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Abstract. It has become increasingly common for re-
searchers to utilize methods that identify weather features
in climate models. There is an increasing recognition that
the uncertainty associated with choice of detection method
may affect our scientific understanding. For example, results
from the Atmospheric River Tracking Method Intercompari-
son Project (ARTMIP) indicate that there are a broad range of
plausible atmospheric river (AR) detectors and that scientific
results can depend on the algorithm used. There are similar
examples from the literature on extratropical cyclones and
tropical cyclones. It is therefore imperative to develop detec-
tion techniques that explicitly quantify the uncertainty asso-
ciated with the detection of events. We seek to answer the fol-
lowing question: given a “plausible” AR detector, how does
uncertainty in the detector quantitatively impact scientific re-
sults? We develop a large dataset of global AR counts, man-
ually identified by a set of eight researchers with expertise in
atmospheric science, which we use to constrain parameters in
a novel AR detection method. We use a Bayesian framework
to sample from the set of AR detector parameters that yield
AR counts similar to the expert database of AR counts; this
yields a set of “plausible” AR detectors from which we can
assess quantitative uncertainty. This probabilistic AR detec-

tor has been implemented in the Toolkit for Extreme Climate
Analysis (TECA), which allows for efficient processing of
petabyte-scale datasets. We apply the TECA Bayesian AR
Detector, TECA-BARD v1.0.1, to the MERRA-2 reanalysis
and show that the sign of the correlation between global AR
count and El Niño–Southern Oscillation depends on the set
of parameters used.

1 Introduction

There is a growing body of literature in which researchers
decompose precipitation and other meteorological processes
into constituent weather phenomena, such as tropical cy-
clones, extratropical cyclones, fronts, mesoscale convective
systems, and atmospheric rivers (e.g., Kunkel et al., 2012;
Neu et al., 2013; Walsh et al., 2015; Schemm et al., 2018;
Zarzycki et al., 2017; Wehner et al., 2018). Research focused
on atmospheric rivers (ARs) in particular has contributed
a great deal to our understanding of the water cycle (Zhu
and Newell, 1998; Sellars et al., 2017), atmospheric dynam-
ics (Hu et al., 2017), precipitation variability (Dong et al.,
2018), precipitation extremes (Leung and Qian, 2009; Dong
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6132 T. A. O’Brien et al.: AR detection with UQ: TECA-BARD v1.0.1

et al., 2018), impacts (Neiman et al., 2008; Ralph et al.,
2013, 2019a), meteorological controls on the cryosphere
(Gorodetskaya et al., 2014; Huning et al., 2017, 2019), and
uncertainty in projections of precipitation in future climate
change scenarios (Gershunov et al., 2019b).

Over the past decade, there has been a growth in the num-
ber of methods used to detect ARs, and in the last five years
there has been a growing recognition that uncertainty in AR
detection may impact our scientific understanding; the At-
mospheric River Tracking Method Intercomparison Project
(ARTMIP) was created to assess this impact (Shields et al.,
2018). Through a series of controlled, collaborative experi-
ments, results from ARTMIP have shown that at least some
aspects of our understanding of AR-related science indeed
depend on detector design (Shields et al., 2018; Rutz et al.,
2019). Efforts related to ARTMIP have similarly shown that
some aspects of AR-related science depend on the detection
algorithm used (Huning et al., 2017; Ralph et al., 2019b).

ARTMIP has put significant effort into quantifying uncer-
tainty, and the community is poised to imminently produce
several important papers on this topic. It would be imprac-
tical to perform ARTMIP-like experiments for every AR-
related science question that arises, which raises the ques-
tion of how best to practically deal with uncertainty in AR
detection.

This uncertainty arises because there is no theoretical and
quantitative definition of an AR. Only recently did the com-
munity come to a consensus on a qualitative definition (Ralph
et al., 2018). In order to do quantitative science related to
ARs, researchers have had to independently form quanti-
tative methods to define ARs (Shields et al., 2018). Exist-
ing AR detection algorithms in the literature are predomi-
nantly heuristic: e.g., they consist of a set of rules used to
isolate ARs in meteorological fields. Inevitably, heuristic al-
gorithms also contain unconstrained parameters (e.g., thresh-
olds). Across the phenomenon-detection literature (ARs and
other phenomena), the prevailing practice is for researchers
to use expert judgment to select these parameters. The two
exceptions of which the authors are aware are that of Zarzy-
cki and Ullrich (2017) and that of Vishnu et al. (2020), who
use an optimization method to determine parameters for a
tropical cyclone (TC) detector and monsoon depression de-
tector, respectively.

Even if one were to adopt a similar optimization frame-
work for an AR detector, this still would not address the is-
sue that uncertainty in AR detection can qualitatively affect
scientific results. This sort of problem has motivated the use
of formal uncertainty quantification frameworks, in which
an ensemble of “plausible” AR detectors are run simultane-
ously. However, these frameworks need data against which to
assess the plausibility of a given AR detector. Zarzycki and
Ullrich (2017) and Vishnu et al. (2020) were able to take ad-
vantage of existing, human-curated track datasets. No such
dataset exists for ARs.

A key challenge for developing such a dataset is the human
effort required to develop it. The best type of dataset would
presumably be one in which experts outline the spatial foot-
prints of ARs, such as the ClimateNet dataset described in
the forthcoming paper by Prabhat et al. (2020). At the time
that the work on this paper started, the ClimateNet dataset
did not yet exist, and we considered that the simpler alterna-
tive would be to identify the number of ARs in a set of given
meteorological fields. Even though a dataset of AR counts is
perhaps less informative than a dataset of AR footprints, we
hypothesize that such a dataset could serve to constrain the
parameters in a given AR detector.

This article addresses the dual challenges of uncer-
tainty quantification and optimization: we develop a formal
Bayesian framework for sampling “plausible” sets of param-
eters from an AR detector, and we develop a database of AR
counts with which to constrain the Bayesian method. We pro-
vide a general outline for the Bayesian framework as well
as a specific implementation: the Toolkit for Extreme Cli-
mate Analysis Bayesian AR Detector version 1.0.1 (TECA-
BARD v1.0.1; Sect. 2). We show that TECA-BARD v1.0.1
performs comparably to an ensemble of algorithms from
ARTMIP and that it emulates the counting statistics of the
contributors who provided AR counts (Sect. 3). We demon-
strate that answers to the question “Are there more ARs dur-
ing El Niño events?” depends qualitatively on the set of de-
tection parameters (Sect. 4).

2 The Bayesian approach

2.1 Overview

We start with a general description of how a Bayesian frame-
work, in combination with a dataset of AR counts, can be
applied to an AR detector. We consider a generic heuristic
detection algorithm with tunable parameters θ (e.g., thresh-
olds) that, when given an input fieldQ (e.g., integrated vapor
transport, IVT), can produce a count of ARs within that field.
For compactness, we will represent this heuristic algorithm
and subsequent counting as a function f (θ |Q). That is, for a
given field Q and a specific choice of tuning parameters, f
returns the number of detected ARs in Q.

