherwise	as	a	developer.	This	may	have	led	to	some	

misclassifications,	for	instance,	if	a	developer	used	multiple	user	IDs,	one	for	development	

and	one	for	submitting	reports	as	an	actual	end-user	of	the	product.	

For	 Mozilla,	 the	 presence	 of	 the	 flag	 “Flags:	 needinfo?(reporter’s	 email)”	 was	 used	 to	

calculate	 the	number	of	back-and-forth,	and	similar	heuristics	 for	 the	other	systems	(see	

Section	4.1.3).	However,	it	is	possible	that	developers	did	not	use	the	flag	when	replying	to	a	

reporter,	 and	 this	 may	 have	 resulted	 in	 under-counting	 back-and-forth.	 Given	 that	 the	

outcomes	of	the	back-and-forth	analyses	showed	increases	in	back-and-forth	as	compared	

to	bug	reports	without	videos,	such	potential	under-counting	would	not	alter	the	nature	of	

the	observations,	but	merely	increase	the	found	effects.	

	

4.5 Conclusions	
This	chapter	contributes	a	first	empirical	study	that	examines	whether	externally	observable	

effects	 exist	 in	 the	 bug	 report	 resolution	 process	 that	 can	 offer	 a	 potential	 incentive	 for	

reporters	to	submit	videos	along	with	their	bug	reports.	That	is	whether	including	videos	in	

bug	reports	could	have	potential	benefits	to	the	reporters	of	those	bug	reports.	The	chapter	

specifically	studies	whether	the	inclusion	of	video	in	bug	reports	impacts	the	bug	resolution	
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process	in	terms	of	time	to	resolution,	resolution	with	a	patch	aiming	to	fix	the	reported	bug,	

and	the	amount	of	back-and-forth.	

The	primary	finding	is	that,	on	the	whole,	the	inclusion	of	videos	does	not	appear	to	have	a	

positive	impact,	except	in	the	case	of	Android	and	Minecraft,	where	a	higher	percentage	of	

bug	reports	with	videos	is	resolved	with	a	patch,	and	thus	fixed,	as	compared	to	bug	reports	

without	videos.	Otherwise,	time	to	resolution	is	barely	impacted,	no	discernible	differences	

exist	in	the	percentage	of	bug	reports	being	fixed	for	the	other	three	systems	studied,	and	

the	average	amount	of	back-and-forth	is	higher	for	bug	reports	that	include	video	than	those	

that	do	not	across	all	five	systems.	Yet,	a	deep	dive	into	a	select	set	of	potential	factors	for	

Mozilla	shows	that	further	study	is	needed.	Especially	the	fact	that	bug	reports	with	videos	

submitted	by	developers	are	resolved	at	a	higher	rate	with	less	back-and-forth	implies	that	

studying	 the	 contents	 of	 those	 videos	 can	 provide	 important	 clues	 as	 to	 the	 desirable	

properties	of	videos	attached	to	bug	reports.		
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5 CHAPTER	5:	A	Content-Based	Analysis	of	Video	Submissions	in	Bug	
Reporting	

	

	 A	recent	trend	is	for	bug	reports	to	include	videos	as	attachments.	Videos	can	easily	

demonstrate	 complex	 contexts	about	bugs	which	offers	developers	a	new	opportunity	 to	

collect	context-rich	bug	information	[36].	The	interpretation	of	videos	provides	a	different	

perspective	to	help	developers	understand	how	users	interact	with	the	system,	process	the	

current	behavior	of	the	system,	or	comprehend	any	events	that	contributed	to	the	bug,	which	

might	have	been	hard	to	capture	using	words	[39].	

Several	studies	encourage	reporters	to	submit	relevant	videos	along	with	their	bug	reports	

to	convey	additional	context	for	understanding	bugs	[40],	[41],	[111].	To	assist	developers	

in	 effectively	 taking	 in	 the	 content	 of	 videos,	 approaches	 have	 been	 introduced	 for	

automatically	analyzing	videos	[37],	[38]	and	turning	those	videos	into	replayable	scenarios	

that	are	easier	to	understand	and	use	in	bug	resolution	[46],	[47].	

This	 chapter	 complements	 the	 existing	work	 on	 videos	 and	 bug	 reports	 to	 date	with	 an	

important	new	perspective:	what	sets	videos	that	are	more	effective	apart	from	videos	that	

are	 less	 effective,	 in	 terms	 of	 their	 content?	 It	 specifically	 focuses	 on	 the	 detailed	

characteristics	of	videos,	by	which	I	mean	things	such	as	whether	the	video	shows	steps	to	

reproduce,	 whether	 the	 video	 contains	 a	 voice	 over,	 and	 whether	 the	 creator	 of	 video	

highlights	the	bug	with	mouse	movement.	Examining	the	video	characteristics	refines	the	

analysis	from	Chapter	4,	which	only	looked	at	the	presence	of	videos,	with	a	focus	on	the	

content	of	videos.			

The	study	first	examines	the	contents	of	1,045	videos	and	their	associated	bug	reports	from	

Mozilla	projects	 (a	qualitative	approach),	 examining	different	 characteristics	of	videos.	 It	

then,	 in	a	quantitative	approach,	assesses	the	 impact	of	videos	that	contain	various	video	

characteristics	 in	 comparison	 to	 those	 that	do	not.	Particularly,	 this	 study	examines	how	

developers	may	react	publicly	to	various	characteristics	of	videos	attached	to	bug	reports	

(whether	they	appear	to	be	perceived	as	helpful	or	not	helpful	by	developers)	and	whether	

those	characteristics	may	have	observable	effects	on	the	bug	report	resolution	process	(i.e.,	

in	reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth).		
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This	chapter	also	includes	a	survey	that	was	conducted	to	understand	how	developers	feel	

about	different	characteristics	of	videos	as	a	part	of	bug	reports.	The	survey	was	centered	

around	 three	 main	 questions	 to	 collect	 developers’	 perspectives	 on:	 (1)	 how	 they	

characterize	the	content	of	the	video	attachments	in	relation	to	the	corresponding	textual	

descriptions;	(2)	what	are	the	kinds	of	video	content	that	they	believe	help	certain	videos	be	

more	or	less	useful	in	understanding	bugs;	and	(3)	whether	the	inclusion	of	video,	in	their	

opinion,	is	effective	in	reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-

and-forth.	

In	 the	 remainder	 of	 this	 chapter,	 I	 detail	 the	methodology	 and	 report	 the	 results.	 I	 then	

present	the	analysis	of	the	results,	describe	the	threats	to	validity,	and	then	conclude	with	a	

summary	of	the	key	findings	and	future	work.	

 

5.1 Methodology	
The	goal	 is	 to	understand	how	developers	may	 react	 to	 various	 characteristics	 of	 videos	

attached	to	bug	reports	and	whether	video	characteristics	may	have	beneficial	effects	on	the	

bug	report	resolution	process	(i.e.,	in	reducing	time	to	resolution,	leading	to	an	actual	fix,	or	

reducing	back-and-forth).	In	order	to	do	so,	1,045	videos	and	their	associated	bug	reports	

from	Mozilla	projects	were	randomly	selected.	The	videos	were	labeled	by	two	researchers	

to	get	a	better	understanding	of	their	content.	Next,	to	form	the	basis	of	the	analysis,	all	the	

available	metadata	of	the	videos	and	bug	reports	were	extracted	from	Chapter	4.	Figure	43	

illustrates	the	overall	process	that	was	used	to	study	the	impact	of	including	different	video	

characteristics	on	the	videos	appearing	to	be	perceived	as	helpful	by	developers	and	the	bug	

report	resolution	process.	
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Figure	43.	The	overall	process	of	studying	the	role	of	different	characteristics	of	videos	on	

videos	appearing	to	be	perceived	as	helpful	by	developers	and	bug	report	resolution	

process.	

5.1.1 Data	Collection	

From	10,594	Mozilla	videos	that	were	collected	in	Chapter	4,	1,045	videos	were	randomly	

selected	(around	10%).	The	experiments	were	performed	on	Mozilla	since	it	is	a	large-scale	

open-source	project	on	multiple	platforms,	and	has	been	widely	used	in	empirical	software	

engineering	 research	 [123].	The	dataset	 spans	 from	2010	 to	2021	and	only	contains	bug	

reports	with	video	attachments	and	resolution	status	of	RESOLVED,	VERIFIED,	and	CLOSED.	

Sample	details	related	to	bug	reports	in	the	dataset	include	creation	year,	number	of	days	to	

resolve,	component,	priority,	product,	severity,	number	of	comments,	number	of	back-and-

forth,	readability	score,	number	of	videos,	and	presence	of	steps	to	reproduce,	actual	results,	

and	expected	results.	

	

5.1.2 Manual	Labeling	

Two	 researchers	manually	 labeled	 the	 content	 of	 1,045	 videos	 and	 their	 associated	 bug	

reports.	For	 labeling	purposes,	 the	researchers	analyzed	the	characteristics	of	 the	videos,	

description	of	the	bug	reports	(if	present),	associated	comments	from	discussions	with	other	

developers,	and	any	interactions	between	the	developer	and	the	reporter.		

The	manual	classification	was	conducted	in	three	phases.	In	the	first	phase,	researcher	one,	

through	repeated	examining	of	 the	bug	reports	and	watching	the	videos	collected	 for	 the	
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study,	 identified	 a	 set	 of	 video	 characteristics	 found	 numerous	 times	 in	 the	 dataset	 and	

created	a	set	of	labels,	following	an	open	coding	approach.	During	this	phase,	the	labels	were	

continuously	compared	to	contradict,	expand	upon,	or	support	the	existing	labels.	Next,	100	

bug	 reports	 were	 randomly	 selected	 and	 independently	 labeled	 by	 each	 of	 the	 two	

researchers	according	to	the	defined	labels.	Then	the	researchers	went	through	all	the	videos	

and	associated	bug	reports,	compared,	and	discussed	disagreements	in	order	to	reconcile	

and	arrive	at	a	final	version	of	the	labels.	

In	the	second	phase,	using	the	“negotiated	agreement”	method	[124],	both	researchers	then	

independently	 labeled	 300	 bug	 reports	 (including	 the	 first	 100)	 using	 the	 set	 of	 labels,	

achieving	an	inter-rater	reliability	Cohen's	Kappa	of	0.87,	which	indicates	“almost	perfect	

agreement”	 [127].	 Both	 researchers	 together	 then	 reviewed	 the	 labels	 that	 were	 not	 in	

agreement,	and	for	each	bug	report	discussed	their	respective	reasoning	and	the	source	of	

disagreement,	which	mostly	led	to	resolution.	At	this	point,	the	researchers	felt	sufficiently	

confident	 to	move	 to	 the	 third	phase	 to	 label	 the	remaining	745	bug	reports,	373	by	one	

researcher	and	372	by	the	other.		

The	 following	 is	 the	 set	 of	 labels	 and	 guidelines	 that	 emerged	during	 the	 labeling	 of	 the	

videos:	

1- Bug	details	(Content):	what	aspect	of	the	bug	does	the	video	show?	This	can	include:	

o Steps	to	reproduce.	The	video	shows	the	steps	on	how	to	reproduce	the	bug	

o Actual	results.	The	video	shows	the	occurrence	of	the	bug	

o Expected	results.	The	video	shows	what	the	application	should	have	done	if	

the	bug	was	not	present		

o Platform.	The	video	shows	OS,	version	of	application,	component,	etc.	

o Workaround.	The	video	shows	how	to	work	around	the	bug	

o Solution.	The	video	shows	how	to	resolve	the	bug	

o Crash	 report.	 The	 video	 shows	 the	 crash	 report	 produced	 when	 the	 bug	

happened	
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o Verified	as	fixed.	The	video	shows	that	the	bug	has	been	fixed	now	

o Cannot	reproduce.	The	video	shows	that	the	bug	cannot	be	reproduced	

o Occurrence	of	a	new	bug.	The	video	shows	another	bug	

2- Bug	type	(Category):	what	aspects	of	the	software	does	the	video	illustrate?	This	can	

include:	

o User	interface.	The	video	shows	problems	related	to	the	user	interface	

o System	 settings.	 The	 video	 shows	 problems	 related	 to	 the	 configuration	

settings	

o Access.	The	video	shows	problems	with	functionality	for	logging	in	or	signing	

up	

o Failure	to	load.	The	video	shows	problems	related	to	the	software	not	being	

able	to	start	

o Functionality.	The	video	shows	problems	related	 to	 the	performance	of	 the	

back-end	 (UI	 is	 behaving	 correctly,	 but	 the	 underlying	 software	 produces	

faulty	results)	

3- Sound:	whether	the	video	includes	any	sound.	This	can	include:	

o Noise.	 The	 video	 includes	mouse	 clicks	 and	 background	 noise	 that	 are	 not	

related	to	the	bug	

o Voiceover.	The	reporter	explains	the	bug	in	video	

4- Annotation:	whether	the	video	is	annotated	or	highlighted.	This	can	include:	

o Pointer	 movement.	 The	 video	 shows	 a	 pointer	 going	 back	 and	 forth	 or	

circulating	

o Highlighting	with	the	cursor.	The	video	shows	highlighting	like	this	

o Pointer	amplified	or	highlighted.	The	video	shows	any	kind	of	change	to	the	

cursor’s	appearance	to	amplify	the	location	of	the	cursor	on	the	screen	
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o Labels.	The	video	shows	 labels	 such	as	 text	boxes	 to	add	more	 information	

about	the	events	happening	in	different	parts	of	the	video	

o Pointing	with	a	finger.	The	video	shows	the	steps	to	reproduce	through	touch	

or	moving	of	 fingers	–	 in	videos	 in	mobile	applications	and	videos	taken	by	

another	device	

5- Length:	what	is	the	length	of	the	video	in	seconds?	

6- Repetition:	how	many	times	does	the	reporter	show	the	bug	in	the	video?	This	can	

be:	

o Once	

o More	than	once	

7- Reception:	 in	 the	 comment	 section	 of	 the	 bug	 report,	 what	 was	 the	 immediate	

reaction	to	the	video?		

o Perceived	helpful.	The	video	appears	to	be	perceived	as	helpful	by	a	developer.	

Several	 indicators	 are	 used.	 One	 indicator	 is	 that	 right	 after	 the	 video	 is	

submitted	in	the	comment	section	a	developer	specifically	states	that	the	video	

is	 helpful	 and	 goes	 on	 to	 fixing	 the	 bug	 (e.g.,	 bug	 id	 138340637).	 Another	

indicator	 is	 that	 right	 after	 the	 video	 was	 submitted,	 the	 bug	 report	 gets	

resolved	or	a	patch	is	submitted	(which	means	the	bug	is	fixed),	even	if	the	

developer	 does	 not	 specifically	 comment	 that	 the	 video	 is	 helpful;	 or	 the	

thread(s)	of	discussion	is	not	about	the	video	and	is	about	the	ways	to	resolve	

the	bug	(e.g.,	bug	id	154632638),	indicating	the	discussion	has	shifted	because	

the	bug	report	is	understood.	

o Reproducible.	The	video	is	effective	in	enabling	a	developer	to	reproduce	the	

bug.	 For	 example,	 a	 developer	 comments:	 "I	 confirm	 that	 the	 bug	 is	

reproducible."		(e.g.,	bug	id	151805039)	

 
37 https://bugzilla.mozilla.org/show_bug.cgi?id=1383406 
38 https://bugzilla.mozilla.org/show_bug.cgi?id=1546326 
39 https://bugzilla.mozilla.org/show_bug.cgi?id=1518050 
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o Non-reproducible.	 The	 video	 is	 not	 effective	 in	 enabling	 a	 developer	 to	

reproduce	the	bug.	For	example,	a	developer	states:	"still	cannot	reproduce	

the	bug".	(e.g.,	bug	id	161246040)	

o Question	about	video.	The	video	triggers	a	question	about	the	video	itself	by	a	

developer.	 For	 example,	 the	 developer	 comments:	 "how	 can	 I	 play	 this	

screencast?",	"how	it	was	produced?",	"when	did	you	create	this	video?",	etc.	

(e.g.,	bug	id	157699041)	

o Question	about	bug.	The	video	triggers	questions	about	the	bug	and	its	nature	

by	 a	 developer.	 For	 example,	 right	 after	 the	 video	 was	 submitted,	 the	

developer	 comments:	 "do	 you	 see	 that	 with	 latest	 nightly?	 Please	 also	 try	

different	backends	(WebRedner/Basic	compositors)."		(e.g.,	bug	id	63310842)	

8- Change	in	activity:	in	the	activity	section	of	the	bug	report,	was	there	any	immediate	

change	in	the	status	(lifecycle	of	bug	report)	that	was	caused	by	the	video	submission.	

This	can	be	a	change	in:		

o Status	(e.g.,	bug	id	151718343)		

o Resolution	(e.g.,	bug	id	151754844)	

o Assignee	(e.g.,	bug	id	151780545)	

o Priority	(e.g.,	bug	id	152384446)	

o Severity	(e.g.,	bug	id	163324647)	

o Component	(e.g.,	bug	id	160781048)	

9- Flags:	in	the	activity	section	of	the	bug	report,	was	any	flag	raised	immediately	after	

video	submission?		

 
40 https://bugzilla.mozilla.org/show_bug.cgi?id=1612460 
41 https://bugzilla.mozilla.org/show_bug.cgi?id=1576990 
42 https://bugzilla.mozilla.org/show_bug.cgi?id=633108 
43 https://bugzilla.mozilla.org/show_bug.cgi?id=1517183 
44 https://bugzilla.mozilla.org/show_bug.cgi?id=1517548 
45 https://bugzilla.mozilla.org/show_bug.cgi?id=1517805 
46 https://bugzilla.mozilla.org/show_bug.cgi?id=1523844 
47 https://bugzilla.mozilla.org/show_bug.cgi?id=1633246 
48 https://bugzilla.mozilla.org/show_bug.cgi?id=1607810 
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o Flags	 that	 confirm	 the	 effectiveness	 of	 video.	 For	 example,	 “Flags:	 ever	

confirmed:	true”	

o Flags	 that	 request	 for	 information	 from	 the	 video	 submitter.	 For	 example,	

“Flags:	needinfo?(email	of	the	video	submitter)”	

	

5.1.3 Statistical	Analysis	

The	goal	is	to	determine	the	impact	of	the	various	characteristics	of	videos	on	the	bug	report	

resolutions	 process	 (bug	 report	 resolution	 time,	 percentage	 of	 bug	 reports	 being	

successfully	 resolved	as	FIXED,	and	 the	back-and-forth	discussion	 following	a	bug	 report	

submission)	and	percentage	of	videos	appearing	to	be	perceived	as	helpful	by	developers.	

