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ABSTRACT OF THE DISSERTATION

The phenomenology of neutrino oscillations in cosmology and core-collapse supernovae

by

Lucas Johns

Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor George Fuller, Chair

Neutrinos have shaped cosmic history in important ways. In early epochs, they left their

mark on the expansion of the universe and the genesis of primordial nuclei. In more recent eras,

their signature has been repeatedly etched into the explosive dynamics of massive stars and the

chemical enrichment of the cosmos. In the guise of sterile neutrinos, they may even constitute the

dark matter.

None of these roles is, as of yet, fully understood. Aside from the observational challenges,

there are significant theoretical ones. Neutrinos are known to come in at least three different

flavors, each of which interacts differently with other particles. They are also known to oscillate:

due to quantum mechanics, a neutrino’s flavor changes in the course of its propagation. The

xiii



phenomenology that emerges in dense neutrino systems as a result of flavor oscillations is a

frontier topic of precision cosmology and high-energy astrophysics. It is the focal point of this

dissertation.

The central theme is nonlinearity. When a system is dense in neutrinos, kinetic behaviors

can arise that differ dramatically from those in systems dense only in “ordinary” matter like

electrons and nucleons. The key piece of microphysics in this regard is the forward scattering

of neutrinos on one another, which causes the flavor evolution of any given neutrino to depend

on the flavor states of all neutrinos that it crosses paths with. The chapters here explore some

of the macroscopic consequences of this subtle quantum phenomenon, with applications to the

lepton-asymmetric early universe, core-collapse supernovae, and sterile neutrino dark matter.
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Chapter 1

Introduction

1.1 Overview

Neutrino physics is an active and sprawling area of research. Many practitioners, myself

included, are drawn to it because it transcends the usual disciplinary partitions of physics. It’s not

uncommon, at least these days, for physicists to write papers on particle physics, astrophysics,

and nuclear physics, and yet to think of themselves primarily as neutrino physicists. An outsider

might reasonably wonder: Why so much emphasis on this one particle?

The neutrino has no less than three unusual properties. (1) The neutrino is very light, but

not quite massless; (2) it communicates with other particles predominantly through the weak

interaction; and (3) it exhibits flavor oscillations that are observable and practically important.

Taken together, these attributes make the neutrino appealing to physicists of a wide variety of

backgrounds and motivations.

This dissertation is on cosmology and core-collapse supernovae, so in one respect the

motivation here is to better understand these environments. But as it happens, the path from

the neutrinos’ fundamental properties to its macroscopic effects is in many cases a difficult one,

passing through terrain—the phenomenology of dense neutrino systems—that is intellectually

1



deep in its own right. While the applications give this subject real-world heft, I have often found

myself most excited by the ways in which the kinetic theory itself speaks to certain general issues.

How is it that quantum fields come to resemble collections of particles? How does quantum

decoherence (“the collapse of the wave function”) play out when the system includes all the

contents of the universe? How does a system relax to equilibrium without the randomizing effects

of collisions? Questions like these are somewhat more philosophically hued than the chapters to

come, which by and large focus on solving definite astrophysical problems, but they hover in the

background all the same.

In the particular problems I’ve focused on, the origin of the conceptual richness lies mainly

in property (3). Neutrinos are known to come in at least three flavors—νe, νµ, and ντ—and the

term oscillation refers to the experimentally confirmed fact that a νe, for example, can transform

into a νµ or a ντ as it propagates. The result is that neutrinos transport an evolving quantum

degree of freedom (flavor) in addition to the usual package of energy, momentum, and spin. As

neutrinos move about, traversing vast distances at nearly the speed of light, a microphysical

quantum phenomenon is painted across a macroscopic canvas.

The same property is at the origin of the major practical challenges. The way that

neutrinos oscillate is affected by the medium they travel in, be it the early universe, the Sun, or an

exploding massive star. The causal relationship therefore goes both ways: from oscillations to the

environment, and from the environment back to oscillations. What’s more, neutrinos themselves

make up part of the environment, a feature that injects nonlinear dynamics into an astrophysical

or cosmological problem that already spans a wide range of scales.

Each of the subsequent chapters is a publication I’ve worked on over the course of my

PhD. The big-picture contexts are the search for new physics using cosmic neutrinos (Chapters 2

and 3), the ongoing effort to understand how massive stars explode (Chapter 5), and the quest

to identify dark matter (Chapters 6 and 7). (Chapter 4, on the connection between neutrino

oscillations and geometric phases, is not specific to any one application.) If at times the contents

2



seem somewhat removed from these overarching goals, it’s because my more immediate aim has

been to gain a deeper understanding of the neutrino phenomenology itself. This view might be

a bit unorthodox in the present-day physics climate, but if given the choice between knowing

what makes up the dark matter and having revealed to me the most penetrating insights into the

complex dynamics of neutrinos, I’d probably pick the latter. That this dynamical theory is of

cosmic significance, and may even bear on the dark matter problem, is a nice bonus.

Still, the applications do matter, and the rest of this chapter will try to establish why

someone with no interest in neutrino quantum kinetics per se might still believe this work was

worth doing. The next section will summarize the status of neutrinos as a subject within particle

physics, and the section after will do the same from the viewpoint of astrophysics and cosmology

(though we’ll quickly see that the two perspectives are not totally separable). Along the way, I’ll

put my own work into more specific context. The tone will continue to be relatively informal,

leaving technical treatments to the later chapters. References for the background provided here

can be found in the individual chapter introductions.

1.2 The particle physics of neutrinos

Let’s start with the basic facts. Six different types of neutrinos have been observed. The

first pair is made up of the electron neutrino νe and its antiparticle ν̄e. These two can be thought

of as the neutral partners of the electron e− and the positron e+. The second pair is the muon

neutrino νµ and its antiparticle ν̄µ, partners of the muon and antimuon. The third is the tau pair,

ντ and ν̄τ. The evocative term flavor is used to label each of these pairs: νe and ν̄e both carry

electron flavor, and so on.

The fact that neutrinos don’t carry electric charge causes them to behave very differently

from electrons, muons, and taus. We don’t, for instance, find atoms with neutrinos in orbit about

protons, nor do engineers build generators that pump “neutricity” into people’s homes. In fact,

3



neutrinos play virtually no role at all in the fields of chemistry, biology, or engineering.

It takes the transfiguration of nuclei, or something equally out of the ordinary, just to get

neutrinos to make an appearance. When a neutron decays into a proton, it balances electric charge

by emitting an electron. In the present day, we know that this isn’t enough: The flavor of the

electron must in turn be balanced by the emission of a ν̄e. In 1930, long before the necessary

apparatus existed to detect the antineutrino, the unobserved particle only showed up in the form

of missing energy and momentum. That sufficed for Wolfgang Pauli, one of the architects of

quantum mechanics, to propose the existence of what we now call the neutrino. Conjecturing a

new particle on the basis of kinematics is today a routine and guiding principle, but back then,

when the only known particles were the proton and the electron, it was an audacious move.

Because of the particle’s neutrality, it took until 1956 for the hypothesized ν̄e from nuclear

decay to be confirmed, and several more years for the muon flavor to be detected despite the fact

that the muon itself had been discovered back in the 1930s. (Although νµ couples to the electron

and tau as well, it couples more strongly to the muon. This is the sense in which they form a pair.)

When the tau was discovered in 1975, it was naturally—and correctly—anticipated that a ντ was

in the offing.

The couplings that neutrinos have to each other and to other particles are mediated by the

weak interaction and gravity. The feebleness of their couplings turns out to be a strength in some

contexts. They’re hard to detect because they interact weakly, but if you can detect them, you can

use them to see through matter that’s opaque to photons. Historically, this logic was first applied

to the Sun, to the mutual and half-unexpected benefit of both solar and particle physics.

Nuclear fusion in the Sun radiates neutrinos, which easily escape from the core and

pass through the outer solar layers on their way out to space. The vast majority of neutrinos

directed towards Earth make it here, and around 1970 they were detected, for the first time, by

the Homestake Experiment stationed deep in a South Dakota mine. It soon became apparent,

however, that the flux of neutrinos being detected did not match the flux that was predicted. It
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was too low. Physicists began to wonder whether the standard theoretical model of the Sun was

in need of serious revision.

Another line of thinking was gaining traction at the same time. Up to that point, the

default assumption was that neutrinos were massless. There’d been no evidence otherwise. But it

had also been realized that if they were massive, a freely traveling neutrino would, for quantum-

mechanical reasons, change flavor in transit. Since Homestake only observed electron flavor, it

was conceivable that the full expected flux was generated in the Sun’s core, but that much of it

was disappearing into the other flavors due to neutrino oscillations en route.

This suggestion would prove to be the correct one, vindicating the standard solar model.

The discovery of neutrino oscillations—and, by implication, neutrino mass—was also momentous

for particle physics, because any mechanism that gives mass to the neutrino requires new particles

to be posited, if not something even less conventional. To this day, neutrino mass is one of the

most straightforward pieces of evidence we have that the standard models of cosmology and

particle physics are not the full story.

The theoretical importance of neutrino mass has motivated an array of more recent

experimental efforts. Massive neutrinos are now, by convention, considered part of the Standard

Model of particle physics, even though the origin of their mass must lie beyond it, and many

of the experiments target the standard parameters introduced by neutrino mass. Some of these

are well measured (the mass-squared splittings and mixing angles), some are only somewhat

constrained (the Dirac phase, the ordering of the masses, and the absolute mass scale), and still

others are not known at all (the Majorana phase and, relatedly, whether the neutrino is its own

antiparticle). The best-measured parameters are the ones that show up in oscillation experiments,

because they dictate the oscillation patterns. For the same reason, they’re the ones that are most

relevant for this dissertation.

There are whole classes of other neutrino experiments that aren’t especially (or even at all)

focused on standard neutrino oscillations. Notable here are the programs that search for additional

5



types of neutrinos beyond the six standard ones. The common name for these particles is sterile

neutrinos; they meet the definition of being neutrinos because they mix with the other ones

through oscillations, but they’re required to be neutral under the non-gravitational Standard Model

interactions, including the weak interaction. They need not be inert under all non-gravitational

interactions, however, and in the last two chapters we’ll consider hypothetical sterile neutrinos

that have beyond-Standard-Model couplings.

The connection between astrophysics and fundamental neutrino properties that began with

the solar neutrino puzzle has only grown stronger in the years since. But while the Homestake

Experiment is rightfully celebrated, solar neutrinos don’t really do anything to the Sun because

the solar medium is transparent to them. Passivity isn’t always the way of neutrinos, though. In

more extreme astrophysical environments—ones with higher densities, fluxes, and temperatures—

neutrinos can become active participants. Those environments, and the roles played in them by

neutrinos, have been the central focus of my research thus far.

1.3 The cosmology and astrophysics of neutrinos

One of the epochal events in the history of neutrino astronomy took place in 1987, when

neutrinos were detected from a core-collapse supernova located in the Large Magellanic Cloud, a

satellite of our Galaxy. The source of those particles, SN 1987A, was the first (and still the only)

supernova observed in neutrinos.

At that time, the nonzero mass of neutrinos hadn’t yet been firmly established, but the

proposal had already been made that neutrino oscillations could resolve the solar neutrino problem.

The question arose: If neutrino mass did account for the solar flux deficit, what did it imply for

the newly detected supernova flux?

To answer that question, one must understand how neutrinos change flavor on their way

out from the inner regions of the supernova. In some respects the relevant physics had already
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been studied in the context of the Sun. A neutrino traveling in a dense medium is “slowed down”

by its interactions with the background particles: It acquires an effective mass that differs from

its mass in vacuum. Because the different flavors interact differently, this in-medium-mass effect

depends on the flavor state of the neutrino. And because neutrino oscillations depend on mass

differences, the presence of the medium changes the way that neutrinos oscillate.

Although this is as true of the Sun as it is of SN 1987A, the vastly greater fluxes of

neutrinos in supernovae make the in-medium effects in these environments qualitatively distinct.

The solar medium, for all practical purposes, just consists of electrons and ions. In contrast, a core-

collapse supernova emits neutrinos so intensely that their contribution to their own background

can’t be ignored. The result is that the effective masses of supernova neutrinos are nonlinear:

As a νe oscillates into a νµ or ντ, the number densities of the flavors are altered, and as the

number densities change, oscillations are altered. Theoretical insights in the 1990s sharpened the

distinction even further. It’s not just that the effective masses depend on the number densities.

They depend on the neutrinos’ own quantum states.

The phenomenology that results from this quantum-level nonlinearity is still being pieced

together in supernovae and other high-neutrino-density settings such as neutron-star mergers.

These environments are also ones in which nucleosynthesis and general relativity are important.

(George Fuller, my PhD advisor, has referred to this as the evil cabal of neutrinos, nuclei, and

gravitation.) The quantum-kinetic theory of neutrinos has thus grown to become one of the

frontiers in the current era of multi-messenger astronomy.

Supernovae and mergers are very complex, however, even without oscillations. Back

in the 90s, at the same time that interest in the nonlinear flavor dynamics in supernovae was

picking up, it was realized that similar physics might have been important in the much simpler

environment of the early universe. The realization actually happened twice, once in connection to

oscillations among the Standard Model neutrinos and again in connection to oscillations between

a sterile species and the Standard Model ones. Because of the relative simplicity of the medium,
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in particular the fact that the early universe was very nearly homogenous and isotropic, the flavor

evolution of cosmic neutrinos is phenomenologically rather different from that of supernova

neutrinos, and easier to get a handle on.

This dissertation collects my work on oscillations among active (i.e., Standard Model)

neutrinos in core-collapse supernovae, among active neutrinos in the early universe, and between

active and sterile neutrinos in the early universe. To bring this chapter up to the present, I’ll now

give a very brief, big-picture overview of each of these topics.

1.3.1 Neutrinos in the early universe

According to the standard cosmology, the universe in the seconds after the Big Bang was

a nearly uniform plasma. It was hot and dense, but it was also expanding. As it expanded, it

cooled, and after a few minutes the temperature had dropped low enough for nuclei to assemble in

a process known as Big Bang nucleosynthesis (BBN). After a few hundred thousand years, atoms

formed. With almost all of the once-free charged particles locked away in neutral atoms, photons

decoupled from the matter in the universe. Dark matter was increasingly clumping together due

to gravity, and atoms began to do so as well. The stage was set for the first galaxies and stars to

form, and for the universe to begin looking something like it does now.

The decoupled photons can still be found today, streaming freely throughout the universe

in the form of the cosmic microwave background (CMB). They, along with the relic nuclei from

BBN, are direct traces of the universe in its earliest epochs, and have become cornerstones of

precision observational cosmology. The atoms, now mostly reionized, have also been observed,

while dark matter has thus far only been inferred gravitationally.

What of the neutrinos in all this? The early universe was teeming with them as well.

Being almost massless, their history in some ways resembles that of photons. They decoupled

around the BBN epoch, beginning a phase of free streaming that’s expected to be ongoing still,

and the existence today of a cosmic neutrino background (CνB) is a clear prediction of the
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standard cosmology. But because neutrinos are weakly interacting, the CνB is yet to be detected.

Information about cosmic neutrinos is instead deduced indirectly from the CMB, primordial

nuclei, and other cosmological observables.

Neutrinos affect cosmology primarily through their energy density and, at later times,

their mass. The exception to this—the period in the standard cosmology when the details of

their interactions matter—is during their decoupling from the plasma. Nonequilibrium dynamics,

including oscillations, become important at this time, leaving imprints on both CMB and BBN

data.

The effects are heightened in some nonstandard cosmologies with large asymmetries

in the densities of neutrino and antineutrino species. Cosmologies of this sort are only weakly

constrained by observations and have theoretical links to the cosmic baryon asymmetry (a

parameter that’s known to be nonzero) and certain models of dark matter. Neutrino-asymmetric

scenarios, and the collective flavor phenomena that characterize them, are the subject of Chapters

2 and 3. Chapter 4 then follows with an analysis of how the quantum phenomenon of geometric

phases manifests in collective neutrino oscillations. Though the calculations in Chapter 4 employ

highly simplified models in order to illustrate general principles, the physics is relevant to flavor

evolution in both the early universe and supernovae.

1.3.2 Neutrinos in core-collapse supernovae

Ordinary stars are propped up against gravity by the energy released in nuclear fusion.

The Sun, for example, shines because it’s currently fusing hydrogen into helium and emitting

photons in the process. After its nuclear fuel runs out, the Sun will eventually settle into a white

dwarf supported by electron degeneracy pressure (in other words, the Pauli exclusion principle).

A star about eight times the mass of the Sun, or heavier, follows a different track. It

undergoes core collapse, meaning that electron degeneracy is insufficient to counteract gravity. In

some cases it may be destined to become a neutron star, if repulsive nuclear interactions can supply
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enough pressure to halt collapse. (With the failure of electron degeneracy, electrons are effectively

pushed inside nuclei, whereupon they are captured by protons. The neutrons that are left behind

must likewise obey the Pauli exclusion principle, but the pressure from neutron degeneracy is

subdominant to that from repulsive interactions.) In some cases even nuclear interactions and

neutron degeneracy aren’t enough. Unless some speculative mechanism intervenes, the star’s fate

as a black hole is then all but sealed. The only other way out—possibly available to stars a couple

hundred times the mass of the Sun—is for the star to explode itself entirely, leaving behind no

compact remnant at all.

It’s estimated that a few core-collapse supernovae occur in the Milky Way each century.

Expectations for these events are progenitor-dependent and, even for a known progenitor, uncertain

at least in the details. From a theoretical perspective, the question is how an imploding star

becomes an exploding one. Six decades after this problem was first taken up, it’s still a forefront

issue in astrophysics. For how easy the question is to pose, the physics involved turns out to be

remarkably deep and varied.

The consensus view is that most explosions are due to the delayed neutrino-heating

mechanism, which at a basic level consists of three stages. First, as collapse proceeds, protons

capture electrons and turn into neutrons, the density rises, and the pressure from repulsive nuclear

interactions becomes sufficient to prevent the core, at least temporarily, from collapsing further.

The core thus stiffens and rebounds in a process known as core bounce.

Second, as the core bounces, a shock wave is blasted outward from the core into the

infalling stellar mantle. The shock plows through this material, pushing it outward, but is slowed

down by the emission of neutrinos and the dissociation of nuclei. In most cases, after a hundred

milliseconds or so, the enervated shock stalls. The initial energy imparted by core bounce was

not enough to unbind the mantle. Without another power source, the material pushed out by the

shock will fall back onto the core, and explosion will have failed.

Finally, the additional power source takes over: An intense flux of neutrinos emitted from
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the hot, central regions of the core deposits energy into the material behind the shock. The heated

fluid bubbles and roils, and the shock is revived. The supernova explodes.

The pivotal role of neutrinos is clear. After explosion, moreover, the remnant protoneutron

star (if one exists) continues to radiate neutrinos, driving a wind in which supernova nucleosyn-

thesis takes place. Core-collapse supernovae thereby spray their surroundings with chemical

elements, which in time become critical in the formation of new stars and the evolution of the

host galaxy.

This brief description glosses over many important details of the collapse, explosion, and

aftermath. One of them is the subject of Chapter 5: oscillations in the neutrino flux responsible

for reviving the shock. Up until recently, it was commonly thought that neutrino oscillations

likely have no significant impact on the dynamics of explosion. A new class of collective flavor

instabilities has since been discovered, however, calling this conclusion into question. Chapter 5

addresses this oscillation physics, with an eye toward ultimately assessing the effects on explosion.

1.3.3 Sterile neutrino dark matter

In the early 90s, it was pointed out that sterile neutrinos could account for the observed

density of dark matter. In contrast to many other models, here the dark matter never comes

into thermal equilibrium with the Standard Model sector of the universe. Early on, at high

temperatures, there’s only a negligible abundance of sterile neutrinos; the active neutrinos,

which are in equilibrium, are prevented from oscillating into sterile ones by the in-medium

alterations of the effective masses. Later, at low temperatures, oscillations are unsuppressed but

the scattering rate is too small for the sterile population to be progressively built up by active-

to-sterile conversion. (A new and streamlined derivation of the equation describing this physics

is given in Chapter 6.) In between these limits, however, there’s a window in which the sterile

sector can become appreciably populated. If the right parameters are chosen, the abundance ends

up matching that of dark matter.
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One of the appeals of the Dodelson–Widrow mechanism, as this scenario is often called,

was that it predicted warm dark matter over much of its originally viable parameter space. That

is, because sterile neutrino dark matter is relatively light, it tends to be faster-moving than the

classic cold dark matter particles. With their higher velocities, sterile neutrinos are able to escape

gravitational potential wells that slower particles would be trapped by. As a result, cosmic

structure—dark matter halos and galaxies—may bear the imprint of dark matter’s hypothetical

warmth.

Observations of structure have been used, alongside searches for sterile neutrino decay in

dark matter halos, to constrain the Dodelson–Widrow mechanism. It is now strongly disfavored

as a way to produce all of the dark matter. This sequence of developments—the proposal of a

new particle and production mechanism, the identification of observable predictions, and finally

the scenario’s ruling-out—exemplifies, perhaps, the closest one can get to progress in the search

for dark matter short of actually making a detection.

Nonetheless, sterile neutrinos remain an interesting dark matter candidate. The Dodelson–

Widrow mechanism is now seen as only the most minimal entry in a whole class of scenarios.

Other models in this class invoke more new physics, besides the sterile neutrino itself. One

example is found in Chapter 7, which makes the observation that if sterile neutrinos interact

with one another, experimental constraints might be avoided. The trick is that self-interacting

sterile neutrinos can nonlinearly enhance their own production. In the parameter space studied

in Chapter 7, the mechanism is in fact discovered to be too effective; this set of self-interacting

models is essentially ruled out by its own dynamics.
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Chapter 2

Neutrino flavor transformation in the

lepton-asymmetric universe

2.1 Abstract

We investigate neutrino flavor transformation in the early universe in the presence of a

lepton asymmetry, focusing on a two-flavor system with 1−3 mixing parameters. We identify

five distinct regimes that emerge in an approximate treatment neglecting collisions as the initial

lepton asymmetry at high temperature is varied from values comparable to current constraints on

the lepton number down to values at which the neutrino–neutrino forward-scattering potential is

negligible. The characteristic phenomena occurring in these regimes are (1) large synchronized

oscillations, (2) minimal flavor transformation, (3) asymmetric (ν- or ν̄-only) MSW, (4) partial

MSW, and (5) symmetric MSW. We examine our numerical results in the framework of adia-

baticity, and we illustrate how they are modified by collisional damping. Finally, we point out

the existence of matter–neutrino resonances in the early universe and show that they suffer from

non-adiabaticity.
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2.2 Introduction

In this paper we examine how cosmological lepton asymmetries spawned at high temper-

ature affect the ensuing evolution of neutrino flavor. Despite the particle’s humble stature, the

consequences of neutrino physics for the early universe are profound. As the universe cools to a

temperature of a few MeV, the weak-interaction rates that have safeguarded thermal equilibrium

in the neutrino sector begin to falter in their competition with Hubble expansion. At roughly the

same time, electrons and positrons are annihilating and dumping entropy into the plasma. Some

neutrinos share in this heating, but not all — leaving their once-equilibrium spectra deformed and

cool compared to those of photons, which remain in equilibrium by dint of their swift electromag-

netic interactions. (See, for example, Ref. [1] for a recent discussion of the Boltzmann transport

of neutrino energy and entropy through weak decoupling and Big Bang nucleosynthesis (BBN).)

During this period neutrinos are all the while undergoing capture on free nucleons and

contributing to blocking factors in electron/positron capture and neutron decay. Through their

role in these processes, neutrinos shape the neutron-to-proton (n/p) ratio that will be available

when the nucleus-building begins in full force at T ∼ 70 keV. The primordial byproducts of BBN

— most promisingly, from an observational perspective, the elements D and 4He — depend on the

n/p ratio, and the protracted freeze-out of weak interactions means that there is ample time for

the evolving, non-equilibrium neutrino spectra to leave their mark on the nuclide abundances [2].

Even after neutrinos have decoupled from the plasma, they are no mere spectators, as their

energy density helps to set the expansion rate of the universe. In the era following e± annihilation,

neutrinos are relativistic and therefore contribute, along with photons (and possibly other particles

beyond the Standard Model), to the radiation energy density ρrad. The energy density of these

species is commonly parameterized in terms of the quantity Neff, defined by the relation

ρrad = 2

[
1+

7
8

(
4

11

)4/3

Neff

]
π2

30
T 4. (2.1)
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This parameter is sensitive not just to the number of flavors of neutrinos but also to their post-

decoupling spectra, which, as noted above, inevitably sustain non-thermal distortions. Determin-

ing the precise form of these distortions and their impact on BBN and Neff is a rich and persistent

problem in cosmology [1–11].

Of particular importance in this regard is the lepton number

Lν =
nν−nν̄

nγ

, (2.2)

defined in terms of the number densities of neutrinos (nν), antineutrinos (nν̄), and photons (nγ).

In thermal equilibrium a finite lepton number is tantamount to one or more nonzero chemical

potentials in the neutrino sector, with clear ramifications for Neff. Away from equilibrium the

chemical potentials are no longer well-defined, but the implications of nonzero Lν for the radiation

energy density still stand. A cosmological lepton number also exerts an influence through the

special role, indicated previously, that the electron flavor plays in mediating the reactions

νe +n
 p+ e−

ν̄e + p
 n+ e+. (2.3)

The unique leverage on the primordial 4He abundance that νe and ν̄e are afforded by virtue of

these reactions [12] has driven interest in the possibility that Lν is not only nonzero but is (or

once was) distributed unevenly across the individual flavors. The evolution of an initial lepton

asymmetry — a difference between Lνe and Lνx in the effective two-flavor scenario that we will

investigate — depends on the interplay between collisions and medium-enhanced oscillations,

both of which are capable of shuttling lepton number between flavors. In a lepton-asymmetric

universe especially, precise predictions of Neff and YP (the mass fraction of 4He) therefore demand

a careful treatment of neutrino flavor transformation.

Due to the influence of sphalerons, the lepton number is expected in many baryogenesis
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models to be comparable to the baryon asymmetry (or baryon-to-photon ratio) η = nB/nγ ≈

6× 10−10 [13–16]. But the fact remains that the lepton number is only modestly constrained

by measurements: Even the most stringent bounds currently permit asymmetries of ∼ 5×10−2

[17–22], a full eight orders of magnitude above η. Moreover, the past several decades have

brought forth a number of models [23–33] that can generate a large lepton number without

contravening the impressive agreement on η between cosmic microwave background (CMB) and

BBN data. A measurement of the lepton number of the universe, whatever its value turns out to

be, will serve as a probe of physics at and above the scale of electroweak symmetry breaking and

will put to the test theories of baryogenesis.

As of recently, a careful treatment is now motivated from yet another direction. The

detections [34, 35] of a mysterious X-ray line in a number of galaxies and galaxy clusters at

∼ 3.55 keV have ignited speculation that the line may be attributable to dark matter decay. One

scenario consistent with this interpretation — indeed, a scenario that may be said to have predicted

the appearance of a keV decay line [36] — is the resonant production of sterile neutrino dark

matter in the presence of a nonzero lepton number [37–39]. (For reviews of the dark-matter

candidacy of sterile neutrinos, see Refs. [40, 41].) Given the energy and flux of the alleged decay

line, resonant production singles out a range of pre-resonance lepton numbers on the order of

Lν ∼ 5×10−4 as being in best agreement with the X-ray observations [42]. Since the production

mechanism is agnostic to the details of how Lν is distributed, it leaves the door open to lepton

asymmetries and any signatures that they may have left behind.

Investigation into the evolution of the individual lepton numbers dates back at least to

the work of Savage, Malaney, and Fuller [43], who considered the role of resonant neutrino

oscillations — a topic that will be a major theme of the present work. But the current orthodoxy

on the subject originated a decade later with the watershed numerical study by Dolgov et al. [17]

and the papers by Abazajian et al. [44] and Wong [45] that followed shortly thereafter. (See also

Ref. [46].) The authors of Ref. [17] concluded that equilibration of the lepton number across
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the flavors — the shorthand for which is simply flavor equilibration — is achieved prior to the

onset of BBN for a lepton asymmetry on the order of the Lν constraint. Subsequent papers on the

topic [20, 21, 44, 45, 47–49] have refined this original treatment of the problem, examining the

connections to Neff, YP, and the D abundance [D/H].

The literature in this area has largely been inspired by the quest to establish rigorous

limits on the neutrino degeneracy parameters ηνα
= µα/T , where µα is the chemical potential of

neutrino flavor α. In the event that a lepton number completely equilibrates, the BBN-derived

limits that constrain ηνe likewise apply to the other flavors. Conversely, if no equilibration occurs,

then the constraints on ηνµ and ηντ
are considerably weaker than those on ηνe , as they are bounded

solely by their contribution to the radiation energy density. The objective of this paper is not to

revisit the question of constraints on neutrino degeneracy, but rather to explore more fully the

panoply of flavor evolution that may have occurred in the early universe. While smaller values of

Lν push into the realm of effects that are thought to be currently undetectable, we demonstrate —

with an eye to forthcoming observational improvements — that varying the initial lepton number

leads to dramatically different behaviors.

To this end we identify five regimes of coherent flavor evolution that may be found for

lepton numbers at or below observational constraints (Fig. 2.1). We label these regimes by their

principal characteristics, which are, in order of decreasing lepton asymmetry,

I. large synchronized oscillations,

II. minimal flavor transformation,

III. asymmetric (ν- or ν̄-only) MSW conversion,

IV. partial MSW conversion, and

V. symmetric MSW conversion.

We elucidate the physics behind these behaviors with frequent recourse to the framework of (non-)
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Figure 2.1: Schematic illustration of the landscape of coherent flavor evolution in the inverted
hierarchy as a function of lepton asymmetry L = Lνe−Lνx . The black swath at the top of the
figure indicates the realm of lepton asymmetries that are currently excluded by 4He measure-
ments. The five regimes at sub-constraint values of L are labeled by their most prominent
characteristics.
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adiabatic level-crossings. We also discuss how the inclusion of collisions, in the approximate

form of scattering-induced quantum damping, differently affects these regimes. Coarse features

of the coherent oscillation physics are found to persist in the presence of damping. We argue that

this finding motivates further exploration of the lepton-asymmetric terrain with a treatment that

goes beyond the approximations of the present study.

The equations of motion relevant to the evolution of a lepton asymmetry in the early

universe are set out in Sec. 2.3. The regimes of coherent evolution are presented in Sec. 2.4,

followed by discussions of adiabaticity, the matter–neutrino resonance, and the importance of

collisions. A conclusion is given in Sec. 2.5. Throughout this paper we use natural units in which

c = ~= kB = 1.

2.3 Neutrino kinetics in the early universe

For reasons made clear below, the active period for neutrino flavor transformation begins

around 10−20 MeV and continues down to — or, depending on the lepton asymmetry, through —

the epoch of neutrino decoupling at ∼ 1 MeV. Over these temperatures the three flavors of active

neutrinos are immersed in a hot, dense bath of electrons, positrons, and free nucleons; the µ± and

τ± that abounded at higher temperatures have all but disappeared, while e± remain relativistic

through to the very bottom of this temperature range. Protons and neutrons, in contrast, have long

since become nonrelativistic, and their densities are minuscule in comparison on account of the

high entropy of the plasma. Within this medium neutrinos experience oscillations enhanced by

forward (coherent) scattering with matter particles (e±) and other neutrinos. They also undergo

momentum-changing (incoherent) scattering with both populations.

In Sec. 2.3.1 we explain how the problem of neutrino flavor evolution under these condi-

tions can be reduced to an effective two-flavor scenario. We then go on to describe in Sec. 2.3.2

the potentials that drive the coherent mixing between the two flavors and the incoherent scat-
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tering that competes against it. We provide in Sec. 2.3.3 the relevant background on resonant

flavor transformation and collective oscillations. Lastly, in Sec. 2.3.4 we briefly summarize the

numerical approach adopted in this study.

2.3.1 Two-flavor system

Under the condition that Lνµ = Lντ
, the paucity of muons and tauons in the plasma — and,

correspondingly, of charged-current interactions involving νµ and ντ— entails that neutrinos are

well modeled by an effective two-flavor system consisting of νe and νx, where νx is a superposition

of νµ and ντ. We present here a derivation of the effective mixing parameters relevant to this

two-flavor system. A similar view on the reduction to two flavors can be found in Ref. [50].