Further, we assume that we have a dataset of M actual
AR counts, denoted by N , associated with a set of indepen-
dent input fields (i.e., generated by an expert counting the
ARs; see Sect. 2.2): {(Ni,Qi) : i = 1, . . .,M}. With a quan-
titatively defined prior on the tunable parameters pθ (θ), we
can use Bayes’ theorem to define the posterior probability of
θ given the AR counts N and input fields Q:

p(θ | N ,Q)∝

(
M∏
i=1

L(Ni | θ ,Qi)

)
·pθ (θ)

pN (N)
. (1)
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We propose to base the likelihood L on counts from the
heuristic modelN ′i = f (θ ,Qi). We model L as a normal dis-
tribution centered on N ′i :

L(Ni | θ ,Qi)=N (Ni | N ′i ,σ ), (2)

where σ is a nuisance parameter that is ultimately integrated
over. While the normal distribution is typically assigned to a
continuous (real-valued) variable, here we simply use it as a
quantitative way to minimize the squared error between each
Ni and N ′i .

2.2 A database of expert AR counts

In order to constrain a Bayesian AR detection algorithm, we
developed a database of global AR counts. We designed a
simple graphical user interface (GUI) that displays a me-
teorological plot, as shown in Fig. 1, for a given instance
of time. The meteorological plot overlays information about
IVT, integrated water vapor, and the magnitude of gradi-
ents in 850 hPa equivalent potential temperature (indicative
of fronts); the sample image in Fig. 1 shows a screenshot of
this information as it is presented to the expert contributors.
Times are chosen randomly within the years 2008 and 2009,
which were chosen to correspond to the time period asso-
ciated with the Year of Tropical Convection (Waliser et al.,
2012). The interface allows a user to enumerate ARs within
a given field by clicking the mouse in the vicinity of an AR.
A graphical indicator (a small, green “X”) is left in the lo-
cation of the mouse click, which allows the user to visually
assess whether they have adequately accounted for all ARs in
a given field before proceeding to the next image. The GUI-
relative coordinates of each click are recorded in the meta-
data, which allows approximate reconstruction of the geo-
physical location of each indicated AR. The location infor-
mation is not used in constraining the Bayesian AR detection
algorithm, though we do use it for understanding differences
among expert contributors.

Eight of the co-authors of this paper (see “Author contribu-
tions”) contributed counts via this GUI, and the counts dif-
fer substantially. Each contributor counted ARs in at least
30 random time slices, with contributions ranging between
46 and 906 time slices (see Fig. 2a). Figure 2a shows that
the number of ARs counted varies by nearly a factor of
3 among contributors: the most “restrictive” expert identi-
fies a median of 4 ARs, while the most “permissive” expert
identifies a median of 11 ARs. Contributors are assigned an
identification number according to the mean number of ARs
counted, with the lowest “Expert ID” (zero) having the low-
est mean count and Expert ID 7 having the highest. Differ-
ences among the cumulative distributions shown in Fig. 2 are
mostly statistically significant, according to a suite of pair-
wise Kolmogorov–Smirnov tests (Fig. 2b). Counts from Ex-
pert IDs 1, 2, and 3 are mutually statistically indistinguish-
able at the 90 % confidence level. Expert IDs 3 and 4 are

likewise statistically indistinguishable, though 4 differs sig-
nificantly from 1 and 2.

The differences among expert contributors leads one to
wonder whether they are counting the same meteorological
phenomenon, and cross-examination suggests that they are.
There are a number of instances where, by chance, three ex-
perts counted ARs in the same time slice. Intercomparison of
the approximate AR locations in these multiply counted time
slices (not shown) indicates that the most restrictive contrib-
utors tend to identify the same meteorological features as the
most permissive contributors. The ARs identified by restric-
tive contributors are a subset of those identified by the per-
missive contributors.

These differences present two methodological challenges:
(1) differences among the expert contributors will likely lead
to different groups of parameter sets in a Bayesian algorithm,
and (2) there is nearly an order-of-magnitude spread among
the number of time slices contributed by each expert, which
would lead to over-representation of the contributors with the
highest number of time slices (e.g., Expert ID 5 contributed
906 counts; Fig. 2a). We opt to treat all expert contributions
as equally plausible, given that there is no a priori constraint
(e.g., physical constraint or otherwise) on the number of ARs
globally. Both challenges can be addressed simply by do-
ing the Bayesian model fitting separately for each expert and
then pooling parameters in the final stage; this procedure is
described in more detail in Sect. 2.4.1.

2.3 A specific implementation – TECA-BARD v1.0.1

We propose here a specific implementation of an AR detector
on which to test the Bayesian method. For the sake of parsi-
mony, this initial detector includes only three main criteria:
contiguity above a threshold, size, and location. The detec-
tor utilizes a spatially filtered version of the IVT field, IVT′

(defined toward the end of this paragraph), and in this spe-
cific implementation it seeks contiguous regions within each
2D field that are above a time-dependent threshold, where
the threshold is defined as the P th percentile of that specific
IVT′ field. This follows the motivation of Shields and Kiehl
(2016), who utilize a time-dependent threshold in order to
avoid ARs becoming arbitrarily larger as water vapor mixing
ratios increase in the atmosphere due to global warming. The
contiguous regions must have an area that is greater than a
specified threshold Amin. In order to avoid large contiguous
regions in the tropics, associated with the intertropical con-
vergence zone (ITCZ), the IVT field is spatially filtered as

IVT′(y,x)=

(
1− e

−2ln2· y
2

1y2

)
· IVT(y,x), (3)

where (y,x) are spatial coordinates (latitude and longitude
respectively), and 1y is the half width at half maximum
of the filter. The filter essentially tapers the IVT field to 0
in the tropics, within a band of approximate width 1y. Ta-
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Figure 1. An example screenshot of a 3-hourly time slice of MERRA-2-derived integrated vapor transport using a graphical user interface
(GUI) that eight co-authors of this paper used to count ARs for a training dataset. The expert is presented with an overlay of information
about IVT (purple-yellow shading), integrated water vapor (red contours), and the magnitude of the 850 hPa equivalent potential temperature
gradient (blue shading).

Figure 2. (a) Cumulative distributions of expert counts. (b) Two-sample Kolmogorov–Smirnov test statistics among Expert IDs. Gray text
indicates the p value; low values indicate that sets of expert counts likely have different distributions. Note that Expert ID 5 provided 906
sets of counts, but only 250 are used in the MCMC sampling stage (see Sect. 2.4.1) due to computational considerations.

ble 1 summarizes the free parameters in this AR detector,
and Fig. 3 illustrates the stages of the detection algorithm.