To	do	so,	the	Welch	Two	Sample	t-test	was	conducted	between	subsets	of	videos	that	contain	

various	 characteristics	 of	 videos	 and	 the	 ones	 that	 do	 not.	 Since	 multiple	 tests	 were	

performed,	 the	 significance	 value	 was	 adjusted	 accordingly	 to	 account	 for	 multiple	

hypothesis	 corrections.	 Using	 the	 Benjamini–Hochberg	 correction	 [149]	 the	 p-value	was	

adjusted	to	0.06.	

Since	the	t-tests	only	identify	potential	correlations,	Generalized	Linear	Regression	Models	

(GLM)	[150]	were	built	for	four	dependent	variables:	videos	appearing	to	be	perceived	as	

helpful	by	developers,	time	to	resolution,	bug	reports	resolved	as	FIXED,	and	the	number	of	

back-and-forth.	The	dependent	variables	follow	a	Poisson	distribution.	Therefore,	a	Poisson	

regression	model	was	used	with	a	log	linking	function.	

In	order	to	build	the	model,	all	the	available	metadata	of	the	videos	and	bug	reports	were	

used	from	Chapter	4	(Section	4.1.1)	including	severity,	operating	system,	priority,	product,	

component,	 status,	 platform,	 resolution,	 version,	 cc	 count,	 votes,	 number	 of	 duplicates,	

number	of	comments,	number	of	unique	participants,	number	of	attachments,	number	of	

developers,	 number	 of	 unique	 words	 in	 title	 and	 bug	 description,	 and	 readability	 score	

(Flesch	score	[130]).	To	this	set,	the	results	from	manual	labeling	were	also	added,	such	as	

the	presence	of	actual	results	in	the	video,	the	presence	of	steps	to	reproduce	in	the	video,	

annotation,	 length	of	the	video,	video	submitted	initially,	and	video	submitted	voluntarily	

later.	
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After	collecting	 these	metrics,	multi-collinearity	was	checked	using	 the	Variance	 Inflation	

Factor	(VIF)	[150]	of	each	predictor	in	the	model.	VIF	describes	the	level	of	multi-collinearity	

(correlation	 between	 predictors).	 A	 VIF	 score	 between	 1	 and	 5	 indicates	 a	 moderate	

correlation	 with	 other	 factors,	 so	 the	 predictors	 with	 a	 VIF	 score	 threshold	 of	 5	 were	

selected.	This	step	was	necessary	since	the	presence	of	highly	correlated	factors	forces	the	

estimated	regression	coefficient	of	one	variable	to	depend	on	other	predictor	variables	that	

are	included	in	the	model.		

Next,	using	the	selected	factors,	the	best	model	was	identified	through	Akaike	Information	

Criterion	(AIC),	which	estimates	the	information	loss	between	models	in	comparison	to	the	

original.	 It	 ultimately	 selects	 the	 best	model	 based	 on	 both	 the	 fit	 of	 the	model	 and	 the	

information	lost.	Then,	the	model	identified	by	AIC	as	the	final	model	was	identified.	This	

process	was	repeated	independently	for	each	of	the	four	regression	models.	

	

5.1.4 Survey	

In	 order	 to	 understand	 developers’	 experiences	 with	 and	 perceptions	 of	 different	

characteristics	of	the	video	attachments,	I	conducted	a	survey	among	IntelliJ	developers.	The	

survey	was	centered	around	three	main	questions:	(1)	how	they	characterize	the	content	of	

the	video	attachments	in	relation	to	the	corresponding	textual	descriptions;	(2)	what	are	the	

kinds	 of	 video	 content	 that	 they	 believe	 help	 certain	 videos	 be	 more	 or	 less	 useful	 in	

understanding	bugs;	and	(3)	whether	the	inclusion	of	video,	in	their	opinion,	is	effective	in	

reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth.	

The	survey	was	sent	to	developers	who	were	listed	as	'assignee'	for	IntelliJ	bug	reports	with	

videos	that	were	submitted	(and	assigned)	in	the	year	2021.	Given	that	assignees	can	repeat,	

ultimately,	 out	 of	 the	 469	 bug	 reports	 with	 video,	 the	 survey	 was	 sent	 to	 17	 unique	

developers.	Participation	was	voluntary	and	participants	were	allowed	to	discontinue	at	any	

time;	participants	did	have	to	consent	to	participate.	I	received	9	responses	(52.9%	response	

rate)	 from	 developers	with	 the	 highest	 30	 to	 lowest	 5	 assignments	 to	 bug	 reports	with	

videos.	
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5.2 Results	
In	this	section,	the	results	of	the	study	are	reported	and	discussed	in	four	stages:	(1)	what	

characteristics	 do	 the	 videos	 that	 are	 attached	 to	 bug	 reports	 have,	 (2)	 how	 different	

characteristics	of	videos	may	have	impact	on	the	videos	appearing	to	be	perceived	as	helpful	

by	 developers,	 (3)	 how	 they	 may	 have	 observable	 effects	 on	 the	 bug	 report	 resolution	

process	(i.e.,	in	reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-

forth),	 and	 (4)	 what	 developers	 who	 were	 surveyed	 actually	 think	 about	 different	

characteristics	of	videos	as	a	part	of	bug	reports.	

	

5.2.1 Video	Characteristics	

As	discussed	in	Section	5.1.2,	1,045	videos	and	their	associated	bug	reports	were	manually	

labeled	to	specifically	examine	different	characteristics	of	videos	(e.g.,	whether	the	video	is	

annotated,	 what	 aspects	 of	 the	 software	 the	 video	 illustrates)	 and	 to	 understand	 how	

developers	publicly	reacted	to	various	characteristics	of	videos.	In	the	following,	I	explain	

the	results.	

Bug	details	(Content).	Table	30	presents	the	count	and	percentage	of	 the	videos	showing	

different	 categories	 of	 bug	 details.	 In	 the	 majority	 of	 cases	 (88.04%),	 the	 videos	 were	

minimal	and	focused	on	showing	just	what	went	wrong	(actual	results).	Almost	half	of	the	

videos	(51.87%)	showed	the	steps	to	reproduce	the	bug.	The	percentage	of	the	rest	of	the	

categories	 dropped	 significantly	 to	 only	 around	 3%	 of	 videos	 showing	 expected	 results,	

platform,	workaround,	and	solution	and	just	0.1%	showing	a	crash	report.	The	combinations	

of	the	labels	for	bug	details	were	also	studied.	47.65%	of	videos	included	both	actual	results	

and	steps	to	reproduce.	40.47%	of	videos	showed	only	the	actual	results	and	not	the	steps	

to	reproduce	the	bug;	and	around	4%	of	videos	only	illustrated	the	steps	to	reproduce	and	

not	 the	 actual	 results.	 Only	 1%	of	 videos	 showed	 actual	 results,	 steps	 to	 reproduce,	 and	

expected	results;	the	three	most	important	attributes	in	high	quality	textual	bug	reports.	
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Table	30.	Count	and	percentage	of	the	videos	that	contained	different	bug	details.	

Bug	details	(content)	 Count	 Percentage	

Actual	results	 920	 88.04	

Steps	to	reproduce	 542	 51.87	

Expected	results	 40	 3.83	

Platform	 38	 3.64	

Workaround	 34	 3.25	

Solution	 34	 3.25	

Verified	as	fixed	 22	 2.11	

Occurrence	of	a	new	bug	 18	 1.72	

Cannot	reproduce	 17	 1.63	

Crash	report	 2	 0.19	

	

Bug	type	(Category).	The	categories	user	interface	and	functionality	dominated	(69.86%	and	

21.72%,	respectively).	This	was	not	unexpected	as	sometimes	it	 is	easier	to	show	what	is	

wrong	than	attempting	to	write	it	 in	text.	The	other	categories,	however,	appeared	not	as	

frequent.	For	example,	2.78%	of	the	videos	showed	problems	with	system	settings,	which	

typically	are	textual	and	can	be	easily	copied	and	pasted	into	a	bug	report.	Also,	0.38%	of	the	

problems	were	about	access	and	2.78%	were	about	failure	to	load.	

Sound.	Meaningful	audio	was	absent	in	most	of	the	videos	(97.13%):	92.82%	did	not	have	

any	sound	and	4.31%	had	what	appeared	to	be	accidental	background	noise	that	was	clearly	

audible,	but	no	meaningful	audio	otherwise	(e.g.,	bug	id	142887049).	One	could	assume	it	

would	be	relatively	easy	and	a	low	hurdle	to	either	directly	narrate	while	a	video	is	being	

 
49 https://bugzilla.mozilla.org/show_bug.cgi?id=1428870 
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recorded	that	shows	a	bug,	or	even	to	overlay	audio	at	a	later	time.	However,	as	Table	31	

shows,	only	2.87%	of	the	videos	had	a	voiceover	describing	what	was	being	shown	(e.g.,	bug	

id	102905850).	

Table	31.	Count	and	percentage	of	the	videos	with	different	type	of	sounds.	

Sound	 Count	 Percentage		

Noise		 45	 4.31	

Voiceover		 30	 2.87	

	

Annotation.	37.8%	of	the	videos	included	annotations,	broken	down	into	pointer	movement	

(18.18%),	highlighting	with	the	cursor	(8.23%),	pointer	amplified	(11.39%),	adding	labels	

(1.05%),	 and	 pointing	with	 a	 finger	 (2.68%).	 Other	 than	 only	 a	 few,	 none	 of	 the	 videos	

included	a	combination	of	annotation	categories.	The	combination	of	pointer	movement	and	

pointer	 amplified	 represented	 the	 most	 frequent	 combination	 of	 individual	 factors,	 but	

amounted	to	only	4.21%	(e.g.,	129801151).	The	next	highest	was	1%	for	the	combination	of	

pointer	movement	and	highlighting	with	the	cursor	(e.g.,	134616452).	

Length.	As	Table	32	shows,	the	majority	of	videos	(78.08%)	were	less	than	30	seconds.	That	

is	followed	by	only	17.99%	of	videos	having	a	length	between	30	and	60	seconds	and	only	

3.92%	being	longer	than	60	seconds.	Overall,	the	average	length	of	videos	was	21.3	seconds.	

Bug	 id	125086653	had	the	 longest	 in	 length	of	all	videos	(136	seconds),	which	shows	the	

actual	result	and	steps	to	reproduce	the	bug	more	than	once	and	includes	a	combination	of	

pointer	movement	and	pointer	amplified	for	annotation.	The	shortest	video	(1	second)	was	

included	 in	 bug	 id	 131029354	 which	 seemed	 to	 be	 only	 attached	 to	 the	 bug	 report	 to	

represent	a	video	format	(and	not	to	show	the	bug).		

 
50 https://bugzilla.mozilla.org/show_bug.cgi?id=1029058 
51 https://bugzilla.mozilla.org/show_bug.cgi?id=1298011 
52 https://bugzilla.mozilla.org/show_bug.cgi?id=1346164 
53 https://bugzilla.mozilla.org/show_bug.cgi?id=1250866 
54 https://bugzilla.mozilla.org/show_bug.cgi?id=1310293 
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Table	32.	Count	and	percentage	of	the	videos	with	different	lengths.	

Length	 Count	 Percentage	

Less	than	30	sec	 816	 78.08	

Between	30	and	60	sec	 188	 17.99	

More	than	60	sec	 41	 3.92	

	

Repetition.	In	terms	of	how	many	times	the	reporter	shows	the	bug	in	the	videos,	36.93%	of	

videos	 showed	 the	 bug	more	 than	 once.	 Bug	 id	 97464355	 represents	 an	 example	 and	 is	

furthermore	interesting	as	the	video	was	not	a	screen	recording,	as	most	of	the	videos	were,	

but	instead	was	filmed	using	an	external	device.		

Reception.	In	terms	of	how	the	developers	publicly	reacted	to	videos,	48.9%	of	the	videos	

appeared	to	be	perceived	as	helpful,	22%	of	the	videos	enabled	the	developers	to	reproduce	

the	bug,	though	8.33%	was	ineffective	to	do	so,	10.81%	triggered	a	question	about	the	bug,	

and	1.72%	triggered	question	about	the	video.	Out	of	all	the	videos,	6.88%	did	not	seem	to	

have	an	immediate	reaction	from	the	developers	at	all,	and	1.38%	resulted	in	an	immediate	

response	from	end-users.	Regarding	any	possible	combinations	of	these	response	types	in	a	

single	comment,	12.05%	of	videos	both	seemed	to	result	in	being	perceived	as	helpful	and	

also	appeared	to	enable	developers	to	reproduce	the	bugs.	3.92%	of	videos	appeared	to	be	

perceived	as	helpful	but	also	triggered	questions	about	the	bugs.	Lastly,	2.58%	of	videos	did	

not	enable	developers	to	reproduce	the	bug	and	also	resulted	in	developers	having	questions	

about	the	bug.	

Some	additional	results	emerged	during	the	labeling	of	the	videos.	First,	34.45%	of	videos	

were	submitted	initially,	as	part	of	the	original	bug	report	being	filed.	Out	of	65.55%	of	the	

videos	that	were	submitted	later,	60.38%	were	voluntary	and	5.17%	were	by	request,	as	part	

 
55 https://bugzilla.mozilla.org/show_bug.cgi?id=974643 
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of	the	subsequent	back-and-forth	between	the	reporter,	the	assigned	developer,	and	others	

who	may	chime	into	the	discussion.		

Moreover,	around	10%	of	bug	reports	contained	a	second	video	(1.33%	contained	three	or	

more).	39.81%	of	the	second	videos	were	alternatives	(showing	another	way	to	reproduce	

the	bug	such	as	bug	id	151719856),	15.98%	showed	expected	results	(e.g.,	bug	id	143905157),	

13.59%	were	refinement	(a	better	quality	video	or	a	better	example	to	reproduce	the	bug,	

such	 as	 bug	 id	 160795458),	 10.02%	 showed	 a	 solution	 to	 resolve	 the	 bug	 (e.g.,	 bug	 id	

138359359),	 9.95%	 illustrated	 that	 the	 bug	 is	 fixed	 (e.g.,	 bug	 id	 138429060),	 6.8%	were	

duplicates	 (not	 the	 same	video	but	 a	 similar	one	using	 a	new	system	setup	or	operating	

system,	such	as	bug	id	151121561),	and	3.85%	showed	actual	results	(e.g.,	bug	id	166529462).		

	

5.2.2 Impact	on	Videos	Appearing	to	Be	Perceived	as	Helpful	by	Developers	

To	examine	the	impact	of	including	various	characteristics	of	video	on	the	video	of	the	bug	

report	appearing	to	be	perceived	as	helpful	by	developers,	the	results	from	manual	labeling	

were	used.	That	 is,	 the	 labeled	videos	were	divided	 into	 two	groups.	The	 first	group	was	

videos	with	the	labels	“perceived	helpful”,	“reproduceable”,	“change	of	activity”,	or	“Flags:	

ever	confirmed:	true”,	and	was	additionally	labeled	as	“helpful”.	The	second	group	was	the	

videos	with	the	labels	of	“question	about	bug”,	“question	about	video”,	“non-reproducible	”,	

or	“Flags:	needinfo?(email	of	the	video	submitter)”,	which	was	labeled	as	“not	helpful”.			

The	dataset	included	1,045	videos	out	of	which	618	were	labeled	as	“helpful”	and	427	as	“not	

helpful”.	 Figure	 44	 shows	 that	 across	 all	 11	 years	 a	 higher	 percentage	 of	 videos	 were	

“helpful”.	This	difference	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	6.16,	df	

=	18.98,	p-value	<	0.06)	and	remained	so	when	examining	just	the	last	three	years	(Welch	

Two	Sample	t-test,	t	=	3.37,	df	=	3.67,	p-value	<	0.06).	This	confirms	the	observations	made	

 
56 https://bugzilla.mozilla.org/show_bug.cgi?id=1517198 
57 https://bugzilla.mozilla.org/show_bug.cgi?id=1439051 
58 https://bugzilla.mozilla.org/show_bug.cgi?id=1607954 
59 https://bugzilla.mozilla.org/show_bug.cgi?id=1383593 
60 https://bugzilla.mozilla.org/show_bug.cgi?id=1384290 
61 https://bugzilla.mozilla.org/show_bug.cgi?id=1511215 
62 https://bugzilla.mozilla.org/show_bug.cgi?id=1665294 
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in	prior	studies	that	videos	offer	developers	context-rich	bug	information	[36]	and	help	them	

understand	 any	 events	 that	 may	 have	 contributed	 to	 the	manifestation	 of	 the	 bug	 [35],	

[140]–[142].	

	

Figure	44.	Percentage	of	bug	reports	with	videos	that	appeared	to	be	perceived	as	helpful	

and	not	helpful.	

In	 the	 following	 subsections,	 the	 potential	 impact	 of	 including	 various	 characteristics	 of	

video,	 detected	 during	 the	manual	 labeling,	 on	 the	 videos	 appearing	 to	 be	 perceived	 as	

“helpful”	are	presented.	A	few	video	characteristics	such	as	sound	and	repetition	were	not	

further	 included	 in	 the	 analyses	 as	 only	 a	 small	 percentage	 of	 videos	 that	 were	 studied	

contained	them	(see	Section	5.2.1).		

5.2.2.1 Annotations	

If	the	presence	of	annotation	were	to	lead	to	a	higher	percentage	of	videos	appearing	to	be	

perceived	as	helpful	by	developers,	that	would	represent	a	potential	motivation	for	reporters	

to	annotate	the	videos	they	submit.	As	explained	in	Section	5.2.1,	37.8%	of	the	videos	were	

labeled	as	having	annotations	such	as	pointer	movement	or	highlighting	with	the	cursor.	

