
Lawrence Berkeley National Laboratory
Recent Work

Title
HP-41 Calculator Programs for Fitting of Data by an Analytical Function

Permalink
https://escholarship.org/uc/item/9tq870th

Author
Brewer, L.

Publication Date
1982-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9tq870th
https://escholarship.org
http://www.cdlib.org/


/ 

LBL- 15346 
UC-4 	a.?- 

Lawrence Berkeley La 
UNIVERSITY OF CALIFORNIA 

Materials & Molecular 
Research Division 

boratory 
R ECEIVED 

BERcEEY LABOPATORy  

FEB 181983 
LiBRARY AND 

DOCUMENTS SECTiON 

HP-41C CALCULATOR PROGRAMS FOR FITTING OF 
DATA BY AN ANALYTICAL FUNCTION 

Leo Brewer 

December 1982 

IL 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 

which may be borrowed for two weeks 

For a personal retention copy, call 

Tech, Info. Division, Ext. 6782. 

0I 

- -; 
	 \J 

Prepared for the U.S. Department of Energy under Contract DE-AC03-765F00098 



DISCLAIMER 

• This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 

• 	necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



TnT...1 c'LI, 

HP-41 C CALCULATOR PROGRAMS FOR 

FITTING OF DATA BY AN ANALYTICAL FUNCTION 

by 

Leo Brewer 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory 

and Department of Chemistry 

University of California, Berkeley, California 94720 

ItL  

Materials Sciences, Office of Basic Energy 

Sciences, U.S. Department of Energy, Under 

Contract No. DE-AC03-76SF00098 

This manuscript was printed from originals provided by the author. 



-1- 

Introduction 

The general availability of prograimnable calculators and computers has 

signaled a shift from the tabular presentation of thermodynamic data to 

Is 
	 presentation in the form of analytical equations and the replacement of 

graphical methods of treating data by analytical methods. HP-65 and RP-67 

calculator programs for a variety of thermodynamic calculations have been 

preented in two earlier reports.2)  The present report lists programs 

for the HP.J41c calculator which are of particular use in representing thermo-

dynamic data in analytical form. 

The first section will deal with analytical equations for interpolation 

purposes. The equations are fit to two, three, or four tabulated points. 

In particular, the values of _(G°_Htd)/RT  for the reactants and products 

of a reaction are combined to yield an equation for _(G°_Htd)/RT  which can 

then be used to obtain values of the equilibrium constant at desired tern-

perature by the relation 

inK = -G°/RT = _(G°_Htd ) /RT - LHtd/RT 

This procedure is much simpler than the use of AS and AH O  to obtain AG as 

the contribution of tC causes more rapid changes of AS and tH with tempera-

ture than of -t(G
0
-H 98 )/RT, for which the AC contributions largely cancel. 

The second section deals with fitting _(G°_Htd)/RT  values or other 

quantities tabulated for a large number of evenly spaced temperatures. A 

least-square fit is provided using Chebyshev orthogonal polynomials. 
u 

The third section deals with least-square fitting of sets of x,y values 

to an equation for f(y) given as either a + bf(x), af 1 (x) + bf2 (x), 

a + bf1 (x) + cf2 (x), or af1(x) + bf2 (x) + cf3(x). Some examples are given 

of the types of functions needed for typical thermodynamic calculations. 



-2- 

The initial sections give the directions for using the calculator 

programs and the steps of the program are listed alongwithuse of the 

storage registers. In an appendix, a more detailed discussIon is given in 

regard to the reasons for the procedures used and operation of the program. 

Possible modifications of the programs for special purposes are also lIsted. 

This report is subdivided as follows: 

page 

Chapter I: 	Interpolation Fit 

Chapter II: Data Fitting Using the thebyshev 

- 	Polynomials. . . . . . . . . . •. . . . . •. ... . . . . . . . . . . .7 

Chapter III: Least Square Fitting of Data to an 

Analytical Function. 	••• .. . .. . . . . ... . . . 14 

Appendix I (for Qapter I) ................................. 25 

Appendix hA (for Chapter II), by Susie Hahn ............... 26 

Flow Chart for Program Q{.....................30 

Flow Chart for Program CB .................... .63 

Appendix IIB (for Chapter Ii) .............. .. ..... ... .... 64 

Flow Chart for Program 

Appendix III (for Chapter 

References................... . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . .82 

Program Steps 

GB............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 

abi , ab2 ,abc2 ,abc3 . . . . . . . . . . . . . . . . . . . . . . . . . . 22-23 

P, ST...... .................. ..... ... .........73 

CBO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73-74 

GG . . •.......... . . . . . . . . . . . . . . . . . . . ........ •1S 74 

SR, REGE, EREG. •......... . . . . . ...... 	. . . . .1.74 



-3- 

CHAPTER I 

Interpolation Fit to y 

Program INTERP will fit a pair of x,y values to a linear equation, a 

set of three x,y values to a quadratic equation, or four x,y pairs with the 

x values at evenly spaced intervals of magnitude I to a cubic polynomial. 

