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Abstract Biomedical data are usually analyzed at the univariate level, focused on a single

primary outcome measure to provide insight into systems biology, complex disease states, and

precision medicine opportunities. More broadly, these complex biological and disease states can

be detected as common factors emerging from the relationships among measured variables using

multivariate approaches. ‘Syndromics’ refers to an analytical framework for measuring disease

states using principal component analysis and related multivariate statistics as primary tools for

extracting underlying disease patterns. A key part of the syndromic workflow is the interpretation,

the visualization, and the study of robustness of the main components that characterize the disease

space. We present a new software package, syndRomics, an open-source R package with utility for

component visualization, interpretation, and stability for syndromic analysis. We document the

implementation of syndRomics and illustrate the use of the package in case studies of neurological

trauma data.

Introduction
The goal of the burgeoning field of precision medicine is to understand complex disease states and

provide opportunities for deep patient phenotyping and highly targeted therapeutics. Precision

medicine requires an understanding of multidimensional disease states. Yet, the analysis of biomedi-

cal data remains largely univariate, with response variables considered individually and reports

involving several distinct analyses. This analytical approach limits our interpretation of the complexity

of a disease by not considering the shared information across variables and potentially contributing

to irreproducibility due to statistical limitations of multiple comparison testing. Understanding the

full set of interrelated disease features through multivariate statistics is the goal of the growing

domain of ’syndromics’ (Ferguson et al., 2011). In particular, principal component analysis (PCA)

and related multivariate statistics such as nonlinear PCA or factor analysis have been proposed as

tools for extracting underlying factors or patterns (principal components [PCs]) reflecting disease

states (Ferguson et al., 2013; Haefeli et al., 2017a; Haefeli et al., 2017b; Kutcher et al., 2013;

Nielson et al., 2014; Nielson et al., 2015; Panaretos et al., 2017; Rosenzweig et al., 2010;

Rosenzweig et al., 2018; Rosenzweig et al., 2019; Zhang and Castelló, 2017). There are several

other multivariate methods that could be used for multivariate pattern detection: other ordination

and dimension reduction techniques, cluster analysis, discrimination analysis, or the plethora of more
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recent machine learning methods. The use of any of these methods has its advantages and pitfalls

(Everitt and Hothorn, 2011). We focus on PCA as being one of the most widely used method for

pattern detection. PCA is a multivariate statistical procedure that allows for the generation of new

uncorrelated variables, called PCs, as a weighted combination of the original variables (Abdi and

Williams, 2010; Hotelling, 1933; Jolliffe and Cadima, 2016). These components are ordered such

that the first component explains the major source of variance in the data, the second component

the second largest source of variance, etc. The extracted components reflect the interrelation

between all the original variables or features, allowing for disease pattern detection, guiding in the

interpretation of disease complex space and overcoming univariate analysis limitations.

Despite the extensive use of PCA in some subfields of biological research and the increasing use

of PCA for disease pattern discovery, there is very limited information in the literature that can guide

applied biomedical researchers about its implementation and interpretation. Here, we offer a practi-

cal guide to the application of PCA for the extraction of disease patterns that conform the disease

space, with focus on reproducibility. By no means can we cover the extensive field of PCA in the

present document. Rather, we aim to provide an introductory manual to extraction of reproducible

disease patterns using multidimensional analytics, directed to biomedical researcher practitioners

while pointing to additional relevant sources of information. We introduce a software package for

the R programming language called syndRomics, implementing some of the tools described here.

We will illustrate the analysis workflow and the use of the package in experimental data from case

studies in neurotrauma.

The key steps in disease pattern detection by PCA are shown in Figure 1. The syndRomics pack-

age offers functionalities that aid in these steps, building on the extensive PCA framework devel-

oped by the R open-source community. The package implements a novel visualization tool, the

syndromic plot first published by Ferguson et al., 2013, as well as functions to quickly generate two

other publication-ready visualizations (a heatmap and a barmap). In addition, the package imple-

ments resampling strategies, providing data-driven approaches to analytical decision-making aimed

to reduce researcher subjectivity and increase reproducibility. In particular, the package offers a

Figure 1. Summary of the syndromic framework and analysis steps. (A) The theoretical framework of syndromic analysis. The intersection between

different outcome measures can create a multivariate measure (principal component if PCA is used) to explain different patterns of variance in the data.

The conceptual union of three van diagram forms the core of the syndromic plot symbolizing the multidimensional measure. (B) The different steps of

the workflow to using PCA such as for disease pattern analysis.
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function to extract metrics for component and variable significance by using nonparametric permuta-

tion methods (Landgrebe et al., 2002; Linting et al., 2011; Peres-Neto et al., 2003), to inform

component selection and component interpretation. Finally, the package incorporates functions to

study component stability toward understanding the generalizability and robustness of the analysis

(Cattell and Baggaley, 1960; Cattell et al., 1969; Lorenzo-Seva and ten Berge, 2006).

Results
We will describe the general steps to use PCA for syndromic analysis and illustrate the use of the

syndRomic package along the analytical steps with two case studies of neurotrauma data. Details of

the usage and implementation of the package and functions are described in the

Materials and methods section. The full code reproducing the analysis can be found in the supple-

mentary material. Code boxes in the text provide snippets illustrating the main sections of the code.

The first case study is used as a tutorial to illustrate the steps of analysis; the second case study is

discussed at the end of the results section. For the first case, we used a publicly available preclinical

dataset on the Open Data Commons for Spinal Cord Injury (odc-sci.org) (Callahan et al., 2017;

Fouad et al., 2019). We selected a subset of the dataset with accession number ODC-SCI: 26

(Ferguson et al., 2018) that has been previously used for deriving the so-called spinal cord injury

(SCI) syndromics (Ferguson et al., 2013). The dataset contains 159 subjects (rats) that have been

studied on different motor functional outcomes across time after cervical spinal cord injury. The sub-

set chosen for the present analysis consists of 18 outcome variables measured at 6 weeks after

injury. The included variables for this analysis are shown in Table 1. For additional details of these

variables, see Ferguson et al., 2013.

Step 1: Extracting PCA solution from the data
There is extensive literature on performing PCA (Abdi and Williams, 2010; Jolliffe and Cadima,

2016; Zhang and Castelló, 2017). As a consideration, biomedical data aiming to capture the multi-

variate disease space usually contains variables of different types (i.e. categorical, continuous, etc.)

and scales, known as ‘mixed-type’ data. Moreover, missing data is a common problem in biomedi-

cine (Hollestein and Carpenter, 2017; Kaushal, 2014; Nielson et al., 2020) that needs to be solved

Table 1. List of variables included in the first case study.

Variable Definition

wtChng Change of animal weight (grams) from day of Injury to 6 weeks post-injury

RFSL CATWALK SYSTEM RightForelimb StrideLength at 6 weeks post-injury

LFSL CATWALK SYSTEM LeftForelimb StrideLength at 6 weeks post-injury

RHSL CATWALK SYSTEM RightHindlimb StrideLength at 6 weeks post-injury

LHSL CATWALK SYSTEM LeftHindlimb StrideLength at 6 weeks post-injury

RFPA CATWALK SYSTEM RightForelimb PrintArea at 6 weeks post-injury

LFPA CATWALK SYSTEM LeftForelimb PrintArea at 6 weeks post-injury

RHPA CATWALK SYSTEM RightHindlimb PrintArea at 6 weeks post-injury

LHPA CATWALK SYSTEM LeftHindlimb PrintArea at 6 weeks post-injury

StepDistRF CATWALK SYSTEM RightForelimb Step Distribution Deviation from 25% at 6 weeks post-injury

StepDistLF CATWALK SYSTEM LeftForelimb Step Distribution Deviation from 25% at 6 weeks post-injury

StepDistRH CATWALK SYSTEM RightHindlimb Step Distribution Deviation from 25% at 6 weeks post-injury

StepDistLH CATWALK SYSTEM LeftHindlimb Step Distribution Deviation from 25% at 6 weeks post-injury

TotalSubscore Total BBB Subscore at 6 weeks post-injury

BBB FergTrans BBB Ferguson Transformation score 6 weeks post-injury

Groom Grooming Score 6 weeks post-injury

PawPL PawPlacement score 6 weeks post-injury

ForelimbOpenField Forelimb openfield score at 6 weeks post-injury
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to be able to apply most standard PCA algorithms. Therefore, some pre-processing transformations

are usually applied before performing PCA. For example, linear PCA is sensitive to the scale of varia-

bles, thus when applying a linear PCA to continuous variables of different units or scales, a common

practice is to scale the data to unit variance first (i.e. equivalent to performing the PCA on the corre-

lation matrix). The use of the package to conduct syndromics analysis from linear PCA is illustrated

on the first case study. In cases of datasets with mixed data types and/or non-linear relationships

between variables, nonlinear PCA with optimal scaling transformation (Linting et al., 2007a;

Mair and Leeuw, 2019) has been previously used for disease pattern analysis (Rosenzweig et al.,

2018; Rosenzweig et al., 2019). We used the syndRomics package to analyze patterns from a non-

linear PCA in the second case study. In cases with missing data, strategies such as data imputation

or the use of PCA algorithms allowing missing values might be needed (Dray and Josse, 2015).

While missing values analysis and dealing with missingness is an extensive topic that is not covered

in detail here (Rubin, 1976; Buuren, 2018), the chosen case studies do contain missing values and

illustrate how the package can help to determine the stability of the PCs when imputing missing val-

ues (see component stability section).

Another consideration is selecting which variables to include in the analysis. For PCA of experi-

mental data where there are stratifying factors (e.g. control vs. treatment), it is important to leave

out variables that directly capture the variance of these factors, which would bias PCA results toward

separating the experimental groups. This bias is problematic since in syndromic analysis, the goal is

to find the relationship between variables describing different diseases states in an unsupervised

(i.e. not guided by our design) manner. For instance, if treatment indicators are included and the var-

iance between treatment groups is high, the PCA solution would directly capture the experimental

design and confound the multivariate patterns.