Observation	1.	Across	all	11	years	on	average	a	statistically	significant	higher	percentage	

of	videos	appeared	to	be	perceived	as	helpful	by	developers.	
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Figure	45	shows	the	trend	for	the	percentage	of	videos	with	and	without	annotation	that	

appeared	to	be	perceived	as	helpful	by	developers	across	11	years.	Comparing	the	means,	

the	videos	without	annotations	had	a	higher	percentage	of	being	perceived	as	helpful	than	

the	ones	with	annotations	throughout	the	years.	The	difference	was	statistically	significant	

(Welch	Two	Sample	t-test,	t	=	-4.30,	df	=	12.37,	p-value	<	0.06),	except	in	the	last	three	years	

where	 the	difference	becomes	 smaller	 and	no	 longer	 statistically	 significant	 (Welch	Two	

Sample	t-test,	t	=	-1.12,	df	=	1.54,	p-value	<	0.06).	

	

Figure	45.	Percentage	of	bug	reports	with	videos	appeared	to	be	perceived	as	helpful	with	

and	without	annotation.	

In	a	way,	the	result	is	surprising	as	one	would	expect	annotations	help	developers	to	locate	

the	problem	and	understand	the	bug,	such	as	bug	id	151808663,	which	included	a	video	with	

annotation	 (highlighting	 with	 curser)	 and	 enabled	 a	 developer	 to	 reproduce	 the	 bug	

(appeared	to	be	perceived	as	helpful).	However,	it	seems	that	some	annotated	videos	were	

still	not	able	to	cover	all	aspects	of	a	bug	and	appeared	to	be	as	not	helpful.	That	might	be	

because	of	the	nature	of	bugs:	for	the	bugs	that	are	more	difficult,	including	annotations	does	

not	necessarily	contribute	to	the	video	becoming	helpful.	For	example,	the	video	in	bug	id	

126737964	had	annotations	(combination	of	pointer	amplified	and	labels)	but	still	triggered	

questions	about	the	bug	itself	by	the	developers	(and	thus	appeared	to	be	perceived	as	not	

 
63 https://bugzilla.mozilla.org/show_bug.cgi?id=1518086 
64 https://bugzilla.mozilla.org/show_bug.cgi?id=1267379 
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helpful).	Another	possible	reason	might	be	that	annotations	are	often	misused	by	end-users	

and	 cause	 confusion,	 and	 therefore	 developers	may	 generally	 prefer	 the	 videos	 without	

annotations.	

5.2.2.2 Length	

Length	of	the	videos	was	another	characteristic	that	was	studied.	If	developers	often	appear	

to	perceive	videos	with	a	specific	(or	a	range	of)	length	as	helpful,	it	would	be	important	to	

guide	reporters	in	making	videos	of	a	certain	length.	To	examine	the	impact	of	the	length	of	

the	videos	on	video	appearing	to	be	perceived	as	helpful,	the	videos	were	split	based	on	their	

length	into	three	groups:	(1)	less	than	30	seconds,	(2)	between	30	and	60	seconds,	and	(3)	

more	than	60	seconds.	Since	no	prior	study	was	found	that	grouped	bug	videos	in	terms	of	

their	length,	these	groups	were	formed	by	the	researchers	after	labeling	the	videos.	

Figure	46	shows	the	difference	in	the	percentage	of	bug	reports	with	videos	seemed	to	be	

perceived	as	helpful	in	each	group.	Note	that	a	higher	percentage	of	videos	that	were	shorter	

in	length	(less	than	30	seconds)	appeared	to	be	perceived	as	helpful	by	developers	than	the	

ones	that	were	longer	(between	30-60	and	more	than	60).	The	difference	was	statistically	

significant	between	videos	with	length	of	less	than	30	seconds	and	between	30-60	seconds	

(Welch	Two	Sample	t-test,	t	=	-0.91,	df	=	18.94,	p-value	<	0.06);	and	less	than	30	seconds	

and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	3.22,	df	=	9.53,	p-value	<	0.06).	

The	 difference,	 however,	 was	 not	 statistically	 significant	 between	 videos	 with	 a	 length	

between	30-60	and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	-0.53,	df	=	18.71,	

p-value	>	0.06)	and,	while	changing	slightly,	that	remained	so	when	considering	just	the	last	

three	years	(Welch	Two	Sample	t-test,	t	=	0.53,	df	=	1.99,	p-value	>	0.06).	

Observation	 2.	 The	 difference	 between	 the	 percentage	 of	 videos	 with	 and	 without	

annotation	 that	 appeared	 to	 be	 perceived	 as	 helpful	 by	 developers	 was	 statistically	

significant.	 Over	 the	 last	 three	 years,	 the	 difference	 became	 smaller	 and	 no	 longer	

statistically	significant.		
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Figure	46.	Percentage	of	bug	reports	with	videos	appeared	to	be	perceived	as	helpful	with	

different	lengths.	

One	 could	 have	 expected	 that	 developers	 would	 prefer	 videos	 to	 be	 longer	 rather	 than	

shorter,	especially	in	the	context	of	prior	work	that	indicated	that	a	good	bug	report	often	

has	a	long	textual	description	of	the	problem	[21].	It	 is	unclear	what	may	be	causing	this,	

other	than	possibly	the	same	reason	as	for	annotation:	the	length	of	video	might	depend	on	

the	nature	of	the	bug.	It	could	also	be	that,	as	the	video	becomes	longer,	 its	“quality”	gets	

lower	and	that	bores	developers	rather	than	helping	them	to	understand	the	bug.	One	could	

also	assume	that	a	video	with	the	length	up	to	30	seconds	is	long	enough	to	show	the	bug,	as	

software	failures	typically	manifest	quickly.	Further	study	is	needed	to	understand	what	may	

be	causing	this.	

	

Observation	 3.	 The	 videos	with	 a	 length	 of	 less	 than	 30	 seconds	 appeared	 to	 have	 a	

statistically	 significant	 higher	 percentage	 of	 being	 perceived	 as	 helpful	 by	 developers	

than	the	ones	that	are	of	length	of	between	30-60	and	more	than	60.	The	difference	in	

percentage	of	being	perceived	as	helpful	by	developers	between	videos	with	lengths	of	

30-60	seconds	and	more	than	60	seconds,	however,	was	not	statistically	significant.		

 



 

	
	

172	

5.2.2.3 Steps	to	Reproduce		

Several	studies	revealed	that	most	developers	consider	steps	to	reproduce	in	the	description	

of	bug	reports	as	helpful	(e.g.,	[16],	[55]),	are	very	important	to	understand	bug	reports	(e.g.,	

[13],	[33]),	and	significant	for	reproducing	bugs	(e.g.,	[13]).	Presumably,	that	would	be	the	

case	for	videos	as	well.	Figure	47	shows	the	trend	for	the	percentage	of	bug	reports	with	

videos	 that	 appeared	 to	 be	 perceived	 as	 helpful	 with	 and	 without	 showing	 steps	 to	

reproduce.	 There	 was	 not	 a	 statistically	 significant	 difference	 between	 the	 two	 groups	

(Welch	Two	Sample	t-test,	t	=	0.59,	df	=	22,	p-value	>	0.06).	

	

Figure	47.	Percentage	of	bug	reports	with	videos	appeared	to	be	perceived	as	helpful	with	

and	without	showing	steps	to	reproduce.	

This	result	is	surprising,	given	that	the	presence	of	steps	to	reproduce	in	the	description	of	

bug	reports	is	one	of	important	attribute	of	high	quality	bug	reports	(see	Section	2.2.1).	One	

could	have	expected	that	including	steps	to	reproduce	in	a	video	would	similarly	appear	to	

be	perceived	as	helpful	by	developers	(e.g.,	117782265).	It	might	be	that	developers	generally	

prefer	steps	to	reproduce	to	be	written	down	in	the	bug	description	rather	than	video	to	

 
65 https://bugzilla.mozilla.org/show_bug.cgi?id=1177822 
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replicate	 the	 bug	 (e.g.,	 161188766).	 Further	 investigation	 is	 needed	 to	 understand	 what	

might	have	caused	this,	such	as	interviewing	the	developers.			

5.2.2.4 Actual	Results		

Similar	to	steps	to	reproduce,	 including	actual	results	 in	the	description	of	bug	reports	 is	

considered	as	one	of	the	most	important	factors	to	help	developers	understand	the	bug	(see	

Section	 2.2.1).	 Supposedly,	 showing	 actual	 results	 in	 video	 may	 also	 be	 helpful	 for	

developers.	Examining	the	difference	between	the	percentage	of	videos	with	actual	results	

and	without,	the	results	are	promising.	A	higher	percentage	of	videos	showing	actual	results	

appeared	 to	 be	 perceived	 as	 helpful	 by	 developers,	 see	 Figure	 48.	 The	 difference	 was	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-3.88,	df	=	11.93,	p-value	<	0.06)	and	

remained	so	when	examining	just	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	-3.47,	

df	=	 1.29,	 p-value	<	0.06).	 This	 possibly	 confirms	 that	 including	 actual	 results	 is	 a	 very	

important	factor	for	a	video	to	be	perceived	as	helpful	by	developers.		

 
66 https://bugzilla.mozilla.org/show_bug.cgi?id=1611887 

Observation	 4.	 The	 difference	 between	 the	 percentage	 of	 videos	 being	 perceived	 as	

helpful	 with	 videos	 showing	 steps	 to	 reproduce	 versus	 those	 that	 did	 not	 was	 not		

statistically	significant.	
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Figure	48.	Percentage	of	bug	reports	with	videos	perceived	as	helpful	with	and	without	

showing	actual	results.	

One	 could	 have	 expected	 that	 video	might	 often	 include	both	 actual	 results	 and	 steps	 to	

reproduce.	However,	overall,	out	of	all	the	videos	that	included	actual	results,	only	47.65%	

also	included	steps	to	reproduce	(see	Section	5.2.1).	The	reason	might	be	that	reporters	did	

not	know	or	remember	how	to	again	reproduce	the	bug.	

5.2.2.5 Priority	

The	potential	 role	 of	 the	 priority	 that	was	 assigned	 to	 bug	 reports	with	 videos	was	 also	

examined.	Priority	defines	the	order	in	which	a	bug	should	be	fixed	(see	section	2.1.4.3).	It	

could	be	that	bug	reports	with	video	with	various	characteristics	have	a	different	priority	

than	those	without,	which	could	impact	the	percentage	of	videos	appearing	to	be	perceived	

as	 helpful	 by	 developers.	 To	 do	 so,	 the	 bug	 reports	 with	 videos	were	 grouped	 into	 two	

priority	 groups:	 high	 priority	 (P1,	 P2,	 P3)	 and	 low	 priority	 (P4,	 P5,	 not	 set).	 Then	 the	

Observation	5.	There	was	a	statistically	significant	higher	percentage	of	videos	showing	

actual	results	that	appeared	to	be	perceived	as	helpful	by	developers	than	those	that	did	

not.	Moreover,	the	difference	remained	statistically	significant	when	examining	just	the	

last	three	years.	
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percentage	of	videos	that	appeared	to	be	perceived	as	helpful	for	each	group	was	compared,	

with	and	without	various	characteristics.	The	difference	was	statistically	significant	(Welch	

Two	Sample	t-test,	t	=	1.96,	df	=	9.82,	p-value	<	0.06)	between	the	percentage	of	videos	that	

appeared	to	be	perceived	a	helpful	with	annotations	and	the	ones	without	annotations.	A	

higher	percentage	of	videos	without	annotations	appeared	to	be	perceived	as	helpful	than	

the	 ones	 with	 annotations	 throughout	 the	 years.	 The	 difference	 was	 also	 statistically	

significant	when	examining	only	last	three	years.	

The	results	also	showed	that	the	difference	between	the	percentage	of	videos	that	appeared	

to	be	perceived	as	helpful	and	included	steps	to	reproduce	and	the	ones	that	did	not	include	

steps	to	reproduce	was	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	1.2,	df	=	

15.29	p-value	>	0.06).	The	difference	remained	not	statistically	significant	when	assessing	

only	the	past	three	years	(Welch	Two	Sample	t-test,	t	=	0.44,	df	=	7.08,	p-value	>	0.06).	

For	 the	 three	 video	 length	 groups,	 the	 difference	 between	 the	 percentage	 of	 videos	 that	

appeared	to	be	perceived	as	helpful	with	videos	of	less	than	30	seconds	and	between	30-60	

seconds	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	0.98,	df	=	13.4,	p-value	<	

0.06).	The	difference	between	the	percentage	of	videos	with	length	of	less	than	30	seconds	

and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	1.04,	df	=	10.05,	p-value	>	0.06),	

and	between	the	percentage	of	videos	with	the	length	of	between	30-60	seconds	and	more	

than	60	seconds	 (Welch	Two	Sample	 t-test,	 t	=	1.55,	df	=	6.74,	p-value	>	0.06)	was	not	

statistically	significant.	

The	 results	 also	 revealed	 that	 the	 difference	 between	 the	 percentage	 of	 videos	 in	 high	

priority	bug	reports	 that	appeared	to	be	perceived	as	helpful	with	videos	showing	actual	

results	and	not	showing	actual	results	was	statistically	significant	(Welch	Two	Sample	t-test,	

t	=	-2.11,	df	=	13.02,	p-value	<	0.06).	The	difference	remained	statistically	significant	when	

only	examining	the	past	three	years.		

The	combination	of	these	findings	with	the	overarching	results	implies	that	the	correlation	

of	including	video	characteristics	with	the	percentage	of	videos	appearing	to	be	perceived	as	

helpful	in	high	priority	bug	reports,	is	similar	to	all	bug	reports	with	different	priority	levels.	
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5.2.2.6 Severity	

Next,	the	potential	role	of	the	severity	that	is	assigned	to	bug	reports	was	assessed.	It	might	

be	that	bug	reports	with	videos	with	various	characteristics	have	a	different	severity	than	

those	without	and	that	could	impact	the	percentage	of	videos	appearing	to	be	perceived	as	

helpful	 by	developers.	The	 severity	 levels	were	 grouped	 into	 three	 severity	 groups:	 high	

severity	(group	1:	blocker,	critical,	and	major),	low	severity	(group	2:	normal,	trivial,	minor,	

Not	 set),	 and	 request	 for	 enhancement	 (group	 3:	 enhancement).	 Then	 the	 percentage	 of	

videos	that	appeared	to	be	perceived	as	helpful	by	developers	was	compared	for	group	1	

with	 and	 without	 annotation,	 steps	 to	 reproduce,	 actual	 results,	 and	 three	 video	 length	

groups.	The	results	showed	that	the	difference	between	the	percentage	of	high	severity	bug	

reports	with	videos	that	appeared	to	be	perceived	as	helpful	with	annotation	and	without	

annotation,	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	4.26,	df	=	10.76,	p-

value	 <	 0.06).	 Only	 assessing	 the	 last	 three	 years	 revealed	 similar	 results	 (Welch	 Two	

Sample	t-test,	t	=	5.95,	df	=	9.54,	p-value	<	0.06).	

The	difference	was	not	statistically	significant	between	videos	that	appeared	to	be	perceived	

as	helpful	and	show	steps	to	reproduce	versus	the	ones	that	do	not	show	steps	to	reproduce	

in	high	severity	bug	reports	(Welch	Two	Sample	t-test,	t	=	4.93,	df	=	5.36,	p-value	>	0.06).	

The	difference	still	was	not	statistically	significant	when	only	examining	the	past	three	years.		

The	 results	 also	 showed	 that	 in	 high	 severity	 bug	 reports,	 the	 length	 of	 video	 did	 not	

correlate	with	 the	percentage	of	videos	appearing	to	be	perceived	as	helpful.	There	were	

statistically	significant	differences	between	 the	percentage	of	videos,	 that	appeared	 to	be	

perceived	as	helpful	and	were	of	length	of	less	than	30	seconds	versus	the	ones	between	30-

60	seconds	(Welch	Two	Sample	t-test, t	=	0.37,	df	=	10.69,	p-value	>	0.06),	and	between	

videos	with	length	of	less	than	30	seconds	and	more	than	60	seconds	(Welch	Two	Sample	t-

test,	t	=	0.82,	df	=	8.59,	p-value	>	0.06).		

The	results,	overall,	indicate	that	the	inclusion	of	annotation,	steps	to	reproduce,	and	actual	

results	 in	 high	 severity	 bug	 reports	 resulted	 in	 similar	 results	 to	when	bug	 reports	with	

various	severity	levels	were	studied.	The	only	exception	concerns	video	length:	studying	all	

severity	 levels	 revealed	 that	 videos	 that	 were	 shorter	 in	 length	 (less	 than	 30	 seconds)	
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appeared	to	have	a	higher	percentage	of	being	perceived	as	helpful	by	developers	than	the	

ones	 that	were	 longer	(between	30-60	or	more	 than	60).	However,	 for	high	severity	bug	

reports	the	length	of	video	did	not	seem	to	correlate	with	video	appearing	to	be	perceived	

as	helpful.	

	

5.2.2.7 Generalized	Linear	Model	

To	 examine	 whether	 different	 characteristics	 of	 video	 may	 have	 an	 impact	 on	 video	

appearing	to	be	perceived	as	helpful,	a	Generalized	Linear	Model	was	built.	The	resulting	

best	model	consisted	of	10	factors	out	of	all	factors	extracted	from	the	bug	report	(mentioned	

in	Section	5.1.3)	including	time	to	resolution,	component,	priority,	severity,	product,	number	

of	comments,	version,	operating	system,	readability,	and	number	of	videos;	and	seven	factors	

from	the	results	of	the	manual	labeling	including	annotation,	length	of	the	video,	showing	

actual	results	in	video,	showing	steps	to	reproduce	in	the	video,	video	submitted	initially,	

video	submitted	voluntarily	later,	and	video	submitted	by	request	later.	

The	 predicted	 value	 is	 whether	 video	 appeared	 to	 be	 perceived	 as	 helpful	 or	 not	 by	

developers.	 The	 McFadden	 Adjusted	 (R2)	 of	 the	 model	 is	 0.50,	 which	 means	 that	 the	

independent	 variables	 used	 in	 building	 the	 regression	model	 only	 contribute	 to	 50%	 of	

accurate	prediction.	Table	33	shows	the	estimates	for	some	of	the	factors	used	in	the	model.	