An effective mixing angle θ parameterizes vacuum mixing in the two-flavor system, with

the orthogonal transformation between the mass and flavor states given by

νe = ν1 cosθ+ν2 sinθ

νx =−ν1 sinθ+ν2 cosθ, (2.4)

where ν1,2 are mass eigenstates with masses m1,2. (Strictly speaking, as Eq. 2.6 below will make

clear, ν1 is only an eigenstate in the limit that two of the three physical neutrino masses are

degenerate. This is exactly the limit that we will take.) The electron neutrino νe in the two-flavor

system is identical to its three-flavor counterpart ν′e, which after transforming to the appropriate

mass bases yields the constraint

ν1 cosθ+ν2 sinθ = ν
′
1 cosθ

′
12 cosθ

′
13

+ν
′
2 sinθ

′
12 cosθ

′
13e−iϕ1

+ν
′
3 sinθ

′
13e−iδe−iϕ2, (2.5)
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using primes to denote three-flavor mixing parameters and δ and ϕi to denote the Dirac and

Majorana CP-violating phases. We identify θ = θ′13, so that the two-flavor mass eigenstates are

related to the three-flavor ones by the relations

ν1 = ν
′
1 cosθ

′
12 +ν

′
2 sinθ

′
12e−iϕ1

ν2 = ν
′
3e−iδe−iϕ2 . (2.6)

The phases δ and ϕ2 amount to an overall rephasing of ν2 and exert no influence on our calcula-

tions; similarly for the other Majorana phase. We point out that this conclusion regarding δ is

consistent with the study of CP violation in the neutrino-degenerate early universe in Ref. [48],

which showed that effects of CP violation from the Dirac phase appear only when Lνµ 6= Lντ
.

A third mass eigenstate, orthogonal to ν1 and ν2 and having mass m3, may also be defined

in order to complete the transformation between the primed and unprimed bases:

ν3 =−ν
′
1 sinθ

′
12 +ν

′
2 cosθ

′
12e−iϕ1. (2.7)

This state decouples from the other two and is identical to the third flavor eigenstate in the

unprimed basis: ν3 = νy. Written in terms of the physical flavor states,

νe = ν
′
e

νx = ν
′
µ sinθ

′
23e−iδ +ν

′
τ cosθ

′
23e−iδ

νy = ν
′
µ cosθ

′
23−ν

′
τ sinθ

′
23. (2.8)
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From Eqs. (2.6) and (2.7) it follows that

m2
1 = m′21 cos2

θ
′
12 +m′22 sin2

θ
′
12

m2
2 = m′23

m2
3 = m′21 sin2

θ
′
12 +m′22 cos2

θ
′
12. (2.9)

Since we are concerned primarily with qualitative behavior in this paper, we will be content to

take m′21 ≈ m′22 , which leads to

δm2 ≡ m2
2−m2

1 ≈ m2
2−m2

3 ≈ δm′231. (2.10)

To this level of approximation the νi (i= 1,2,3) states are genuine mass eigenstates and, moreover,

ν3 is degenerate with ν1 and decouples from the νe−νx mixing channel. With the proviso that

the lepton numbers Lνµ and Lντ
are the same (but not necessarily equal to Lνe), the flavor

transformation that occurs in the temperature range we investigate here is therefore adequately

captured by νe−νx oscillations with 1−3 mixing parameters.

This effective two-flavor system distills many of the important aspects of the full three-

flavor problem, and the flavor-transformation phenomena we describe below carry over to mixing

in other channels. The locations and sizes of features shift with changing parameters — δm2
�, for

instance, gives rise to resonance behavior at lower temperatures than does δm2
atm — but the physics

behind these features is resilient. Nonetheless, it should be kept in mind that transformation

among three flavors will lead to an even richer landscape of flavor evolution than in the two-flavor

scenario, especially in the event that Lνe , Lνµ , and Lντ
are all unequal.
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2.3.2 The kinetic equations

Tracking the flavor content of an ensemble of neutrinos and antineutrinos is accomplished

by following the evolution of the density matrices ρ and ρ̄, which for each comoving energy

ε = E/T ≈ p/T have the 2×2 structures

ρ(ε, t) =

 ρee ρex

ρ∗ex ρxx

 , ρ̄(ε, t) =

 ρ̄ee ρ̄ex

ρ̄∗ex ρ̄xx

 , (2.11)

where the individual matrix elements tacitly depend on ε and t. (Throughout this paper we

denote the analogous objects for antineutrinos using the prescription να→ ν̄α. The antineutrino

analogues will always be denoted with an overbar.)

We choose a normalization such that at high temperature ρ assumes the form

ρ(ε) ∼=

 f (ε,ηνe) 0

0 f (ε,ηνx)

 , (2.12)

where the diagonal entries are Fermi–Dirac equilibrium distribution functions

f (ε,ηνα
) =

1
eε−ηνα +1

. (2.13)

In general, whether at high temperature or not, the diagonal entries of ρ encode the number

densities of νe and νx and the off-diagonal entries measure quantum coherence between the two

flavors.

The initial conditions given in Eq. (2.12) are justified by the quasi-equilibrium that

obtains at the starting temperatures used for our calculations. At these temperatures the neutrinos

exchange energy with the plasma on timescales short compared to the Hubble time, ensuring that

the neutrino spectra retain their thermal Fermi–Dirac shape on the latter timescale, even while the
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chemical potentials are evolving. (To be precise, it is the number densities in energy eigenstates

that are proportional to Fermi–Dirac functions; the validity of using them in the flavor-basis

density matrix lies in the fact that at high T the flavor and energy bases are nearly coincident.) As

the temperature drops, oscillations grow in importance relative to incoherent scattering, and the

ability of scattering to preserve equilibrium spectra diminishes. But in the scattering-dominated

limit, in which our initial temperatures safely fall, neutrinos have distribution functions as in

Eq. (2.12), and coherence between the flavors is efficiently stamped out by the high scattering

rate.

For each mode ε the neutrino and antineutrino density matrices obey the equations of

motion

i(∂t−H p∂p)ρ(ε, t) = [H (ε, t) ,ρ(ε, t)]+C

i(∂t−H p∂p) ρ̄(ε, t) =
[
H̄ (ε, t) , ρ̄(ε, t)

]
+ C̄ , (2.14)

where H is the Hubble parameter, H is the Hamiltonian, and C is the collision term encapsulating

incoherent scattering [51]. The collision term depends on the neutrino density matrices and the

background-particle distribution functions across all energies.

The Hamiltonian consists of three ingredients: a vacuum potential Hvac, which is driven by

the mass-squared splitting δm2 and the vacuum mixing angle θ; a thermal potential He, which is

due to forward scattering of neutrinos with the e± jostling about in the plasma; and a self-coupling

potential Hν, which arises from neutrino–neutrino scattering. Written out,

H = Hvac +He +Hν

=
δm2

2E
B− 8

√
2GFEρe±

3m2
W

L

+

√
2GF

2π2

∫
dE ′E ′2

[
ρ
(
E ′
)
− ρ̄
∗ (E ′)] , (2.15)
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where in the flavor basis B = U(diag [−1/2,1/2])U† with Pontecorvo–Maki–Nakagawa–Sakata

(PMNS) matrix U, L = diag [1,0], ρe± denotes the energy density of e±, GF is the Fermi constant,

and mW is the W boson mass. The time-dependence of E, ρe± , ρ, and ρ̄ is implicit. Antineutrinos,

meanwhile, evolve under the Hamiltonian H̄ = Hvac +He−H ∗ν .

Strictly speaking, the Hamiltonian relevant to neutrino propagation in a medium contains

more terms than those shown in Eq. (2.15) [52]. In addition to the finite-temperature charged-

lepton potential (∼ ρe±) and the finite-density neutrino potential (∼ (nνe−nνx) for the diagonal

portion), neutrinos also experience a finite-temperature neutrino potential (∼ (ρνe−ρνx), again

for the diagonal portion) and a finite-density charged-lepton potential (∼ (ne−−ne+)). By the

charge neutrality of the universe, however, the e± asymmetry must balance the baryon asymmetry,

making this contribution to the potential very small. The thermal neutrino potential, meanwhile,

is O(G2
F) and is further suppressed by a factor comparable to the lepton asymmetry. Lastly, we

leave out the µ± contribution to He, as in the scenarios we are concerned with, their population

has dwindled close to zero by the time flavor transformation begins.

The collision term C in Eq. (2.14) represents inelastic scattering of neutrinos and is

proportional to G2
F . A fully realistic treatment would involve computing quantum Boltzmann

collision integrals [53, 54], a task that has only recently been accomplished for the first time [55].

Whereas in Ref. [55] de Salas and Pastor executed a high-precision calculation of Neff in the

standard (i.e., lepton-symmetric) scenario, our aim here is to point out that an initial lepton

asymmetry at high temperature shapes the subsequent neutrino flavor evolution in diverse and

complicated ways. For this study we instead set C to be a quantum damping term that is

proportional to ρ but has vanishing diagonal entries [56–62]. Using such a term for C amounts to

the ansatz that the chief effect of collisions is to eliminate coherence between the flavors.

The paradigm typically associated with quantum damping holds that a collision acts as a

measurement of the scattered neutrino, thereby collapsing it into a definite flavor state. Although

this picture is only a heuristic and has its limitations, it correctly suggests that a system of
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(anti)neutrinos immersed in a thermal bath ultimately approaches a mixed state with equal νe

(ν̄e) and νx (ν̄x) probabilities. One of the fundamental issues at stake with a lepton asymmetry is

the timescale over which this descent to a maximum-entropy state (and the concomitant flavor

equilibration) transpires. Conceptual aid notwithstanding, damping does not in fact capture

all of the microphysics of scattering, and in Sec. 2.4.4 we will address the deficiencies of this

approximation at length.

Rather than solving for the flavor evolution directly as a function of t, we work in terms

of a parameter x = Ma, where M is an arbitrary energy scale and a is the scale factor; doing

so transfigures the equations of motion into ordinary differential equations. Furthermore, for a

two-flavor system the density matrix ρ can be projected onto the Pauli matrices according to

ρ =
1
2

(
P0 +~P ·~σ

)
. (2.16)

Given that C has vanishing diagonal entries, the trace of ρ is preserved by the equations of motion

and has value

Trρ = P0 = f
(
η

i
νe

)
+ f

(
η

i
νx

)
, (2.17)

where f
(
ηi

να

)
is the initial distribution function of να, prior to any significant flavor transforma-

tion. The polarization vector ~P, meanwhile, does evolve: If similar projections are performed for

H and C , Eq. (2.14) can be recast as

Hx
d~P
dx

= ~H ×~P−D~PT . (2.18)

Along the same lines, we will make use of the notation

H =

 Hz HT

H ∗T −Hz

 , V =

 Vz VT

V ∗T −Vz

 , (2.19)
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where V = He +Hν denotes the weak-interaction potential arising from coherent forward scatter-

ing and where, for example, HT = Hx− iHy encodes the component of the Hamiltonian vector

~H that is transverse to the flavor (z-) axis. The damping parameter D that appears in Eq. (2.18)

is related to the scattering amplitudes of the neutrino flavor states. To illustrate: If the medium

were such that the two flavors had equal scattering amplitudes, interactions would be unable

to differentiate between the two flavors and there would be no damping (D = 0). At the other

extreme, if one of the flavors were non-interacting (for instance, in active–sterile mixing), then

the damping parameter would be half the total interaction rate Γα of the other flavor (D = Γα/2).

In the plasma of the early universe, νe and νx scatter with different (but nonzero) cross

sections, and a detailed derivation of D would add up the contributions from all the individual

weak-interaction processes relevant to this environment. We opt for a coarser treatment here,

taking

D ≈ 1
2
(Γe−Γx)≈

1
2

dexG2
F pT 4 (2.20)

with dex ≈ 0.35 [62]. The approximation in Eq. (2.20) is sufficiently accurate for the objectives

of this study. Indeed, for most of the paper we focus on the coherent regime, in which D = 0; it is

only in Sec. 2.4.4 that we let D assume the approximate form given above. To be sure, the flavor

evolution we are tracking occurs over a range of temperatures in which collisions are important.

But as we discuss in detail in Sec. 2.4.4, broad characteristics of the coherent regime survive

the inclusion of damping, and a close analysis of the coherent transformation sheds light on the

physics underlying the behavior in the presence of both oscillations and collisions.

Translating the density matrix ρ into the polarization vector ~P affords a geometric in-

terpretation to the flavor evolution of the system (more detailed expositions of which may be

found in Refs. [58, 63]). At high temperatures ~P lies along the z-axis because of the peremptory

destruction of coherence by collisions. As the temperature (and by extension the scattering rate)

drops, ~P is able to travel away from the z-axis: The path it follows is determined by a competition

between its desire to precess around the Hamiltonian vector ~H and the constant push exerted by
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collisions back toward the flavor axis. Meanwhile ~H itself migrates in response to the falling

temperature and the movement of the individual polarization vectors. ~P tries to track ~H as the

latter drifts, but its success in doing so is moderated by the constant buffeting of collisions and

the degree of non-adiabaticity. We address the latter criterion in Sec. 2.4.2.

At any time the relative number density of νe and νx of a given mode ε (taken to have

finite width dε) can be read off by projecting that mode’s polarization vector onto the flavor axis

and providing the appropriate thermodynamic prefactor:

Pz,ε = ρee,ε−ρxx,ε

=⇒ dnνe,ε−dnνx,ε =
T 3

2π2 dε ε
2Pz,ε. (2.21)

We have written the number density of να in mode ε as dnνα,ε in preparation for integrating over

all modes. Performing the sum over ε and dividing by T 3 (to get a redshift-invariant quantity)

yields the z-component of the integrated polarization vector:

Pz,int ≡
1

2π2 ∑
ε

dε ε
2Pz,ε =

nνe−nνx

T 3 , (2.22)

where nνe and nνx are the total number densities across all energies. The quantities P̄z and P̄z,int,

appropriate to antineutrinos, are defined analogously. We will present many of our numerical

results as plots of Pz,int and P̄z,int, as they convey the “average” flavor evolution of the system;

where illuminating, we will zoom in on the individual modes. Note that with these definitions

Pz > 0 (P̄z > 0) reflects a predominance of electron neutrinos (antineutrinos).

2.3.3 Resonant flavor mixing and collective oscillations

One of the linchpins of neutrino flavor phenomenology in the early universe and other

astrophysical environments is the Mikheyev–Smirnov–Wolfenstein (MSW) mechanism by which
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coherent scattering with a matter background causes neutrinos to acquire effective masses and

mixing angles [64, 65]. Letting ∆ ≡ δm2/2E, the in-medium mass-squared splitting δm2
M is

defined by

∆
2
M ≡

(
δm2

M
2E

)2

≡ ∆
2 sin2 2θ+(∆cos2θ−Vz)

2 (2.23)

and the in-medium mixing angle θM by

sin2 2θM ≡
∆2 sin2 2θ

∆2
M

. (2.24)

(For the purposes of introducing the traditional MSW mechanism, we are neglecting neutrino–

neutrino scattering in Eqs. (2.23) and (2.24), but we will return to these definitions later on

in order to incorporate self-coupling.) Resonance occurs when Vz = ∆cos2θ: The effective

mixing angle is at its maximum (to wit, θM = π/4) and the effective mass-squared splitting at its

minimum. Since the thermal potential He (Eq. (2.15)) depends only on the energy density of e±

in the plasma, the matter background modifies the oscillations of neutrinos and antineutrinos in

precisely the same way.

Neutrino–neutrino coherent scattering gives rise to “index-of-refraction” effects in much

the same fashion as a matter background, but with an added layer of complexity. As seen in

Eq. (2.15), the evolution of ρ(ε) for a particular mode ε depends, through the self-coupling

potential Hν, on the density matrices for all other modes ε′, meaning that the problem of flavor

evolution in a dense neutrino system is a nonlinear one. A fascinating range of collective

behaviors has been shown to result. (See Ref. [66] for a review, or Refs. [67–72] for a selection

of recent work in this active area.) The role of nonlinear coupling in the early universe is perhaps

best epitomized by the phenomenon of synchronized oscillations that emerges when the self-

coupling is strong enough to “glue” all of the individual modes together and prevent them from

kinematically decohering [73–78].

Synchronized oscillations are seen in our results to be one of the hallmarks of coherent
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Figure 2.2: Magnitudes of the individual diagonal potentials for ε = 3: |Hvac, z| (red, upper
solid curve at T = 1 MeV), |He,z| (blue, other solid curve), and |Hν,z| (black, dashed). The
last of these was computed assuming no flavor transformation. From top to bottom the dashed
curves correspond to degeneracy parameters ηνe = 5×10−3, 5×10−5, 2×10−6, 1.5×10−7,
and 5×10−8 (Eq. (2.25)); chemical potentials in νµ were taken to be zero.

flavor evolution in a universe with a lepton asymmetry within a couple orders of magnitude of

the current constraint on Lν. At the other end of the spectrum, with a lepton asymmetry on the

order of the baryon asymmetry η, self-coupling is unimportant and the MSW mechanism reigns

supreme. In the following section we discuss these two regimes and several others that emerge at

intermediate lepton asymmetries.

The type of behavior exhibited depends fundamentally on the relative sizes of the indi-

vidual contributions to the Hamiltonian. We depict in Fig. 2.2 the magnitudes of the diagonal

potentials as functions of temperature, with four different curves for Hν,z corresponding to differ-

ent initial lepton asymmetries. As we describe below, one of the basic determinants of the flavor

evolution is the magnitude of Hν,z where the vacuum- and thermal-potential curves intersect,

which is to say at MSW resonance. We will also see the limitations of this picture, which fails to

account for the off-diagonal components of the Hamiltonian.
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2.3.4 Numerical details

We have employed two independent programs for solving the equations of motion

(Eq. (2.18)), one based on a fourth-order explicit Runge–Kutta solver and the other on a Magnus-

method solver. The Magnus method, which is tailor-made for tracking unitary evolution, has

been used previously in work on neutrino flavor transformation in supernovae; for a thorough

description, see Ref. [79]. We have achieved consistent results with the two codes, and we have

confirmed that in the coherent limit each one individually conserves |~P| and Trρ = P0 to high

precision.

As shown below, certain flavor-evolution regimes host rapid, highly aperiodic oscillations,

and in such regimes the behavior of individual modes depends sensitively on the physical and

computational parameters of the calculation. The very fine features displayed in these scenarios

are without (and may simply defy) a detailed physical explanation and, moreover, are beyond the

level of precision aimed at in this study. Rather, our focus is on the major qualitative features,

which we have found to be robust.

2.4 Results and Discussion

In this section we present our results through the example of five different initial lepton

asymmetries that typify the major regimes of coherent flavor evolution in the inverted hierarchy

(IH). We then apply the concept of adiabaticity to gain insight into the behaviors manifested in

these prototypical cases. Following a discussion of the coherent regimes, we introduce collisions

in the form of quantum damping. As a rule of thumb, the impact of damping is (in a non-

quantitative sense) proportional to the amount of flavor transformation that would occur in the

absence of damping: That is to say, for damping to gain leverage on the evolution of ~P, a

significant ~PT must develop, and for this to be the case there must be substantial transformation of

~P away from the initial flavor eigenstate. To understand the results with damping, it is therefore
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necessary to understand the results without.

In what follows we focus most of our attention on the IH because it, unlike the normal hi-

erarchy (NH), plays host to an MSW resonance and, by implication, to generally more substantial

flavor transformation. We will briefly discuss the NH when we turn to damping.

2.4.1 Regimes of coherent evolution

Before any flavor transformation has occurred neutrinos of flavor α are described by a

Fermi–Dirac equilibrium spectrum with neutrino degeneracy parameter ηνα
(Eq. (2.13)). For the

purposes of this study we assume that at high temperatures the lepton number is positive and

entirely contained in νe, so that ηνx = 0 and ηνe can be deduced from the lepton number via

Lν ≈
1

12ζ(3)
(
π

2
ηνe +η

3
νe

)
≈ 0.68ηνe , (2.25)

where the second approximation applies for the small degeneracy parameters we are considering.

We would find similar results, but with the roles of neutrinos and antineutrinos swapped, if instead

we were to take a negative ηνe or were to put the lepton number entirely in νx. Furthermore,

the choice of setting ηνx = 0 at high temperature is inessential for our results, as it is the lepton

asymmetry which dictates the role of the self-coupling potential.

Note that we take no stance on what mechanism actually produces the initial lepton

numbers. The question of how to generate an asymmetry that survives washout from scattering

processes is an important one and has been examined in Ref. [80]. This question is, however,

outside the purview of the present study.

The five regimes of coherent flavor evolution that we have identified in our numerical

results are depicted schematically in Fig. 2.1. In our sweep of the lepton-number terrain, the

values of ηνe that we have found best embody the features associated with these regimes are as

follows: 5×10−8, 1.5×10−7, 2×10−6, 5×10−5, and 5×10−3.
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Figure 2.3: Symmetric MSW: Pz,int (blue, upper curve at T = 20 MeV) and P̄z,int (red) in the IH
with initial degeneracy parameters ηνe = 5×10−8, ηνx = 0.

ηνe = 5×10−8: Symmetric MSW

Generally speaking, the dominant feature in the flavor-transformation landscape is the

equality of |Hvac,z| and |He,z|, which for 1−3 mixing occurs in the region of T ∼ 5 MeV. For

ηνe . 5× 10−8 this is the only feature (Fig. 2.3), as the self-coupling is so weak as to leave

transformation through the resonance essentially untouched. At these small lepton numbers

— as would be expected if neutrino–neutrino scattering were simply omitted — neutrinos and

antineutrinos of all modes undergo complete MSW conversion. We emphasize that, unlike in a

supernova environment, both neutrinos and antineutrinos resonantly transform due to He being

CP-symmetric: At high temperatures νe and ν̄e are at energies lower than νx and ν̄x, respectively,

thanks to the thermal potential, but at low temperatures (in vacuum) are at higher energies, thanks

to the IH.

Evidently, if the neutrino chemical potential is entirely in νe and if it is of the same

order as the baryon asymmetry η, then neutrino–neutrino scattering has an ignorable impact

on flavor evolution. This conclusion is unsurprising given Fig. 2.2, which shows that |Hν,z|

for ηνe = 5× 10−8 is always about an order of magnitude or more below either |Hvac,z| or

|He,z|. It is worth pointing out that at such small lepton numbers the e± finite-density potential
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Figure 2.4: Partial MSW: Pz,int (blue, upper curve at T = 20 MeV) and P̄z,int (red) in the IH
with initial degeneracy parameters ηνe = 1.5×10−7, ηνx = 0.

H (FD)
e =

√
2GF (ne−−ne+)L should be included in the equations of motion for consistency, but

this term likewise makes an inconsequential contribution to the total Hamiltonian. The effect of

the thermal potential from the neutrino background is yet more feeble.

ηνe = 1.5×10−7: Partial MSW

As ηνe is scaled up, MSW transformation becomes overall less effective for both neutrinos

and antineutrinos (Fig. 2.4). The incompleteness of the conversion of Pz,int and P̄z,int is attributable

to the differing outcomes of individual modes: The lowest-energy modes go through MSW

unfettered while higher-energy modes exhibit large, aperiodic oscillations of high frequency

(Fig. 2.5).

The higher-energy modes transform inefficiently due to a loss of adiabaticity, as indicated

in Fig. 2.6. Prior to resonance the off-diagonal potential HT fluctuates rapidly and achieves

(nearly) vanishing magnitude at various points. Since |HT | mediates the transition probability

between states, this behavior allows neutrinos to depart from their initial energy-eigenstate track at

the level-crossing. In Sec. 2.4.2 we introduce the quantitative measure of adiabaticity traditionally

used in studies of resonant neutrino conversion, and we explore further the role it plays in our

34



20 10 5 2
T (MeV)

-1.0

-0.5

0.0

0.5

1.0

Pz,ϵ / | Pz,ϵ (20 MeV) |

Figure 2.5: Partial MSW: Pz,ε for ε = 1.15 (blue, bottommost curve at T = 2 MeV), 2.36 (red,
topmost curve at T = 2 MeV), and 4.78 (purple), with the same parameters as in Fig. 2.4. Note
that here and in subsequent plots Pz,ε has been normalized to an initial value of unity for each ε;
this choice puts all modes on equal footing for the purpose of comparing flavor evolution.
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Figure 2.6: Partial MSW: Hz (blue, nearly vertical curve) and |HT | (red) as functions of T for
the ε = 4.78 mode shown in Fig. 2.5.
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results. For now, suffice it to say that in this regime self-coupling suppresses adiabaticity because

it is strong enough to influence H but not strong enough to force the individual modes to pass

through resonance collectively. Such behavior is connected to the fact that for most modes the

three contributions to the Hamiltonian are of comparable magnitude in the MSW region.

ηνe = 2×10−6: Asymmetric (ν- or ν̄-only) MSW

Moving to greater values of ηνe , the partial conversion of neutrinos becomes even more

stunted while the conversion of antineutrinos actually grows more effective (Fig. 2.7).

The cancellation of Hvac,z and He,z in the MSW region precipitates some degree of

transformation in both neutrinos and antineutrinos. However, since Hν,z exceeds the other two by

a factor of ∼ 10 in magnitude, MSW conversion is stillborn (in the case of neutrinos) or delayed

until the vacuum potential overtakes the self-coupling soon thereafter (in the case of antineutrinos).

Starting at the MSW region and continuing down to T ∼ 3 MeV, antineutrinos gradually cross

over from predominantly ν̄x to predominantly ν̄e; by the bottom of this temperature range they

have almost completely transformed.

Neutrinos undergo only marginal conversion because the large self-coupling potential,

which enhances the effective mass of νe relative to νx, props up νe into the higher energy

eigenstate over most of this temperature range, thus wiping out what would otherwise be an

MSW resonance. (A level-crossing does occur at higher temperature where the thermal and

self-coupling potentials cancel, but this resonance appears well before the MSW region and, as

we will discuss in Sec. 2.4.3, is neutralized by non-adiabaticity.) Conversely, the initial population

of ν̄x is effectively immersed in a bath of νe, which serves to elevate the energy of ν̄x over that

of ν̄e until Hvac becomes dominant. Hence self-coupling does not eliminate the antineutrino

level-crossing in the MSW region, though it does significantly alter evolution through it.

A notable characteristic of this regime is that the location of |Hν,z| ∼ |Hvac,z| has been

pulled away from that of |He,z| ∼ |Hvac,z|— compare to the partial MSW regime, where they
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Figure 2.7: Asymmetric MSW: Pz,int (blue, upper curve at T = 20 MeV) and P̄z,int (red) in the
IH with initial degeneracy parameters ηνe = 2×10−6, ηνx = 0.

coincide — but the regions are still close enough together that the flavor transformation instigated

by the traditional MSW mechanism can be capitalized on to enact a flavor swap by the later

|Hν,z| ∼ |Hvac,z| cancellation. As we observe in the next regime, increasing further the separation

between the two locations leads to MSW manqué — but here the separation actually salvages

efficient conversion of antineutrinos.

ηνe = 5×10−5: Minimal transformation

With ηνe = 5× 10−5 the locations of |Hν,z| ∼ |Hvac,z| and |He,z| ∼ |Hvac,z| are well re-

moved from one another. As a result the MSW level-crossing is now thwarted entirely, and

virtually no flavor conversion takes place (Fig. 2.8). What transformation does occur commences

near T ∼ 5 MeV, as usual, but fails to get very far due to the strong “inertial” effect exerted by

Hν. The self-coupling keeps νe and ν̄x in the heavier eigenstates throughout MSW, preventing Hz

from ever crossing into negative territory (or H̄z into positive).

Since coherence between the flavors only marginally develops at these lepton numbers,

there is meager fuel for decoherence to consume, and the minimal-transformation regime is

consequently the best preserver of its initial lepton asymmetry when damping is turned on. It
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Figure 2.8: Minimal transformation: Pz,int (blue, upper curve at T = 10 MeV) and P̄z,int (red) in
the IH with initial degeneracy parameters ηνe = 5×10−5, ηνx = 0.

is a tantalizing coincidence that this regime also encompasses the range of lepton numbers

suggested by resonant production of sterile neutrino dark matter, which favors the neighborhood

of Lν ∼ 5×10−4 [42] when the ∼ 3.55 keV X-ray line of Refs. [34, 35] is attributed to the decay

of sterile neutrinos. These lepton numbers occupy the top end of the minimal-transformation

regime, where synchronized oscillations are beginning to grow in amplitude but are still unable to

realize a large net conversion of flavor.

A phenomenon notably absent from this regime and the foregoing ones is the spectral

swap, in which nearly all antineutrinos below a certain energy threshold change flavor and nearly

all antineutrinos above the threshold do not (or similarly for neutrinos) [81, 82]. For ηνe . 10−7

spectral swaps are ruled out by virtue of the fact that the self-coupling potential never dominates.

But for ηνe = 5×10−5, for instance, Hν remains dominant sufficiently far below temperatures

at which |Hvac,z| ∼ |He,z| that the requisite conditions for a spectral swap might be thought to

prevail as Hvac,z finally does overtake Hν,z. In actuality the spectral swap is preempted by the

MSW region, which in the minimal-transformation regime deposits neutrinos and antineutrinos

essentially into the nearest mass eigenstates. With all well-populated modes already in mass

eigenstates before Hvac takes over, no spectral swap can occur. The synchronized-oscillation
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Figure 2.9: Large synchronized oscillations: Pz,int (blue, upper curve at T = 10 MeV) and P̄z,int
(red) in the IH with initial degeneracy parameters ηνe = 5×10−3, ηνx = 0.

regime proves to be the exception to this trend, as we discuss below.

ηνe = 5×10−3: Large synchronized oscillations

In this regime the lepton asymmetry is large enough that neutrino–neutrino scattering

shifts towards promoting rather than resisting transformation. Once the expansion rate and the e±

density have dropped sufficiently, large synchronized oscillations ensue, with all of the modes

locked together by self-coupling (Fig. 2.9).

Although on the face of it this regime hosts perhaps the most active flavor evolution, in

some ways the behavior is just that of the minimal-transformation regime writ large. In both

regimes modes undergo synchronized oscillations after first gesturing towards MSW conversion,

and then move into mass eigenstates as Hν becomes unimportant. But for larger ηνe the gesture

towards MSW is stronger, the synchronized oscillations last longer and have larger amplitudes,

and the movement into mass eigenstates entails more significant transformation at late time. The

minimal-transformation scenario of ηνe = 5×10−5 is an extreme example of the shrinking of

these features, down to a size indiscernible at the scale of Fig. 2.8.

The qualitatively novel feature that distinguishes the synchronized-oscillation regime from
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Figure 2.10: Large synchronized oscillations: P̄z,ε for ε = 1.15 (upper blue curve at T = 0.2
MeV), 2.36 (upper red curve at T = 0.2 MeV), 3.57 (purple), 4.78 (lower blue curve at T = 0.2
MeV), and 5.99 (lower red curve at T = 0.2 MeV), computed with the same parameters as in
Fig. 2.9. A spectral swap — wherein modes below the threshold εth ≈ 3.5 change flavor and
those above do not — is evident.

the minimal-transformation regime is that (for ηνe > 0) antineutrinos do not return en masse to

the lighter mass eigenstate; instead many modes move to the heavier one, more closely associated

with ν̄e. Conversion of antineutrinos in this manner is more dramatic for larger initial ηνe , even

causing P̄z,int to change sign for ηνe & 5×10−3. The upward drifting of Pz,int at low temperatures

reflects the spectral swap that occurs as Hvac comes to dominate (Fig. 2.10). The threshold energy,

below which ν̄ swap, moves up to higher ε as the lepton asymmetry is increased; it is for this

reason that the spectral swap has no discernible impact on the minimal-transformation regime.