The disease components can be used in subsequent analysis as multivariate outcomes or predic-

tor indicators (Haefeli et al., 2017a; Nielson et al., 2015; Rosenzweig et al., 2018;

Rosenzweig et al., 2019). PCA is used to extract the correlation structure between variables, gener-

ating new independent variables as linear combinations. Beyond the use of PCs as proxies for dis-

ease patterns, the PCs can help mitigate issues that might appear when analyzing several variables

such as multicollinearity, overfitting, and multiple testing (Altman and Krzywinski, 2018;

Johnson et al., 1973; Lever et al., 2017).

The reader is referred to some materials of interest on considerations and limitations when con-

ducting PCA and related methods for biomedical research (Jiang and Eskridge, 2000;

Konishi, 2015; Nguyen and Holmes, 2019; Zhang and Castelló, 2017).

Case study: In the first case study, the goal is to run a linear PCA to study the motor function

components 6 weeks after cervical spinal cord injury. This will summarize all motor function variables

as a small set of independent components explaining different aspects of the motor behavior after

an SCI. The data contains missing values (Figure 4—figure supplement 1), and therefore we per-

formed missing values analysis before continuing with the workflow. Typically, the first step in miss-

ing values analysis is to determine patterns of missingness and classify missing values as missing

completely at random (MCAR), missing at random (MAR) or missing not at random (MNAR)

(Rubin, 1976). The type of missingness will guide the decision on which is an acceptable procedure

to deal with missing values. For instance, deleting all subjects that contain at least one missing

observation is common practice (aka listwise deletion or complete-case analysis), but it is only

acceptable if missing values are MCAR. Otherwise, the robustness and proper estimation of the

missing values can not be guaranteed (Schafer and Graham, 2002; Buuren, 2018). In the example

data, subjects have been pooled together from different experiments. We know that the observed

pattern of missingness (Figure 4—figure supplement 1) is due to a set of animals where some of

the outcome measures were not studied, suggesting that missing values are MNAR. We confirmed

that missing values are not MCAR using a previously described test of MCAR (Jamshidian and Jalal,

2010) implemented in the MissMech package in R (Jamshidian et al., 2014), which rejected the

hypothesis of MCAR missingness in our data. Thus, excluding subjects from the analysis is not justi-

fied. Instead, we have used multiple imputation through the mice R package (Buuren and Groo-

thuis-Oudshoorn, 2011) to generate 50 imputed datasets and pooled them using the mean of each

observation. We will illustrate on the component stability section how the syndRomics package can

be used to determine the robustness of multiple imputation for disease pattern analysis. We

extracted the PCA solution of the pooled imputed data using the prcomp() function in R after
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centering and scaling the data to unit variance (R code box 1). Other similar functions in R or other

software can be used.

R Code Box 1

pca<-prcomp (pca_data, center = TRUE, scale. = TRUE).

Step 2: Component selection: how many components to keep?
The first question, after running PCA for extracting the disease components is usually to determine

how many PCs are relevant. As a general consideration, the PCs with lower eigenvalues (i.e. explain

less variance) have a higher chance of representing noise in the data (Jolliffe and Cadima, 2016),

questioning their generality and value. The goal is to determine the minimal set of components that

can be used to describe the disease space. Importantly, there is not a single, specific rule for this

determination. A common method in PCA and related methods is the Scree test by Cattell, 1966,

where all PCs are ordered in descending rank by their eigenvalues, and PCs above the ‘elbow’ are

retained. Another criterion is the eigenvalue greater than one rule which is applied to standardized

PCAs (from the correlation matrix) with the criteria of only keeping PCs with an eigenvalue (i.e. the

variance of a component) above 1 (Guttman, 1954; Kaiser, 1960). A more thorough description of

these and others methods can be found elsewhere (Glorfeld, 1995; Horn, 1965; Vitale et al.,

2017; Zwick and Velicer, 1986). Simulations have shown these methods (specially the eigenvalue

greater than one rule) to be less robust than a re-sampling approach for selecting the number of rel-

evant components (Zwick and Velicer, 1986). The syndRomics package incorporates a nonparamet-

ric permutation test approximated through Monte Carlo re-sampling of the total ‘variance

accounted for’ (VAF) of each PC to aid in the selection of relevant PCs (Buja and Eyuboglu, 1992;

Glorfeld, 1995; Horn, 1965; Landgrebe et al., 2002). The permutation test can also assist in com-

ponent interpretation by studying the contribution of each variable to the PCA solution (Buja and

Eyuboglu, 1992; Linting et al., 2011) as we will see in the next section.

The goal of the permutation test is to determine whether the extracted PCs can be considered to

be generated not-at-random. This method has been shown to outperform parametric tests for PCA

in situations similar to biomedical data where sample sizes are relatively small and the data rarely

comply with the assumptions of the models (Buja and Eyuboglu, 1992; Horn, 1965; Zwick and

Velicer, 1986). In that regard, a hypothesis test is defined as:

H(null):PC VAF is indistinguishable from a random generation
H(alternative):PC VAF is different from random

The p values are calculated by:

p¼ qþ 1ð Þ= Pþ 1ð Þ (1)

where q is the number of times the chosen metric is higher in the permuted distribution than in the

original PCA solution and P is the number of permutations (Buja and Eyuboglu, 1992). Rejecting

the null hypothesis is interpreted as evidence of the tested PC being generated from true signal and

not by random noise. This sets a lower bound for which PCs to consider ’important’ above noise,

but does not indicate the magnitude of the ’importance’, which is represented by VAF. Importantly,

for datasets with several directions of variance and high signal-to-noise ratio, PCs with low VAF can

still be statistically significant. The value of interpreting such PCs must be judged by the researcher

in the context analysis in question. It is also important to consider how big P needs to be when per-

forming re-sampling, such as with the permutation test incorporated in the package. The reader

should note that the lowest p value that can be calculated is dependent on P. For example, if P is set

to a value of 10 (a relatively low value), the smallest p value that can be detected is 0.09, which

occurs when q¼ 0. Accordingly, P should be set high enough to reach the desired minimum p value.

Moreover, simulation studies have shown that P under 99 have low power and a minimum of 499

permutations is recommended (Buja and Eyuboglu, 1992; Abdi and Williams, 2010; Linting, 2007).

By default, we have set the number of permutations to 1000 (smallest p value approximately equal

to 0.001) as this has been shown to produce good results (Landgrebe et al., 2002; Linting et al.,

2011). Users of the package should keep in mind that higher numbers of permutations will increase
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Figure 2. Implementation of permutation algorithms. (A) Shows a schematic example of the permutation procedure permD where all the variables are

permuted concomitantly but independently. (B) Shows a schematic example of the permutation procedure permV where variables are permuted one at

the time for each permutation samples (P), keeping the other variables as in the original dataset. (C) The implemented algorithm for the permutation

test algorithm using permD: each one to n permutation sample (P) consist on a random reorganization of observations inside each variable

Figure 2 continued on next page
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computation time with potentially only a small gain on the approximation. Our simulations indicate

that between 500 and 1000 permutations provide a good compromise between computing time

and precision in estimating confidence intervals, depending on the data volume (Figure 4—figure

supplement 1). The package implements a single permutation strategy for VAF, the so-called

permD (permutation of the entire data set) (Buja and Eyuboglu, 1992; Linting et al., 2011) where

variables are permuted independently and concomitantly (Figure 2A) opposed to permV (permuta-

tion of a single variable) (Linting et al., 2011) where variables are permuted one at the time

(Figure 2B). These methods are further discussed on the component interpretation section.

R Code Box 2.

permut_pc_test (pca, pca_data, p=10000, ndim = 5, statistic = 'VAF', perm.method

= 'permD').

Case study: After performing a PCA, we first determined the number of components that can be

regarded as informative. Several criteria can be used as mentioned earlier. Here, we opted for the

permutation test of VAF, computed using the permut_pc_test() function (R Code Box 2). We have

applied this test to the data using 10,000 permutations. The results show that the three first PCs

(PC1, PC2, and PC3) are significantly different from random at an alpha of 0.05 adjusting the p value

(Figure 3), and therefore we will keep these three PCs for subsequent analysis. PC1 accounts for

32.9% of the variance, PC2 18.3% and PC3 9.8%.

Step 3: Component interpretation: what do these components mean?
A key part of the analytical workflow is the interpretation of the main components, where the most

relevant PCs can be used to represent the correlation between the original variables as a proxy for

multivariate disease patterns. Each component is composed of a weighted combination of all the

variables. Some components might be explained by only a few variables with high importance,

whereas others might have several variables with important contributions to them. There are a few

metrics that can be used for interpreting the relation between the original variables and the PCs

(Abdi and Williams, 2010). In the syndRomics package, we use the standardized loadings or correla-

tion vector coefficients (Jackson and Hearne, 1973), and the communalities, which are the sum of

squared loadings for each variable across selected PCs representing how much of the variance of

each variable can be explained by the total number of kept components. Loadings can be inter-

preted as the Pearson’s r correlation coefficient between a PC and a variable, and it is used to assess

the contribution of individual variables on each PC and the direction on which the variable moves

along the PC (i.e. opposite or same direction as in the interpretation of a correlation). Communalities

can be interpreted as the global impact of a variable in the chosen PCA solution.

In general, the strategy consists of determining a threshold for the absolute value of loadings or

the communalities above which variables are considered to have important contribution in the defini-

tion of a component or across the chosen PCs. For example, if a threshold of |loading| > 0.2 is cho-

sen, all variables for a given PC with a loading > 0.2 or a loading < �0.2 will be considered to

contribute on the PC (aka salient variable). The matter then turns to determining an appropriate

threshold. Some somewhat arbitrary rules of thumb for the loadings have been established. How-

ever, those have a strong determination in psychological studies and whether they are appropriate

in biomedical research has yet to be verified. An alternative ‘quasi-inferential’ method is to use per-

mutation test as discussed above for PC VAF but testing for metrics of variable contribution such as

Figure 2 continued

independently and concomitantly for each variable. For each P sample, a PCA is run and either the loadings, communalities or VAF are calculated. All P

PCA solutions form the null distribution for non-parametric hypothesis testing of loadings or VAF. (D) The permutation test algorithm for loadings

under permV is performed with and extra step of Procrustes rotation between each of the P samples to the parent component loadings. The P rotated

loadings will then form the null distribution for each variable.
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loadings (Buja and Eyuboglu, 1992; Peres-Neto et al., 2003) or communalities (Linting et al.,

2011). Using resampling strategies, these permutation methods offer data-driven determination of

variable importance and contribution, which might reduce subjective biases. Thus, rejecting the null

hypothesis for a given metric, variable and PC, suggest that such variable has a contribution onto

the construction of the component that is above what is expected by random noise. As in the case

of VAF, this establishes a lower bound for |loadings| or communalities below which they should be

Figure 3. Permutation test of case study. (A) The graph shows the original VAF for the first five PCs and the average and 95% confidence interval VAF

of the permuted PCA distribution (p=10000) using the permD method. * Statistical difference for the non-parametric test at alpha = 0.05 and adjusted

p value by BH. The three first PCs were selected for the subsequent analysis. (B) Barmap of the original communalities (bars) and the permuted

distribution (permV, p=3000) for each variable calculated over the first three PCs. (C) Barmap of the original loadings (bars) and the permuted

distribution (permV, p=3000) for each variable and each of the first three PCs. Solid dotes represent the mean of the permuted distribution and error

bars represent the 95% CI.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. csv file containing the source data for panel A in Figure 3.

