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ABSTRACT OF THE DISSERTATION 

 
 
 

Time-series of stable isotopes in dissolved inorganic carbon  
of surface seawater near Bermuda and Hawaii 

 
 
 

by 
 
 
 

Mariela Ke’o-lani Brooks 
 
 

Doctor of Philosophy in Oceanography 
 
 

University of California San Diego, 2020 
 
 

Professor Ralph F. Keeling, Chair 
 
 
 

The 13C/12C ratio of stable carbon isotopes in dissolved inorganic carbon (DIC) can 

provide insight into carbon cycle variability and trends in the surface ocean. Measurements of 

δ13C-DIC when combined with DIC can be used to estimate anthropogenic carbon uptake and 

marine productivity and can contribute to our understanding of the role that the ocean plays in 

the global carbon cycle. This dissertation describes surface ocean time-series measurements near 

Bermuda (S-BATS) and Hawaii (HOT) of δ13C-DIC, DIC, and alkalinity (ALK) as a part of the 
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Scripps Seawater Program, focusing on δ13C-DIC. Prior to this study, there was a hiatus in 

seawater δ13C-DIC measurements at Scripps, while samples continued to be collected and 

archived for future analysis. This dissertation details the resumption of these measurements 

along with the calibration and methodology used for Scripps measurements of δ13C-DIC. We 

quantify the calibration contributions to uncertainty in the context of consistency between newer 

and older measurements. In addition, we introduce and document the stability of three new 

seawater secondary standards, including a method based on CO2 in compressed N2 gas.  

In these time-series records of nearly three decades, we show that the long-term trends 

and seasonal cycles in sDIC and δ13C-DIC at both S-BATS and HOT are consistent with earlier 

studies and independent time-series records. From the full record we find no long-term changes 

in the seasonal cycle of sDIC, δ13C-DIC, or computed pCO2. Consistent to some earlier studies 

we find significant correlations at S-BATS with the North Atlantic Oscillation and at HOT with 

the Pacific Decadal Oscillation (PDO). We also find correlations at HOT that were not 

previously noted including the PDO with sea surface temperature and mixed layer depth (MLD), 

as well as El Nino Southern Oscillation (NINO3.4) with sDIC and MLD. Lastly, we use a 

combination of observations and CESM hindcast simulations to explore upper ocean carbon 

variability in subtropical gyres. This allows us to examine the time-series in a broader 

geographic context, showing coherent patterns of variability across the North Atlantic and North 

Pacific subtropical gyres and illustrating key differences in the controls of variability at BATS 

and HOT. 
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CHAPTER 1: INTRODUCTION 

1.1 THE CARBON CYCLE AND SUBTROPICAL GYRES 

 The global carbon cycle has three primary reservoirs; the atmosphere, the terrestrial 

biosphere, and the ocean. The natural state of the carbon cycle is maintained through a relative 

balance between these carbon reservoirs. Anthropogenic perturbation of the carbon cycle 

resulting from fossil fuel burning, land use changes, and cement production have disturbed this 

balance and resulted in a significant increase of atmospheric CO2, a major greenhouse gas. As 

atmospheric levels of CO2 continue to rise, it is increasingly important to be able to predict the 

resulting response of the global carbon cycle which has significant implications for predictions 

of future climate change. The ocean plays a critical role in the global carbon cycle and it is 

especially important to improve our understanding of how marine carbon uptake and storage 

may respond to climate change (Quay et al., 2003; Sabine and Tanhua, 2010). An important side 

effect of the uptake of anthropogenic CO2 by the ocean is that the process by which it enters the 

ocean lowers seawater pH, resulting in ocean acidification (Bates et al., 2014; Caldeira and 

Wickett, 2003; Zeebe, 2012). According to recent estimates, ~45% of the anthropogenic carbon 

emissions remain in the atmosphere, while ~30% are removed by the land, and ~24% enter the 

ocean (Le Queré et al., 2018). An illustration of the global carbon budget with dominant sources 

and sinks is shown in Figure 1.1.    

The Scripps seawater program time-series measurements of dissolved inorganic carbon 

(DIC), total alkalinity (ALK), and 13C/12C of DIC (δ13C-DIC) began as part of an effort to better 

understand the carbon cycle in the subtropical gyre regions of the ocean. The Subtropical gyres 

encompass over 40% of the surface oceans (Karl, 2002, 1999) and these highly stratified, 

oligotrophic regions are important for the global carbon cycle due to the significant surface area 
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of the ocean that they cover. The subtropical gyres could be responsible for as much as 60% of 

global organic carbon export from the surface ocean (Quay and Stutsman, 2003). There is also 

significant interannual variability, up to 50% of the total signal, in subtropical carbon export and 

anthropogenic carbon uptake rates (Bates, 2007; Brix et al., 2004; Gruber et al., 2002; Quay and 

Stutsman, 2003). Understanding productivity and anthropogenic carbon uptake and how this may 

be changing over time is important for predicting how these regions may be impacted by climate 

change as well as global carbon climate feedbacks.  

1.2 STABLE CARBON ISOTOPES  

 Within the surface ocean, dissolved inorganic carbon (DIC) and the 13C/12C ratio of 

dissolved inorganic carbon (δ13C-DIC) are both influenced by physical and biological processes 

which include air-sea gas exchange, lateral mixing and advection, vertical mixing and diffusion, 

photosynthesis and respiration (Figure 1.2), as well as calcification and dissolution. We ignore 

the impacts of calcification and dissolution on DIC and δ13C-DIC when ALK remains relatively 

constant (Keeling et al., 2004; Chapter 3). Each of these processes changes the δ13C-DIC in a 

distinct and unique way, and high precision measurements of δ13C-DIC are a powerful tool for 

understanding how each of these processes cause changes in the upper ocean carbon cycle 

(Bacastow et al., 1996; Gruber et al., 2002, 1998; Keeling et al., 2004; Quay et al., 2017, 2007; 

Quay and Stutsman, 2003). Changes in the 13C/12C ratio are normally expressed in delta notation 

(δ13C), defined as: 

𝛿"#𝐶 = &
' ()* ()+, -.
' ()* ()+, -/

− 12 ∙ 1000                   (1.1) 

where subscript s designates the sample, subscript r is the reference, and the factor of 1000 

converts to per mil units (‰). 
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A notable contribution to our understanding of ocean uptake of anthropogenic carbon 

results from δ13C-DIC records (Bacastow et al., 1996; Gruber et al., 1999; Heimann and Maier-

Reimer, 1996; Körtzinger et al., 2003; McNeil et al., 2001; Quay et al., 2003; Sonnerup et al., 

1999; Tanaka et al., 2003; Tans et al., 1993; Watanabe et al., 2011). The burning of fossil fuels 

leaves a signature of 13C depletion in the atmospheric δ13Catm of CO2, and this depleted δ13Catm 

signal is transferred into the surface mixed layer DIC during air-sea gas exchange and/or atom-

swapping. There is a difference of about an order of magnitude in the equilibration timescales for 

DIC (~1 year) and δ13C-DIC (~10 years). Thus, a decadal “smoothing” of the trend in seawater 

incorporation of anthropogenic carbon is reflected in the δ13C-DIC (Bacastow et al., 1996; 

Lynch-Steiglitz et al., 1995).  

The δ13C-DIC and DIC time-series have also been used to study upper ocean 

biogeochemistry as it relates to net ecosystem and export production, as well as to calculate 

carbon budget estimates in the marine environment (Brix et al., 2004; Gruber et al., 2002, 1998; 

Keeling et al., 2004; Quay and Stutsman, 2003). These studies used upper ocean box models 

which take advantage of the simultaneous measurements of DIC and δ13C-DIC, combined with 

additional relevant physical and chemical parameters. These box models allow the quantification 

of the dominant processes that control the upper ocean carbon cycle. It is thus possible to 

estimate the relative strength of air-sea gas exchange, net community production (NCP), 

horizontal advection, and vertical entrainment on the upper ocean carbon cycle.  

There has also been research into how organismal photosynthetic fractionation may be 

changing over time as the atmospheric isotopic pool of δ13Catm is depleted and the background 

concentrations of atmospheric CO2 and DIC continue to increase (Jasper and Hayes, 1990; Rau, 

1989). The Scripps seawater program δ13C-DIC time-series records provide the opportunity to 
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further explore these ideas and examine how these changes may show up in the marine 

environment. Additionally, it is possible to make use of these time-series datasets to study the 

impacts of ocean acidification. As the records grow longer, our ability to further our 

understanding and discover new information about long-term climate impacts increases as well. 

These time-series records can also be used to reduce uncertainties in ocean budget estimates and 

improve important validation checks to help constrain global earth system models which attempt 

to depict feedbacks between changing greenhouse gases and climate. 

1.3 HISTORY OF SCRIPPS SEAWATER TIME-SERIES MEASUREMENTS 

The Scripps seawater program started in 1983 in collaboration with the on-going time-

series measurement program of the Bermuda Institute for Ocean Science (BIOS) (originally the 

Bermuda Biological Station for Research (BBSR)) at Hydrostation S in an effort to characterize 

inorganic carbon chemistry in the upper ocean. Since then, seawater bottle samples have been 

collected at roughly monthly time intervals and shipped to Scripps for analysis. The Scripps 

seawater measurements include dissolved inorganic carbon (DIC), alkalinity (ALK), and the 

stable isotopic ratio 13C/12C of DIC (δ13C-DIC).  In 1988, the Scripps seawater program 

expanded to also obtain samples from the Hawaii Ocean Time-series (HOT) Station ALOHA as 

well as samples from the Bermuda Atlantic Time-series Study (BATS). Samples were obtained 

at two depths for each station (1 m and 10 m for BATS and Station S, 5 m and 25 m for HOT 

Station ALOHA) until 2004. Since then, samples have been obtained from a single sample depth 

for each station (10 m for BATS and Station S, 5 m for HOT Station ALOHA).  

 From 2005 to 2014 ALK and DIC measurements were continued primarily by Professor 

Andrew Dickson and members of his research group. Since ~2015, DIC measurements have 

been made by members of Professor Ralph Keeling’s group while ALK measurements continue 
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to be made by members of Prof. Dickson’s group. Since 2005, the CO2 group led by Prof. 

Keeling has been responsible for the isotopic analysis. At the beginning of this project, 

measurements of δ13C-DIC had fallen behind and were not available beyond 2004. During this 

measurement hiatus, the Scripps Seawater Program continued to have seawater samples 

collected. At the onset of this project, over 200 of these samples had been extracted, with the 

CO2 gas samples collected in break seal tubes and archived for analysis at a future date to extend 

the isotopic time-series record. Additional seawater sample bottles from the more recent years 

had also been stored, awaiting analysis. As a part of this research effort, we have since updated 

the time-series measurements of all three variables (δ13C-DIC, DIC, and ALK) beyond the 

previously published record length which ended in 2002 (Brix et al., 2004; Gruber et al., 2002; 

Keeling et al., 2004). The time-series records now extend through 2016 to 2017 at all three stations, 

roughly doubling the length of the isotopic record.  

1.4 OVERVIEW OF THIS DISSERTATION 

 Chapter 2 describes the calibration, uncertainty analysis, and methodology used by the 

Scripps CO2 program for measuring stable carbon isotopes in seawater samples with a dual-inlet 

Optima isotope ratio mass spectrometer (IRMS). This chapter expands on previous isotope 

calibration reports (Bollenbacher et al., 2000; Guenther et al., 2001) to include the time period 

from 2001 to 2018. Three new seawater secondary standards are presented and characterized, 

one of which involves a new and unique method based on a high-pressure mixture of pure CO2 

and high purity nitrogen gas in a 50L aluminum tank. The new seawater secondary standards 

behave reliably on the Optima IRMS and the calibration contribution to uncertainty over the full 

time-period of seawater measurements for δ13C is ±0.025‰.  

 Chapter 3 presents the updated 13C/12C, DIC, ALK seawater time-series measurements, 

which now extend to 2017, an additional 14 to 15 years beyond the previously published records 
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(Brix et al., 2004; Gruber et al., 2002; Keeling et al., 2004). The long-term trends for δ13C-DIC 

are essentially the same, and essentially linear over the length of the records, at the time-series 

locations in both the North Pacific and North Atlantic. The seasonal amplitudes of δ13C-DIC, 

sDIC, pCO2 vary interannually, but do not appear to have a significant trend of increasing or 

decreasing amplitudes. The NAO is strongly correlated with interannual variability in the 

majority of reported time-series variables observed at Station S and BATS. The PDO is 

correlated with the sDIC, SST, pCO2, and MLD interannual variability observed at HOT, in 

support of earlier publications (Brix et al., 2004). We also show correlation between NINO3.4 

and sDIC and MLD at HOT, which was not evident in the shorter records previously. This 

chapter discusses the observed long-term trends, seasonal cycles, and interannual variability in 

the context of additional oceanographic variables as well as relevant atmospheric variables and 

dominant modes of climate variability and how they relate to earlier published records. 

 Chapter 4 explores upper ocean carbon variability in subtropical gyres using a 

combination of observations and hindcast simulations from the Community Earth System Model 

(CESM) that includes stable carbon isotopes in the ocean biogeochemistry. The observations are 

used to verify the model at the time-series sites (HOT and BATS) and then basin-scale 

relationships are explored within the model, with a focus on interannual variability and spatial 

patterns of variability within the subtropical gyres. There are spatially coherent patterns of 

variability in the North Atlantic and North Pacific subtropical gyres, which can in part be 

explained by dominant modes of climate variability in these regions. The interannual variability 

at the BATS time-series station is largely explained by vertical mixing structure and broadly 

representative of the variability throughout the majority of the North Atlantic subtropical gyre. In 

contrast, the location for the HOT time-series station may represent only a subsection of the 
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variability throughout the North Pacific subtropical gyre which has more complex patterns and 

controls of variability.  
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1.6 FIGURES 

 

 

Figure 1.1: Global carbon budget from Le Queré et al. (2018) showing anthropogenic emissions 
sources and sinks since 1900. 
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emulate the behaviour of DGVMs (Gasser et al., 2017). We
use OSCAR v2.2.1 (an update of v2.2 with minor changes)
in a probabilistic setup identical to the one of Arneth et
al. (2017) but with a Monte Carlo ensemble of 2000 simula-
tions. For each, we calculate SLAND and the loss of additional
sink capacity separately. We then constrain the ensemble by
weighting each member to obtain a distribution of cumula-
tive SLAND over 1850–2005 close to the DGVMs used here.
From this ensemble, we estimate a loss of additional sink
capacity of 0.4 ± 0.3 GtC yr�1 on average over 2005–2014
and 20 ± 15 GtC accumulated between 1870 and 2017 (us-
ing a linear extrapolation of the trend to estimate the last few
years).

3 Results

3.1 Global carbon budget mean and variability for

1959–2017

The global carbon budget averaged over the last half-century
is shown in Fig. 3. For this time period, 82 % of the total
emissions (EFF + ELUC) were caused by fossil CO2 emis-
sions and 18 % by land-use change. The total emissions were
partitioned among the atmosphere (45 %), ocean (24 %), and
land (30 %). All components except land-use change emis-
sions have grown since 1959, with important interannual
variability in the growth rate in atmospheric CO2 concen-
tration and in the land CO2 sink (Fig. 4) and some decadal
variability in all terms (Table 6). Differences with previous
budget releases are documented in Fig. B4.

3.1.1 CO2 emissions

Global fossil CO2 emissions have increased every decade
from an average of 3.1 ± 0.2 GtC yr�1 in the 1960s to an
average of 9.4 ± 0.5 GtC yr�1 during 2008–2017 (Table 6,
Figs. 2 and 5). The growth rate in these emissions decreased
between the 1960s and the 1990s, from 4.5 % yr�1 in the
1960s (1960–1969) to 2.8 % yr�1 in the 1970s (1970–1979),
1.9 % yr�1 in the 1980s (1980–1989), and 1.0 % yr�1 in the
1990s (1990–1999). After this period, the growth rate be-
gan increasing again in the 2000s at an average growth rate
of 3.2 % yr�1, decreasing to 1.5 % yr�1 for the last decade
(2008–2017), with a 3-year period of no or low growth dur-
ing 2014–2016 (Fig. 5).

In contrast, CO2 emissions from land use, land-use
change, and forestry have remained relatively constant, at
around 1.3±0.7 GtC yr�1 over the past half-century but with
large spread across estimates (Fig. 6). These emissions are
also relatively constant in the DGVM ensemble of mod-
els, except during the last decade when they increase to
1.9 ± 0.6 GtC yr�1. However, there is no agreement on this
recent increase between the two bookkeeping models, each
suggesting an opposite trend (Fig. 6).

Figure 3. Combined components of the global carbon budget il-
lustrated in Fig. 2 as a function of time, for fossil CO2 emissions
(EFF; grey) and emissions from land-use change (ELUC; brown),
as well as their partitioning among the atmosphere (GATM; blue),
ocean (SOCEAN; turquoise), and land (SLAND; green). The parti-
tioning is based on nearly independent estimates from observations
(for GATM) and from process model ensembles constrained by data
(for SOCEAN and SLAND) and does not exactly add up to the sum
of the emissions, resulting in a budget imbalance, which is repre-
sented by the difference between the bottom pink line (reflecting
total emissions) and the sum of the ocean, land, and atmosphere. All
time series are in GtC yr�1. GATM and SOCEAN prior to 1959 are
based on different methods. EFF values are primarily from Boden
et al. (2017), with uncertainty of about ±5 % (±1� ); ELUC values
are from two bookkeeping models (Table 2) with uncertainties of
about ±50 %; GATM prior to 1959 is from Joos and Spahni (2008)
with uncertainties equivalent to about ±0.1–0.15 GtC yr�1 and
from Dlugokencky and Tans (2018) from 1959 with uncertainties
of about ±0.2 GtC yr�1; SOCEAN prior to 1959 is averaged from
Khatiwala et al. (2013) and DeVries (2014) with uncertainty of
about ±30 % and from a multi-model mean (Table 4) from 1959
with uncertainties of about ±0.5 GtC yr�1; SLAND is a multi-model
mean (Table 4) with uncertainties of about ±0.9 GtC yr�1. See the
text for more details of each component and their uncertainties.

3.1.2 Partitioning among the atmosphere, ocean, and

land

The growth rate in atmospheric CO2 level increased from
1.7±0.07 GtC yr�1 in the 1960s to 4.7±0.02 GtC yr�1 dur-
ing 2008–2017 with important decadal variations (Table 6
and Fig. 2). Both ocean and land CO2 sinks increased
roughly in line with the atmospheric increase, but with sig-
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Figure 1.2: Schematic of the different processes which impact DIC and δ13C-DIC in the surface 
ocean. Modified from Gruber et al. (1998). We note that calcification and dissolution are not 
represented here (see text). 
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CHAPTER 2: CALIBRATION METHODS FOR MEASUREMENTS 

OF 13C/12C IN DISSOLVED INORGANIC CARBON IN SEAWATER 
ABSTRACT 

The Scripps Seawater Program has measured stable isotope values of 13C/12C in seawater 

dissolved inorganic carbon (DIC) from seawater samples collected at roughly monthly intervals 

from three separate stations since the 1980s. We report on the calibration methods and 

uncertainty analysis for measurements of 13C/12C in DIC using a dual-inlet Optima isotope ratio 

mass spectrometer (IRMS) with secondary standards. We also present and characterize three new 

seawater secondary standards, including one based on a high-pressure mixture of pure CO2 with 

high purity nitrogen gas in a 50L aluminum tank. We find that the new seawater secondary 

standards behave reliably on the Optima MS and show that the calibration contribution to 

uncertainty in the seawater δ13C data is ±0.025‰.  

2.1 INTRODUCTION 

 Stable isotope measurements of 13C/12C in seawater dissolved inorganic carbon (DIC) 

have been made by the Scripps Seawater Program on seawater samples collected at roughly 

monthly intervals from three separate stations since the 1980s. In coordination with the U.S. 

Joint Global Ocean Flux Study (JGOFS), this monitoring was initiated in 1983 in the North 

Atlantic at HydroStation S (32°10’N, 64°30’W), ~26 km southeast of the island of Bermuda. 

Two additional sample collection sites were added in 1988, the JGOFS Bermuda Atlantic Time-

series Study (BATS) (31°50’N, 64°10’W), ~80 km southeast of Bermuda in the North Atlantic 

(Bates et al., 1996), and the Hawai’i Ocean Time-series (HOT) Station ALOHA (22°45’N, 

158°00’W), ~100 km north of the island of ‘Oahu, Hawai’i in the North Pacific (Karl and Lukas, 

1996). 
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 Several publications present prior results from these isotopic measurements through 2002 

(Gruber et al., 1998, 2002; Brix et al., 2004; Keeling et al., 2004). Calibration methods for the 

isotopic measurements were presented previously in (Bollenbacher et al., 2000; Guenther et al., 

2001). There was a hiatus in the seawater sample isotopic measurements from roughly 2004 to 

2015. During this ~11-year period, samples were archived either in the originally collected 

sample bottles, or as pure CO2 extracted from acidified seawater samples in glass “flame-off-

tubes” (FOTs; see below). Before resuming isotopic measurements in 2015, it was necessary to 

develop new reference materials because the old secondary standards were partly depleted.  