Large-amplitude synchronized oscillations are associated with a solution of the equations

of motion in which the off-diagonal elements of Hν steer the evolution of the system into self-

sustained maximal mixing for both neutrinos and antineutrinos [83]. What our results highlight is

the fact that this solution is not easily accessed in the early universe: As shown in Fig. 2.9, even

an asymmetry of ∼ 10−3 does not foster maximal mixing, even though the mixing angle is still

significantly enhanced over its value in vacuum. In the minimal-transformation regime, where

the mixing angle is suppressed, the failure to enter this off-diagonal-driven mode is at its most

spectacular.
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In a sense the very largest allowable lepton asymmetries — those about an order of mag-

nitude greater even than the exemplar asymmetry portrayed in Fig. 2.9 — actually overshoot this

mode of self-sustained maximal mixing, displaying instead synchronized MSW transformation at

T ∼ 5 MeV followed by synchronized oscillations of non-maximal amplitude (Fig. 2.11). The

phenomenon of synchronized MSW, where all modes undergo efficient MSW conversion in

unison, can be understood from the following perspective. Decomposing the Hamiltonian into its

constituents and taking the coherent limit, Eq. (2.18) becomes

Hx
d~P
dx

=
(
~Hvac +

~He +
~Hν

)
×~P. (2.26)

At high temperature all of the individual modes point along the z-axis, and in the limit |~Hν| �

|~Hvac|, |~He| they remain locked together even as the temperature cools and they depart from that

axis. Their alignment implies that, for any given mode, ~P (very nearly) points along ~Hν and so

Eq. (2.26) can be approximated as

Hx
d~P
dx
≈
(
~Hvac +

~He

)
×~P. (2.27)

The upshot is that all modes follow the track that the average energy mode ε ≈ 3.15 would

undergo if there were no self-coupling. (Further details on synchronized MSW conversion are

provided in, for example, Ref. [44].)

Lepton asymmetries at the top end of the synchronized-oscillation regime are converging

on this limit, but as shown in Fig. 2.11 — for an initial degeneracy parameter ηνe = 5×10−2 — the

resonant conversion is incomplete, as the approximation that all ~P(ε) are aligned is an imperfect

one. Since |~Hν| � |~Hvac| for the entire temperature range depicted in Fig. 2.11, synchronized

oscillations then take over at T . 5 MeV, once |~He| has fallen off. As the lepton asymmetry

is dialed up further, the efficiency of conversion through the synchronized MSW mechanism

increases and the amplitude of post-MSW synchronized oscillations decreases. In a somewhat
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Figure 2.11: Top end of the synchronized-oscillation regime: Pz,int (blue, upper curve at T = 10
MeV) and P̄z,int (red) in the IH with initial degeneracy parameters ηνe = 5×10−2, ηνx = 0.

poetic turn, the evolution of Pz,int and P̄z,int at infinite lepton asymmetry is identical (up to scale)

to that at zero lepton asymmetry.

We wish to underscore the point that despite the dominance by several orders of magnitude

of Hν all the way through the MSW region, this regime strongly bears the fingerprints of the

matter background. If it were not for the cancellation between Hvac,z and He,z, the amplitude

of the oscillations would be diminished down to the scale set by the vacuum mixing angle (as

indeed it is in the NH), and the spectral swaps at these lepton asymmetries would be erased. The

synchronized-oscillation regime thus highlights the insistent influence that can be exerted even by

a would-be MSW resonance.

2.4.2 Adiabaticity

In our discussion of the five regimes just laid out, we have stressed the decisive role

of level-crossings in determining flavor transformation. But the presence or absence of level-

crossings is not the whole story. An important tool for understanding the behavior of neutrinos as

they pass through resonance is the adiabaticity parameter γ, which quantifies the efficiency of
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flavor conversion [84–87]. The parameter is defined as

γ≡ 2π
δt
lres
M
≈ ∆

res
M

∣∣∣∣dHz

dt

∣∣∣∣−1

res
δHz, (2.28)

with lres
M ≡ 2π/∆res

M the in-medium oscillation length at resonance and δt the resonance width,

which is to say the time required for sin2 2θM to fall to half its resonant value. The approximation

above comes from the definition of lres
M and a recasting of δt in terms of δHz. Since the self-

coupling and thermal potentials are varying much more rapidly than the vacuum potential, we

can make the further approximation that, for the purposes of computing adiabaticity, Hvac,z is

constant. We then obtain an expression for γ equivalent to that in Ref. [38].

An adiabaticity parameter γ� 1 corresponds to a resonance width broad enough to contain

many oscillation lengths, indicating that the potentials change sufficiently slowly that neutrinos

are able to track the Hamiltonian through the level-crossing. A small value of γ, conversely,

corresponds to a large probability of neutrinos jumping from one energy eigenstate to the other:

The Landau–Zener probability for such a transition is P≈ e−πγ/2 [88, 89]. The early universe is

ripe for adiabaticity, as γ is ultimately a comparison of the fast-fluttering dynamical timescale set

by oscillations to the molasses-like Hubble timescale set by gravity. We will see, however, that

under certain circumstances self-coupling can compromise this propensity.

Resonance occurs whenever the vacuum potential cancels with the weak-interaction

potential, producing degenerate instantaneous energy eigenstates:

Vz =
δm2 cos2θ

2εresT
. (2.29)

The left-hand side implicitly depends on εres. (Recall the definition of V in and below Eq. (2.19).)
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Solving for the resonant comoving energy yields

εres =
Hν,z

2H̃e,z

1±

√
1− 2δm2 cos2θ

T
H̃e,z

(Hν,z)2

 , (2.30)

with H̃e,z = |He,z|/ε. While this expression is always valid, its predictive power, in the sense of

allowing one to identify where resonance will occur without solving the equations of motion, is

questionable due to the nonlinearity inherent in neutrino evolution. Broadly, Eq. (2.30) can be

used to predict the locations of level-crossings only so long as no significant flavor transformation

has yet occurred. But once the polarization vectors have departed appreciably from their initial

alignment along the z-axis, Hν has therefore also departed appreciably from its initial value,

and so all bets are off as far as Eq. (2.30) goes. These comments are especially germane to

the entire minimal-transformation regime and to much of the synchronized-oscillation regime,

wherein resonance is never achieved despite the appearance that Eq. (2.30) would countenance

the existence of one.

Our numerical results demonstrate that tuning the lepton asymmetry does not considerably

shift the location of the MSW resonance, provided that the self-coupling is not large enough

to eliminate the resonance altogether. This finding suggests that an analysis of the adiabaticity

neglecting Hν may prove enlightening as to how the lepton asymmetry “perturbs” the matter-only

MSW scenario. Ignoring the contribution from self-coupling, the resonant weak-interaction

potential is

Vz = H res
e,z =

(
7
√

2π2GF

45m2
W

∣∣δm2∣∣cos2θ

)1/2

T 2, (2.31)

introducing the notation H res
e,z to denote the thermal potential of the mode instantaneously at

resonance. While for any particular mode ε the thermal potential He,z is dropping precipitously

as T 5, the resonant thermal potential H res
e,z drops only as T 2. It turns out that the relatively

sluggish descent of H res
e,z ensures that MSW is always adiabatic in the early universe, so long as
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electrons and positrons are relativistic and the neutrino self-coupling can be neglected. Under

these circumstances the adiabaticity parameter is

γ≈ 1
23/4

1
5

√
7
π

mPl

mW

√
GF

g∗
|δm2|cos2θ tan4 2θ, (2.32)

where mPl is the Planck mass, mW is the W boson mass, and g∗ is the number of relativistic

degrees of freedom. Both mPl and g∗ enter through the derivative of the thermal potential, which

is dictated by Hubble expansion: In the radiation-dominated epoch the Hubble constant is

H =

√
8π3g∗

90
T 2

mPl
. (2.33)

We have taken g∗ to be constant over the span of temperatures relevant to this study, thus ignoring

the small decrease that occurs as the last remaining µ± disappear near the top of this temperature

range and the later decrease that occurs as the e± population starts to become non-relativistic near

the bottom.

Looking at Eq. (2.32), the adiabaticity parameter is evidently independent of temperature

when Hν = 0 and is, moreover, very large: γ ≈ 130 for 1− 3 mixing, guaranteeing that all

modes undergo efficient MSW conversion, regardless of the temperature at which their respective

resonances occur. This fortuitous behavior, which is peculiar to the thermal potential, occurs

because the resonance width and the in-medium oscillation length are growing with the same

dependence on T . The growth of the resonance width can be traced directly to the slowing-down

of the Hubble rate H ∝ T 2.

Even as the resonance width is broadening, the rate at which the resonance sweeps upward

through the energy modes is accelerating as a function of temperature: εres ∝ 1/T 3. Fig. 2.12

shows εres(T ) for Hν set to zero. Reassuringly, εavg ≈ 3.15 becomes resonant right near 5 MeV.

The preceding discussion gives credence to the notion that the resonant flavor transforma-

tion seen at T ∼ 5 MeV across a range of lepton asymmetries is adiabatic by default — that is,
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Figure 2.12: Resonant comoving energy εres (red, solid) as a function of T, with Hν = 0. Also
plotted is the Fermi–Dirac average-energy mode εavg ≈ 3.15 (black, dashed).

when only Hvac and He are considered. But as our numerical results have revealed, self-coupling

can obstruct the efficiency of resonant conversion in non-trivial ways.

One can glean some general insights into the effects of neutrino–neutrino scattering by

re-deriving the in-medium mixing angle and mass-squared splitting, allowing in particular for the

off-diagonal elements of Hν. In general these elements consist of nonzero real and imaginary

parts, which (in keeping with our notation in Eq. (2.19)) we write as Vx and Vy, respectively. A

complex potential, however, spoils the reformulation in terms of effective in-medium oscillation

parameters, so we rotate to a flavor-space coordinate system in which the off-diagonal part of the

entire Hamiltonian H is real. Effective mixing parameters can be defined in this new coordinate

system and then translated back in terms of Vx and Vy from the original, with the results

∆
2
M = (Vz−∆cos2θ)

2
+(∆sin2θ+Vx)

2
+V 2

y

sin2 2θM =
(∆sin2θ+Vx)

2
+V 2

y

(∆sin2θ+Vx)
2
+V 2

y +(Vz−∆cos2θ)
2 . (2.34)

It is important to note that these are only instantaneous mixing parameters, as the coordinate
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system required to make the off-diagonal elements of H real is constantly changing. The validity

of employing such a technique in an analysis of adiabaticity is made plausible by noting that

rotations about the flavor axis do not mix Hz and HT .

Working from Eq. (2.34), the resonance width expressed as a weak-interaction potential is

δVz =

√
(∆sin2θ+Vx)

2
+V 2

y , (2.35)

and, just as in the Hν = 0 case, ∆res
M = δVz. The definition of γ (Eq. (2.28)) then leads to

γ≈
(∆sin2θ+Vx)

2
+V 2

y∣∣∣5HHe,z +3HHν,z− L̇νe−L̇νx
Lνe−Lνx

Hν,z

∣∣∣
res

≈

∣∣∣∣∣
∣∣HT

∣∣2
Ḣz

∣∣∣∣∣
res

, (2.36)

where in the last expression we emphasize an alternative interpretation of the adiabaticity parame-

ter as the ratio of the off-diagonal part of H (squared) to the rate of change of its diagonal part.

In evaluating the derivative we have again taken g∗ to be constant.

While the term proportional to He,z in the denominator of Eq. (2.36) is always negative,

the two terms proportional to Hν,z are of the same sign leading into resonance. When Hν,z

dominates over He,z, the final term in the denominator therefore makes γ smaller. On the other

hand, when He,z dominates, the term can either make γ smaller (if ηνe < 0 initially) or make

it larger (if ηνe > 0 initially). That adiabaticity plummets as flavor conversion proceeds in the

moderate-to-large-L regime is well known from studies of resonant production of sterile neutrinos.

It reflects the fact that as the potential sweeps through resonance more rapidly, the resonance width

contracts and conversion becomes less efficient. What is less familiar is that flavor conversion

can evidently feed back positively on the adiabaticity of the resonance when the lepton number is

small but nonzero.

Eq. (2.36) is comparable to expressions in Refs. [38, 39, 90, 91], all of which consider
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resonant transformation between an active and a sterile state. In that context the derivative of

the lepton number drags down the adiabaticity with such resolve that the depletion of the lepton

number ultimately halts the conversion process. As suggested in the preceding paragraph, in

our context as well the possibly adverse effect of L̇νe on γ implies that adiabaticity may fail for

some initial lepton asymmetries. It deserves emphasis, however, that there is a crucial difference

between the resonant production of sterile neutrino dark matter and the resonant conversion

between active flavors: Because the sterile flavor eigenstate is uncharged under weak interactions,

the forward-scattering neutrino–neutrino potential in an active–sterile system does not have off-

diagonal elements. In the polarization-vector picture for active–sterile mixing, the self-coupling

potential consequently points along the z-axis, whereas for active–active mixing it tracks the

polarization vectors away from the flavor axis. This distinction corresponds in Eq. (2.36) to Vx

and Vy being nonzero; it adds, as a result, another lever controlling adiabaticity. In cases where

cancellation occurs in the term (∆sin2θ+Vx)
2, the off-diagonal weak-interaction potential can

in fact enfeeble γ, producing non-adiabaticity so long as Vy is not too large. In other cases,

though, off-diagonal self-coupling bolsters γ by enlarging the resonance width and the in-medium

mass-squared splitting.

Adiabaticity accounts for the general behavior seen in our numerical results wherever a

level-crossing is present. Despite these successes, as an analytical tool it has two shortcomings:

One, it is too coarse an instrument to explain the precise evolution of individual modes through

resonance, which often display radically different behavior from one another even when nearby in

energy. (The partial-MSW regime exemplifies this point, as flavor evolution in this case exhibits

highly non-trivial dependence on neutrino energy.) And two, adiabaticity offers no insights

into those regimes where the nonlinearity of self-coupling causes the system to avert resonance

altogether.
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2.4.3 Matter–neutrino resonances in the early universe

In this paper we have presented scenarios in which flavor evolution prior to T ∼ 10 MeV

is quite restrained: The large potentials at high temperatures ensure that θM is minuscule, thereby

preventing significant transformation away from the initial flavor eigenstates. In truth it is not

obvious a priori that this statement always holds, as lepton asymmetries for which self-coupling

dominates at ∼ 10 MeV will have some higher temperature at which He,z surpasses Hν,z in

magnitude. If the two potentials are of opposite sign, then there will be a level-crossing at

this higher, pre-MSW temperature. Such a level-crossing has been dubbed a matter–neutrino

resonance (MNR) and in recent years has been shown to be a possible conduit for significant

flavor transformation in merger and accretion-disk environments [92–97]. (Related, albeit distinct,

analyses have also been performed for supernovae [98, 99].) No explorations of MNR in the early

universe have yet been conducted.

We have searched the regimes discussed above for signs of flavor transformation associated

with the MNR mechanism. Our numerical results have confirmed that level-crossings do indeed

occur, but in the scenarios we have examined the transformation associated with these resonances

is in most cases negligible. The explanation appears to lie in the fact that the resonances are

generally traversed non-adiabatically. Referring again to Eq. (2.36), γ may be diminished either

by a small off-diagonal potential HT or by a large sweep rate in the diagonal potential Hz. We

speculate that both factors are at play in preventing efficient conversion through the MNR. At

the high temperatures at which these resonances occur the overall magnitude of Hz leading

into the level-crossing is larger than it is for the lower-temperature MSW resonance. Moreover,

the Hubble constant, which sets the resonance sweep rate, is larger as well. At the same time,

whereas the off-diagonal weak-interaction potentials are expected to be small leading into either

an MSW resonance or an MNR because neutrinos have yet to leave their initial flavor states to

any appreciable extent, the off-diagonal vacuum potential is smaller at high temperatures.

As one would anticipate based on this argument, the most visible impact of MNR is found
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when the level-crossing occurs at relatively low temperatures. In particular, ηνe ∼ 10−6 seems

to be most clearly affected by the presence of the MNR, which induces non-negligible flavor

transformation starting at temperatures near 10 MeV. Hints of MNR conversion can be seen in our

asymmetric-MSW exemplar (Fig. 2.7), where it appears that neutrinos are on their way through

resonance before abruptly halting their conversion at T ∼ 8 MeV. Ultimately the overall amount

of conversion is limited here too by non-adiabaticity, and the intermingling of the MSW transition

with the MNR largely reverses the conversion that does occur. (Interestingly, for ηνe ∼ 10−6 the

MNR begets some degree of flavor transformation in the NH as well, in defiance of the general

trend for this hierarchy. The flavor evolution, as it happens, is very similar to that in the IH but

with the behavior of neutrinos and antineutrinos exchanged.)

We conclude that conversion through MNR is limited given the parameters adopted in our

study. However, we do not rule out the possibility that a more thorough investigation of the MNR

phenomenon in the early universe may reveal sizable effects under appropriate circumstances. We

reiterate that such resonances can exist in the early universe, but that the obstacle to significant

transformation is non-adiabaticity.

2.4.4 Flavor evolution with quantum damping

Up to this point the discussion has been couched in the coherent limit. In reality collisions

— which we model as quantum damping — will modify these results. The generic effect

of damping is to battle against the development of coherence between the flavors. It is the

combination of oscillations and coherence-erasing damping that leads to depolarization (Pz,

P̄z→ 0) and therefore flavor equilibration.

Indeed, equilibration is generally most effective when flavor transformation is, in the

absence of damping, most appreciable. An immediate consequence is that equilibration is

relatively ineffective for most lepton numbers in the NH, which typically fosters only minimal

coherent flavor transformation due to the lack of a level-crossing in the MSW region. While
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Figure 2.13: Minimal transformation (damped): Pj,int for j = z (blue, topmost curve at T = 1
MeV), j = x (red, bottommost curve at T = 1 MeV), and j = y (purple), with the parameters of
the minimal-transformation scenario in Fig. 2.8 (initial degeneracy parameters ηνe = 5×10−5,
ηνx = 0), in the presence of collisional damping. Antineutrinos undergo qualitatively similar
evolution.

the effects of damping are not entirely insubstantial in the NH, they are usually confined to the

relatively placid period during which neutrinos and antineutrinos migrate from their initial flavor

eigenstates to the nearby mass eigenstates.

Damping is a more potent force in the IH. The synchronized-oscillation regime, for

example, evinces much more efficient depolarization than is witnessed in the NH for the same

lepton asymmetries. At the other end, in the symmetric-MSW regime, depolarization is nearly

complete. But the general trend of efficient depolarization in the IH is not without exception:

The development of coherence in the minimal-transformation regime is so limited — self-

coupling is too overpowering for an MSW resonance to occur but too weak to elicit large-

amplitude synchronized oscillations — that damping leaves intact a sizable fraction of the initial

asymmetry between the flavors (Fig. 2.13). Previous authors have noted that MSW transitions

and synchronized oscillations are vehicles for flavor equilibration, but the existence of a region

where neither phenomenon is very compelling, and therefore damping is relatively muted, has

not been pointed out before.
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Figure 2.14: Asymmetric MSW (damped): Pz,int for neutrinos (blue, upper curve at T = 20
MeV) and P̄z,int (red), with the parameters of the asymmetric-MSW scenario in Fig. 2.7 (initial
degeneracy parameters ηνe = 2×10−6, ηνx = 0), in the presence of collisional damping.

In comparing Fig. 2.13 (damped) with Fig. 2.8 (coherent), it may come as a surprise that

equilibration is not less substantial in the damped case than what is shown in Fig. 2.13. The

reason is that the flavor evolution plays out in a hierarchy of scales in which the oscillation length

is smaller than the mean free path, which in turn is smaller than the MSW resonance width that

would obtain for Hν = 0. The picture is this: In the MSW region neutrinos and antineutrinos

partially convert flavor, much as they do in the absence of damping. The polarization vectors

accordingly swing away from the flavor axis, and as they do so damping shrinks ~PT . But due

to the high oscillation frequency relative to the scattering rate, the change in |~PT | is quickly

redistributed over all of the components of ~P, so that rather than being flattened against the flavor

axis, the polarization vectors are able to evolve in a manner reminiscent of the coherent case,

albeit with shrinking magnitude. In spite of collisions the modes remain largely synchronized, so

that ~P∼ ~Hν ∼ ~H (where∼ indicates that the vectors are roughly parallel) as long as self-coupling

dominates. At low temperatures ~Hvac takes over and all modes move adiabatically into the upper

mass eigenstate, just as they do in the coherent limit. As a matter of fact, the evolution of Pz,int/|~P|

is very similar for the damped and coherent cases; the visual differences between Figs. 2.13 and

2.8 are primarily a result of the long timescale over which the MSW region extends.
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Figure 2.15: Asymmetric MSW (damped): Pz,ε in the collisionally damped scenario depicted
in Fig. 2.14, for ε = 1.15 (blue, topmost curve at T = 2 MeV), ε = 3.57 (red), and ε = 5.99
(purple, bottommost curve at T = 2 MeV).

Fig. 2.14 further illustrates the principle that the degree of depolarization is related to

the degree of flavor transformation that takes place in the coherent limit. For ηνe = 2× 10−6,

Pz,int at weak-decoupling temperatures is ∼ 1/3 of its initial value at T & 20 MeV, whereas P̄z,int

only retains ∼ 1/12 of its initial magnitude and manages to change its sign. The damping of

antineutrinos takes place almost entirely during the Hν-mediated MSW resonance, of which the

small residual P̄z,int is a consequence. The damping of neutrinos, on the other hand, is more

complicated (Fig. 2.15). Low- and medium-energy modes damp through the MSW region, with

greater depolarization associated with greater ε, but the high-energy modes undergo damping

both through the MSW region and the MNR that occurs at T ∼ 10 MeV. Since the scattering rate

increases rapidly with temperature, the effectiveness of damping is amplified at the MNR.

Although collisional damping has traditionally been employed in studies of lepton asym-

metries, it is nonetheless wanting in realism. As some authors have noted [47, 49], modeling

incoherent scattering strictly through this traditional off-diagonal damping term is dubious inas-

much as thermal equilibration requires scattering processes that shuffle neutrinos between energy

bins, which such a term cannot provide. More specifically, if collisions are taken simply to impose

damping (C →−D~PT in the polarization-vector language), then one can show that depolarization
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is inconsistent with the preservation of Fermi–Dirac spectra.

To see that this is so, suppose that at some initial temperature T1 the neutrino gas is

in thermal equilibrium with the plasma. Then, according to our normalization of ρ, P0 is

the sum of the Fermi–Dirac equilibrium spectra that obtain at this temperature: P0 (ε,T1) =

f
(
ε,ηi

νe

)
+ f

(
ε,ηi

νx

)
. Suppose also that at some lower temperature T2 damping has achieved

complete depolarization: Pz (ε,T2) ≈ 0 for all ε. Using the fact that coherent evolution and

quantum damping both preserve Trρ = P0, it follows that

ρee (ε,T2) =
Pz (ε,T2)+P0 (ε,T2)

2

=
f
(
ε,ηi

νe

)
+ f

(
ε,ηi

νx

)
2

. (2.37)

Since the average of two Fermi–Dirac spectra is not in general another Fermi–Dirac spectrum,

this result implies that the νe distribution function ρee picks up distortions from Fermi–Dirac as

the polarization vectors shrink to zero — a troubling conclusion if Pz goes to 0 at high enough

temperature that neutrinos must still be in thermal equilibrium.

The consequences of Eq. (2.37) are borne out numerically: Because the damping term

is proportional to neutrino momentum, it engenders a spectral feature wherein higher-energy

modes undergo greater depolarization than their lower-energy counterparts. This feature would

be smoothed out somewhat by a more rigorous treatment of incoherent scattering, but it is also

indicative of the non-trivial evolution of a system of neutrinos toward equilibrium. Spectral

distortions associated with the flavor-equilibration process may compound those known to be

generated thermally through the overlapping epochs of e± annihilation and weak decoupling.

The crucial missing ingredient that enforces thermal equilibrium is momentum-changing

scattering, which is disallowed when collisions are modeled strictly as quantum damping. In this

vein, the need for a detailed treatment of incoherent scattering was emphasized by Wong [45],

who cautioned that the extent of flavor equilibration depends on how collisions are implemented.
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To date, the most sophisticated analyses of flavor evolution with a lepton asymmetry are those

performed by the authors of Refs. [20, 21, 47, 49], who have combined an off-diagonal damping

term with classical Boltzmann collision integrals along the diagonals of C . By revealing a wider

range of possible coherent phenomena than has hitherto been recognized, our results buttress the

need for continued progress in this direction.

As the findings of Ref. [1] have demonstrated, BBN calculations that self-consistently

couple neutrino transport to the thermodynamics of the plasma yield changes in the predicted

primordial abundance of D — relative to the case of instantaneous neutrino decoupling — that

are an order of magnitude larger than they would be if the non-linear feedback between the

neutrinos, plasma, and nuclides were omitted. The calculations of Ref. [1], however, were

performed with zero lepton number in the classical Boltzmann limit. Ref. [55], meanwhile,

tackled the full problem of oscillations and quantum collision integrals but was predicated on

the assumption of zero lepton asymmetry. A similar approach to the complete quantum kinetic

equations [53, 100–103], including fully realistic quantum collision integrals [54] and a nonzero

lepton asymmetry, may divulge signatures of flavor evolution in the early universe that are

currently believed to be unobservable.

2.5 Conclusion

In this paper we have numerically solved the coherent equations of motion governing

neutrino flavor transformation in the early universe with a range of initial lepton asymmetries.

In so doing we have discovered that beneath the current constraints on the lepton number

there lurks a menagerie of possible coherent flavor phenomena, which we have sectioned off

into five distinct regimes. Starting from a lepton asymmetry comparable to the present bound

and moving down to the realm of negligible self-coupling, these regimes are as follows: (1)

Large synchronized oscillations, (2) minimal transformation, (3) asymmetric MSW, (4) partial
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MSW, and (5) symmetric MSW. The existence of these regimes is a testament to the richness

of the nonlinear problem of flavor evolution in a dense, expanding environment. And as we

have demonstrated, this richness is not entirely erased by collisional damping — a finding that

points to the merits of further study of this problem with quantum kinetics that go beyond the

approximations employed here.

To explain the phenomena observed in our numerical results we have employed the

conceptual apparatus of (non-)adiabatic level-crossings and the well-established understanding

of synchronized evolution as a collective mode that emerges when the self-coupling potential

is dominant. Yet we also contend that in fact the minimal-transformation regime, which occurs

for lepton asymmetries on the order of ∼ 5×10−5, points to the limitations of these concepts.

The distinctive absence of flavor conversion in this regime is due to it encompassing lepton

asymmetries that are strong enough to eliminate level-crossings in the MSW region but not strong

enough for Hν to develop the dominant off-diagonal components needed for large-amplitude

synchronized oscillations, much less for Hν to bind the individual modes sufficiently for a

synchronized MSW transition to take place. As far as we are aware, a convincing analytical

understanding of this regime does not currently exist. We note again that it is an intriguing

coincidence that the range of lepton numbers most consistent with an interpretation of the

unidentified X-ray line reported in Refs. [34, 35] falls within this regime, which is the one most

resistant to damping-induced flavor equilibration.

We have also reported for the first time the existence of an MNR in the early universe.

The influence of the resonance on coherent flavor evolution is very modest except for a small

range of lepton asymmetries for which the level-crossing occurs shortly before the MSW region.

Its presence is accentuated by damping, which capitalizes on the coherence developed through the

resonance. We have found that adiabaticity restricts the amount of flavor conversion through the

MNR, but mixing through the δm2
� channel, which has MSW resonances at lower temperatures

than those studied here, may permit more adiabatic circumstances.
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The sub-constraint lepton asymmetries we have investigated are, by definition, thought

to lie presently out of reach of observation. Nonetheless, the diversity of flavor phenomena

revealed in this study may have unrecognized implications for BBN. The current era is one

of precision cosmology, with 30-meter-class telescopes [104–106], forthcoming spectroscopic

galaxy surveys [107–109], and a Stage-IV CMB experiment [108, 110] at the vanguard — to name

just a few. Impressive advances in determinations of Neff, YP, [D/H], and other cosmological

observables are on the horizon. These measurements promise to provide new insights, but

exploiting them thoroughly will require a scrupulous treatment of neutrino evolution. It remains

to be seen whether a solution of the full quantum kinetic equations coupled to BBN will unearth

traces of the physics presented in this study.
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[77] V. A. Kostelecký and S. Samuel, Phys. Rev. D 52, 621 (1995).

[78] S. Pastor, G. Raffelt, and D. V. Semikoz, Phys. Rev. D 65, 053011 (2002).

[79] H. Duan, G. M. Fuller, and J. Carlson, Comput. Sci. Disc. 1, 015007 (2008).

[80] J. Ghiglieri and M. Laine, J. Cosmol. Astropart. Phys. 2016, 015 (2016).

[81] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. D 74, 105014 (2006).

[82] G. G. Raffelt and A. Y. Smirnov, Phys. Rev. D 76, 081301 (2007).

[83] G. M. Fuller and Y.-Z. Qian, Phys. Rev. D 73, 023004 (2006).

[84] H. A. Bethe, Phys. Rev. Lett. 56, 1305 (1986).

[85] W. C. Haxton, Phys. Rev. Lett. 57, 1271 (1986).

[86] S. J. Parke, Phys. Rev. Lett. 57, 1275 (1986).

[87] C. W. Kim, W.-K. Sze, and S. Nussinov, Phys. Rev. D 35, 4014 (1987).

[88] L. D. Landau, Phys. Zs. Sowjet. 2, 46 (1932).

61



[89] C. Zener, Proc. R. Soc. A 137, 696 (1932).

[90] K. Abazajian, N. F. Bell, G. M. Fuller, and Y. Y. Y. Wong, Phys. Rev. D 72, 063004 (2005).

[91] C. T. Kishimoto, G. M. Fuller, and C. J. Smith, Phys. Rev. Lett. 97, 141301 (2006).

[92] A. Malkus, J. P. Kneller, G. C. McLaughlin, and R. Surman, Phys. Rev. D 86, 085015
(2012).

[93] A. Malkus, A. Friedland, and G. C. McLaughlin, arXiv:1403.5797 (2014).

[94] A. Malkus, G. C. McLaughlin, and R. Surman, Phys. Rev. D 93, 045021 (2016).

[95] D. Väänänen and G. C. McLaughlin, Phys. Rev. D 93, 105044 (2016).

[96] M.-R. Wu, H. Duan, and Y.-Z. Qian, Phys. Lett. B 752, 89 (2016).

[97] Y.-L. Zhu, A. Perego, and G. C. McLaughlin, arXiv:1607.04671 (2016).

[98] Y.-Z. Qian and G. M. Fuller, Phys. Rev. D 51, 1479 (1995).

[99] Y.-Z. Qian and G. M. Fuller, Phys. Rev. D 52, 656 (1995).

[100] C. Volpe, D. Väänänen, and C. Espinoza, Phys. Rev. D 87, 113010 (2013).

[101] Y. Zhang and A. Burrows, Phys. Rev. D 88, 105009 (2013).

[102] J. Serreau and C. Volpe, Phys. Rev. D 90, 125040 (2014).

[103] A. Kartavtsev, G. Raffelt, and H. Vogel, Phys. Rev. D 91, 125020 (2015).

[104] J. Spyromilio, F. Comerón, S. D’Odorico, M. Kissler-Patig, and R. Gilmozzi, Messenger
133, 2 (2008).

[105] G. H. Sanders, J. Astrophys. Astron. 34, 81 (2013).

[106] R. A. Bernstein, P. J. McCarthy, K. Raybould, B. C. Bigelow, A. H. Bouchez, J. M.
Filgueira, G. Jacoby, M. Johns, D. Sawyer, S. Shectman, and M. Sheehan, Proc. SPIE
9145, 91451C (2014).

[107] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, and A. Slosar, J. Cosmol.
Astropart. Phys. 2014, 023 (2014).

[108] K. Abazajian, K. Arnold, J. Austermann, B. Benson, C. Bischoff, J. Bock, J. Bond, J. Bor-
rill, E. Calabrese, J. Carlstrom, C. Carvalho, C. Chang, H. Chiang, S. Church, A. Cooray,
T. Crawford, K. Dawson, S. Das, M. Devlin, M. Dobbs, S. Dodelson, O. DorÃ c©, J. Dunk-
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Chapter 3

Strange mechanics of the neutrino flavor

pendulum

3.1 Abstract

We identify in the flavor transformation of astrophysical neutrinos a new class of phe-

nomena, a common outcome of which is the suppression of flavor conversion. Appealing to the

equivalence between a bipolar neutrino system and a gyroscopic pendulum, we find that these

phenomena have rather striking interpretations in the mechanical picture: in one instance, the

gyroscopic pendulum initially precesses in one direction, then comes to a halt and begins to

precess in the opposite direction—a counterintuitive behavior that we analogize to the motion

of a toy known as a rattleback. We analyze these behaviors in the early universe, wherein a

chance connection to sterile neutrino dark matter emerges, and we briefly suggest how they might

manifest in compact-object environments.
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3.2 Main

Neutrino flavor transformation in dense astrophysical environments has incited consider-

able fervor in recent years, owing to its importance in properly appraising the role of the neutrino

sector in such disparate arenas as dark matter [1–9], baryogenesis [10–15], weak decoupling

and Big Bang nucleosynthesis [16–23], and dynamics and nucleosynthesis in supernovae and

compact-object mergers [24–39]. Moreover, the flavor structure of a Galactic core-collapse

supernova neutrino burst is of interest for terrestrial detectors aimed at understanding not only

the physics of the source but also the fundamental properties of neutrinos themselves [40–42].