Table 1 also presents the prior ranges that we deem plau-
sible for the parameter values; justification of these ranges
follows. For 1y, the filter should efficiently damp the ITCZ
toward 0. Though the ITCZ is relatively narrow, it migrates
significantly throughout the annual cycle, so we use a mini-
mum threshold of 5◦ as the lower bound. The filter should not
extend so far north that it damps the midlatitudes, which is

where the ARs of interest are located; hence we use an upper
bound of 25◦, which terminates the filter upon entering the
midlatitudes. For Amin, we use an order-of-magnitude range
based on experience in viewing ARs in meteorological data;
for reference, we note that ARs are often of a size compara-
ble to the state of California: 1× 1011 m2 is approximately
one-quarter of the area of the state of California, which is
likely on the too-small side, and 5× 1012 is approximately 6
times the area of California. For P , we note that the thresh-

Geosci. Model Dev., 13, 6131–6148, 2020 https://doi.org/10.5194/gmd-13-6131-2020
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Figure 3. Illustration of the steps in TECA AR v1.0.1 with 1y = 15◦ N, P = 0.95, and Amin = 1× 1012 m2: (a) the input field, integrated
vapor transport (IVT); (b) IVT after application of a 1y = 15◦ N tropical filter (IVT′); (c) IVT′ (converted to percentile) after application of
the percentile filter and (d) after application of the minimum area filter.

Table 1. Parameters, ranges, and priors in the AR detector.

Parameter Description Range

P Percentile threshold for IVT′ (0.8,0.99)
Amin Minimum area of contiguous region (1× 1011, 5× 1012) m2

1y Zonal half width at half maximum of tropical filter (5, 25) ◦ N

old is linked to the fraction of the planetary area that ARs
cover in total. We use 20 % of the planetary area as an up-
per bound (P = 0.8) and 1 % as a lower bound (P = 0.99).
The actual area covered by ARs of course depends both on
the typical area of ARs and the typical number. If we assume
that there are O(10) ARs occurring globally at any time, and
they have a size O(1012 m2), then they would cover O(10%)
of the planetary area (P = 0.9) as postulated by one of the
earliest AR papers (Zhu and Newell, 1998).

We refer to this specific implementation of AR de-
tector, in terms of the AR counts that it yields, as F3,
such that N ′i = F3(P,Amin,1y|Qi). We use a half-Cauchy
prior for σ (Eq. 2), following Gelman (2006): Pσ =

(2/πs)
(
1+ (σ/s)2

)−1, and we fix the scale parameter s at a
large value of 10, which permits a wide range of σ values. σ
is the parameter controlling the width of the likelihood func-

tion, which effectively controls how far the detected counts
N ′i can deviate from the expert counts Ni before the likeli-
hood function indicates that a given choice of (P,Amin,1y)

is unlikely compatible with the expert data; we treat it as a
nuisance parameter in our model. Given this and a choice of
a uniform prior for all three parameters, and an assumption
that the prior distributions are independent, this leads to a
concrete Bayesian model for the posterior distribution of the
parameter set (P,Amin,1y):

p(P,A,1y | N ,Q)

∝

(
M∏
i=1

N
(
Ni | F3(P,Amin,1y|Qi),σ

))

·
2
πs

1[
1+ (σ/s)2

] . (4)
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Figure 4. Illustration of the geometric constraints applied to the prior distribution of parameters P , Amin, and 1y. (a) A diagram depicting
the interaction between percentile threshold P and minimum area Amin. Red text depicts hypothetical IVT′ percentile values for individual
grid boxes (gray boxes); boxes with P above 0.8 are shaded in red. (b) Visualization of Eq. (5) for select values of 1y and annotation
indicating regions of the Amin−P −1y parameter space that are a priori implausible because they would yield no AR detections.

2.3.1 Geometrically constraining the prior

The prior parameter ranges in Table 1 provide plausible prior
ranges for the detector parameters, but there are some areas
within this cube of parameters that we can a priori assert are
highly improbable due to geometric considerations. This is
necessary in order to avoid the Markov chain Monte Carlo
algorithm (see Sect. 2.4) from having points that initialize
and get “stuck” in regions of the parameter space that do not
yield ARs.

By definition, the percentile threshold P will select Nc =

(1−P)·NT points out of the totalNT points in the input field.
If we approximate the area of all individual grid cells (ig-
noring for simplicity the latitudinal dependence) as A, then
the total area of cells above the percentile threshold will be
Ac = ANT (1−P). By deduction, in order for any AR to be
detected, the total area of grid cells above the threshold P
must be as large as or larger than the minimum-area thresh-
oldAmin for contiguous blobs above the percentile threshold:
i.e., ifAmin >Ac, then no AR detections are possible. We as-
sert that parameter combinations that prohibit AR detections
are implausible, and therefore the prior should be equal to
0 in such regions of parameter space. This condition effec-
tively defines a line in the Amin vs. P plane, where the prior
is 0 to the right of the curve:

Amin = ANT (1−P).

Figure 4a depicts the geometric relationship between Amin
and P : as P increases, the maximum permissible value of
Amin decreases.

This idea can be expanded further by noting that the lati-
tude filter effectively sets values near a band 21y close to 0.
If we assume that all points within 21y of the Equator are
effectively removed from consideration, then the total num-
ber of points under consideration NT should be reduced by
the fraction f of points that are taken out by the filter. In the
latitudinal direction, cell areas are only a function of latitude
y (cos(y) specifically), so with the above assumption, f can
be approximated simply as

f = 1−

1y∫
−1y

cos(y)dy

π/2∫
−π/2

cos(y)dy

= 1− sin(1y).

With this, the number of cells passing the threshold test
shown in Fig. 3c will be approximatelyN ′c = f ·NT ·(1−P).
If we assume that there are O(10) ARs at any given time,
then there are typically at most N ′c/10 grid cells per AR. We
tighten the constraint to assert that these conditions should
lead to ARs that typically have more than 1 grid cell per AR.
The assertion that ARs should typically consist of more than
1 grid cell is only valid if A is substantially less than the
area of a typical AR. We use the MERRA-2 reanalysis, with
A= 2.5× 109 m2, which is almost 2 orders of magnitude
smaller than the lower bound on the minimum AR size of
1× 1011 m2 (Table 1), so even the smallest possible ARs de-
tected will consist of O(100) grid cells. This assertion might
need to be revisited if one were to train the Bayesian model
on much lower resolution data. This leads to a formulation of
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the prior constraint that depends on the value of the latitude
filter, such that only parameter combinations that satisfy the
following inequality are permitted:

Amin ≤ A · (1− sin(1y)) ·
NT · (1−P)

10
. (5)

We modify the uniform prior to be equal to 0 outside the
surface defined in Eq. (5) (to the right of the Amin(P,1y)

lines shown in Fig. 4b).