Source data 2. csv file containing the source data for panel B in Figure 3.

Source data 3. csv file containing the source data for panel C in Figure 3.

Figure supplement 1. Missing data analysis of the first case study.

Figure supplement 1—source data 1. csv file for the Figure 3—figure supplement 1.
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considered noise. In situations with stable solutions and high signal-to-noise ratio, low |loadings| or

communalities might still be statistically significant, but the contribution of the variable should be

gauged respect to other variables. In the package, we have incorporated permutation test of the

loadings as in Buja and Eyuboglu, 1992; Peres-Neto et al., 2003 that can serve to determine the

loading threshold, where the variables are permuted independently and concomitantly (Figure 2A

and C). Linting et al., designed and tested an strategy for the communalities where only one variable

is permuted at the time, showing great results in determining the contribution of variables using

communalities (Linting et al., 2011). This method has resulted in better determination of the signifi-

cant contribution of variables on the PCA solution with higher statistical power and proper type I

error, and therefore has been incorporated in the package as the default method for both the com-

munalities and the loadings (Figure 2B and D). Following Linting et al., terminology, users can spec-

ify the permutation strategy for the loadings as one variable at the time (permV, as in [Linting et al.,

2011]) or as all the variable together (permD, as in [Buja and Eyuboglu, 1992; Linting et al., 2011;

Peres-Neto et al., 2003]). See Materials and methods for details on the permutation algorithms. In

addition to permutation strategies, the package implements bootstrapping methods for construct-

ing confidence intervals of component loadings and communalities that can also facilitate PCs inter-

pretation (see component stability).

The selection of number of permutations in this case follows similar rationale as described above

for the VAF. It is important to note that the minimal number of permutation needed to have enough

statistical power and precision will depend on the size of the dataset, both on the number of varia-

bles and samples (Buja and Eyuboglu, 1992; Figure 4—figure supplement 1). There is also the

Table 2. List of variables included in the second case study.

Variable Description Values

CT_Marshall Marshall CT Score Range from 1 to 6

CT_Rotterdam Rotterdam CT Score Range from 1 to 6

CT_brain_pathology CT Brain Pathology 0 = ‘No’, 1 = ‘Yes’

CT_skull_FX CT Skull Fracture 0 = ‘No’, 1 = ‘Yes’

CT_skullbase_FX CT Skull Base Fracture 0 = ‘No’, 1 = ‘Yes’

CT_facial_FX CT Facial Fracture 0 = ‘No’, 1 = ‘Yes’

CT_EDH CT Epidural Hematoma 0 = ‘No’, 1 = ‘Yes’

CT_SDH CT Subdural Hematoma 0 = ‘No’, 1 = ‘Yes’

CT_SAH CT Subarachnoid Hemorrhage 0 = ‘No’, 1 = ‘Yes’

CT_contusion CT Contusion 0 = ‘No’, 1 = ‘Yes’

CT_midlineshift CT Midline Shift 0 = ‘No’, 1 = ‘Yes’

CT_cisterncomp CT Cisternal Compression 0 = ‘No’, 1 = ‘Yes’

PTSD_diagnosis_6mo PTSD DSM-IV Diagnosis (6 months) 0 = ‘No’, 1 = ‘Yes’

GOSE_3mo GOSE Score (3 months) Range from 1 to 8

GOSE_6mo GOSE Score (6 months) Range from 1 to 8

WAIS_PSI_6mo WAIS PSI Composite Score (6 months) Range from 50 to 150

CVLT_short_6mo CVLT Short Delay Cued
Recall Standard Score (6 months)

Range from �4.0–2.5

CVLT_long_6mo CVLT Long Delay Cued
Recall Standard Score (6 months)

Range from �3.5–2.5

SNP_COMT COMT SNP Genotype 1 = ‘Met/Met’, 2 = ‘Met/Val’, 3 = ‘Val/Val’

SNP_DRD2 DRD2 SNP Genotype 1 = ‘C/C’, 2 = ‘C/T’, 3 = ‘T/T’

SNP_PARP1 PARP1 SNP Genotype 1 = ‘A/A’, 2 = ‘A/T’, 3 = ‘T/T’

SNP_ANKK1_Gly318Arg ANKK1 SNP Gly318Arg 1 = ‘A/A’, 2 = ‘A/G’, 3 = ‘G/G’

SNP_ANKK1_Gly442Arg ANKK1 SNP Gly442Arg 1 = ‘C/C’, 2 = ‘C/G’, 3 = ‘G/G’

SNP_ANKK1_Glu713Lys ANKK1 SNP Glu713Lys 1 = ‘C/C’, 2 = ‘C/T’, 3 = ‘T/T’
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understanding that while the permD strategy is less robust than permV as suggested by Linting

et al., the computational time increases considerably since variables are permuted one at the time.

Moreover, adjusting p values for multiple testing might be recommended depending on the sample

size. Linting et al., suggested controlling for false discovery rate (FDR) using the Benjamini and Hoch-

berg (BH) (Benjamini and Hochberg, 1995) method. As a rule of thumb, these researchers advised

to only use multiple testing correction (for FDR) when the data contains at least 20 variables and 100

observations or subjects, and to use the uncorrected p-values otherwise (Linting et al., 2011).

p-Value adjustment has been incorporated in the permutation function on the package, with control-

ling for FDR by BH as default.

The reader should be cautioned against overinterpreting or misinterpreting the meaning of a PC.

The interpretation can be subjective, and unconscious biases can be reflected on the interpretation

of PCs. The tools offered by the package help mitigate potential subjective biases, although data

biases will affect the results. Another consideration is that it is possible that some of these metrics

seem to ‘contradict’ each other. For example, there is the possibility that a component has an impor-

tant contribution to the variance of the data (high VAF) and yet all the loadings be small. Contrary, a

component with a small set of high loadings could be considered to be insignificant by permuting its

VAF (Buja and Eyuboglu, 1992). As in any analytical approach, domain knowledge is critical for the

interpretation of disease components.

Case study: After deciding to keep three components, we studied the communalities and load-

ings to determine their identity. Here, we applied the permut_pc_test() function (R Code Box 3) set-

ting the argument statistic = ‘commun’ or ‘s.loadings’ and the perm.method = ‘permV’ and using

the BH method for controlling for FDR. The results of the permutation test on the communalities can

be seen in Figure 3B and in Table 3. We can appreciate that all variables are significantly repre-

sented by the three chosen PCs, although there are five variables with communality less than 0.5,

indicating that the retained PCs only explain 50% of the variance on these variables. In PCA, commu-

nalities can suggest which variables do or do not contribute to the extracted components alto-

gether. Considering the loadings, the results for PC1, PC2, and PC3 are shown in Figure 3C and in

Tables 4, 5 and 6, respectively. One can appreciate that the cutoff loading for significance at alpha

0.05 using the adjusted p value is approximately |0.21| for PC1, |0.25| for PC2 and |0.4| for PC3. This

Table 3. Communalities of first three PCs on permutation test with 3000 random permutations using permV and adjusting p values

with BH.

Variable Original communalities Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

wtChng 0.46 0.06 0.01 0.20 0.0003 0.0004

RFSL 0.59 0.06 0.00 0.20 0.0003 0.0004

RFPA 0.85 0.06 0.00 0.17 0.0003 0.0004

StepDistRF 0.54 0.05 0.00 0.17 0.0003 0.0004

LFSL 0.57 0.06 0.00 0.18 0.0003 0.0004

LFPA 0.61 0.06 0.00 0.20 0.0003 0.0004

StepDistLF 0.71 0.05 0.00 0.17 0.0003 0.0004

RHSL 0.88 0.06 0.00 0.18 0.0003 0.0004

RHPA 0.81 0.06 0.00 0.19 0.0003 0.0004

StepDistRH 0.27 0.06 0.00 0.18 0.0020 0.0020

LHSL 0.79 0.06 0.00 0.20 0.0003 0.0004

LHPA 0.79 0.07 0.00 0.23 0.0003 0.0004

StepDistLH 0.46 0.06 0.00 0.20 0.0003 0.0004

Groom 0.53 0.06 0.00 0.17 0.0003 0.0004

PawPL 0.70 0.06 0.00 0.17 0.0003 0.0004

BBB_FergTrans 0.66 0.05 0.00 0.17 0.0003 0.0004

TotalSubscore 0.40 0.05 0.00 0.17 0.0003 0.0004

ForelimbOpenField 0.37 0.05 0.00 0.18 0.0003 0.0004
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behavior of different thresholds for significance has been previously described (Buja and Eyuboglu,

1992) and reflects the fact that PCs accounting for less variance might contain more random noise,

thus needing a higher loading for a variable to be considered as an important contributor. Loadings

are indicative of both strength of association between a variable and a PC and the direction in which

they interact. For reading on the interpretation of the loadings and components in this case study,

see Ferguson et al., 2013.

R Code Box 3

permut_pc_test (pca, pca_data, p=1000, ndim = 3, statistic = 's.loadings', perm.

method = 'permV').

permut_pc_test (pca, pca_data, p=1000, ndim = 3, statistic = 'communa', perm.

method = 'permV').

Step 4: Component stability: how robust are the components?
The presence of a syndrome or disease pattern, represented by a component, should hold true

regardless of variations in experiments or metrics meant to measure that same pattern. For example,

two experiments with different subjects but the same collected variables should result in inferentially

equivalent components if they are true features of the disease and not experimental artifacts. The

sensitivity of PCs to experimental, metric, or other forms of variation is termed ‘component stability’.