Far from providing neat resolution, the prolonged siege on this topic has instead continued

to reveal facets of the problem that may solicit new conceptual and computational paradigms

altogether [43–61].

In what follows, we revisit the surprising equivalence that exists between an astrophysical

neutrino system, treated in a certain limit, and the mechanical system of a gyroscopic pendulum

(i.e., a spinning top whose axis of rotation can swing freely under gravity) [62, 63]. In this

mapping between systems, the pendulum can swing, spin, and precess—and each of these

motions corresponds to a change in the flavor content of the neutrino population. We show

here that under appropriate circumstances the neutrino system also exhibits some previously

unidentified behaviors with rather startling mechanical analogues. In one case, the spin of the top

reverses, leading to a flip in the handedness of precession (Fig. 3.1). In another, the precession

frequency of the top falls precipitously until reaching a critical threshold, after which it hastily

speeds up again. Beyond being counterintuitive, these phenomena may in fact be significant in

such environments as the early universe or core-collapse supernovae.

The fact that background particles can dramatically alter neutrino flavor transformation

is well known, having played a pivotal part in the solution to the solar neutrino puzzle. But

whereas the Mikheyev–Smirnov–Wolfenstein (MSW) mechanism [64, 65] in the Sun is driven
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Figure 3.1: One of the strange behaviors exhibited by certain bipolar neutrino systems. In going
from an early time t1 to a late time t2, the flavor pendulum q falls from its upright position and
reverses its spin, hence also the handedness of its precession.

by the forward scattering of neutrinos on electrons, flavor conversion in the inner region of

a core-collapse supernova (which has a neutrino number density ∼ 25 orders of magnitude

greater than that found in the solar interior) is a nonlinear dynamical problem in which the

quantum flavor states of all neutrinos on intersecting trajectories are coupled together by virtue of

neutrino–neutrino forward scattering. This yoking-together of neutrinos gives rise to a host of

flavor-transformation phenomena, many radically different from the classic MSW effect, which

are grouped together under the epithet collective oscillations [53, 66].

In the two-flavor approximation, the flavor content of neutrinos (antineutrinos) of a given

energy is customarily written as a polarization vector P (P̄), where the projection onto the z-axis

gives the difference in number densities of the two flavors. One striking example of collective

oscillations is the phenomenon of bipolar flavor transformation, in which the evolution of the

system is captured by two interacting blocks of polarization vectors, one representing neutrinos of

all energies, the other antineutrinos of all energies [67, 68]. In the absence of a matter background
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(e.g., charged leptons), the equations of motion in the bipolar regime are

Ṗ =
(
+ωB−µP̄

)
×P,

˙̄P = (−ωB+µP)× P̄, (3.1)

where the dot denotes a time derivative and B =±(sin2θ,0,−cos2θ), with θ the vacuum mixing

angle. The choice of plus (minus) corresponds to the normal (inverted) neutrino mass hierarchy.

The oscillation frequency ω is an average of the oscillation frequencies ωi of the individual

neutrinos (labelled by index i), which in vacuum are ωi = |δm2|/4Ei, where Ei designates the

neutrino energy. Lastly, µ is the potential generated by neutrino–neutrino forward scattering.

In the early-universe calculations that follow we use a normalization such that µ =
√

2GFT 3,

with GF the Fermi coupling constant and T the temperature. For the time being, we postpone

discussion of the matter background. Throughout this study we neglect non-forward scattering

(i.e., collisions); see the Appendices for justification.

To see the equivalence of this system to a gyroscopic pendulum, we introduce the vectors

D = P− P̄ and Q = P+ P̄− (ω/µ)B = S− (ω/µ)B. (We are adhering to the notation employed,

for instance, in Ref. [62].) One can readily show that if ω, µ, and B are all constant, then Eqs. (3.1)

lead to

Ḋ = ωB×Q,

Q̇ = µD×Q. (3.2)

It is clear that D ·Q and Q= |Q| are both constants of motion. Defining q=Q/Q and σ=D ·Q/Q,

Eqs. (3.2) can be used to obtain

q× q̈
µ

= ωQB×q−σq̇. (3.3)
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This equation describes a gyroscopic pendulum with total angular momentum

D =
q× q̇

µ
+σq, (3.4)

where the first term corresponds to the orbital angular momentum, the second term to the spin.

Moreover, the total energy is found to be

E = ωQB ·q+
µ
2

D2. (3.5)

Interpreting the first half of the right-hand side as the potential energy, the following picture

emerges: the bipolar neutrino system is equivalent to a gyroscopic pendulum, with position vector

Q, moment of inertia µ−1, and spin σ, swinging under the influence of a gravitational force

−ωB [62].

Bipolar oscillations are thought to occur in the neutrino emission from a core-collapse

supernova, during, for instance, the late-time, neutrino-driven-wind phase, when the luminosities

of the individual species are comparable but there exists a stark energy hierarchy due to the

differing opacities of these species in the outflowing material:
〈
Eνe

〉
<
〈
Eν̄e

〉
<
〈
Eνβ

〉
≈
〈
Eν̄β

〉
,

β = µ,τ. This scenario, in fact, has been the standard one in studies of the gyroscopic pendulum

The above hierarchy, however, is not universally applicable, and we find, by considering

other arrangements, that the gyroscopic pendulum can exhibit rather bizarre precession behavior.

As an illustration, we consider neutrino flavor transformation in the early universe in the presence

of a nonzero lepton number. Lepton asymmetries are not only weakly constrained by present

data [21, 69–71] but, in the case of lepton asymmetries much larger than the baryon asymmetry,

are motivated by leptogenesis models [14, 72] and are integral to a viable production mechanism

for sterile neutrino dark matter [1, 2, 5].

Prior to any significant flavor conversion, neutrinos are described by Fermi–Dirac equilib-

rium distribution functions, with the number density of flavor β given by nνβ
=
(
T 3/2π2)F2

(
ηβ

)
,
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where ηβ = µβ/T is the degeneracy parameter, defined in terms of the chemical potential µβ,

and F2
(
ηβ

)
=

∫
∞

0 dx x2

ex−η
β+1

is the relativistic Fermi integral. We work with two-flavor mixing

between νe and a state νx representing some particular superposition of νµ and ντ. Since chemical

equilibrium obtains at high temperature, antineutrinos of flavor β have degeneracy −ηβ.

In the bipolar regime, absent a matter background, the flavor evolution of the system is

dictated by Eqs. (3.1), with the asymmetry between |P| and |P̄| parameterized by

α =
P̄z(Ti)

Pz(Ti)
=

F2(−ηe)−F2(−ηx)

F2(+ηe)−F2(+ηx)
, (3.6)

where the system is taken to be comprised of flavor eigenstates at initial temperature Ti. To first

order in the degeneracy parameters, α≈−1+
(
12/π2) log2(ηe +ηx), indicating that P and P̄

are antialigned at high temperature, in contrast to the initial alignment of the polarization vectors

that is typical of supernova neutrino fluxes. Moreover, by taking the T −→ ∞ limit and dropping

prefactors roughly of order unity, the position and angular-momentum vectors are found to have

magnitudes Q∼ |η2
e−η2

x | and D = |D| ∼ |ηe−ηx| (see Appendices): the angular momentum is

parametrically enhanced relative to the length of the pendulum. The significance of this point

will appear shortly.

In the early universe Eqs. (3.2) are slightly modified: while the equation of motion for

D is unchanged, the second line becomes Q̇ = µD×Q− 4H (ω/µ)B, where H is the Hubble

constant. In principle the expansion of the universe, which induces time-dependence in ω and µ,

causes the behavior of the system to be quite complicated, but analytical insights may be gained

by making a few observations. Firstly, there are two quantities that are strictly conserved in spite

of the redshift:

B ·D = constant, (3.7)

which can be interpreted as the magnitude (up to sign) of the angular momentum along the
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Figure 3.2: (Left) Ratio of ωeff to the Hubble rate H as a function of temperature T
and chemical potential ηe, calculated using pre-oscillation flavor states and the appropri-
ate modification of Eq. (3.10) needed to accommodate a matter background (as detailed
in the Appendices). The dashed horizontal lines bracket the matter-only MSW resonance
width; the vertical lines correspond to the two solid curves in the plot to the right. (Right)
Pz(T )/Pz(Ti) = [nνe(T )−nνx(T )]/ [nνe(Ti)−nνx(Ti)], for ηx = 0 and ηe = 10−8 (dashed or-
ange), 2.8× 10−4 (solid purple), and 2× 10−2 (solid burnt orange). The first of these is
indistinguishable from matter-only MSW conversion, due to the small asymmetry.

gravitational field, and

D ·Q+
ω

µ
B ·D = constant, (3.8)

which ultimately encodes unitarity in the flavor evolution. Furthermore, although the “total

energy” in Eq. (3.5) is not truly conserved, the gyroscopic-pendulum picture is still valid over

time scales shorter than a Hubble time. In particular, the pendulum in the early universe may

be regarded as being dominated by kinetic energy, in the sense that the second term in Eq. (3.5)

is much larger than the first one all the way down to very low temperature, when the neutrino

number density finally becomes sufficiently dilute. This claim follows from the observation that,

by the estimates above, Q is roughly of the same order as D2 and therefore the ratio of potential

to kinetic energy is ∼ ω/µ. The pendulum can only transfer a limited fraction of its total energy

to potential energy (i.e., by standing straight up against gravity). Since the kinetic energy vastly

exceeds this maximum potential energy, the system is prevented from significantly draining its

kinetic energy. As a consequence, D is roughly constant.

Since both D and B ·D are (approximately) constant, the angular momentum is well
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described by

Ḋ∼= ωeffB×D, (3.9)

where ωeff is the frequency that emerges because D is effectively constrained to precess about B.

Since the first line of Eq. (3.2) must still be satisfied, this frequency is deduced to be

ωeff = ω
Qσ− (B ·Q)(B ·D)

D2− (B ·D)2 , (3.10)

using D ·Q = Qσ. Employing Eqs. (3.7) and (3.8) and D ∼ constant, one finds that the only

impediment to calculating ωeff “by hand” is the presence of the factor B ·Q.

Even with this a priori unknown factor we can draw important qualitative conclusions

from Eqs. (3.9) and (3.10). It can be shown that, in the normal mass hierarchy, the spin σ at high

temperature has the same sign as B ·D at low temperature if and only if η2
e < η2

x ; in the inverted

hierarchy, the condition is η2
e > η2

x . If the signs match, then Eq. (3.8) requires σ to reverse its

sign at some point as the universe cools. Put another way, the blueshifting of ω/µ causes the spin

of the gyroscope to slow down to a stop and then to spin up in the opposite direction.

In the course of σ changing sign, ωeff itself goes through zero. When this occurs,

B×Q∼= 0: the gyroscopic pendulum momentarily stands upright against gravity. But recalling

the definition Q = S− (ω/µ)B, one discerns that the pendulum must subsequently fall to a lower

height as the growing factor ω/µ progressively weighs it down. In falling from an inverted to a

normal pendulum, the gyroscope continues its precession—but now with the opposite handedness.

This qualitative analysis has been verified numerically and is visualized in Fig. 3.1.

More significant from the perspective of flavor transformation is the behavior of the

angular-momentum vector during this period. As ωeff passes through zero, D comes nearly to

a dead stop and then begins, like Q, to precess with the opposite handedness. The importance

of this is that D(t)≈ 2P(t)≈−2P̄(t), on account of the initial condition P̄(ti)≈−P(ti) and the

nature of Eqs. (3.1). The evolution of D therefore reflects the transformation of flavor: when the
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precession of D comes to a halt and then reverses, so too do the oscillations of P and P̄.

Amusingly, this mechanism can be analogized, with some poetic license, to the behavior

of a real-life, canoe-shaped toy known as a rattleback. When spun in one direction, a rattleback

rattles to a halt and then spins back in the opposite direction. The rattling is caused by the growth

of a rotational instability due to the misalignment of the principal axes of the toy and the symmetry

axis of its bottom surface [73]. The gyroscopic pendulum does not rattle, but it too has a sort

of instability that causes a reversal: in this case it is the misalignment of the neutrino mass and

flavor axes that facilitates the growth of the instability.

Up to this point we have ignored the electrons and positrons in the background, but

the lessons from the foregoing analysis carry over straightforwardly, for the following reasons.

At some temperature, which we will denote by TMSW, the refractive contribution from the e±

background transitions from dominant (T & TMSW) to subdominant (T . TMSW) relative to the

contribution from neutrino mass. At T & TMSW, the principal effect of e± is to suppress flavor

mixing, while at T . TMSW the effects are negligible. The interesting behavior is thus confined to

the MSW region, T ∼ TMSW, where maximal mixing is expected to occur in the IH, at least in the

absence of nonlinear neutrino–neutrino coupling.

How does the gyroscopic pendulum evolve through the MSW region? If the frequency ωeff

is fast relative to the Hubble expansion rate, then significant flavor conversion occurs as expected.

If, however, ωeff happens to be close to zero at T ∼ TMSW, then conversion is stifled. There is

an intuitive visual explanation for this behavior: Imagine a rapidly precessing pendulum. Now

imagine—and this is easier said than done—rotating the orientation of gravity. If the pendulum

precesses rapidly enough, it will track the gravitational field as it rotates. But if the precession is

slow on the scale of the gravity-rotation time scale, then the pendulum will be left behind.

These considerations suggest that the precession-reversal mechanism, should it occur close

to the MSW resonance, may impede flavor conversion. It turns out, in fact, that the reversal is

associated with a more general phenomenon that impairs adiabaticity even when the conditions are
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not met for σ to change sign. Inspection of Eq. (3.10) reveals that, prior to flavor transformation,

the dependence of ωeff on the chemical potentials factors out as Q/D. Having noted earlier that

D∼ constant, we now note that Q is dominated, except over a small temperature range, either by

the contribution from S or from the part proportional to B. Using µ =
√

2GFT 3, ω = |δm2|/4ε for

comoving energy ε, and the dependence of S and D on the chemical potentials (see Appendices),

the frequency scaling in these two limits is found to be ωeff ∝ ω|S|/D ∝ T−1|ηe +ηx| when

S-dominated and ωeff ∝ ω2/µD ∝ T−5|ηe−ηx|−1 when B-dominated.

The frequency at resonance is thus minimized by the smallest |ηe +ηx| such that T−5

scaling is pushed below the MSW region, or, in other words, such that the transition temperature

Ttrans, at which |S| ∼ |− (ω/µ)B|, is smaller than TMSW. These temperatures compare as

Ttrans

TMSW
∼ 1.913

(
δm2 ε

GFm4
W |η2

e−η2
x |3 cos2 2θ

)1/12

, (3.11)

where mW is the W boson mass. For 1− 3 mixing parameters, this becomes Ttrans/TMSW ∼√
5.87×10−4/

√
|η2

e−η2
x |. Incidentally, the coefficient corresponds to a chemical potential not

too far below current constraints. Note that the choice of mixing channel is virtually immaterial,

owing to the small exponent.

Fig. 3.2 shows, in a manner consistent with Eq. (3.11), the influence of ωeff on the flavor

transformation of a cosmic bipolar neutrino system. It is intriguing that, for neutrino degeneracies

that are not very nearly equal in magnitude, the most profound suppression of flavor conversion

occurs for lepton asymmetries in the neighborhood relevant for the resonant production of sterile

neutrino dark matter [1, 2, 5, 74–76].

The impact of a small ωeff was actually identified in an earlier study [77], but the mecha-

nism underlying the suppression of flavor conversion was then unknown. Indeed, the estimates of

the preceding paragraph seem to be borne out quite well in the numerical results of that paper.

Interpreting the results of Ref. [77] in light of the present analysis, it appears that this phenomenon
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may be of considerable importance for neutrino flavor evolution in the early universe. Possible

connections between the suppression of flavor conversion and production of the light nuclides in

Big Bang nucleosynthesis were speculated on in Ref. [77] and still appear viable.

Whether the precession phenomena analyzed in this paper manifest in compact-object

environments is an open question. A plausible candidate is the O-Ne-Mg core-collapse supernova,

which is expected to occur for some progenitor stars in the mass range ∼ 8−10 M�. From the

viewpoint of neutrino flavor, the intriguing characteristic of this site is the extremely steep density

gradient at the surface of the core, which places the MSW resonances inside the region where

neutrino number density is still high and therefore collective effects are still influential [78–81].

Sufficiently adiabatic MSW conversion may conceivably manufacture a hierarchy of fluxes such

that the foregoing analysis, with proper modifications, is applicable post-resonance. In a similar

vein, an environment in which the density of free neutrons or protons is very high outside the

neutrino decoupling surface may deplete enough νe or ν̄e via charged-current capture to alter the

initial flux hierarchy, thereby engineering the requisite conditions. Targeted numerical analysis

can be used to confirm whether the foregoing speculations are borne out in these environments,

where temporal and spatial instabilities and trajectory dependence [82, 83] are also in play.

It is intriguing that the nonlinear problem of neutrino flavor transformation, although

extensively explored, may harbor surprising phenomena—such as those pointed out in this

paper—that have implications for cosmology and compact-object physics.
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3.A MSW and the matter background

In the early universe, effective in-medium mixing parameters can be introduced to account

for the influence of the matter background on vacuum oscillations. Recalling the definition

ω = |δm2|/4E for neutrinos of energy E, the in-medium oscillation frequency ωm and in-medium

mixing angle θm are respectively given by

ωm =

√
ω2 sin2 2θ+(±ωcos2θ+V )

2
, (3.12)

and

sin2 2θm =
ω2 sin2 2θ

ω2
m

, (3.13)

where the + (−) is for the normal (inverted) neutrino mass hierarchy and V is the potential from

forward scattering of neutrinos on matter particles. This potential is

V =
2
√

2GFEρe±

3m2
W

, (3.14)

with Fermi coupling constant GF , e± energy density ρe± , and W boson mass mW [84]. Setting

aside the impact of the neutrino self-coupling potential, an MSW resonance is expected to occur

in the inverted hierarchy where θm is maximal. The temperature at which this occurs is denoted

TMSW.

In a compact-object environment, the dominant contribution to the matter potential is

CP-asymmetric and therefore cannot be incorporated into effective mixing parameters describing

both neutrinos and antineutrinos simultaneously. However, a co-rotating reference frame can

be adopted: the matter term drops out of the Hamiltonian, but at the expense of the vacuum
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Hamiltonian vector B oscillating. This approach is laid out in Refs. [62, 63, 82, 85].

3.B Nonadiabaticity and precession

Letting Ti denote a temperature above the onset of significant flavor transformation, the

initial “sum” and “difference” vectors are

S(Ti) = P(Ti)+ P̄(Ti) =
1+α

2π2 [F2(ηe)−F2(ηx)] ẑ,

D(Ti) = P(Ti)− P̄(Ti) =
1−α

2π2 [F2(ηe)−F2(ηx)] ẑ. (3.15)

After expanding the relativistic Fermi integrals to first order, evaluating them, and using the

approximation for α given in the main text, the vectors become

S(Ti)≈
log2
π2

(
η

2
e−η

2
x
)

ẑ,

D(Ti)≈
1
6
(ηe−ηx) ẑ. (3.16)

These expressions then give the scaling of Q/D, and thereby of ωeff, in the (matter-free) limits

Q ∼ S and Q ∼ −(ω/µ)B. The transition between these two limits occurs at Ttrans, found by

setting |S|= |− (ω/µ)B|, where again the influence of matter is being neglected.

A first approximation at including the influence of matter is to effect the replacements

ω −→ ωm and θ −→ θm in the matter-free analysis, making sure to choose the quadrant of θm

appropriately. For notational convenience, we also replace B with Bm, differing only by the use

of θ versus θm in the definition. Under this prescription, the effective precession frequency of the

angular-momentum vector D becomes

ωeff = ωm
Qσ− (Bm ·Q)(Bm ·D)

D2− (Bm ·D)2 , (3.17)
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where now the precession is about the (temperature-dependent) vector Bm. The left panel of

Fig. 3.2 of the main text plots this function, using pre-oscillation values of Q and D. Eq. (3.11)

of the main text, and the scaling limits of ωeff that precede it, were calculated using the same

prescription.

Absent the coupling of different neutrino modes, the adiabaticity is set by ωm/H, where

H is the Hubble rate. If the coupling is strong, the adiabaticity is instead set by ωeff/H. In the

early universe, resonance is traversed adiabatically by default (ωm/H� 1 due to the slowness of

Hubble expansion) but adiabaticity is lost if ωeff is sufficiently small. As we argue in the main

text, ωeff scales like T−1|ηe +ηx| in the Q ∼ S regime (T & Ttrans) and like T−5|ηe−ηx|−1 in

the Q∼−(ω/µ)B regime (T . Ttrans). The frequency at resonance is therefore minimized if the

rapid increase in the latter regime is delayed at least until the resonance temperature TMSW is

reached. On the other hand, given the scaling with neutrino degeneracy, minimizing ωeff also

requires minimizing |ηe +ηx|, such that Ttrans . TMSW still holds.

3.C Non-forward scattering

The calculations presented in the main text were performed neglecting non-forward

scattering (i.e., collisions) [48, 86–89]. In Fig. 3.3 we display the results of repeating the

calculations shown in the right panel of Fig. 3.2 of the main text but with collisions now accounted

for. The suppression of flavor conversion witnessed in the collisionless analysis translates to a

suppression of flavor equilibration (Pz→ 0) in the calculation with collisions.

In producing Fig. 3.3 we have employed the damping approximation used in Refs. [16,

90–92] and elsewhere. With this prescription, the equations of motion, given in Eq. (3.1) of the
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Figure 3.3: Identical to the right panel of Fig. 3.2 of the main text except that the influence of
collisions is accounted for here. The curves correspond to lepton asymmetries of ηx = 0 and
ηe = 10−8 (dashed orange), 2.8×10−4 (solid purple), and 2×10−2 (solid burnt orange).

main text, become

Ṗ =
(
+ωB−µP̄

)
×P−DPT ,

˙̄P = (−ωB+µP)× P̄−DP̄T , (3.18)

where the subscript T denotes the part of the vector transverse to the flavor (z) axis and D is a

damping coefficient proportional to the scattering rate. The expression for D and the derivation of

this prescription can be found in the references above.

By a plasma temperature of 1 MeV neutrinos have begun to decouple and subsequent

effects of collisions are small. The survival of coherent (collisionless) flavor phenomena through

to the epochs of neutrino decoupling and Big Bang nucleosynthesis is discussed at greater length

in Ref. [77].
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Chapter 4

Geometric phases in neutrino oscillations

with nonlinear refraction

4.1 Abstract

Neutrinos propagating in dense astrophysical environments sustain nonlinear refractive

effects due to neutrino–neutrino forward scattering. We study geometric phases in neutrino

oscillations that arise out of cyclic evolution of the potential generated by these forward-scattering

processes. We perform several calculations, exact and perturbative, that illustrate the robustness

of such phases, and of geometric effects more broadly, in the flavor evolution of neutrinos. The

scenarios we consider are highly idealized in order to make them analytically tractable, but they

suggest the possible presence of complicated geometric effects in realistic astrophysical settings.

We also point out that in the limit of extremely high neutrino densities, the nonlinear potential in

three flavors naturally gives rise to non-Abelian geometric phases. This paper is intended to be

accessible to neutrino experts and non-specialists alike.
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4.2 Introduction

Geometric phases in neutrino propagation have been investigated in various guises [1–14]

over the decades since it was recognized that neutrino flavor transformation might provide

the solution to the mysterious deficit of solar neutrinos [15, 16]. In the intervening years the

understanding of how neutrino oscillations are modified in medium has undergone a sea change.

In particular, it is now recognized that in environments with very high neutrino density the flavor

evolution of one neutrino is coupled to that of all other neutrinos with which it interacts. The

result is a colorful tapestry of flavor-transformation phenomena that extends far beyond the classic

resonance mechanism at work in solar neutrinos.

In this paper we conduct the first study of neutrino geometric phases that accounts for the

nonlinear coupling of flavor states, a phenomenon known in the neutrino literature as self-coupling.

The phases that we exhibit in our calculations persist at the probability level and are therefore

detectable in principle, though no attempt is made here to extract geometric phases from models

of any degree of astrophysical realism. By and large such models would necessitate numerical

analysis, which may obscure some of the insights otherwise made transparent by an analytical

treatment. Our present aim is to explore the manifestations of geometric phases precisely without

the complications that continue to make the modeling of neutrino flavor such a disobliging task.

Even so, as we argue here, one gleans a hint that geometric quantum effects of one form or another

may be nearly unavoidable in the flavor evolution of neutrinos in such dense environments as

core-collapse supernovae or neutron-star mergers.

Broadly, geometric phase refers to the extra, path-dependent quantum phase that a state

accumulates in addition to the dynamical phase from the “local” influence of the Hamiltonian.

The latter phase is present even for a time-independent Hamiltonian and its importance has been

appreciated since the very advent of quantum mechanics; we denote it by δ, and for a state |ψ〉
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and Hamiltonian H it has the usual form

δ =−
∫

dt 〈ψ(t)|H(t)|ψ(t)〉. (4.1)

The appreciation of geometric phases as a common and observable feature of many quantum

systems is much more recent, dating back to the seminal realization by Berry [17] that a state

acted on by a cyclic, adiabatically changing Hamiltonian acquires a phase whose value depends

on the circuit traced out by the Hamiltonian in the space of its parameters. If |ψ〉 begins as

an instantaneous energy eigenstate |η〉, the adiabatic theorem dictates that it remains so, i.e.,

|ψ(t)〉= eiφ(t)|η(t)〉, and the total phase has the form φ = δ+γ with the geometric phase given by

γ. After the system, which is described by time-dependent parameters ~R(t), completes a circuit C ,

the state |ψ〉 has developed a geometric phase

γ = i
∮

C
〈η(t)|∇|η(t)〉 ·d~R, (4.2)

where ∇ is the gradient operator in ~R-space.

The particular incarnation of the geometric phase defined by this expression is often

called the Berry phase and is specific to cyclic, adiabatic systems. The notion can be generalized

enormously: to entangled states [18]; to mixed states [19]; and to non-adiabatic [1, 20, 21],

non-cyclic [22–26], and even open or non-Hamiltonian [27–31] systems. In this paper we use

the broad term geometric phase but our typical targets are indeed Berry phases of the form in

Eq. (4.2). At several points we will make contact with some of these generalizations.

On an intuitive level the existence of geometric phases in quantum systems is perhaps

most immediately grasped by analogy to the classical world: A Foucault pendulum, carried

around a closed loop on the surface of the Earth in such a way that the plane of oscillation is

never rotated, nonetheless returns to its starting point with a rotated plane of oscillation, and the

angle by which the plane has rotated (known as the Hannay angle) is, moreover, equal to the solid
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angle enclosed by the loop. Quantum geometric phases are rotations of the wavefunction and

arise, in much the same way, from parallel transport along a path. For readers seeking a deeper

understanding of the phenomenon, we sketch a picture in Sec. 4.3 of geometric phases from

the perspective of differential geometry, which permits a rigorous translation of this classical

intuition into the quantum realm. The picture is also intimately related to the “polarization vectors”

(formally introduced in Sec. 4.4) that are ubiquitous in the literature on neutrino flavor evolution.

Put succinctly, this connection is why geometry is relevant to neutrino oscillations.

The observability of geometric phases is today well-established in a variety of settings

thanks to such landmark experiments as those in Refs. [32–40] and the vast sweep of investigations

carried out in more recent years. The modern understanding of geometric phases has also shed

light on instances and variations of the phenomenon that were predicted or observed before

Berry’s original analysis, perhaps the most famous cases being the Aharonov–Bohm effect [41],

the Pancharatnam phase [42], and the (retroactively named) molecular Berry phase [43, 44].

Interferometry experiments, which comprise a large share of the corpus of geometric-

phase studies, are plainly out of the question when it comes to neutrinos. But neutrino oscillations

are themselves fundamentally an interference phenomenon: As mass eigenstates propagate in

vacuum they pick up phases at different rates, and the interference between these phases gives rise

to flavor oscillation. It is natural, then, to wonder whether the interference intrinsic to neutrino

oscillations might function in some way as an “interferometer” sensitive to geometric phases.

Much of the earliest interest in this possibility surrounded the idea that the resolution of

the missing-solar-neutrinos puzzle may come from the conversion of neutrinos into antineutrinos

via the interaction of their magnetic moments with solar magnetic fields [2, 4, 45, 46]. Although

the consensus is that the Mikheyev–Smirnov–Wolfenstein (MSW) mechanism [15, 47] ultimately

won the day as far as the solar neutrino problem, neutrino geometric phases continue to be

explored in the context of astrophysical magnetic fields [14]. Furthermore, just as magnetic

field vectors can trace out closed loops in physical space, the optical potentials generated by
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coherent forward scattering of neutrinos with background particles raise the possibility that a

similar mechanism might operate in flavor space.

Shortly after the explosion of interest in geometric phases began, Nakagawa [1] acknowl-

edged this possibility but observed that geometric phases cannot appear in two-flavor neutrino

oscillations in a matter background, for the simple reason that there is just one parameter in the

Hamiltonian that is varying (viz., the density of matter particles) and therefore a cycle of finite

area cannot be traced out. Naumov [7, 8] later showed that geometric phases can emerge in

three flavors, provided that there is both CP violation and a cyclically varying number density of

scatterers. These papers regarded vacuum mixing as the sole contributor to the off-diagonal (in

the flavor basis) Hamiltonian matrix elements; Pantaleone’s insight [48] that self-coupling can

also supply off-diagonal contributions was not yet widely appreciated.

More recently geometric phases were studied by He et al. [11] in a paper generalizing

Naumov’s work to active–sterile mixing and nonstandard interactions. Although the authors noted

that the neutrino-background density is an additional parameter varying independently of the

matter-background density, they did not consider the contribution of coherent neutrino–neutrino

scattering to the off-diagonal Hamiltonian elements. We thus point out for the first time in the

literature that geometric phases can arise out of the self-coupling potential and can appear even

with just two flavors. We also argue that because of the nonlinear nature of this potential, neutrino

self-coupling in flavor space is a particularly rich avatar for geometric phases.

Our approach is to perform calculations on several toy models that reveal various facets

of geometric phases in the presence of nonlinear neutrino–neutrino coupling. The calculations

that follow shed light on the precise role of adiabaticity, the nonlinear entangling of the geometric

phases developed by neutrinos in interaction with one another, the fragile cyclicity of flavor

transformation, and the non-Abelian phase structure of a certain three-flavor limit. While we do

not attempt to locate geometric phases in realistic astrophysical models, our results are suggestive

of the prevalence in sophisticated numerical computations of geometric effects generally, if not
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specifically the cyclic, adiabatic phases we investigate.

In Sec. 4.3 we sketch the picture of geometric phases from the viewpoint of differential

geometry. In Sec. 4.4 we present the relevant background on medium-enhanced neutrino oscilla-

tions. We then turn our attention to the flavor evolution that occurs in a system of two coupled

neutrino populations. Working in the two-flavor approximation, we examine three limiting cases:

the mixed-potential limit in Sec. 4.5, the pure-self-coupling limit in Sec. 4.6, and the weak-self-

coupling limit in Sec. 4.7. After examining these two-flavor scenarios, we return in Sec. 4.8 to the

mixed-potential limit, this time in three flavors, and show how it begets non-Abelian geometric

phases. We conclude in Sec. 4.9.