Because	of	the	apparent	sensitivity	to	the	period	of	time	studied,	this	analysis	was	repeated	

with	shorter	time	windows	(2010-2021,	2013-2021,	2016-2021,	and	2019-2021).	Results	

overall	indicate	a	similarly	small	impact	across	all	time	windows.	While	the	p-values	are	low,	

the	model	itself	is	not	accurate	enough	and	thus	the	effect	cannot	be	interpreted	or	explained.		

Table	33.	Generalized	Linear	Model	predicting	the	percentage	of	videos	appeared	to	be	

perceived	as	helpful	by	developers	by	different	video	characteristics	included	in	the	video.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.50	 0.52	 0.52	 0.65	
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5.2.3 Impact	on	Bug	Report	Resolution	Process	

To	understand	 the	 impact	of	 including	various	characteristics	of	video	on	 the	bug	 report	

resolution	process,	analyses	were	performed	along	three	questions:	(1)	what	is	the	impact	

on	the	length	of	time	to	resolution,	(2)	what	is	the	impact	on	bug	report	being	resolved	with	

a	patch	(i.e.,	resolution	status	of	FIXED),	and	(3)	what	is	the	impact	on	the	back-and-forth	

between	 the	 assigned	 developer	 and	 reporter?	 Each	 analysis,	 because	 of	 the	 seemingly	

sensitivity	to	the	period	of	time	studied,	was	repeated	with	shorter	time	windows.		

Es
tim

at
e 	

Annotation	 -6.508e-02	 -7.454e-02	 -7.454e-02	 -0.11	

Length	 3.349e-04	 3.349e-04	 3.650e-04	 0.0027	

Steps	to	reproduce	 -1.071e-02	 2.010e-03	 2.010e-03	 -0.018	

Actual	results	 -1.954e-02	 -9.912e-03	 -9.912e-03	 -0.12	

Video	submitted		

initially	
1.741e-01	 4.385e-02	 4.385e-02	 0.56	

Video	submitted	

voluntarily	later	
-3.800e-02	 5.869e-02	 5.869e-02	 0.50	

Video	submitted	by	

request	later	
1.235e-01	 7.633e-03	 7.633e-03	 0.29	

Time	to	resolution	 1.516e-04	 2.124e-04	 2.124e-04	 0.00061	

Number	of	comments	 -1.208e-03	 -2.261e-03	 -2.261e-03	 -0.0053	

Readability	 9.798e-05	 1.275e-04	 1.275e-04	 0.000044	

Number	of	videos	 -4.341e-02	 -3.586e-02	 -3.586e-02	 -0.023	

	 P-value	 <	0.06	 <	0.06	 <	0.06	 <	0.06	
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5.2.3.1 Impact	on	Time	to	Resolution	

To	assess	the	impact	of	including	different	characteristics	of	video	on	the	time	to	resolution,	

the	average	number	of	days	to	resolve	the	bug	reports	with	videos	were	compared,	between	

the	ones	that	included	the	video	characteristic	and	the	ones	that	did	not.	For	each	bug	report,	

the	time	to	resolution	was	calculated	as	the	number	of	days	between	the	initial	submission	

of	 the	bug	report	and	when	the	status	of	 the	bug	report	was	changed	 to	RESOLVED.	 It	 is	

possible	that	a	bug	report	was	resolved	and	then	reopened,	meaning	that	its	history	includes	

the	status	RESOLVED	multiple	times.	In	such	cases,	the	day	it	was	last	changed	to	RESOLVED	

was	measured.	

Figure	49	shows	the	trend	for	the	average	number	of	days	to	resolve	bug	reports	with	videos	

with	various	characteristics.	The	bug	reports	with	videos	including	annotation	took	a	smaller	

number	of	days	to	resolve	(Welch	Two	Sample	t-test,	t	=	-4.1227,	df	=	13.167,	p-value	<	

0.06),	see	Figure	49(a).	Comparing	the	mean,	the	difference	was	statistically	significant.	The	

difference,	 however,	 did	 get	 lower	 over	 time,	 where	 in	 the	 last	 three	 years	 it	 was	 not	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-1.8518,	df	=	3.3428,	p-value	>	0.06).	

Figure	49(b)	 shows	 similar	 results	 for	 showing	 steps	 to	 reproduce,	where	 the	difference	

between	the	average	number	of	days	to	resolve	bug	reports	with	videos	and	the	ones	that	

did	not,	was	statistically	significant	(Welch	Two	Sample	t-test,	t	= -2.6883,	df	=	13.024,	p-

value	<	0.06).	The	difference	for	the	last	three	years,	however,	was	no	longer	statistically	

significant	(Welch	Two	Sample	t-test,	t	=	-0.64221,	df	=	3.9909,	p-value	>	0.06).	

For	the	three	video	length	groups,	the	differences	in	the	average	number	of	days	to	resolve	

were	not	statistically	significant.	The	average	number	of	days	to	resolve	the	bug	reports	with	

video	 longer	 than	60	seconds	(mean	=	281)	was	higher	 than	 the	ones	with	video	with	a	

length	between	30-60	seconds	(mean	=	240)	and	the	ones	shorter	than	30	seconds	(mean	

=	208),	see	Figure	49(c).	The	differences	remained	not	statistically	significant	when	only	

considering	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	-0.4903,	df	=	8.1972,	p-value	

>	0.06).	
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Finally,	 the	 difference	 between	 the	 average	 number	 of	 days	 to	 resolve	 bug	 reports	with	

videos	showing	actual	results	and	the	ones	that	did	not,	was	statistically	significant	(Welch	

Two	Sample	t-test,	t	=	-3.62,	df	=	13.20,	p-value	<	0.06);	and	remained	so	when	examining	

just	 the	 last	 three	 years	 (Welch	 Two	 Sample	 t-test,	 t	 =	 -3.363,	 df	 =	 3.0163,	 p-value	 =	

0.04329),	see	Figure	49(d).	
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Figure	49.	Comparing	the	average	number	of	days	to	resolve	bug	reports	with	videos	with	

and	without	different	characteristics.	

5.2.3.1.1 Priority	

If	the	typical	priority	of	bug	reports	with	videos	with	annotation,	steps	to	reproduce,	and	

actual	 results	 were	 high	 compared	 to	 those	 without,	 it	 might	 explain	 why	 they	 took	

statistically	significant	less	time	to	resolve	on	average.	To	assess	this,	the	bug	reports	with	

videos	were	grouped	into	high	priority	(P1,	P2,	P3)	and	low	priority	(P4,	P5,	not	set).	Then	

the	average	number	of	days	to	resolve	 for	each	group	was	compared.	The	difference	was	

statistically	significant	(Welch	Two	Sample	 t-test,	 t	=	 -2.08,	df	=	2038.4,	p-value	<	0.06)	

Observation	6.	Across	11	years	it	took	on	average	a	statistically	significant	lower	number	

of	 days	 to	 resolve	 the	 bug	 reports	 with	 videos	 showing	 actual	 results	 or	 including	

annotation.	For	the	three	video	length	groups	or	steps	to	reproduce,	the	differences	in	the	

average	number	of	days	to	resolve	were	not	statistically	significant.	
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between	the	average	number	of	days	to	resolve	high	priority	bug	reports	with	video	with	

annotation	and	without	annotation.	The	average	time	to	resolution	was	lower	for	the	high	

priority	bug	reports	with	video	with	annotation	than	high	priority	bug	reports	with	video	

without	annotation.	The	difference,	however,	was	no	 longer	 statistically	 significant	when	

only	studying	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	1.36,	df	=	171.7,	p-value	>	

0.06).	

Similar	results	were	achieved	when	examining	steps	to	reproduce	and	actual	results.	The	

average	time	to	resolution	was	smaller	for	the	high	priority	bug	reports	with	video	showing	

steps	to	reproduce	than	those	not	showing	steps	to	reproduce	(Welch	Two	Sample	t-test,	t	

=	-3.33,	df	=	3.03,	p-value	<	0.06);	and	videos	showing	actual	results	and	those	not	showing	

actual	 results	 (Welch	Two	Sample	 t-test,	 t	=	 -31.03,	df	=	4,	 p-value	<	0.06).	The	 results	

remained	so	when	examining	just	the	last	three	years.	

The	 results	 where	 all	 priority	 levels	 were	 considered	 showed	 that	 differences	 were	 not	

statistically	significant	for	the	three	video	length	groups.	But,	for	high	priority	bug	reports	

the	 differences	 in	 average	 time	 to	 resolution	 were	 statistically	 significant.	 That	 is,	 the	

difference	in	the	average	time	to	resolution	for	high	priority	bug	reports	with	videos	of	less	

than	30	seconds	and	between	30-60	seconds	was	statistically	significant	(Welch	Two	Sample	

t-test,	t	=	-0.61,	df	=	3.99,	p-value	<	0.06);	and	also	videos	of	less	than	30	seconds	and	more	

than	60	seconds	(Welch	Two	Sample	t-test,	t	=	-0.61,	df	=	3.99,	p-value	<	0.06).	

It	is	interesting	to	pair	these	findings	with	the	overarching	result	of	bug	reports	with	video	

with	different	characteristics	taking	less	time.	The	combination	of	the	two	results	 implies	

that	bug	reports	with	video	with	various	characteristics	take	less	average	time	to	resolution,	

regardless	of	the	bug	report’s	priority.	Also,	shorter	videos	(less	than	30	seconds)	attached	

to	high	priority	bug	reports	appeared	to	lead	to	a	statistically	significant	smaller	number	of	

days	to	resolve.			

	

5.2.3.1.2 Severity	

The	potential	role	of	the	severity	that	is	assigned	to	bug	reports	was	also	assessed.	It	could	

be	that	bug	reports	with	videos	with	various	characteristics	have	a	different	severity	than	
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videos	 without,	 and	 that	 might	 impact	 the	 time	 to	 resolution.	 The	 severity	 levels	 were	

grouped	 into	high	 severity	 (group	1:	blocker,	 critical,	 and	major),	 low	severity	 (group	2:	

normal,	trivial,	minor,	Not	set),	and	request	for	enhancement	(group	3:	enhancement).	Then	

the	 time	 to	 resolution	was	 compared	 for	 group	 1	with	 and	without	 annotation,	 steps	 to	

reproduce,	actual	 results,	and	 for	 the	 three	video	 length	groups.	The	results	 showed	 that	

there	was	no	statistically	significant	difference	between	the	time	to	resolution	for	the	high	

severity	bug	reports	with	video	with	annotation	and	without	(Welch	Two	Sample	t-test,	t	=	

-0.01,	df	=	21.57,	p-value	>	0.06).	Similar	results	persisted	when	only	assessing	the	last	three	

years	(Welch	Two	Sample	t-test,	t	=	-2.66,	df	=	3.56,	p-value	>	0.06).	

The	results	were	similar	for	steps	to	reproduce	and	actual	results.	The	difference	between	

the	time	to	resolution	for	high	severity	bug	reports	with	videos	showing	steps	to	reproduce	

and	 videos	 not	 showing	 steps	 to	 reproduce,	was	 not	 statistically	 significant	 (Welch	 Two	

Sample	 t-test,	 t	=	6.68,	df	=	21.98,	p-value	>	0.06),	 as	well	 as	 for	videos	 showing	actual	

results	and	videos	not	showing	actual	results	(Welch	Two	Sample	t-test,	t	=	1.97,	df	=	4.35,	

p-value	<	0.06).	The	difference	still	was	not	statistically	significant	when	only	examining	the	

past	 three	 years.	 The	 results	 also	 showed	 that	 there	 was	 not	 a	 statistically	 significant	

difference	in	the	time	to	resolution	of	high	severity	bug	reports	with	videos	shorter	than	30	

seconds	and	between	30-60	seconds	(Welch	Two	Sample	t-test, t	=	-5.85,	df	=	12.26,	p-value	

>	0.06).	The	difference	also	was	not	statistically	significant	between	videos	with	the	length	

of	30	seconds	and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	-3.65,	df	=	3.96,	p-

value	>	0.06).	

This	means	 that,	 for	bugs	of	 importance,	 the	 inclusion	of	 annotation,	 steps	 to	 reproduce,	

actual	 results,	 and	 having	 different	 video	 length	 appeared	 to	 have	 no	 correlation	 with	

average	number	of	days	to	resolve.		

	

5.2.3.1.3 Generalized	Linear	Model	

To	explore	whether	the	video	characteristics	may	have	an	impact	on	bug	resolution	time,	I	

built	a	Generalized	Linear	Model.	The	resulting	best	model	consisted	of	19	factors	out	of	all	

factors	 mentioned	 in	 Section	 5.1.3,	 including	 operating	 system,	 component,	 severity,	
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priority,	version,	resolution,	number	of	unique	participants,	number	of	comments,	presence	

of	 actual	 results	 in	 bug	 report	 description,	 presence	 of	 steps	 to	 reproduce	 in	 bug	 report	

description,	 number	 of	 videos,	 presence	 of	 actual	 results	 in	 video,	 presence	 of	 steps	 to	

reproduce	 in	 the	 video,	 length	 of	 the	 video,	 annotation	 in	 the	 video,	 repetition,	 video	

submitted	initially,	video	submitted	voluntarily	later,	and	video	submitted	by	request	later.	

The	predicted	value	is	the	average	number	of	days	to	resolve.	The	McFadden	Adjusted	(R2)	

of	 the	 model	 is	 0.78,	 which	 means	 that	 the	 independent	 variables	 used	 in	 building	 the	

regression	model	contribute	to	78%	of	accurate	predictions.	Results	indicate	a	small	impact	

across	all	time	windows	(2010-2021,	2013-2021,	2016-2021,	and	2019-2021),	see	Table	34.	

It	is	interesting	to	observe	that,	for	the	time	window	of	the	past	six	and	three	years,	a	positive	

instead	of	negative	correlation	exists	 for	actual	 results:	 time	 to	resolution	 is	predicted	 to	

increase.	The	difference,	though,	is	small.	

Table	34.	Generalized	Linear	Model	predicting	the	impact	on	the	average	number	of	days	to	

resolve	bug	reports	by	different	video	characteristics	included	in	the	video.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.78	 0.79	 0.79	 0.87	

Es
tim

at
e 	

Annotation	 1.090e-01	 7.049e-02	 -1.072e-02	 -3.726e-01	

Length	 -3.583e-03	 -1.738e-03	 -2.224e-03	 8.881e-03	

Steps	to	reproduce	 3.857e-02	 7.247e-02	 1.122e-01	 -3.510e-01	

Actual	results	 -1.362e-01	 -1.163e-01	 3.580e-02	 5.160e-01	

Video	submitted		

initially	
1.741e-01	 9.340e-02	 4.510e-01	 -1.433e+00	

Video	submitted	

voluntarily	later	
-3.800e-02	 -5.658e-02	 7.077e-02	 -1.344e+00	
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5.2.3.2 Impact	on	Being	Resolved	with	a	Patch	

If	the	presence	of	a	video	characteristic	in	videos	were	to	lead	to	a	higher	percentage	of	bug	

reports	being	resolved	with	a	patch	(i.e.,	resolution	status	of	FIXED),	that	would	represent	a	

different	 kind	 of	 positive	 influence.	 As	 Figure	 50(a)	 shows,	 across	 all	 11	 years,	 a	 higher	

percentage	of	bug	reports	with	videos	that	did	not	include	annotation	were	resolved	with	a	

resolution	status	of	FIXED.	The	difference	was	statistically	significant	(Welch	Two	Sample	t-

test,	t	=	-13.674,	df	=	22,	p-value	<	0.06)	and	remained	so	when	only	considering	the	last	

three	years	(Welch	Two	Sample	t-test,	t	=	-31.043,	df	=	4,	p-value	<	0.06).	

Video	submitted	by	

request	later	
1.235e-01	 4.522e-02	 -1.401e-01	 -1.319e+00	

Number	of	unique	

participants	
5.154e-02	 5.466e-02	 5.927e-02	 2.963e-03	

Number	of	comments	 7.196e-03	 2.304e-03	 9.442e-03	 4.198e-02	

Presence	of	steps	to	

reproduce	in	bug	report	

description	

-5.775e-01	 -4.289e-01	 -3.497e-01	 2.234e-01	

Presence	of	actual	results	in	

bug	report	description	
3.091e-01	 3.652e-01	 4.683e-01	 -1.516e-01	

Number	of	videos	 1.929e-01	 2.316e-01	 -1.690e-03	 5.684e-01	

	 P-value	 <	0.06	 <	0.06	 <	0.06	 <	0.06	

Observation	7.	The	impact	of	including	certain	video	characteristics	on	bug	report’s	time	

to	resolution,	is	minimal.	
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As	 Figure	 50(b)	 shows,	 showing	 the	 steps	 to	 reproduce	 in	 the	 videos	 did	 not	 make	 a	

difference	 in	 the	 percentage	 of	 bug	 reports	 being	 successfully	 resolved.	 The	 difference	

between	videos	showing	steps	to	reproduce	and	the	ones	that	did	not,	was	not	statistically	

significant	(Welch	Two	Sample	t-test,	t	=	1.8146,	df	=	22,	p-value	>	0.06).	

For	the	three	video	length	groups,	a	higher	percentage	of	bug	reports	with	videos	less	than	

30	 seconds	 were	 resolved	 successfully	 with	 a	 patch,	 see	 Figure	 50(c).	 The	 differences	

between	 the	 percentage	 of	 bug	 reports	 being	 successfully	 resolved	 were	 statistically	

significant	for	all	three	groups.	A	higher	percentage	of	bug	reports	with	videos	shorter	than	

30	seconds	were	resolved	with	a	patch	than	the	ones	between	30-60	seconds	(Welch	Two	

Sample	t-test,	t	=	20.405,	df	=	18.279,	p-value	<	0.06)	and	the	ones	longer	than	60	seconds	

(Welch	Two	Sample	t-test,	t	=	4.48,	df	=	16.56,	p-value	<	0.06);	and	a	higher	percentage	of	

bug	reports	with	videos	between	30	and	60	seconds	were	resolved	with	a	patch	than	the	

ones	longer	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	3.06,	df	=	18.65,	p-value	<	0.06).	