Components from different PCAs (from different experiments as an example) that are extremely sim-

ilar are considered to be a stable, and characterizing component stability is important to determine

the robustness of the initial PCA (Guadagnoli and Velicer, 1988; Linting, 2007). A robust PC would

be largely unaffected by data variations (i.e. low sensitivity). The goal of the stability analysis is to

determine such sensitivity.

Given that performing multiple replication experiments in biomedical research is not always possi-

ble, component stability can be approximated by resampling techniques such as bootstrapping

(Babamoradi et al., 2013; Linting et al., 2007a; Timmerman et al., 2007; Zientek and Thompson,

2007). Bootstrap methods for component stability have been extensively studied, but users should

Table 4. PC1 loading results of permutation test for the first case study with 3000 random permutations using permV and adjusting p

values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

wtChng �0.34 0.00 �0.19 0.18 0.0003 0.0007

TotalSubscore �0.56 0.00 �0.21 0.19 0.0003 0.0007

StepDistRH 0.89 0.01 �0.20 0.21 0.0003 0.0007

StepDistRF �0.65 0.00 �0.19 0.17 0.0003 0.0007

StepDistLH �0.28 0.00 �0.18 0.18 0.0043 0.0084

StepDistLF 0.54 0.01 �0.18 0.18 0.0003 0.0007

RHSL �0.76 0.00 �0.19 0.19 0.0003 0.0007

RHPA �0.85 0.00 �0.17 0.19 0.0003 0.0007

RFSL 0.74 0.01 �0.18 0.19 0.0003 0.0007

RFPA �0.25 0.00 �0.18 0.18 0.0063 0.0114

PawPL �0.76 0.00 �0.17 0.17 0.0003 0.0007

LHSL 0.62 0.00 �0.18 0.18 0.0003 0.0007

LHPA �0.24 0.00 �0.19 0.17 0.0163 0.0259

LFSL 0.38 0.01 �0.17 0.20 0.0003 0.0007

LFPA �0.54 �0.01 �0.21 0.20 0.0003 0.0007

Groom 0.49 0.00 �0.20 0.19 0.0003 0.0007

ForelimbOpenField 0.20 �0.01 �0.19 0.18 0.0323 0.0459

BBB_FergTrans 0.51 0.01 �0.18 0.19 0.0003 0.0007
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be aware of the limitations and advantages of these methods and their performance for component

stability depending on the use case (Babamoradi et al., 2013; Guadagnoli and Velicer, 1988;

Linting et al., 2007b; Timmerman et al., 2007; Zientek and Thompson, 2007).

The package implements functionalities to help study the component stability affected by data

selection variability by implementing bootstrapping methods (Babamoradi et al., 2013;

Linting et al., 2007b; Timmerman et al., 2007; Zientek and Thompson, 2007) and stability metrics.

The default method used in the package is the simple or ordinary bootstrap consisting of generating

a new sample that has the same size (i.e. same number of subjects or observations) and same varia-

bles as the original data, but where the subjects have been randomly selected from the data with

replacement (Figure 4A). This process is repeated several times (here referred as b times) to gener-

ate a sample of bootstrapped data. In the first case example, each of the b bootstrapped samples

contain 159 subjects and 18 variables, but one subject might appear more than once and another

subject might not show up in a specific sample.

Component stability can be studied at the whole component level or at the level of the individual

variables through the loadings and communalities. The package implements component similarity

indexes (aka factor matching indexes)(Cattell and Baggaley, 1960; Cattell et al., 1969;

Guadagnoli and Velicer, 1991) as metrics to study the stability of PCs. These metrics can be used

to determine the similarity between the different bootstrapped samples, to test the validity of the

extracted component under two or more experimental conditions, to assess the multidimensional

equivalence of two or more replication experiments, or to determine the impact of imputing missing

values.

Case study: To understand the sensitivity of variables and components to experimental variations,

we used the pc_stability() function with b = 1000 bootstrapped samples (R Code Box 4), setting the

sim argument to ‘balanced’ to perform balanced bootstrapping. The function will return the average

of the loadings and the specified similarity metric across all the b samples as well as the specified

confidence interval. For this example, the 95% CI (accelerated and bias-corrected, see

Materials and methods) and the bootstrapped average can be seen in Figure 5. In general, the origi-

nal loadings are close to the bootstrapped average which indicates that the results are unbiased.

Moreover, the confidence regions for most higher value loadings are reasonably small, suggesting

Table 5. PC2 loading results of permutation test for the first case study with 3000 random permutations using permV and adjusting p

values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

wtChng �0.37 0.00 �0.23 0.22 0.0023 0.0047

TotalSubscore �0.48 �0.01 �0.23 0.21 0.0003 0.0007

StepDistRH �0.07 �0.01 �0.23 0.23 0.5122 0.5644

StepDistRF 0.28 0.00 �0.23 0.21 0.0143 0.0234

StepDistLH �0.66 0.01 �0.23 0.24 0.0003 0.0007

StepDistLF 0.27 0.00 �0.22 0.23 0.0203 0.0305

RHSL 0.34 0.00 �0.24 0.23 0.0003 0.0007

RHPA �0.30 0.00 �0.21 0.21 0.0083 0.0145

RFSL 0.40 0.00 �0.22 0.25 0.0003 0.0007

RFPA 0.21 0.00 �0.22 0.22 0.0643 0.0868

PawPL �0.30 0.00 �0.19 0.22 0.0023 0.0047

LHSL 0.42 0.01 �0.21 0.23 0.0003 0.0007

LHPA 0.12 0.00 �0.24 0.22 0.3182 0.3656

LFSL �0.62 0.00 �0.25 0.25 0.0003 0.0007

LFPA 0.63 0.00 �0.24 0.26 0.0003 0.0007

Groom �0.65 0.00 �0.22 0.23 0.0003 0.0007

ForelimbOpenField �0.59 �0.01 �0.25 0.23 0.0003 0.0007

BBB_FergTrans �0.32 �0.01 �0.22 0.22 0.0023 0.0047
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that these loadings are stable to experimental variation. In addition, the similarity metrics for the

three PCs suggest component stability, meaning that the composition of the components is also sta-

ble. The accepted values for these metrics indicating stability might vary by field and the metric of

interest. Some indicative values are mentioned in the respective method section, but the user should

be aware of subjective biases when determining a threshold for considering stability (Lorenzo-

Seva and ten Berge, 2006). Finally, the function will return the average and percentile CI of the

communalities, which can be used to assess which variables are more stable in the selected PCA

solution.

R Code Box 4.

pc_stability (pca, pca_data, B = 1000, ndim = 3, s_cut_off = 0.1, test_similarity =

T, similarity_metric = 'all', sim = 'balanced', barmap_plot = T).

Assessing the impact of imputation methods on introducing noise when dealing with missing

data should be considered. As described earlier, we used multiple imputation to generate the data-

set for analysis. Multiple imputation generates m complete datasets where the imputed values might

vary, but the observed values are the same (in the case study m = 50). We used the stability analysis

described above to determine the sensitivity of the PCA solution to variations introduced by imput-

ing missing values. We calculated the similarity metrics between all the 50 imputed datasets for the

first three PCs, as well as the loadings. We observed high similarities between the PCs obtained

from the imputed datasets (Table 7) and the loadings showed narrow CIs (Figure 3—figure supple-

ment 1). We concluded that multiple imputation has produced stable solutions with acceptable

impact on both the component and variables. A future version of the package might include more

robust methods for pooling and testing multiple imputation in PCA context (van Ginkel and

Table 6. PC3 loading results of permutation test for the first case study with 3000 random permutations using permV and adjusting p

values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

wtChng 0.46 0.00 �0.43 0.41 0.0183 0.0283

TotalSubscore 0.22 0.00 �0.32 0.34 0.2463 0.2955

StepDistRH 0.23 0.01 �0.32 0.35 0.2303 0.2826

StepDistRF �0.19 0.01 �0.32 0.34 0.3102 0.3642

StepDistLH 0.23 0.00 �0.34 0.36 0.2083 0.2615

StepDistLF 0.50 �0.01 �0.36 0.40 0.0063 0.0114

RHSL 0.12 0.00 �0.35 0.33 0.5382 0.5698

RHPA 0.26 0.00 �0.35 0.35 0.1903 0.2446

RFSL 0.32 0.00 �0.36 0.41 0.1043 0.1374

RFPA 0.41 0.00 �0.34 0.35 0.0223 0.0326

PawPL 0.35 �0.01 �0.37 0.35 0.0583 0.0807

LHSL 0.48 0.01 �0.39 0.44 0.0123 0.0208

LHPA 0.62 0.00 �0.38 0.35 0.0003 0.0007

LFSL �0.05 0.00 �0.35 0.33 0.8001 0.8308

LFPA �0.12 �0.01 �0.32 0.34 0.5302 0.5698

Groom 0.03 0.01 �0.34 0.34 0.8680 0.8844

ForelimbOpenField �0.14 0.01 �0.32 0.34 0.4802 0.5402

BBB_FergTrans 0.00 0.02 �0.33 0.33 0.9900 0.9900
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Kroonenberg, 2014). Altogether, the results suggest reliable and robust PCs extracted from the

original data.

Figure 4. Implementation of bootstrapping algorithm. (A) shows a schematic of the bootstrapping procedure where a bootstrap sample is generated

by resampling the original samples as many times as there are samples in the original dataset but allowing for replacement. The bootstrapping

algorithm for loadings is (B): for each of 1 to n bootstrap sample (b), run a PCA with the same specifications than the parent PCA on the original

sample. The bootstrapping method (e.g. balanced bootstrap) can be specified with the sim argument passed to the boot() function of the boot R

package. Then, the sample component loading is obtained from the PCA of the bootstrapped sample and a Procrustes rotation of the loading matrix is

applied over the parent loading matrix to correct for PCA indeterminacies (C; see text). All b rotated loadings form the bootstrapped distribution of

loadings. The component similarity of each b loading with the parent loading solution can be calculated to generate the bootstrapped distribution of

component similarity. From these distributions, the average and confidence interval are estimated.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Computation time for resampling.
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Step 5: Component visualization
Communicating the analysis is a necessary part of the workflow. Although we have included this at

the end of the use case, visualization can be also used for aiding in component selection, component

interpretation and component stability analysis. There are several ways a PCA solution can be visual-

ized. Here, we describe the plots implemented in the syndRomics package.