4.3 The differential-geometric picture

The Born rule implies that the overall phase of a quantum state |ψ〉 is inessential for

computing or measuring observables at some time t. With a rephasing |ψ̃(t)〉= eiα|ψ(t)〉 by some

arbitrary phase α,

〈ψ̃(t)|O|ψ̃(t)〉= 〈ψ(t)|O|ψ(t)〉 (4.3)

for any Hermitian operator O. As a result the value of α in |ψ̃(t)〉 can be chosen arbitrarily, but as

shown by Berry it does not follow that the overall phase can be ignored altogether. At a basic

level, geometric phases are in fact amenable to observation because once α is chosen for |ψ̃(t)〉,

the phase of |ψ̃(t ′)〉 at any other time t ′ is predetermined by this choice (in conjunction, of course,

with the dynamics of the system). In other words, phase changes are physically significant.

Granting that geometric phases exist, it is perhaps not so surprising that they are observable—

but that they should exist at all is a profound fact about quantum mechanics. Fundamentally the

existence of geometric phases is a consequence of Hilbert space having nontrivial geometry, and

the values of the phases are governed by that geometry in tandem with the relevant Hamiltonian.

Just as the spheroidal shape of the Earth determines the Hannay angle [49] of a Foucault pendu-
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Figure 4.1: A visualization of the differential-geometric structures underpinning the geometric
phase. The curve Γ̃ in Hilbert space projects down to a curve Γ in projective Hilbert space. Γ̃

begins and ends on the same fiber (labeled G, denoting the Lie group) but may not return to the
same element in the fiber. The group element at the start of the loop is brought to the element
at the end by the holonomy γΓ. The holonomy is precisely the geometric phase acquired upon
completing the cycle.

lum carried along the planet’s surface, in an analogous way does the “shape” of Hilbert space

determine how a wavefunction rotates—that is, picks up phase—as it is moved along a path.

These ideas are most naturally expressed in a rigorous manner using the language of

principal fiber bundles and their associated structures. The relation between geometric phases and

fiber bundles was the powerful insight of Simon [50] and has been elaborated by many subsequent

authors. We now try to elucidate this helpful way of understanding geometric phases.

For a Hamiltonian H[~R] that depends on the time-dependent parameters ~R(t), a given

nondegenerate instantaneous eigenstate |ψ̃〉 can be specified by the pair
(
~R,exp(iα)

)
, where α

is the arbitrary overall phase referred to previously. We have already established that this pair

corresponds to the same physical state regardless of the value of α; in technical terms, the pair

projects down to the same ray in projective Hilbert space for all α. Hilbert space can thus be

visualized as a manifold with an identical string piercing through every point: A given point on

the manifold corresponds to a physical state (or, equivalently, a value of ~R) and the string through

that point represents the possible choices of phase α for that particular physical state.
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A principal fiber bundle describes precisely such an object. It consists of three parts

(Fig. 4.1): a total space E, a base manifold M, and a Lie-group fiber G. The translation into

bundle language uses the following associations:

E ←→ States in Hilbert space,

identified by (~R,exp(iα)),

M ←→ Physical states in projective

Hilbert space,

G ←→ Elements eiα of the group U(1). (4.4)

If the eigenstate is part of an n-degenerate subspace, then the fiber G is instead the non-Abelian

group U(n). For simplicity we will continue to assume non-degeneracy throughout the remainder

of this section, but we will demonstrate the emergence of non-Abelian fibers in the context of

neutrino oscillations in Sec. 4.8.

As ~R(t) evolves, a curve C (t) in parameter space, hence also a curve on the base manifold

M, is traced out. The curve on M, Γ(t), can be visualized as the shadow of a curve Γ̃(t) on E:

At every point in M there is a point in E elevated above the base manifold according to its fiber

element. The freedom to choose the value of α for |ψ̃(ti)〉 at a specific time ti is manifested as

a freedom to choose the fiber element at Γ̃(ti), but having made this choice, the fiber elements

are non-arbitrary for t > ti (and, for that matter, for t < ti). For us, the condition of adiabaticity

furnishes the principal fiber bundle with a connection, which is to say a way of moving a state

from one fiber to the next. The adiabatic connection is equivalent to the condition

〈
ψ̃(t)

∣∣∣∣ d
dt

∣∣∣∣ψ̃(t)〉= 0. (4.5)

This constraint describes the parallel transport of the state along the path and captures the intuitive
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notion that the state vector moves in such a way that locally it never appears to be rotating, modulo

the dynamical phase evolution (Eq. (4.1)).

If ~R(t f ) = ~R(ti), then Γ forms a closed loop and the state returns at t f to the same fiber it

began on at ti. It is not guaranteed, however, that the state will return to the same fiber element.

The difference

ei[α(t f )−α(ti)] ≡ ei∆α (4.6)

is itself an element of the Lie group and is termed the holonomy of the connection on the

principal fiber bundle. It is precisely equal to the geometric phase: ∆α = γ. The plausibility

of a global rotation occurring without any local rotation can be seen from the non-transitivity

of phase [42, 51]: 〈ψ̃1|ψ̃2〉 and 〈ψ̃2|ψ̃3〉 having the same phase does not necessarily imply that

〈ψ̃1|ψ̃3〉 has the same phase as well.

The numerical value of the holonomy depends on the curve Γ and the geometry of the

manifold M on which Γ lies. To illustrate this point concretely, we consider the evolution of

two-flavor neutrinos in flavor space. As with any two-level system, wavefunction normalization

and the arbitrariness of α(ti) relegate a C2 state vector to the Bloch sphere S2. In two flavors,

therefore, it is the geometry of the Bloch sphere that determines the geometric phase associated

with passage along a closed loop C in parameter space. The principal fiber bundle can be pictured

in this case as a ball (M = S2) with spikes (G =U(1)) sticking out of it. The three-flavor case

with two degenerate eigenstates, which we turn to toward the end of this study, has base manifold

CP2 = SU(3)/U(2) and is not as easily visualized, but the message is the same: The geometry of

Hilbert space leaves its footprint in the flavor conversion of neutrinos.
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4.4 Neutrino oscillations in medium

Neutrino oscillations are conveniently studied by tracking the time-evolution of the flavor

wavefunction

|ψ〉=


ae

aµ

aτ

 , (4.7)

where aα is the amplitude for the neutrino to have α flavor. This same state, expressed above in

the flavor basis, can be translated into the mass basis via the Pontecorvo–Maki–Nakagawa–Sakata

(PMNS) matrix UPMNS:

|ψ〉f =UPMNS|ψ〉m, (4.8)

where the subscript denotes the basis. (The wavefunction in Eq. (4.7) is really |ψ〉f, but we will

be dropping the subscripts as we proceed, leaving that job to the context.) The mixing matrix is

traditionally parameterized as

UPMNS =


c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13e−iδ −c12s23− s12c23s13eiδ c23c13

 , (4.9)

using the notation ci j ≡ cosθi j and si j ≡ sinθi j in terms of the oscillation angles θ12, θ23, and

θ13. The parameter δ is the Dirac CP-violating phase. Measurements of the three mixing angles

represent major triumphs of experimental particle physics over the past two decades; the Dirac

phase, meanwhile, remains largely unconstrained but with several groups in hot pursuit, including

those, for example, at NOνA [52], T2K [53], and DUNE [54]. Two additional phases are present

if neutrinos are Majorana particles. As the Majorana phases have no effect on oscillations, we

take them to vanish.

The mismatch between the flavor and mass eigenstates is one of the fundamental facts
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about neutrinos. It gives rise to oscillations in vacuum and is essential to the rich phenomenology

of in-medium flavor evolution that has been discovered since Wolfenstein’s pioneering revelation

[47] that neutrinos propagating in matter sustain refractive effects in much the same way that

photons do. The derivation of neutrino oscillations and detection probabilities from UPMNS can

be found in the standard references [55].

Throughout this paper we confine our attention to the coherent limit of neutrino propaga-

tion, which is to say that collisions (scattering processes that alter the momentum of the neutrino)

are negligible [56–59]. This approximation holds to varying degrees of accuracy in many settings

of interest: It is applicable in vacuum, for one, as well as in astrophysical environments such as

the Earth, the solar interior, the region far outside a core-collapse supernova or compact-object

merger, and the early universe after weak decoupling, but it fails in the extremely dense interior of

a supernova or merger remnant or at high enough temperatures in the early universe that neutrinos

are thermally equilibrated with the plasma. The coherent and incoherent limits are tied together

by a regime in which neither collisions nor the medium-enhanced flavor transformation that

occurs between scattering events can be neglected, as is the case during the protracted transition

of neutrinos in the early universe from being strongly coupled to the plasma to being fully free-

streaming. This worst-of-both-worlds regime is also exemplified by the “neutrino halo” region

of core-collapse supernovae [60], which is negligible during the late-time neutrino-driven-wind

epoch but may be important during the neutronization burst or shock revival. Environments

bridging the coherent and incoherent extremes are a frontier of research in neutrino astrophysics

and lie beyond the ambitions of the present paper.

In the coherent limit, which we henceforth adopt, the neutrino flavor state obeys a

Schrödinger-like equation

i
d|ψ〉

dt
= H|ψ〉, (4.10)

with Hamiltonian

H = Hvac +Hmatt +Hν, (4.11)
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where the three contributions to the Hamiltonian are respectively due to neutrino mass, forward

scattering off of matter particles (nucleons, charged leptons), and forward scattering off of other

neutrinos [61]. We briefly discuss each of these in turn.

The vacuum term Hvac is present in all environments and encodes the masses of the

individual neutrino eigenstates. In the mass basis it is simply the matrix (1/2E)diag
(
m2

1,m
2
2,m

2
3
)
,

where mi is the mass of eigenstate νi and E is the neutrino energy. In the flavor basis it has the

form

Hvac =UPMNS

(
1

2E
diag

(
m2

1,m
2
2,m

2
3
))

U†
PMNS. (4.12)

It is evident that Hvac has non-zero off-diagonal elements in the flavor basis that cause mixing

between the flavor states: This, of course, is the phenomenon of neutrino oscillations in vacuum.

When neutrinos are immersed in a dense bath of matter particles, as they are in many

astrophysical settings, the dispersion relations of the individual flavors are modified by forward

scattering off of the background. The most common scenario is one in which electrons (and

possibly positrons) are abundant but muons and tauons are all but absent; a thermal environment

requires quite a high temperature for the heavier charged leptons to be plentiful. Under these

circumstances, all flavors feel a forward-scattering potential generated by the neutral-current weak

interaction with e±, but only νe feels the additional potential from the charged-current interaction.

This effect is encoded in Hmatt. In this paper we are not concerned with the precise form of

the matter Hamiltonian (for reasons that will become evident momentarily), so to illustrate its

structure we write down the matrix in the scenario where the matter background consists entirely

of e− with number density ne. In the flavor basis,

Hmatt =
√

2GFnediag(1,0,0) , (4.13)

where GF is the Fermi constant. Since Hmatt is diagonal in the flavor basis and Hvac is diagonal

in the mass basis, the energy eigenstates in medium differ from both the mass and the flavor
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eigenstates. Under the right conditions, the adiabatic decrease in ne from very high down to

vanishing density induces efficient conversion through the MSW mechanism.

The final constituent of the Hamiltonian stems from forward scattering with other neutri-

nos. The physics introduced by this term is rich, as it generalizes the effect of Hmatt to a nonlinear,

matrix-structured index of refraction. The matrix structure enters because the neutrino–neutrino

forward-scattering amplitude depends not just on the density of the background neutrinos but on

their quantum states. The potential generated by these processes is therefore proportional to a

sum over the density matrices ρ = |ψ〉〈ψ| of each background neutrino. Explicitly,

ρ =


ρee ρeµ ρeτ

ρ∗eµ ρµµ ρµτ

ρ∗eτ ρ∗µτ ρττ

=


|ae|2 a∗eaµ a∗eaτ

a∗µae |aµ|2 a∗µaτ

a∗τae a∗τaµ |aτ|2

 . (4.14)

The diagonal element ραα is proportional to the number density of neutrinos of flavor α and

the off-diagonal element ραβ (α 6= β) measures the quantum coherence between flavors α and

β. If neutrinos of momentum~q have number density nν,~q and flavor state ρ~q, then a neutrino of

momentum ~p propagating through this background experiences

Hν =
√

2GF ∑
~q
(1− p̂ · q̂)nν,~qρ~q, (4.15)

where the sum is over all momentum states but could be expanded to include any additional indices

used to label neutrinos in the system. (By writing ρ = |ψ〉〈ψ|, we have assumed that each density

matrix describes a pure state.) The geometric factor (1−~p ·~q) originates from the structure of

the weak-interaction current. For the sake of brevity, we will later use µ~q ≡
√

2GF (1− p̂ · q̂)nν,~q.

Note that this contribution is nonlinear in the sense that it couples together the different neutrino

trajectories in flavor space. (Note also that we are ignoring antineutrinos in this discussion. We

will continue to do so in the calculations that follow, as antineutrinos do not change the analysis
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in any essential way.)

Throughout much of this paper we will perform calculations in the two-flavor approx-

imation that is appropriate when νµ and ντ have the same interaction potentials, which holds

whenever (1) muons and tauons are scarce and (2) νµ and ντ have identical spectra. Specifically,

we consider mixing between νe and a state νx, the latter being a particular superposition of νµ

and ντ. In this case |ψ〉, ρ, and the interaction potentials reduce in an obvious manner from

the three-flavor expressions given above. There is now just a single mixing angle θv, with no

CP-violating phase, and the 2×2 mixing matrix is simply the rotation

U =

 cosθv sinθv

−sinθv cosθv

 . (4.16)

It follows from Eq. (4.12) that the vacuum Hamiltonian is

Hvac =
ω

2

 −cos2θv sin2θv

sin2θv cos2θv

 , (4.17)

with the vacuum oscillation frequency defined in terms of the mass-squared splitting δm2 ≡

m2
2−m2

1 by ω ≡ δm2/2E. The mass hierarchy, which remains experimentally ambiguous, is

reflected in the sign of the oscillation frequency: ω > 0 for the normal hierarchy (NH), ω < 0 for

the inverted hierarchy (IH).

With only two flavors, coherent neutrino evolution is tantamount to a two-level problem

and can be mapped onto the Bloch sphere; in this regard it is analogous to the physics of electron

spins, nuclear isospins, qubits, and so on. The Bloch vector ~P formed from the su(2)-algebra

decomposition of the density matrix ρ is commonly known in the neutrino community as the
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polarization vector, in deference to photon polarization:

ρ =
1
2

(
I+~P ·~σ

)
. (4.18)

Noting that Eq. (4.10) can be recast as a Liouville–von Neumann equation

i
dρ

dt
= [H,ρ] , (4.19)

a similar decomposition of the Hamiltonian permits the coherent equations of motion to be written

as a Bloch-like equation with infinite relaxation time:

d~P
dt

= ~H×~P. (4.20)

~P can be visualized as a vector pointing from the origin to the surface of the S2 manifold described

at the end of the previous section. In this picture the parallel transport condition in Eq. (4.5)

forbids ~P from spinning and thereby moving locally along the fiber, even as ~P precesses about

~H. Given our emphasis on the two-flavor limit, it will be helpful to have this polarization-vector

picture in mind. Indeed, it is precisely the geometric nature of Eq. (4.20) that underlies the

geometric phases exhibited below.

Absent the self-coupling potential Hν, the Hamiltonian can be rewritten in terms of

effective in-medium mixing parameters:

Hvac +Hmatt =
ωm

2

 −cos2θm sin2θm

sin2θm cos2θm

 , (4.21)
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with in-medium oscillation frequency (using the analogous form of Eq. (4.13) for two flavors)

ωm ≡

√√√√
ωsin2 2θv +

(
ωcos2θv−

√
2

2
GFne

)2

(4.22)

and in-medium mixing angle given by

sin2 2θm ≡
ω2 sin2 2θv

ω2
m

. (4.23)

The upshot is that flavor evolution in a matter background looks like vacuum oscillations with

modified frequency and amplitude. For this reason, in the rest of the paper we will ignore Hmatt;

it is assumed to have been absorbed into the vacuum mixing parameters.

With Hν present, the nonlinear communication between flavor states considerably expands

the range of flavor-evolution phenomena. These behaviors are grouped under the heading of

collective neutrino oscillations and have been the subject of intense study in recent years [62–125].

One paradigmatic collective effect is the synchronization of flavor: When Hν dominates the

Hamiltonian, all neutrinos experience roughly the same potential, leading them to undergo nearly

identical oscillations at a common effective frequency. Synchronized oscillations are perhaps the

cleanest example of cyclic evolution of the Hamiltonian at strong nonlinear coupling, but they are

not alone.

Geometrically the crucial feature of neutrino self-coupling is that even in two flavors a

complex off-diagonal potential can develop, opening the possibility for cyclic evolution of the

Hamiltonian. With the standard matrix representation of the Pauli matrices, the y-component

of ~H corresponds to the imaginary parts of these off-diagonal elements. Since H can always be

written as a real symmetric matrix in the standard MSW (vacuum+matter) scenario, in a matter

background ~H never leaves the xz-plane and closed loops on the Bloch sphere, other than the

trivial one formed by following the xz great circle, are precluded. This conclusion no longer holds
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in a neutrino background. The coherent coupling of neutrino flavor states can thus be framed as a

geometric statement.

4.5 Mixed potentials with two flavors

In this and the next two sections we analyze geometric effects that arise in a scenario

with two-flavor neutrinos interacting with each other by way of coherent forward scattering. For

simplicity we neglect any contributions from a matter background, which as noted previously

can be absorbed into the vacuum potential by working in terms of effective in-medium mixing

parameters. By dialing the strengths of the vacuum and self-coupling potentials, one finds that the

system gives rise to a panoply of flavor-transformation phenomena. We take three different limits

of the coupling strengths that illuminate in particular how the flavor transformation enmeshes

with geometry.

The equations of motion for two pure populations of neutrinos interacting with one another

are

i
d|ψ1(t)〉

dt
= [ω1B+µ2ρ2(t)] |ψ1(t)〉,

i
d|ψ2(t)〉

dt
= [ω2B+µ1ρ1(t)] |ψ2(t)〉, (4.24)

where mode i has wavefunction |ψi(t)〉, vacuum oscillation frequency ωi, and density parameter

µi (defined below Eq. (4.15)). The matrix B is equal to Hvac with the energy-dependent part taken

out. In the mass basis it is B = diag(−1/2,1/2) and has vector form ~B =−(1/2) ẑ.

In this section we consider the limit in which the neutrinos of mode 2 are extremely dilute
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but those of mode 1 are extremely dense:

i
d|ψ1(t)〉

dt
= ω1B|ψ1(t)〉,

i
d|ψ2(t)〉

dt
= µ1ρ1(t)|ψ2(t)〉. (4.25)

As a shorthand, we term this arrangement mixed potentials.

The first equation of motion describes vacuum oscillations and is easily solved:

|ψ1(t)〉= exp(−iω1Bt) |ψ1(0)〉. (4.26)

In the mass basis the matrix exponential is diagonal and, taking as an initial state

|ψ1(0)〉=

 cos θ1
2

eiφ1 sin θ1
2

 , (4.27)

one finds that |ψ1〉 corresponds to a polarization vector ~P1 precessing about the z-axis with fixed

frequency ω1 and at fixed polar angle θ1:

|ψ1(t)〉=

 cos θ1
2

ei(φ1−ω1t) sin θ1
2

 . (4.28)

In the case of the IH, ω1 < 0 and the direction of precession is reversed. The other mode

|ψ2〉—a flavor state evolving under a Hamiltonian that sweeps out a circle in flavor space—is

mathematically identical to a spin in a magnetic field that sweeps out a circle in physical space.

Although we are indicating with the notation that |ψ1〉 represents a pure state of neutrinos at

a chosen energy, it may be that |ψ2〉 interacts with an ensemble—pure or mixed—with some

spectrum. If the ensemble undergoes synchronized oscillations, then the computation proceeds

almost unchanged.
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Figure 4.2: Initial (t = 0) configuration of polarization vectors in the mixed-potentials scenario.
~P1 undergoes vacuum oscillations (clockwise about ẑ =−B̂ for the NH, counterclockwise for
the IH). Its trajectory is shown by the dashed circle. ~P2 is in an electron-flavor eigenstate and
points along L̂.

In Sec. 4.5.1 we adopt an adiabatic treatment, thereby reproducing the neutrino version of

the classic result for the geometric phase of a spin in a cyclic magnetic field, and we point out

that in principle this phase is observable. In Sec. 4.5.2 we find the exact (non-adiabatic) solution

and demonstrate the geometric-dynamical phases that appear as perturbative corrections to the

traditional purely geometric phase.

4.5.1 Adiabatic treatment

We now set out to determine, under the assumption of adiabatic evolution, the phase

acquired by |ψ2〉 after ~H2(t) = µ1~P1(t) undergoes one period of cyclic evolution. Based on the

foregoing discussion, we know that ~H2 rotates with frequency ω1 about the mass-eigenstate axis

B̂ =−ẑ (Φ1(t) = φ1−ω1t), maintaining a constant magnitude |~H2(t)|= µ1 and a constant polar

angle Θ1(t) = θ1. The coordinate system is chosen such that the flavor-eigenstate axis L̂, which

is defined to point along the polarization vector associated with νe, is in the xz-plane. This set-up

is depicted in Fig. 4.2.
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If the test neutrino is initially electron flavor, that is,

|ψ2(0)〉= |νe〉 , (4.29)

then ~P2 has initial azimuthal angle Φ2(0) = 0 and initial polar angle Θ2(0) = 2θv, where θv is

the mixing angle in vacuum. We stress that this problem has four physically relevant vectors.

Making the reasonable stipulation that |ψ1〉 also decouples into a flavor eigenstate, then at any

given time the vectors L̂, B̂, P̂1, and P̂2 are generally not coincident. One can see quite readily

that should any two of these unit vectors be identical at all times, then geometric phases in |ψ2〉

are either absent or unobservable:

• If B̂ = L̂, then oscillations do not occur.

• If P̂1(t) = B̂, then the path of ~H2 does not enclose a finite area in parameter space.

• If P̂2(t) = P̂1(t), then in the adiabatic limit |ψ2〉 is in an energy eigenstate at all times and

its phase will not show up at the probability level.

• If P̂1(t) = L̂, P̂2(t) = L̂, or P̂2(t) = B̂, then L̂ must be equal to B̂.

It follows immediately that if decoupling occurs into flavor eigenstates, it is a prerequisite for

the appearance of an observable adiabatic geometric phase that two parameters be nonzero: the

initial relative phase φ1 between the two modes and the vacuum mixing angle θv. With these

considerations in mind, we now proceed to derive the geometric phase.

In the chosen coordinate system the Hamiltonian matrix is

H2 =
µ1

2

 cosθ1 e−i(φ1−ω1t) sinθ1

ei(φ1−ω1t) sinθ1 −cosθ1

 , (4.30)
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which is represented by the vector

~H2 =
µ1

2


sinθ1 cos(φ1−ω1t)

sinθ1 sin(φ1−ω1t)

cosθ1

 . (4.31)

The energy eigenstates of this Hamiltonian correspond to the normalized polarization vectors

parallel and antiparallel with ~H2. As kets they are

|ν+(t)〉=

 cos θ1
2

ei(φ1−ω1t) sin θ1
2

 ,

|ν−(t)〉=

 −sin θ1
2

ei(φ1−ω1t) cos θ1
2

 , (4.32)

and they have energy eigenvalues E± =±µ1/2.

The geometric phase, defined in Eq. (4.2), can be recast in the form

γ =
∮

C
~A ·d~R, ~A = i〈η(t)|∇|η(t)〉 (4.33)

for eigenstate |η(t)〉. The vector ~A is the gauge potential associated with the adiabatic connection.

In this case the gauge potentials are given by

~A+ = i〈ν+|∇ |ν+〉=−
sin2 Θ1

2
sinΘ1

Φ̂,

~A− = i〈ν−|∇ |ν−〉=−
cos2 Θ1

2
sinΘ1

Φ̂. (4.34)

Integration along the curve swept out by ~H2 then yields the geometric phases acquired by these
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energy eigenstates:

γ+ =
∮

C
~A+ ·d~R =±π(1− cosθ1) ,

γ− =
∮

C
~A− ·d~R =±π(1+ cosθ1) , (4.35)

where the upper (lower) signs are for the NH (IH). Evidently the geometric phase is sensitive to

the mass hierarchy, with the proper sign being fixed by the direction of traversal about the loop.

The dynamical phase, meanwhile, is

δ± =−
∫ T

0
E±dt =∓µ1

2
T, (4.36)

so that the energy eigenstates after one period T are

|ν+(T )〉= e±iπ(1−cosθ1)e−i µ1
2 T |ν+(0)〉 ,

|ν−(T )〉= e±iπ(1+cosθ1)e+i µ1
2 T |ν−(0)〉 , (4.37)

where again the upper (lower) signs are for the NH (IH).

The calculation thus far is identical to the standard one for a spin-1/2 particle in a rotating

magnetic field, and as usual the geometric phase is half the solid angle enclosed in parameter

space by the loop traced out by the Hamiltonian vector. But a key point for neutrinos is that their

production and detection project onto the flavor axis. It is therefore necessary to convert between

the interaction and energy bases. The unitary matrix U effecting the transformation

 |ν−〉
|ν+〉

= U

 |νe〉

|νx〉

 (4.38)
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is given by

U =

 U11 U12

U21 U22

=

 eiΦ1 sinθv cos θ1
2 − cosθv sin θ1

2 eiΦ1 cosθv cos θ1
2 + sinθv sin θ1

2

eiΦ1 sinθv sin θ1
2 + cosθv cos θ1

2 eiΦ1 cosθv sin θ1
2 − sinθv cos θ1

2

 .

(4.39)

Note that U is time-dependent, since Φ1(t) = φ1−ω1t.

Using the unitarity of U, one can write the initial state—assumed to be νe—as

|ψ2(0)〉= U∗11 |ν−(0)〉+U∗21 |ν+(0)〉 . (4.40)

After one period has elapsed, the state has evolved to

|ψ2(T )〉= U∗11e−iπ(1+cosθ1)ei µ1
2 T |ν−(0)〉

+U∗21e−iπ(1−cosθ1)e−i µ1
2 T |ν+(0)〉 . (4.41)

Projecting |ψ2(T )〉 onto the flavor state in which it was produced at t = 0 yields

|〈νe|ψ2(T )〉|2 = 1−4 |U11|2 |U21|2 sin2
(

πcosθ1−
µ1

2
T
)
. (4.42)

Letting x≡ cos2θv cosθ1 + cosφ1 sin2θv sinθ1, we have

|U11|2 =
1
2
(1− x) , |U21|2 =

1
2
(1+ x) , (4.43)

allowing us to write

|〈νe|ψ2(T )〉|2 = 1−
(
1− x2)sin2

(
πcosθ1−

µ1

2
T
)
. (4.44)
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Recalling that γ± =−π±πcosθ1, one has, finally,

|〈νe|ψ2(T )〉|2 = 1−
(
1− x2)sin2 (γ±+δ±) , (4.45)

where the choice of ± is arbitrary. We would have arrived at the same expression if we had

instead chosen the neutrino to be initially νx.

Moreover, Eq. (4.45) is independent of the choice of hierarchy. But since the overall sign

of γ changes upon flipping the hierarchy—whereas the sign of δ goes unchanged—the transition

probability turns out to be hierarchy-dependent. This finding has a simple explanation in the

polarization-vector picture: The precession direction of ~P1 about B̂ is set by the hierarchy, while

the precession direction of ~P2 about P̂1 is not.

It may be helpful to note that |〈ν±(0)|ν±(T )〉|= 1, since the geometric and dynamical

phases vanish under the modulus. In other words, the fact that the neutrino is produced and

detected in a state other than one of the energy eigenstates is necessary for the phases to appear at

the probability level. In fact, if one knows the flavor of the neutrino at t = 0, then by measuring

the flavor of the neutrino at t = T , one is effectively performing an interferometry experiment

capable in principle of probing the geometric phase. In this case, that phase is a measure of the

flavor-space path traced out by the other neutrino, which need not be directly observed.

4.5.2 Exact solution

The formulae applied in the previous section are appropriate to the adiabatic limit, in

which the energy eigenvectors track the Hamiltonian vector as it sweeps out a circuit. But it turns

out that an exact solution can be found even without this assumption. Let

|ψ2(t)〉= a(t)|ν+(t)〉+b(t)|ν−(t)〉 (4.46)
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and suppose that |ψ2(0)〉 = |ν+(t)〉, so that a(0) = 1 and b(0) = 0. This initial condition is

equivalent to the one in the previous subsection, but here we are not demanding that |ψ2〉 remain

in the eigenstate |ν+〉.

The Schrödinger equation says that the coefficients of |ψ2(t)〉 obey the system of equations

da(t)
dt

+a(t)
〈

ν+(t)
∣∣∣∣ d
dt

∣∣∣∣ν+(t)〉+b(t)
〈

ν+(t)
∣∣∣∣ d
dt

∣∣∣∣ν−(t)〉
=−i

µ1

2
a(t),

db(t)
dt

+a(t)
〈

ν−(t)
∣∣∣∣ d
dt

∣∣∣∣ν+(t)〉+b(t)
〈

ν−(t)
∣∣∣∣ d
dt

∣∣∣∣ν−(t)〉
= i

µ1

2
b(t). (4.47)

Enforcing b(t) = 0 amounts to the adiabatic approximation; it can be seen that the deviation from

this limit is associated with the “cross terms” that mix the eigenstates. The coupled first-order

differential equations can be rewritten as decoupled second-order differential equations. The

equation for a(t) is
d2a
dt2 − iω1

da
dt

+

[(µ1

2

)2
+

µ1

2
ω1 cosθ1

]
a = 0. (4.48)

This is the equation of a (complex) damped harmonic oscillator with real frequency-squared and

imaginary friction and can be solved with the usual ansatz a(t)∼ expαt. The resulting algebraic

equation for α has solutions

α± =
iω1

2
± iµ1

2

√
1+2

ω1

µ1
cosθ1 +

(
ω1

µ1

)2

. (4.49)

The general solution, of course, can be written as

a(t) = c+eα+t + c−eα−t , (4.50)
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and the initial condition |ν(0)〉= |ν+(0)〉 implies that

c+ =
1
2
− 1

2∆

[
1+

ω1

µ1
cosθ1

]
,

c− =
1
2
+

1
2∆

[
1+

ω1

µ1
cosθ1

]
, (4.51)

where ∆ is the square root of the discriminant,

∆≡

√
1+2

ω1

µ1
cosθ1 +

(
ω1

µ1

)2

. (4.52)

Observe that α± are purely imaginary regardless of the values of ω1, µ1, and θ1.

An important quantity found throughout the neutrino literature is the adiabaticity parameter

ϒ (usually denoted γ, but our hands are tied), upon which the transition probability P through

a resonance depends exponentially: P ≈ e−πϒ/2 [126]. The parameter can be cast into the

form [123]

ϒ≈ |HT |2∣∣Ḣz
∣∣ , (4.53)

where HT = H2
x +H2

y is the transverse part of the Hamiltonian vector and the right-hand side is

evaluated at resonance. In circumstances where a flavor-state level crossing occurs, such as in the

MSW mechanism, this definition implies that transitions are unlikely to occur if the separation

between the energy eigenstates at closest approach is large relative to the speed with which the

resonance is traversed. Although the system we are analyzing has no such level crossing, ϒ

nonetheless coheres with what we mean by adiabaticity. Applying the definition above, one has

ϒ≈
µ1 |P1,T |2∣∣∣ω1

(
~B×~P1

)
z

∣∣∣ . (4.54)

Dropping factors of order unity, this becomes simply ϒ ≈ µ1/ω1, so that the adiabatic limit

corresponds to ω1/µ1 −→ 0. Thus the neutrino adiabaticity parameter, even in this non-resonant
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scenario, is consistent with the more general intuition that adiabaticity prevails when the change

in the Hamiltonian is slow compared to the response of the particle.

To zeroth order in ω1/µ1 one has, for T = 2π/ω1,

α±T −→±i
µ1

2
T + iπ(1∓ cosθ1) . (4.55)

The dynamical and geometric phases from the previous section are therefore recovered as the

leading-order terms in the perturbation expansion in the adiabaticity parameter.