Prior to 1992, the isotope measurements were done in the laboratory of Prof. Willem 

Mook of the Centrum voor Isotopen Onderzeok (CIO) at the University of Groningen, in the 

Netherlands. Subsequently, measurement were made at Scripps in the laboratory of Prof. Martin 

Wahlen, using a VG Prism II isotope ratio mass spectrometer (IRMS). Beginning in August 

2000, the measurements at Scripps transitioned to an Optima IRMS, first housed in the lab of 

Prof C.D. Keeling and subsequently housed in the lab of Prof. R.F. Keeling. The Scripps 

measurements using both the Prism and then the Optima IRMS have been calibrated based on 

linear calibration equations anchored to three NBS standard (NBS16, NBS17, and NBS19) 

(Bollenbacher et al., 2000). This initial 1994 calibration was retrospectively applied to the 

measurements made between 1992 and 1994. A Craig correction is also applied to account for 

the influence of 17O on measured δ13C values (Craig, 1957). The calibration of the VG Prism 

instrument is detailed in previous reports (Bollenbacher et al., 2000; Guenther et al., 2001). The 

calibration methods for the Optima have not been previously discussed.  

This report covers methods and results associated with calibration of the Optima IRMS 

for measurements of 13C/12C in total dissolved CO2 in seawater using secondary standards that 
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are essentially pure CO2 gas with negligible N2O, reflective of the absence of N2O in seawater 

samples (Bollenbacher et al., 2000). This report also discusses the transition between the Prism 

and Optima IRMS instruments and discusses the development of secondary gas standards for 

calibrating seawater 13C/12C, including one based on a high-pressure mixture of CO2 in N2. A 

separate report will discuss the calibration of the Optima IRMS for measurements of 13C/12C and 

18O/16O in air, which depends on additional secondary standards containing a mixture of CO2 and 

N2O in atmospheric proportions (Lueker et al., 2020).  

2.2 MATERIALS AND METHODS 

2.2.1 Preparation of Secondary Standards 

Specific preparation and storage techniques for each secondary standard are discussed in 

more detail below and are summarized in Table 2.1 and 2.2. The seawater secondary standards 

consist of two sets, where Set 1 refers to four standards that were obtained or prepared in the 

1990s (GS19, GS20, GEA4, and GES1). Set 2 includes three secondary standards (GES2, 2342, 

and DCS1) that were prepared in 2015/2016. All the secondary standards except GS19 and GS20 

were prepared from sodium bicarbonate or calcium carbonate materials by acidifying ground 

carbonates in a vacuum extraction system and subsequently cryogenically isolating the CO2 gas 

into an evacuated flask. GS19 and GS20 consist of pure CO2 gas purchased from CIO 

(Bollenbacher et al., 2000).  

Set 1: 

2.2.1.1 GS19 & GS20, used as standards from June/July 1992 through 2004:  

The preparation and usage of these secondary standards have been discussed in two 

previous reports (Bollenbacher et al., 2000; Guenther et al., 2001). They consist of pure CO2 in 

0.5 L stainless steel flasks with bronze double Nupro-valves. The valves are connected in series 
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with 1/4" O.D. stainless steel tubing allowing for ~2 cm3 volume between the valves. They were 

obtained from Dr. Mook of CIO in 1992, with original fill pressure of ~202 kPa. They were in 

regular use as secondary standards from June/July 1992 through 2004. From 2004 through 2010, 

they continued to be analyzed but they were no longer used as secondary standards for seawater 

measurements. By July 2010, their pressures had dropped through usage to ~20 kPa. A 

reanalysis of these secondaries on October 13, 2016 and December 9, 2016 against other 

secondaries suggested that δ13C for both GS19 and GS20 had drifted upwards by ~0.04‰ during 

the intervening six years.  

2.2.1.2 GEA4, used as standard from October 1995 to present:  

The preparation and use of this secondary standard has been discussed in two previous 

reports (Bollenbacher et al., 2000; Guenther et al., 2001). Briefly, GEA4 was prepared by Guy 

Emanuele on October 26, 1995 by acidifying approximately 20 grams of NaHCO3 with 40% 

H3PO4 under vacuum and capturing the evolved CO2 after removing the evolved H2O via a series 

of traps. GEA4 was stored as pure CO2 in a 5L glass round-bottom flask and 1517 1-2 cm3 

aliquots of this flask were transferred by Guy Emanuele into glass FOTs between October 1995 

and December 1996. Both the flask and 520 break-seal glass tubes of GEA4 still exist as of 

2018.  

2.2.1.3 GES1, used as standard from December 1997 to October 2016:  

The preparation and use of this secondary standard has been discussed previously 

(Guenther et al., 2001). GES1 was prepared on November 24, 1997 by Guy Emanuele from 22 

grams of CaCO3 Dover chalk using the same acidification method as GEA4 and the resulting 

pure CO2 was also stored in a 5 L glass round-bottom flask. About 99 aliquots were transferred 
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to FOTs between November 1997 and June 1998. The remainder of CO2 was left in the glass 

flask and stored in the seawater lab until August 2015.  

Set 2: 

2.2.1.4 GES2, used as standard from August 2015 to present:  

The preparation and use of the standard has not previously been discussed. It consists of 

CO2 in FOTs filled from the GES1 flask and is given different designation because of a long 

hiatus in the usage of the GES1 flask. GES2 exists only as discrete samples in FOTs, which were 

filled from the GES1 flask between August 11, 2015 and August 28, 2015. This was more than 

ten years since the previous use of the GES1 flask. We compared GES2 FOTs with the earlier 

transfers from GES1 and found a statistically non-zero offset in δ13C. On August 28, 2015, the 

GES1 flask broke and the CO2 was lost. At that time ~43 of the total 50 GES2 FOTs remained to 

be used as a secondary standard.  

2.2.1.5 2342, used as standard from April 2016 to present:  

The preparation and usage of this standard has not been previously discussed. It consists 

of CO2 in N2 in a high-pressure cylinder. 2342 was prepared by Mariela Brooks and Timothy 

Lueker on April 6, 2016 by acidifying approximately 11 grams of CaCO3 from a ground up 

Palmyra atoll coral sample, using essentially the same method as for GEA4. The pure CO2 was 

transferred to a 0.42 L stainless-steel flask with a final pressure of 38 psi, and this flask was used 

to prepare three FOTs. On May 5, 2016, the CO2 remaining in the stainless-steel flask was 

transferred to a ~50 L aluminum tank (Tank 2342) and topped up to 920 psi with high purity N2 

gas, which yielded a CO2 concentration of ~350 ppm. Since then, 2342 has been extracted 

roughly monthly on the automated extraction rack (AERII, discussed further below). As of 
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August 2017, a total of 117 aliquots had been transferred to FOTs from 2343, with ~700 psi 

remaining in the tank.  

2.2.1.6 DCS1, used as standard from April 2016 to present:  

The preparation and usage of this standard has not been previously discussed. DCS1 was 

prepared on April 22, 2016 by Mariela Brooks and Timothy Lueker from 21 grams of Dover 

chalk using essentially the same acidification method as GEA4. The resulting pure CO2 was 

stored in the repaired and annealed 5 L glass round-bottom flask (previously used for GES1) 

using stopcocks with Viton O-rings. As of November 2, 2016, 189 aliquots had been transferred 

to FOTs using on the seawater lab manual extraction line (discussed further below), with the 

remainder of the gas remaining in the 5 L glass flask for future use.  

2.2.2 Transfer of Standard Material to Break-Seal Glass Tubes 

 The “break seal” glass tubes used for both for seawater and air secondary standards 

consist of 1/4” outer diameter borosilicate-glass that are typically ~5 to 10 cm long with the ends 

either flame-sealed or fused with an electronic fuser after the CO2 has been frozen (using liquid 

nitrogen) into the tube under vacuum. The break-seal glass tubes for Set 1 have been previously 

described (Bollenbacher et al., 2000; Guenther et al., 2001). We prepared the break-seal glass 

tubes for Set 2 either on the seawater lab manual vacuum transfer line or the automatic extraction 

rack (AERII).  

2.2.2.1 Manual Transfer Rack 

A schematic of the manual vacuum transfer rack is shown in Figure 2.1 (top). We used 

this to fill break-seal glass tubes from Set 2 flasks containing pure CO2 (GES2, DCS1). We 

attach the flask as indicated on the left side of the transfer line which we pump out up to the 

lower valve on the flask (FV1). We then close the upper valve on the flask (FV2) and close the 
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vacuum pump valve (PV6). We place liquid nitrogen on the break-seal glass tube that the aliquot 

of CO2 will be frozen into and ensure that only the valve (of F1-F6) leading to that particular 

break-seal glass tube is open. With FV2 closed, we open FV1 to expand and equilibrate the 

standard gas into the ~2cc volume between FV1 and FV2. We then close FV1, isolating the CO2 

aliquot and subsequently open FV2 to allow the aliquot of CO2 to pass through a cryo-trap of 

ethanol and dry ice to remove water vapor and freeze the CO2 into the break-seal glass tube in 

liquid nitrogen. We allow ~4.5 minutes for the transfer to complete, assessed by observing that 

the pressure gauge on the transfer line (G3) has dropped back down to the evacuated pressure 

(signifying that the gas has been transferred fully) and waiting an additional 30 seconds. At this 

point, we raise the liquid nitrogen on the break-seal glass tube, and an electric fuser is used for 2-

3min to seal the aliquot of the standard gas into the glass break-seal glass tube.  

2.2.2.2 Automatic Transfer Rack 

A schematic of the automatic extraction rack, AERII, is shown in Figure 2.1 (bottom). In 

the context of seawater isotope calibration, we use this rack for transfer from tank 2342 to break-

seal glass tubes. AERII follows the general procedure of cryo-traps described above but valve 

switching, the liquid nitrogen traps, and fusing are automated and used for secondary standards 

that are stored in tanks (including air secondaries). We attach 2342 to the inlet at v1 as indicated 

in Figure 2.1 (bottom). When transferring 2342 aliquots into break-seal glass tubes v2 to v12 on 

the upper and lower manifolds remain shut. The gas flows down and then left-to-right through 

the various traps before entering the break-seal glass tube it is being isolated into, which is 

controlled by the valves F1-F6.  
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2.2.3 Data Reduction Methods 

2.2.3.1 OPTIMA software calculations: The OPTIMA software requires the user to input the 

declared δ13C and δ18O values of the instrument reference gas used on the reference inlet. The 

instrument software converts the reference values to ‘standard format’ so that the instrument can 

compare the 45/44 and 46/44 ion current ratios of the measured sample and reference values as 

detailed in the Optima User Manual. To do this, the Optima software uses the following 

formulation which essentially is the reverse Craig correction:  

δ(45/44)REF = (δ13CREF + 0.0338* δ18OREF)/1.0676     (2.1) 

δ(46/44)REF = (δ18OREF + 0.0021 * δ13CREF)/1.0010     (2.2) 

where δ13CREF = -3.964‰ and δ18OREF = -15.696‰.  

After a sample is measured, the Optima software then computes:  

δ(45/44)SA = δ(45/44)SA wrt REF + δ(45/44)REF + 

(δ(45/44)SA wrt REF * δ(45/44)REF)/1000        (2.3) 

δ(46/44)SA = δ(46/44)SA wrt REF + δ(46/44)REF +  

(δ(46/44)SA wrt REF* δ(46/44)REF)/1000        (2.4) 

where δ(45/44)SA wrt REF and δ(46/44)SA wrt REF are delta values measured with respect to the 

instrument reference gas. The dual inlet system allows for the instrument to switch between the 

reference and sample gases 12 times and determines an average measured value based on these 6 

comparisons. 

The Optima software then applies the Craig correction: 

δ13CMS = ((1.0676 * δ(45/44)SA) – (0.0338338 * δ(46/44)SA))/0.99992902  (2.5) 

δ18OMS = ((1.0010 * δ(46/44)SA) – (0.00224196 * δ(45/44)SA)/0.99992902  (2.6) 
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where δ13CMS and δ18OMS are the main output of the OPTIMA software, made available in print 

form to the user along with each of the 12 reference-sample measurements mentioned above, 

corresponding trace plots, precision for the delta value obtained, and details of instrument 

settings used for that particular run.    

2.2.3.2 Subsequent calculations: Using the instrument output for δ13CMS and δ18OMS values, we 

apply a 4-step procedure to compute final processed δ values: 

Step 1: Undo the instrument-generated Craig correction to yield δ values based on original ion 

currents (Bollenbacher et al., 2000, equation (2.1)). 

δ(45/44) = (δ13CMS + 0.0338 * δ18OMS)/1.0676     (2.7) 

δ(46/44) = (δ18OMS + 0.0021 * δ13CMS)/1.0010     (2.8)  

where δ18OMS and δ13CMS are the delta values reported by the instrument software. 

Step 2: Apply the 1994 NBS correction (Bollenbacher et al., 2000) for analysis dates before 

October 1, 1996 and the 1997 NBS correction (Guenther et al., 2001) for analysis dates on or 

after October 1, 1996. The change in NBS correction has no bearing on the final numbers 

because it is corrected for through the use of daily terms (Step 4 below). 

δ(45/44)’ = 0.995034 * δ(45/44) + 0.05901    (< 1 Oct. 1996)  (2.9)  

                = 0.994228 * δ(45/44) + 0.017353  (≥ 1 Oct. 1996)    

δ(46/44)’ = 1.00758 * δ(46/44) + 0.21137   (< 1 Oct. 1996)  (2.10) 

      = 1.00487 * δ(46/44) + 0.007153    (≥ 1 Oct. 1996)      

Step 3: Reapply the ion (Craig) correction (Bollenbacher et al., 2000, Eqn (2.3)). 

δ13Cnbscorr = ((1.0676 * δ(45/44)’) – (0.0338338 * δ(46/44)’))/0.99992902  (2.11) 

δ18Onbscorr = ((1.0010 * δ(46/44)’) – (0.00224196 * δ(45/44)’)/0.99992902  (2.12) 
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Step 4: Results from runs of the secondary standards are used to apply day-to-day corrections to 

the sample measurements. The secondary standards are analyzed identically to samples through 

Step 3. These results are then used to compute  

13Di = (δ13Cassigned, i - δ13Cnbscorr, i)       (2.13) 

18Di = (δ18Oassigned, i - δ18Onbscorr, i)       (2.14) 

where δ13Cassigned, i is the assigned value of standard i (described below), and δ13Cnbscorr, i is the 

δ13Cnbscorr value computed from Step 3 for standard i. Typically, more than one standard is 

analyzed on the same day, (i.e. at the beginning and at the end of sample runs). A “daily term” is 

then calculated as an average of the difference terms 13Di and 18Di for any seawater secondary 

standards run on a given day.  

13Dsw = mean(13Di)         (2.15) 

18Dsw = mean(18Di)         (2.16) 

The samples run on that date are then corrected according to  

δ13Ctermcorr = δ13Cnbscorr + 13Dsw        (2.17) 

δ18Otermcorr = δ18Onbscorr + 18Dsw       (2.18) 

This correction is similarly but separately done for the atmospheric samples using the 

atmospheric air secondary standards instead of the seawater secondary standards due to the 

influence of N2O in air which could result in differences in day-to-day drift.  

Final isotope values: For the seawater measurements, no further corrections are applied, and the 

final δ values are given by: 

δ13C = δ13Ctermcorr         (2.19) 

δ18O = δ18Otermcorr         (2.20) 
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We note that for air samples which contain N2O, the calculation of final δ values involves two 

additional corrections that are not used with seawater samples. The first is the standard N2O 

correction, based on measured N2O of a sample. The second correction allows for an offset 

between the CIO and SIO labs. This CIO or “Mook” correction is assumed to be zero for 

seawater samples based on results reported in (Bollenbacher et al., 2000) where it was shown 

that N2O-free samples compared between CIO and SIO might have a small offset on the order of 

~0.02‰, but there was insufficient data and the results of the comparison were not conclusive 

enough to warrant the use of an offset correction for the seawater measurements.  

2.3 RESULTS 

2.3.1 Assignments of Secondary Standards 

The original assignment of GS19, GS20, GES1 and GEA4 was described in two previous 

reports (Bollenbacher et al., 2000; Guenther et al., 2001). GS19 was assigned δ13C and δ18O 

values based on a comparison with a three-point calibration using NBS16, NBS17, and NBS19 

in Jan 1994. GS20 and GES1 were assigned based on their average offset from GS19, and GEA4 

was assigned based on the average offset from both GS19 and GS20, for a given set of 

measurements made on the same day. The assignment for GS20 was made based on 29 days of 

measurements, the assignment for GEA4 was made based on 17 days of measurements, and the 

assignment for GES1 was made based on 13 days of measurements. These four secondary 

standards span a range of -8.6 to +1.9‰ for δ13C and -1.8 to +1.8‰ for δ18O.  

As the archive studies described below suggest no drift in GES1 and GEA4 over time, we 

consequently freeze their assignments to be constant over time at the original assigned values 

(see Table 2.2 for assigned values). This report therefore entails no scale revision, i.e. no change 
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to data reported in previous publications (Gruber et al., 1998, 2002; Brix et al., 2004; Keeling et 

al., 2004).   

In order to make assignments on GES2, 2342, and DCS1, we ran aliquots from flame-off 

tubes as unknowns against GEA4 and/or GES1 on the Optima IRMS. We then averaged he 

measured values for δ13Ctermcorr and δ18Otermcorr for each standard (GES2, 2342, or DCS1) and all 

values outside of 2-sigma from the mean were discarded. We based the assigned value for each 

secondary standard on the mean of the remaining values. GES2 was assigned using a total of 43 

runs, 2342 was assigned using a total of 65 runs, and DCS1 was assigned using a total of 106 

runs. Figure 2.2 shows the data used to make these assignments as detailed in Table 2.2. These 

three standards span a range of -0.8 to +2.0‰ in δ13C, which compares to a range of ~+1 to +2‰ 

for surface seawater. They span a range of -3.6 to -1.6‰ in δ18O which compares to typical value 

of ~+0.9‰ for δ18O in the seawater sample CO2 extracts. 

2.3.2 Stability of Secondary Standards 

To help diagnose the stability of the secondary standards, we have periodically carried 

out “archive studies”, in which break-seal glass tubes of the given secondary that were archived 

(i.e. transferred to break-seal glass tubes) on different dates are all analyzed on the same date. 

Under the seemingly reasonable assumption that the CO2 isotopes are stable in the break-seal 

glass tubes, these archive studies then provide a measure of the stability of the secondary 

standard in its original source container (i.e. the container used prior to transfer to the break-seal 

glass tube). By completing these analyzes on a single date, this stability check is independent of 

the long-term calibration of the mass spectrometer.  

The archive studies’ results are plotted in Figure 2.4, with the drift and corresponding 

uncertainties summarized in Table 2.3, and with the basic data tabulated in Tables 2.4.1-2.4.5.  
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For each analysis date, δ13C measurements on a given standard had a standard deviation between 

±0.008 and ±0.016‰, except for GES2 which had a standard deviation of ±0.039‰. For GES1 

and GES2 the transfer dates did not span a sufficient time interval to assess drift. For GEA4, 

2342, and DCS1 a drift rate was calculated using a linear least-squares fit that allowed for an 

arbitrary additive constant for each analysis date but a single slope versus transfer date. None of 

the slopes were statistically different from zero, and thus no drift corrections were applied to the 

seawater secondary standards.  

2.3.4 Daily Terms 

Figures 2.3.1 and 2.3.2 show the daily terms assessed based on analyses of the seawater 

secondary standards plotted against the analysis date. Also shown are daily terms for CO2 in air 

standards, which contain N2O and are not directly relevant to seawater measurements. The 

standard deviation of the daily terms is typically consistent to within ±0.05‰ and ±0.27‰ for 

δ13C and δ18O respectively. Periods of systematic drift are also evident, as well as seemingly 

abrupt shifts typically associated with documented changes in the instrument configuration. The 

drift in the daily term accounts for changes in the raw observed differences between the 

standards and the instrument reference gas. These shifts could have any of many causes and are 

not understood in detail. The daily terms do not show any striking shift during the transition from 

the Prism to the Optima in August 2000, which also entailed using a new instrument reference 

gas. Our use of a daily term effectively relates seawater samples directly to the secondary 

standards, which we have tracked carefully over time, thus canceling the impact of these shifts in 

the daily terms on any measured seawater trends.  
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2.3.5 Scale Contraction Stability 

 An important diagnostic of mass spectrometer performance is the stability of the 

difference between two standards with large differences in δ13C. This is relevant to the extent 

that our seawater measurements sometimes have relied on standards that are not isotopically 

close in δ13C to seawater (such as GEA4). Any expansion or contraction of these differences 

over time would indicate an additional source of uncertainty in the measurements. 