2.4 Markov chain Monte Carlo sampling

We use an affine-transformation-invariant Markov chain
Monte Carlo (MCMC) sampling method (Goodman and
Weare, 2010), implemented in Python by Foreman-Mackey
et al. (2013) (emcee v2.2.11), to approximately sam-
ple from the posterior distribution described in Eq. (4). We
utilize 128 MCMC “walkers” (semi-independent MCMC
chains) with starting positions sampled uniformly from the
parameter ranges shown in Table 1. Parameter values out-
side the parameter surface described by Eq. (5) are rejected
and randomly sampled until all initial parameter sets satisfy
Eq. (5).

The MCMC algorithm essentially finds sets of param-
eters for which TECA-BARD yields sets of AR counts
that are close (in a least-squares sense) to the input set
of expert counts described in Sect. 2.2. Within an MCMC
step, each walker proposes a new set of parameters. Each
MCMC walker runs the TECA-BARD algorithm described
in Sect. 2.3, for its set of proposed parameter values, on
the IVT field (Qi) from all time slices in MERRA-2 for
which there are expert countsNi ; TECA-BARD (F3 in Eq. 4)
returns the global number of ARs N ′i for each time slice.
The sets of expert counts and TECA-BARD counts are pro-
vided as input to Eq. (2), which is then used in Eq. (1) to
evaluate the posterior probability of the proposed parame-
ters. The proposed parameter is then either accepted or re-
jected following the algorithm outlined by Foreman-Mackey
et al. (2013). Parameters with higher posterior probabilities
generally have a higher chance of being accepted. The ac-
cept/reject step has an adjustable parameter (a in Eq. 10 of
Foreman-Mackey et al., 2013), which we set to a value of 2,
following Goodman and Weare (2010). Sensitivity tests with
this value showed little qualitative change in the output of the
MCMC samples.

We run all 128 MCMC walkers for 1000 steps and ex-
tract MCMC samples from the last step. We use an infor-
mal process to assess equilibration of the MCMC sampling
chains: we manually examine traces (the evolution of param-
eters within individual walker chains). The traces reach a
dynamic steady state after O(100) steps, so we expect that
the chains should all be well-equilibrated by 1000 steps. We

1https://github.com/dfm/emcee/releases/tag/v2.2.1 (last access:
1 December 2020)

ran a brute-force calculation of the posterior distribution on a
regularly spaced grid of parameter values (not shown) to ver-
ify that the MCMC algorithm is indeed sampling correctly
from the posterior distribution, which further evinces that the
MCMC process has reached equilibrium by the 1000th step.

2.4.1 Expert groups and multimodality

In order to address the challenges posed by having AR count
datasets that differ significantly among expert contributors
(described in Sect. 2.2), we develop a separate posterior
model for each Expert ID j : pj (θ | N j ,Q). The final model
is a normalized, unweighted sum of posterior distributions
from each Expert ID:

p(θ | N ,Q)=
1
8
·
[
p0(θ | N0,Q)+p1(θ | N1,Q)+ . . .

+p7(θ | N7,Q)
]
.

(6)

Practically speaking, we achieve this by running the MCMC
integration separately for each Expert ID and then combin-
ing the MCMC samples together. TECA BARD v1.0.1 uses
each of the 128 MCMC samples generated for each Expert
ID; with 8 Expert IDs, this gives a total of 1024 sets of param-
eters used in TECA BARD v1.0.1. The samples are stored in
an input parameter table such that parameters from the same
Expert ID are contiguous, which allows post hoc grouping of
results by Expert ID. We refer to these groups by their Expert
Group IDs, which correspond to data from each Expert ID
used in the MCMC integration. Figure 5 shows marginal dis-
tributions of the TECA-BARD v1.0.1 parameters.

Hereafter, we use two similar and related, but distinct,
terms:

– Expert ID is the identification number of a given con-
tributor to the expert count database. EIDs are assigned
in order of the mean number of ARs that the expert typ-
ically counts in a given time step.

– EGID – Expert Group ID is the identification number
of groups of posterior parameters obtained by training
the Bayesian model on expert counts contributed by the
corresponding EID (see Eq. 6).

The posterior distributions exhibit multimodality: both in the
individual EGID posterior distributions and in the combined
posterior distributions shown in Fig. 5. This multimodality
arises as a consequence of three factors: (1) parameter de-
pendence of the counts generated by the AR detector, which
depends on the underlying IVT field being analyzed; (2) vari-
ability in the counts from each expert; and (3) the addition of
posterior distributions from each EGID – each having their
own distinct modes. To illustrate how the first two factors
lead to inherent multimodality, Fig. 6a–h show the depen-
dence of the counts generated by the AR detector on the
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Figure 5. Posterior marginal distributions of parameters for each Expert Group ID (EGID) pj (θ) (colored curves) and for the full, combined
posterior p(θ) (black curve): (a) percentile threshold for IVT′ P , (b) zonal half width at half maximum of the tropical filter 1y, and
(c) minimum area of contiguous regions Amin. Posterior distributions for EGIDs are scaled by 1/8, consistent with Eq. (6).

percentile and minimum area thresholds (orange contours):
F3(P,Amin|1y = 15,Qi) for eight random IVT fields Qi .
F3 exhibits similar qualitative dependence on P and Amin
for all eight cases: AR count tends to be high for low val-
ues of both P and Amin, and it tends to be low when both
P and Amin are high (see Sect. 2.3.1 for an explanation of
the geometric relationship that leads to this behavior). Aside
from this general qualitative agreement, the fine-scale details
of the dependence of F3 on P and Amin depend strongly on
the actual IVT field (compare Fig. 6a and f for example).
Non-monotonic dependence of F3 on the input parameters
arises, for example, from ARs merging as P is reduced or
splitting as P is increased (merging reduces the count, split-
ting increases the count). It is not surprising that the number
of ARs detected depends simultaneously on the parameters
controlling the AR detector and the IVT field in which ARs
are being detected.

The number of ARs counted by a given expert also de-
pends on the given IVT field. The bold orange contour in
Fig. 6a–h shows the number of ARs counted by Expert ID 6;
N ′i is a single scalar number for each fieldQi , and we show it
as a contour in Fig. 6a–h to emphasize the parts of the param-
eter space that yield the same counts as the expert. Since we
use a normal likelihood function (Eq. 2), the log-posterior
is proportional to

∑
i(Ni −N

′

i )
2. The shaded contours in

Fig. 6a–h illustrate the contribution of each field to the pos-
terior distribution by showing |Ni−N ′i | for the eight random
IVT fields. Each field has a different portion of the P–Amin
space where the differences between the detected counts and
the expert counts are minimized. When these differences are
combined – in a root-mean-square sense – the result is a root-
mean-square-difference field (Fig. 6i) with multiple distinct
minima: these minima translate into multiple distinct max-
ima in the EGID 6 posterior distribution. Similar reasoning
applies to the multimodality in the posterior distributions as-
sociated with the other EGIDs.