We have coded three types of plots (syndromics plot, heatmap, and barmap) using the grammar

of the graphics framework (Wilkinson, 2005) implemented in R by the ggplot2 package. This allow

users to customize the plots using the rich landscape of the ggplot2 universe. The syndromic plot

was first published by Ferguson et al., 2013 and represents PCs as the center of a Venn diagram

(Figure 1A), consisting of (1) a middle convex triangle displaying the ‘variance accounted for’ (VAF)

for a given PC and (2) radial arrows pointing to the center of the triangle for each variable with a

standardized loading above a certain threshold (Figure 6A–C). The width of each arrow and the

color saturation are proportional to the magnitude of the standardized loading they represent. The

color of each arrow additionally differentiates between positive or negative loadings (e.g. blue rep-

resents a loading of +1, red represents a loading of �1, and white represents a loading of 0).

Figure 5. Principal component (PC) stability results of case study. Barmap plot of the bootstrap distribution of loadings (A) and communalities (B)

representing the average and the 95% confidence interval of 3000 bootstrapped samples for the first three PCs. Assessing the confidence region offers

an indicator of the uncertainty of the estimated loadings for each variable on each PC. Solid dots represent the mean of the bootstrap distribution and

error bars represent the 95% CI.

Table 7. Similarity metrics of the first three PCs between 50 multiple imputed datasets for the first case study.

Silent cutoff for S index was set at |0.2|.

CC index r index RMSE S index

PC Mean SD Mean SD Mean SD Mean SD

PC1 0.999 0.0003 0.999 0.0003 0.021 0.004 0.991 0.015

PC2 0.998 0.0005 0.998 0.0005 0.021 0.004 0.93 0.042

PC3 0.997 0.001 0.996 0.002 0.022 0.005 0.965 0.03
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Syndromic plots are especially useful for conveying PC identity in an easy to understand, concise

way for publication. Heatmap and barmap plots are alternative visualizations of the loadings beyond

the syndromic plot. The major difference between these two plots and the syndromic plot is that

both the barmap (Figure 5A) and heatmap (Figure 6D) plots display all variables (or a manually

selected subset) instead of only the ones with loadings above a given threshold. The absolute load-

ings that exceed a cutoff threshold can be noted (e.g. by a star *). Moreover, in the case of barmap

plots, the cutoff is represented in the graph by vertical lines. This is particularly useful when there

are too many above-threshold variables, which would crowd the syndromic plot visualization, or

when comparing loadings between PCs more easily. In addition, barmaps are useful for document-

ing the results of the resampling procedures since error bars can be used to represent the variation

of the metrics over the resampling. The permut_pc_test() and pc_stability() functions return such

plots.

Case study (R Code Box 5): We can visualize the three selected PCs using the plotting functions

in syndRomics (Figure 6). In this case, we chose to represent PC1, PC2 and PC3 using the syndrom-

ics plots (Figure 6A, B and C, respectably) using a cutoff threshold of |0.45|. Notice that this is

higher than the threshold for significance found by the permutation analysis given the high number

of variables. The full loading pattern of the three first PCs can be visualized by a heatmap

(Figure 6D), where we have chosen a different cutoff for each PC (0.21, 0.25, and 0.4 for PC1, PC2,

and PC3 respectively), or a Barmap (Figures 3B and 5A). Barmaps can be obtained for the loadings

(barmap_loadings()) or for the communalities (barmap_commun()).

R Code Box 5

syndromic_plot (pca, pca_data, cutoff = 0.45).

heatmap_loading (pca, pca_data, ndim = 3, cutoff = c(0.21,0.25,0.4), star_values

= T, text_values = F).

Case study 2
In the second case study, we used selected variables from the Transforming Research And Clinical

Knowledge in Traumatic Brain Injury (TRACK-TBI) pilot study (Yue et al., 2013) that were analyzed

previously and made publicly available (Nielson et al., 2017). The released dataset version contains

586 de-identified human subjects who were enrolled in the TRACK-TBI pilot study and the 26

selected variables previously analyzed (Nielson et al., 2017). These variables are a subset of brain

imaging results, outcome metrics and genetic polymorphism (Table 2). The goal is to describe pat-

terns of association between these three categories of variables. A noticeable difference between

this dataset and the one used in the first case study is that here we are dealing with a mixed type

dataset, where some variables are continuous, some nominal and some ordinal. Therefore, we per-

formed a version of nonlinear PCA that allows for the extraction of patterns in these kinds of data.

The syndRomics package has been programmed to work with the results of the princals() function

from the Gifi R package. The code for this analysis is found in the supplementary material.

Missing data analysis showed an overall 21.2% missingness distributed between the outcomes

and genetic polymorphism variables (Figure 7—figure supplement 1). With the exception of ‘MRI

results’ that has high missingness (61.7% of the observations), all imaging variables are complete.

‘MRI results’ variable was excluded from the analysis. The subsequent test for MCAR suggest that

there are 17 different patterns of missingness and that the hypothesis of MCAR can be rejected

overall (p-value<0.001). Thus, excluding subjects from the analysis is not justified (Schafer and Gra-

ham, 2002; Buuren, 2018). We instead performed 50 multiple imputations using the mice R pack-

age as in the first case study. The 50 imputed datasets where then aggregated to perform nonlinear

PCA using princals() (see Materials and methods for details).

Permutation test of PC VAF suggests that the first 6 PCs contain information that can be

regarded as significant above random chance. Although a deep analysis of these six PCs might be of

interest, the first three PCs explain the major variance (25.6%, 10.6%, and 9.8%, respectively). There-

fore, we focused on interpreting these for illustration purposes (Figure 7 and Tables 8–10). The first

PC significantly loaded highly on two genetic variants in opposite directions (SNP_DRD2

loading = �0.677, SNP_ANKK1_Gly318AR loading = 0.661) as well as outcomes of neuropsychologi-

cal function at 6 months after TBI (CVLT_long loading = �0.614, CVLT_short loading = �0.542)
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(Figure 7A–C). All other variables also significantly loaded on to PC1, but with |loadings| ~ 0.3

(Tables 8–10) suggesting that their contribution in PC1 identity is less important. Lower values in

CVLT (California Verbal Learning Test) suggest learning and memory impairments, which are well

Figure 6. Visualization of PCA solutions for syndromic analysis. (A–C) show the layout of the PC1, PC2, and PC3 syndromic plot of variables |

loadings| > 0.45, respectively: arrows pointing the center of the plot representing the magnitude (arrow thickness and color saturation) and direction

(color) of the loadings of selected variables. (D) illustrate an example of the same loading solution plotted by a heatmap. * Indicates variables with |

loadings| > 0.21, 0.25 or 0.4 for PC1, PC2, and PC3, respectively.
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known after TBI. Given the negative loadings for the included CVLT measures (short and long recall),

negative values in PC1 might reflect better CVLT outcomes at 6 months after TBI. The stability of

the PC1 pattern to multiple imputation is relatively low, with higher loadings showing high variation

(Figure 7—figure supplement 1, Table 11), emphasizing the importance of studying stability of

components to multiple imputation. Nonetheless, the bootstrapped loadings were stable

(Figure 7B), and decay in CVLT performance after TBI has been previously associated to polymor-

phisms in DRD2 and ANKK1 genes (Failla et al., 2015; McAllister et al., 2008; Nielson et al.,

2017; Yue et al., 2017), providing literature validation of PC1. The variables with higher positive

loadings in PC2 were related to the imaging findings and negative loadings with global function out-

comes at 3 and 6 months after TBI (GOSE score)(Figure 7. A, D). Lower scores in GOSE are indica-

tive of lower global function and positive values in imaging findings are suggestive of a bigger or

more noticeable brain damage. PC2 presented the higher stability to both resampling and to multi-

ple imputation (Figure 7—figure supplement 1, Table 11). Altogether, PC2 might be interpreted

as a surrogate for ‘TBI severity’, where higher positive values would indicate higher brain damage

with less function at 3 and 6 months after injury, a signature described in the previous analysis of this

data (Nielson et al., 2017). Finally, given the instability of PC3, with most loadings being considered

non-significant by the permutation test and the high variance to multiple imputation (Figure 7—fig-

ure supplement 1, Table 11), PC3 can not be interpreted with certainty, and we should not attempt

its explanation.

Discussion
Biomedical research needs more multivariate analytics to help realize the potential of precision med-

icine. While multiple variables are collected in typical preclinical experiments and clinical trials, uni-

variate statistics continue to be the major analytical and decision-making approaches across the

different biomedical fields, narrowing our understanding of the complexity of any disease. With the

advent of ‘omics’, analytical approaches for high-dimensional data have started to become more

prevalent for the analysis of biological data. Yet, outside the realm of medical bioinformatics, bio-

medical research continues to be, for most part univariate. The lack of multivariate approaches in

analyzing biomedical data can cause biases and constraints to the interpretation of the results and

contribute to the lack of reproducibility and bench-to-bedside translation (Ferguson et al., 2011;

Huie et al., 2018).

The extraction of disease space, through the use of multivariate methods, can increase our under-

standing of complex relationships commonly present in biomedical data while preventing some of

the issues associated with an excessive use of univariate analytics such as multiple comparison test-

ing and associated false discoveries by chance (Benjamini and Hochberg, 1995; Ferguson et al.,

2013; Krzywinski and Altman, 2014). For example, it is common in biomedicine to measure several

behavioral and histopathological outcomes that are analyzed independently at the univariate level.