To address this issue, we examine the history of the differences between GEA4 and 

GES1. This pair has been run over the longest period of time (1992-2016) of any of the 

secondary standards and also spans a large range in δ13C from -7.5‰ to +1.9‰. Figure 2.5 

shows the differences in δ13Ctermcorr for GEA4 and GES1 for each date that we ran both GEA4 

and GES1 plotted versus analysis date. A linear regression indicates no significant trend (p = 

0.109) over the 24-year measurement period with a standard deviation of ±0.019‰ 

corresponding to a ±0.2% of the difference in δ13C between GEA4 and GES1. The results 

suggest that variations in scale contraction or expansion have impacted the seawater 

measurements to, at most, the ±0.019‰ level and that the span calibration for both the Optima 

and Prism was stable to ±0.2% of the span range. 

2.3.6 Calibration Contribution to Measurement Uncertainty 

 We are principally interested here in the ability to detect trends (secular, seasonal, etc.) in 

δ13C in seawater over time. An important metric is the expected uncertainty of the observations. 

To assess this, we model the total variance of the seawater measurements according to  

σtot2 = σ12 + σ22 + σ32             (2.21) 

where σ1 includes machine imprecision and other within-day variations, σ2 includes day-to-day 

calibration offsets, and σ3 includes errors from sampling, storage, and extraction  
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We first looked at the pooled standard deviation of multiple break-seal glass tubes from 

the same standard that were run on same day:  

sdpooled = [((n1-1)×sd12 + (n2-1)×sd22 + … + (ni-1)×sdi2) ÷ (n1 + n2 + … + ni – k)]-1/2       (2.22) 

Here sdi is the standard deviation of the break-seal glass tube runs of this standard on day i, ni is 

the number of runs, and k is the total number of analysis dates with two more break-seal glass 

tube runs of this standard. GEA4 by far had the most replicates run on the same day with a total 

of k = 161 days that had a range of 2 to 7 counts of GEA4 measurements. For GEA4, this yielded 

sdpooled = ±0.011‰ for δ13C and ±0.029‰ for δ18O. We repeated this with the remaining 

seawater Set 1 and Set 2 secondary standards with a range of k = 5 to 15 days. This yielded 

sdpooled ranging between ±0.011‰ and ±0.029‰ for δ13C and ranging between ±0.011‰ and 

±0.061‰ for δ18O. These values are summarized in Table 2.5. We view this as a measure of σ1.  

We also investigated a measure of uncertainty that accounts for day-to-day variations 

based on the early performance of the Set 2 secondaries while they were being groomed but not 

yet used as secondaries. For each of these we compute the standard deviation of the δ13Ctermcorr 

and δ18Otermcorr values over grooming period, as summarize in Table 2.5. This yielded standard 

deviations for GES2, DCS1, and 2342 ranging from ±0.021‰ to ±0.030‰ for δ13C and 

±0.064‰ to ±0.093‰ for δ18O. We view this as a measure of the combined errors from σ1 + σ2. 

The comparison with the errors above for σ1 suggests that the contribution from σ2 is as small as 

±0.001‰ and no greater than ±0.019‰ for δ13C and between ±0.003‰ and ±0.082‰ for δ18O. 

This suggests that the daily term correction scheme works relatively well does not introduce 

excessive additional uncertainty. 

We also estimated a measure of overall external uncertainty based on replicate seawater 

samples that were run on different days, where the replicates typically came from different 
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depths (e.g. 1m and 10m or 5m and 25m). With the combined total of 767 replicate seawater 

samples collected on k = 382 separate samples dates that were analyzed from all three of our 

sample stations in the North Pacific and North Atlantic subtropical gyres (BATS, Station S, and 

HOT) over the past 30 years, the pooled standard deviation computed via Eqn (2.22) was 

±0.025‰ for δ13C. We take these as a measure of σtot, which when combined with the above 

estimates suggest that the combined sampling, storage, and extractions errors (σ3) are between 

zero and ±0.014‰ for δ13C. This analysis demonstrates that a significant fraction of the overall 

uncertainty comes from machine imprecision and other same-day uncertainties with an 

additional possibly significant contribution from day-to-day calibration uncertainties, with a 

smaller contribution from sample handling and extractions.   

2.3.7 Extended Seawater Isotope Time-series 

 We have updated the seawater δ13C isotope time-series measurements through 2016 and 

2017 for all three stations using the secondary standards described here. These updated records 

now include an additional ~15 years of data relative to the previously published record and are 

shown in Figure 2.6. The new time-series data from 10m sample measurements shown in green 

highlight the continuity between the isotope record before and after the measurement hiatus. In 

addition, the purple filled circles show where the 1m (Station S and BATS) and 25m (HOT) 

overlapping duplicate samples agree well with the previous measurements. The gap evident at 

Station S and BATS between 2005 and 2006 is due to the failure of a sample storage refrigerator 

at SIO. This figure includes the dissolved inorganic carbon (DIC) and alkalinity (ALK) time-

series records as well, all of which are discussed in further detail in Chapter 3.  
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2.4 DISCUSSION AND SUMMARY 

This chapter has detailed the methods used to ensure continuity in the calibration of 

seawater δ13C measurements at Scripps. This work applies to measurements made over years 

2015-2018. Prior to 2015, seawater δ13C measurements were calibrated using pure CO2 

standards. With this work, we introduced two additional pure CO2 seawater secondary standards 

as well as a third standard based on pure CO2 blended with ultra-high-purity (UHP) N2 and 

stored in a high-pressure cylinder.  

This chapter also details a new method for assessing drift in CO2 isotopic secondary 

standards through the use of so-called “archive studies”. An archive study involves analyzing 

multiple break-seal glass tubes derived from different extraction dates, which allows us to 

estimate drift in the secondary standards that is independent from day-to-day variations in 

instrument performance. Using this method, we are also able to conduct stability checks on the 

same secondary standard flask or cylinder. Under the seemingly reasonable assumption that the 

CO2 isotopes are stable in the break-seal glass tubes, these archive studies provide a measure of 

the stability of a secondary standard in its original source flask or cylinder. 

Through the use of these archive studies we were able to show that the seawater 

secondary standards have been stable and have shown no need for a drift correction to be 

applied. This is in contrast to the experience with air standards (containing N2O) some of which 

required drift correction as detailed in (Lueker et al., 2020). The archive studies demonstrated 

stability of both the pure CO2 secondary standards as well as the CO2 in N2 standard in tank 

2342, which was assessed with four archive studies. Going forward, the use of CO2 in N2 may 

prove advantageous, because the method provides a larger reservoir material thus extending 
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lifetime and allows for a more streamlined preparation process which parallels the air standard 

preparation.   

We have also quantified the methodological uncertainties in the seawater δ13C 

measurements, combining contributions from calibration, sample handling and analysis. No 

single step in the measurement process stood out as the dominant source of uncertainty.  We find 

that the calibration contribution to uncertainty in the seawater δ13C data is ±0.025‰. The overall 

external precision, i.e. the repeatability of seawater samples measured different dates and 

different standards, is between 0.011 to 0.030‰. This precision is an order of magnitude smaller 

than seasonal amplitudes and two order of magnitude smaller than measured secular changes in 

δ13C over the 30-year time frame of the time-series.  

 Finally, we were able to demonstrate continuity between measurements with the 

transition from making measurements on a Prism MS (before August 2000) to an Optima MS 

(after August 2000) as evidenced by the lack of significant offset between the secondary 

standards that overlap this transition period in August 2000. As a component of this analysis, we 

analyzed archived samples from bottles that were collected on the same day as samples that had 

been previously run before the hiatus and should therefore be nominally identical. We found that 

measurements of δ13C made before and after the seawater isotope measurement hiatus with these 

overlapping sample dates do not show significant offsets. In sum, these achievements give us 

confidence for reasonable continuity in the extended seawater stable isotope records, which are 

discussed in more detail in Chapter 3.  
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Table 2.2: Summary of seawater isotope secondary standards. 

Standard Assigned δ13C SD Assigned δ18O SD Archive Study 
GS19 -7.464 ±0.010 -0.125 ±0.018 * 
GS20 -8.573 ±0.009 -0.915 ±0.023 * 
GEA4 -7.499 ±0.008 +1.756 ±0.025 Jul 8, 2002 
GES1 +1.944 ±0.012 -1.759 ±0.036 Dec 1, 1997 
GES2 +1.982 ±0.024 -1.598 ±0.044 Nov 10, 2015 
2342 -0.845 ±0.015 -3.621 ±0.047 Dec 9, 2016 
DCS1 +1.900 ±0.015	 -2.571 ±0.054	 Oct 13, 2016 
*Archive studies were not performed on GS19 and GS20 because these have only been run 
when directly connected to the Optima inlet system, as opposed to having aliquots extracted 
and preserved in flame-off-tubes for subsequent analysis. 

 

Table 2.3: Summary of drift rates and associated standard deviation (SD) values in ‰ yr-1. 
Standard δ13C Drift (‰ yr-1)  SD δ18O Drift (‰ yr-1) SD Archive Study 
GEA4 +0.0081 ±0.0064 -0.0091 ±0.0115 Jul 8, 2002 
GES1* - - - - Dec 1, 1997 
GES2* - - - - Nov 10, 2015 
2342** +0.0012 ±0.0044 -0.0016 ±0.0118 Dec 9, 2016 
DCS1 -0.0059 ±0.0155 +0.0681 ±0.0970 Oct 13, 2016 
*Span of transfer dates do not encompass sufficient time for long-term drift to be calculated 
(or be of concern). 
** Based on mean drift rate determined by four separate archive studies. 
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Table 2.4.1: Archive study for GEA4. The number of samples used relates to how many 
extractions were available at the time of analysis. ‘Prep Date’ refers to the date the standard 
itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was transferred 
into its respective break-seal glass tube. All δ13C and δ18O values are reported using units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
GEA4 017 26 Oct 1995 27 Oct 1995 08 Jul 2002 -7.497 +1.717 
GEA4 163 26 Oct 1995 15 Dec 1995 08 Jul 2002 -7.500 +1.741 
GEA4 289 26 Oct 1995 27 Mar 1996 08 Jul 2002 -7.489 +1.725 
GEA4 478 26 Oct 1995 29 Apr 1996 08 Jul 2002 -7.505 +1.727 
GEA4 637 26 Oct 1995 26 Jun 1996 08 Jul 2002 -7.504 +1.737 
GEA4 726 26 Oct 1995 16 Jul 1996 08 Jul 2002 -7.492 +1.734 
GEA4 838 26 Oct 1995 26 Jul 1996 08 Jul 2002 -7.497 +1.706 
GEA4 933 26 Oct 1995 06 Aug 1996 08 Jul 2002 -7.501 +1.718 
GEA4 1087 26 Oct 1995 16 Sep 1996 08 Jul 2002 -7.478 +1.744 
GEA4 1261 26 Oct 1995 27 Sep 1996 08 Jul 2002 -7.496 +1.710 
GEA4 1420 26 Oct 1995 08 Nov 1996 08 Jul 2002 -7.489 +1.709 
GEA4 1500 26 Oct 1995 09 Dec 1996 08 Jul 2002 -7.492 +1.723 
Archive Study Average   -7.495 +1.724 
Archive Study Standard Deviation  ±0.008   ±0.013 
GEA4 Assigned Value   -7.499 +1.756 
GES1, GS19, GS20 run same day as standards    

 
Table 2.4.2: Archive study for GES1. The number of samples used relates to how many 
extractions were available at the time of analysis. ‘Prep Date’ refers to the date the standard 
itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was transferred 
into its respective break-seal glass tube. All δ13C and δ18O values are reported using units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
GES1 001 24 Nov 1997 24 Nov 1997 01 Dec 1997 +1.927 -1.770 
GES1 002 24 Nov 1997 24 Nov 1997 01 Dec 1997 +1.946 -1.792 
GES1 003 24 Nov 1997 25 Nov 1997 01 Dec 1997 +1.966 -1.709 
GES1 004 24 Nov 1997 25 Nov 1997 01 Dec 1997 +1.930 -1.758 
GES1 005 24 Nov 1997 25 Nov 1997 01 Dec 1997 +1.935 -1.753 
GES1 006 24 Nov 1997 25 Nov 1997 01 Dec 1997 +1.955 -1.742 
Archive Study Average   +1.943  -1.754 
Archive Study Standard Deviation             ±0.015 ±0.028 
GES1 Assigned Value                +1.944    -1.759 
GEA4 run same day as standard     

   

 



 35 

Table 2.4.3: Archive study for GES2. The number of samples used relates to how many 
extractions were available at the time of analysis. ‘Prep Date’ refers to the date the standard 
itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was transferred 
into its respective break-seal glass tube. All δ13C and δ18O values are reported using units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
GES2 105 24 Nov 1997 11 Aug 2015 10 Nov 2015 +1.947 -1.697 
GES2 108 24 Nov 1997 11 Aug 2015 10 Nov 2015 +2.040 -1.661 
GES2 117 24 Nov 1997 24 Aug 2015 10 Nov 2015 +2.001 -1.683 
GES2 128 24 Nov 1997 24 Aug 2015 10 Nov 2015 +1.993 -1.692 
GES2 132 24 Nov 1997 27 Aug 2015 10 Nov 2015 +2.005 -1.685 
GES2 138 24 Nov 1997 27 Aug 2015 10 Nov 2015 +1.977 -1.666 
GES2 142 24 Nov 1997 28 Aug 2015 10 Nov 2015 +1.921 -1.631 
Archive Study Average   +1.983  -1.673 
Archive Study Standard Deviation             ±0.039 ±0.023 
GES2 Assigned Value                +1.944    -1.759 
GEA4 and GES1 run same day as standards    

 

Table 2.4.4.1: Archive study for 2342 (1 of 4).  The number of samples used relates to how 
many extractions were available at the time of analysis. ‘Prep Date’ refers to the date the 
standard itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was 
transferred into its respective break-seal glass tube. All δ13C and δ18O values are reported using 
units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
2342 B16-1202 06 Apr 2016 10 Nov 2016 9 Dec 2016 -0.825 -3.603 
2342 B16-1091 06 Apr 2016 18 Oct 2016 9 Dec 2016 -0.836 -3.565 
2342 B16-906 06 Apr 2016 22 Aug 2016 9 Dec 2016 -0.832 -3.570 
2342 B16-590 06 Apr 2016 17 Jun 2016 9 Dec 2016 -0.840 -3.591 
2342 B16-436 06 Apr 2016 09 May 2016 9 Dec 2016 -0.813 -3.511 
2342 B16-492 06 Apr 2016 27 May 2016 9 Dec 2016 -0.835 -3.579 
2342 B16-677 06 Apr 2016 06 Jul 2016 9 Dec 2016 -0.839 -3.595 
2342 B16-981 06 Apr 2016 16 Sep 2016 9 Dec 2016 -0.837 -3.566 
2342 B16-1123 06 Apr 2016 24 Oct 2016 9 Dec 2016 -0.856 -3.631 
2342 B16-1206 06 Apr 2016 10 Nov 2016 9 Dec 2016 -0.831 -3.597 
Archive Study Average   -0.834  -3.581 
Archive Study Standard Deviation      ±0.011   ±0.032 
2342 Assigned Value   -0.845     -3.621 
GEA4, GES2, DCS1 run same day as standards    
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Table 2.4.4.2: Archive study for 2342 (2 of 4). The number of samples used relates to how 
many extractions were available at the time of analysis. ‘Prep Date’ refers to the date the 
standard itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was 
transferred into its respective break-seal glass tube. All δ13C and δ18O values are reported using 
units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
2342 B16-1201 06 Apr 2016 10 Nov 2016 13 Jan 2017 -0.825 -3.671 
2342 B16-1119 06 Apr 2016 24 Oct 2016 13 Jan 2017 -0.834 -3.640 
2342 B16-982 06 Apr 2016 16 Sep 2016 13 Jan 2017 -0.827 -3.641 
2342 B16-676 06 Apr 2016 06 Jul 2016 13 Jan 2017 -0.860 -3.709 
Archive Study Average   -0.837 -3.665 
Archive Study Standard Deviation     ±0.016  ±0.032 
2342 Assigned Value   -0.845 -3.621 
GEA4 run same day as standard    

 

Table 2.4.4.3: Archive study for 2342 (3 of 4). The number of samples used relates to how 
many extractions were available at the time of analysis. ‘Prep Date’ refers to the date the 
standard itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was 
transferred into its respective break-seal glass tube. All δ13C and δ18O values are reported using 
units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
2342 B16-594 06 Apr 2016 20 Jun 2016 7 Dec 2017 -0.845 -3.718 
2342 B17-666 06 Apr 2016 11 Aug 2017 7 Dec 2017 -0.824 -3.666 
2342 B16-904 06 Apr 2016 22 Aug 2016 7 Dec 2017 -0.824 -3.679 
2342 B17-438 06 Apr 2016 09 Jun 2017 7 Dec 2017 -0.845 -3.647 
2342 B16-1088 06 Apr 2016 18 Oct 2016 7 Dec 2017 -0.829 -3.657 
2342 B17-281 06 Apr 2016 03 Apr 2017 7 Dec 2017 -0.843 -3.691 
2342 B17-168 06 Apr 2016 24 Feb 2017 7 Dec 2017 -0.830 -3.698 
2342 B16-1205 06 Apr 2016 10 Nov 2016 7 Dec 2017 -0.832 -3.654 
2342 B17-613 06 Apr 2016 02 Aug 2017 7 Dec 2017 -0.839 -3.675 
Archive Study Average   -0.835 -3.676 
Archive Study Standard Deviation  ±0.008   ±0.023 
2342 Assigned Value   -0.845    -3.621 
GEA4 run same day as standards    
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Table 2.4.4.4: Archive study for 2342 (4 of 4). The number of samples used relates to how 
many extractions were available at the time of analysis. ‘Prep Date’ refers to the date the 
standard itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was 
transferred into its respective break-seal glass tube. All δ13C and δ18O values are reported using 
units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
2342 B17-167 06 Apr 2016 24 Feb 2017 10 May 2018 -0.826 -3.743 
2342 B17-669 06 Apr 2016 11 Aug 2017 10 May 2018 -0.814 -3.741 
2342 B16-593 06 Apr 2016 20 Jun 2016 10 May 2018 -0.838 -3.772 
2342 B16-978 06 Apr 2016 16 Sep 2016 10 May 2018 -0.824 -3.715 
2342 B18-466 06 Apr 2016 18 Apr 2018 10 May 2018 -0.829 -3.754 
2342 B16-1200 06 Apr 2016 10 Nov 2016 10 May 2018 -0.835 -3.755 
2342 B17-272 06 Apr 2016 03 Apr 2017 10 May 2018 -0.828 -3.759 
2342 B16-915 06 Apr 2016 24 Aug 2016 10 May 2018 -0.834 -3.739 
2342 B17-432 06 Apr 2016 09 Jun 2017 10 May 2018 -0.836 -3.744 
2342 B16-1120 06 Apr 2016 24 Oct 2016 10 May 2018 -0.829 -3.743 
Archive Study Average   -0.829 -3.747 
Archive Study Standard Deviation  ±0.007  ±0.015 
2342 Assigned Value   -0.845 -3.621 
GEA4, DCS1 run same day as standards    
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Table 2.4.5: Archive study for DCS1. The number of samples used relates to how many 
extractions were available at the time of analysis. ‘Prep Date’ refers to the date the standard 
itself was prepared/cooked up, ‘Transfer Date’ refers to the day that the aliquot was transferred 
into its respective break-seal glass tube. All δ13C and δ18O values are reported using units of ‰. 

Standard Transfer ID Prep Date Transfer Date Analysis Date δ13C δ18O 
DCS1 088 22 Apr 2016 31 May 2016 13 Oct 2016 +1.896 -2.568 
DCS1 109 22 Apr 2016 06 Jun 2016 13 Oct 2016 +1.912 -2.554 
DCS1 157 22 Apr 2016 02 Sep 2016 13 Oct 2016 +1.906 -2.563 
DCS1 007 22 Apr 2016 02 May 2016 13 Oct 2016 +1.905 -2.567 
DCS1 039 22 Apr 2016 10 May 2016 13 Oct 2016 +1.909 -2.677 
DCS1 058 22 Apr 2016 25 May 2016 13 Oct 2016 +1.892 -2.553 
DCS1 091 22 Apr 2016 03 Jun 2016 13 Oct 2016 +1.904 -2.527 
DCS1 145 22 Apr 2016 09 Aug 2016 13 Oct 2016 +1.896 -2.524 
DCS1 178 22 Apr 2016 07 Sep 2016 13 Oct 2016 +1.905 -2.555 
DCS1 021 22 Apr 2016 03 May 2016 13 Oct 2016 +1.905 -2.531 
DCS1 052 22 Apr 2016 17 May 2016 13 Oct 2016 +1.912 -2.542 
DCS1 075 22 Apr 2016 26 May 2016 13 Oct 2016 +1.903 -2.558 
Archive Study Average   +1.904 -2.560 
Archive Study Standard Deviation  ±0.006    ±0.040 
DCS1 Assigned Value   +1.900      -2.571 
GEA4, GES1, GES2 run same day as standards    
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Table 2.5: Calibration contribution to measurement uncertainty. 
Pooled standard deviation for secondary standards run 
on the same day. 
Standard   k δ13C sdpooled δ18O sdpooled 
GS19 15 ±0.018 ‰ ±0.024 ‰ 
GS20 10 ±0.011 ‰ ±0.011 ‰ 
GEA4 167 ±0.011 ‰ ±0.026 ‰ 
GES1 15 ±0.014 ‰ ±0.027 ‰ 
GES2 5 ±0.029 ‰ ±0.030 ‰ 
2342 5 ±0.027 ‰ ±0.056 ‰ 
DCS1 15 ±0.020 ‰ ±0.061 ‰ 
Standard deviation for Set 2 secondary standards run 
on different days as unknowns. 
Standard Count δ13C sd δ18O sd 
GES2 35 ±0.030 ‰ ±0.063 ‰ 
2342 82 ±0.024 ‰ ±0.093 ‰ 
DCS1 40 ±0.021 ‰ ±0.086 ‰ 
Seawater duplicate samples from different depths 
(1m and 10m or 5m and 25m). 
 Count δ13C sd δ18O sd 
All three 
stations 382 ±0.025 ‰ - 
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2.8 FIGURES 

 
 

 
 
Figure 2.1 Schematic of the manual (top) and automatic (bottom) transfer racks.  
 