The probability of |ψ2(t)〉 being in the upper eigenstate at any time t is

|a(t)|2 = 1−2c+c− (1− cosµ1∆t) . (4.56)

It is interesting to coerce a(t) into the form r(t)exp iφ(t). The modulus is simply r(t) = |a(t)|

and the phase is

φ(t) =

arctan

 c+ sin
(

ω1t
2 + µ1∆t

2

)
+ c− sin

(
ω1t
2 −

µ1∆t
2

)
c+ cos

(
ω1t
2 + µ1∆t

2

)
+ c− cos

(
ω1t
2 −

µ1∆t
2

)
 . (4.57)

Specifying t = T leads to

r(T ) =
√

1−2c+c− (1− cosµ1∆T )

φ(T ) = arctan
[
(1−2c−) tan

µ1∆T
2

]
, (4.58)
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Expanding each to first order in ω1/µ1 yields

r(T )≈ 1− ω1

2µ1
sin2

θ1 sin2
(µ1

2
T +πcosθ1

)
,

φ(T )≈− µ1

2
T −πcosθ1−

ω1

µ1

πsin2
θ1

2
. (4.59)

These can be combined to give an expression for a(T ), with the adiabatic-limit geometric and

dynamical phases substituted appropriately:

a(T )≈−
[

1+
π

2δ+
sin2

θ1 sin2 (δ++ γ+)

]
× exp

{
i
[

δ++ γ++
π2 sin2

θ1

2δ+

]}
. (4.60)

As expected, in the zeroth-order expansion one obtains

a(T ) =−exp [i(δ++ γ+)] . (4.61)

This is identical to our result from the previous subsection, up to an unobservable minus sign.

Note also that the corrections to the fully adiabatic result intertwine geometry and dynamics. It is

only at lowest order that the two can be neatly separated.

4.6 Pure self-coupling with two flavors

We have seen that if the Hamiltonian for a neutrino sweeps out a circle, then the neutrino

acquires a geometric phase after one period that is proportional to the solid angle of this circle on

the Bloch sphere. It is well-known from geometric-phase lore that in fact the path could be any

closed circuit and in all cases the phase acquired is determined by the enclosed solid angle.

In the neutrino context with strong nonlinear coupling between modes, the possibility
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arises that the geometric phase is not set by the path but rather that the phase and the path mutually

determine one another. The simplest case, which we shall examine in this section, is that of

two modes interacting with one another and experiencing negligible vacuum potential. We can

picture this scenario as two vectors rotating about each other in some complicated way. If it can

be shown that the Hamiltonian generated by one vector ~P1 is cyclic (i.e., if that vector is itself

cyclic) and if the other vector ~P2 does not adiabatically track an energy eigenstate, then it is to be

expected that geometric phases will appear at the probability level in the second mode, which

is to say that the position of ~P2 depends on the geometric phases generated by ~P1. Thus far all

of this applies equally to the mixed-potentials scenario, as we just saw. But with two neutrino

populations interacting solely through self-coupling, these considerations are mutual, implying

that the paths and geometric phases of the vectors are inextricably bound. The scenario of the

previous section was analogous to a spin in a rotating magnetic field; the scenario here is more

akin to two spins interacting through their magnetic moments.

With these thoughts in mind, we return to the general equations of motion in Eq. (4.24)

and set ω1 = ω2 = 0, leaving the self-coupling potentials nonzero. To be explicit, we have

i
d|ψ1〉

dt
= µ2ρ2|ψ1〉,

i
d|ψ2〉

dt
= µ1ρ1|ψ2〉. (4.62)

Formally the solutions are

|ψ1(t)〉= P exp
(
−iµ2

∫ t

0
dt ′ρ2(t ′)

)
|ψ1(0)〉,

|ψ2(t)〉= P exp
(
−iµ1

∫ t

0
dt ′ρ1(t ′)

)
|ψ2(0)〉, (4.63)

where P denotes the path-ordering operator, but clearly these expressions are of little help since

the equations have not been decoupled.
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In fact the equations can be decoupled, allowing for exact solutions to be obtained. First

note the important fact that

i
d
dt
〈ψ2|ψ1〉= (µ2−µ1)〈ψ2|ψ1〉, (4.64)

hence the solution at time t is given by

〈ψ2(t)|ψ1(t)〉= exp [−i(µ2−µ1) t]〈ψ2(0)|ψ1(0)〉 (4.65)

and |〈ψ2(t)|ψ1(t)〉|2 is constant. The geometric meaning of these statements is more transparent

when Eq. (4.62) is rephrased in terms of polarization vectors:

d~P1

dt
= µ2~P2×~P1,

d~P2

dt
= µ1~P1×~P2. (4.66)

The magnitudes of the polarization vectors are conserved as usual, as is ~P1 ·~P2, and the conserva-

tion of |〈ψ2(t)|ψ1(t)〉|2 corresponds to the preservation of the angle between ~P1 and ~P2 even as

the vectors drift through flavor space. From a certain viewpoint, these are consequence of the

conservation of ~D ≡ µ1~P1 + µ2~P2, which acts as a kind of “center of flavor” in analogy to the

center of mass of a mechanical system.

The first equation of motion in Eq. (4.62) can be rearranged to read

|ψ2〉=
1

µ2〈ψ2|ψ1〉
i
d|ψ1〉

dt
. (4.67)

Differentiating this—while keeping in mind Eq. (4.65)—and using the second equation of motion

yields
d2|ψ1〉

dt2 + i(µ2−µ1)
d|ψ1〉

dt
+µ1µ2|〈ψ2|ψ1〉|2|ψ1〉= 0. (4.68)
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|ψ1〉 obeys the complex conjugate of this equation. As with the decoupled equations of motions

in the mixed-potentials limit, the friction coefficient is imaginary and the frequency-squared is

real.

Both flavor amplitudes must individually satisfy Eq. (4.68), which has solutions that are

superpositions of eλ+t and eλ−t with

λ± = i
µ1−µ2

2

[
1±
√

1+4
µ1µ2

(µ1−µ2)
2 |〈ψ2(0)|ψ1(0)〉|2

]
. (4.69)

Note that the signs of the eigenvalues depend on whether µ1 or µ2 is larger. In both cases we are

letting λ+ denote the eigenvalue of greater magnitude. Thus

ψ1(t) =

 a+eλ+t +a−eλ−t

b+eλ+t +b−eλ−t

 ,

ψ2(t) =

 c+e−λ+t + c−e−λ−t

d+e−λ+t +d−e−λ−t

 . (4.70)

With pure self-coupling, the mass axis is irrelevant and we are free to choose more convenient

coordinates than those used in the previous section. We let ~P1(0) point along the z-axis, and

we let ~P2(0) be at an angle θ (Fig. 4.3). Then |〈ψ1(t)|ψ2(t)〉|2 = cos2 θ

2 and the coefficients in

Eq. (4.70) are fixed by the parameters of the system.

We now pose this question: If H1 undergoes cyclic evolution, does |ψ2〉 acquire a geo-

metric phase? Given the structure of the solutions in Eq. (4.70) it is clear that H1 and H2 both

cycle after a shared period T . The same question can then be asked of |ψ1〉 with respect to cyclic

evolution of H2, and the geometric phases that emerge in this scenario must in some sense be

coupled to one another. Based on the solutions found above, |ψ1〉 and |ψ2〉 each complete a cycle
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z

~P1

~P2

θ

Figure 4.3: Initial (t = 0) configuration of polarization vectors in the pure-self-coupling scenario.
For convenience the coordinate system is chosen such that ~P1 lies along the z-axis.

after a time

T =
2π

|µ1−µ2|
√

1+4 µ1µ2
(µ1−µ2)

2 cos2 θ

2

, (4.71)

at which point the wavefunctions have acquired the phases eiα1 and eiα2 , respectively, with

α2 =−α1 and

α1 = sgn(µ1−µ2)

 π√
1+4 µ1µ2

(µ1−µ2)
2 cos2 θ

2

+π

 . (4.72)

These are the exact phases acquired by the states after a time T . Their geometric structure

is manifest, and they are clearly coupled, as one is the negative of the other regardless of the

choice of system parameters. The result is also notable in that the dynamical phase makes no

appearance: Since there are neither external parameters tuning the system nor even internal

parameters associated with vacuum oscillations, the only timescale available is the intrinsic

dynamical one set by the neutrino densities and the initial flavor states.

If µ1 = µ2, then no observable phase results at all. With the neutrino densities equal, the

first-derivative term in Eq. (4.68) drops out and the eigenvalues are related by a sign change.

The result is that only trivial overall phases can develop over the course of a cycle. It is also

straightforward to show that in the extreme limit µ1� µ2, the geometric phase acquired by |ψ1〉
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reduces to

α1 −→−2π
µ2

µ1
cos2 θ

2
, (4.73)

and still α2 =−α1. Using Eq. (4.53), an analysis like the one in the previous section shows that

the |ψ2〉 adiabaticity parameter is ϒ∼ µ1/µ2. This limit therefore describes adiabatic evolution

of the relatively dilute population of neutrinos.

The same result can be obtained through the usual adiabatic treatment, where the eigen-

system is solved for and the gauge potentials are calculated. To demonstrate this, we now

assume adiabaticity and compute the eigenvectors of H2 = µ1ρ1. The first eigenvector is simply

|νµ(t)〉= |ψ1(t)〉, with eigenvalue λµ = µ1. The second eigenvector |ν0(t)〉 has eigenvalue λ0 = 0

and satisfies 〈ν0(t)|ψ1(t)〉= 0. These can be written out as

|νµ〉=

 a+eλ+t +a−eλ−t

b+eλ+t +b−eλ−t

 ,

|ν0〉=

 −b∗+eλ∗+t−b∗−eλ∗−t

a∗+eλ∗+t +a∗−eλ∗−t

 , (4.74)

from which the gauge potentials—now written as scalars in order to facilitate the computation—

may be evaluated:

Aµ = i
〈

νµ

∣∣∣∣ d
dt

∣∣∣∣νµ

〉
= µ2 cos2 θ

2
(4.75)

A0 = i
〈

ν0

∣∣∣∣ d
dt

∣∣∣∣ν0

〉
=−µ2 cos2 θ

2
, (4.76)

The computation of the first of these is significantly aided by using i〈νµ| d
dt |νµ〉 = 〈ψ1|H1|ψ1〉,

and the second can then be obtained easily by confirming that 〈ν0| d
dt |ν0〉= 〈νµ| d

dt |νµ〉∗. Thus, to
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first order,

i
∫ T

0
dt
〈

νµ

∣∣∣∣ d
dt

∣∣∣∣νµ

〉
= 2π

µ2

µ1
cos2 θ

2

i
∫ T

0
dt
〈

ν0

∣∣∣∣ d
dt

∣∣∣∣ν0

〉
=−2π

µ2

µ1
cos2 θ

2
. (4.77)

These results yield a geometric phase consistent with the expansion of the exact phase in the

µ1� µ2 limit. Here we have exhibited phases that, while not purely geometric, nonetheless arise

in addition to the dynamical phase.

It is in fact not immediately apparent that this adiabatic treatment, where the geometric

phase is calculated from the gauge potentials, even should give the correct result. To see why,

consider that the “off-diagonal” matrix elements are

〈
ν0

∣∣∣∣ d
dt

∣∣∣∣νµ

〉
=−iµ2 cos

θ

2
sin

θ

2
ei(µ2−µ1)t (4.78)

and 〈νµ| d
dt |ν0〉=−〈ν0| d

dt |νµ〉∗, which is to say that they do not vanish any faster in the small-µ2

limit than the diagonal gauge potentials do. Evidently, however, one gets the correct results if

these terms are simply dropped. The reason is that if the state is purely |νµ〉 or |ν0〉 at t = 0, then

the component along the other eigenstate grows slowly by virtue of being driven by µ2. This small

component in turn contributes to the phase evolution of the dominant component with another

factor of µ2. Hence it is appropriate after all to ignore the overlap with the small component.

What we have shown in this section is that even away from the adiabatic limit phases arise

that depend on (1) the number densities of the two neutrino populations and (2) the constant angle

between the polarization vectors, but not explicitly on the time over which the system is evolved.

Furthermore, the geometric phases associated with the two states are necessarily related. In

contrast to what was found in the previous section, the geometric phases here are living creatures:

|ψ1〉 and |ψ2〉 mutually settle, simultaneously, on their paths in flavor space and on the attendant
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phases.

4.7 The µ� ω limit with two flavors

In Sec. 4.5 we showed that a neutrino acquires a geometric phase when it is strongly

coupled to another neutrino undergoing vacuum oscillations; under these circumstances the

Hamiltonian acts like an external, time-dependent “flavor-magnetic” field. In Sec. 4.6 we showed

that geometric phases can survive when the evolution of the magnetic field is coupled back

to the test neutrino. We now ask whether geometric phases persist when vacuum oscillations

and self-coupling are accounted for in both population of neutrinos. In particular we consider

geometric effects arising in the µ� ω limit.

We return to Eq. (4.24) and assume that the neutrino–neutrino forward-scattering poten-

tials are small compared to the vacuum potentials. To prepare to use perturbation theory, we write

the equations of motion as

i
d|ψ1〉

dt
= [ω1B+ εµ2ρ2] |ψ1〉,

i
d|ψ2〉

dt
= [ω2B+ εµ1ρ1] |ψ2〉. (4.79)

We expand perturbatively in the small parameter ε:

|ψ1〉= |ψ
(0)
1 〉+ ε|ψ(1)

1 〉+ . . . ,

|ψ2〉= |ψ
(0)
2 〉+ ε|ψ(1)

2 〉+ . . . . (4.80)
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To zeroth order the equations of motion are just those for vacuum oscillation:

i
d|ψ(0)

1 〉
dt

= ω1B|ψ(0)
1 〉,

i
d|ψ(0)

2 〉
dt

= ω2B|ψ(0)
2 〉, (4.81)

which have solutions

|ψ(0)
1 (t)〉= exp(−iω1Bt) |ψ(0)

1 (0)〉,

|ψ(0)
2 (t)〉= exp(−iω2Bt) |ψ(0)

2 (0)〉. (4.82)

The first-order equation for |ψ1〉 is

i
d|ψ(1)

1 〉
dt

= ω1Bψ
(1)
1 +µ2ρ

(0)
2 |ψ

(0)
1 〉, (4.83)

which, after plugging in the zeroth-order solution for |ψ2〉, becomes

d|ψ(1)
1 〉

dt
=− iω1B|ψ(1)

1 (t)〉

− iµ2e−iω2Bt
ρ
(0)
2 (0)ei(ω2−ω1)Bt |ψ(0)

1 (0)〉. (4.84)

This has solution

|ψ(1)
1 (t)〉= e−iω1Bt

[
|ψ(1)

1 (0)〉− iµ2

∫ t

0
dt ′eiω1Bt ′

ρ
(0)
2 (t ′)|ψ(0)

1 (t ′)〉
]
, (4.85)

and |ψ(1)
2 (t)〉 has an identical form but with subscripts interchanged.

Cyclicity fails to materialize as naturally here as it did in earlier sections. To find geometric
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effects analogous to the ones reported above, we seek values of the period T such that

|ψ2(T )〉= eiα|ψ2(0)〉. (4.86)

The phase α is to be solved for concomitantly. Since |ψ1〉 may not be cyclic with the same period,

in general α will not be a phase of the Berry genus.

The phase and period are expanded as

α = α
(0)+ εα

(1),

T = T (0)+ εT (1). (4.87)

If ~P2 is initially at angles (θ2,φ2), then the initial conditions for this mode are

|ψ(0)
2 (0)〉=

 cos θ2
2

eiφ2 sin θ2
2

 ,

|ψ(1)
2 (0)〉=

 0

0

 . (4.88)

Demanding that |ψ2〉 satisfy Eq. (4.86) then amounts to the following requirements on α and T :

|ψ(0)
2 (T (0))〉= eiα(0)

|ψ(0)
2 (0)〉,

|ψ(1)
2 (T (0))〉+T (1)d|ψ(0)

2 〉
dt

∣∣∣∣
T (0)

= iα(1)eiα(0)
|ψ(0)

2 (0)〉. (4.89)

The first equation is satisfied if

T (0) =
2πn
ω2

, α
(0) = nπ, (4.90)
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with n ∈ Z. The second equation then becomes

∣∣∣∣ψ(1)
2

(
2πn
ω2

)〉
=±i

(
α
(1)+ω2T (1)B

)
|ψ(0)

2 (0)〉, (4.91)

where |ψ(1)
2 〉 can be evaluated using Eq. (4.85). The + (−) corresponds to even (odd) n.

In deriving the first-order corrections to the phase and period it is helpful to note a few

intermediate results. First, the term in the integrand of Eq. (4.85) that multiplies |ψ(0)
1 (t)〉 is

ei(ω2−ω1)Bt
ρ
(0)
1 (0)e−i(ω2−ω1)Bt =

 cos2 θ1
2 ei(ω1−ω2)te−iφ1 cos θ1

2 sin θ1
2

e−i(ω1−ω2)teiφ1 cos θ1
2 sin θ1

2 sin2 θ2
2

 .

(4.92)

The two conditions that can be extracted from the matrix solution for |ψ(1)
1 (t)〉 are then

2πn
µ1

ω2
cos2 θ1

2
+ξ
∗ tan

θ2

2
=−α

(1)+
ω2T (1)

2
,

2πn
µ1

ω2
sin2 θ1

2
+ξcot

θ2

2
=−α

(1)− ω2T (1)

2
, (4.93)

where

ξ≡ iµ1
e−2πni

(
ω1
ω2
−1
)
−1

ω1−ω2
ei(φ1−φ2) cos

θ1

2
sin

θ1

2
. (4.94)

These equations can be solved to yield

α
(1) =−nπ

µ1

ω2
− ξ

2
cot

θ2

2
− ξ∗

2
tan

θ2

2
,

T (1) =
2πn
ω2

µ1

ω2
cosθ1 +

ξ∗

ω2
tan

θ2

2
− ξ

ω2
cot

θ2

2
. (4.95)

Notice that in general ξ is complex. Demanding that the period be real (but without putting

contrived restrictions on the angles) requires that ω1/ω2 be a rational number of the form m/n,
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with m ∈ Z. Choosing ω1 to satisfy this constraint, one obtains

α
(1) =−πn

µ1

ω2
,

T (1) = 2πn
µ1

ω2
2

cosθ1, (4.96)

so that to first order we have

T =
2πn
ω2

(
1+

µ1

ω1
cosθ1

)
,

α = nπ

(
1− µ1

ω2

)
. (4.97)

To ensure that |ψ2〉 is cyclic, the rationality condition ω1/ω2 = m/n is necessary—but having so

picked the vacuum oscillation frequencies, |ψ2〉 oscillates with a geometry-dependent period and

acquires a phase sensitive to the density of the other neutrino population.

Analogous results apply if instead we take |ψ1〉 to be cyclic and seek out the period

and phase consistent with such a requirement. If µ1 = µ2 and ω1 = ω2, then |ψ1〉 and |ψ2〉 are

cyclic with the same period and accrue identical phases. In this particular scenario, where the

two neutrino populations consist of particles of the same energy and density, the phases are of

the classic Berry type, with each population experiencing adiabatic evolution under a cyclic

Hamiltonian. In general the adiabaticity parameter for |ψ1〉 is ϒ1 ∼ ω2
1/µ2|ω2|, and similarly

for |ψ2〉. Adiabaticity is therefore established automatically by taking the limit µ� ω, so long

as the frequencies are of comparable magnitude. This observation also matches intuition: The

time-dependent self-coupling potential, which elicits deviations from adiabaticity, is only a small

part of the total Hamiltonian.

In the final assessment, cyclicity is typically jeopardized when the nonlinear coupling acts

to perturb the neutrinos away from vacuum oscillations. Nonetheless geometry remains relevant

to the flavor transformation that occurs in such a system, as evidenced by the noncyclic variants
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of the geometric phase already alluded to in Sec. 4.2 (see, e.g., Refs. [10, 13] for applications to

neutrinos in vacuum+matter). We do not pursue this direction any further but we do emphasize

that the imprints of geometry in flavor transformation transcend the cyclic, adiabatic phase.

4.8 Mixed potentials with three flavors: non-Abelian phase

We now generalize the mixed-potentials scenario of Sec. 4.5 to three flavors. As before,

the vacuum oscillations of one neutrino determine the Hamiltonian experienced by the other. That

is,

i
d|ψ1(t)〉

dt
= µ2ρ2(t)|ψ1(t)〉,

i
d|ψ2(t)〉

dt
= Hvac,2|ψ2(t)〉, (4.98)

where |ψi〉 is a three-component vector, ρi is a 3×3 matrix, and in the mass basis

Hvac,2 =
1
3


−∆21−∆31 0 0

0 ∆21−∆32 0

0 0 ∆32 +∆31

 , (4.99)

using the notation ∆i j ≡ δm2
i j/2E. The equations of motion have solutions

|ψ1(t)〉= P exp
(
−iµ1

∫ t

0
dt ′ρ2(t ′)

)
|ψ1(0)〉,

|ψ2(t)〉= exp(−iHvac,2t) |ψ2(0)〉. (4.100)
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The matrix exponential for the second of these is straightforward to compute. The solution, for

|ψ2(0)〉= (a,b,c)T , is

|ψ2(t)〉=


exp
(

i∆21+∆31
3 t

)
a

exp
(

i∆32−∆21
3 t

)
b

exp
(
−i∆32+∆31

3 t
)

c

 . (4.101)

It follows that

ρ2(t) =
|a|2 exp(i∆21t)ab∗ exp(i∆31t)ac∗

exp(−i∆21t)ba∗ |b|2 exp(i∆32t)bc∗

exp(−i∆31t)ca∗ exp(−i∆32t)cb∗ |c|2

 (4.102)

and thus the geometric phases induced by the Hamiltonian H1(t) = µ2ρ2(t) can be found by

solving for the eigensystem. (In carrying out this procedure, one is aided by the Cardano

formula.) The eigenvalues are Eµ = µ2, E0 = 0, and E0′ = 0, which correspond respectively to

the eigenvectors

|νµ〉=
1
|c|


exp(i∆31t)ac∗

exp(i∆32t)bc∗

|c|2

 ,

|ν0〉=
1√

1+ |c|
2

|b|2


exp(i∆31t)ac∗

(
1− 1

|a|2

)
exp(i∆32t)bc∗

|c|2

 ,

|ν0′〉=
|a|2

|c|2
√

1−|a|2


0

−exp(i∆32t) c∗
b∗

1

 . (4.103)
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In this scenario two of the energy eigenstates are always degenerate, indicating that the geometric

phases have a non-Abelian gauge structure [127].

In the two-flavor case, where the gauge was Abelian, the geometric phases acquired by

the energy eigenstates could be deduced by solving the Schrödinger equation with |ψ±(t)〉 =

exp(iφ±(t)) |ν±(t)〉; this is the condition that enforces perfect adiabaticity. But nothing prevents

the states within the degenerate subsystem from mixing with each other, regardless of how

adiabatic the evolution is. To find the phases in the degenerate subsystem, one must therefore

solve the Schrödinger equation with |ψi(t)〉 = Ui j(t)|ν j(t)〉, where |ν j(t)〉 is the jth eigenstate

and U(t) is the matrix generalizing the Abelian phase from the two-flavor case. If the path over a

time t corresponds to a closed loop C , then the matrix is given by the Wilson loop

U(C ) = P exp
(

i
∮

C
~A ·d~R

)
, (4.104)

where the gauge potential is now a vector-valued matrix with components

~Ai j = i
〈
νi(t)

∣∣∇∣∣ν j(t)
〉
. (4.105)

Eq. (4.104) generalizes Eq. (4.2). We do not write out all of the gauge potentials since they are

not particularly enlightening, but we do note that the off-diagonal elements of A are nonzero,

allowing for transitions between |ν0〉 and |ν0′〉 even in the adiabatic limit. If |ψ2(0)〉= |να〉 for

α = e,µ,τ, the transitions occur between orthogonal linear combinations of the other two flavors.

For H1 to be cyclic, the period must be an integer multiple, all at once, of 2π/∆21, 2π/∆31,

and 2π/∆32. This reflects the requirement for a three-flavor neutrino to oscillate back into its

original state in finite time, a condition that was guaranteed in the two-flavor case. Supposing that

such a T does exist, one can show that indeed the phases arising from the gauge potentials do not

depend explicitly on time.

The non-Abelian structure owes its existence to a basic fact about the Hamiltonian for
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|ψ1〉. It is a fact that appeared previously in our study of the pure-self-coupling scenario in two

flavors: When H ∼ ρ = |ψ〉〈ψ|, one eigenstate is |ψ〉 itself and all others are orthogonal states

with eigenvalue 0. (Note that for the mixed-potential scenario in two flavors, where this trait of

the Hamiltonian was also relevant, we pulled out the trace of the self-coupling Hamiltonian and

thereby shifted the orthogonal-eigenstate energy down to −µ1/2.) To put it more starkly, the non-

Abelian phase structure is a consequence of the coupling of neutrino flavor quantum states—with

off-diagonal coherence included—rather than merely neutrino flavor number densities.

4.9 Conclusion

We have pointed out that the self-coupling potential generated by neutrino–neutrino

forward scattering is capable of inducing geometric phases in flavor evolution. The mechanism

is most easily understood in the two-flavor approximation, where a neutrino’s flavor state and

Hamiltonian correspond graphically to vectors ending on the Bloch sphere. In a background

consisting strictly of matter particles, the Hamiltonian vector ~H is confined to a plane. But in a

medium dense in neutrinos, ~H is liberated from the plane and, should it undergo a closed cycle,

may return to its initial point having enclosed a finite solid angle on the sphere. Path-dependent

geometric phases in the energy eigenstates are the result—and since flavor transformation at its

heart is an interference phenomenon of the neutrino’s energy eigenstates, the phases surface in

flavor transition probabilities and are observable in principle.

To examine these phases in an analytically tractable setting, we have considered various

limits of a very simple toy model devoid of the astrophysical complications that beckon a

numerical treatment. Despite the model’s simplicity, the calculations presented in this paper

illuminate several facets of geometric phases in environments with nonlinear refraction from

neutrino self-coupling.

Foremost among these aspects are the roles of adiabaticity and cyclicity. We have seen that
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adiabatic evolution is not a necessity, and that geometric effects are apparent in the non-adiabatic

corrections, albeit in a way entangled with the dynamics. We have also seen that the complicated

interplay between oscillations and self-coupling tends to compromise cyclicity. But cyclicity is

also dispensable, and though we have not pursued this direction here, it is expected that geometric

effects should prove to be a generic feature of noncyclic evolution as well.

Beyond these, two other interesting phenomena have emerged from the calculations: the

entwining of the paths and phases of the two neutrino populations, as exhibited in the pure-self-

coupling scenario, and the non-Abelian phase structure of the three-flavor case. These effects

hinge on the peculiar nature of the neutrino–neutrino forward-scattering potential, which allows

neutrinos to communicate to one another the quantum coherence of their flavor states.

This study was motivated by the possibility for collective flavor-transformation effects

in the extreme environments found, for instance, in the torrid plasma of the early universe or

the incendiary outflow from a core-collapse supernova. We have made no attempt to locate

geometric phases in astrophysically realistic models but have instead strived to make clear, based

on calculations in uncluttered toy models, how such phases might emerge. Indeed, we expect

that the ideas underlying this study may find a place, in some form, in a variety of applications:

in synchronized or bipolar oscillations in the early universe, in a possibly cyclic halo-affected

region outside a supernova, in active–sterile oscillations, and elsewhere. To be sure, sophisticated

numerical computations already have geometric effects built in implicitly, albeit in far more

complicated manifestations than those analyzed here. After all, the provenance of these effects—

the shape of Hilbert space and the structure of the Hamiltonian—is encoded in the equations

of motion. But the importance of geometry in the results that these equations output is often

overlooked.
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[72] A. B. Balantekin and H. Yüksel, New J. Phys. 7, 51 (2005).

[73] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. D 74, 105014 (2006).

[74] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. Lett. 97, 241101 (2006).

[75] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 74, 123004 (2006).

[76] G. M. Fuller and Y.-Z. Qian, Phys. Rev. D 73, 023004 (2006).

[77] S. Hannestad, G. G. Raffelt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. D 74, 105010 (2006).

[78] A. B. Balantekin and Y. Pehlivan, J. Phys. G 34, 47 (2007).

[79] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. Lett. 99, 241802 (2007).

[80] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. D 75, 125005 (2007).

[81] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 76, 085013 (2007).

[82] G. Fogli, E. Lisi, A. Marrone, and A. Mirizzi, J. Cosmol. Astropart. Phys. 12, 010 (2007).

[83] G. G. Raffelt and A. Y. Smirnov, Phys. Rev. D 76, 081301 (2007).

[84] G. G. Raffelt and G. Sigl, Phys. Rev. D 75, 083002 (2007).

[85] G. G. Raffelt and A. Y. Smirnov, Phys. Rev. D 76, 125008 (2007).

[86] M. Blennow, A. Mirizzi, and P. D. Serpico, Phys. Rev. D 78, 113004 (2008).

[87] S. Chakraborty, S. Choubey, B. Dasgupta, and K. Kar, J. Cosmol. Astropart. Phys. 9, 013
(2008).

[88] B. Dasgupta and A. Dighe, Phys. Rev. D 77, 113002 (2008).

[89] B. Dasgupta, A. Dighe, A. Mirizzi, and G. Raffelt, Phys. Rev. D 78, 033014 (2008).

[90] B. Dasgupta, A. Dighe, A. Mirizzi, and G. G. Raffelt, Phys. Rev. D 77, 113007 (2008).

131



[91] H. Duan, G. M. Fuller, and J. Carlson, Comput. Sci. Disc. 1, 015007 (2008).

[92] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. Lett. 100, 021101 (2008).

[93] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D 77, 085016 (2008).

[94] A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomàs, G. G. Raffelt, P. D. Serpico, and G. Sigl,
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Chapter 5

Neutrino oscillations in supernovae:

angular moments and fast instabilities

5.1 Abstract

Recent theoretical work indicates that the neutrino radiation in core-collapse supernovae

may be susceptible to flavor instabilities that set in far behind the shock, grow extremely rapidly,

and have the potential to profoundly affect supernova dynamics and composition. Here we analyze

the nonlinear collective oscillations that are prefigured by these instabilities. We demonstrate

that a zero-crossing in nνe−nν̄e as a function of propagation angle is not sufficient to generate

instability. Our analysis accounts for this fact and allows us to formulate complementary criteria.

Using FORNAX simulation data, we show that fast collective oscillations qualitatively depend on

how forward-peaked the neutrino angular distributions are.
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5.2 Main

In this paper we address a key aspect of neutrino physics in core-collapse supernovae.

The stakes are high, as supernova explosions are central to our understanding of the origin of

elements and the history of galaxies.

Recently it has been realized that the neutrino flavor field in core-collapse supernovae is

prone to a host of instabilities [1–11] that were artificially concealed by the symmetries adopted in

older studies [12–18]. Of particular urgency is the subclass known as fast instabilities, so named

because they exhibit growth rates proportional to the self-coupling potential µ =
√

2GFnν and are

not suppressed by the typically much smaller vacuum oscillation frequency ω = δm2/2E [19–34].

They are commonly, if not always, associated with zero-crossings of the electron lepton number

carried by neutrinos (νELN) as a function of propagation angle. Global variations in nν̄e/nνe—

possibly related to LESA (lepton-number emission self-sustained asymmetry) [35–41]—and

coherent neutrino–nucleus scattering [42] independently make this condition a live possibility in

core-collapse supernovae [42–47]. If fast flavor conversion (FFC) does occur, it could substantially

alter our current view of supernova dynamics and nucleosynthesis [48, 49].

The aim of the present study is to gain some degree of understanding of the nonlinear

collective effects heralded by fast flavor instabilities. Our basic approach is to study the evolution

of the neutrino flavor field in terms of its momentum-space angular moments. Three considerations

motivate this choice. The first is realism: Neutrino angular distributions within∼ 100 km are quite

unlike the forms they are given in bulb or beam models. In point of fact, they transition—very

gradually relative to the µ−1 scale—from nearly isotropic to narrowly forward-peaked [50–53].

The second consideration is computational: As it is, many state-of-the-art supernova simulations

only track the first few angular moments, and cohesion between hydrodynamic and oscillation

calculations is clearly desirable [54–61]. The last is theoretical: In multipole space, the factor

(1− p̂ · q̂) that couples neutrinos of momenta p and q becomes a sum of monopole and dipole
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couplings [62, 63]. Angular moments are consequently a natural lens through which to examine

collective oscillations.