This approach increases the chance of false-positive results due to the accumulation of type I testing

errors (Benjamini and Hochberg, 1995; Dunn, 1961; Krzywinski and Altman, 2014). Although

there are methods to correct for errors when running numerous tests such as multiple-testing correc-

tion, their use in biomedicine outside of bioinformatic analysis is scarce. Even when correcting for

multiple testing, performing several univariate analyses limits our understanding since univariate

analysis does not allow us to study and infer the relationship between measures that might capture

different aspects of the matter of study. In our first example case study, several functional tests can

be used to study the recovery of forelimb motor function after cervical spinal cord injury in animal

models. Each test further contains multiple measures about particular aspects of recovery. Knowing

the relationship between these measures through multivariate approaches can increase our under-

standing of the matter of study while reducing the burden of multiple testing (Ferguson et al.,

2013). Importantly, it is also possible that a single univariate test that does not produce significant

results misses true biological effects, while a multivariate analysis including the same variables can

find patterns and relationship between variables that are significant. Syndromic analysis is, therefore,

a framework that uses multivariate analysis of biomedical data in a holistic way, aiming to reveal

interactions within complex (patho)-physiological niches, that would be otherwise challenging to dis-

cern. Applying syndromic analysis to biomedical data will help uncover the complex relationships of
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variables and features that constitute different disease and biological states and ultimately acceler-

ate research toward precision medicine.

The syndRomics package implements several functionalities for the visualization, the interpreta-

tion, and the analysis of the stability of principal components to facilitate the extraction and analysis

of disease patterns. We have demonstrated its usage, showing the potential of the package to sup-

port PCA-based analysis in understanding disease complexity. Although the core functionalities of

the package are included, future versions might also implement outputs from other PCA functions

Figure 7. Analysis of case study 2 using non-linear PCA and the syndRomics package. (A-B) show thebarmap plots for the loadings for the first three

PCs with the 95% CI generated from 500 permutationand 1000 bootstrap resamples. (C-D) show the syndromic plots for the PC1 (VAF=25.8%) and PC2

(VAF=10.6%) for |loading|>0.4. Error bars represent the 95%CI of the resampling method.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. csv file containing the source data for Figure 7.

Figure supplement 1. Missing data analysis of the second case study.

Figure supplement 1—source data 1. csv file containing the source data for Figure 7—figure supplement 1.
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as inputs, such as those from the PCA functions in the FactoMineR package (Lê et al., 2008) or the

psych package (Revelle, 2017), allowing for better integration to the PCA landscape in R. In addi-

tion, other algorithms of bootstrapping and permutation methods for PCA solutions could be incor-

porated to increase the options and better adapt to the specifics needs of the user (Hong et al.,

2006; Linting et al., 2011; Vitale et al., 2017; Zientek and Thompson, 2007).

Here, we emphasize guidance and tools for robust determination of PCA-based disease patterns.

We have incorporated resampling methods aiming to reduce subjective biases and to study the sta-

bility and generality of the analysis. Although we have shown the use of these functions in different

contexts along the process, much more work can be done to extend syndRomics. For example, we

demonstrated the stability of our analysis under multiple imputation, and future research could

investigate number of multiple imputations or missing conditions necessary for stable disease pat-

tern detection. In addition, visualization features of syndRomics may be extended to help interpret

disease patterns resolved by other multivariate or machine learning tools involving structure coeffi-

cients or feature impact scores. The syndRomics resampling methods could also be used to estimate

the sample size required for stable PCs in the context of syndromic analysis, allowing for sample

planning. The implementations in the package are thus positioned to empower both biological and

statistical research toward understanding complex biology and diseases.

Table 8. PC1 loading results of permutation test for the second case study with 500 random permutations using permV and

adjusting p values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

CT_brain_pathology 0.440589 0.010978 �0.17606 0.202095 0.001996 0.003194

CT_cisterncomp 0.1844 0.003484 �0.16947 0.209801 0.053892 0.061591

CT_contusion 0.382612 0.008019 �0.17053 0.187363 0.001996 0.003194

CT_EDH 0.256368 0.015695 �0.16239 0.190167 0.001996 0.003194

CT_facial_FX 0.267322 0.029918 �0.16465 0.202063 0.011976 0.015128

CT_Marshall 0.235242 0.003685 �0.16912 0.191229 0.00998 0.013307

CT_midlineshift 0.002539 �0.01082 �0.2005 0.190956 0.988024 0.988024

CT_Rotterdam 0.274699 0.010723 �0.17176 0.195646 0.001996 0.003194

CT_SAH 0.376596 0.009848 �0.16185 0.191671 0.001996 0.003194

CT_SDH 0.377542 0.018196 �0.15488 0.196538 0.001996 0.003194

CT_skull_FX 0.404447 0.020049 �0.15398 0.198067 0.001996 0.003194

CT_skullbase_FX 0.318179 0.019653 �0.18691 0.195547 0.001996 0.003194

CVLT_long_6mo �0.70622 �0.05218 �0.37582 0.295769 0.001996 0.003194

CVLT_short_6mo �0.63345 �0.04306 �0.378 0.258602 0.001996 0.003194

GOSE_3mo �0.32848 �0.00894 �0.17465 0.177456 0.001996 0.003194

GOSE_6mo �0.25329 �0.00613 �0.19298 0.176343 0.003992 0.005988

PTSD_diagnosis_6mo 0.188743 0.013079 �0.15885 0.190364 0.041916 0.050299

SNP_ANKK1_Glu713Lys 0.358071 0.028077 �0.14647 0.190965 0.001996 0.003194

SNP_ANKK1_Gly318Arg 0.613624 0.043104 �0.17747 0.244082 0.001996 0.003194

SNP_ANKK1_Gly442Arg �0.25194 �0.02327 �0.19756 0.16577 0.005988 0.008454

SNP_COMT 0.036687 0.001474 �0.17511 0.172543 0.696607 0.726894

SNP_DRD2 �0.62858 �0.05017 �0.24105 0.168359 0.001996 0.003194

SNP_PARP1 �0.05912 �0.00576 �0.18101 0.166475 0.512974 0.559608

WAIS_PSI_6mo �0.36179 �0.0144 �0.19646 0.168075 0.001996 0.003194
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Materials and methods

Availability and requirements
The code to reproduce this analysis can be found in the supplementary material. The data for the

first use case comes from the ODC-SCI (Open Data Commons for Spinal Cord Injury, RRID:SCR_

016673, http://odc-sci.org), ODC-SCI:26 dataset (https://scicrunch.org/odc-sci/about/odc-sci_26).

The data for the second use case comes from TRACK-SCI and can be downloaded from 10.1371/

journal.pone.0169490. The package can be installed from GitHub (https://github.com/ucsf-ferguson-

lab/syndRomics) where installation instructions, package manual and examples of usage are pro-

vided. Descriptions of the arguments and function usage can be found in the internal package docu-

mentation once installed or in the package manual. The package has been implemented in R

(R Development Core Team, 2019) through RStudio (Team RS, 2018) using a few other packages

beyond the ones bundled in R as dependencies: dplyr (Wickham et al., 2018), ggplot2 (Wick-

ham, 2016), stringr (Wickham, 2019), tidyr (Wickham and Henry, 2020), ggrepel (Slowikow-

ski, 2019), ggnewscale (Elio Campitelli, 2020), pracma (Borchers, 2019), png (Urbanek, 2013),

boot (Canty and Ripley, 2019; Davison and Hinkley, 1997), rlang (Henry and Wickham, 2020),

and Gifi (Mair and Leeuw, 2019).

Table 9. PC2 loading results of permutation test for the second case study with 500 random permutations using permV and

adjusting p values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

CT_brain_pathology 0.662378 0.021655 �0.12084 0.158839 0.001996 0.002818

CT_cisterncomp 0.709989 0.024823 �0.14181 0.178126 0.001996 0.002818

CT_contusion 0.596311 0.01766 �0.12222 0.157785 0.001996 0.002818

CT_EDH 0.253079 0.002735 �0.13662 0.135348 0.001996 0.002818

CT_facial_FX 0.142602 0.000971 �0.12466 0.133574 0.041916 0.055888

CT_Marshall 0.809847 0.026415 �0.13438 0.173771 0.001996 0.002818

CT_midlineshift 0.69605 0.034813 �0.12917 0.189917 0.001996 0.002818

CT_Rotterdam 0.753498 0.01539 �0.13205 0.178638 0.001996 0.002818

CT_SAH 0.689084 0.017617 �0.12425 0.155246 0.001996 0.002818

CT_SDH 0.698728 0.017798 �0.12057 0.161901 0.001996 0.002818

CT_skull_FX 0.493199 0.007764 �0.13921 0.161888 0.001996 0.002818

CT_skullbase_FX 0.294691 0.003769 �0.12863 0.141375 0.001996 0.002818

CVLT_long_6mo 0.056095 0.019229 �0.21544 0.23499 0.674651 0.703983

CVLT_short_6mo 0.115663 0.020014 �0.20152 0.215121 0.353293 0.423952

GOSE_3mo �0.43692 �0.00787 �0.14301 0.139508 0.001996 0.002818

GOSE_6mo �0.40155 �0.00849 �0.14484 0.118386 0.001996 0.002818

PTSD_diagnosis_6mo 0.004807 �0.00863 �0.14863 0.140418 0.94012 0.94012

SNP_ANKK1_Glu713Lys �0.26204 �0.01604 �0.15757 0.132164 0.001996 0.002818

SNP_ANKK1_Gly318Arg �0.28622 �0.01954 �0.15986 0.133637 0.001996 0.002818

SNP_ANKK1_Gly442Arg 0.033308 �0.00308 �0.12662 0.129371 0.630739 0.688078

SNP_COMT �0.0406 �0.00094 �0.14047 0.140783 0.588822 0.67294

SNP_DRD2 0.307457 0.023806 �0.11549 0.178777 0.001996 0.002818

SNP_PARP1 0.244246 0.000876 �0.14801 0.133131 0.001996 0.002818

WAIS_PSI_6mo �0.13252 0.001279 �0.13167 0.134985 0.055888 0.070596
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Package implementation
The syndRomics package offers two major functionalities for the purpose of aiding in the process of

syndromics analysis: (1) visualization functions and (2) functions incorporating resampling methods to

determine stability and inference of PCs.

Visualization functions
The visualization functions are: syndromic_plot(), heatmap_loadings(), barmap_loadings(), barmap_-

commun() and VAF_plot(). For the visualization functions, the user can pass an R data.frame object

with the standardized loadings (or other metrics) obtained by running PCA and related multivariate

methods in their preferred software. We opted for this approach to avoid requiring specific imple-

mentations of PCA. Loadings obtained from any PCA solution can be easily formatted for usage

with the syndRomics visualization functions. All functions in the package that takes a data frame as

argument use the same format (Table 12): variables are organized as rows, and the first column is

called ‘Variables’ and contains the names of the respective variables. The other columns contain the

PC loadings and are named ‘PC1’, ‘PC2’, etc. Alternatively, the visualizations can also be obtained

from the output of the prcomp() function in the stats package in R (linear PCA) or from the output of

the princals() function in the Gifi package in R (non-linear PCA by categorical PCA). Finally, the

results from pc_stability() and permut_pc_test() can be passed to the plot() generic function in R as

the package incorporate the corresponding S3 method for ‘syndromics’ class object.