Results	 also	 showed	 that	 a	 higher	percentage	of	 bug	 reports	with	 videos	 showing	 actual	

results	were	resolved	successfully	with	a	patch,	see	Figure	50(d).	The	difference	between	

the	percentage	of	bug	reports	being	successfully	resolved	with	videos	showing	actual	results	

and	 the	ones	 that	did	not,	was	statistically	significant.	The	videos	 that	showed	 the	actual	

results	had	a	higher	percentage	of	being	resolved	with	a	patch	(Welch	Two	Sample	t-test,	t	

=	19.623,	df	=	22,	p-value	<	0.06)	and	remained	so	when	examining	just	the	last	three	years	

(Welch	Two	Sample	t-test,	t	=	115.49,	df	=	4,	p-value	<	0.06).		
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Figure	50.	Comparing	the	percentage	of	bug	reports	with	videos	with	different	

characteristics	being	resolved	with	a	patch.	

	

5.2.3.2.1 Priority	

Next,	I	examined	the	potential	role	of	the	priority	that	is	assigned	to	bug	reports	with	videos.	

It	could	be	that	bug	reports	with	video	with	different	characteristics	have	a	different	priority	

than	those	without,	and	this	may	impact	the	percentage	of	bug	reports	being	resolved	with	

a	patch.	Again,	bug	reports	with	videos	were	grouped	into	high	priority	(P1,	P2,	P3)	and	low	

priority	(P4,	P5,	not	set).	Then	the	percentage	of	bug	reports	being	resolved	with	a	patch	

Observation	8.	Overall,	bug	reports	with	videos	that	included	annotation,	showed	actual	

results,	or	were	shorter	than	30	seconds	had	a	statistically	significant	higher	chance	of	

being	successfully	resolved	with	a	patch.	However,	no	statistically	significant	difference	

existed	between	the	bug	reports	with	videos	showing	steps	to	reproduce	and	the	ones	

that	do	not	show	them.	
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with	videos	with	certain	video	characteristics	was	compared	 to	 the	videos	without	 those	

characteristics.	The	difference	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	-

21.34,	df	=	38.08,	p-value	<	0.06)	when	examining	annotation:	a	higher	percentage	of	high	

priority	 bug	 reports	 with	 videos	 that	 did	 not	 include	 annotation	 were	 resolved	 with	 a	

resolution	 status	 of	 FIXED.	 The	 difference	 remained	 statistically	 significant	 (Welch	 Two	

Sample	t-test,	 t	=	-18.4,	df	=	32.14,	p-value	<	0.06)	when	only	considering	the	 last	three	

years.	

Showing	the	steps	to	reproduce	in	the	videos	of	high	priority	bug	reports	did	not	make	a	

statistically	 significant	 difference	 in	 the	 percentage	 of	 bug	 reports	 being	 successfully	

resolved,	when	compared	with	videos	that	did	not	include	steps	to	reproduce	in	high	priority	

bug	reports	(Welch	Two	Sample	t-test,	t	=	2.46,	df	=	4,	p-value	>	0.06).	

For	 the	 three	 video	 length	 groups,	 a	higher	percentage	of	 high	priority	bug	 reports	with	

videos	less	than	30	seconds	were	resolved	successfully	with	a	patch	than	those	between	30-

60	and	more	than	60	seconds.	The	differences,	however,	were	not	statistically	significant	

(comparing	high	priority	bug	reports	with	videos	shorter	 than	30	seconds	with	 the	ones	

between	 30-60	 seconds:	Welch	 Two	 Sample	 t-test,	 9.29,	 df	 =	 3.97,	 p-value	 >	 0.06,	 and	

comparing	high	quality	bug	reports	with	videos	shorter	than	30	seconds	with	those	longer	

than	60	seconds:	Welch	Two	Sample	 t-test,	14.703,	df	=	21.974,	p-value	>	0.06).	Similar	

results	were	achieved	when	considering	only	the	past	three	years.		

The	results	also	showed	that	a	higher	percentage	of	high	priority	bug	reports	with	videos	

showing	actual	results	were	resolved	successfully	with	a	patch:	the	difference	between	the	

percentage	 of	 high	 priority	 bug	 reports	 being	 successfully	 resolved	with	 videos	 showing	

actual	results	and	the	ones	that	did	not	was	statistically	significant	(Welch	Two	Sample	t-

test,	t	=	9.87,	df	=	4.76,	p-value	<	0.06)	and	remained	so	when	examining	just	the	last	three	

years	(Welch	Two	Sample	t-test,	t	=	63.46,	df	=	3.53,	p-value	<	0.06).		

Overall,	the	results	appeared	to	be	similar	to	the	overarching	results	when	bug	reports	were	

not	grouped	based	on	their	priority.	An	exception	concerns	only	for	the	three	groups	of	video	

length:	while	results	from	exploring	all	priority	levels	showed	that	a	higher	percentage	of	

bug	reports	with	videos	being	less	than	30	seconds	were	resolved	successfully	with	a	patch,	
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examining	only	high	priority	bug	reports	indicated	that	the	length	of	video	did	not	make	a	

difference	in	percentage	of	bug	reports	being	resolved	with	a	patch.	

		

5.2.3.2.2 Severity	

Next,	the	potential	role	of	the	severity	that	is	assigned	to	bug	reports	was	examined.	It	could	

be	that	bug	reports	with	video	with	various	characteristics	have	a	different	severity	 than	

those	without,	and	that	might	impact	the	percentage	of	bug	reports	being	resolved	with	a	

patch.	The	severity	levels	were	grouped	into	three	severity	groups:	high	severity	(group	1:	

blocker,	 critical,	 and	major),	 low	 severity	 (group	 2:	 normal,	 trivial,	minor,	 Not	 set),	 and	

request	for	enhancement	(group	3:	enhancement).	Then	the	percentage	of	bug	reports	being	

resolved	with	 a	 patch	was	 compared	 for	 group	 1	with	 and	without	 annotation,	 steps	 to	

reproduce,	actual	results,	and	for	three	video	length	groups.	The	results	showed	that	there	

was	 no	 statistically	 significant	 difference	 between	 the	 percentage	 of	 high	 severity	 bug	

reports	with	video	being	 successfully	 resolved	with	 annotation	 and	without	 (Welch	Two	

Sample	 t-test,	 t	 =	 2.9,	 df	 =	 4.61,	 p-value	 >	 0.06).	 Similar	 results	 persisted	 when	 only	

assessing	only	the	last	three	years	(Welch	Two	Sample	t-test,	t	=	2.94,	df	=	4.62,	p-value	>	

0.06).	

The	difference	between	the	percentage	of	bug	reports	being	successfully	resolved	for	high	

severity	bug	reports	with	videos	showing	steps	to	reproduce	and	the	videos	not	showing	

steps	to	reproduce	was	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	14.68,	df	=	

3.57,	 p-value	 >	 0.06).	 The	 difference	 still	 was	 not	 statistically	 significant	 when	 only	

examining	the	past	three	years.		

The	 results	 also	 showed	 that	 there	 was	 not	 a	 statistically	 significant	 difference	 in	 the	

percentage	of	bug	reports	being	successfully	resolved	with	videos	shorter	than	30	seconds	

and	between	30-60	seconds	(Welch	Two	Sample	t-test, t	=	9.92,	df	=	3.15,	p-value	>	0.06);	

and	videos	shorter	than	30	seconds	and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	

=	14.3,	df	=	21.53,	p-value	>	0.06).		

Finally,	the	results	showed	that	a	higher	percentage	of	high	severity	bug	reports	with	videos	

showing	actual	results	were	resolved	successfully	with	a	patch:	the	difference	between	the	
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percentage	of	bug	reports	being	successfully	resolved	with	videos	showing	actual	results	and	

the	ones	that	did	not	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	9.87,	df	=	

4.76,	p-value	<	0.06)	and	remained	so	when	examining	just	the	last	three	years	(Welch	Two	

Sample	t-test,	t	=	63.46,	df	=	3.53,	p-value	<	0.06).		

Overall,	the	results	indicated	that	for	bugs	of	importance,	the	inclusion	of	annotation,	steps	

to	reproduce,	and	actual	results,	and	having	different	video	length	did	not	correlate	with	the	

percentage	of	bug	reports	being	successfully	resolved.		

	

5.2.3.2.3 Generalized	Linear	Model	

To	examine	the	effect,	I	also	built	a	Generalized	Linear	Model	(GLR).	The	resulting	best	GLR	

model	consisted	of	17	factors	out	of	all	factors	mentioned	in	Section	5.1.3,	including	time	to	

resolution,	priority,	whether	the	bug	was	confirmed,	readability,	number	of	unique	words	in	

the	 title,	 number	 of	 unique	 words	 in	 the	 description,	 number	 of	 unique	 participants,	

presence	of	actual	results	in	the	bug	description,	presence	of	actual	results	in	video,	presence	

of	steps	to	reproduce	in	the	video,	annotation	in	the	video,	length	of	the	video,	count,	video	

submitted	initially,	video	submitted	voluntarily	later,	video	submitted	by	request	later,	and	

voiceover.	The	predicted	value	is	whether	bug	reports	are	resolved	with	a	patch,	or	not.	The	

McFadden	Adjusted	R2	of	the	model	is	0.28,	which	means	that	this	set	of	factors	is	insufficient	

to	 build	 an	 accurate	 regression	model.	 I	 built	 the	 same	model	 for	 shorter	 time	windows	

(2010-2021,	2013-2021,	2016-2021,	and	2019-2021)	and	encountered	the	same	situation,	

see	Table	35.	While	the	p-values	are	low,	the	model	itself	is	inaccurate	and	thus	the	effect	of	

including	a	video	characteristic	on	resolution	with	a	patch	cannot	be	explained.	Overall,	then,	

this	means	that	the	other	17	factors	are	at	work.		

Table	35.	Generalized	Linear	Model	predicting	the	impact	on	the	percentage	of	bug	reports	

being	resolved	as	FIXED	by	different	video	characteristics	included	in	the	attached	video.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.28	 0.29	 0.31	 0.34	



 

	
	

191	

Es
tim

at
e 	

Annotation	 2.931e-03	 1.224e-02	 -5.226e-03	 2.139e-02	

Length	 -5.527e-04	 -5.677e-04	 -5.975e-04	 -1.235e-03	

Steps	to	reproduce	 3.272e-02	 3.304e-02	 6.932e-03	 -7.589e-03	

Actual	results	 -4.733e-02	 -4.541e-02	 -5.907e-02	 -3.371e-02	

Video	submitted		

initially	
-2.428e-01	 -2.637e-01	 -1.816e-02	 -9.102e-02	

Video	submitted	

voluntarily	later	
-2.063e-01	 -2.149e-01	 1.268e-02	 -2.010e-01	

Video	submitted	by	

request	later	
-2.070e-01	 -2.392e-01	 -4.475e-03	 -6.304e-02	

Time	to	resolution	 -5.530e-04	 -5.920e-04	 -6.493e-04	 -1.011e-03	

Whether	the	bug	was	

confirmed	
3.143e-01	 3.310e-01	 3.405e-01	 2.330e-01	

Number	of	unique	words	in	

the	title	
1.553e-03	 1.729e-03	 4.083e-03	 3.586e-04	

Number	of	unique	words	in	

the	description	
-1.108e-04	 -1.095e-04	 -1.830e-05	 7.677e-05	

Readability	 2.194e-05	 2.804e-05	 1.653e-05	 1.085e-04	

Number	of	unique	

participants	
1.923e-02	 1.849e-02	 1.963e-02	 3.187e-02	

Presence	of	actual	results	in	

bug	report	description	
1.350e-02	 1.822e-02	 -1.532e-02	 -5.529e-02	

Voiceover	 4.396e-02	 4.243e-02	 4.373e-02	 2.030e-01	
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5.2.3.3 Impact	on	Back-and-Forth	

The	back-and-forth	exchanges	represent	times	that	developers	explicitly	reached	out	to	the	

reporter,	to	clarify	something	in	the	bug	report	or	obtain	auxiliary	information	(see	Section	

2.1.5).	Below,	I	explain	whether	including	various	characteristics	of	video	made	a	statistical	

difference	in	the	average	number	of	back-and-forth.	

The	difference	between	the	average	number	of	back-and-forth	for	bug	reports	with	videos	

that	 included	 annotations	 (mean	 26)	 and	 the	 ones	 that	 did	 not	 (mean	 27),	 was	 not	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-0.20371,	df	=	21.949,	p-value	>	0.06),	

see	Figure	51(a).		

Figure	 51	 (b)	 shows	 similar	 results	 for	 showing	 steps	 to	 reproduce	 in	 the	 video.	 The	

difference	between	the	average	number	of	back-and-forth	was	not	statistically	significant	

(Welch	Two	Sample	t-test,	t	=	-0.66451,	df	=	20.286,	p-value	>	0.06).		

The	bug	reports	with	videos	shorter	than	30	seconds	had	a	lower	average	number	of	back-

and-forth	than	the	ones	with	the	length	of	between	30-60	seconds	(Welch	Two	Sample	t-test,	

t	=	- t	=	-0.39,	df	=	19.51,	p-value	>	0.06),	and	more	than	60	seconds	(Welch	Two	Sample	t-

test,	t	=	-1.103,	df	=	19.85,	p-value	>	0.06).	The	differences,	however,	were	not	statistically	

significant,	see	Figure	51	(c).	

Also,	 the	difference	between	 the	 average	number	 of	 back-and-forth	 for	 bug	 reports	with	

videos	 showing	 actual	 results	 and	 the	 ones	 that	 did	 not,	 was	 not	 statistically	 significant	

(Welch	Two	Sample	t-test,	t	=	-0.33573,	df	=	21.926,	p-value	=	0.7403),	see	Figure	51	(d).	

	 P-value	 <	0.06	 <	0.06	 <	0.06	 <	0.06	
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Figure	51.	Comparing	the	average	number	of	back-and-forth	in	bug	reports	with	videos	

with	different	video	characteristics.	

	

5.2.3.3.1 Priority	

I	examined	the	potential	role	of	the	priority	that	is	assigned	to	bug	reports	with	videos.	If	the	

typical	priority	of	bug	reports	with	videos	with	different	characteristics	were	low	compared	

to	 those	without,	 it	might	 explain	why	 the	 number	 of	 back-and-forth	 is	 not	 significantly	

affected	when	the	reporters	applied	various	video	characteristics.	To	examine	this,	the	bug	

reports	with	videos	were	grouped	into	high	priority	(P1,	P2,	P3)	and	low	priority	(P4,	P5,	

Observation	 9.	 The	 difference	 between	 the	 average	 number	 of	 back-and-forth	 in	 bug	

reports	with	videos	 that	 included	annotations	or	showed	steps	 to	reproduce	or	actual	

results	versus	those	that	did	not,	was	not	statistically	significant.	The	difference,	similarly,	

was	not	statistically	significant	for	the	bug	reports	with	videos	shorter	than	30	seconds	

versus	the	ones	with	the	length	of	between	30-60	seconds	or	than	60	seconds.	
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not	set).	Then	the	number	of	back-and-forth	for	each	group	was	compared,	for	videos	with	

certain	video	characteristics	and	the	ones	without.		

The	difference	was	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	-1.8,	df	=	8.2,	

p-value	>	0.06)	between	 the	average	number	of	back-and-forth	 for	 the	high	priority	bug	

reports	 with	 video	 with	 annotation	 and	 high	 priority	 bug	 reports	 with	 video	 without	

annotation.	The	difference	was	also	not	statistically	significant	when	examining	only	the	last	

three	years	(Welch	Two	Sample	t-test,	t	=	3.61,	df	=	10.7,	p-value	>	0.06).	

Similar	results	were	achieved	when	examining	steps	to	reproduce	and	actual	results.	The	

differences	were	not	statistically	significant	between	the	average	number	of	back-and-forth	

for	high	priority	bug	reports	with	videos	with	steps	to	reproduce	and	those	without	steps	to	

reproduce	(Welch	Two	Sample	t-test,	 t	=	-1.93,	df	=	5.36,	p-value	>	0.06);	as	well	as	 for	

videos	with	actual	results	and	without	actual	results	(Welch	Two	Sample	t-test,	t	=	13.9,	df	

=	22,	p-value	>	0.06).		

For	the	three	video	length	groups,	the	difference	between	average	number	of	back-and-forth	

for	high	priority	bug	reports	with	videos	being	less	than	30	seconds	and	those	between	30-

60	seconds	was	not	statistically	significant	(Welch	Two	Sample	t-test,	t	=	0.33,	df	=	13.60,	p-

value	>	 0.06).	 The	 results	were	 similar	when	 comparing	 high	 priority	 bug	 reports	with	

videos	shorter	than	30	seconds	and	between	30	and	60	seconds	(Welch	Two	Sample	t-test,	t	

=	3.76,	df	=	7.73,	p-value	>	0.06).		

Putting	 these	 findings	 together	with	 the	 earlier	 results,	 it	 appears	 that	 including	 various	

characteristics	in	videos	did	not	have	a	correlation	with	the	average	number	of	back-and-

forth	between	bug	reporters	and	developers,	even	when	only	high	priority	bug	reports	were	

considered.	

	

5.2.3.3.2 Severity	

Next,	the	potential	role	of	the	severity	that	is	assigned	to	bug	reports	was	examined.	It	could	

be	that	bug	reports	with	video	with	various	characteristics	have	a	different	severity	 than	

those	without,	and	this	may	impact	the	back-and-forth	because	of	the	implied	importance	of	
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fixing	severe	bugs.	The	severity	levels	were	grouped	into	three	severity	groups:	high	severity	

(group	1:	blocker,	critical,	and	major),	low	severity	(group	2:	normal,	trivial,	minor,	Not	set),	

and	 request	 for	 enhancement	 (group	 3:	 enhancement).	 Then	 the	 mean	 of	 the	 average	

number	of	back-and-forth	was	compared	for	group	1	with	and	without	video	characteristics.	