One could interpret this multimodality as being a side ef-
fect of having relatively few samples (133 in the case of
EID 6); it is possible that having a higher number of sam-
ples would result in a smoother posterior distribution. It is
also possible that the multimodality is associated with uncer-
tainty in the expert counts themselves, such that under- or
over-counting leads to distinct modes in the posterior distri-
bution. The latter could possibly be dealt with by employing
a more sophisticated Bayesian model: one that explicitly ac-
counts for uncertainty in the expert data. Future work could
explore such a possibility. Regardless, this analysis demon-
strates that the multimodality is an inherent property of the
detector-data system.

2.5 Implementation in the Toolkit for Extreme Climate
Analysis

We implement the detector as an application in the Toolkit for
Extreme Climate Analysis (TECA2). TECA is a framework
for facilitating parallel analysis of petabyte-scale datasets.
TECA provides generic modular components that implement
parallel execution patterns and scalable I/O. These compo-
nents can easily be composed into analysis pipelines that run
efficiently at scale at high-performance computing (HPC)
centers. Figure 7 shows the modular components used to
compose the TECA-BARD v1.0.1 application. TECA is pri-
marily written in C++, and it offers Python bindings to facil-
itate prototyping of pipelines in a commonly used scientific
language. Early prototypes of TECA-BARD v1.0.1 were de-
veloped using these bindings, and the MCMC code invokes
TECA-BARD via these Python bindings.

The TECA BARD v1.0.1 pipeline depicted in Fig. 7 con-
sists of a NetCDF reader (CF2 reader), the Bayesian
AR Detector, and a NetCDF writer (CF2 writer). The

2https://github.com/lbl-eesa/teca (last access: 1 Decem-
ber 2020), https://doi.org/10.20358/C8C651
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Figure 6. (a–h) Detected counts Ni = F3(P,Amin|1y = 15,Qi) from eight random IVT fields Qi (orange contours) as a function of Amin
and P , with1y ≈ 15. Thin contours are drawn between 5 and 35 counts at intervals of 5. The bold orange contour shows the number of ARs
counted by Expert ID 6. Shaded contours show the absolute difference between F3 and the number of ARs counted by Expert ID 6. (i) The
root-mean-square average of the differences shown in (a)–(h). The bold blue contour shows the root-mean-square difference of 2.

Bayesian AR Detector component of the pipeline nests a
separate pipeline consisting of the AR detection stages illus-
trated in Fig. 3. The thread parallel map-reduce
stage parallelizes the application of these AR detection
stages over the 1024 detector parameters (which are pro-
vided by parameter table src in combination with
requests from parameter request gen) and passes on
the reduced dataset to the dataset capture component,
which passes that data on to the CF2 writer. The AR de-
tection stages, for a given parameter set, are implemented as
follows:

– dataset source takes IVT data from CF2
reader (Fig. 3a).

– latitude damper uses the filter latitude width 1y
and applies Eq. (3) (Fig. 3b).

– binary segmentation identifies grid cells above
the percentile threshold P (Fig. 3c).

– connected components find contiguous regions
where the percentile threshold is satisfied (Fig. 3c).

– component area calculates the areas of these con-
tiguous regions and removes areas that are smaller than
Amin (Fig. 3d).

To improve performance on large calculations, TECA uses a
map-reduce framework that takes advantage of both thread-
level parallelism (using C++ threads) and multi-core paral-
lelism (with the message passing interface, MPI). TECA-
BARD v1.0.1 distributes a range of MCMC parameters
over different threads, and it distributes time steps over dif-
ferent processes using MPI. This strategy allows TECA-
BARD v1.0.1 to scale efficiently on HPC systems. We ran
TECA-BARD v1.0.1, which effectively consists of 1024 sep-
arate AR detectors, on 36.5 years of 3-hourly MERRA-2 out-
put (see Sect. 3) at the National Energy Research Scientific
Computing Center (NERSC) on the Cori system using 1520
68-core Intel Xeon-Phi (Knights Landing) nodes in under
2 min (wall-clock time).
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Figure 7. A diagram of the TECA pipeline that makes up the TECA
Bayesian AR Detector application.

3 Evaluation of TECA-BARD v1.0.1

We run TECA-BARD v1.0.1 on 3-hourly IVT output from
the MERRA-2 reanalysis (Gelaro et al., 2017) from 1 Jan-
uary 1980 to 30 June 2017, which involves running the detec-
tor described in Sect. 2 for each of the 1024 samples from the
posterior distribution. Output from TECA-BARD v1.0.1 dif-
fers in character from other algorithm output in ARTMIP in
that it provides a posterior probability of AR detection pAR,
rather than a binary indicator of AR presence (Shields et al.,
2018). We derive a comparable measure of AR presence by
averaging binary AR identifications across available ART-
MIP algorithms, on a location-by-location basis. This yields
a probability-like quantity, which we refer to as the “ART-
MIP confidence index”, PARTMIP: the proportion of ARTMIP
algorithms reporting AR presence at each time slice. Out-
put from TECA-BARD v1.0.1 is shown in Fig. 8a, which
also shows the corresponding ARTMIP confidence index for
comparison.

TECA-BARD v1.0.1 and ARTMIP generally agree on the
presence of “high confidence” ARs: regions in which pAR
and PARTMIP are high. There are four regions of extremely

high posterior AR probability in TECA-BARD-v1.0.1: areas
where pAR ≈ 1.0 (regions with red and black coloring) in
Fig. 8a. All five of these regions are enclosed by white con-
tours, indicating that at least 90 % of ARTMIP algorithms
also indicate AR presence. There are two additional distinct
regions (in the eastern United States and the central North
Atlantic) where PARTMIP > 0.9, whereas pAR only reaches
approximately 0.6; these regions have relatively small areas.
Such behavior arises because of multimodality in the poste-
rior distribution of parameters; e.g., Fig. 5c shows that there
are several distinct modes in the minimum area parameter. It
is likely that these two regions of high IVT have areas that
fall between two of these modes.

Most of the disagreement between ARTMIP and TECA-
BARD v1.0.1 is associated with “low confidence” AR re-
gions: particularly regions in which the ARTMIP confidence
index is in the range of 20 %. The most prominent of these
is a large region of PARTMIP ≈ 0.2 in the tropics, whereas
pAR ≈ 0 throughout the tropics. We argue that this repre-
sents erroneous detection of the ITCZ by a small subset of
ARTMIP algorithms. The tropical filter (corresponding to pa-
rameter 1y) in TECA-BARD v1.0.1 explicitly filters out the
tropics to avoid such erroneous detection of the ITCZ.

Figure 8b shows that TECA-BARD v1.0.1 detects 4–10
ARs in the dataset shown in Fig. 8a. The range of uncer-
tainty is much smaller within individual Expert Group IDs
(EGIDs); the most restrictive Expert Group ID (EGID 0) de-
tects 4–6 ARs, whereas the most permissive parameter group
(EGID 7) detects 9–10 ARs. This is consistent with the be-
havior shown in Fig. 2a; lower Expert IDs have lower counts
and vice versa.