Table 10. PC3 loading results of permutation test for the second case study with 500 random permutations using permV and

adjusting p values with BH.

Variable Original loading Permuted average Lower 95% CI Upper 95% CI p value Adjusted p value

CT_brain_pathology 0.110149 0.002819 �0.30242 0.309376 0.528942 0.641916

CT_cisterncomp �0.32449 �0.00334 �0.33379 0.305672 0.047904 0.13839

CT_contusion 0.060972 �0.00689 �0.31444 0.270176 0.698603 0.728977

CT_EDH 0.104859 �0.00125 �0.27352 0.321535 0.518962 0.641916

CT_facial_FX 0.371649 0.062687 �0.31692 0.355691 0.01996 0.07984

CT_Marshall �0.24284 �0.01023 �0.3038 0.288171 0.129741 0.259481

CT_midlineshift �0.30562 �0.01988 �0.32888 0.308785 0.063872 0.153293

CT_Rotterdam �0.24002 �0.01377 �0.32884 0.292959 0.161677 0.284003

CT_SAH 0.16969 �0.0017 �0.30469 0.323896 0.347305 0.520958

CT_SDH 0.164146 0.011718 �0.33537 0.308091 0.339321 0.520958

CT_skull_FX 0.30911 0.013422 �0.28309 0.317483 0.047904 0.13839

CT_skullbase_FX 0.412507 0.027909 �0.29748 0.350075 0.005988 0.047904

CVLT_long_6mo 0.071561 0.007602 �0.26795 0.330045 0.662675 0.722918

CVLT_short_6mo 0.01478 0.003403 �0.29415 0.341327 0.922156 0.922156

GOSE_3mo 0.512173 0.027225 �0.3035 0.347452 0.001996 0.023952

GOSE_6mo 0.519654 0.030422 �0.28179 0.361045 0.001996 0.023952

PTSD_diagnosis_6mo �0.29067 �0.02728 �0.31023 0.227907 0.051896 0.13839

SNP_ANKK1_Glu713Lys �0.47272 �0.02347 �0.40038 0.368874 0.007984 0.047904

SNP_ANKK1_Gly318Arg �0.14092 �0.02104 �0.34164 0.27799 0.379242 0.5354

SNP_ANKK1_Gly442Arg �0.34766 �0.02656 �0.38332 0.353987 0.083832 0.182907

SNP_COMT �0.10171 0.001249 �0.26635 0.284647 0.53493 0.641916

SNP_DRD2 0.081296 0.013862 �0.2912 0.323114 0.61477 0.702595

SNP_PARP1 0.233007 0.010172 �0.29054 0.318385 0.165669 0.284003

WAIS_PSI_6mo 0.39706 0.017391 �0.27022 0.337713 0.011976 0.057485
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syndromic_plot ()
The list of arguments for the syndromic_plot() function are presented in the package manual. The

syndromic_plot() function will internally call extract_syndromic_plot() function (see utility functions)

and return a list of ggplot2 objects containing the syndromic plot for the first ndim PCs. For exam-

ple, if ndim = 5, a syndromic plot for PCs 1 to 5 will be generated. Another important argument is

the cut_off, which determines the threshold of absolute standardized loadings to consider for plot-

ting. This argument is chosen by the user and is required (with no default). Another required argu-

ment is VAF in case the syndromic_plot() function is called using a data.frame input. If the output of

the prcomp() or princals() functions is used, the syndromic_plot() function extracts VAF internally and

the user-defined VAF will be ignored. When required, VAF is a character vector of the form ‘XX

%”,”XX%”, etc., where XX is the VAF for each PC to plot, starting with the first PC, followed by the

second, etc. (e.g. c(‘60.1%”,”25.3%”) for PC1 and PC2, respectively). An issue we found during the

implementation is that the arrow visualization does not display correctly in the R graphical device on

Windows machines. Rendering the plot into *.pdf format, for instance using the ggsave() function

from the ggplot2 package, solves the problem.

heatmap_loadings(), barmap_loadings() and barmap_commun()
Most of the functionalities described for the syndromic_plot() function also apply for the heatma-

p_loading(), the barmap_loading(), and the barmap_commun() functions. A noticeable difference in

barmap_loading() is that the function will plot the PCs specified in ndim instead of the first ndim

components. For example, if ndim = c(3,4,5), components 3, 4, and 5 will be plotted. This allows for

more flexibility on which components to plot, such as isolating a single component (e.g. ndim = 3

will only plot component 3).

VAF_plot()
This function can be used to plot a VAF plot from a prcomp() or princals() output. There are two style

options, ‘line’ or ‘reduced’.

Resampling functions
There are two major functions using resampling methods, the permut_pc_test() function that imple-

ments nonparametric permutation test for either PC VAF for aiding in component selection or PC

loadings and communalities for aiding in component interpretation, and the pc_stability() function

that implements bootstrapping of PC loadings for stability analysis. These functions take as input the

output of the prcomp() or the princals() functions in R as well as the original dataset used on these

functions as inputs. The specific call of prcomp() or the princals() used to obtain the original PCA

solution is passed down to the resampling functions in the syndRomics package, ensuring that the

same arguments are used for resampling (with the exception of the data argument on the original

prcomp() or the princals() call, that will be internally changed for each resampling iteration).

permut_pc_test()
In the syndRomics package, the null distribution for the permutation test is generated by permuting

the values of each variable independently and concomitantly several times (permD) or permuting

one variable at the time (permV) and re-running the PCA on each permuted sample

(Figure 2; Buja and Eyuboglu, 1992; Glorfeld, 1995; Linting et al., 2011). When permV method is

Table 11. Similarity metrics of the first 3PCs between 50 multiple imputed datasets for the second case study.

Silent cutoff for S index was set at |0.2|.

CC index r index RMSE S index

PC Mean SD Mean SD Mean SD Mean SD

PC1 0.955 0.035 0.958 0.033 0.094 0.06 0.88 0.037

PC2 0.992 0.004 0.991 0.0054 0.056 0.039 0.93 0.04

PC3 0.87 0.097 0.874 0.097 0.133 0.127 0.71 0.06
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selected to measure the impact of permuting on loadings, a step of Procrustes rotation of each load-

ing matrix toward the original loading matrix is added to resolve sign reflection, rotation indetermi-

nacy and component translocation (Figure 2D, see pc_stability for detailed explanation). This step is

not performed when the analysis is performed on the communalities since are invariant to such PCA

resampling issues (Linting et al., 2011). Confidence intervals of the permuted distribution (null distri-

bution) are calculated using the (1-a)x100% (percentile) of the distribution (Buja and Eyuboglu,

1992).

The function calls the permut_pca_D() or permut_pca_V() utility generic function internally to gen-

erate the permuted distribution of the selected metric (either “VAF”,“s.loadings” or “comuna”)

using either the prcomp() function for linear PCA or the princals() function for nonlinear PCA imple-

mented as S3 R method for the class “prcomp” or “princals”. If “VAF” is specified the permD per-

mutation will be used, ignoring the input of the user on the perm.method argument, returning a

matrix containing the VAF for the original PCs, as well as the average and the CI of the permuted

VAF distribution. In case “s. loadings” or “communa” are specified, the specified permutation

method will be considered (i.e. permD or permV) and the function will return a list of matrices, one

for each selected PC, with the original loadings, and the average and CI of the permuted loadings

distribution. In both cases, p values are calculated as described in the main text and returned.

Adjusted p values using the specified method in the adjust.method argument are also returned.

pc_stability()
Component stability can be studied at the whole component level, known as factor invariance, or at

the level of the individual loadings. We have implemented both options in the package. By default,

the pc_stability() function returns the average and the accelerated and bias-corrected 95% confi-

dence intervals (CI) of the loadings of the bootstrap distribution (Efron, 1987). Depending on the

sample size and the number of chosen resamples, the bias-corrected CI will fail and the percentile

(1-a)x100% CI will be returned (with corresponding notification). In addition, component similarity or

factor matching metrics can be computed by setting the test_similarity=TRUE, which will call the

component_similarity() function. For each of the specified similarity metrics, this function returns the

Table 12. Template/example of data.frame containing loadings that can be passed to the visualization functions (only the loadings

for the first three PCs are shown).

Variable PC1 PC2 PC3

wtChng �0.34 �0.37 0.46

TotalSubscore �0.56 �0.48 0.22

StepDistRH 0.89 �0.07 0.23

StepDistRF �0.65 0.28 �0.19

StepDistLH �0.28 �0.66 0.23

StepDistLF 0.54 0.27 0.50

RHSL �0.76 0.34 0.12

RHPA �0.85 �0.30 0.26

RFSL 0.74 0.40 0.32

RFPA �0.25 0.21 0.41

PawPL �0.76 �0.30 0.35

LHSL 0.62 0.42 0.48

LHPA �0.24 0.12 0.62

LFSL 0.38 �0.62 �0.05

LFPA �0.54 0.63 �0.12

Groom 0.49 �0.65 0.03

ForelimbOpenField 0.20 �0.59 �0.14

BBB_FergTrans 0.51 �0.32 �0.03
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average of the metric and its confidence interval (95% CI by default) by the percentiles of the boot-

strap distribution. The confidence level and the CI method for the loadings can be changed by

changing the conf and ci_type arguments. The function uses the boot() function for generating the

bootstrapped samples and the boot.ci() function for extracting the confidence intervals of the load-

ings. Both boot() and boot.ci() are from the boot package in R. This allows the use of different boot-

strapping strategies such as simple or ordinary bootstrapping (by default) or balanced

bootstrapping. The reader is referred to the boot package documentation for more details on the

different sim methods.