The	 results	 showed	 that	 there	 were	 no	 statistically	 significant	 difference	 between	 the	

average	number	of	back-and-forth	 for	 the	high	 severity	bug	 reports	with	video	with	and	

without	annotation	(Welch	Two	Sample	t-test,	t	=	0.82,	df	=	2.24,	p-value	>	0.06),	steps	to	

reproduce	(Welch	Two	Sample	t-test,	t	=	-0.65,	df	=	3.19,	p-value	>	0.06),	and	actual	results	

(Welch	Two	Sample	t-test,	t	=	-1.11,	df	=	2.17,	p-value	>	0.06).		

Similarly,	 there	was	no	statistically	significant	difference	between	 the	average	number	of	

back-and-forth	 for	 the	high	severity	bug	reports	with	video	shorter	 than	30	seconds	and	

between	30-60	seconds	(Welch	Two	Sample	t-test,	t	=	- t	=	-0.39,	df	=	19.51,	p-value	>	0.06),	

and	shorter	than	30	seconds	and	more	than	60	seconds	(Welch	Two	Sample	t-test,	t	=	-1.103,	

df	=	19.85,	p-value	>	0.06).	The	results	suggest	that	including	different	video	characteristics,	

regardless	of	bug	reports’	severity,	did	not	have	a	correlation	with	the	number	of	back-and-

forth.		

	

5.2.3.3.3 Generalized	Linear	Model	

To	study	the	effect	of	 including	various	video	characteristics	on	the	number	of	back-and-

forth	associated	with	bug	reports,	I	built	a	Generalized	Linear	Model.	The	resulting	best	GLR	

model	consisted	of	20	factors	out	of	all	factors	mentioned	in	the	methodology	including	time	

to	 resolution,	 priority,	whether	 the	 bug	was	 confirmed,	 component,	 readability,	 product,	

operating	system,	version,	number	of	unique	participants,	presence	of	actual	results	in	the	

bug	description,	presence	of	steps	to	reproduce	in	the	bug	description,	presence	of	actual	

results	in	video,	presence	of	steps	to	reproduce	in	the	video,	annotation	in	the	video,	length	

of	 the	 video,	 count,	 video	 submitted	 initially,	 video	 submitted	 voluntarily	 later,	 video	

submitted	by	 request	 later,	 and	voiceover.	The	predicted	value	 is	 the	average	number	of	

back-and-forth.	The	McFadden	Adjusted	(R2)	of	the	model	is	0.64,	which	means	that	this	set	

of	factors	together	is	able	to	explain	64%	of	the	variability.	Table	36	shows	the	results.	The	
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same	model	was	built	for	shorter	time	windows	(2010-2021,	2013-2021,	2016-2021,	and	

2019-2021)	and	similar	results	persisted.	Again,	the	model	cannot	be	used	to	interpret	or	

explain	the	effect	of	different	video	characteristics	on	the	number	of	back-and-forth.	Further	

study	will	need	to	discover	what	other	factors	besides	the	twenty	we	studied	may	be	causing	

the	difference.	

Table	36.	Generalized	Linear	Model	predicting	the	impact	on	the	average	number	of	back-

and-forth	by	different	video	characteristics	included	in	the	video.	

	 	 2010-2021	 2013-2021	 2016-2021	 2019-2021	

	 McFadden’s	Adjusted	R2	 0.64	 0.59	 0.58	 0.61	

Es
tim

at
e 	

Annotation	 -4.481e-03	 -4.488e-02	 2.978e-02	 -2.078e-02	

Length	 6.565e-04	 6.539e-04	 7.157e-04	 -2.216e-05	

Steps	to	reproduce	 8.499e-02	 9.760e-02	 9.453e-02	 6.310e-02	

Actual	results	 5.284e-02	 2.650e-02	 8.010e-02	 -2.329e-02	

Video	submitted		

initially	
-7.389e-01	 -6.826e-01	 5.965e-02	 -3.735e-01	

Video	submitted	

voluntarily	later	
-7.150e-01	 -6.236e-01	 7.207e-02	 -2.111e-01	

Video	submitted	by	

request	later	
-4.737e-01	 -3.844e-01	 3.621e-01	 1.378e-01	

Time	to	resolution	 1.103e-04	 2.364e-04	 1.247e-04	 -3.909e-04	

Whether	the	bug	was	

confirmed	
5.725e-02	 9.578e-02	 3.327e-01	 3.093e-01	

Readability	 3.289e-04	 3.337e-04	 4.300e-04	 5.546e-04	
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5.2.4 Impact	of	video	being	perceived	as	helpful	by	developers	on	Bug	Report	
Resolution	Process	

I	 performed	 three	 additional	 analyses	 to	 understand	 whether	 video	 appeared	 to	 be	

perceived	as	helpful	or	not	helpful	might	impact	the	resolution	process	of	bug	reports.	For	

example,	if	the	video	seemed	to	be	perceived	as	not	helpful	by	developers,	it	might	explain	

why	the	bug	report	takes	longer	to	resolve.	

Figure	52	shows	the	trend	for	the	average	number	of	days	to	resolve	bug	reports	with	video	

appeared	to	be	perceived	as	helpful	and	not	helpful.	Note	that	videos	that	were	perceived	as	

not	helpful	took	longer	to	resolve	than	those	that	were	perceived	as	helpful	(comparing	the	

mean,	the	difference	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	-5.08,	df	=	

12.82,	p-value	<	0.06).	The	difference	in	how	much	longer,	however,	did	get	lower	over	time,	

with	the	average	over	the	three	most	recent	years	being	105	days	of	difference	(Welch	Two	

Sample	t-test,	t	=	-3.88,	df	=	3.31,	p-value	<	0.06).		

Number	of	unique	

participants	
8.213e-02	 9.206e-02	 1.039e-01	 1.119e-01	

Presence	of	steps	to	

reproduce	in	bug	report	

description	

2.082e-01	 2.411e-01	 2.126e-01	 1.443e-01	

Presence	of	actual	results	in	

bug	report	description	
4.450e-02	 8.885e-02	 7.754e-02	 3.496e-01	

Voiceover	 3.711e-01	 3.761e-01	 4.465e-01	 -4.639e-01	

	 P-value	 <	0.06	 <	0.06	 <	0.06	 <	0.06	
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Figure	52.	The	average	number	of	days	to	resolve	bug	reports	with	video	that	appeared	to	

be	perceived	as	helpful	versus	not	helpful.	

Another	desirable	outcome,	besides	a	reduced	time	to	resolution,	is	that	a	higher	percentage	

of	 bug	 reports	 with	 videos	 that	 appeared	 to	 be	 perceived	 as	 helpful	 by	 developers	 was	

resolved	with	a	patch	(i.e.,	resolution	status	of	FIXED).	Figure	53	shows	that	across	all	11	

years,	 compared	 to	 videos	 that	 were	 seemed	 to	 be	 perceived	 as	 not	 helpful,	 a	 higher	

percentage	of	videos	that	were	perceived	as	helpful	were	resolved	with	a	resolution	status	

of	FIXED.	This	difference	was	statistically	significant	(Welch	Two	Sample	t-test,	t	=	6.6958,	

df	=	21.998,	p-value	<	0.06)	and	remains	so	when	examining	just	the	last	three	years	(Welch	

Two	Sample	t-test,	t	=	6.15,	df	=	4,	p-value	<	0.06).	Note	that	only	in	2015	the	results	were	

the	opposite,	but	the	difference	was	not	statistically	significant	between	videos	that	seemed	

to	be	perceived	as	helpful	and	not	helpful.	
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Figure	53.	Percentage	of	bug	reports	with	videos	appeared	to	be	perceived	as	helpful	

versus	not	helpful	that	were	successfully	resolved	with	a	patch.	

Another	way	in	which	videos	that	were	perceived	as	helpful	by	developers	could	possibly	

have	a	positive	impact	on	the	resolution	process	is	if	they	reduced	the	back-and-forth,	that	

is	 if	 their	presence	 led	to	fewer	requests	 from	developers	to	reporters	 for	clarification	or	

additional	information.	Figure	54	shows	the	trend	for	the	average	number	of	back-and-forth	

for	videos	that	appeared	to	be	perceived	as	helpful	and	not	helpful.	The	difference	was	not	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-0.078,	df	=	21.55,	p-value	>	0.06).	The	

difference	 in	 the	 number	 of	 back-and-forth	 gets	 higher	 over	 time,	 however,	 still	 is	 not	

statistically	significant	(Welch	Two	Sample	t-test,	t	=	-2.1866,	df	=	3.3056,	p-value	>	0.06).	
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Figure	54.	The	average	number	of	back-and-forth	in	bug	reports	with	videos	perceived	as	

helpful	versus	not	helpful.	

		

5.2.5 Survey	

First,	 I	 analyzed	 the	 results	 from	 the	 first	 question	 of	 the	 survey:	 how	 developers	

characterize	the	content	of	the	video	attachments	in	relation	to	the	corresponding	textual	

descriptions.	

Several	of	the	answers	to	this	open-ended	question	mentioned	that	the	videos	are	useful	to	

look	at,	for	instance:	“I	would	say	video	content	is	“energy	saving”,	because	it	takes	much	less	
time	and	brain	energy	to	understand	and	see	the	issue.”	Another	respondent	mentioned	that	
"It	depends	on	the	quality	of	the	text	description.	With	a	good	text	description	and	attached	
exception	 stack	 trace	 or	pictures,	 a	 video	 attachment	 is	 useful	 to	 look	 at.	With	poor	 text	
description	 a	 video	 attachment	 is	 uniquely	 enlightening.”	 One	 respondent	 wished	many	

Observation	10.	Overall,	bug	reports	with	videos	that	appeared	to	be	perceived	as	helpful	

had	a:	(1)	higher	chance	of	getting	resolved	as	FIXED	(statistically	significant),	(2)	less	

amount	 of	 time	 to	 resolve	 (statistically	 significant),	 and	 (3)	 less	 back-and-forth	 (not	

statistically	significant)	than	the	ones	that	were	perceived	as	not	helpful.	
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more	reporters	 include	videos	because	even	“Information	 in	"video	with	bad	scenario"	 is	
mostly	useful	as	source	of	additional	details	which	may	be	crucial	for	proper	reproducing	
and	fixing	but	reporters	sometimes	are	not	aware	what	might	be	important	and	skip	some	
details	in	issue	description.”		

Not	everybody	agreed,	however.	One	respondent	stated	“In	most	of	the	cases,	a	developer	
first	 needs	 to	 reproduce	 the	 problem.	 To	 do	 this,	 they	 need	 to	 re-create	 the	 user's	
environment	on	their	machine.	In	the	domain	of	IDE	developers,	the	most	helpful	thing	in	
this	case	is	a	code	snippet	or	a	sample	project	together	with	the	steps	one	needs	to	perform.	
It's	tiresome	to	copy	code/files	from	a	video,	so	they	must	be	present	as	text.	As	to	steps,	they	
can	 be	 easily	 inferred	 from	 a	 video,	 though	 it's	 still	 better	 to	 have	 them	written	 down.”	
Another	respondent	believed	that	video	is	useful	for	some	subsystems	“the	ones	where	there	
is	a	lot	of	different	UI	controls,	different	ways	to	do	one	thing.”	

In	the	second	question,	the	developers	shared	the	kinds	of	content	they	consider	most	and	

least	useful.	The	following	are	the	properties	that	they	found	desirable	for	the	video	bugs:	

- “Important	things	should	be	emphasized	either	with	extra	mouse	gestures	and	the	
pauses	or	by	voice”,		

- “It	should	show	steps	reproducing	the	issue	and	the	result”,		

- “It	should	not	be	too	long	not	too	short”,	

- It	should	be	“Full	screen	(or	several	screens	if	any)	video	with	keyboard	(KeyCastr	
for	example)	and	mouse	capturing”,		

- “Sometimes	it	is	useful	to	have	two	videos,	one	with	correct	application	behavior	and	
one	with	wrong	behavior”,	

- “The	actions	should	not	be	very	fast”,		

- It	“should	show	in	the	overlay	user	actions	(keys	being	pressed,	mouse	gestures,	etc).	
Possibly	repeat	the	same	actions	across	different	version	of	the	software”.	

In	response	to	what	kind	of	content	they	consider	 least	useful,	 the	developers	mentioned	

“without	steps	to	reproduce”,	“showing	only	a	cropped	view	of	the	bug	or	small	part	of	the	
IDE”,	“attaching	the	video	as	a	.gif	file	since	it	is	not	possible	to	stop	the	playing”,	and	“not	
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accompanied	with	bug	description	(e.g.,	 “if	 there	 is	a	search	query	 that	doesn’t	work,	 it's	
better	 to	post	a	query,	not	 show	 it	 in	 the	video”)”.	One	developer	 said	 “The	 least	helpful	
situation	is	when	a	report	consists	only	of	a	video.	It	makes	it	harder	to	start	working	on	a	
problem.”	Another	developer	mentioned	“Sometimes	users	record	a	video	with	their	own	
voice	describing	what	they	do.	This	makes	no	sense	and	is	hard	to	consume.	Description	or	
scenario	is	always	better	to	see	in	text	format.”	That	might	be	the	reason	why	bug	reporters	
do	not	make	the	effort	to	either	directly	narrate	while	a	video	is	being	recorded,	or	overlay	

audio	at	a	later	time	(results	from	manual	labeling	showed	that	the	percentage	of	videos	with	

a	voiceover	was	only	2.87%).	Bug	reporters	know	what	is	important:	showing	the	bug	itself.	

Lastly,	developers	answered	whether	the	inclusion	of	video	attachments:	(1)	speeds	up	the	

process	 of	 bug	 reports	 being	 resolved;	 (2)	 leads	 to	 a	 higher	 percentage	 of	 bugs	 being	

resolved	as	fixed;	and	(3)	causes	less	back	and	forth	between	bug	reporters	and	developers?	

They	 had	 to	 choose	 from	 definitely	 not,	 probably	 not,	 about	 the	 same,	 probably	 so,	 and	

definitely	so.	Through	this	question,	I	wanted	to	understand	what	developers	think	about	

the	impact	of	including	videos	on	the	overall	bug	report	resolution	process.	The	results	of	

the	 survey	 showed	 that	 nearly	 all	 of	 them	 consider	 video	 attachments	 very	 useful	 in	

understanding	bugs	more	easily	and	resolving	them	quicker,	by	selecting	definitely	so	and	

probably	 for	 all	 three	 questions,	 except	 two	 developers.	 One	 of	 them	 rather	 preferred	

reporters	to	attach	a	stack	trace	or	a	picture,	and	another	one	explained	that	“Video	should	
be	only	used	as	a	tool	when	a	textual	description	doesn't	help	to	understand	the	problem	for	
some	reason.	And	even	then,	the	content	of	the	video	has	to	be	converted	to	text	when	the	
problem	becomes	clear.”	

	

5.3 Discussion	
In	 the	 introduction	 to	 this	 chapter,	 I	 highlighted	 the	 prevailing	 beliefs	 surrounding	 the	

inclusion	of	videos	in	bug	reports:	that	videos	offer	an	opportunity	to	share	context-rich	bug	

information	with	developers	[36],	[39],	[42]	and	that,	in	doing	so,	they	help	developers	in	

understanding	users'	interactions,	see	the	actual	behavior	of	the	system	in	response	to	some	

input,	and	internalize	what	may	have	contributed	to	the	manifestation	of	the	bug	[35],	[141],	

[142],	[161].		
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This	chapter	asks	a	complementary	question:	what	sets	videos	that	are	more	effective	apart	

from	videos	that	are	less	effective,	in	terms	of	their	characteristics?	With	the	clear	increase	

in	video	attachments	over	the	past	11	years	(see	Section	4.2.1),	it	is	particularly	important	

to	 examine	 if	 various	 characteristics	 of	 videos	 attached	 to	 bug	 reports	 appeared	 to	 be	

perceived	as	helpful	by	developers	and	provide	tangible	benefits	for	bug	reporters.	In	this	

context,	the	characteristics	of	videos	were	assessed	from	two	dimensions:	(1)	How	different	

characteristics	 of	 video	 appear	 to	 be	 perceived	 by	 developers?	 (2)	 Do	 different	

characteristics	of	video	have	observable	effects	on	the	bug	report	resolution	process	(i.e.,	in	

reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth)?		

Using	manual	 labeling,	different	video	characteristics	were	 recognized,	out	of	which	only	

four	had	enough	instances	in	the	dataset	to	allow	the	statistical	analysis	to	be	valid.	Each	

characteristic	was	 assessed,	 and	 the	 results	were	 presented.	While	 one	 could	 think	 that	

including	different	video	characteristics	might	seem	to	be	perceived	as	helpful	to	developers	

and	positively	impactful	in	the	bug	resolution	process,	the	results	showed	that	not	all	of	them	

do.	Table	37	summarizes	the	results.	