Manual Transfer Rack 

Automatic Transfer Rack 
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Figure 2.2: Assignment of secondary standard values. The black points represent the measured 
values for a given day. The shaded gray area encompasses the 2-sigma range of a given 
secondary standard. The solid black line shows the average values of the data contained within 
the shaded 2-sigma region. Figure 2-A, 2-B, and 2-C correspond to δ13C for DCS1, GES2, and 
2342, respectively and Figure 2-D, 2-E, and 2-F shows δ18O for DCS1, GES2, and 2342 
respectively. 
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Figure 2.4: Archive studies for secondary seawater standards showing δ13Ctermcorr (left panels) 
and δ18O termcorr (right panels) plotted against transfer dates. The slope of the linear regression and 
standard error are reported in the title of each plot. Analysis dates are distinguished by symbol 
type/color (see legends). The slope is calculated using a linear least squares fit that includes a 
separate additive constant for each analysis date but a common slope vs transfer date. 
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Figure 2.5: Scale contraction stability. The black open circles are the difference between the 
δ13Ctermcorr values of GEA4 and GES1 (δ13Ctermcorr GEA4 - δ13Ctermcorr GES1) plotted with the analysis 
date on the x-axis. This calculation was done for each individual value for GEA4 and GES1 on 
any day they both were run. The straight line is the linear regression (p = 0.109). 
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Figure 2.6: Seawater time-series data (gray filled circles) are shown with a quadratic fit in 
combination with 4-, 6-, and 12-month harmonics plus a cubic spline represented by the solid 
line. The green dots are the new measurements at 5m (HOT) and 10m (BATS and Stations S). 
New overlap samples from 1m (Bermuda) and 25m (HOT) are shown in purple. The gap evident 
at Station S and BATS between 2005 and 2006 is due to the failure of a sample storage 
refrigerator at SIO.  
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CHAPTER 3: CHANGES IN THE 13C/12C RATIO OF DISSOLVED 

INORGANIC CARBON NEAR BERMUDA AND HAWAII OVER 

THREE DECADES 
ABSTRACT 

The 13C/12C ratio of dissolved inorganic carbon (δ13C-DIC) in seawater is a powerful tool 

for quantifying various aspects of the marine carbon cycle, especially when combined with 

measurements of total DIC and alkalinity (ALK). We report on approximately three decades of 

stable isotope measurements of δ13C-DIC along with measured DIC and ALK as well as 

computed pCO2 from the subtropical North Pacific Hawaii Ocean Time-series (HOT) Station 

ALOHA and subtropical North Atlantic Bermuda Atlantic Time-series Study (BATS) and 

Station S (combined as S-BATS). The δ13C-DIC time-series records now include an additional 

~15 years beyond the previously published record (Gruber et al., 2002; Brix et al., 2004; Keeling 

et al., 2004). We observe distinct long-term trends in δ13C-DIC, sDIC, and pCO2 in the HOT and 

S-BATS records in keeping with previously observed trends reported by Gruber et al. (2002) and 

Keeling et al. (2004). sDIC increased at a rate of +1.07 μmol kg-1 yr-1 from September 1983 to 

April 2017 at S-BATS and increased at a rate of +1.21 μmol kg-1 yr-1 from January 1989 to 

November 2016 at HOT. Over the same time periods δ13C-DIC decreased at essentially the same 

rate at each of the time-series station, -0.0264‰ yr-1 at S-BATS and -0.0259‰ yr-1 at HOT. We 

also show that the seasonal cycle amplitude of sDIC, δ13C-DIC, and computed pCO2 exhibit 

interannual variability up to 40-50% of the mean amplitude, but we do not observe systematic 

change in onset or phase over the time-series record. At S-BATS, interannual variability in sDIC, 

SST, and mixed layer depth are significantly correlated with the NAO, consistent with previous 

findings. Also consistent with previous findings, HOT interannual variability in sDIC, pCO2, 
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SST, and mixed layer depth are significantly correlated with the PDO. We also observe 

additional correlations which were not previously observed with the shorter record, including 

significant correlation between the PDO and SST and MLD at HOT as well as NINO3.4 and 

sDIC and mixed layer depth at HOT with correlation coefficients of similar magnitude as 

correlations with the PDO. Consistent with earlier publications, δ13C-DIC interannual variability 

was not significantly correlated with any other variables or climate modes at S-BATS or HOT. 

The only exception to this, is significant correlation of δ13C-DIC with both sDIC and SST at S-

BATS. 

3.1 INTRODUCTION 

Time-series measurements of the variation of carbon composition in the atmosphere, 

oceans, and terrestrial biosphere are essential for understanding the links between climate and the 

global carbon cycle (Keeling et al., 1989; Tans et al., 1990; Keeling, 1993; Tans et al., 1993). 

Improved understanding of the ocean carbon cycle is particularly important for estimating the net 

flux of CO2 into the oceans resulting from increasing atmospheric anthropogenic carbon (e.g. 

fossil fuels, cement production, and land-use changes), and to understand the potential for future 

changes in the natural cycles and forcing of air-sea exchange of CO2 (Siegenthaler and 

Sarmiento, 1993; Sarmiento and Le Quéré, 1996; Quay and Stutsman, 2003; Sabine and Tanhua, 

2010).  

The 13C/12C ratio of dissolved inorganic carbon (δ13C-DIC) in seawater is a powerful tool 

for quantifying various aspects of the marine carbon cycle, especially when combined with 

measurements of total DIC and alkalinity (ALK). The value of time-series measurements of 

ocean carbon chemistry has been demonstrated in studies of the perturbation of the oceanic 

carbon cycle resulting from increasing atmospheric CO2 (Keeling, 1993; Winn et al., 1994; 
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Bacastow et al., 1996; Bates et al., 1996; Gruber et al., 1996; Winn et al., 1998; Gruber et al., 

1998; Gruber and Keeling, 2001; Gruber et al., 2002; Quay and Stutsman, 2003; Keeling et al., 

2004; Brix et al., 2004). These records gain value as they grow longer because this improves our 

ability to quantify long-term trends, seasonality, and natural variability, and also improves our 

confidence in long-term changes to observed carbon cycle dynamics. Additionally, their value 

for validating ocean carbon cycle models increases as record lengths increase.  

The observed long-term trends of increasing DIC and decreasing δ13C-DIC in the surface 

ocean primarily reflect the uptake of anthropogenic carbon and transfer of the atmospheric 

isotopic trend of decreasing δ13Catm into the surface ocean (Bacastow et al., 1996; Gruber et al., 

1999; Heimann and Maier-Reimer, 1996; McNeil et al., 2001; Quay et al., 2003; Sonnerup et al., 

1999; Tanaka et al., 2003; Watanabe et al., 2011). The surface ocean values of δ13C-DIC are 

mainly controlled by the atmospheric δ13C trend and air-sea gas exchange, the entrainment of 

deeper water into the surface mixed layer, and the impacts of photosynthetic fractionation which 

leaves an enriched (more positive) δ13C-DIC signal. Any (or all) of these factors might alter the 

balance between air-sea gas exchange and biological cycling that results in the linear trend in the 

past δ13C records at S-BATS and ALOHA.  

Tagliabue and Bopp (2008) used the PISCES-A global ocean ecosystem model to 

investigate spatiotemporal variability in δ13C-DIC and the Suess effect. They report large 

regional variability in the long-term trends of δ13C-DIC (Tagliabue and Bopp, 2008; see Figure 

7A), and a range of values for the Suess effect (or long-term trend resulting from the fossil-fuel 

driven dilution of atmospheric 13C) in the subtropical gyres between approximately -0.016 and -

0.024 ‰ yr-1. Previous publications of observed trends in δ13C-DIC at HOT and BATS yield a 

range of computed trends from -0.024 to -0.027 ‰ yr-1 (Keeling et al., 2004; Quay et al., 2017, 
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2003). sDIC computed trends at BATS and HOT have ranged between 0.64 ± 0.05 μmol kg-1 yr-1 

and 1.2 ± 0.1 μmol kg-1 yr-1 (Bates et al., 2014; Gruber et al., 2002; Keeling et al., 2004; Quay et 

al., 2017, 2003).  

 The seasonal cycle of DIC, δ13C-DIC, and other upper ocean parameters are also of 

interest, as they may be diagnostic of changes in productivity patterns as a result of possible 

climate change impacts.  The amplitudes of both sDIC and δ13C-DIC are twice as large at BATS 

as at HOT (Keeling et al., 2004), and illustrate distinct regional processes that impact the carbon 

cycle at the locations. Recent studies have shown that the seasonal cycle of pCO2 in the ocean 

has increased (Kwiatkowski and Orr, 2018; Landschützer et al., 2018) as a consequence of the 

rise in CO2 and weaker ocean buffering. This increase is expected even without any change in 

either the amplitude of DIC or SST. Using an observation-based interpolation map between 1985 

and 2014, Landschützer et al. (2018) report an increase in the surface ocean pCO2 seasonal 

amplitude of 2.2 ± 0.4 μatm decade-1 between 10°N and 40°N.   

 In addition to the long-term trends and seasonal cycles in the time-series record, there is 

also interannual and decadal variability observed in the North Atlantic and North Pacific (Bates, 

2001, 2012, 2007; Bates et al., 1996; Brix et al., 2004; Conway et al., 1994; Gruber et al., 2002). 

These ocean basins exhibit distinct physical forcing, which is reflected in the observed 

contrasting relationships of variability between the two stations. Aside from improving our 

understanding of carbon cycle dynamic in general, understanding the controls of interannual 

variability in these regions can help to improve our ability to predict how the surface ocean 

carbon cycle may respond to future climate change. At S-BATS, interannual variations in SST 

and resulting mixed layer depth maxima seem strongly connected to interannual variability in 

DIC and δ13C-DIC (Gruber et al., 2002), while at ALOHA, variations in SST and gyre 
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circulation (lateral transport) seem to be the dominant forces (Brix et al., 2004). These different 

mechanisms were determined from a box model analysis making use of the simultaneous records 

of δ13C-DIC and DIC (Gruber et al., 1998).  

Previous studies have also suggested that the observed interannual variability in sDIC are 

related to the dominant climate modes of variability in these regions (Dore et al., 2003; Gruber et 

al., 2002; Keeling et al., 2004; McKinley et al., 2006). For example in the North Atlantic, 

(Gruber et al., 2002) reported that there was significant correlation between the North Atlantic 

Oscillation (NAO) and sDIC (r = -0.67), SST (r = 0.63), and MLD (r =  -0.49) within the 95% 

confidence interval during the winter months (DJFM). However, they did not find significant 

correlations between the NAO and δ13C-DIC variability in the 18-year record. 

In the North Pacific, (Brix et al., 2004) reported that less than 20% of the variability in 

HOT Station ALOHA measurements of sDIC could be attributed to the Pacific Decadal 

Oscillation (PDO), and less than 5% of the observed variability could be attributed to the El Nino 

Southern Oscillation (ENSO). Brix et al., (2004) also did not find significant correlations of 

these climate modes or any of the other time-series variables with HOT δ13C-DIC variability. 

However, more recent studies suggest that there may be broader regional connections between 

the PDO and ENSO (Newman et al., 2016), and it is possible that there may be patterns of 

variability that may be detectable now with ~3 decades of data available that were not present in 

the shorter record. Additionally, signals of tropical salinity anomalies resulting from the 

2015/2016 extreme ENSO event were advected northward as far as Hawaii (Hasson et al., 2018). 

This suggests that it may in fact be possible to detect the influence of certain anomalies from 

ENSO near Hawaii, depending on the strength of the event.  
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Here, we report ~34 year time-series of dissolved inorganic carbon (DIC), alkalinity 

(ALK), and stable carbon isotopes of DIC (δ13C-DIC) in the surface ocean from samples 

collected between 1983 and 2017 in the North Atlantic (Hydrostation ‘S’ and BATS) and 

between 1989 and 2016 in the North Pacific (HOT) analyzed at Scripps. Earlier portions of these 

time-series (through 2002) have been reported in investigations of the carbon cycle in the North 

Atlantic (Keeling, 1993; Marchal et al., 1996; Bacastow et al., 1996; Gruber et al., 1998; Gruber 

and Keeling, 1999; Gruber et al., 2002; Brix et al., 2004) and North Pacific (Winn et al., 1994; 

Karl and Lukas, 1996; Michaels and Knap, 1996; Bates et al., 1996, 1998; Winn et al., 1998; 

Brix et al., 2004; Keeling et al., 2004). The extended records include an additional 14 to 15 years 

of combined DIC, ALK, and δ13C-DIC data not discussed in previous publications. This dataset 

represents the longest time-series of δ13C-DIC available anywhere.  

We describe trends and characteristics observed in the data that are better resolved due to 

the longer records focusing on three primary questions:  

(1)  What are the long-term trends in the time-series records, do they change over time, and 

how do they compare to earlier studies?  

(2) Do we see any long-term changes in the seasonal cycle of δ13C-DIC, sDIC, or pCO2? 

(3) How is interannual variability related to basin-scale drivers of variability, and how do 

these compare with earlier findings? 

3.2 METHODS 

3.2.1 Stations 

The two stations in the North Atlantic are Station S, located ~26 km southeast of the 

island of Bermuda (32°10’N, 64°30’W), and the JGOFS Bermuda Atlantic Time-series Study 

(BATS) site located ~80 km southeast of Bermuda (31°50’N, 64°10’W) (Bates et al., 1996). The 
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third sampling site is the Hawaii Ocean Time-series (HOT) station ALOHA, located ~100 km 

north of the island of ‘Oahu (22°45’N, 158°00’W) (Karl and Lukas, 1996). Figure 1 shows 

mapped locations of each of the time-series stations. 

BATS and Station S show comparable long-term trends and seasonal cycles and have 

been combined in earlier studies into one representative dataset for the region (Gruber et al., 

2002; Brix et al., 2004). The extended record shows similar agreement between Station S and 

BATS; for the remainder of this paper Station S and BATS is treated as one continuous record in 

the North Atlantic subtropical gyre and will be referred to as ‘S-BATS’. In the North Pacific 

subtropical gyre, we refer to HOT Station ALOHA as ‘HOT’.  

3.2.2 Sampling 

Seawater samples are collected approximately monthly at each of the three time-series 

stations following established protocols for gas sampling (DOE, 1994). Sampling depths for 

DIC, ALK, and δ13C-DIC are 10 m for S-BATS and 5 m for HOT. Samples are drawn in 

duplicates for shore-based analyses from Niskin bottles into 580 ml glass reagent bottles and 

poisoned with ~100-200 μl of mercuric chloride solution to prevent biological activity and 

preserve the samples (DOE, 1994). Sample bottles are sealed shut with ground-glass stoppers 

greased with Apiezon L vacuum grease and secured in place to be shipped back to Scripps 

Institution of Oceanography. Once received, sample bottle seals are inspected for leaks then 

stored until analysis. 

3.2.3 Sample Analysis 

DIC measurements are made using a CO2 vacuum extraction technique and manometric 

analysis. Dilute phosphoric acid is added to an aliquot of seawater subsampled from a sample 

bottle to convert all of the DIC to CO2(g). Cryogenic traps are used to isolate the CO2(g), which 
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is then transferred into a constant volume manometer, or sealed into a “break seal” glass tube and 

saved for subsequent manometric analysis (Guenther et al., 2001; Lueker et al., 1998). ALK 

measurements employ an open-cell potentiometric titration method using dilute hydrochloric 

acid (Dickson et al., 2003). Both ALK and salinity measurements on bottle samples are done in 

Prof. Andrew Dickson’s lab. We removed the variations in DIC and ALK attributable to the 

effects of variability in salinity due to precipitation and evaporation by normalizing these data to 

a constant salinity of 35.0 (Bates et al., 1996; Keeling, 1993), and refer to these salinity 

normalized values as sDIC and sALK respectively. The normalization value of 35.0 is used to be 

consistent with the normalization applied to previously published versions of this record (Brix et 

al., 2004; Gruber et al., 2002, 1998; Keeling et al., 2004). 

We use the DIC and ALK along with SST, salinity, and pressure data to calculate the 

CO2 partial pressure in the surface ocean (pCO2). Pressure was determined from sample depth 

for each sample using the MATLAB Gibbs Seawater (GSW) Oceanographic Toolbox 

(McDougall and Barker, 2011, v3.05.5). pCO2 was computed using the CO2SYS MATLAB 

package (Lewis and Wallace, 1998; van Heuven et al., 2011) with the recommended 

formulations (Dickson et al., 2007) of the carbonic acid dissociation constants K1 and K2 from 

(Lueker et al., 2000), KSO4 dissociation constants from (Dickson, 1990), and borate to silicate 

ratio formulation from (Uppström, 1974).  

Measurements of δ13C-DIC in seawater are made after the manometric DIC analysis is 

complete as described above. The CO2 gas is re-sealed into a “break-seal” glass tube, then the 

isotopic composition of the sample is measured on a dual-inlet stable isotope ratio mass 

spectrometer (IRMS). Details on the instruments used and calibration for measurements of δ13C-

DIC are described in Chapter 2. 
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3.2.4 Additional Data Sources 

Sea surface temperature (SST) measurements are made using a calibrated Seabird CTD at 

the time of sampling, this meta data is provided with the corresponding sample bottles from each 

sampling program. CTD profiles for the time-series locations were obtained from the Bermuda 

Institute of Ocean Science (BIOS) S-BATS program (http://bats.bios.edu/data). Mixed Layer 

Depths (MLD) for HOT were obtained from the HOT program (http://hahana.soest.hawaii.edu/ 

hot/hot-dogs/mldepth.html). We computed MLD values for S-BATS from CTD profile data. We 

use a potential density difference of 0.125 kg m-3 between the surface and the base of the mixed 

layer for each of the time-series stations (Levitus, 1982). The MLD data from S-BATS and HOT 

are monthly, typically coinciding with the cruises that the Scripps seawater samples were also 

obtained on. 

Atmospheric monthly data of δ13Catm and CO2-atm were obtained from the Scripps CO2 

Program (Keeling et al., 2001). We use the Cape Kumukahi, Hawaii (KUM; 19.5°N 154.8°W) 

station data (scrippsco2.ucsd.edu/data/atmospheric_co2/kum.html) for comparison with the HOT 

data which is at sea level and in close proximity to HOT. We selected the La Jolla, California 

(LJO; 32.9°N 117.3°W) station data (scrippsco2.ucsd.edu/data/atmospheric_co2/ljo.html) for 

comparison with S-BATS. LJO was selected to be representative of the atmospheric CO2 values 

for S-BATS because they are located at a similar latitude, LJO agrees well with local 

measurements, and LJO provides atmospheric data prior to 1989 (Bates et al., 1998; Conway et 

al., 1994; Lueker et al., 1998).  

To compare with seawater pCO2, we convert the atmospheric volume fraction of dry air, 

CO2-atm (ppm), to the atmospheric partial pressure of CO2 (pCO2-atm(μatm)) adjusting to the 

saturated water vapor pressure using the following approximation: 
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pCO2-atm = xCO2-atm * (pair – pH2O)           (3.1) 

where xCO2-atm is the atmospheric mole fraction, pair is one standard atmosphere (1.01325 bar), 

(Keeling et al., 1989; Lueker et al., 1998), and pH2O is the saturated vapor pressure at the 

observed SSTcomputed using best practices (Dickson et al., 2007). 

We obtained North Atlantic Oscillation (NAO) monthly index data from the National 

Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) Climate 

Prediction Center website for the NAO (https://cpc.ncep.noaa.gov/data/teledoc/nao.shtml). The 

strength of the NAO forcing experienced at S-BATS is typically greatest in the winter months, so 

we use the winter mean value of the NAO index during December, January, February and March 

(DJFM).  