More broadly, the number of ARs counted within each
EGID is consistent with the number of ARs counted by the
corresponding expert contributors. Figure 9 shows that the
AR counts from the various EGIDs are consistent with AR
count statistics from the corresponding expert contributors.
For all seasons, the points in Fig. 9 are close – within er-
ror bars – to the one-to-one line. Note that we do not disag-
gregate expert counts by season, since doing so would lead
to small sample sizes for some expert IDs. The seasonal
range in posterior counts across EGIDs suggests that this
should not affect our conclusion that EGIDs within TECA-
BARD v1.0.1 emulate the counting statistics of correspond-
ing experts, since the seasonal range is only approximately
±1.

Figure 9 also shows that the uncertainty in the number of
detected ARs in TECA-BARD v1.0.1 is a direct consequence
of uncertainty in the input dataset. Further, the spread in ex-
pert counts results in EGIDs having distinct groups of pa-
rameters. Figure 5 shows that the EGIDs associated with the
most restrictive experts tend to have large minimum area pa-
rameters and narrower tropical filters, whereas the opposite
is true for the most permissive EGIDs. This shows that the
MCMC method yields a set of parameters that yield AR de-
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Figure 8. (a) AR detections on 7 February 2019 at 06:00 Z. Filled contours show the posterior probability of AR detection pAR from
TECA-BARD v1.0.1. Contour lines show the ARTMIP confidence index (the proportion of ARTMIP algorithms detecting an AR at a given
location), PARTMIP. (b) Posterior distributions of counts for the same time slice, grouped by Expert Group ID (EGID).

Figure 9. Posterior mean AR counts for each season, grouped by
EGID vs. median number of ARs counted by the corresponding Ex-
pert ID. There are four points (corresponding to the four seasons)
for each EGID. Since Expert ID is assigned in order of increasing
AR counts, the lowest EIDs occur on the left side of the graph and
the highest occur on the right. Whiskers indicate the 5–95 percentile
range. The dashed line shows the 1 : 1 line.

tectors that emulate the bulk counting statistics of the input
data.

4 Uncertainty in the relationship between ENSO and
AR count

We assess the impact of parametric uncertainty in TECA-
BARD v1.0.1 by asking a relatively simple question: Are
there more ARs during El Niño events?. We examine this

question from a global perspective, which is partly motivated
by Guan and Waliser (2015b) (their Fig. 10a, b), who show
coherent changes in AR probability associated with the El
Niño–Southern Oscillation (ENSO). The predominant effect
is an equatorward shift of ARs during the positive phase of
ENSO, and their figure seems to show more areas of in-
creased AR occurrence than areas of decrease; this might
suggest that positive phases of ENSO are associated with
more ARs globally. Goldenson et al. (2018) indicate that,
at least regionally, their analysis of the impact of ENSO on
AR predictability leads to a different conclusion than that
of Guan and Waliser (2015b). Goldenson et al. (2018) and
Guan and Waliser (2015b) utilize different AR detection al-
gorithms, which suggests that inferred relationships between
ENSO and ARs may depend on the detection algorithm used.

TECA-BARD v1.0.1 consists of 1024 plausible AR de-
tectors, which allows us to analyze whether there are sig-
nificant differences in the answer to this question across the
sets of AR detector parameters. We compare the TECA-
BARD v1.0.1 output from MERRA-2, described in Sect. 3,
against the ENSO Longitude Index (ELI) of Williams and
Patricola (2018). ELI represents the central longitude of ar-
eas in the tropical Pacific where sea surface temperatures are
warmer than the zonal mean, which – because of the weak
temperature gradient approximation – is close to the longi-
tude of maximum tropical Pacific convection. High values
are associated with El Niño conditions, and low values are
associated with La Niña conditions. We calculate the av-
erage ELI for each boreal winter (December, January, and
February) between 1981 and 2017. Similarly, we calculate
the DJF-average number of detected ARs, over the same time
period, for each of the 1024 sets of parameters in TECA-
BARD v1.0.1; we then calculate the Spearman rank correla-
tion coefficient ρN,ELI between each set of DJF AR counts
and ELI. This yields 1024 values of ρN,ELI, which expresses
the interannual correlation between DJF AR count and ELI
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Figure 10. Box-and-whisker plots of the correlation between global
AR count and ELI ρN,ELI, grouped by EGID. Red lines show the
median, box limits show the interquartile range, and whiskers indi-
cate the 5 %–95 % range.

for each set of AR detectors in TECA-BARD v1.0.1. Fig-
ure 10 shows the results of this calculation.

Across all EGIDs, the correlation coefficients range from
approximately −0.2 to +0.2; they span zero. However,
grouping results by EGID shows that different groups of de-
tector parameters yield qualitatively different results. Fig-
ure 10 shows the posterior statistics of ρN,ELI, grouped by
EGID. EGIDs 0 and 1 have predominantly negative correla-
tion coefficients (the medians and 5th percentile values are
negative), though the 95th percentile values are positive. On
the other hand, correlation coefficients from EGIDs 4, 5, and
7 are all entirely positive, and most values from EGIDs 2, 3,
and 6 are positive. Even within the uncertainty quantification
framework of TECA-BARD v1.0.1, if we had utilized a sin-
gle expert contributor – e.g., EGID 4, 5, or 7 – we might have
over-confidently concluded that there are more ARs globally
during El Niño events.

It is intriguing that the most restrictive EGIDs tend to yield
negative correlation coefficients, while the most permissive
EGIDs tend to yield positive correlation coefficients. This
variation appears to be controlled by variations in the per-
centile threshold P and the tropical filter 1y. Figures 11a–
c show samples of the posterior distribution of ρN,ELI as
a function of detector parameters. In Fig. 11c, ρN,ELI is
evenly distributed across zero for the entire parameter space,
whereas in Fig. 11a and b the correlation coefficient shows
systematic variation with the input parameters P and 1y.
The largest values of1y and the smallest values of P tend to
be associated with positive values of ρN,ELI.

We further disaggregate results in Fig. 12 by showing how
ρN,ELI clusters by EGID in two-dimensional projections of
the parameter space. We utilize fastKDE3 (O’Brien et al.,
2016) to calculate two-dimensional marginal posterior distri-
butions for each EGID: e.g., pj (P,1y | N ,Q) in Fig. 12a
(where j corresponds to the EGID). We show contours of
constant pj , colored by EGID, such that 95 % of the poste-

3https://bitbucket.org/lbl-cascade/fastkde (last access: 1 Decem-
ber 2020) at commit f2564d6

rior distribution for each EGID falls within the given contour;
the colored contours in Fig. 12 effectively outline the param-
eter samples for each EGID.

Parameter clusters with both positive ρN,ELI and high 1y
tend to form distinct zones of points in Fig. 12: clusters with
relatively low P and relatively high 1y. Parameters with
negative ρN,ELI predominantly fall along two lines in the P -
Amin plane in Fig. 12b, with the positive ρN,ELI values form-
ing on the line with lower P values. These separate clusters
are associated with the more permissive EGIDs.