A major problem of performing resampling procedures in PCA is what is known as indetermina-

cies that can invalidate comparing between bootstrapped samples (Babamoradi et al., 2013;

Chan et al., 1999; Linting, 2007; Timmerman et al., 2007; Zabala and Pascual, 2016). Sign reflec-

tion refers to the change of sign on the component loadings in a PC given slight variation of the

data. In addition, slight data variation can also cause component/factor translocation, the change in

the position of a component in the PCA solution (e.g. PC1 shifts to the position of PC2), especially

when two components have similar VAF. Another problem on performing PCAs with variations in

the data is the possibility of rotation indeterminacy when the PCA solution of a resampled data

presents with a different rotation of the original PCA solution. These issues generate artificially

biased bootstrapped distributions, potentially invalidating the procedure (Timmerman et al., 2007;

Zientek and Thompson, 2007). We have implemented a step of procrustes rotation between the

original loadings (target) and the bootstrapped sample, as has been previously demonstrated to be

a reasonable method to deal with such issues (Timmerman et al., 2007; Zientek and Thompson,

2007). The Procrustes rotation is obtained by the procrustes() function from the pracma package.

The algorithm for bootstrapping the PCA solutions is represented in Figure 4 and implemented in

the utility function boot_pca_sample(). The number of bootstrap samples is set to 1000 by default.

The user must be careful on setting the number too low, reducing the performance of the approxi-

mation (Efron, 1987). However, setting the number of bootstrap samples too high might unneces-

sarily increase computing time with little gain (Figure 4—figure supplement 1).

Indexes of component similarity
We have included several component similarity indexes for determining component/factor invariance

in syndRomics. The function component_similiarity () returns the specified similarity metrics as well

as their summary statistics (average and standard deviation, if applicable) from a list of loading matri-

ces (load.list). The argument s_cut_off is used in the calculation of the Cattell’s s index (see below)

and ndim is used to limit the number of components from which to compute the indexes from. Each

index has been programmed in a separate utility function for convenience. Although they are not

meant to be manually called, users can call them to calculate any of these metrics for a given set of

two component loadings. The similarity_metric argument takes a single character or a vector of char-

acters to specify which metrics to compute. These can be: ‘cc_index’, ‘r_correlation’, ‘rmse’ and/or

‘s_index’. The user can also specify ‘all’ to get all metrics. Their definitions are documented below.

Congruence coefficient (CC, ‘cc_index’)
First suggested by Burt, 1948, it was popularized by Tucker, 1951 and therefore is also known as

Tucker’s congruence coefficient. It is calculated as (2):

fx;y ¼

P

n

i¼1

xi yi

ffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

y2i

s (2)

where xi and yi are the loadings of the variable i on the component or factor x and y respectively.

� x;yð Þ is equivalent to the cosine of the angle between two vectors and is also referred to as the

cosine similarity metric. CC is a measure of proportional similarity between two components, and

technically the index has a range from -1 (perfect negative congruence) to 1 (perfect positive congru-

ence). In practice, because the all the loadings of a PC can be multiplied by -1 without changing the

meaning of the PC, the absolute value of CC is considered, which correspondingly ranges from 0 to

1. The closer to 1, the more similar the two components are. Chan et al. discussed the 0.9 rule of
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thumb as an indicator of good matching between PCs (Chan et al., 1999). The application of CC as

a similarity metric for factor invariance has been extensively studied (Chan et al., 1999; Lorenzo-

Seva and ten Berge, 2006).

Pearson’s correlation coefficient (r, ‘r_correlation’)
The calculation of r between two vectors of component loadings has also been used as a pattern

matching metric (Guadagnoli and Velicer, 1991). It is computed as (3):

rx;y ¼

P

n

i¼1

xi� x
�� �

yi� y
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

xi � x
�� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

yi � y
�� �2

s (3)

In the syndRomics package, the Pearson’s correlation coefficient is calculated using the cor() func-

tion of the stats package.

Root mean square error (RMSE, ‘rmse’)
RMSE has also been used as a metric for factor matching (Guadagnoli and Velicer, 1991). It is calcu-

lated as the square root of the average squared difference of the loadings of the variables as (4):

RMSEx;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

xi� yið Þ2

n

v

u

u

u

t

(4)

Component 2

Component 1 PS H NS

PS f11 f12 f13

H f21 f22 f23

NS f31 f32 f33

where n is the number of variables in both components x and y. A RMSE of 0 determines a perfect

matching, and therefore the smaller the RMSE is, the more equivalent the two components x and y

are.

Cattell’s s index (‘s_index’)
The s index was first suggested by Cattell and Baggaley, 1960; Cattell et al., 1969. It is based on

the factor mandate matrix (Cattell and Baggaley, 1960) where loadings are either one if a compo-

nent is considered to act on a variable, called a salient variable, or 0 if not (forming the hyperplane

space). Cattell’s suggested an arbitrary ± 0.1 cutoff where variables with loadings outside the cutoff

range are removed from the hyperplane and considered to be salient variables. In practice, one

might want to alter the threshold depending on the experimental conditions. Any loading inside the

cutoff range is then interpreted as having been produced by chance. The s index is calculated from

the cross-classification of the common variables of two components/factors:

where PS = positive salient variable; H = hyperplane variable; NS = negative salient variable; fij is

the joint frequency. Positive and negative salient variables are variables outside the cutoff range

with positive or negative loadings respectively.

Pattern matching is determined by comparing the cell frequencies in the cross-classification table.

Here we implement the simplified form of calculating s (5):

s¼ f11þ f33� f13� f31

f11þ f33þ f13þ f31þ 1

2
f12þ f21þ f23þ f32ð Þ (5)

The reader is referred to Cattell and Baggaley, 1960; Cattell et al., 1969; Guadagnoli and

Velicer, 1991 for details on reasoning and calculations. s ranges from 1 (perfect similarity) to �1
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(perfect dissimilarity) centered at 0 (pattern due to chance). Similar to CC, the absolute value of s is

considered.

Internal functions
There are internal functions used by the package that the user might never have to call directly,

although they are accessible in case the user needs them. Here, we provided a general description

of those, leaving the details to the package documentation. All the internal functions to extract simi-

larity metrics are: extract_cc(), extract_s() and extract_rmse(). They all take two numeric vectors and

return the corresponding similarity metric between them.

new_syndromics()
Helper function to construct the ‘syndromics’ class object that will be use in the S3 generic and

method functions. It returns an object of class ‘syndromics’ of the type list.

stand_loadings()
This function extracts the standardized loadings from the output of the prcomp() or the princals()

functions. In the case of the prcomp() solution, the standardized loadings are calculated as:

s:loadings ¼ eigenvectors� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eigenvalues
p

if the PCA was performed on the standardized (scaled to unit

variance) data or s:loadings ¼ eigenvector � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eigenvalues
pð Þ=S where S is the vector of the variables

standard deviation. In the case of princals(), standardized loadings are returned directly in its output

and therefore stand_loadings() returns those. The function returns a data frame with the standard-

ized loadings in the form of variables as rows and PCs as columns.

extract_loadings()
This is a wrapper function for stand_loadings() with added functionalities such as error breakers that

is used by most functions in the package.

extract_syndromic_plot()
This function is internally called by the syndromic_plot() function and returns a ggplot2 object with

the syndromic plot for the specified PC. The only argument that is not present in the syndromic_plot

() function is the pc argument that specifies which PC to plot. Users should always use syndromic_-

plot() function instead of extract_syndromic_plot() since syndromic_plot() automatically incorporates

other functionalities.

component_similarity()
This function is called by the pc_stability() function to calculate the specified similarity metric (see

above) between the given list of data frames of loadings. While pc_similarity() uses this function to

calculate similarity between the original (parent) loadings and a B sample loadings, the passed list of

loadings can be n > 2. Then, the similarity metrics will be calculated between all combinations of n.

It returns a list of objects containing a list of the comparisons, a data frame with the averaged metric

and the bounds of confidence interval for each specified metric and PC.

boot_pca_sample()
This generic function is passed to the statistic argument of the boot() function internally called by

the pc_stability() function. It implements the bootstrapping algorithm described above (Figure 2A).

Then the boot() function will call boot_pca_sample() B times from the specified data and the pca out-

put of the prcomp() (through the method boot_pca_sample.prcomp()) or princals() (through the

method boot_pca_sample.princals()) function, returning a list of B data frames of loadings. The boot-

strapping method can be specified using the sim argument.

permut_pca_D() or permut_pca_V()
This is a generic function internally called by permut_pca_test() to produce P permutations of the

given output of the prcomp() or the princals() functions using permD or permV method. Four S3 R

function methods are implemented: permut_pca_D.prcomp(), permut_pca_D.princals(),
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permut_pca_V.prcomp(), permut_pca_V.princals(). It returns a list of the results of permuting the

data, conducting a PCA and extracting either the VAF or the standardized loadings for each P as in

Figure 2.

Plot.syndromics()
This function implement the S3 method for plotting ‘syndromics’ class objects generated by

pc_stability() and permut_pc_test() functions using the R generic plot(). It returns specific plots calling

the visualization functions implemented in the package.

Nonlinear PCA
Nonlinear PCA by optimal scaling and alternating least square was obtained using the princals()

function from the {Gifi} package in R. We specified to analyze all variables with nominal restriction

scaling, allowing for non-monotonic transformations, and set a restriction of 3 degrees in polynomial

transformations for nonlinearity. The corresponding instruction was: princals(nlpca_data, ndim = ncol

(nlpca_data), ordinal = FALSE, degrees = 3, knots = knotsGifi(nlpca_data, type=‘E’)), where nlpca_-

data is the imputed dataset for case study 2 (see supplementary code for more details).

Missing data analysis
Details on the code are available as supplementary material. Data wrangling for the two case studies

was performed using R packages included in the Tidyverse package. Missing pattern visualization

were obtained using the naniar (Tierney et al., 2020) R packages. Test for MCAR was performed

using the TestMCARNormality() function from the MissMech package (Jamshidian et al., 2014).

Multiple imputation was performed using predicting mean matching method available in the mice

(Buuren and Groothuis-Oudshoorn, 2011) R package, setting the number of imputations to

m = 50. A list of 50 complete datasets were then obtained and processed by PCA as specified in the

main text. For each m dataset, the loadings where extracted and rotated using Procrustes rotation

(pracma package) toward the average of the imputed datasets. The distributions of loadings and

component similarities for the first three PCs where calculated using the syndRomics package as

described above.
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