The Pacific Decadal Oscillation (PDO) monthly index is based on the leading principal 

component of the monthly SST anomalies in the Pacific Ocean, north of 20°N (Mantua et al., 

1997). We obtained PDO index standardized data from Joint Institute for the Study of the 

Atmosphere and Ocean (JISAO), University of Washington website (http://research.jisao. 

washington.edu/pdo/).  

We use the NINO3.4 index to represent the El Niño Southern Oscillation (ENSO) climate 

variability which is based on monthly SST anomalies over the Pacific Ocean region within 5°N 

to 5°S and 170°W to 120°W. Monthly NINO3.4 data was obtained from the NOAA National 

Weather Service Climate Prediction Center website (https://www.cpc.ncep.noaa.gov/ 

data/indices).  

The data for the North Pacific Gyre Oscillation (NPGO) – based on the second Empirical 

Orthogonal Function (EOF) of sea surface height variability in the Northeast Pacific (Di Lorenzo 

et al., 2008) – was obtained from Di Lorenzo’s NPGO website (www.o3d.org/npgo).   
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3.2.5 Curve Fitting and Trend Analysis 

The observed variability in the time-series records was divided into three components: 

X = Xseas + Xtrend + Xresid                 (3.2) 

where X is the measured time-series record of a given variable, Xtrend is the long-term trend 

based on a quadratic fit. Xseas represents the seasonal cycle and is calculated using 4-, 6-, and 

12-month harmonics. The quadratic and harmonic fit were obtained in a single computational 

step. Xresid is the residual variability or residual anomalies after Xseas and Xtrend have been 

removed. We obtained the mean seasonal cycle from the 3-harmonic fit of Xseas and computed 

the mean seasonal amplitude for each variable using the difference between the max and min 

values of the mean seasonal cycle. We fit Xresid with a cubic spline (Xspline) to smooth these 

anomalies and emphasize interannual variability. We fit the de-seasonalized data (X - Xseas) 

with a least-squares linear regression fit to obtain the long-term linear trend, along with 95% 

confidence intervals. 

In order to track year-to-year changes in seasonal amplitude, we used a metric derived by 

taking the mean value of the three months centered around the peak and trough of the mean 

seasonal cycle for each variable each year. A difference of these averaged minimum and 

maximum values was then calculated to yield estimate of the amplitude for the seasonal cycle 

each year. We used the mean value of multiple sample bottles to avoid biasing the seasonal 

amplitude due to a single anomalous value. Due to sparse or missing data, we were unable to 

compute an amplitude for all years. As a result of the failure of a sample storage refrigerator at 

SIO, 2006 seasonal amplitude data is not available at S-BATS. Additionally, S-BATS is missing 

seasonal amplitude data for pCO2 from 1983 to 1985 and 2012 as well as for MLD in 1984 due 
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to a lack of either the maximum or minimum months in available samples. At HOT, seasonal 

amplitude values are not available for δ13C-DIC, SST, and pCO2 in 2015.  

We used a jack-knife method to examine whether the timing of the seasonal cycle phase 

has shifted (Graven et al., 2013). This was done by binning the data by decade an carrying out 

the harmonic/quadratic fits for each decade. We repeated this fit for each decade over 1000 

iterations, each time throwing out 30% of the data points selected at random. We then 

determined the time at which the max, min, and zero crossing occurred in each decade and 

evaluated whether these were significantly different from one another within a 95% confidence 

interval. 

To explore the controls and characteristics of the interannual variability, we computed 

correlations between the time-series variables themselves as well as between the time-series data 

and various climate modes of variability. To do this, we computed monthly values of the time-

series data obtained by subsampling Xspline (the cubic spline fit of Xresid) at monthly intervals, 

selecting for the 15th of each month. When evaluating the significance of correlations of time-

series datasets, it is important to account for autocorrelation, or the fact that each datapoint is, to 

some extent, dependent on datapoints before it. We used a random phase test (Ebisuzaki, 1997) 

to determine the statistical significance of correlation coefficients and avoid over-confidence due 

to autocorrelation. This method involves simulating time-series with the same power spectrum as 

the observed time-series. We used 1000 iterations and compute the correlation coefficients of 

these simulated pairs of time-series. We report the likelihood that the correlation is not random 

by calculating the percentage of coefficients from the simulated data that are weaker than those 

from the observations. 
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To minimize the effects of localized variability in our analysis of secular trends and the 

role of SST in observed surface ocean carbon variability, we considered only the data collected 

at times of observed SST minima. These values are obtained by identifying the minimum SST 

value in a given year within the three months nearest the mean seasonal cycle minimum. The 

sDIC and δ13C-DIC corresponding to this SST minimum are then isolated and compared with the 

minimum SST values.  

3.3 RESULTS 

3.3.1 Overall trends   

Figure 3.2 (S-BATS) and Figure 3.3 (HOT) show the time-series data of δ13C-DIC, 

salinity normalized DIC (sDIC), salinity normalized ALK (sALK), and both seawater and 

atmospheric pCO2 along with measurements of SST, salinity, and mixed layer depth (MLD) 

through 2017. This update adds ~15 years of δ13C-DIC relative to previously published data. 

These plots include a solid line fit of combined Xtrend + Xseas + Xspline. 

Figure 3.4 shows deseasonalized data for sDIC, δ13C-DIC, pCO2, and sALK with long-

term trends–determined using a least-squares linear regression fit on the seasonally detrended 

data–reported with 95% confidence intervals in parentheses. We summarize the long-term trends 

in Table 3.1, and include trends calculated over the approximate first and second half of the 

records at each station–centered around the year 2000.  

We see higher trends in sDIC (outside of 95% confidence intervals) at both S-BATS and 

HOT after 2000. At S-BATS, the long-term trend in sDIC is+0.62 μmol kg-1 yr-1 for the time 

period of 1983-2000 and increases to +1.34 μmol kg-1 yr-1 for the subsequent period of 2001-

2017. At HOT, sDIC trend increases from +1.30 μmol kg-1 yr-1 in the 1989-2000 period to +1.72 

μmol kg-1 yr-1 in the 2001-2016 period. The δ13C-DIC trend at S-BATS also accelerates (outside 
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of 95% confidence intervals), changing from -0.0238‰ yr-1 during 1983-2000 to -0.0296‰ yr-1 

during 2001-2017. In contrast, at HOT the δ13C-DIC trend slows (outside of 95% confidence 

intervals) from -0.0274‰ yr-1 for the time period of 1989-2000 to -0.0231‰ yr-1 for 2001-2016. 

The pCO2 trends, along with the remaining time-series variables, have overlapping confidence 

intervals for all time-periods where the trends are computed.  

3.3.2 Seasonal Cycles 

Figure 3.5 and Figure 3.6 show the climatological seasonal cycles of the same datasets 

(computed from X – Xtrend collapsed into a single year) along with a 3-harmonic fit of the mean 

seasonal cycle.  Seasonal peak-to-peak amplitude and timing for maximum and minimum values 

are summarized in Table 3.2. The mean seasonal amplitude for δ13C-DIC is 0.159 ± 0.039‰ and 

0.083 ± 0.051‰ at HOT. The mean seasonal amplitude for sDIC is 25.09 ± 4.8 μmol kg-1 at S-

BATS and 11.74 ± 6.2 μmol kg-1 at HOT. 

Figure 3.8 and Figure 3.9 show the time-series of annually resolved seasonal amplitude 

of sDIC, δ13C-DIC, SST, MLD, and pCO2 computed from the average of three monthly values 

centered around the mean seasonal cycle maximum and minimum for each variable. To assess 

whether there were long-term trends in the amplitude, we fit these points to a linear regression 

model. This yielded trends which were not statistically significant (within the 95% confidence 

interval) for all the variables in Figure 3.8 and Figure 3.9. 

3.3.3 Interannual variability 

Figure 3.10 and Figure 3.11 show the residual anomalies (Xresid = X – Xtrend – Xseas; 

data points) at each station along with a cubic spline (Xspline; solid line) fit to these residuals. 

For both sDIC and δ13C-DIC, the range of interannual variability is close to the magnitude of the 

seasonal amplitude at both S-BATS and HOT. At S-BATS anomalies for sDIC vary around 
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± 6 μmol kg-1 and δ13C-DIC anomalies vary around ± 0.07‰, with a strong negative anomaly at 

the onset of the record of 0.11‰ in 1983. We observe SST anomalies at S-BATS of ± 0.85 °C. 

AT S-BATS, MLD anomalies exist over a wide range of values with winter MLD regularly 

reaching depths of ~125m and varying down to depths of nearly 400m. Salinity variability is 

relatively small (± 0.2) and sALK anomalies vary around ± 0.2 μmol kg-1. 

 At HOT, the residual anomalies for sDIC vary around ± 5 μmol kg-1 except for 

2012/2013 in which the positive anomalies exceed ± 10 μmol kg-1 at HOT; δ13C-DIC anomalies 

reach between ± 0.05‰. We also see positive SST anomalies up to 1 °C in the spline fits and 

negative SST anomalies down to 0.9 °C. The pronounced negative SST anomaly in 2012/2013 

coincides with the largest positive sDIC anomaly, a negative δ13C-DIC anomaly, a positive pCO2 

anomaly, and a positive (deeper) MLD anomaly. Salinity anomalies at HOT have a lower 

frequency and nearly twice the peak-to-peak amplitude of those observed at S-BATS. We see 

systematic shifts in sALK up to 4-5 μmol/kg. MLD anomalies at HOT are also relatively small, 

on the order of ± 20 m.  

Correlation coefficients between Xspline subsampled at monthly intervals for each 

variable along with significance are summarized in Table 3.4. At S-BATS we find significant 

negative correlation between the monthly anomalies of sDIC and SST (r = -0.79), and between 

sDIC and MLD (r = -0.28). We see a positive correlation between δ13C-DIC and SST anomalies 

(r = +0.37), as well as a strong correlation between sDIC and δ13C-DIC (r = -0.59). SST and 

pCO2 also exhibit a positive correlation (r = +0.36). Figure 3.12 shows the relationship between 

observations at S-BATS and the NAO, focusing averages over winter months (DJFM). We find 

significant correlation between the NAODJFM and the following variables: sDICDJFM (r = -0.57), 

SSTDJFM (r = +0.52), and MLDDJFM (r = -0.29). 
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At HOT we find significant correlation between Xspline subsampled at monthly intervals 

of sDIC and the following variables: SST (r = -0.64), MLD (r = -0.52), pCO2 (r = +0.54), and 

sALK (r = +0.49). Figure 3.13 explores the relationship at HOT with the monthly PDO, 

NINO3.4, and NPGO indices. We find significant negative correlation between monthly sDIC 

and the PDO (r = -0.49) and NINO3.4 (r = -0.33). The PDO was also significantly correlated 

with pCO2 (r = -0.27), SST (r = +0.39), and MLD (-0.30); and NINO3.4 was also significantly 

correlated with MLD (r = +0.32). The NPGO was only significantly correlated with MLD (r = 

+0.41). δ13C-DIC does not correlate with any of the remaining time-series variables we looked 

at, including a broad lack of significant correlation with the climate indices we explored. 

3.4 DISCUSSION 

3.4.1 Overall trends   

The long-term trends of increasing sDIC and decreasing δ13C-DIC primarily reflect the 

observed changes in CO2 concentrations and isotopic values in the atmosphere (Bacastow et al., 

1996; Bates, 2001) which are primarily driven by anthropogenic burning of fossil fuels (Le 

Quéré et al., 2018). Burning fossil fuels increases the concentration of CO2 in the atmosphere, 

and this results in a net oceanic uptake over time of anthropogenic CO2 and contributes to the 

observed increase in surface seawater DIC. Additionally, fossil fuel combustion dilutes the 

atmospheric δ13Catm signal (termed the Suess effect), and this signal of decreasing δ13Catm is also 

transferred into the surface ocean via air-sea gas exchange and disequilibrium flux (or direct 

atom-swapping, even in the absence of net uptake of anthropogenic CO2). This combination of 

factors leads to the observed trend of decreasing δ13C-DIC in surface seawater. 

At both S-BATS and HOT the observed trend in sDIC is similar to the previous 

publication of Bates et al. (2014), who used completely independent records. At S-BATS, we 
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find +1.07 μmol kg-1 yr-1 (+1.02, +1.12) between 1983 and 2017 while Bates et al. (2014) report 

1.12 ± 0.04 μmol kg-1 yr-1 from 1983 to 2013. At HOT we find +1.21 μmol kg-1 yr-1 (+1.12, 1.30) 

between 1989 and 2016 while Bates et al. (2014) report +1.05 ± 0.05 μmol kg-1 yr-1 between 

1988 to 2014.  

The observed sDIC trends are quite close to the theoretical trend of +1.06 μmol kg-1 yr-1 

expected assuming the mixed layer is in equilibrium with rising atmospheric CO2. This estimate 

was based on equilibrium carbon system chemistry (CO2SYS, see Methods) using atmospheric 

records from nearby latitudes of La Jolla, CA and Kumukahi, HI and neglects any changes in 

water temperature or alkalinity. This theoretical sDIC trend is the same at both stations.  

The overall trends that we find for δ13C-DIC are also similar to previously published 

estimates for both stations.  At S-BATS we find at trend of -0.0264‰ yr-1 (-0.0268, -0.0260 ‰ 

yr-1) from 1983 to 2017 while Gruber et al. (2002) reported -0.024 ± 0.001‰ yr-1 from 1983 to 

2001. At HOT we find -0.0259 ‰ yr-1 (-0.0265, -0.0252) from 1989 to 2016, while Keeling et al. 

(2004) report -0.027 ± 0.001‰ yr-1 between 1988 to 2002, Quay et al. (2017) report -0.024 ± 

0.001‰ yr-1 between 1988 to 2012. We note that Gruber et al. (2002) and Keeling et al. (2004) 

used shorter records of the time-series in this study, while Quay et al. (2017) used a completely 

independent dataset. 

The observed δ13C-DIC trend is also close but slightly higher than the trend in 

atmospheric δ13C. Although a slower trend in δ13C-DIC might be expected based on the slower 

equilibration rate of carbon isotopes compared to CO2, the trend in δ13C in the water is also 

strongly dependent on the past history of the δ13C atmospheric trend, as discussed in Keeling et 

al (2004). As such, the faster rate of decrease observed in δ13C-DIC relative to δ13Catm appears to 

reflect higher growth rates in atmospheric CO2 in the early 1970s because there is a lag between 
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when the atmosphere reflects that change and when the signal would be transferred to the surface 

ocean δ13C-DIC values.  

One notable feature in our results is the similarity of the δ13C-DIC trends both between 

the two stations and between the two timeframes (1984-2000 and 2001-2017). δ13C-DIC trends 

estimated over these two separate time-frames range from -0.0231‰ yr-1 and -0296‰ yr-1. And 

after nearly three decades, the trends in δ13C-DIC show essentially the same nearly linear 

increase (within 95% confidence intervals) at both S-BATS and HOT stations of -0.0264‰ yr-1 

and -0.0259‰ yr-1 respectively. This similarity between the stations is found despite the different 

cycles of productivity and physical forcing mechanisms found at the two locations. This also 

contrasts with some ocean biogeochemistry model results (Tagliabue and Bopp, 2008) which 

suggest that there are distinct rates of change at each of these locations in the subtropical gyres. 

Using the PISCES-A ocean-ecosystem model with the 13C/12C ratio included in seawater carbon 

pools, Tagliabue and Bopp (2008) report global trends of δ13C-DIC between 1970 and 2000. 

These model results may underestimate these trends in subtropical gyre δ13C-DIC, ranging 

between between -0.016‰ yr-1 and -0.024‰ yr-1. The model also shows spatial variability across 

the gyres and between the North Atlantic and North Pacific. However, our time-series trends 

suggest that the rates of change are higher than these model estimates and are actually fairly 

consistent over time between the North Atlantic and North Pacific subtropical gyres.  

3.4.2 Seasonal Cycle   

The seasonal amplitudes for δ13C-DIC, sDIC, pCO2, SST, and MLD are all larger at S-

BATS relative to HOT. The ~50% amplitude difference in δ13C-DIC, sDIC, and pCO2 between 

S-BATS and HOT can be explained in part by the difference in seasonal SST which in turn 

causes large differences in the maximum winter MLD and pCO2, and varies over a wider range 
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of values at S-BATS. Another significant difference between the two stations is the timing of 

peak NCP and air sea gas exchange (Keeling et al., 2004). At S-BATS, air-sea gas exchange is 

seasonally impacted by the relative values of atmospheric and seawater pCO2. The seawater 

pCO2 near Bermuda is undersaturated (net uptake) in the winter and supersaturated (net 

outgassing) in the summer, while peak NCP occurs in spring and is thus not strongly opposing 

the gas exchange signal. In contrast, at HOT the seasonality in NCP more fully opposes the gas 

exchange component leading to smaller seasonal amplitudes. See further discussion in Sarmiento 

and Gruber (2006).  

Seasonal and interannual variability occur as a result of natural processes that include air-

sea gas exchange, physical water mass transport processes, and photosynthesis and respiration. 

Previous studies at both S-BATS and HOT have shown that sDIC exhibits a regular seasonal 

cycle, with the highest values occurring in late winter or early spring, and the lowest values 

occurring in late summer or early autumn (Bates et al., 1998, 1996; Brix et al., 2004; Gruber et 

al., 1998; Winn et al., 1998). This is in agreement with what we see (Figure 3.5 and Figure 3.6). 

The seasonal cycle for δ13C-DIC is inversely correlated with that of sDIC with the minimum in 

late winter or early spring, and the maximum occurring in late summer or early autumn.  The 

δ13C-DIC seasonal cycle peaks due to photosynthetic fractionation which enriches mixed layer 

δ13C-DIC during spring and summer and reaches a minimum due to vertical entrainment of 

remineralized organic matter, which is depleted in δ13C, from below the mixed layer in the late 

winter (Gruber et al., 1998, 2002; Keeling et al., 2004).   

The seasonal cycle in sDIC is nearly opposite in phase to the seasonal cycle in SST at 

both S-BATS and HOT, due in part to sDIC temperature dependency of air-sea gas exchange as 

well as the impact of MLD and vertical entrainment variability. The maxima and minima in the 
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seasonal cycle of sDIC and δ13C-DIC vary interannually both in magnitude and in seasonal 

timing. This variability results primarily from natural variability of SST from year to year which 

directly impacts how deep the maximum MLD. The MLD in a given year also determines the 

degree of entrainment of nutrients from below the mixed layer and can impact the strength of 

biological productivity in a given year (Gruber et al., 1998, 2002).  

This vertical control of DIC and δ13C-DIC variability is especially dominant at S-BATS 

which shows large SST seasonality and variability, and experiences MLD reaching as deep as 

400 m during especially cold and stormy years. The colder the SSTs, the deeper the mixed layer, 

and the higher the corresponding sDIC observed at the surface due to entrainment of deep, cold 

water with high amounts of remineralized sDIC (Gruber et al., 1998, 2002; Lueker et al., 1998). 

With colder SST, air-sea gas exchange is also enhanced and contributes to increasing sDIC as 

well. In contrast, HOT has been shown to be dominated by lateral advection in the North Pacific 

subtropical gyre with shallow mixed layer depths relative to those in the North Atlantic resulting 

in relatively less vertical mixing (Brix et al., 2004; Dore et al., 2009; Letscher et al., 2016). 

As discussed previously e.g. (Sarmiento and Gruber, 2006) the seasonal cycle in pCO2 at 

both HOT and S-BATS is dominated by the seasonal cycle in temperature which is partially but 

not fully opposed by the variation in DIC.  In Figure 3.7 we illustrate this point using an annual 

climatology formed from the full records at both stations. The thermal component shows what 

we might expect to see in pCO2 from SST changes when DIC is held constant at a mean of 1962 

μmol kg-1 (S-BATS) and 1978 μmol kg-1 (HOT)). The sDIC contribution shows expected pCO2 

changes from DIC when SST is held constant at a mean value of 23.5ºC (BATS) and 24.8ºC 

(HOT). 
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Using a linear regression analysis, we do not find significant trends in the seasonal 

amplitude of any of the variables DIC, (δ13C-DIC, pCO2, SST, and MLD) at either BATS or 

HOT (see Figure 3.8 and Figure 3.9. The lack of an amplitude trend in pCO2 is in contrast to 

several recent studies that report changes in the pCO2 seasonal cycle amplitude (Kwiatkowski 

and Orr, 2018; Landschützer et al., 2018), as well as what we might expect as a consequence of 

increasing DIC in the surface mixed layer and weaker ocean buffering. A potential reason for 

this discrepancy may be that the gridded product in Landschutzer et al (2018) is an average of 

their observation-based interpolation of pCO2 values for the large region contained within 10°N 

to 40°N across the northern ocean basins. It is possible that regional variability is such that these 

trends do not show up in our time-series datasets.  