This last observation is especially true of fast modes, which can be isolated by taking

µ� ω. Because neutrino energy drops out of the coherent evolution, we can work with polar-

ization vectors that are integrated over the spectrum. Neutrinos propagating in a homogeneous

environment at angle v = cosθ (axial symmetry is assumed throughout) then obey the hybrid

multipole/momentum equation

Ṗv = µ(D0− vD1)×Pv. (5.1)

Here D0 and D1 are the monopole and dipole difference vectors (Dl = Pl− P̄l) and the matter

potential λ =
√

2GFne has been rotated out. It is immediately apparent that the only way for the

flavor content Pv,z to change significantly on a fast time scale is for D0− vD1 to swing away from

the flavor axis.

In terms of the difference vectors and their counterpart sum vectors Sl = Pl + P̄l , the

multipole equations of motion are [62]

Ṡl = µD0×Sl−
µ
2

D1× (alSl−1 +blSl+1) ,

Ḋl = µD0×Dl−
µ
2

D1× (alDl−1 +blDl+1) , (5.2)

where al = 2l/(2l +1) and bl = 2(l +1)/(2l +1). D0 is constant on µ−1 time scales, implying

that fast collective modes must be driven by D1. It is helpful at this point to switch to a frame

rotating about D̂0 at frequency µD0, where D0 = |D0|. Using primes to denote vectors in the
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Figure 5.1: Angular coordinates over four periods of fast flavor conversion. Two values of
v = cosθ are shown in each panel. The one that experiences more significant flavor conversion
is distinguished by the use of darker shades: purple for cosθv, blue for sin(φv−φ1). The thick
black curve depicts cosθ1. Time is in units of [

√
2GF(nνe − nν̄e)]

−1 ∼ 14 ps (154 ps) for the
upper (lower) panel. See the text for discussion and Fig. 5.2 for more information on the choice
of parameters.

rotating frame and introducing L′ = (D′0 +2D′2)/3 and G′ = 2D′3/5, we then have

Ḋ′1 = µL′×D′1,

Ḋ′2 =
3
2

µG′×D′1. (5.3)

Computing D′1× D̈′1 leads to a pendulum equation, which can be written in a form comparable to

that of the bipolar pendulum (Eq. 39 of Ref. [13]) by defining δ′ = D′1/D1 and σ = δ′ ·L′. The

result is
δ′× δ̈′

µ
+σδ̇′ = µD1G

′×δ′. (5.4)

One critical distinction with respect to the bipolar pendulum is that in this case “gravity” is not

a fixed external potential. In fact, G′ couples directly to D′1, making this a sort of nonlinear

gyroscopic pendulum. Nevertheless, the possibility for collective pendulum motion is built into

the structure of Eq. (5.2). Numerical realizations of it are shown in Figs. 5.1 and 5.2.

The dynamics of the system is also restricted by a tower of conservation laws, which can

be constructed by differentiating D′1 ·D′l and recursively reducing the right-hand side until it is
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Figure 5.2: Left: nνe (red) and nν̄e (blue and black) as functions of propagation angle θ, with
arbitrary normalization. The angular distributions are drawn at 200 ms post-bounce from a
spherically symmetric FORNAX simulation [64, 65] of the 16 M� progenitor from Ref. [66]. M1
closure is used to provide the radiative pressures and radiative heat fluxes [67], and α = nν̄e/nνe

is treated as a free parameter in order to trigger instability. Middle and right: Snapshots of Pv,z

color-coded by time (going from blue to red) and spanning the descent phase of a single dip
in D1,z. The normalization is such that Pv=1,z = 1. To isolate the fast mode, ω is assigned an
artificially small value.
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expressed as a total derivative. The first three conserved quantities are D1, σ, and

ED = µG′ ·D′1 +
µ
2

L′2, (5.5)

which respectively denote the length of the pendulum, its spin, and its total energy. In a foun-

dational study, Raffelt and Sigl [62] showed that the dipole term is the driving force behind

kinematic decoherence. This remains true on short time scales, and it is clear from Eq. (5.1) that

D1 causes dephasing of neutrinos with different values of v. But the constraints on the motion of

D1 mean that the dephasing can give rise to persistent collective oscillations rather than effectively

irreversible relaxation, at least until the effects of finite ω become important. The additional

fact that some of these constraints involve only the first four angular moments gives us some

hope of capturing the important features of FFC without having fine-grained information about

the distributions in momentum space. Indeed, the higher conservation laws, which encode the

fact that all angular moments are dynamically linked, may have utility for closing the moment

hierarchy in a sensible way.

We can be more specific about the connection to kinematic decoherence by recalling that

S0 obeys a pendulum equation as well [13, 62, 68, 69], with energy

ES = ωB ·S0 +
µ
2
(
D2

0−D2
1
)
. (5.6)

Kinematic decoherence arises because D2
0 and D2

1 are able to evolve at the cost of S0 shrinking [62].

But if µ� ω, then the S0 pendulum generally has very little sway over the D1 pendulum. The

opposite is not true, however: D1 steers the evolution of S0. Relaxation occurs through the mutual

interaction of the two pendula; the fact that the influence is one-way in the ω→ 0 limit enables

sustained collective motion.

It remains for us to understand how the predilection of D′1 for pendulum motion is

expressed through the individual polarization vectors. Ultimately our interest is in the projection
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onto the flavor axis:

Ṗv,z =−µv(D1×Pv)z . (5.7)

Writing the vectors in terms of their angular coordinates (θv and φv being the polar and azimuthal

angles of Pv, θ1 and φ1 being the same of D1), Eq. (5.7) becomes

θ̇v = µvD1 sinθ1 sin(φv−φ1) . (5.8)

Approximating φv and φ1 as developing under the influence of their initial Hamiltonians, the

phase difference accumulates at a rate

φ̇v− φ̇1 '−µ
(

1
3

D0,z(0)+ vD1,z(0)+
2
3

D2,z(0)
)
. (5.9)

Suppose that Pv(0) ∝ z. If the phase difference develops slowly enough that the right-hand side

of Eq. (5.8) is positive over many cycles of φ1, then θv can grow to a size unsuppressed by the

vacuum mixing angle.

As the instability grows, Eq. (5.9) breaks down and is replaced by the collective motion

seen in Fig. 5.1. Pv,z dips in proportion to vsin(φv−φ1) and is reflected in—and driven by—peaks

in D1,z (which are imperceptibly small in the upper panel because the angular distributions are

very nearly isotropic). As Fig. 5.2 illustrates, there are two qualitatively different outcomes as a

function of v. Setting Eq. (5.9) equal to zero, we find the trajectory which in this approximation

has constant phase with respect to D1:

ṽ =− 1
3R1
− 2R2

3R1
, (5.10)

with Rl = Dl,z(0)/D0,z(0). The quantity ṽ serves as a control parameter that shapes the v-

dependence of the collective oscillations. When ṽ is comfortably inside the range [−1,1] (as in

the test cases at r = 33 km), it indicates the presence of narrow resonances. When ṽ≈±1 (as at
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Figure 5.3: Regions of instability. Each point represents a family of angular distributions
(Eq. (5.13)). Left: The (R1,R2) parameter space, with Rl≥3 = 0. Center: (R1,R3), with
R2 = Rl≥4 = 0. Right: (R2,R3), with R1 = −1 and Rl≥4 = 0. The color map shows the
instability growth rate obtained from the linear analysis [Eq. (5.11)] in units of

√
2GF(nνe−nν̄e);

the blue region indicates parameters for which no zero-crossing occurs in the electron lepton
number carried by neutrinos; and the magenta, cyan, and red curves border the unstable regions
according to Eqs. (5.10), (5.15), and (5.16), respectively. Arrows point into the unstable
regions. For reference, the Fig. 5.1 angular distributions at 33 km have R1 =−0.35 (−1.11),
R2 =−0.02 (−0.05), and R3 = 0 (0) for α = 0.97 (0.99). The angular distributions at 70 km
have R1 =−0.17 (−0.87), R2 =−0.24 (−0.71), and R3 =−0.12 (−0.34) for α = 0.90 (0.95).

r = 70 km), the resonances fuse. Going one step further, we can use this parameter as the basis

for a simple stability criterion: If |ṽ|> 1, FFC cannot occur.

Conducting a linear stability analysis in terms of angular moments is revealing as well.

Following the usual procedure [70], we take the flavor coherence to be of the collective form

SE,v = QE,v exp(−iΩt) and search for growing solutions (Im Ω > 0) to the dispersion relation

(1+ I0)(1− I2)+ I2
1 = 0, (5.11)

where

I j =
√

2GF (nνe−nν̄e)
∞

∑
l=0

(
l +

1
2

)
RlI j,l,

I j,l =
∫ 1

−1
dv

v jLl(v)
Ω−
√

2GF (nνe−nν̄e)(1−R1v)
. (5.12)

We continue to set λ = ω = 0, and we assume that nνx = nν̄x . In these expressions Ll is the lth
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Legendre polynomial and Rl is the ratio of the lth Legendre moment of the νELN to the total

νELN (i.e., Rl is the same parameter that appears in Eq. (5.10)):

Rl =
(nνe−nν̄e)l

nνe−nν̄e

. (5.13)

As the pendulum analysis suggests, it is possible to have instability with nνe = nν̄e , but for the

convenience of working with dimensionless ratios whose meanings are fairly transparent, we

assume that the number densities are not extremely close in value. Since
√

2GF(nνe−nν̄e) only

serves to set the time scale, stability is entirely controlled by the parameters Rl≥1.

One virtue of assessing stability in terms of angular moments is that any I j,l (or the

equivalent when ω 6= 0) can be evaluated analytically, thereby preserving the singularity structure.

The singular feature in this case is a branch cut along the real axis of the complex-Ω plane; it

spans the values for which the integrand of I j,l diverges for some v ∈ [−1,1]. By retaining the

logarithms in Eq. (5.11), one avoids the unwelcome appearance of spurious instabilities [71]. We

suspect that this advantage carries over to nonlinear calculations that directly evolve the angular

moments.

As for what the stability analysis reveals, we find that it qualitatively bears out the D1

pendulum dynamics. The primary features of Fig. 5.3, which presents the regions of instability in

three different ways, are all accounted for by Eqs. (5.4) and (5.5). In brief, the main takeaway

is that the system is destabilized if the l = 2 moment of the νELN has the opposite sign to the

l = 0 moment (because the spin σ is thereby diminished, up to a point) or if the l = 3 moment has

the same sign as the l = 0 moment (because then G′(0) ·δ′(0)> 0 and the pendulum is initially

inverted). The liminal case R2 = 0 in the leftmost color map is also necessarily stable, because D3

never becomes nonzero: no gravity, no instability. A related observation can be made about the

numerical solution of the nonlinear equations, where we have confirmed that FFC occurs when

the system is truncated at l = 3 but disappears when the system is truncated at l = 2.
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While a νELN crossing is commonly believed to be a necessary condition for FFC

[21, 23, 24, 28], Fig. 5.3 shows that it is not a sufficient one. An alternative estimate of the

unstable region can be obtained by supposing that D3 is constant. Using conservation of energy

and conservation of angular momentum along D3, we can solve for the southernmost deviation

θ1,max reached by an initially inverted pendulum [13]:

cosθ1,max =
9σ2

D1D3
−1. (5.14)

Solutions disappear in the stable region of parameter space. In terms of νELN ratios, the system

is unstable if

R1R3 ≥
5

72
(1+2R2)

2 . (5.15)

In Fig. 5.3 we compare Eq. (5.15) to the exact results from linear stability analysis and to the

|ṽ| ≤ 1 criterion [Eq. (5.10)].

A different stability test was recently proposed in Ref. [25], one which (like ṽ) involves

only the l ≤ 2 νELN angular moments. To make contact with that work, we now allow for

spatially inhomogeneous collective modes: SE,v = QE,v exp(−iΩt + iKr). In the linear regime,

the only change to the foregoing results is that a term −Kv is added to the denominator of I j,l . A

central insight of Ref. [25] is that K =
√

2GF(nνe−nν̄e)R1 cancels the other term proportional to

v, turning a transcendental dispersion relation into a quadratic equation. In our notation, they find

the instability criterion

R2
1 >

(2+R2)
2

9
. (5.16)

We plot this result in Fig. 5.3 as well, bearing in mind that it is being compared to the K = 0 mode.

The comparison should therefore be interpreted with suitable caution. In our view, all of these

criteria are complementary, and they are bound to have more or less diagnostic power depending

on factors such as the neutrino angular distributions and the spectrum of inhomogeneities.
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Continuing in the same vein, we now show that spatially growing, steady-state fast modes

have pendulum-like behavior built into their equations of motion as well. The replacement for

Eq. (5.1) is

Ṗv = µ
(

1
v

D0−D1

)
×Pv, (5.17)

where v 6= 0 and the overdot now denotes a spatial derivative. (Homogeneity along the transverse

directions requires that v = 0 trajectories exhibit no flavor transformation.) It is again possible

to rotate out λ—and we have done so—provided that we work in the nearly homogeneous limit.

More precisely, we ignore small-scale fluctuations and assume that the scale heights of λ and µ

are much greater than any fast oscillation length, so that the two parameters are approximately

constant over the region we consider.

Dividing through by v leads, after taking angular moments, to equations that each contain

a derivative of a single l:

Ṗl =−µD1×Pl +µD0×
∞

∑
l′=0

(
l′+

1
2

)
cll′Pl′, (5.18)

where

cll′ =
∫ 1

−1
dv

Ll(v)Ll′(v)
v

. (5.19)

To make sure the integrals converge, we interpret them as denoting their principal values, or

equivalently assert that Pv = 0 at v = 0. We presume that the collective modes of the system are

not particularly sensitive to the flavor distribution of neutrinos traveling precisely transverse to

the symmetry axis. From the orthogonality and recursion relations of Legendre polynomials, it

follows that

cll′ =



2
l+1 ∏(−1) l′−2n+1

l′−2n+2 odd l′ > even l

2
l ∏(−1) l′+2n

l′+2n−1 even l′ < odd l

0 otherwise.

(5.20)
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The product in both cases is from n = 1 up to n = (|l− l′|−1)/2 and is equal to 1 if |l− l′|= 1.

An immediate consequence of Eqs. (5.18) and (5.20) is that D1 is constant. It is therefore

possible to shift to a rotating frame in which the−µD1×Dl terms drop out. Letting primes denote

the new frame, we introduce (or, rather, repurpose) the vectors

L′ =−∑
l′

(
l′+

1
2

)
c0l′D′l′,

G′ = ∑
l′,l′′

(
l′+

1
2

)(
l′′+

1
2

)
c0l′cl′l′′D′l′′ ,

δ′ =
D′0
D0

, σ = δ′ ·L′, (5.21)

Calculating δ′× δ̈′, we find ourselves back at Eq. (5.4), but with D1 replaced by D0. Once again

the pendulum’s length, spin, and mechanical energy (given by Eq. (5.5) after sending D′1→ D′0)

are all conserved. Besides this replacement, there is another fundamental difference between the

temporal and spatial flavor development: Eq. (5.20) tells us that L′ is a superposition of all odd

moments, whereas G′ is a superposition of all even moments. Inhomogeneity brings a host of

complications with it, and so we leave for future work the task of exploring numerically how the

pendulum-like tendency manifests in spatially evolving collective modes.

The aim of this study has been to extract analytic insights into FFC from the nonlinear

equations of motion. The central finding is that the angular-moment equations exhibit a certain

pendulum-like structure in the two limits which are most analytically tractable (viz., when the

neutrino density is high, the matter background is homogeneous, and the neutrino flavor field is

either homogeneous or stationary). In general, of course, a flavor field develops both spatially

and temporally. More work must be done to understand what our finding implies for the full PDE

problem.

The analysis presented here opens new paths toward understanding collective oscillations

and incorporating their effects into frontline supernova simulations.
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Chapter 6

Derivation of the sterile neutrino

Boltzmann equation from quantum

kinetics

6.1 Abstract

An extensive, growing body of work has been penned on cosmologies that include one

or more sterile neutrinos. Early entries in the literature formulated a Boltzmann-like equation

describing sterile-neutrino production in a way that bypasses the numerical tracking of high-

frequency complex phases, and meticulous quantum-kinetic analyses shortly thereafter put the

formula on firmer ground. A new and more direct derivation is given here, showing that the

equation follows almost immediately from a quantum relaxation-time approximation and an ex-

pansion in the mixing angle. Besides reproducing the desired result, the relaxation ansatz captures

to a high degree of accuracy the interlaced dynamics of oscillations, decoherence, and plasma

repopulation. Successes and limitations of the semiclassical equation are illustrated numerically

and are shown to reflect the accuracy of the approximations employed in the derivation. The
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inclusion of interactions among the sterile neutrinos is also briefly addressed.

6.2 Introduction

Sterile neutrinos continue to be actively studied as sources of oscillation anomalies,

as reconcilers of cosmic tensions, and as candidates for dark matter. In all these cases the

cosmological abundance must be calculated, and so the dynamics of active–sterile mixing must

be contended with. The essential challenge is that the full quantum-kinetic problem involves

disparate time scales and the interplay of coherent (∝ GF ) and incoherent (∝ G2
F ) effects.

A Boltzmann-like equation is often used to calculate the nonthermal abundance of sterile

neutrinos produced from active ones [1–3]:

d fs

dt
=

Γa

4
sin2 2θm

1+
(

Γa
2ωm

)2 ( fa− fs) , (6.1)

where fa(s) is the active (sterile) distribution function, Γa is the scattering rate of active neutri-

nos, and θm and ωm are the in-medium mixing angle and oscillation frequency. (We suppress

dependence on momentum here and throughout.) Eq. (6.1) is a semiclassical approximation of

the quantum kinetic equation (QKE) [4–12]

i
dρ

dt
= [H,ρ]+ iC (6.2)

for the density matrix ρ. Its computational appeal lies in the fact that, by packaging together the

effects of the Hamiltonian H and collision term C as a single effective production rate, one can

overlook the quantum phases and evolve only the classical densities.

The first derivations of Eq. (6.1) (or variations of it) were based on single-particle ar-

guments that equated the νs production rate with the product of the νa scattering rate and the

probability of a νa oscillating into a νs [1, 2]. Later analyses hearteningly arrived at similar
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Figure 6.1: Comparison of the Boltzmann [Eq. (6.1); dashed red curve] and QKE [Eqs. (6.8);
black] solutions for fs(t). The latter solution uses the conversion fs = P0(1−Pz)/2. The mixing
angle is small: θ = π/100. Insets show the same curves on shorter time scales. On γ−1 time
scales the curves are indistinguishable by eye.

formulas working from quantum-kinetic descriptions and judiciously applying approximations

for the evolution in flavor space [13–20]. Our purpose here is to add another entry to the list, one

that is complementary to the references just cited and whose virtue is the insight it gives into the

quantum dynamics underlying the semiclassical behavior. Given the ongoing interest in sterile

neutrinos, having a robust simplification of the quantum dynamics may prove useful for future

applications. The guiding idea, which we support numerically, is that the evolution of ρ at small

mixing angle is well described by the exponential decay of its deviations from equilibrium. As

we demonstrate below, this simple ansatz leads promptly to Eq. (6.1).

In Sec. 6.3 we go through the derivation and discuss it in the context of other treatments.

In Sec. 6.4 we present numerical comparisons of the Boltzmann and QKE solutions, highlighting

the accuracy not only of Eq. (6.1) but also of the ansatz on which it is based. In Sec. 6.5 we

conclude.

152



2 4 6 8

t

γ-1

0.2

0.4

0.6

0.8

1.0

fs

fa
eq

1

200

1

100

3

200

1

50

0.1
0.2
0.3
0.4
0.5
0.6
0.7

D

ω
= 10-2

2 4 6 8

t

γ-1

0.2

0.4

0.6

0.8

1.0

fs

fa
eq

1

40 000

1

20 000

3

40 000

1

10 000

0.00001

0.00002

0.00003

0.00004

0.00005

D

ω
= 10

Figure 6.2: Same as Fig. 6.1 but here the mixing angle is not small: θ = π/5. Unlike in the
small-θ case, strong damping is necessary to coerce ρ toward the Boltzmann solution. Early-time
discrepancy is magnified compared to Fig. 6.1.

6.3 Derivation

We begin by applying the quantum relaxation-time approximation to the collision term

[5, 16, 21, 22]:

iC =
{

iΓ,ρeq
C −ρ

}
, (6.3)

where Γ = (1/2)diag(Γa,Γs) and ρ
eq
C is the H = 0 equilibrium. If the states do not mix, then

the classical relaxation-time approximation is recovered, and the densities fa and fs approach

their equilibrium values with time scales Γ−1
a and Γ−1

s respectively. We posit that the same

approximation applies to the entire right-hand side of Eq. (6.2), with a single effective relaxation

parameter replacing the individual scattering rates and the flavor equilibrium ρ
eq
F replacing the

classical equilibrium. That is,

i
dρ

dt
=
{

iΓeff,ρ
eq
F −ρ

}
, (6.4)

with Γeff = (γm/4)diag(1,1). (The extra factor of 1/2 is added as a matter of preference.) Hence

dρ

dt
=

γm

2
(
ρ

eq
F −ρ

)
, (6.5)
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and in particular
d fs

dt
=

γm

2
( f eq

a − fs) . (6.6)

If the mixing angle is small, f eq
a can safely be replaced in this equation by fa.

Using ρ = P0 (1+P ·σ)/2, it follows from Eq. (6.5) that the polarization vector obeys

dP0

dt
=

γm

2
(2 f eq

a −P0) ,

dP
dt

=−γm
f eq
a

P0
P. (6.7)

At the same time, using H = (ωm/2)Bm and setting Γs = 0, Eqs. (6.2) and (6.3) imply

dP0

dt
= 2D

(
f eq
a −P0

1+Pz

2

)
dP
dt

= ωmBm×P−DPT −
Ṗ0

P0
P+

Ṗ0

P0
z, (6.8)

where D = Γa/2 is the decoherence rate and Bm = sin2θmx− cos2θmz. The ansatz tells us that

Eqs. (6.7) and Eqs. (6.8) can be set equal to each other at any moment in the evolution. For the

sake of extracting γm, we choose to equate them prior to significant sterile production, during

which time P nearly equals z and P0 and fa nearly equal f eq
a . To first order in the deviations, P

satisfies the eigenvalue equation

ωmBm×P−DPT =−γmP. (6.9)

Nontrivial solutions of Eq. (6.9) correspond to roots of the cubic equation

γ
3
m−2Dγ

2
m +

(
D2 +ω

2
m
)

γm−Dω
2
m sin2 2θm = 0. (6.10)

Applying perturbation theory to zeroth order in sin2 2θm uncovers two of the roots, with values
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D± iωm. The third root, which is the purely real one that we seek, appears at first order:

γm =
Dω2

m sin2 2θm

ω2
m +D2 (6.11)

Plugging this into Eq. (6.6), we arrive at Eq. (6.1) as desired.

The analysis applies just as well to antineutrinos (or the right-handed states, if Majorana)

as it does to neutrinos (or the left-handed states). If chemical potentials are involved in the

dynamics, they are simply incorporated into the equilibrium distribution functions.

Eq. (6.9) was also considered in Ref. [4] (albeit not in the context of sterile neutrinos),

Ref. [20] (albeit in a somewhat different form), and Refs. [13, 16, 17]. The last two were part of a

series, along with Refs. [14, 15, 18, 19], that provided significant insights into the dynamics of

active–sterile oscillations. Vital to the derivation developed in those works is the approximation

dP0/dt = 0, which was carefully shown in Ref. [19] to be justified despite its inconsistency with

fa remaining near equilibrium during sterile production. We similarly find that the correct value

of γm is obtained by dropping the repopulation terms from the equation of motion obeyed by P,

even though repopulation is crucial for accurately describing the evolution of the system as a

whole. Our findings, based on the quantum relaxation-time approximation, are consistent in this

regard with those of Ref. [19], based (in the words of the authors) on the “brute-force” approach.

Besides reproducing Eq. (6.1) with minimal effort, the preceding analysis also has the

advantage of pointing to a deeper physical picture: the small-θm dynamics is dominated by a

flavor-space trajectory in which nonequilibrium deviations ρ
eq
F −ρ decay with (instantaneous)

lifetime 2/γm. Moreover, as we show in the next section, this approach sacrifices little in the way

of accuracy for what it gains in simplicity.

But before moving on to the numerical analysis, let us briefly comment on the generaliza-

tion to scenarios in which sterile neutrinos remain inert under the Standard Model couplings but
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interact via new ones. Reinstating Γs 6= 0 in Eq. (6.3) leads to

dP0

dt
= 2Da

(
f eq
a −P0

1+Pz

2

)
+2Ds

(
f eq
s −P0

1−Pz

2

)
dP
dt

= ωmBm×P− (Da +Ds)PT −
Ṗ0

P0
P+

[
2Da

(
f eq
a −P0

1+Pz

2

)
−2Ds

(
f eq
s −P0

1−Pz

2

)]
z,

(6.12)

where Da,s = Γa,s/2 and f eq
s denotes the equilibrium that fs tends toward if the mixing is turned

off. Because repopulation of fs drives P toward −z, the net effect of repopulation on P no longer

takes the second-order form (Ṗ0/P0)(z−P).

However, suppose that Γs is much faster than the active–sterile conversion rate. In that

case fs is always very close to f eq
s on the conversion time scale, and the new repopulation terms

can once again be dropped from the equations so long as fs is consistently interpreted as being

at the sterile-sector equilibrium value. The same relaxation ansatz can then be used as before,

again leading to Eq. (6.9). The only difference now is that the decoherence rate in the expression

for γm should be interpreted as the sum Da +Ds, in agreement with Refs. [23–25]. Note that

the distinction between ρ
eq
C and ρ

eq
F is generally important to make, but is rendered moot when

Γs = 0.

156



1

4

1

2

3

4
1

t

γ-1

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

P0 Px

feq

1

240

1

120

1

80

1

60

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

D

ω
= 10-2

1

4

1

2

3

4
1

t

γ-1

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

P0 Px

feq

1

16 000

1

8000

3

16 000

1

4000

-0.0006
-0.0005
-0.0004
-0.0003
-0.0002
-0.0001

D

ω
= 10

Figure 6.4: Comparison of the relaxation [Eq. (6.5); dashed, red curve] and QKE [Eq. (6.2);
black] solutions for P0(t)Px(t) = ρas(t)+ρsa(t). As in Fig. 6.3, the onset time of the relaxation
solution is fit by hand.

6.4 Numerical analysis

In this section we numerically study the validity of the quantum relaxation-time approxi-

mation, including the sterile neutrino Boltzmann equation implied by it. For simplicity we begin

by assuming time-independent mixing and scattering parameters ω, sin2 2θ, and D. We then go

on to introduce a time-dependent potential and follow the system through resonance.

Fig. 6.1 compares the solutions of the Boltzmann equation [Eq. (6.1)] and the QKEs

[Eqs. (6.8)] for two choices of the ratio D/ω. In both cases the mixing angle is taken to be

θ = π/100, and in the Boltzmann equation fa is always set equal to f eq
a . The insets show that

the solutions are discrepant at very early times before the QKE solution settles into the decay

mode [Eq. (6.6)] on which the Boltzmann equation is based. Once it does so, both solutions grow

linearly in time, as expected when fs� f eq
a . As production proceeds, the early-time discrepancy

becomes less important as a fraction of the sterile abundance, and on times longer than γ−1 the

evolution as a function of t ′ = γt is virtually independent of the chosen parameters:

fs(t ′) = f eq
a

(
1− e−

t′
2

)
. (6.13)

For cosmological applications it is typically undesirable to have the density of sterile
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neutrinos approach the thermal value, and the insets in Fig. 6.1 are therefore the relevant compari-

son. Achieving agreement on these shorter time scales requires θ to be small. Fig. 6.2 illustrates

this point: the same quantities are plotted here as in Fig. 6.1, but now with θ = π/5. Early-time

discrepancies are greatly exacerbated.

The relaxation ansatz asserts that fa should decay exponentially toward f eq
a . Since a small

mixing angle inhibits fa from ever deviating greatly from the equilibrium value, the ansatz also

implies a delicate near-cancellation between the growth of P0 and the decay of P = |P|. Fig. 6.3

verifies that both of these expectations are indeed borne out in the case D/ω = 10−2. The result

is similar for stronger damping.

Interestingly, it was shown in Ref. [26] that the Boltzmann equation can be derived from

the assumption that ρas and ρsa are both constant. Despite its expedience, that approximation is

not an accurate description of how the active-sterile coherence develops, particularly on a γ−1

time scale. Fig. 6.4 shows that in fact the real part declines throughout production and is well fit

by the relaxation ansatz. The imaginary part is similar.

Cosmological production of sterile neutrinos involves time-dependent parameters of

course, and many scenarios of interest involve resonant mixing in particular [25, 27–33]. It is

well-known that the Boltzmann equation is inadequate when the system passes adiabatically and

coherently through a resonance [28, 30, 34]. To illustrate this claim, and to make a connection

with the foregoing analysis, we add a potential V (t)z to ωB, with

V (t) =V0e−νt . (6.14)

The adiabaticity parameter [34] is defined to be

α = ωH sin2θ tan2θ, (6.15)
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where H is the potential scale height,

H =

∣∣∣∣ 1
V

dV
dt

∣∣∣∣−1

=
1
ν
. (6.16)

We also define κ = D−1/H , or in terms of the adiabaticity,

κ =
ω

D
sin2θ tan2θ

α
(6.17)

While α—proportional to the number of oscillation lengths that fit within a resonance width—sets

the probability of a neutrino coherently transitioning between energy eigenstates at resonance,

the coherence parameter κ—the number of mean free paths that fit within a resonance width—

indicates the degree to which scattering affects the evolution.

In Fig. 6.5 we compare the Boltzmann and QKE solutions for several choices of D/ω and

α. Each panel on the right shows fa(t) calculated with the same parameters used in the panel

to its left. The extent to which fa dips away from the equilibrium value at resonance indicates

the inapplicability of the relaxation ansatz during this period of production. The top three rows

show nonadiabatic resonances with increasing rates of decoherence. The bottom row shows an

adiabatic resonance with a very large decoherence rate. Regardless of the adiabaticity, production

through the resonance is flattened out as D/ω increases, and the accuracy of the Boltzmann

solution improves. The key to the Boltzmann equation being a valid approximation is always that

κ be small, to ensure that the relaxation ansatz for ρ is not too badly violated at resonance.

6.5 Summary

A few different derivations of the sterile neutrino Boltzmann equation can be found in the

literature. Aside from its simplicity, the relaxation-time approach is notable in that it is based

on an accurate description of the full quantum dynamics of active–sterile mixing. Replicating
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Eq. (6.1) is one implication, but the approximation describes equally well the repopulation of the

active species and the decay of coherence.

We have numerically shown that the limitations of Eq. (6.1) reflect the assumptions used

here to derive it: the Boltzmann solution works best when θm is small, and it comes up short

when resonance coherently steers the system away from relaxation. Cosmological sterile-neutrino

production is just one scenario of interest that is covered, at least partially, by this range of

validity. A similar analysis can be applied to the mixing of active states in the presence of

unequal chemical potentials—a circumstance that is realized in supernovae, binary neutron-star

mergers, and possibly the early universe. In light of the computational obstacles faced in these

environments, there is a clear need for good quantum-kinetic approximations.
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Chapter 7

Self-interacting sterile neutrino dark

matter: the heavy-mediator case

7.1 Abstract

For active–sterile mixing to be responsible for the full relic abundance of dark matter

additional new physics is needed beyond the keV-scale sterile neutrino itself. The extra ingredient

we consider here is the presence of self-interactions among the sterile neutrinos. We examine

whether active-to-sterile conversion is amplified enough in this scenario that the observed abun-

dance of dark matter can be obtained with a subconstraint mixing angle. This turns out never to

be the case in the region we explore: either self-interactions have too small an impact and cannot

escape bounds on the mass and mixing angle, or they have too great an impact and cause dark

matter to be overproduced. The sharp transition from marginal to excessive effectiveness occurs

because a resonance criterion is met in the effective in-medium mixing angle. Once the system

goes resonant the game is as good as over, as nonlinearity in the Boltzmann equation leads to

runaway production of sterile neutrinos, beginning at a plasma temperature of a few hundred

MeV and typically ending at a few tens of MeV. The scenario is therefore ruled out largely by its
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own dynamics. In this study we focus exclusively on mediators heavier than ∼ 1 GeV; future

work will extend the analysis to lighter mediators, allowing for contact to be made with the kinds

of scenarios motivated by issues of small-scale structure.