We argue that the differences in correlation coefficient be-
tween the restrictive and permissive EGIDs likely result from
differences in the degree to which tropical moisture anoma-
lies are filtered among the EGIDs. Patricola et al. (2020)
show that strong El Niño events are associated with posi-
tive IVT anomalies in much of the tropics and a separate
band of positive anomalies in the midlatitudes (around 30◦

latitude; their Fig. 11). The positive IVT anomalies in the
tropics would have no effect on the subset of AR detector pa-
rameters with high values of1y, since these values would be
aggressively filtered. This subset of parameters with high1y
– which is associated with the permissive EGIDs and posi-
tive values of ρN,ELI (Figs. 5b and 11b) – would then only
be affected by the higher-than-average IVT in the midlati-
tudes. This would result in larger numbers of ARs during
El Niño events. For AR detectors parameters with low values
of 1y, the zone of positive anomaly in the tropics would not
be totally filtered out, which increases the chances for zones
of high IVT in the midlatitudes to be connected to zones
of high IVT in the tropics. This could potentially result in
larger-than-average, and fewer, ARs during El Niño.

5 The importance of uncertainty in feature detection

The results in Sect. 4 show that equally plausible sets of AR
detector parameters can yield qualitatively different conclu-
sions about the connection between ENSO and AR count.
These results also show that the data used to constrain the
AR detector parameters in TECA-BARD v1.0.1 have a huge
influence on the choice of parameters and ultimately the con-
clusions that one might draw. Figure 10 shows that almost
half of the spread in ρN,ELI can be explained by the spread
in expert counts used to constrain the Bayesian model. This
spread results from differences in subjective opinion about
what does or does not constitute an AR.

There are numerous aspects of AR-related research for
which TECA BARD v1.0.1 could be useful: research on AR
variability, predictability, and impacts in the observational
record; and changes in AR dynamics and impacts in past and
future climates. We use the ENSO–count relationship sim-
ply as a demonstration that parametric uncertainty can have
a large effect on data analyses. There are numerous results
in the literature for which a single AR detection method was
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Figure 11. Correlation between global AR count and ELI ρN,ELI as a function of AR detector parameter.

Figure 12. Pair plots of AR detector samples. Marker colors indicate the correlation between global AR count and ELI ρN,ELI, and colored
lines show contours of constant pj such that 95 % of the posterior distribution for each EGID falls within the given contour.

used (or in some cases a few detection methods applied over
multiple studies):

– 90 % of the poleward moisture flux is associated with
ARs (Zhu and Newell, 1998).

– 15 %–35 % of precipitation in coastal California comes
from ARs (Dettinger, 2011; Rutz et al., 2014; Guan
and Waliser, 2015a; Gershunov et al., 2017; Rutz et al.,
2019).

– There are 50 %–600 % more AR days in RCP8.5 sce-
narios (Gao et al., 2015).

– RCP8.5 scenarios have 2 times more extreme precipi-
tation associated with ARs in northern California (Ger-
shunov et al., 2019a), etc. (Payne et al., 2020, and refer-
ences therein).

Many of the existing AR studies have considered uncertainty
in the underlying datasets, such as uncertainty associated
with choice of reanalysis and climate models (Gao et al.,
2015; Payne and Magnusdottir, 2015; Warner et al., 2015;
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Espinoza et al., 2018; Gershunov et al., 2017, 2019a; Ralph
et al., 2019b; Payne et al., 2020), and a few have consid-
ered AR detector uncertainty in the observational record of
ARs (Guan and Waliser, 2015a; Ralph et al., 2019b). Stud-
ies based on ARTMIP have started to explore uncertainty
with respect to AR detection, and the uncertainty is larger
than many in the community had anticipated (Shields et al.,
2018, 2019b; Chen et al., 2018; Rutz et al., 2019; Shields
et al., 2019a; Chen et al., 2019; Ralph et al., 2019b; Payne
et al., 2020). Preliminary results from the ARTMIP Tier 2
experiments suggest that AR detection uncertainty may be
comparable to model uncertainty in future climate simula-
tions (O’Brien et al., 2020b), which implies that ongoing AR
research would benefit from consideration of AR detection
uncertainty. TECA BARD v1.0.1 offers an efficient way for
future studies to quantify AR detection uncertainty in situ.

In the current literature, AR detectors have two main de-
velopmental stages: (1) decide on the steps used in the AR
detection algorithm and (2) determine values used for uncon-
strained parameters (e.g., thresholds like P , 1y, and Amin).
In all examples of AR literature known to these authors, both
steps rely on expert judgment. If we frame this in terms of the
AR detector described in Sect. 2.3, step (2) would involve an
expert varying the detector parameters P ,1y, and Amin until
the resulting AR detections are acceptable. It seems reason-
able to assume that if Expert ID 0 were to manually choose
parameters in such a way, they would likely choose param-
eters that would yield a negative correlation between ENSO
and global AR count; conversely, Expert ID 7 would almost
certainly choose parameters that would yield a positive cor-
relation coefficient. Setting aside uncertainty in the detector
design (stage 1), two different experts could potentially de-
velop AR detectors that would come to opposite conclusions
about the impact of ENSO on AR count.

It is crucial to recognize the importance and impact of
this spread in subjective opinion. Subjective opinion is cur-
rently used in the literature to define quantitative methods
for detecting ARs. Since we currently lack physical theo-
ries to constrain AR detection schemes like this, such as
theories about what the number of ARs should be, subjec-
tive opinion is the only option. These results show that sub-
jective opinion can qualitatively impact the conclusions that
one might draw. It therefore seems imperative to reduce un-
certainty, though it is not immediately clear how that might
be achieved. Adding more walkers to the MCMC calcula-
tion described in Sect. 2.4 would not change the underly-
ing posterior distribution; it would only sample it more thor-
oughly, which would somewhat increase the spread in param-
eters. Adding more expert contributors (and possibly more
contributions from each contributor) could have one of two
main outcomes: (1) if a consensus were to emerge about
AR counts, then it is possible that the EGID posterior dis-
tributions pj would start to form a “consensus” in the com-
bined posterior distribution, with reduced spread in the pa-
rameter space; or (2) it is possible that each new expert con-

tribution results in a new mode appearing in the parameter
space, such that uncertainty is actually increased by adding
more expert contributions. Moreover, it is not clear whether
the reduced parameter spread associated with outcome (1)
would be desirable, since it would weight the parameter se-
lection toward the “consensus” of EGIDs, at the expense
of suppressing “outlier” EGIDs. The answer to this ques-
tion is somewhat philosophical in nature, and the answer is
likely to be application-dependent. Ultimately, physical the-
ories about ARs may be the only reasonable way to constrain
AR detection methods and therefore reduce uncertainty as-
sociated with subjective opinion.