3.4.3 Interannual Variability   

At S-BATS, our results show a strong correlation between interannual anomalies in δ13C-

DIC and sDIC. This result is consistent with earlier findings showing that forcing from SST and 

MLD fluctuations, and resultant vertical mixing, is the dominant driver of observed variability of 

δ13C-DIC and sDIC on interannual timescales of ~2-10 years (Bates, 2001; Gruber et al., 2002). 

During anomalously cold years, maximum MLD extends deeper and entrains water from below 

the mixed layer that is DIC rich and contains a much more negative δ13C-DIC signal.  During 

anomalously warm years, we observe shallower maximum MLD with lower sDIC and more 

positive δ13C-DIC. As shown in previous studies (Bates, 2001; Gruber et al., 2002; Keller et al., 

2012), we find that the interannual variability in SST, MLD, sDIC and δ13C-DIC at S-BATS is 

significantly correlated with the NAO, which impacts the intensity and frequency of storms near 

Bermuda.   
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At HOT, we find no significant correlation between the interannual anomalies of δ13C-

DIC and sDIC. This suggests that interannual variability in vertical mixing is less important at 

HOT than at S-BATS, as both stations have strong vertical gradients in both variables (higher 

sDIC and lower δ13C-DIC at depth). Previous studies have suggested that horizontal advection 

and/or air-sea gas exchange, along with associated horizontal variations in nutrient supply and 

water mass shifts in the gyre circulation near Hawaii are more important drivers of interannual 

variations in sDIC (Brix et al., 2004; Dore et al., 2009; Letscher et al., 2016).  

At HOT, part of the decoupling of sDIC and δ13C-DIC variability may be attributable to 

the difference in equilibration timescales between these two variables. The equilibration 

timescales are approximately one year for sDIC and roughly ten years for δ13C-DIC (Broecker 

and Peng, 1974; Jones et al., 2014). This is part of why sDIC shows more sensitivity to 

interannual variability in SST, while the δ13C-DIC trend essentially has an inherent ~10-year 

smoothing function applied to it. This also means that, as a result, the δ13C-DIC signal is more 

sensitive to the amount of physical mixing and fractionation due to photosynthesis and 

respiration in the surface mixed layer, and less sensitive to atmospheric control on an interannual 

basis.  

Consistent with Brix et al (2004), we find that sDIC and pCO2 at HOT are both 

significantly correlated with the PDO. With the extended HOT records, we now also find that 

SST and MLD are correlated with the PDO, and we find that sDIC and MLD are significantly 

correlated with NINO3.4. These correlations were not evident with the shorter record. This 

correlation with NINO3.4 supports some recent publications showing connections between the 

NINO3.4 signal and the carbon cycle in the tropical and subtropical North Pacific (Chatterjee et 
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al., 2017).  We also find no significant correlation between any of the measured variables and the 

NPGO except for MLD. 

At HOT, it is interesting that δ13C-DIC interannual variability is not significantly 

correlated with any other variables or climate modes, even while sDIC and MLD are correlated.  

We hypothesize that both sDIC and MLD are both controlled mainly by SST variability, with 

sDIC mostly influenced by air-sea exchange via the temperature-dependence of equilibrium 

chemistry, and MLD influenced by changes in vertical stability but rarely extending deep enough 

to have a dominating influence on carbon. In contrast to sDIC, δ13C-DIC is less controlled by 

SST variability on interannual timescales because of its slower equilibration rate. This 

hypothesis is consistent with relevant timescales. The variability observed in climate modes like 

the PDO and NINO3.4 occur on interannual to decadal timescales, and the distinct equilibration 

timescales for δ13C-DIC and sDIC, as mentioned previously, are on the order of ~10 years and 

~1 year respectively (Broecker and Peng, 1974; Jones et al., 2014). It is therefore understandable 

that δ13C-DIC signal might not respond to the short-term forcing driven by these patterns of 

variability, due to its much longer equilibration timescale even while DIC does respond.  

We suggest that δ13C-DIC variability at HOT is likely connected to horizontal advection 

and biological productivity within the mixed layer as discussed by Brix et al. (2004) but 

evidently via processes that are not strongly connected with the dominant climate modes. It is 

also important to note that recent studies suggest that the PDO is not an independent 

phenomenon, but is instead the sum of relative contributions from fluctuations in the Aleutian 

Low in the North Pacific and El Niño Southern Oscillation (ENSO) in the Tropical Pacific, as 

well as stochastic forcing and gyre circulation variability depending on the timescale (Newman 

et al., 2016). As such, correlation between the PDO and some of these variables at HOT suggests 
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mechanisms driving variability from a variety of sources that impact the subtropical gyre region 

near HOT. Additionally, the location of HOT is on the node of variability for the east-west 

bimodal pattern observed in the PDO (e.g. Chapter 4, see Figure 4.11; Newman et al., 2016, see 

Figure 1(a); and others). This pattern, and thus the location of the node, varies and as a result 

may adjust the drivers of variability that the time-series station at HOT actually experiences or 

result in regime shifts. This ultimately serves to make it difficult to ascribe the overall variability 

signal captured in the data at HOT to any specific source of forcing as discussed by other studies 

(Brix et al., 2004; Kavanaugh et al., 2018; McKinley et al., 2006). This may be especially true 

for some biological signals, which would further explain the lack of correlation between our 

observations and the δ13C-DIC record.  

The HOT time-series record also shows interesting anomalies in recent years, especially 

over the time period that encompasses the North Pacific warm anomalies that were prevalent 

over a large portion of the northeast Pacific between 2013 and 2015 (Bond et al., 2015; Cavole et 

al., 2016). In 2012–the period preceding the warm anomaly–the largest positive sDIC anomalies 

observed in the record coincided with negative SST anomalies along with a short-lived deep 

MLD and a corresponding negative anomaly in δ13C-DIC. This combination of anomalies 

suggests a localized and short-lived mixing event which entrained DIC rich water with low δ13C-

DIC into the mixed layer.  

In late 2013, a transition to a positive PDO occurred, immediately followed by the 

2015/2016 ENSO event. Also, in late 2013, the SST at HOT shifted to a positive anomaly that 

persisted through the beginning of 2016, reflecting the propagation of the North Pacific warm 

anomalies to the region at HOT. Positive pCO2 anomalies in 2013 and 2014 also appear to reflect 

the impact of these North Pacific warm anomalies (Sutton et al., 2017). Our record extends 
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beyond Sutton et al. (2017) which ended in 2014, and also shows notable negative anomalies in 

both sDIC and pCO2 immediately following the warm anomaly during the 2015/2016 ENSO 

period. 

3.4.3 Summary 

 In these time-series records of nearly three decades, we show that the long-term trends in 

sDIC and δ13C-DIC at both S-BATS and HOT are consistent with earlier studies and 

independent time-series records (Bates et al., 2014; Gruber et al., 2002; Keeling et al., 2004; 

Quay et al., 2017). We find that the trend in sDIC at both stations is close to what we expect if 

full equilibration with the atmosphere is assumed. We also observe seasonal cycles of the time-

series variables at both S-BATS and HOT that are consistent with earlier studies (Bates et al., 

1998, 1996; Brix et al., 2004; Gruber et al., 1998; Winn et al., 1998). We examined the seasonal 

cycles over the full record and find that we do not observe any long-term changes in the seasonal 

cycle of sDIC, δ13C-DIC, or pCO2. 

Finally, we explored the interannual variability and relationships between our 

observations and dominant modes of climate variability. We find relationships that are similar to 

earlier studies at both S-BATS and HOT (Bates, 2001, 2012, 2007; Bates et al., 1996; Brix et al., 

2004; Conway et al., 1994; Gruber et al., 2002). For example, at S-BATS we see strong 

correlation between the winter-time NAO and sDIC, SST, and MLD. At HOT, we see correlation 

between the PDO and sDIC and pCO2. With the extended record we now show significant 

correlation between the PDO and SST and MLD at HOT, as well as significant correlation 

between NINO3.4 and sDIC and MLD at HOT, neither of which was not evident with the shorter 

record. 
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This valuable dataset can be used to explore many aspects of the global carbon cycle 

including anthropogenic carbon uptake in the oceans and variations in marine productivity. It 

should also be used to test carbon parameters in ocean global circulation models, several of 

which now include stable isotope biogeochemistry in seawater, and to establish greater 

confidence in carbon budget estimates and climate predictions. 
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Table 3.2: Mean seasonal amplitude and standard deviation for S-BATS and HOT. 

Parameter Units S-BATS 
Amplitude 

Max 
Month 

Min 
Month 

HOT 
Amplitude  

Max 
Month 

Min 
Month 

δ13C-DIC ‰ 0.159 ± 0.039 Oct Mar 0.083 ± 0.051 Oct Feb 
sDIC μmol kg-1 25.09 ± 4.8 Mar Sep 11.7 ± 6.2 Apr Oct 
pCO2 μatm 66.5 ± 8.2  Aug Mar 20.9 ± 6.9  Sep Mar 
SST ºC 7.3 ± 0.7 Aug Mar 2.7 ± 0.5 Sep Mar 
MLD m 110 ± 39 Feb Jun 27 ± 21 Jan Jun 

 
Table 3.3: Correlation* for sDIC, δ13C-DIC, and SST seasonal amplitudes. 

S-BATS Seasonal Amplitude Correlation 
Parameter Units δ13C-DIC sDIC pCO2 SST MLD 
δ13C-DIC ‰ 1 - - - - 
sDIC μmol kg-1 +0.71 1 - - - 
  (97%)     
pCO2 μatm -0.23 -0.10 1 - - 
  (87%) (69%)    
SST ºC +0.54 +0.69 +0.38 1 - 
  (96%) (>99%) (95%)   
MLD m +0.32 +0.41 +0.16 +0.49 1 
  (85%) (96%) (77%) (95%)  

HOT Seasonal Amplitude Correlation 
  δ13C-DIC sDIC pCO2 SST MLD 
δ13C-DIC ‰ 1 - - - - 
sDIC μmol kg-1 +0.73 1 - - - 
  (97%)     
pCO2 μatm -0.64 -0.59 1 - - 
  (>99%) (>99%)    
SST ºC +0.34 +0.53 +0.07 1 - 
  (91%) (96%) (61%)   
MLD m +0.21 +0.26 -0.19 -0.28 1 
  (83%) (88%) (83%) (92%)  

*Values in parentheses give likelihood (in percentage) that correlations are not random, determined 
using an Ebisuzaki (1997) significance test.  
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Table 3.4: Correlation coefficients for interannual variability of residual anomalies*–determined 
from spline fit in Figures 3.10 and 3.11 (subsampled at monthly intervals). NAO correlations use 
mean winter months (DJFM) for each variable; while PDO, NINO3.4, and NPGO correlations 
use monthly data. 

S-BATS Correlation 
 δ13C-DIC sDIC sALK pCO2 SST Sal MLD 
δ13C-DIC 1 - - - - - - 
sDIC -0.59 1 - - - - - 
 (>99%)       
sALK  +0.05 +0.12 1 - - - - 
 (60%) (75%)      
pCO2 -0.18 +0.01 -0.61 1 - - - 
 (88%) (53%) (>99%)     
SST +0.37 -0.79 -0.04 +0.36 1 - - 
 (97%) (>99%) (59%) (>99%)    
Sal +0.11 +0.004 -0.21 +0.14 +0.18 1 - 
 (80%) (47%) (91%) (80%) (90%)   
MLD -0.12 +0.28 +0.04 -0.09 -0.28 +0.10 1 
 (82%) (96%) (62%) (75%) (97%) (70%)  
NAODJFM +0.15 -0.57 +0.20 -0.08 +0.52 -0.09 -0.29 
 (80%) (>99%) (86%) (67%) (97%) (73%) (95%) 

HOT Station ALOHA Correlation 
 δ13C-DIC sDIC sALK pCO2 SST Sal MLD 
δ13C-DIC 1 - - - - - - 
sDIC -0.20 1 - - - - - 
 (86%)       
sALK  -0.02 +0.49 1 - - - - 
 (51%) (95%)      
pCO2 -0.09 +0.54 -0.10 1 - - - 
 (71%) (>99%) (64%)     
SST +0.10 -0.64 -0.21 +0.11 1 - - 
 (70%) (>99%) (87%) (69%)    
Sal +0.27 +0.29 -0.07 +0.37 -0.36 1 - 
 (86%) (85%) (66%) (95%) (96%)   
MLD -0.12 +0.52 +0.13 +0.09 -0.64 +0.29 1 
 (77%) (97%) (72%) (67%) (>99%) (96%)  
PDO +0.15 -0.49 -0.09 -0.27 +0.39 -0.14 -0.30 
 (75%) (>99%) (73%) (97%) (96%) (77%) (97%) 
NINO3.4 +0.17 -0.33 -0.05 -0.22 +0.21 -0.04 -0.32 
 (83%) (96%) (64%) (92%) (84%) (58%) (98%) 
NPGO +0.08 +0.34 -0.01 +0.28 -0.26 +0.29 +0.41 
 (66%) (92%) (54%) (91%) (90%) (85%) (>99%) 
*Values in parentheses give likelihood (in percentage) that correlations are not 
random, determined using an Ebisuzaki (1997) significance test. 
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3.8: FIGURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 3.1: Map of time-series station locations. Station S and BATS are located 26 km and 80 
km southeast of Bermuda in the North Atlantic subtropical gyre respectively. HOT Station 
ALOHA is located ~100 km north of ‘Oahu, Hawaii in the North Pacific subtropical gyre. (Map 
source: SeaWiFS showing satellite chlorophyll data). 
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Figure 3.2: S-BATS (10m) time-series records of sDIC, δ13C-DIC, ALK, pCO2, Salinity, SST, 
and Mixed Layer Depth (MLD). Plots show the time-series data (dark gray filled circles) with 
the fit (solid black line) which consists of a quadratic in combination with 4-, 6-, and 12-month 
harmonics plus a cubic spline function. The middle pCO2 panel includes atmospheric data (solid 
light gray line) from the Scripps CO2 program La Jolla station. The gap evident at Station S and 
BATS between 2005 and 2006 is due to the failure of a sample storage refrigerator at SIO. 
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Figure 3.3: HOT Station ALOHA (5m) time-series records of sDIC, δ13C-DIC, ALK, pCO2, 
Salinity, SST, and Mixed Layer Depth (MLD). Plots show the time-series data (dark gray 
circles) with the fit (solid black line) which consists of a quadratic in combination with 4-, 6-, 
and 12-month harmonics plus a cubic spline function. The middle pCO2 panel includes 
atmospheric data (solid light gray line) from the Scripps CO2 program Kumukahi station. 
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Figure 3.4: Deseasonalized sDIC, δ13C-DIC (purple), δ13Catm (light gray open circles), sALK, 
and seawater pCO2 with least-squares linear regression fit (solid lines for seawater variables, 
dashed line for atmospheric δ13Catm). Linear trends include 95% confidence intervals in 
parentheses. Trends for all variables are summarized in Table 1. 
 

+1.07 μmol kg-1 yr-1 

(+1.02, +1.12) 

-0.0264 ‰ yr-1 

(-0.0268, -0.0260) 
-0.0259‰ yr-1 

(-0.0265, -0.0252) 

+1.21 μmol kg-1 yr-1 

(+1.12, +1.30) 

+0.15 μmol kg-1 yr-1 

(+0.12, +0.18) 
+0.22 μmol kg-1 yr-1 

(+0.16, +0.27) 

+1.88 μatm yr-1 

(+1.79, +1.98) 
+1.99 μatm yr-1 

(+1.85, +2.13) 

-0.0257 ‰ yr-1 

(-0.0263, -0.0251) 
-0.0255‰ yr-1 
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Figure 3.5: S-BATS data collapsed into a single year to show the seasonal cycle. The black line 
represents the BATS + Station S mean seasonal cycle, calculated using 4-, 6-, and 12-month 
harmonics.  
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Figure 3.6: HOT Station ALOHA data collapsed into a single year to show the seasonal cycle. 
The black line represents the BATS + Station S mean seasonal cycle. The mean seasonal cycle 
(solid line) was calculated using 4-, 6-, and 12-month harmonics with the long-term trend 
removed.  
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Figure 3.7: S-BATS (top) and HOT (bottom) mean seasonal cycle of pCO2 (black, solid line) 
with the relative contributions to this seasonal cycle from SST (blue, dashed line) and sDIC (teal, 
dashed line) variations. The thermal component (blue) shows expected pCO2 changes when DIC 
is held constant at a mean of 1962 μmol kg-1 (S-BATS) and 1978 μmol kg-1 (HOT)). The sDIC 
contribution (teal) shows expected pCO2 changes from DIC when SST is held constant at a mean 
value of 23.5ºC (BATS) and 24.8ºC (HOT). 
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Figure 3.8: S-BATS annual seasonal amplitude for the time-series record for sDIC, δ13C-DIC, 
SST, MLD, and pCO2.  
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Figure 3.9: HOT annual seasonal amplitude over the time-series record for sDIC, δ13C-DIC, 
SST, MLD, and pCO2.  
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Figure 3.10: S-BATS residual anomalies, showing interannual variability remaining after 
removing the long-term trend and mean seasonal cycle. 
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Figure 3.11: HOT residual anomalies, showing interannual variability remaining after removing 
the long-term trend and mean seasonal cycle. 
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Figure 3.12: S-BATS Residual winter anomalies of sDIC, δ13C-DIC, SST, and MLD with winter 
months of the NAO index. All values have been averaged over winter months DJFM (following 
Gruber et al. (2002)).  
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Figure 3.13: HOT residual monthly anomalies of sDIC and δ13C-DIC with corresponding plots 
of monthly PDO, NINO3.4, and NPGO indices.  
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CHAPTER 4: UPPER OCEAN CARBON CYCLE VARIABILITY IN 

SUBTROPICAL GYRES 
ABSTRACT 

The ocean plays a critical role in the global carbon cycle, especially as atmospheric 

anthropogenic carbon emissions continue to accumulate. Net community production (NCP), 

defined as net primary production minus community respiration, is a fundamental part of the 

natural carbon cycle variability in the surface ocean. We use established time-series records of 

DIC and δ13C-DIC and compare with a Community Earth System Model (CESM2) hindcast 

simulation which includes stable carbon isotopes in the modeled biogeochemistry. We first use 

the observations to evaluate the model at the time-series sites and then explore basin-scale 

relationships within the model, focusing on interannual variability and spatially coherent patterns 

within the subtropical gyres. The model has relatively low SST bias that is weakly negative to 

neutral across the North Atlantic subtropical gyre (< 0.4 °C) and North Pacific subtropical gyre 

(< 0.5 °C). We find that the model underestimates the interannual variability at S-BATS, 

capturing the variability to various degrees for δ13C-DIC (49%) and sDIC (75%). In contrast, at 

HOT the model overestimates variability in both δ13C-DIC (113%) and sDIC (158%). We 

compare relative changes in sDIC and δ13C-DIC and find that they are well represented in the 

surface ocean near HOT and BATS. We also show that there are coherent patterns of variability 

between modeled δ13C-DIC, sDIC, and NCP at BATS and the surrounding surface ocean 

variability in the North Atlantic subtropical gyre. HOT also exhibits coherent patterns of 

variability between modeled δ13C-DIC, sDIC, and NCP and the surrounding surface ocean 

variability in the North Pacific subtropical gyre, although to a lesser extent. This is in part due 

the location of HOT on the node of the east-west pattern of variability dominant in the North 
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Pacific. We also illustrate that BATS interannual variability in sDIC, NCP, and δ13C-DIC 

appears to be dominated by vertical mixing, while the variability at HOT is most likely 

dominated by water mass shifts and horizontal advection. 

4.1 INTRODUCTION 

The ocean plays a critical role in the global carbon cycle. According to recent estimates, 

approximately 24% of anthropogenic carbon emissions enter the ocean (Le Quéré et al., 2018), 

and it is important to understand the ocean’s role in the carbon cycle and how that may be 

changing over time. There is substantial variability associated with the oceanic carbon cycle, 

including carbon uptake and export from the surface mixed layer (Bates, 2007; Brix et al., 2004; 

Gruber et al., 2002; Quay and Stutsman, 2003). Improving our understanding of the mechanisms 

driving variability in the upper ocean carbon cycle will help us to better understand natural 

variability as well as how ocean carbon uptake and storage may respond to climate change 

forcing (Sabine and Tanhua, 2010). 

Net community production (NCP) is defined as net primary production minus community 

respiration (Williams, 1993) and resulting organic matter can be exported as sinking particles out 

of the surface mixed layer leading to long-term carbon storage in the deep ocean. Subtropical 

gyres encompass ~40% of the Earth’s surface (Karl, 2002, 1999; McClain et al., 2004) and could 

be responsible for as much as 60% of global organic carbon export from the surface ocean (Quay 

and Stutsman, 2003). The North Pacific Subtropical Gyre (NPSG) alone covers ~2x107 km2 

between 15oN and 35oN (Karl, 1999). Subtropical gyres are characterized by anticyclonic 

circulation – convergent surface flow yielding net downwelling, with minimal vertical mixing. 