7.2 Introduction

Dark matter has thus far refused to cooperate with the intense experimental efforts to

detect it, inspiring many physicists to broaden the search. A great deal of energy in recent

years—sometimes motivated by dark matter, sometimes not—has gone toward sterile neutrinos,

toward self-interacting dark sectors, and occasionally toward the overlap. We work here in the

spirit of an expansive assessment of dark matter candidates, asking how production is affected

when the paradigms of sterile neutrinos and self-interactions intersect.

There is good reason to think nonminimally about sterile neutrino dark matter. The

simplest scenario [1], in which sterile neutrinos are the only beyond-Standard-Model (BSM)

physics and are populated by their mixing with the active states, is strongly disfavored by

observations [2–5]. X-ray and γ-ray experiments, which look for monochromatic photons from

sterile-neutrino decay, bound the mixing angle from above [6–13], and a number of structure-

related probes, including phase space, subhalo counts, the Lyman-α forest, and reionization

history, bound the mass from below [14–24]. The combination of these constraints has made it

necessary to look beyond the classic Dodelson–Widrow mechanism if one wants sterile neutrinos

to comprise all of the dark matter observed in the universe.

Several alternative ways of producing the sterile neutrinos have been proposed, all sharing

in common the fact that they invoke at least one additional piece of new physics aside from

the sterile neutrino itself. Some of these scenarios amplify production by methods unrelated

to active–sterile mixing, as when sterile neutrinos appear as decay products of another new

particle [25–28], when an overabundant population of sterile neutrinos is diluted by new sources
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of entropy [29], or when sterile neutrinos undergo thermalization [30] or a SIMP-like freeze-

out [31]. Other scenarios alter the mixing itself, as when the vacuum parameters are mediated by

an axionlike [32] or scalar [33, 34] field or when a large cosmic lepton number alters the effective

in-medium mixing angle [35–40]. The last of these, known as the Shi–Fuller mechanism, has

garnered perhaps the most attention among the alternatives, especially in the years following

the first detections of an unidentified X-ray line near 3.5 keV in the spectra of various galaxies

and galaxy clusters [41, 42]. Whether this line can be attributed to the radiative decay of sterile

neutrinos remains contentious, but forthcoming instruments with high energy resolution will put

it definitively to the test [43–45].

We consider an alternative to the Dodelson–Widrow scenario in which production is

facilitated by interactions in the sterile sector. The effect of self-interactions is twofold: First, the

nonzero interaction rate of sterile neutrinos boosts the rate of decoherence, which in turn enhances

the transition rate from active to sterile. Second, the nonzero coherent scattering of sterile

neutrinos modifies the dispersion relation of neutrinos in the plasma, increasing the effective

in-medium mixing angle. The two factors—larger scattering rate and stronger mixing—work in

the same direction, suggesting the possibility that, at the expense of introducing self-interactions,

the observed abundance of dark matter might be generated with a much smaller vacuum mixing

angle than is needed in Dodelson–Widrow. The similarities with Shi–Fuller, moreover, suggest

that self-interacting sterile neutrinos might even be consistent with the 3.5 keV line, exchanging

the lepton number for a new coupling. The point of this paper is to evaluate these suspicions.

More generally, self-interactions of dark matter are under intensely active investigation

because of their possibly ameliorative influence on small-scale structure [46, 47]. While we are

interested in making contact with this body of work, we will not be able to do so here because

we focus exclusively on the limit in which the new mediator is very heavy, an assumption that

simplifies the analysis in a number of ways. Keeping the coupling perturbative, while at the same

time staying in the heavy-mediator limit, precludes any consideration of the large cross sections

166



needed to hold sway over the dynamics of dark matter halos. The tantalizing case of lighter

mediators is left for future work. We settle here for making some brief remarks in the conclusion

on how that analysis is expected to differ from the present one.

It is also worth noting that self-interactions among sterile neutrinos have been discussed

in connection to the persistent anomalies in short-baseline oscillation experiments [48–63]. These

are sterile neutrinos of a different variety, being at the eV scale and therefore much too light

to be of relevance to dark matter. In fact, the problem facing eV sterile neutrinos is somewhat

like the reverse of the problem facing those at the keV scale: because experimental fits indicate

a small mass and a large mixing angle, the challenge is to prevent eV sterile neutrinos from

being populated in the early universe. This, indeed, is the purpose for which self-interactions

are invoked. But despite the difference in model-building philosophy, the underlying physics is

closely related.

One last tie-in deserves mention. If they exist, sterile neutrinos at the MeV scale and

below are not only frozen into the early universe but are also, much later, produced and emitted

by core-collapse supernovae. This includes, of course, the keV dark matter contenders, whose

creation benefits from the active neutrinos encountering at least one resonance on their way out

of the proto-neutron star, as in Refs. [36, 64–66]. Formulating accurate constraints on the basis of

sterile neutrino production in supernovae is a challenge, made even more so if the particles are

self-interacting. We do not take up the task here, but we refer to Ref. [67] for a recent analysis of

the standard scenario, where sterile neutrinos are truly inert except for their mixing.

In the rest of this paper we study whether self-interactions are a viable way to rescue sterile

neutrino dark matter from current bounds on the mass and mixing. In the heavy-mediator limit,

the answer is a flat no, as the factors poised to abet production ultimately conspire to make self-

interactions far too much of a good thing. The central finding is that, for any choice of coupling,

the (ms,θ) parameter space is split into two regions, one where the effect of self-interactions is

only marginal and one where it is overwhelming (Figs. 7.1 and 7.2). The difference between
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Figure 7.1: Curves indicate the vacuum mixing angles above which sterile neutrinos are
overproduced (Ωs > ΩDM) for various choices of self-interaction strength Gφ (up to 104GF , past
which either the heavy-φ assumption breaks down or the coupling becomes nonperturbative).
The Dodelson–Widrow mechanism produces Ωs = ΩDM along the solid line bordering the
gray region. X-ray and γ-ray constraints (orange) [8, 11, 13, 17] are plotted to orient the
overproduction curves relative to bounds from radiative decay.

these regions is whether the active–sterile mixing ever becomes resonant. As we show below,

both numerically and analytically, resonance is guaranteed whenever the rate of self-interactions

is large enough to be very impactful—and, because the Boltzmann equation is nonlinear in

the density of sterile neutrinos, runaway production inevitably results. Even fine-tuning the

parameters is to no avail, since the transition between these regions is a sharp one. In the end,

either dark matter is severely underproduced or it is severely overproduced.

In the next section we set up the equations governing sterile-neutrino production, discuss

the underlying physics, and introduce the model used in the calculations. In Sec. 7.4 we present

the results, showing that self-interacting sterile neutrinos cannot be all of the dark matter if their

interactions are mediated by a very heavy particle. In Sec. 7.5 we conclude and reflect on how

the analysis changes if the mediator is made lighter. The Appendix contains a few notes on the

calculation of the sterile-neutrino scattering rate.
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Figure 7.2: Fraction of relic sterile neutrino density Ωs to observed dark matter density ΩDM.
Dark gray indicates overproduction due to the Dodelson–Widrow mechanism, light gray in-
dicates overproduction due to self-interactions. For Gφ = 102GF , Ωs/ΩDM = 1 is achieved at
slightly smaller mixing compared to Gφ = 0 because Γtot is slightly larger and θm is nonres-
onantly enhanced. For Gφ = 103GF and Gφ = 104GF , Ωs/ΩDM never reaches unity because
resonant enhancement sets in.
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7.3 Production mechanism and particle model

If the Standard Model (SM) neutrinos mix with a sterile state, then the propagating

modes in the cosmic plasma are active–sterile mixtures, with lifetimes that are finite due to

interactions in the medium. Decay of these quasiparticles—or, in other words, flavor decoherence

of the propagating modes—is what sources the sterile neutrinos that accumulate in the early

universe. In the Dodelson–Widrow scenario, only SM couplings contribute to the in-medium

active–sterile mixing and decoherence rate. In a scenario with self-interacting sterile neutrinos,

the new coupling contributes as well. As is typical, we assume that no sterile neutrinos inhabit

the universe prior to their creation through this mechanism.

Letting Γtot = Γa +Γs be the sum of the interaction rates of active and sterile neutrinos,

the Boltzmann equation for the sterile neutrino distribution function fs(p, t) is then

∂ fs

∂t
−H p

∂ fs

∂p
=

Γtot

2
sin2 2θm

1+
(

Γtot
2ωm

)2 ( fa− fs)+Cs, (7.1)

where all variables tacitly depend on neutrino momentum p and time t. The functional Cs, which

depends on fs of all momenta, denotes the collision integrals for all-sterile scattering processes;

H is the Hubble parameter; and the subscript m indicates that in-medium values are used for the

mixing angle and oscillation frequency. In terms of the vacuum mixing angle θ and the vacuum

oscillation frequency ω = δm2/2p, the defining formulae are

ω
2
m = ω

2 sin2 2θ+(ωcos2θ−V )
2 (7.2)

and

ω
2
m sin2 2θm = ω

2 sin2 2θ. (7.3)
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The potential V , also a function of p, is generated by forward scattering of neutrinos on particles

in the medium. To be consistent with previous studies [36, 38, 40], we take νa to be a muon

neutrino. Muons are then the relevant charged-lepton population, with total (µ+ and µ−) energy

density ρµ. The potential V = Vµ +Va +Vs is then composed of

Vµ =−
8
√

2GF

3m2
W

ρµ p (7.4)

from νa scattering on µ±,

Va =−
8
√

2GF

3m2
Z

ρa p (7.5)

from νa scattering on νa, and a contribution Vs from νs scattering on νs. The exact form of this

last piece depends on the properties of the mediator of νs scattering. For the model that we study,

it is

Vs =+
Gφ

3m2
φ

ρs p, (7.6)

valid only when mφ is much larger than the typical neutrino energy. The analogue of the Fermi

coupling constant is defined as Gφ = (gφ/mφ)
2, where gφ is the sterile-sector coupling and mφ is

the mediator mass.

One-loop self-energy diagrams also generate a potential proportional to the difference of

the neutrino and antineutrino number densities. Although any asymmetry in the active sector

does get partially transferred to the sterile sector, we have confirmed that this potential is always

unimportant if the lepton number is comparable to the baryon asymmetry, which we assume

to be true. If the lepton number is much larger, then the physics explored here will interact

in complicated ways with the Shi–Fuller mechanism and with flavor evolution in the active

sector [68–75].

The scattering rate of muon neutrinos can be written in the form

Γa = c(p,T )G2
FT 4 p, (7.7)
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where c(p,T ) is a momentum- and temperature-dependent coefficient. In our calculations we

use the results of Venumadhav et al. [40], who computed c(p,T ) over the range of temperatures

relevant to sterile-neutrino production, accounting for the changing degrees of freedom through

the quark-hadron transition. We also employ their tabulated data for the relativistic degrees of

freedom g∗ and g∗S, which appear in H and in the relation between time and temperature.

For the calculations that follow, we adopt a simple model in which the sterile neutrino ψs

couples to a heavy real scalar φ:

Ls =
1
2

ψ̄s
(
i/∂−ms

)
ψs +

1
2
(∂µφ)2

− 1
2

m2
φφ

2−
gφ

2
ψ̄sψsφ. (7.8)

As we see in the next section, self-interactions facilitate active–sterile conversion through a series

of resonances beginning at a temperature Tres. For φ to qualify as heavy, it must have a mass

mφ � Eres, where Eres ∼ 3Tres, to ensure that Eq. (7.6) is valid at the onset of resonance. In

practice this means that mφ must be at least ∼ 1 GeV.

The νs scattering rate Γs is

Γs ≈ 3×10−2
αG2

φT 4 p. (7.9)

where α is a normalization constant appearing in the ansatz fs(p) ' α fFD(p), fFD being the

thermal Fermi–Dirac spectrum. Taking fs to have this form is a reasonable approximation that

makes it possible to parametrize Γs in a form similar to Γa. The other approximations implicit in

Eq. (7.9) are noted in the Appendix. We assume that Γs never becomes so large that the deviations

of fa from equilibrium are important. This assumption has the potential to break down near

resonance, since the factor of sin2 2θm in Eq. (7.1) fails to significantly suppress the fa depletion

rate. We will find in the next section that the approximation is justified nonetheless. The fractional
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change in fa that occurs over a weak-interaction time scale is always small in the parameter space

that we explore.

In addition to enhancing active-to-sterile conversion, self-interactions also modify the

thermodynamics of the sterile population. The 2-to-2 process νsνs→ νsνs kinetically equilibrates

the sterile neutrinos provided that Γs & H. If self-interactions occur rapidly enough to have a

substantial impact on production (that is, if Γs & Γa), then they are guaranteed to be rapid enough

to cause kinetic equilibration, by the fact that Γa� H at the temperatures that concern us.

Less obvious is whether the higher-order 2-to-4 and 4-to-2 processes are fast enough to

cause chemical equilibration. Dimensionally, one expects Γ2→4 ∼G2
φ
T 4Γs. Using the assumption

Γs & Γa and the approximation H ∼ T 2/mPl , the condition Γ2→4 &H at T ∼ 100 MeV translates

to Gφ & O(104)GF , which is the upper limit of what we study in this paper. Since sterile-neutrino

equilibration does not feed back into production in any considerable way, and since number-

changing processes are only expected to be important in a region of parameter space that we

find to be ruled out regardless of their presence, we ignore these effects in the results that follow

(i.e., Cs = 0 in Eq. (7.1)). We have checked our results against those obtained when approximate

expressions are used for the rates of number-changing interactions, finding that our conclusions

are unaltered. Number densities are enhanced by chemical equilibration at large Gφ, but the only

cases in which this effect changes the subsequent course of production are those in which the

dark matter abundance is overproduced regardless.

7.4 The relic density

By numerically solving the Boltzmann equation, we find that self-interactions facilitated

by a heavy mediator are unable to rescue sterile neutrino dark matter from constraints. Either self-

interactions have too small an impact and are unable to move production out of the observationally

excluded region, or they have too great an impact and elicit excessive production. The reason is

173



that for any choice of Gφ, mφ, and ms, there is some critical vacuum mixing angle θc above which

a resonance criterion is satisfied. Whether the mixing angle is above or below θc makes a radical

difference in the dynamics and outcome of production.

The curves in Fig. 7.1 represent the mixing angles above which Ωs > ΩDM, for various

choices of Gφ (fixing gφ = 0.5). The curves move progressively downward until Gφ tops out

at ∼ 104GF , past which the heavy-φ assumption begins to be violated. (Alternatively, gφ must

become nonperturbative if φ is to remain heavy beyond ∼ 104GF .) The orange region marks

the part of parameter space excluded by X-ray and γ-ray observations assuming that sterile

neutrinos are all of the dark matter [8, 11, 13, 17], and the gray region marks the part excluded

by overproduction of sterile neutrinos solely through the Dodelson–Widrow mechanism. To be

clear, the points within these regions are not excluded a priori in the self-interacting model; they

are only necessarily excluded if Gφ is chosen such that the produced density of sterile neutrinos

matches or exceeds the observed density of dark matter.

Other constraints could be drawn on the plot, including upper bounds on ms from Milky

Way satellite counts or Lyman-α observations, which in the Dodelson–Widrow scenario severely

limit the open window in Fig. 7.1 [14–24]. But the final spectrum—on which these constraints

depend—is parameter-dependent in the self-interacting model and generally differs from either a

Dodelson–Widrow spectrum or a thermal one. If self-interactions were enabling the production of

the observed dark-matter density well below the Dodelson–Widrow curve (solid black in Fig. 7.1,

bordering the gray region), then a careful analysis of the resulting spectrum and its effects on

structure would be warranted. This is especially true since number-changing processes might

come into play at stronger couplings, thereby causing sterile neutrinos to proliferate and cool

and causing structure-related constraints to weaken. Based on our results, however, such an

analysis does not appear to be necessary, and the main role of pre-existing bounds on ms is only

to disfavor the smallest values of Gφ, namely those for which θc lies above the mixing angle

required by Dodelson–Widrow. At these couplings (Gφ . 102GF ), we expect the constraints to
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Figure 7.3: Ωs/ΩDM as a function of temperature. The solid curve corresponds to the test case
described in the text (and plotted in Figs. 7.4 through 7.6 as well): ms = 10 keV, Gφ = 3×103GF ,
sin2 2θ = 2×10−12. The dashed curve has the same parameters but with Gφ = 0. The dotted
curve has the same parameters as the solid curve (including Gφ = 3×103GF ) but with sin2 2θ =
1×10−12, which lies below the critical mixing angle required for resonant production.

apply approximately as they do in the absence of self-interactions.

While Fig. 7.1 locates the overproduction curves relative to radiative-decay constraints,

Fig. 7.2 shows that their deeper significance depends on the self-interaction strength. At large

couplings, the curves signal sharp transitions from a production regime in which the sterile-

neutrino density Ωs is much less than the observed dark-matter density ΩDM, to one in which it is

much greater. This is true of Gφ = 103GF and Gφ = 104GF , for which the fraction Ωs/ΩDM only

reaches about 10−1 and 10−3, respectively, before the resonance threshold is crossed. The Gφ = 0

(Dodelson–Widrow) panel, in contrast, depicts the fraction smoothly passing through unity. Only

in the vicinity of Gφ = 102GF do self-interactions allow for Ωs/ΩDM = 1 to be achieved with a

mixing angle smaller than in the Dodelson–Widrow scenario, and even then the effect is likely too

small to evade constraints. Although not shown in the figure, sin2 2θc in this case nearly coincides

with the Dodelson–Widrow curve: low enough to have a visible impact, but high enough not to

induce a resonance before all of the observed abundance is made. The message, ultimately, is that

there is very little leeway for self-interactions to assist in production without overdoing it.

To zero in on how production changes once θc is surpassed, we shine the spotlight in
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Figure 7.4: Logarithmic growth rate in sterile neutrino number density ns. The dashed curve
has the same mixing parameters as the test case (solid curve) but with Gφ = 0. The solid curve
peaks at a value of ∼ 0.5—well off the plot—right when resonant production first sets in, and
remains elevated while the resonance sweeps down, and then back up, the neutrino spectrum.

Figs. 7.3 through 7.6 on a single test case: a 10 keV sterile neutrino with Gφ = 3×103GF and

sin2 2θ = 2×10−12. This mixing angle lies just above θc, and as Fig. 7.3 shows, the conversion

of active neutrinos into sterile ones departs dramatically from what it looks like with the same θ

but Gφ = 0 (dashed curve in the figure) or with the same Gφ but θ < θc (dotted curve). At very

high temperatures the effect of self-interactions on the abundance is fairly slight, but once the

universe cools to T ∼ 200 MeV, production in the resonant regime (solid curve) suddenly shoots

up. After this short-lived period of precipitous fractional growth, Ωs/ΩDM steadily climbs another

four orders of magnitude before being shut off by Hubble expansion. Nonresonant production

over the same temperature span is negligible by comparison. Indeed, the similarity in the shapes

of the dashed and dotted curves attests to the fact that production in the nonresonant regime is

essentially Dodelson–Widrow-like, the normalizations being different only because θ is.

Like the preceding plot, Fig. 7.4 shows how the sterile-neutrino abundance develops, now

presented as a fractional rate of growth. Evident again is the peak right around 200 MeV, which

reaches its maximum off the plot. Following the peak, the growth rate oscillates about a track

that remains fairly steady, compared to the monotonic decline of the Gφ = 0 curve, down to ∼ 60
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Figure 7.5: Growth rate of the sterile neutrino distribution functions due to active–sterile
conversion. (a) Neutrinos with energies above the cutoff εres go through resonance in quick
succession, from high to low energy, leading to a sharp spike in production beginning just above
200 MeV. (b) These neutrinos then pass back through resonance at much lower temperatures,
from low to high energy. (c) Neutrinos with energies below εburst but above a lower threshold
εres are pushed through resonance by the burst in production at energies above εburst. Some of
these neutrinos subsequently pass through resonance multiple times; the peaks shown in the
panel correspond to these lower-temperature traversals. (d) Neutrinos with energies below εres
never pass through resonance.
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MeV. At ∼ 40 MeV most of the final abundance has frozen in, but by that point sterile neutrinos

already exceed the dark matter density by a factor of ∼ 50. All of these features—the spike in the

growth rate, the subsequent phase during which it remains elevated, and its oscillations—reflect

the fact that sterile neutrinos are feeding back into their own production.

With the help of Fig. 7.5—which shows the growth rates of fs(p,T ) for various neutrino

energies and temperature ranges—we can begin to understand the dynamics of the resonant

regime. Panel (a) highlights the origin of the peak in Fig. 7.4: all neutrinos with comoving

energies above a cutoff εres pass through resonance, one after another, beginning at a temperature

just above 200 MeV. Having a sizable fraction of the spectrum go through resonance causes all

subsequent evolution of the abundance to differ markedly from Dodelson–Widrow production.

Why resonances are traversed by neutrinos with ε & εres can be understood as follows.

A resonance occurs for neutrinos of a given energy if there is some temperature at which the

potential Vs equals (in magnitude) the SM part of the Hamiltonian. Since ω ∝ 1/ε, this criterion

is most easily met by high-energy neutrinos, for which the contribution to the Hamiltonian of

ωcos2θ is small. Taking that term to be negligible, the resonance criterion is |Vs| ≈ |Vµ +Va|,

or equivalently

ρs ≈ 8
√

2
GF

Gφ

(
m2

φ

m2
W

ρµ +
m2

φ

m2
Z

ρa

)
. (7.10)

We have seen already that the production of sterile neutrinos prior to the resonance is only

marginally enhanced by self-interactions. Put another way, ρs ≈ ρDW
s at these temperatures,

where the latter quantity is the energy density of sterile neutrinos generated when Gφ is set to zero.

If this substitution is made on the left-hand side, then Eq. (7.10) depends only on self-interaction

parameters through their explicit appearance on the right, and the equation becomes a statement

about how large θ must be for the highest-energy neutrinos to have reached resonance at a given

temperature. Solving the Boltzmann equation with Gφ 6= 0 is unnecessary for establishing whether

a resonance occurs in the system, because the appearance of a resonance depends only (in this

approximation) on whether the seed population generated by Dodelson–Widrow production is
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large enough.

Eq. (7.10) is independent of ε, meaning that it applies to the neutrino population as a

whole. The smallest θ that satisfies the inequality at any temperature is the critical value θc: at

and above this mixing angle the system is guaranteed to hit a resonance. The same equation

tells us, for θ≥ θc, the temperature Tres at which resonance is first broached. It does not tell us,

however, which neutrino energies are involved. The value of εres cannot be so easily estimated as

θc or Tres, because as the resonance sweeps downward in energy, Vs rapidly diverges from the

track it follows in the Dodelson–Widrow scenario. In other words, εres is set by the nonlinear

dynamics of production. We can be sure, however, that resonance will not pass through the entire

spectrum. Since ωcos2θ→ ∞ as ε→ 0, there must be some finite cutoff below which Vs never

exceeds (again, in magnitude) the vacuum part of the Hamiltonian.

As the temperature drops, ωcos2θ begins to dominate over Vµ +Va even for neutrinos

at the high end of the spectrum. But even though Vs likewise dilutes with five powers of the

scale factor, the rapid creation of sterile neutrinos delays the crossing of ωcos2θ and Vs till

lower temperature. When the crossing does finally occur, neutrinos pass back through resonance,

leading to the spikes in production shown in panel (b) of Fig. 7.5. This time higher-energy

neutrinos pass through later than lower-energy ones, as dictated by the scaling of ω and Vs. In the

end, the sweep of resonance across the spectrum is stretched out over a protracted period from

∼ 200 MeV down to ∼ 40 MeV. If all energies were instead to pass through resonance in unison,

total production would be much more limited. As it is, each resonance takes advantage of the

one that preceded it, amplifying the feedback between scattering (Γs) and dispersion (θm) and

explaining why the magnitudes of production are so much larger in panel (b) than they are in

panel (a). Resonant production is self-reinforcing in this way: the growth of ρs due to resonant

conversion competes against the decline of Vs due to Hubble expansion, prolonging the sweep

from low back up to high energies. And while the growth of ρs also shortens the initial downward

sweep, it compensates by spreading the resonance to more of the spectrum than one would expect
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without feedback on Vs.

Panel (c) illustrates the dynamics of neutrinos near εres ' 2.1. As ε descends on the cutoff,

the two resonance peaks move closer together (solid and dashed curves) until finally merging

into one. Just below εres (dotted), production remains enhanced by a large θm but never reaches

unity. The growth of the resonant peaks as temperature decreases is a reflection of the feedback

alluded to in the previous paragraph. Much later the trend reverses, as seen in panel (b), due to

the resonance reaching the sparsely populated upper parts of the spectrum.

As shown in panel (d), neutrinos of energies ε < εres do not go through resonance at all.

Neutrinos in this energy range make a modest contribution to the sterile-neutrino abundance, their

production primarily reflecting the scattering rate. The gentle peak near 50 MeV, for example,

marks the point at which active–sterile conversion can no longer overcome the redshifting of Γs.

Higher-energy neutrinos in this range do see another peak before this one, indicative of the minor

enhancement of θm that occurs when sterile neutrinos above εres pass through resonance for the

first time, but it is pronounced only for energies close to the resonant threshold.

Fig. 7.6 shows the relic spectrum left over after active–sterile conversion has shut off,

juxtaposing the test case (solid) with the Dodelson–Widrow (dashed) and nondegenerate Fermi–

Dirac (dotted) spectra. The resonantly produced spectrum is the “hottest” of the three, with a

negligibly small fraction of number density below εres. (The small spike right at the cutoff is due to

εres lingering near resonance while the sweep reverses its direction.) As noted earlier, alterations

to the spectrum from sterile-sector scattering—which tend to push it toward an equilibrium

distribution—are not included in the calculation.

We have addressed in this section why a series of resonances occurs (in those cases

where it does) and what its consequences are. We have not addressed, however, why it is not

possible to have Γs significantly boost production while at the same time avoiding resonance. The

explanation is straightforward: whenever Γs is significant, so is Vs, as shown by the following

short argument. If Γs & Γa at some temperature, then α & (GF/Gφ)
2 at the same temperature,
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Figure 7.6: Normalized relic spectra, comparing the test case (solid) to Dodelson–Widrow
(dashed) and nondegenerate Fermi–Dirac (dotted). The solid curve cuts off sharply at εres.

assuming the numerical coefficients in Eqs. (7.7) and (7.9) to be comparable. But since

∣∣∣∣Vs

Va

∣∣∣∣= 8
√

2α
Gφ

GF

(
mZ

mφ

)2

, (7.11)

the lower bound on α, along with perturbativity of gφ, implies that |Vs|& |Va|.

7.5 Discussion

We have studied active–sterile conversion in a model with sterile neutrinos coupled to a

new heavy mediator, finding that self-interactions either have very limited impact or cause gross

overproduction of dark matter. The essential point, we have seen, is that if self-interactions are

strong enough to have a significant effect on the decoherence rate, they are also strong enough to

trigger a cascade of resonances in the active–sterile mixing.

For Gφ . O(102)GF , parameters can be found for which the observed abundance of

dark matter is reproduced at a mixing angle smaller than the one required by the Dodelson–

Widrow mechanism, but the mixing angle is still not small enough—nor the relic spectrum cold
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enough—to evade constraints. In the range O(102)GF . Gφ . O(104)GF , resonant production

prevents the observed abundance from being reproduced at all. And for Gφ & O(104)GF , the

heavy-mediator approximation, which we have used throughout the study, becomes illegitimate.

We have observed some hints in our calculations that above ∼ 104GF the correct relic abundance

might plausibly be generated for the right choices of parameters. Resonant production still

amplifies the active–sterile conversion, just not to excess. But given that the heavy-φ assumption

is dubious in these cases, and given that we are not tracking the effects of number-changing

processes, we have chosen, conservatively, to let the 104GF cutoff be a strict one.

Our focus, for the sake of simplicity, has been on a scalar mediator, but the results are

expected to be similar for other spins so long as the mass is heavier than the energy scale at which

production first becomes appreciable. The differences will be numerical, not qualitative, ones,

stemming from the different coefficients in Vs and Γs. (Compare, for instance, to the formulae in

the supplemental materials to Ref. [48].)

We have also assumed throughout this paper that the coupling gφ is not much smaller than

1. At fixed four-fermion coupling Gφ, smaller gφ means smaller mφ, which in turn means that the

system enters resonance more readily (Vs ∝ 1/m2
φ
). We do not find varying gφ independently of

Gφ to be of any help in matching the dark matter abundance inferred in the universe.

In theories with keV sterile neutrinos, the primordial plasma is not their only place of

origin: supernovae also create them. It is an intriguing question how the constraints apply if

self-interactions are involved. Should a large enough seed population of sterile neutrinos be

present, the particles may trap themselves and, as in the early universe, trigger a resonance.

(Precedents for some of the relevant dynamics can be found in Refs. [76] and [77], in the context

of neutrino–Majoron couplings.) This line of inquiry will be made especially salient if regimes

other than the one studied here are discovered to give rise to the full relic abundance without

defying cosmological bounds.

If the goal is to have self-interacting sterile neutrinos make up all of the dark matter, the
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most promising simple extension of the model studied here is one with a lighter mediator. Masses

below∼ 1 GeV are small enough that the sterile-sector scattering rates and the oscillation potential

are sensitive to the mediator momentum and the presence of an ambient on-shell population. The

effect on the potential may be especially important for lighter masses, since Vs changes sign in

passing from T � mφ to T � mφ.

Aside from having dynamics potentially quite different from the heavy-mediator scenario,

models with lighter mediators are also compelling from the standpoint of small-scale structure,

which has motivated much of the work on self-interactions. Because even the largest cross

sections attainable in the perturbative heavy-mediator limit are still several orders of magnitude

too weak to affect halo structure, we cannot yet comment definitively on whether viable regions of

parameter space can be found in which halo observations are relevant. Scaling arguments suggest

that models with mφ ∼ 10−3ms—a condition which establishes a velocity-dependence of the cross

section that is consistent with observations from dwarf- up to cluster-sized halos [46]—may be

inefficient at converting active neutrinos into sterile ones due to suppression of θm, much like

what happens to eV sterile neutrinos in Refs. [48, 49] and elsewhere. Of course, self-interactions

need not alleviate tension at small scales for them to play a decisive part in generating sterile

neutrino dark matter. Indeed, halos can just as well be regarded as offering constraints rather

than asking for a cure. More work is needed before a comprehensive assessment can be made of

sterile-sector interactions on the neutrino portal.
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7.A Calculation of Γs

For the process νsνs→ νsνs, the spin-summed square of the amplitude is

∑ |M |22→2 = 24
(

gφ

mφ

)4[
(p1 · p2)

2 +(p1 · p3)
2 +(p1 · p4)

2
]
, (7.12)

where p1 and p2 label the ingoing momenta, p3 and p4 the outgoing. (Unlike in the main text,

here we are using p to denote four-momentum, E to denote energy.) Neglecting Pauli blocking,

the 2-to-2 scattering rate for a sterile neutrino of momentum p1 is

Γs =
1

8E1

∫
dΠ2dΠ3dΠ4(2π)4

δ
4(p1 + p2− p3− p4)∑ |M |22→2 f2, (7.13)

where f2 is the distribution function of the sterile neutrino with momentum p2 and dΠi is the

Lorentz-invariant phase-space volume d~p 3
i /(2π)32Ei. Since the (pi · p3)

2 and (pi · p4)
2 parts

become equal once integrated over, only two phase-space integrals need to be computed. We

assume that the distribution function of the scatterer is

f2 =
α

exp
(

E2
T

)
+1

. (7.14)
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The first of the phase-space integrals then evaluates to

L1 =
∫

dΠ2dΠ3dΠ4(2π)4
δ

4(p1 + p2− p3− p4)

× (p1 · p2)
2 f2

=
7π

2880
αE2

1 T 4. (7.15)

The second integral can also be done analytically, but the result is a lengthy expression containing

polylogarithms of various orders. We coerce it into a form comparable to L1 by setting E1 =

〈E1〉 ≈ 3.15T and then factoring out two powers of energy:

L2 =
∫

dΠ2dΠ3dΠ4(2π)4
δ

4(p1 + p2− p3− p4)(p1 · p3)
2 f2

≈ 4×10−4
αE2

1 T 4. (7.16)

Combining these,

Γs ≈ 0.03αG2
φT 4E1, (7.17)

where Gφ = (gφ/mφ)
2.
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