Annotation.	Across	11	years	of	study,	compared	with	the	videos	that	included	annotation,	a	

statistically	 significant	 higher	 percentage	 of	 videos	 without	 annotation	 appeared	 to	 be	

perceived	 as	 helpful	 by	 developers	 (Table	 37	 (2));	 bug	 reports	 with	 videos	 without	

annotation	had	a	lower	average	number	of	days	to	resolve;	a	statistically	significant	higher	

percentage	of	the	bug	reports	with	videos	without	annotation	were	resolved	with	a	patch;	

and	on	average	for	the	bug	reports	with	videos	without	annotation,	no	statistically	significant	

difference	existed	in	the	average	number	of	back-and-forth	(Table	37	(6,	7,	8,	9)).	Examining	

the	high	severity	and	high	priority	bug	reports	did	not	alter	these	outcomes.	Taken	together,	

it	is	difficult	to	argue	that	including	annotations	in	videos	are	not	beneficial.	Especially	since	

the	results	of	the	survey	revealed	that	developers	considered	annotations	such	as	“mouse	
gestures”	or	“mouse	capturing”		as	the	most	useful	characteristics	of	video	bugs.	A	possible	
reason	can	be	that	the	videos	that	were	studied	across	the	corpus	misused	annotations	and	

caused	confusion	for	developers,	thus	affecting	the	results	adversely.	To	truly	sort	this	out,	

an	in-depth	interview	is	needed	with	developers	and	assignees,	in	which	the	videos	and	bug	

reports	are	discussed	in	more	details.	
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Length.	Comparing	bug	reports	with	videos	of	different	length,	the	videos	that	were	less	than	

30	seconds	appeared	to	have	a	statistically	significant	higher	percentage	of	being	perceived	

as	helpful	by	developers	than	the	ones	that	are	longer	(between	3-60	and	more	than	60),	see	

Table	 37	 (3).	 The	 difference	 in	 percentage	 of	 being	 perceived	 as	 helpful	 by	 developers	

between	videos	with	lengths	of	30-60	seconds	and	more	than	60	seconds,	however,	was	not	

statistically	significant.	Moreover,	for	the	three	video	length	groups,	the	differences	in	the	

average	number	of	days	to	resolve	were	not	statistically	significant;	a	statistically	significant	

higher	percentage	of	bug	reports	with	videos	shorter	than	30	seconds	were	resolved	with	a	

patch;	and	no	statistically	significant	difference	existed	in	the	average	number	of	back-and-

forth	(Table	37	(6,	7,	8,	9)).	The	results	also	showed	that	within	the	class	of	high	priority	or	

severity	having	a	video	shorter	than	30	seconds	did	not	improve	the	outcomes.	On	the	whole,	

it	appears	that	across	the	corpus	of	videos	that	was	studied,	the	videos	that	were	shorter	in	

length	were	more	in	favor.	This	finding	was	somehow	confirmed	by	the	results	of	the	survey	

where	a	respondent	mentioned	the	video	“should	not	be	too	long	not	too	short”.	

Steps	to	reproduce.	In	terms	of	 including	the	steps	to	reproduce	the	bug	in	the	video,	the	

results	 showed	 that	 there	 was	 not	 a	 statistically	 significant	 difference	 between	 the	

percentage	of	videos	being	perceived	as	helpful	with	videos	showing	steps	to	reproduce	and	

the	ones	that	did	not	(Table	37	(4)).	Moreover,	with	respect	to	the	average	number	of	days	

to	 resolve,	 the	 percentage	 of	 bug	 reports	 being	 successfully	 resolved,	 and	 the	 average	

number	 of	 back-and-forth,	 no	 statistically	 significant	 difference	 existed	 between	 the	 bug	

reports	with	videos	showing	steps	to	reproduce	and	the	ones	that	do	not	show	them	(Table	

37	(6,	7,	8,	9)).	Similar	results	were	also	achieved	when	high	priority	and	high	severity	bug	

reports	were	studied.	These	findings	in	a	way	challenge	the	results	of	the	survey	where	steps	

to	reproduce	was	mentioned	as	one	of	the	most	useful	video	characteristics	by	a	respondent;	

and	 videos	 without	 steps	 to	 reproduce	 was	 stated	 to	 be	 the	 least	 useful	 by	 another	

respondent.	Moreover,	one	developer	also	mentioned	that	steps	to	reproduce	are	better	to	

be	written	down	in	the	bug	description	itself.	

Actual	results.	The	results	for	showing	actual	results	in	the	videos	showed	that	a	statistically	

significant	higher	percentage	of	videos	showing	actual	results	appeared	to	be	perceived	as	

helpful	by	developers	than	the	ones	that	did	not.	In	terms	of	the	bug	resolution	process,	bug	
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reports	with	videos	showing	actual	results	took	a	statistically	significant	lower	number	of	

days	to	resolve	and	a	statistically	significant	higher	chance	of	getting	successfully	resolved	

(Table	 37	 (5)).	 The	 difference	 of	 average	 number	 of	 back-and-forth,	 however,	 was	 not	

statistically	significant	between	bug	reports	with	videos	showing	actual	results	and	the	ones	

that	did	not	(Table	37	(6,	7,	8,	9)).	Finally,	for	bug	reports	of	high	priority	and	bug	reports	

with	high	severity	the	results	remained	the	same.	Overall,	it	seems	that	showing	what	went	

wrong	 in	 videos	 is	 effective,	 similar	 to	 including	 actual	 results	 in	 bug	 descriptions	 (see	

Section	2.2.1).	

Table	37.	Observations	derived	from	the	analyses	of	video	characteristics.	

Observations	

1	
Across	all	11	years	on	average	a	statistically	significant	higher	percentage	of	videos	

appeared	to	be	perceived	as	helpful	by	developers.	

2	

The	difference	between	the	percentage	of	videos	with	and	without	annotation	that	

appeared	to	be	perceived	as	helpful	by	developers	was	statistically	significant.	Over	

the	last	three	years,	the	difference	became	smaller	and	no	longer	statistically	

significant.	

3	

The	videos	with	a	length	of	less	than	30	seconds	appeared	to	have	a	statistically	

significant	higher	percentage	of	being	perceived	as	helpful	by	developers	than	the	

ones	that	are	of	length	of	between	3-60	and	more	than	60.	The	difference	in	

percentage	of	being	perceived	as	helpful	by	developers	between	videos	with	lengths	

of	30-60	seconds	and	more	than	60	seconds,	however,	was	not	statistically	

significant.	

4	

The	difference	between	the	percentage	of	videos	being	perceived	as	helpful	with	

videos	showing	steps	to	reproduce	versus	those	that	did	not,	was	not		statistically	

significant.	

5	
There	was	a	statistically	significant	higher	percentage	of	videos	showing	actual	

results	that	appeared	to	be	perceived	as	helpful	by	developers	than	those	that	did	
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not.	Moreover,	the	difference	remained	statistically	significant	when	examining	just	

the	last	three	years.	

6	

Across	11	years	it	took	on	average	a	statistically	significant	lower	number	of	days	to	

resolve	the	bug	reports	with	videos	showing	actual	results	or	including	annotation.	

For	the	three	video	length	groups	or	steps	to	reproduce,	the	differences	in	the	

average	number	of	days	to	resolve	were	not	statistically	significant.	

7	
The	impact	of	including	certain	video	characteristics	such	as	showing	actual	results	

in	videos	on	bug	report’s	time	to	resolution	is	minimal.	

8	

Overall,	bug	reports	with	videos	that	included	annotation,	showed	actual	results,	or	

were	shorter	than	30	seconds	had	a	statistically	significant	higher	chance	of	getting	

successfully	resolved	with	a	patch.	However,	no	statistically	significant	difference	

existed	between	the	bug	reports	with	videos	showing	steps	to	reproduce	and	the	

ones	that	do	not	show	them.	

9	

The	difference	between	the	average	number	of	back-and-forth	in	bug	reports	with	

videos	that	included	annotations	or	showed	steps	to	reproduce	or	actual	results	

versus	those	that	did	not,	was	not	statistically	significant.	The	difference,	similarly,	

was	not	statistically	significant	for	the	bug	reports	with	videos	shorter	than	30	

seconds	versus	the	ones	with	the	length	of	between	30-60	seconds	or	than	60	

seconds.	

10	

Overall,	bug	reports	with	videos	that	appeared	to	be	perceived	as	helpful	had	a:	(1)	

higher	chance	of	getting	resolved	as	FIXED	(statistically	significant),	(2)	less	amount	

of	time	to	resolve	(statistically	significant),	and	(3)	less	back-and-forth	(not	

statistically	significant)	than	the	ones	that	were	perceived	as	not	helpful.	

	

Taken	 together,	 from	 the	 perspective	 of	 perhaps	 providing	 motivation	 for	 reporters	 to	

produce	and	submit	videos	with	specific	video	characteristics	along	with	their	bug	reports,	

the	 findings	 suggest	 that	 the	 only	 tangible	 incentive	 exists	 for	 two	 of	 the	 characteristics	
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(length	 and	actual	 results).	 For	 annotation	 and	 steps	 to	 reproduce,	 no	 tangible	 incentive	

seems	to	exist.		

The	findings	suggest	that	on	average	a	higher	percentage	of	videos	attached	to	bug	reports	

appeared	to	be	perceived	as	helpful	than	not	helpful	by	developers,	see	Table	37	(1).	The	

results	are	reported	on	averages,	which	means	that	some	videos	do	contribute	to	beneficial	

effects	and	others	detract.	The	results	therefore	do	not	imply	that	including	annotation	or	

showing	steps	to	reproduce	in	video	is	always	ineffective.	Especially	when	the	results	are	

contrasted	with	the	results	of	the	survey	where	developers	considered	including	annotation	

(“mouse	gestures”,	“keyboard		and	mouse	capturing”)	and	showing	steps	to	reproduce	in	the	
videos	as	helpful.	The	results	of	the	survey	also	uncovered	the	fact	that	some	of	the	video	

characteristics,	which	were	removed	from	further	analyses	because	a	low	number	of	videos	

included	 them,	are	not	actually	helpful	 in	 the	eyes	of	developers.	For	example,	one	could	

assume	a	direct	narration	or	voiceover	while	a	video	 is	being	recorded	 that	shows	a	bug	

would	 be	 ideal	 for	 developers.	 A	 respondent	 stated,	 however:	 “I	 prefer	 videos	 where	
everything	is	clear	without	explanation	by	voice”.	

Regarding	length	and	actual	results,	the	results	provide	motivation	for	creating	videos	that	

are	on	the	shorter	side	(less	than	30	seconds)	and	focus	on	what	went	wrong	(showing	actual	

results).	Since	such	videos	appeared	to	have	a	higher	chance	of	being	perceived	as	helpful	by	

developers	and	the	bug	reports	with	videos	that	appeared	to	be	perceived	as	helpful	took	a	

statistically	 significant	 smaller	number	of	days	 to	 resolve	 than	 those	 that	appeared	 to	be	

perceived	 as	 not	 helpful.	 Also,	 a	 statistically	 significant	 higher	 percentage	 of	 videos	 that	

seemed	to	be	perceived	as	helpful	were	resolved	with	a	resolution	status	of	FIXED	(Table	37	

(10)).	

The	results	lay	the	groundwork	for	research	that	can	be	performed	next.	First,	an	important	

direction	 for	 research	 is	 to	 repeat	 the	 study	 beyond	Mozilla.	 This	 study	 of	 the	 videos	 of	

Mozilla	bug	reports	represents	a	 first,	small	step	 into	whether	different	characteristics	of	

videos	might	provide	clues	as	to	useful	differences.	It	might	be	that	the	outcomes	would	be	

different	for	certain	domains	(e.g.,	video	games,	mobile	apps),	for	different	bug	trackers	(e.g.,	
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Jira67),	 or	 for	 other	 ecosystems	 (e.g.,	 Apache68).	Understanding	whether	 such	differences	

exist	and,	if	so,	why,	would	enable	important	practices	to	transcend	across	communities.	

Second,	an	important	piece	of	research	is	to	perform	a	field	study	with	developers	to	study	

how	they	process	various	video	characteristics.	Such	a	study	can	uncover	factors	that	help	

certain	videos	be	more	effective	 than	others.	Rather	 than	doing	so	based	on	data	already	

captured,	as	in	the	above,	this	kind	of	study	would	do	so	based	on	observing	developers	at	

work	and	talking	with	them	about	their	experiences	and	perceptions,	offering	an	important	

complementary	perspective.	

Third,	it	is	worthwhile	to	further	delve	into	the	potential	differences	between	bug	reports	

with	more	than	one	video.	The	results	showed	that	around	10%	of	bug	reports	contained	a	

second	video.	A	close	look	at	the	differences	between	bug	reports	with	one	and	two	(and	

more)	videos	in	terms	of	various	video	characteristics	they	include,	may	unearth	valuable	

insight.	Informally	I	looked	at	50	bug	reports	(randomly	selected)	and	observed	that	some		

second	videos	were	submitted	because	the	bug	reports	were	difficult	to	understand,	and	thus	

an	additional	video	was	requested	by	the	developer	(e.g.,	bug	id	134696169).	Moreover,	some	

of	 first	videos	represented	only	the	actual	results	whereas	the	second	videos	showed	the	

expected	results	(e.g.,	bug	id	132491870).		

Fourth,	it	may	be	valuable	to	invest	in	tool	support	for	bug	reporters	to	create	videos	that	

focus	on	video	characteristics	that	seemed	to	be	perceived	as	helpful	by	developers	and	have	

positive	impacts	on	the	overall	bug	resolution	process.	Such	tool	support	could	actively	guide	

a	reporter	through	the	steps	they	should	take,	ensure	that	all	of	the	necessary	information	is	

there,	and	automatically	submit	the	bug	report	on	behalf	of	the	reporter.	

	

 
67 www.atlassian.com/software/jira 
68 www.apache.org 
69 https://bugzilla.mozilla.org/show_bug.cgi?id=1346961 
70 https://bugzilla.mozilla.org/show_bug.cgi?id=1324918 



 

	
	

209	

5.4 Threats	to	Validity	
While	the	study	was	planned	to	avoid	introducing	bias,	it	is	possible	that	adapted	strategies	

may	not	have	been	effective	to	eliminate	the	possible	effects	of	random	noise.	This	section	

reviews	the	threats	to	the	validity	of	this	study.	

The	dataset	used	for	the	study	contained	bug	reports	from	projects	that	are	all	related	to	

Mozilla	Firefox.	As	a	result,	the	findings	may	not	be	generalizable	to	different	projects	and	

domains.	That	said,	sampling	bug	reports	from	a	number	of	Mozilla	projects,	rather	than	just	

one,	means	 that	 the	 dataset	 includes	 software	 in	multiple	 languages	 and	 across	multiple	

operating	systems.	Further	study	is	needed,	however,	to	assess	whether	similar	results	can	

be	obtained	for	other	projects.	

Another	threat	is	that	the	training	and	testing	data	were	labeled	manually,	which	could	have	

introduced	bias	or	mistakes	due	to	the	lack	of	domain	expertise.	To	address	this	concern,	

two	researchers	 individually	 labeled	a	significant	portion	of	 the	data.	Because	of	 the	high	

inter-rater	reliability	that	resulted,	I	assume	that	the	risk	of	individual	bias	is	minimized.		

The	choice	to	only	include	resolved	bug	reports	may	represent	a	threat	to	internal	validity	if	

the	characteristic	of	video	of	these	bug	reports	differs	significantly	from	those	of	unresolved	

bug	reports.	The	results	may	also	be	affected	if	any	of	the	unresolved	bugs	are	reopened	in	

the	 future.	 Fortunately,	 the	Mozilla	 bug	 report	 repository	 is	 of	 large	 size	 and	 has	 a	 long	

history,	meaning	that	what	used	to	be	unresolved	bug	reports	have	moved	on	to	become	

resolved.	As	such,	I	believe	this	threat	is	fairly	minimal.	

Finally,	since	all	survey	respondents	were	related	to	IntelliJ,	the	survey	responses	may	not	

be	representative	across	OSS	and	commercial	projects	as	the	characteristics	of	developers	in	

other	 OSS	 projects	may	 be	 different	 from	 those	 included	 in	 this	 study.	 This	 risk	 can	 be	

reduced	by	repeating	the	survey	across	other	constituencies	of	developers.	

	

5.5 Conclusions	
This	chapter	contributes	a	first	empirical	study	that	examines	what	sets	videos	that	are	more	

effective	apart	from	videos	that	are	less	effective,	in	terms	of	their	characteristics.	This	study	

specifically	examines	how	developers	appear	to	perceive	different	characteristics	of	video	
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and	whether	they	may	have	observable	effects	on	the	bug	report	resolution	process	(i.e.,	in	

reducing	time	to	resolution,	leading	to	an	actual	fix,	or	reducing	back-and-forth).		

The	primary	finding	is	that,	on	the	whole,	the	inclusion	of	some	of	the	video	characteristics	

does	appear	to	have	a	positive	impact	(length	and	actual	results):	a	statistically	significant	

higher	percentage	of	videos	that	are	less	than	30	seconds	or	showing	actual	results	appeared	

to	be	perceived	as	helpful	by	developers,	as	compared	to	videos	that	are	not.	In	terms	of	the	

bug	resolution	process,	bug	reports	with	videos	that	are	less	than	30	seconds	or	show	actual	

results	had	a	statistically	significant	higher	chance	of	getting	successfully	resolved;	and	bug	

reports	with	videos	showing	actual	results	took	a	statistically	significant	lower	number	of	

days	to	resolve.	Further	study	is	needed	for	annotation	and	steps	to	reproduce.	As	the	results	

are	 reported	 on	 averages,	 which	 means	 that	 some	 videos	 with	 annotation	 and	 steps	 to	

reproduce	may	contribute	to	beneficial	effects.	Especially	when	the	findings	are	contrasted	

with	 the	 results	 of	 the	 survey,	 the	 developers	 considered	 those	 video	 characteristics	 as	

helpful.	

Another	finding	is	that	the	bug	reports	with	videos	that	appeared	to	be	perceived	as	helpful	

took	a	statistically	significant	smaller	number	of	days	to	resolve	than	those	that	seemed	to	

be	perceived	as	not	helpful.	Also,	a	statistically	significant	higher	percentage	of	videos	that	

appeared	to	be	perceived	as	helpful	were	resolved	with	a	resolution	status	of	FIXED.	

I	believe	that	taking	a	close	look	at	the	video	characteristics	from	systems	other	than	Mozilla	

can	provide	further	insight	into	what	sets	videos	that	are	more	effective	apart	from	videos	

that	are	less	effective	in	terms	of	their	characteristics.	Moreover,	it	is	worthwhile	to	perform	

a	field	study	of	how	real-world	developers	process	videos	being	submitted,	to	complement	

this	 deep	 dive	 and	 to	 understand	 more	 about	 what	 are	 and	 are	 not	 effective	 video	

characteristics	 from	 their	 perspective	 and	 to	 identify	what	 challenges	 they	 encounter	 in	

using	the	videos.	
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6 CHAPTER	6:	CONLUSION	
	

	 Bug	reports	collect	relevant	information	about	the	bugs	that	users	experience	while	

using	the	software.	The	information	provided	in	bug	reports	helps	developers	diagnose	and	

resolve	software	bugs.	A	bug	report	typically	contains	a	detailed	description	of	the	bug,	and	

occasionally	 includes	 attachments	 such	 as	 stack	 traces	 to	 point	 to	 the	 location	 of	 bug	 or	

videos	to	provide	further	context.		