These are highly stratified, oligotrophic regions where nutrients are often below detectable limits 

in the surface ocean. While the rate of productivity is not as high as it is in other regions of the 
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ocean, the sheer size of the oligotrophic biome makes it a powerful contributor to global integrals 

of productivity.  

NCP directly impacts dissolved inorganic carbon (DIC) concentrations and stable carbon 

isotopes of DIC (δ13C-DIC) through photosynthesis and respiration. During photosynthesis, DIC 

is reduced and isotopic fractionation occurs, in which the lighter carbon isotope is used 

preferentially, and δ13C-DIC is enriched (becomes more positive). In contrast, during respiration, 

DIC increases and as organic material with depleted (more negative) δ13C values is 

remineralized, the δ13C-DIC pool also becomes more negative. In this way, the seasonal cycle of 

DIC and δ13C-DIC are negatively correlated, and a portion of their seasonal and interannual 

signals reflect the forcing of the seasonality and variability of NCP. Because of measurable 

signal of photosynthetic fractionation on the 13C/12C ratio of DIC, δ13C-DIC can be used as a 

tracer to infer NCP. 

Taking advantage of this relationship between NCP, DIC, and δ13C-DIC, NCP has been 

estimated in previous studies which use a box model based on long-term time-series records of 

DIC and δ13C-DIC in the surface mixed layer (Brix et al., 2004; Gruber et al., 2002, 1998; 

Keeling et al., 2004; Quay and Stutsman, 2003). These time-series are obtained from the Hawaii 

Ocean Time-series (HOT) Station ALOHA near Hawaii and the Bermuda Atlantic Time-series 

Study (BATS) and Station S near Bermuda. Time-series observations of DIC and δ13C-DIC as 

well as estimates of NCP show that there is considerable interannual variability in these signals. 

In addition to impacts from photosynthesis and respiration, these records also show sensitivity to 

a combination of the physical forcing controlling air-sea gas exchange, vertical mixing and 

entrainment, as well as horizontal advection–all of which can impact the observed interannual 

variability. 
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Large-scale modes of climate variability (i.e. the North Atlantic Oscillation (NAO), the 

El Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the North 

Pacific Gyre Oscillation (NPGO)) are often associated with spatially coherent patterns of sea 

surface temperature (SST) and wind speed anomalies, as well as changes in trade wind forcing 

and gyre circulation (Di Lorenzo et al., 2008; Hurrell et al., 2003; Karl, 1999; Newman et al., 

2016). These forcing parameters directly impact many biogeochemically relevant processes, 

including air-sea gas exchange, vertical mixing and entrainment, and gyre circulation dynamics. 

The impacts of the forcing associated with these climate indices can be observed at HOT and 

BATS, where there is correlation between dominant modes of climate variability and the 

interannual variability of the carbon cycle (Bates, 2012; Brix et al., 2004; Doddridge and 

Marshall, 2018; Gruber et al., 2002; Kavanaugh et al., 2014; Palter et al., 2005; Sarmiento et al., 

2004). An important question is whether similar links between carbon parameters (e.g. NCP, 

DIC, and δ13C-DIC) and these modes of climate variability are found, not just at these stations, 

but throughout the subtropical gyres. 

The NAO is directly related to shifts in the westerlies and therefore the mean wind speed 

and direction over the North Atlantic. NAO forcing helps to determine the strength of winter 

storms, especially in the western North Atlantic Subtropical Gyre. During periods of negative 

NAO, the region near Bermuda experiences stronger winter storms and wind speeds with 

negative anomalies in SST and a deepening of winter mixed layer depth (MLD). At BATS, these 

negative SST and positive MLD anomalies are well correlated with positive DIC anomalies and 

negative δ13C-DIC anomalies resulting from entrainment of DIC and nutrient rich waters from 

below the mixed layer which are also depleted in δ13C (Gruber et al., 2002; Chapter 3). In 

addition, NCP variability is negatively correlated with the NAO in which positive NCP 
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anomalies are observed during negative periods of the NAO due to the increased nutrient supply 

from this enhanced vertical mixing. These periods of strengthened winter mixing can then 

establish the magnitude of NCP, DIC, and δ13C-DIC values observed in the mixed layer for the 

remainder of the year (Gruber et al., 2002; Lueker et al., 1998). 

Using a box model approach with δ13C-DIC and sDIC measurements from HOT in the 

North Pacific, Brix et al. (2004) show that interannual variability of upper ocean salinity 

normalized DIC (sDIC) at HOT is driven primarily by air-sea gas exchange, NCP variability, and 

lateral transport. However, only weak correlations were found between the time-series records 

and the PDO and ENSO, potentially resulting from the location of HOT which exists in a region 

centered between the east-west bimodal pattern of PDO forcing (Brix et al., 2004; Kavanaugh et 

al., 2018; McKinley et al., 2006; Yasunaka et al., 2014). Circulation shifts and climate patterns 

may adjust where that node is relative to HOT in a given year which plays an important role in 

water mass interactions and subsequent biogeochemical characteristics observed in the time-

series data. This feature of the North Pacific and the HOT location suggests that the interannual 

variability observed here may not be widely representative of the subtropical gyre, and may be 

further complicated by regime shifts depending on whether HOT is further embedded in the 

eastern or western (or neutral) expression of the PDO (Kavanaugh et al., 2018). It also suggests 

that additional drivers of variability dominate NCP and δ13C-DIC variability in the North Pacific 

subtropical gyre. It is also possible that the previously published record lengths were insufficient 

to fully capture the interdecadal climate modes present in the North Pacific, as illustrated by the 

higher correlation observed in the recently updated records (Brooks, Chapter 3). 

Studies at these time-series locations have often extrapolated their estimates out to 

encompass the carbon cycle behavior across the North Atlantic or North Pacific subtropical gyre. 
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However, the station records have not always agreed well with satellite or transect measurements 

over the wider subtropical gyre areas either (Kavanaugh et al., 2018). While highly valuable, 

these time-series records are, understandably, limited both spatially and temporally. An 

important need is to quantify a real footprint of these stations, i.e. the domain over which carbon 

parameters correlate strongly with the variations at the stations themselves. 

The time-series records of δ13C-DIC and DIC at HOT and BATS quantify interannual 

and secular variability in the carbon cycle in the surface waters of the subtropical gyres. δ13C-

DIC provides constraints on NCP not provided by DIC alone (Gruber et al., 1998; Quay and 

Stutsman, 2003). Making use of the time-series records, we are in a unique position to be able to 

understand the impacts of climate variability and change on the upper ocean carbon cycle in 

subtropical gyres. To do this, it is critical to understand how the time-series stations fit into the 

broader geographic and dynamical context of the gyres and ocean basins where they are located. 

Using a Community Earth System Model (CESM) hindcast simulation which includes stable 

carbon isotopes in the modeled biogeochemistry, we use the observations to verify the model at 

the time-series sites and then explore basin-scale relationships within the model.  

 The primary goal of this chapter is to explore the mechanisms that drive carbon cycle 

variability in these oligotrophic regions by addressing the following questions: 

1. What is the spatial structure and magnitude of sDIC, δ13C-DIC, and NCP variability in 

surface waters within the subtropical gyres of the North Pacific and Atlantic? 

2. What are the dominant controls of NCP, δ13C-DIC, and sDIC variability in these gyres?  

3. Over what spatial scales is the interannual variability in sDIC, δ13C-DIC, and NCP at 

HOT and BATS correlated with the variability in surrounding waters? 
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4.2 METHODS 

4.2.1 Model Data - CESM 

We use model output from a CESM hindcast simulation that includes carbon isotopes in 

the modeled biogeochemistry. These runs are forced with CORE interannually varying forcing 

from year 1960 to 2009 with atmospheric CO2 is set to a constant 284.7 ppm, consistent with 

pre-industrial conditions. Using this forcing provides an indication of the expected response of 

the natural carbon cycle to the actual changes in climate that occurred in this time period. The 

impact of rising atmospheric CO2 on ocean carbon chemistry is not included. The horizontal 

resolution is nominally 1°x1° with 60 vertical layers in the ocean. The vertical layers in the 

surface ocean are spaced by 10 m down to 160 m, below which spacing varies and increases to 

250 m by ~3600 m depth, thereafter remaining constant down to the modeled maximum depth of 

5500 m. The model was run for five 62-year forcing cycles, and we analyze the last 50 years of 

these 62-year cycles (1960 to 2009). We focus on the following carbon cycle variables in our 

analysis: NCP, δ13C-DIC, and salinity normalized DIC (sDIC). Within the model, linear trends 

were removed prior to computing correlation coefficients so as to remove model drift. We focus 

on the interannual variability signal from this hindcast simulation. 

4.2.2 Observational Datasets 

 We use interpolated World Ocean Atlas (WOA13 v2) data for temperature (Locarnini et 

al., 2013) and salinity (Zweng et al., 2013) decadally averaged over years 1955 to 2012, and 

annual mean nitrate (Garcia et al., 2013). We use GLODAP v2016b for DIC and ALK gridded 

datasets which includes data between 1972 and 2013 (Lauvset et al., 2016). We use the 

difference between CESM and WOA datasets in the 10 m to 20 m layer to evaluate model bias. 

We also use Scripps Seawater Carbon time-series data from HOT Station ALOHA (1989 to 
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2016) and the Bermuda Atlantic Time-series Study (BATS, 1988 to 2017) and Station S (1983 to 

2017) which include measurements of sDIC, δ13C-DIC, sALK, salinity, temperature, and MLD 

to compare with model output at these locations (see Chapter 3). We compare the gridded 

datasets as well as the time-series records with CESM modeled values across the North Pacific 

and North Atlantic. 

4.2.3 Climate Indices: Sources of Data 

 The North Atlantic Oscillation (NAO) is based on the relative difference in sea level 

pressure between the Icelandic high-pressure system and the Bermuda-Azores low pressure 

system. The NAO is directly related to shifts in the westerlies and therefore the mean wind speed 

and direction over the North Atlantic, which can determine the strength and location of winter 

storms in the North Atlantic. During a negative NAO period, westerlies are shifted northward 

and the strength of winter storms tend to increase near Bermuda in the western North Atlantic. 

We obtained monthly NAO index data from the National Oceanic and Atmospheric 

Administration (NOAA) National Weather Service (NWS) Climate Prediction Center website for 

the NAO (https://cpc.ncep.noaa.gov/data/teledoc/nao.shtml). The strength of the NAO signal is 

typically greatest in the winter months, so we use the winter mean value of the NAO index 

during December, January, February and March (DJFM) similar to previous studies (Gruber et 

al., 2002). 

We consider three monthly datasets of dominant modes of variability in the North Pacific 

which are related to shifts in trade-wind forcing, changes in gyre circulation dynamics, and 

surface ocean properties. These include the Pacific Decadal Oscillation (PDO), the NINO3.4, 

and the North Pacific Gyre Oscillation (NPGO). The PDO monthly index is based on the leading 

principal component of the monthly SST anomalies in the Pacific Ocean, north of 20°N (Mantua 
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et al., 1997). We obtained PDO index standardized monthly data from Joint Institute for the 

University of Washington Joint Institute for the Study of the Atmosphere and Ocean (JISAO) 

website (http://research.jisao.washington.edu/pdo/). We use the NINO3.4 index to represent the 

El Niño Southern Oscillation (ENSO) climate variability which is based on monthly SST 

anomalies over the Pacific Ocean region within 5°N to 5°S and 170°W to 120°W. Monthly 

NINO3.4 data were obtained from the NOAA National Weather Service Climate Prediction 

Center (https://www.cpc.ncep.noaa.gov/data/indices).Monthly data for the NPGO – based on the 

second EOF of sea surface height (SSH) variability in the Northeast Pacific (Di Lorenzo et al., 

2008) – were obtained from Di Lorenzo’s NPGO website (www.o3d.org/npgo). 

4.2.4 Data Analysis 

 HOT is located at 22° 45’N, 159° 00’W and BATS is located at 31° 50’N, 64° 10’W. To 

compare model output with time-series data from HOT and BATS, we isolate a ~1 degree grid 

cell located near the latitude and longitude of these stations. We compute the long-term 

climatological mean at each grid cell over the 50 year period between 1960 and 2009. For sDIC 

and δ13C-DIC surface values, we use the second layer in the model (10 m to 20 m) to most 

closely correspond to the sampling depths in the mixed layer for the time-series data at HOT and 

BATS which ranges from 5 to 25 m. We remove the effects of precipitation and evaporation on 

DIC values by normalizing to salinity = 35, expressed as salinity normalized DIC (sDIC).  

 To examine interannual variability we compute annual mean values for each of the time-

series records. These annual mean values are used to compare between the time-series records 

and model output annual mean values. We also use correlation to explore the relationships 

between the observed and modeled variability, between the modeled variables, as well as 

between the model and dominant climate modes of variability in the North Atlantic and North 
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Pacific. For time-series correlations, we use a significance test based on the Ebisuzaki method 

(Ebisuzaki, 1997) to avoid overconfidence due to autocorrelation. This method assesses 

statistical significance in the presence of autocorrelation by using an ensemble of (synthetic) 

time-series with the same power spectrum (and hence the same autocorrelation) as the observed 

or modeled CESM time-series. We use 1000 iterations and report the likelihood that the 

correlation is not random by determining the percentage of synthetically derived correlations that 

are weaker than the correlation from the observed or CESM dataset. 

4.3 RESULTS 

4.3.1 Comparisons with World Ocean Atlas and Time-series Observations 

We compare observational surface seawater data from CESM model output and WOA 

gridded physical variables and nutrients (temperature, salinity, nitrate) to evaluate model bias on 

broader basin scales (Figure 4.1). In the North Pacific Subtropical Gyre, we find a negative bias 

in temperature (< 0.5 °C) and salinity (< 0.5 g kg-1) near Hawaii. Across the subtropical gyre 

region there is slight negative to zero bias in NO3 (< 1 μmol L-1). In the North Atlantic 

Subtropical Gyre, we find with a weak negative to neutral bias in temperature, and weak positive 

bias in salinity near Bermuda. There is a positive bias in temperature (< 0.4 °C) and negative bias 

in salinity (< 1 g kg-1) in the southern region of the subtropical gyre. Near and just north of 

BATS, there is a negative bias in NO3 (up to 2 μmol L-1), with little to no bias across the 

southern portion of the gyre. 

We also compare interannual variability of the annual mean values from observed time-

series data and CESM output from HOT and BATS time-series locations (shown in Figure 4.2). 

Most notably we see that the model annual mean variability for δ13C-DIC, sDIC, temperature, 

and salinity at BATS is underestimated, capturing 49% (δ13C-DIC), 75% (sDIC), 48% 
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(temperature), and 71% (salinity) of the time-series record observed variability for these 

variables.  

At HOT, the magnitude of δ13C-DIC and sDIC variability are overestimated, with the 

model capturing 113% (δ13C-DIC) and 158% (sDIC) of the observed variability. CESM captures 

92% of the observed temperature variability at HOT, which is the best represented of the 

variables we consider and likely reflects effective CORE forcing within the model. Lastly, we 

find that salinity variability is somewhat underestimated, with the model capturing 77% of the 

observed variability. We summarize the standard deviation in the interannual variability of both 

the time-series observations and CESM variables at HOT and BATS in Table 4.1.  

In addition to looking at how the magnitude of variability compares between the model 

and observations at the time-series locations, we also evaluate how well they correlate with each 

other. At BATS we found that correlations between modeled and observed δ13C-DIC, sDIC, and 

salinity were significant, but temperature correlation at BATS was weak and insignificant. At 

HOT, modeled annual mean temperature correlates well (r = +0.86) with the observations, but 

the correlations between modeled and observed δ13C-DIC, sDIC, and salinity are weak and 

insignificant. The correlation coefficients between the observations and modeled variability are 

summarized in Table 4.2.  

Overall, within the subtropics, we find that the modeled fields experience relatively low 

biases for temperature, salinity, and nitrate when compared to WOA gridded data. While there 

may be larger biases present at higher latitudes, these regions are outside of the focus of this 

study. Broadly speaking, the CESM data provides internally consistent relationships between the 

variables of interest, even if the magnitude of the signals do not precisely align with the 

observations. 
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4.3.2 Interannual Variability at HOT and BATS and Broader Spatial Variability 

 We show that there is interannual variability in δ13C-DIC, sDIC, NCP, temperature, and 

salinity within CESM time-series output at HOT and BATS (Figure 4.2). Comparisons between 

the two stations show that the sDIC variability is more than twice as large at HOT compared to 

BATS, and δ13C-DIC variability is also somewhat greater at HOT. In contrast, NCP variability at 

BATS is greater than the variability in NCP at HOT.  

 The CESM modeled fields allow us to extend our analysis to the scale of the subtropical 

gyres across the ocean basins and examine broader spatial variability as well. Figure 4.3 shows 

maps of the long-term climatological mean fields and standard deviations for sDIC and δ13C-DIC 

in the North Pacific and North Atlantic between 1960 and 2009. In the subtropical gyre regions 

of the North Pacific and North Atlantic, long-term climatological mean values of sDIC are 

approximately 1940 to 2025 μmol kg-1 with variability between approximately 5 and 

10 μmol kg–1. The long-term climatological mean values of δ13C-DIC are approximately +1.9 to 

+2.4 ‰ with variability between 0.01 and 0.03 ‰. Figure 4.4 shows maps of the long-term 

climatological mean NCP field between 1960 and 2009. The mean NCP value is approximately 

0.5 to 3 mol C m-2 yr-1 with variability between 0.2 to 2 mol C m-2 yr-1. Similarly, Figure 4.5 

shows modeled long-term climatological mean and variability of temperature and salinity fields 

in the North Pacific and North Atlantic.  

The long-term climatological mean spatial variability and standard deviation within the 

mapped regions (see Figure 4.3, Figure 4.4, and Figure 4.5) show distinct spatial patterns 

between the North Atlantic and North Pacific subtropical gyres. In the North Atlantic, δ13C-DIC 

exhibits a north-south gradient with higher values to the south and east, lower values to the north, 

with a minimum centered in the northwest at 40oN before increasing significantly in the subpolar 
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region. sDIC shows a steep and consistent north-south gradient, with higher values to the north 

and lower values to the south. The annual mean standard deviation is relatively constant 

throughout the subtropical gyre, with significantly greater variability observed at the western 

boundary current and northern boundary of the subtropical gyre for both sDIC and δ13C-DIC. 

In the North Pacific, δ13C-DIC exhibits a more prominent east-west gradient with higher 

values to the east and lower values to the west, with a minimum along the Kuroshio. δ13C-DIC 

also increases to the north outside of the subtropical gyre region. sDIC shows a steep and 

consistent north-south gradient, with a slightly weaker but also consistent east-west gradient. The 

lowest sDIC values are found in the southwest region of the subtropical gyre. Here in the North 

Pacific, the annual mean standard deviation is relatively small consistent through the subtropical 

gyre for δ13C-DIC, and shows more variability in sDIC throughout the subtropical gyre, with 

significantly greater variability observed at the Kuroshio and Kuroshio extension along the 

northern boundary of the subtropical gyre for both sDIC and δ13C-DIC in the North Pacific. 

In the North Atlantic, NCP shows minimum values in the southwest corner of the 

subtropical gyre, with increasing values to the north and east. In the North Pacific, NCP has a 

wedge-like shape with the broader edge and minimum values along the east around 24oN. This 

wedge narrows into the western North Pacific along a weak positive gradient. NCP increase both 

to the north and south with high NCP evident along the Kuroshio and Kuroshio extension. There 

is moderate variability in the annual mean standard deviation for NCP in both the North Atlantic 

and North Pacific subtropical gyres, with greater variability observed along the western 

boundary currents in both regions. 

In both the North Pacific and North Atlantic, SST values show a consistent north-south 

gradient with colder water to the north, and warmer water to the south. The SST annual mean 
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standard deviation in the North Atlantic varies somewhat less than the North Pacific, and in both 

cases the highest variability is observed along the western boundary currents and northern 

boundaries of the subtropical gyres. In the North Atlantic, salinity decreases somewhat to the 

north and increases to the south with a maximum along 24oN toward the southeast region of the 

subtropics. In the North Pacific, salinity patterns in the are centered around an oval shaped 

maximum oriented with the approximate center of the subtropical gyre and centered around 24oN 

with negative gradients radiating outward in all directions. The annual mean standard deviation 

for salinity is quite small for salinity in both regions. 

The locations of the BATS and HOT time-series stations result in different gradients and 

patterns relative to each of these variables. BATS is located such that the gradient in δ13C-DIC 

and salinity decrease to the north, and increases to the south while sDIC, NCP, and SST all 

increase to the north and decreases to the south. At BATS, the lateral gradients are all relatively 

weak. HOT is located such that there are both lateral and longitudinal gradients in δ13C-DIC, 

sDIC, salinity, and to a lesser extent, NCP. At HOT, δ13C-DIC decreases to the northwest and 

increases to the east and north, while sDIC increases sharply to the north and east with a more 

gradual decrease to the west. NCP at HOT increases to the north and south and decreases to the 

east, and salinity decreases in all directions, although to a somewhat lesser extent east and west. 