This study considers the parametric uncertainty in a single
detector framework, and it does not consider the structural
uncertainty in the detector framework itself. This is a key
limitation of this study, and it is an opportunity for expand-
ing this work in future studies. For example, we could have
utilized an absolute threshold in IVT (e.g., 250 kg m−1 s−1)
rather than a relative, percentile-based threshold. One might
imagine applying the general Bayesian framework described
in Sect. 2.1 to other existing AR detectors in the literature as
a way to explore both structural and parametric uncertainty.
The expert count data produced as part of this study, which
are publicly available following information in the “Code and
data availability” statement at the end of this paper, could
readily be used for such an exercise.

We base TECA BARD v1.0.1 on input from eight ex-
perts who co-authored this study (see “Author contributions”
at the end), which may limit the range of uncertainty that
TECA BARD v1.0.1 can explore. If there is sampling bias
in the expert counts, it is also possible that use of a lim-
ited sample size could bias the detector toward a particular
definition of AR. Figure 12 shows that each EGID results
in parameters that are grouped somewhat closely together in
parameter space, so it is reasonable to assume that additional
experts would result in new EGIDs with different groupings
of parameters. There are two main reasons that we limit this
study to contributions from only eight experts: the amount of
person effort required to solicit input and the computational
expense of training the Bayesian model on each expert. In
addition to the substantial person effort invested by each ad-
ditional contributor, engaging more experts would require so-
liciting input from experts outside of the project that funded
this effort (see the “Financial support” section), which would
require investing in further development of the GUI (Fig. 1)
to port it to other systems. It seemed prudent to limit our in-
vestments in such further developments, since our initial data
collection phase concluded right about the same time that the
ClimateNet effort (see two paragraphs down) launched.

One could consider utilizing data from the ARTMIP
project to constrain a Bayesian model, since each ART-
MIP catalogue effectively represents each expert developer’s
opinion on where and when ARs can be distinguished from
the background. This would greatly increase the effective
number of experts, though it would likely also require a
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substantially more complicated Bayesian model. As noted
by Ralph et al. (2019b), each existing AR detection algo-
rithm has been designed for a specific application: ranging
from understanding the global hydrological cycle (Zhu and
Newell, 1998) to understanding AR impacts in the western
United States (Rutz et al., 2014). Forthcoming work by Zhou
et al. (2020) shows that the global number of ARs detected
by ARTMIP algorithms ranges from approximately 6 to 42.
This is a much wider range of uncertainty in global AR count
than demonstrated in this paper, and we hypothesize that the
large upper bound is a side effect – rather than an intended
property – resulting from designing AR detectors with a fo-
cus on a particular region or impact. For example, if an AR
detector designer is not particularly concerned about ARs be-
ing strictly contiguous, then global AR count would not be
well constrained. If global AR count is not a reliable reflec-
tion of the AR detector designer’s expert opinion, then we
would need to either account for this uncertainty in the ART-
MIP dataset or formulate likelihood functions that optimize
based on some other property of the ARTMIP output: ideally,
properties that reflect expert opinion.

The use of counts, instead of AR footprints, is potentially
another limitation of this study that could be explored in fu-
ture work. For example, during the MCMC training phase,
some parameter choices may yield some (false positive) de-
tections of tropical cyclones; these false positives are not pe-
nalized, since a likelihood function based entirely on counts
has no way of discriminating between true and false posi-
tives. We could employ additional heuristic rules to filter out
common false positives like tropical cyclones (e.g., by filter-
ing out ARs in which ∇× IV T exceeds a threshold). Al-
ternatively, using AR footprints in the training phase could
help narrow the parameter choices to ones that minimize
such false positives; however, the availability and quality of
such data could be a concern. Prabhat et al. (2020) have cre-
ated a web interface for soliciting user opinions about the
boundaries of ARs and tropical cyclones, which may be a
more informative dataset for constraining an AR detector:
they call this dataset ClimateNet. Prabhat et al. (2020) train
a deep neural network to emulate the hand-drawn AR labels,
and they show that this approach is broadly successful. The
Bayesian approach described in this paper can be viewed as
a form of statistical machine learning: training a heuristic
detector to emulate the behavior of experts. The Bayesian
approach could alternatively be tailored to utilize data from
ClimateNet instead of – or in addition to – the count dataset
used here. For example, the posterior distribution of AR de-
tector parameters could be used as a prior distribution for
parameters in a model that uses some measure of closeness
between the detected ARs and the ClimateNet ARs: e.g., the
likelihood could be based around the intersection-over-union
metric that is commonly applied in the computer vision liter-
ature. There are a number of interesting hypotheses, related
to the TECA BARD approach, that could be explored in fu-
ture studies:

– Hypothesis 1. ClimateNet provides a more information-
rich dataset for constraining detector parameters, which
could be critical for reducing the parametric uncertainty
shown in this study.

– Hypothesis 2. The spread in subjective opinion about
what does and does not constitute an AR is large enough
that the parametric uncertainty cannot be reduced fur-
ther than that shown in this study.

– Hypothesis 3. Deep learning methods can outperform
the statistical machine learning approach employed
here.

– Hypothesis 4. The output from TECA-BARD v1.0.1
could be used to pre-train a deep learning model so that
it can make better use of the spatial data in ClimateNet

The TECA BARD approach could also be applied to detec-
tors of other types of weather phenomena. For example, the
US Clivar Hurricane Working Group determined that some
tropical cyclone research results depend on how tropical cy-
clones are detected: particularly results concerning weaker
cyclones (Walsh et al., 2015). Similarly, the Intercomparison
of Mid Latitude Storm Diagnostics (IMILAST) project deter-
mined that scientific results regarding extratropical cyclones
can depend on how they are detected (Neu et al., 2013). There
is also emerging research on frontal systems that could be
interpreted to suggest a similar uncertainty with respect to
tracking method (Schemm et al., 2018). We argue that such
uncertainty is inherent to heuristic phenomena detectors, and
Bayesian approaches like the one described in Sect. 2.1 could
be used to quantify this uncertainty.

Code and data availability. Supporting data and code are
archived with Zenodo. Details for accessing the code for
TECA-BARD v1.0.1 can be found in Loring et al. (2020)
(https://doi.org/10.5281/zenodo.4130468). TECA-BARD v1.0.1
is available as a TECA application teca_ar_detect un-
der source file apps/teca_bayesian_ar_detect.cxx
(compiles as bin/teca_bayesian_ar_detect when
installed). The code for sampling the posterior distribution
of the TECA-BARD parameters can be found in O’Brien
(2020) (https://doi.org/10.5281/zenodo.4130486). Data con-
taining the AR counts used for constraining the TECA-
BARD parameters can be found in O’Brien et al. (2020a)
(https://doi.org/10.5281/zenodo.4130559), and the posterior
distribution samples are available under the TECA source file
alg/teca_bayesian_ar_detect_parameters.cxx
(Loring et al., 2020, https://doi.org/10.5281/zenodo.4130468).
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