Unfortunately,	 bug	 reports	 differ	 in	 their	 quality;	 they	 are	 either	 sufficient	 and	 clear	 to	

understand	the	essence	of	a	bug	report	and	know	what	to	do	with	them	(good	or	actionable	

bug	report),	as	they	are	not	(bad	or	non-actionable).	

It	is	not	surprising	that	developers	are	slowed	down	by	poorly	written	bug	reports,	as	it	takes	

longer	 to	 determine	 what	 is	 wrong	 and	 seek	 meaningful	 clarifications	 or	 crucial	 extra	

information	[13],	[14].	That	leads	to	non-reproduced	bugs	[7],	unfixed	bugs	[16],	and	extra	

effort	to	triage	bugs	[7],	[15]–[17].	

Many	studies	have	proposed	potential	solutions	to	solve	problems	related	to	bug	reports.	On	

the	 one	 hand,	 	 some	work	 focused	 on	 aiding	 developers	 analyzing	 newly	 submitted	 bug	

reports,	for	instance	by	predicting	their	severity	or	priority	(e.g.,	[22]–[24]),	predicting	if	the	

bug	report	is	likely	to	be	resolved	in	a	given	time	frame	[25],	or	by	predicting	if	the	bug	report	

represents	a	duplicate	of	one	or	more	previous	bug	reports	(e.g.,	[26]–[28]).	

On	the	other	hand,	some	studies	aimed	at	helping	those	who	submit	bug	reports	before	they	

are	submitted,	for	instance	by	predicting	the	quality	of	individual	fields	in	a	bug	report	(e.g.,	

steps	to	reproduce,	bug	report	title)	[30]–[34],	or	by	giving	an	overall	sense	of	bug	report	

quality	to	the	reporter	together	with	generic	suggestions	for	improvements	[14],	[32].	

This	dissertation	complemented	this	increasingly	growing	research	surrounding	bug	reports	

by	contributing	to	a	study	of	several	aspects	of	the	bug	reporting	process	that	can	potentially	

be	improved	in	order	to	support	those	who	report	bugs	and	those	who	process	them.	The	

study	was	conducted	in	three	parts:	
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6.1 Study	1	–	Predicting	Actionable	versus	Non-Actionable	Bug	Reports	
The	dissertation	 first	 revisited	an	older	problem,	 that	of	bug	 report	quality	prediction.	 It	

particularly	looked	at	the	overall	quality	of	bug	reports	by	implementing	a	classifier	which	

categorizes	bug	reports	as	actionable	or	non-actionable.	The	classifier	was	trained	on	1,423	

bug	reports	collected	from	across	all	Mozilla	Firefox	projects	and	achieved	results	that	were	

significantly	 improved	 over	 the	 state	 of	 art	 to	 a	 precision	 of	 94%,	 recall	 of	 89%,	 and	 F-

measure	 of	 0.91.	 The	 primary	 cause	 of	 this	 improved	 performance	 appeared	 to	 be	 a	

combination	of	needing	a	binary	classifier	only,	using	a	bag-of-words	approach	rather	than	

higher-level	features,	hyper-parameter	optimization,	and	a	large	training	dataset.	

Second,	it	performed	detailed	analyses	of	whether	additional	features	(alone	or	together),	

such	as	readability	of	bug	description	or	the	role	of	bug	submitter,	can	further	improve	the	

results.	Results	contradicted	 the	 long-held	beliefs	on	 the	 impact	of	 those	 features;	with	a	

sufficiently	strong	base	model,	the	impact	of	including	those	features	disappears.	

Third,	 the	dissertation	performed	cross-project	prediction	 to	assess	 the	portability	of	 the	

best	resulting	model.	The	results	were	stronger	than	any	to	date	in	terms	of	portability	and	

provide	a	good	starting	point	for	further	exploration.	

Fourth,	the	dissertation	presented	the	results	from	a	survey	conducted	among	developers	to	

get	an	understanding	as	to	how	they	feel	the	quality	of	bug	reports,	with	the	results	showing	

that	they	believe	the	quality	over	the	years	stayed	the	same	with	a	small	percentage	saying	

it	has	become	better.	

The	findings	can	serve	as	a	basis	for	developing	tools	that	assist	reporters	in	improving	their	

bug	reports.	Such	tools	could	intervene	before	a	non-actionable	bug	report	is	submitted	and	

help	reporters	to	turn	their	bug	report	into	an	actionable	one.	That,	 in	turn,	could	benefit	

developers	 as	 well,	 since	 a	 higher	 percentage	 of	 bug	 reports	 submitted	 through	 bug	

reporters	could	be	more	easily	understood	and	resolved.	

	

6.2 Study	2	–	An	Analysis	of	Video	Submissions	in	Bug	Reporting	
The	dissertation	contributed	a	first	empirical	study	that	examined	whether	including	videos	

in	bug	reports	leads	to	effects	that	may	benefit	the	reporters	in	terms	of	time	to	resolution,	



 

	
	

214	

resolution	with	a	patch	aiming	to	fix	the	reported	bug,	and	the	amount	of	back-and-forth.	

Through	statistical	analyses	on	2,814,599	bug	reports	and	their	metadata	from	five	different	

systems	(Mozilla,	Android,	LibreOffice,	IntelliJ,	and	Minecraft),	the	results	suggested	that:	

• Including	videos	 incurs	on	average	a	 longer	 time	 to	 resolution.	The	difference	has	

shrunken	considerably,	however,	and	over	the	last	six	years	the	impact	has	become	

minimal.	This	holds	true	when	videos	are	submitted	as	part	of	the	initial	bug	report	

submission	and	when	they	are	submitted	at	a	later	time.	

• While	for	some	systems	a	higher	percentage	of	bug	reports	ends	up	being	fixed	if	a	

video	is	included,	for	other	systems	the	opposite	occurs	in	fewer	bug	reports	being	

fixed	if	videos	are	included.	

• On	average	bug	 reports	with	videos	 incur	a	 statistically	 significant	higher	average	

back-and-forth	than	bug	reports	without.	For	bug	reports	that	are	submitted	later,	

even	 if	only	 the	back-and-forth	after	 the	submitted	video	 is	counted,	a	statistically	

significant	difference	remains	in	the	back-and-forth	still	being	higher	as	compared	to	

bug	reports	without	videos.	

The	dissertation	also	performed	a	deep	dive	into	a	select	set	of	potential	factors	for	Mozilla	

bug	reports.	Results	suggested	 that	bug	reports	with	videos	submitted	by	developers	are	

resolved	at	a	higher	rate	with	less	average	number	of	back-and-forth.	

The	 results	 overall	 suggested	 that	 the	 inclusion	 of	 videos	 does	 not	 appear	 to	 have	 an	

incentive	 for	 bug	 reporters.	 Including	 video	 hardly	 impacted	 the	 time	 to	 resolution,	 the	

percentage	of	bug	reports	being	fixed	for	most	of	the	systems,	and	the	average	amount	of	

back-and-forth	(which	was	actually	higher	for	bug	reports	that	include	video	than	those	that	

do	not).	The	 findings	opened	up	a	number	of	 important	research	directions,	discussed	 in	

Section	6.4.		
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6.3 Study	3	–	A	Content-Based	Analysis	of	Video	Submissions	in	Bug	
Reporting	

The	 last	 part	 of	 the	 dissertation	 refined	 the	 analysis	 from	 the	 second	 study	 (which	 only	

looked	at	 the	presence	of	videos)	with	a	 focus	on	 the	 content	of	 videos.	 It	offered	a	 first	

empirical	 exploration	 as	 to	 what	 distinguishes	 more	 effective	 videos	 from	 less	 effective	

videos,	in	terms	of	their	content.	It	first	examined	the	detailed	characteristics	of	1,045	videos	

from	Mozilla	bug	reports,	such	as	whether	the	video	shows	steps	to	reproduce,	whether	the	

video	creator	emphasizes	a	bug	through	mouse	movements,	and	whether	the	video	contains	

a	 voice	 over.	 Then	 it	 studied	 how	 developers	 appear	 to	 perceive	 videos	 with	 different	

characteristics	and	whether	certain	characteristics	may	exhibit	a	tangible	benefit	for	the	bug	

reporter	by	measuring	the	bug	report	resolution	process	(i.e.,	average	time	to	resolution,	

percentage	 of	 bug	 reports	 being	 resolved	with	 a	 patch,	 or	 average	 number	 of	 back-and-

forth).		

The	main	finding	was	that,	on	average	a	higher	percentage	of	videos	attached	to	bug	reports	

appeared	to	be	perceived	as	helpful	than	not	helpful	by	developers.	Moreover,	bug	reports	

with	videos	that	appeared	to	be	perceived	as	helpful	took	a	statistically	significant	smaller	

number	 of	 days	 to	 resolve	 than	 those	 that	 seemed	 to	 be	 perceived	 as	 not	 helpful,	 and	 a	

statistically	significant	higher	percentage	of	videos	that	appeared	to	be	perceived	as	helpful	

were	resolved	with	a	resolution	status	of	FIXED.	

From	the	perspective	of	maybe	providing	motivation	for	reporters	to	produce	and	submit	

videos	with	specific	video	characteristics	along	with	their	bug	reports,	results	suggested	that	

a	possible	tangible	incentive	exists	for	two	of	the	characteristics	(length	and	actual	results):	

a	 statistically	 significant	 higher	 percentage	 of	 videos	 that	 are	 less	 than	 30	 seconds	 or	

showing	actual	results	appeared	to	be	perceived	as	helpful	by	developers,	as	compared	to	

videos	that	are	longer	or	do	not	show	actual	results.	Also,	bug	reports	with	videos	that	are	

less	than	30	seconds	or	show	actual	results	had	a	statistically	significant	higher	chance	of	

getting	 successfully	 resolved;	 and	 bug	 reports	with	 videos	 showing	 actual	 results	 took	 a	

statistically	significant	lower	number	of	days	to	resolve.	
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The	dissertation	also	conducted	a	small	survey	among	IntelliJ	developers	to	put	the	results	

in	 context.	 The	 developers	 had	 various	 experiences	 with	 and	 perceptions	 of	 different	

characteristics	of	the	video	attachments.	On	the	whole,	they	considered	the	videos	useful	to	

look	at,	especially	the	ones	with	characteristics	such	as	video	showing	steps	to	reproduce	

and	actual	results,	or	extra	mouse	gestures.	The	developers	also	shared	what	they	consider	

least	useful,	such	as	when	a	report	consists	only	of	a	video	and	is	not	accompanied	with	a	

textual	description,	or	without	steps	to	reproduce.	

The	findings	can	serve	as	basis	to	develop	tools	that	help	bug	reporters	create	videos	with	

characteristics	 that	 seemed	 to	 be	 perceived	 as	 helpful	 by	 developers	 and	 had	 a	 positive	

impact	 on	 the	 overall	 bug	 resolution	 process.	 Especially	 since	 the	 presence	 of	 video	

attachments	on	average	had	minimum	impact	on	the	overall	bug	report	resolution	process	

(Study	 2),	 such	 tool	 support	 could	 actively	 guide	 bug	 reporters	 in	 creating	 videos	 with	

certain	characteristics	that	appeared	to	be	beneficial	to	both	developers	and	bug	reporters.		

	

6.4 Contributions	
Overall,	the	main	contributions	of	this	dissertation	are:	

- A	classifier	 that	categorizes	bug	reports	as	actionable	or	non-actionable,	achieving	

results	that	significantly	improve	over	the	state-of-the-art.	

- New	findings	about	the	absence	of	improvement	in	performance	of	the	classifier	with	

the	inclusion	of	auxiliary	features	(e.g.,	length	of	bug	description	or	experience	of	bug	

reporter)	 that	 were	 shown	 in	 prior	 research	 to	 have	 a	 positive	 impact	 on	 the	

predictive	capability	of	the	resulting	models.	

- Analyses	of	portability	of	the	classifier	which	resulted	in	a	better	predictive	capability	

than	the	best	models	to	date.	

- New	findings	from	a	survey	conducted	among	Mozilla	developers	about	the	quality	of	

newly	submitted	bug	reports.	

- A	 dataset	 of	 1,423	 Mozilla	 bug	 reports,	 manually	 labeled	 as	 actionable	 or	 non-

actionable.	



 

	
	

217	

- A	first	empirical	study	that	examines	whether	including	videos	in	bug	reports	could	

have	potential	benefits	 for	 the	 reporters	 in	 terms	of	 time	 to	 resolution,	 resolution	

with	a	patch	aiming	to	fix	the	reported	bug,	and	the	amount	of	back-and-forth.	

- A	custom	web	scraping	tool	that	downloads	all	available	metadata	of	bug	reports	from	

different	 bug	 tracking	 systems,	 including	 Bugzilla,	 YouTrack,	 and	 Google	 Issue	

Tracker.		

- A	dataset	of	2,814,599	bug	reports	and	their	metadata	 from	five	different	systems	

(Mozilla,	Android,	LibreOffice,	IntelliJ,	and	Minecraft),	from	2010	to	2021.	

- Deep	analyses	of	Mozilla	bug	reports	to	explore	the	potential	 impact	of	 the	role	of	

video	submitter,	type	of	bug,	and	bug	report	severity	on	potential	incentives	to	the	

reporters	in	terms	of	overall	bug	resolution	process.		

- A	 first	 deep	 empirical	 study	which	 studies	 the	 content	 of	 videos	 attached	 to	 bug	

reports	to	understand	whether	or	not	developers	perceived	the	corresponding	videos	

as	helpful,	as	well	as	whether	various	characteristics	of	the	videos	have	observable	

effects	for	the	reporters	in	terms	of	time	to	resolution,	percentage	of	being	fixed	with	

a	patch,	and	amount	of	back-and-forth.	

- A	dataset	of	1,045	videos	and	 their	associated	bug	reports	 from	Mozilla,	manually	

labeled	based	on	the	contents	of	videos	and	how	developers	reacted	publicly	to	them.	

- New	 findings	 from	 a	 survey	 conducted	 among	 IntelliJ	 developers	 to	 understand	

developers’	experiences	with	and	perceptions	of	different	characteristics	of	the	video	

attachments.	

	
6.5 Future	work	
The	findings	from	the	dissertation	suggest	several	avenues	of	future	investigation.	The	most	

immediate	 future	 work	 is	 to	 develop	 tools	 that	 assist	 reporters	 in	 improving	 their	 bug	

reports	before	they	are	eventually	submitted.		

- In	terms	of	tool	support	for	the	quality	prediction	of	newly-submitted	bug	reports,	it	

is	important	to	explore	ways	to	guide	reporters	in	turning	non-actionable	bug	reports	
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into	actionable	ones.	For	example,	one	could	develop	an	 interactive	bug	 reporting	

system	 that:	 (1)	 allows	 an	 end-user	 to	 report	 the	 bug	 through	 conversation,	 (2)	

automatically	predicts	the	overall	quality	of	the	report,	and	(3)	provides	meaningful	

feedback	 and	 recommendations	 to	 reporters	 about	 the	 bug	 report	 so	 it	 can	 be	

improved	 by	 the	 reporters	 before	 it	 is	 eventually	 submitted.	 Such	 a	 system	 can	

employ	a	chatbot	to	guide	reporters	through	the	conversation	to	find	and	report	the	

necessary	information	for	developers	to	proceed	and	resolve	the	bug.	The	tool	can	

also	 have	 a	 database	 of	 already-submitted	 similar	 and	 actionable	 bug	 reports	 to	

propose	 a	 template	 or	 provide	 feedback	 and	 recommendation	 to	 reporters	 about	

their	bug	report.	For	example,	the	chatbot	can	tell	the	reporter:	“Your	report	is	not	

actionable	because	of	X	and	Y,	let	me	pull	up	three	reports	that	are	actionable	as	an	

example	for	you."	

- In	terms	of	tool	support	for	reporters	to	create	effective	videos,	one	could	implement	

a	screen	recording	tool	which,	once	a	video	is	created,	automatically	generates	a	list	

of	characteristics	that	are	missing	in	the	video	but	beneficial	to	both	developers	and	

bug	 reporters	(e.g.,	 the	 importance	of	 inclusion	of	 actual	 results	or	 the	acceptable	

length	of	an	effective	video).	Such	a	tool	can	also	have	a	built-in	video	editor	to	allow	

reporters	improve	their	videos	by	adding	annotations	and	audio	recordings.		

Additionally,	 each	study	 in	 the	dissertation	 laid	 the	groundwork	 for	 research	 that	 can	be	

performed	next:	

- Study	1:	A	future	direction	is	to	explore	whether	the	results	of	the	prediction	model	

can	be	further	improved.	Another	future	work	is	to	dive	deeper	into	the	properties	of	

bug	reports	that	the	machine	learning	classifiers	pick	up	on	to	distinguish	actionable	

versus	 non-actionable	 bug	 reports.	 It	 is	 also	 worthwhile	 to	 explore	 whether	 it	 is	

possible	for	the	portability	of	the	classifier	to	be	further	improved.		

- Study	2:	A	particularly	interesting	future	direction	is	to	weave	the	results	of	Study	1	

and	2	and	explore	if	video-based	bug	reports	are	more	actionable.	Another	possible	

future	direction	is	to	understand	whether	the	non-benefit	of	including	videos	in	bug	

reports,	 as	 seen	 in	 the	 results,	 is	 actually	 because	 of	 another	 factor	 such	 as	 the	
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difficulty	level	of	the	bug.	An	interesting	future	work	is	to	repeat	the	study	for	systems	

in	additional	domains	that	are	highly	visual	such	as	video	games.	Moreover,	there	is	

an	opportunity	to	perform	a	field	study	with	developers	to	study	how	they	process	

videos	as	part	of	bug	report	resolution.		

- Study	3:	An	 important	 future	work	 is	 to	perform	a	 field	 study	with	developers	 to	

uncover	 factors	 that	 help	 certain	 videos	 be	 more	 effective	 than	 others.	 It	 is	 also	

worthwhile	to	further	delve	into	the	potential	differences	between	bug	reports	with	

more	 than	one	video.	Another	possible	 future	work	 is	 to	 repeat	 the	 study	beyond	

Mozilla.		
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