At both HOT and BATS, the SST gradient is positive to the north. 

To explore spatial correlation scales, we compared the variability at BATS and HOT to 

the surrounding regions for each station. We find strong correlation throughout the North 

Atlantic Subtropical Gyre between the variability at BATS and surrounding area for sDIC, δ13C-

DIC, NCP, temperature (Figures 4.6, 4.7 4.8, and 4.10). In the North Pacific we see that HOT is 
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correlated with nearby surface water variability, along the dominant path of circulation in this 

portion of the subtropical gyre for sDIC, δ13C-DIC, and NCP to varying extents.  

4.3.3 Time-series Station Spatial Scales of Correlation 

We evaluate the spatial scales over which the interannual variability in sDIC, δ13C-DIC, 

and NCP along with other oceanographic variables at HOT and BATS are correlated with the 

variability in surrounding waters within the model. To do this, the modeled interannual 

variability at HOT and BATS were correlated within the North Pacific and North Atlantic 

respectively. These correlations between HOT and BATS sDIC and δ13C-DIC with surrounding 

waters are mapped in Figure 4.6 and Figure 4.7. NCP correlation maps between the time-series 

sites and surrounding region are shown in Figure 4.8. We further explore the relationship 

between δ13C-DIC and NCP, Figure 4.9 which shows the strong correlation between the δ13C-

DIC and NCP interannual variability at each grid cell location. Figure 4.10 shows correlation 

between the time-series sites and surrounding region for area surface temperature fields. 

4.3.4 Correlation with Climate Indices 

To explore mechanisms driving interannual variability, we compute the correlation 

between CESM variables and dominant modes of climate variability. We summarize these 

correlations and their significance in Table 4.3. We also show correlation maps with climate 

mode indices regressed onto each grid cell of the variables of interest. Figure 4.11 shows the 

mapped correlation between the NAO and North Atlantic values of sDIC, δ13C-DIC, 

temperature, and NCP. These maps show relatively broad areas of significant NAO correlation 

with sDIC (negative) and δ13C-DIC (positive) centered around the gyre near BATS. The NAO 

correlation with temperature and NCP is patchy within the subtropical gyre.  
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Figure 4.12 shows the mapped correlation between the PDO and sDIC, δ13C-DIC, 

temperature, and NCP at each grid cell. The correlation with the PDO consistently places HOT 

in a node between regions of significant positive and negative correlations in the North Pacific 

basin. Figure 4.13 and Figure 4.14 show maps of the NPGO and ENSO3.4 correlated 

respectively with sDIC, δ13C-DIC, temperature, and NCP. These figures show some correlation 

with ENSO3.4 and NPGO, however the significance of these correlations disappears near HOT 

and illustrates further its position on the node of North Pacific variability patterns, not just of the 

PDO, but also of NPGO and ENSO3.4. 

4.4 DISCUSSION 

4.4.1 Structure of sDIC, δ13C-DIC, and NCP variability in the North Pacific and North 

Atlantic subtropical gyres 

The homogenous variability that we see in the North Atlantic Subtropical Gyre supports 

the idea that interannual variability at BATS is spatially coherent with the broader subtropical 

gyre region in the North Atlantic e.g. (Bates, 2007; Gruber et al., 2002). In contrast, the North 

Pacific subtropical gyre encompasses a much larger region and the two dominant patterns of 

variability observed here (especially in sDIC and SST) are divided roughly into the east and west 

Pacific (Karl, 1999; Kavanaugh et al., 2018; Yasunaka et al., 2014). As a result, the spatial 

correlation scale at HOT does not encompass the full extent of the gyre, but instead a subset of 

this region. It is important to note that these spatial correlation assessments only capture the 

region over which there is instantaneous correlation of variability, or decorrelation length scales 

of the time-series locations. This does not include a full assessment of the lag correlations or 

temporal influence of potential up stream forcing, which may yield longer scales of correlation. 
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4.4.2 Controls on sDIC, δ13C-DIC, and NCP variability at HOT and BATS 

The model results indicate a strong role for variability in SST in driving variability in 

sDIC at both stations. This is supported by the significant negative correlation between SST and 

sDIC interannual variability at BATS (r = -0.83) and HOT (r = -0.56) (see Table 4.3). At BATS, 

this correlation appears to be strongly connected to SST anomalies in combination with the role 

of MLD which can reach down to 400 m (Chapter 3). However, HOT does not exhibit the same 

relationship with MLD. MLD at HOT is typically much shallower relative to BATS, reaching 

depths of ~125m at most (Chapter 3).  

Figure 4.15 shows property-property plots of sDIC and δ13C-DIC for the mean seasonal 

cycle, interannual variability (annual mean), and vertical profiles down to 200m, and provides 

valuable information about what processes may influence variability on different timescales 

(seasonal and interannual) as well as how sDIC and δ13C-DIC vary along the vertical gradient. 

Observations are shown in black and CESM output is shown in teal.  Of interest is the slope of 

these property-property plots. Figure 4.15 shows that the modeled slopes for both annual mean 

variability and seasonal cycle agree well with the observed slopes for both stations (HOT and 

BATS). This agreement suggests that the CESM model may correctly identify the dominant 

processes responsible for variability in sDIC and δ13C-DIC on different timescales, even while 

the model struggles to correctly represent the magnitude of the variability.   

At BATS, the changes in sDIC and δ13C-DIC on seasonal and interannual timescales 

appear to occur more or less along the same slope. In addition, these slopes correspond well to 

the vertical profile gradients in sDIC and δ13C-DIC.The similarity of the relative gradients in the 

vertical profiles of sDIC and δ13C-DIC in the North Atlantic helps to illustrate that vertical 

mixing is a strong driver on interannual (as well as seasonal) timescales, confirming what 
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previous studies have shown for this region e.g. (Bates, 2012; Bates et al., 1996; Gruber et al., 

2002; Keller et al., 2012). The strength of vertical mixing is typically strongest in the winter 

months, dependent on temperature and the strength of winter storms which drive large variation 

in mixed layer depth and vertical entrainment. As previous studies have shown, this variability is 

correlated with the NAO (e.g. Chapter 3; Bates et al., 2012; Gruber et al., 2002) and we also see 

correlation between the NAO and δ13C-DIC (r = +0.51), sDIC (-0.39), and SST (+0.28) at BATS 

(Table 4.3). The exception is that NCP does not appear to correlate significantly with the NAO 

here, but NCP is correlated with the other variables which do appear to be influenced by the 

NAO.    

At HOT, the seasonal cycles and interannual variability in sDIC and δ13C-DIC have 

slopes which are both distinct from the vertical slope and each other, suggesting different 

processes are responsible for variability on different timescales. This is consistent with earlier 

studies which have also indicated that the vertical gradients in sDIC and δ13C-DIC are not the 

main driver for the seasonal cycle or interannual variability in the North Pacific where there are 

other dominant controls such as horizontal advection and strong precipitation and evaporation 

signals etc. (Brix et al., 2004; Dore et al., 2003; Letscher et al., 2016). To help understand this 

complexity, we show a scatter plot of sDIC and δ13C-DIC formed along lateral transects in the 

location of HOT (Figure 4.16). The East-West transect shows a similar slope in the sDIC vs 

δ13C-DIC gradients that resembles what we see on interannual timescales, suggesting that shifts 

in horizontal advection from the east could explain some of the interannual variability.  

Part of the difference in variability drivers at HOT is also likely connected to a roughly 

bimodal east-west pattern of variability observed in the North Pacific, linked to dominant modes 

of climate variability in the region (Brix et al., 2004; Kavanaugh et al., 2018; McKinley et al., 
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2006; Yasunaka et al., 2014). This bimodal pattern is especially apparent in SST, and includes a 

node or transition point between the east-west regions. The location of HOT near the node of 

east-west variability in the North Pacific (Karl, 1999; Brix et al, 2004; Kavanaugh et al., 2018; 

Yasunaka et al., 2014) yields interannual variability that is not dominantly linked to a single 

source of variability, but instead is susceptible to regime shifts. However, when correlating 

climate indices at each grid cell across the North Pacific (for example with the PDO, Figure 

4.12) we see that there is broad spatial coherence and significant correlation on either side of that 

bimodal pattern, supporting the idea of two dominant regions of variability in the North Pacific 

subtropical gyre (Karl, 1999). This suggests that the drivers of variability in the rest of the gyre 

region are likely more strongly tied to the dominant modes of climate variability than some of 

the observations at HOT show, consistent with what previous studies have shown or 

hypothesized (Brix et al., 2004; Kavanaugh et al., 2018). 

 The significant correlation between sDIC at HOT and sDIC in the surrounding surface 

waters shows up in a similar bimodal pattern (Figure 4.6) that closely resembles what we see in 

the corresponding SST correlation in the North Pacific (Figure 4.10). This is likely due to the 

influence of solubility temperature dependency and the ~1year equilibration timescale of sDIC 

(Broecker and Peng, 1974; Jones et al., 2014). This bimodal pattern in SST is also correlated 

with the PDO, as illustrated by the correlation pattern of these two variables in Figure 4.12. 

However, we do not expect SST to exert the same control over δ13C-DIC variability 

because of the difference in equilibrium timescales, which for δ13C-DIC is an order of magnitude 

greater at roughly 10 years (Broecker and Peng, 1974). As such, the dominant forcing for δ13C-

DIC variability on interannual timescales are instead focused within the surface ocean (biological 

forcing/NCP and horizontal advection), or, to a smaller extent in the NPSG, entrainment of 
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waters from below the mixed layer (vertical mixing). Indeed, we see that the correlation between 

δ13C-DIC at HOT and the surrounding surface waters (Figure 4.7) shows up in a pattern that 

more closely resembles the pattern we see in the correlation between NCP annual mean values at 

HOT and the surrounding NPSG (Figure 4.8). This relationship helps to illustrate the strong 

connection between the influence of photosynthetic fractionation on the variability in δ13C-DIC 

in surface seawater. This is further bolstered by how well δ13C-DIC and NCP correlate at each 

grid cell location (Figure 4.9).  

As mentioned above and shown in Figure 4.12-4.14, CESM places HOT near the nodes 

of the bimodal variability for all three indices PDO, NPGO, and NINO3.4.  The exact position of 

the modeled nodes, which are typically oriented along a roughly northeast/southwest axis near 

HOT, depends both on the indices (PDO, NPGO, NINO3.4) and the variables (e.g. δ13C-DIC, 

sDIC, and SST).   

For the PDO, CESM places HOT on the southeast side of the node for all three variables 

δ13C-DIC, sDIC, and SST), and the sign of the modeled correlation for all three variables (δ13C-

DIC (positive), sDIC (negative), and SST (positive)) (see Table 4.3) agrees with observations 

(Chapter 3, Table 3.4). Assuming CESM correctly simulates the general pattern of PDO 

variability, this suggests that, in the real ocean, HOT is also located on the southeast side of the 

PDO pattern and that the model has correctly simulated this detail.   

For the NPGO, CESM places HOT on the southeast side of the modeled node in sDIC 

and SST, but on the northwest side of the node in δ13C-DIC.  The sign of the modeled correlation 

((δ13C-DIC (positive), sDIC (positive), and SST (negative), again agrees with the observations 

(Chapter 3, Table 3.4), suggesting that CESM has also correctly positioned the NPGO nodes in 

relation to HOT.  
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For NINO3.4, CESM places HOT on the southeast side of the modeled node in sDIC and 

on the northwest side of the modeled nodes in δ13C-DIC and SST.  In this case, while the model 

correctly represents the sign of the correlations with sDIC (negative), it misrepresents the sign of 

the observed correlations for δ13C-DIC (positive) and SST (positive). This suggest that, in the 

real ocean, HOT is located on the southeast side of the nodes for NINO3.4 for all three variables 

(sDIC, δ13C-DIC, SST), but that this detail is correctly captured in the model only for sDIC but 

not for δ13C-DIC and SST.   

These results show that, in the real ocean, HOT appears to be almost always located on 

the southeast side of the node for these dominant patterns of variability, the only exception being 

to the northwest side for the δ13C-DIC versus NPGO correlation.  This difference in δ13C-DIC 

placement for the NPGO appears to follow the modeled pattern of NCP, which is also on the 

northwest side of the node and likely reflects the strong relationship between NCP and δ13C-DIC 

variability within the surface ocean. These features are correctly captured in CESM for the PDO 

and NPGO, but not for NINO3.4. 

4.4.2 Summary 

In this chapter we showed that CESM modeled interannual variability in sDIC and δ13C-

DIC are relatively well captured at BATS, although variability is somewhat underestimated in 

the model. The variability at HOT in sDIC and δ13C-DIC does not agree as well with observed 

variability. However, we also showed that the relationship between sDIC and δ13C-DIC is fairly 

well represented on both seasonal and interannual timescales, suggesting that the dominant 

processes driving this variability in sDIC and δ13C-DIC are likely well represented within the 

model, even while the timing and magnitude of variability isn’t consistent between the model 

and observations. 
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 We show evidence supporting the dominance of vertical processes in driving variability 

in carbon cycle at BATS on both seasonal and interannual timescales, and also show coherent 

patterns of variability across the North Atlantic Subtropical Gyre that are well correlated with the 

NAO. In contrast, at HOT we show that interannual variability is not dominated by vertical 

mixing, and instead likely driven by horizontal advection and/or gyre circulation shifts, with 

correlation patterns representing a subset of the broader North Pacific Subtropical Gyre. The 

observations indicate that HOT is situated slightly to the southeast of the node of variability in 

the North Pacific, and the model attribution of this station placement is in rough agreement. Our 

findings also support earlier publications that suggest that the HOT location may obscure 

patterns of variability due to proximity to the node of the east-west bimodal pattern of variability 

linked to the PDO and other dominant modes of climate variability in the North Pacific. 
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4.7: TABLES 

Table 4.1: Standard deviation of annual mean variability, comparison between 
observations (Obs) and modeled data (CESM) at HOT and S-BATS locations. 
Parameter HOT Obs HOT CESM S-BATS Obs S-BATS CESM 

δ13C-DIC (‰) ±0.0166 ±0.0187 ±0.0277 ±0.0136 

sDIC (μmol kg-1) ±3.57 ±5.63 ±3.10 ±2.34 

NCP* (mol m-2 yr-1) NaN ±0.14 NaN ±0.39 
Temp (°C) ±0.36 ±0.33 ±0.50 ±0.24 

Salinity (psu) ±0.13 ±0.07 ±0.07 ±0.05 
MLD** (m) ±7.3 NaN ±9.7 NaN 

*NCP estimates not available from time-series observations.  
 
Table 4.2: Correlation coefficients between time-series observations and CESM interannual 
variability data at HOT and BATS. Statistically significant* correlations above a 95% 
confidence limit are shown in bold. 

Parameter 

HOT  
CESM vs Obs 

Correlation 

S-BATS 
CESM vs Obs 

Correlation 
δ13C-DIC (‰) +0.07 

(60.1%) 
+0.57 

(93.6%) 
sDIC (μmol kg-1) +0.28 

(74.8%) 
+0.53 

(96.7%) 

Temp (°C) +0.86 
(96.9%) 

+0.46 
(94.3%) 

Salinity (psu) +0.24 
(79.3%) 

+0.68 
(96.9%) 

*Values in parentheses give likelihood (in percentage) that 
correlations are not random determined using the Ebisuzaki 
(1997) significance test.  
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Table 4.3: Correlation coefficients of CESM interannual variability data at HOT and BATS 
locations. Statistically significant* correlations above a 95% confidence limit are shown in 
bold. 

S-BATS Correlation 

 δ13C-DIC sDIC NCP Temp NAODJFM   

δ13C-DIC 1 - - - -   

sDIC -0.71 
(>99.9%) 1 - - -   

NCP +0.35 
(95.5%) 

-0.56 
(>99.9%) 1 - -   

Temp +0.67 
(>99.9%) 

-0.83 
(>99.9%) 

+0.53 
(96.9%) 1 -   

NAODJFM 
+0.51 

(96.9%) 
-0.39 

(>99.9%) 
+0.21 

(90.8%) 
+0.28 

(95.1%) 1   

HOT Station ALOHA Correlation 

  δ13C-DIC sDIC NCP Temp PDO NINO3.4 NPGO 

δ13C-DIC 1 - - - - - - 

sDIC +0.70 
(96.7%) 1 - - - - - 

NCP +0.30 
(89.1%) 

+0.35 
(88.5%) 1 - - - - 

Temp -0.02 
(53.3%) 

-0.56 
(>99.9%) 

-0.05 
(61.1%) 1 - - - 

PDO +0.31 
(88.3%) 

-0.19 
(89.6%) 

-0.01 
(56.3%) 

+0.31 
(99.2%) 1 - - 

NINO3.4 -0.08 
(68.4%) 

-0.11 
(74.2%) 

-0.21 
(85.7%) 

-0.14 
(52.0%) - 1 - 

NPGO +0.27 
(80.5%) 

+0.50 
(93.4%) 

+0.35 
(91.6%)  

-0.25 
(86.3%)   - - 1  

*Values in parentheses give likelihood (in percentage) that correlations are not random–
determined using the Ebisuzaki (1997) significance test. 
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4.8: FIGURES 

 

 

 

Figure 4.1: CESM bias of temperature (°C), salinity, and nitrate (μmol kg-1) at 20 m compared 
with WOA gridded datasets. Mapped values show the difference between the long-term 
climatological average of CESM between 1960 and 2009 and the decadal average of WOA 
(1955-2012).  
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Figure 4.2: Observed (black) and CESM (colors) annually averaged with mean values removed 
leaving interannual variability for sDIC, δ13C-DIC, NCP, SST, and salinity at HOT (left) and 
BATS (right). NCP time-series shows only modeled values. 
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Figure 4.3: δ13C-DIC (‰, top two rows) and sDIC (μmol kg-1, bottom two rows) long-term 
climatological average and standard deviation between 1960 and 2009 in the North Pacific (left) 
and North Atlantic (right). 

δ13C-DIC climatological mean (1960-2009) δ13C-DIC climatological mean (1960-2009) 

sDIC climatological mean (1960-2009) sDIC climatological mean (1960-2009) 
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Figure 4.4: NCP (mol C m-2 yr-1) long-term climatological mean between 1960 and 2009 (top) 
and standard deviation (bottom) in the North Pacific (left) and North Atlantic (right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NCP climatological mean (1960-2009) NCP climatological mean (1960-2009) 
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Figure 4.5: Long-term climatological mean and standard deviation between 1960 and 2009 for 
temperature (°C, top two rows) and salinity (bottom two rows) in the North Pacific (left) and 
North Atlantic (right).  

SST climatological mean (1960-2009) SST climatological mean (1960-2009) 

Salinity climatological mean (1960-2009) Salinity climatological mean (1960-2009) 
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Figure 4.6: Correlation between CESM sDIC at HOT and BATS with the surrounding region. 
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Figure 4.7: Correlation between CESM δ13C-DIC bottom panels at HOT (left) and BATS (right) 
with the surrounding region. 
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Figure 4.8: Correlation between NCP at HOT (left) and BATS (right) with the surrounding 
region. 
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Figure 4.9: Correlation between δ13C-DIC and NCP at each grid cell.  
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Figure 4.10: Correlation between SST at HOT (left) and BATS (right) with the surrounding 
region. 
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Figure 4.11: Correlation coefficients between the NAO index and sDIC, δ13C-DIC, SST, and 
NCP are shown in red/blue maps. Areas of significant correlation (above the 95th percentile 
threshold) are shown in teal/blue maps below their respective correlation coefficient maps. 
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Figure 4.12: Correlation coefficients between the PDO index and sDIC, δ13C-DIC, SST, and 
NCP are shown in red/blue maps. Areas of significant correlation (above the 95th percentile 
threshold) are shown in teal/blue maps below their respective correlation coefficient maps. 
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Figure 4.13: Correlation coefficients between the NPGO index and sDIC, δ13C-DIC, SST, and 
NCP are shown in red/blue maps. Areas of significant correlation (above the 95th percentile 
threshold) are shown in teal/blue maps below their respective correlation coefficient maps. 
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Figure 4.14: Correlation coefficients between the NINO3.4 index and sDIC, δ13C-DIC, SST, and 
NCP are shown in red/blue maps. Areas of significant correlation (above the 95th percentile 
threshold) are shown in teal/blue maps below their respective correlation coefficient maps. 
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Figure 4.15: Property property plots of sDIC and δ13C-DIC at HOT and S-BATS showing 
seasonal cycle, annual mean interannual variability, and vertical profile down to 200m. 
Observations are shown in black and CESM output shown in teal.  
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Figure 4.16: Black dots are interannual variability of sDIC and δ13C-DIC at HOT shown as teal 
in Figure 4.15. Colored open circles show spatial transects through HOT, each color representing 
a different year. East-West transect (left) between ~169W to ~147W along ~22N. North-South 
transect (right) between ~18N to ~30N along ~158W. 
 

North Pacific – East-West Transect  North Pacific – North-South Transect  