In addition, the program is designed to accept values of _(G°_td)/RT  of 

_(G°_Ht)/T for each of the reactants and products of a chemical reaction 

at two, three, or four temperatures and fit the resulting 

values to an interpolation equation which can be combined with zH/R for 

the reaction to calculate inK or K, the equilibrium constant of the reac-

tion, at desired temperatures in the interpolation range. 

(1) Insert tape INTERP or XEQ INTERP if program already inserted but 

calculator is positioned on another program. 

2 Pt. Fit Display 

(2a) y1 +y2  XEQ2 y1-y2  

(3a) R/S a0  

( 1 a) SST a1  

(5) x UserE 

3 Pt. Fit 

(2b) y1+y2+y3  XEQ 3 

(3b) x 1 
tx  2 

tx R/S a0  

(4b.) SST SST a1 ,a2  

(5) x UserE 

14 Pt. Fit 

(2c) y1+y2+y3+y14  XEQIt 1 3  a 3 

(3c) I+x1  R/S a0 



-1k- 

)4 Pt. Fit (cont.) 	 Display 

(ILC) 	SST SST SST 	 a1 ,a2 ,a3  

x 	 UserE. 

For values of x spaced at a regular interval I, B/S will give y(x+I) 
after calculation of y(x) if I is in register 11. 

For the reaction aA + bB = mM + tiN, the values of g = (_G°_Htd)/RT (a 

positive number) for the reactants and products are keyed.in  as follows: 

Display 

(a)n+m+-b+-a 	 XEQ1 	 n 
The sign is positive for products and 
negative for reactants. For total of 
three reactants and products, n0. 
0+0+m+-a ifonlytwo. 

A 

Repeat (b) for each temperature. 

(c) 	 XEQ 10 	_(G°_Htd)/RT 

(d)) For 4 pt. fit, XEQ 4 and:continue with 3c and 

(d3 ) For 3 pt. fit, SST XEQ 3 and continue with 3b and 4b. 

(d2 ) For 2 pt. fit, SST SST XEQ 2-and continue with 3a and 4a. 

XEQ 6 to divide by R if _(G°_Htd)/T  values were inserted in steps (b) 
and R is stored in reg. 4. 

(1) To obtainHtd/R  of reaction, key 11.1 ST06 and then enter EH 98/R for 

each product and reactant as in (b). 

To calculate LH 98/R from a set of in KT  values, XEQ 7 is followed by 

T + ln KT 	 User H 	 AH 98/R 

Step (8a) is repeated for all T. 

B/S SST 	av AH 98/R, Std. Dev. 

(9) T 	 XEQ 5, SST 	ln K, K 

Note 1: Steps (b) and (c) will accomodate a total of four reactants and 
products without any modification. Additional reactants and products can be 
accoinodated by c + g X ST+IND6 following step (b) and similarly for AH 
after step'(7). 

Note 2: The program can be used for _(G°_H)/T  and AHOtd as well as for 
the dimensionless quantities used to i1lustrae the dispays, but step 9 
will display R inK instead of lnK and it must be divided by B before obtaining 

w 



-5- 

K. R in appropriate units can be stored in register 1  for use in step (6) 

to convert the equation for _L(G°_Htd)/T  to the dimensionless _A((T_Htd)/RT 

form; so it is unnecessary to divide by R each time step 9 is carried out. 

Of course, the appropriateH td  or txHtd/R  must be used. 

Note 3: 	The values of _A(G°_Htd)/RT  obtained at each temperature are stored 

starting with R18. Thus a set of values at three or more temperatures is 

available for repeat fits using only a portion of the values. 

1iTERP $94LOL 04 132LL F 
RI 	310 12 	- 	 STO 15 EMIERt 	EMTERI 	EMIERt 

19 	PCL PM 	LS1X 	- 	 310 14 PCL 03 	RCL 	if 	+ 	* 

FP14 	LPT 	- 	 TQ 1 + 	FLL 	+ 11 	1Ji 	r 
PCI iS 	3 	/ + RIM 	PPM 	RCL ii 	+ 

RCL 14 	- 	 2 	/ 	RIM GTO E 
u 14 	RPM 	310 ii 	3 310 	12 	- 	 fl 

sib 83 	RIM 	Pfl! YtX 	' 	510 03 	FCL 16 201LEL 81 
FBI 11 	+ 	* 	3 	+ 	CHS 310 €17 	RPM 	910 82 	P14! 

- 	 1 	s 
RL 14 	R C L 	1 	2,  

F L 
2 	'. 	RCL ii 	Xt2 	/ 	+ 17.1 	310 06 	RPM 	RIM 

VIM 	PCI oi. 
31002 	RCL13 	RCL11 
/ 	RCL 11 	RCL 	16 	2 213*LEL P.  

30#LBL 
- 	 910 	RPM + 	PCL 02 	- 	 PCI ii ISG €16 	310 IM9 06 	CL:4 

Ft 	' 	+ 	F 	k 	3 LL €7 	S 	ç 
* 	L 	11 	i I FrL 	sT 	nj 

Cj~ Tfl 	PD1- 	FTh 
STO IS 	RPM 	:3Ti 	ii 	PPM PCI 8; 	* 	310 01 	0 RPM 	PCI 09 	* 

310 14 	ROL Ii 	- 	 / 310 00 	PCI 16 	XEO E 31+ 	RON 	PCI 18 
CtJ 	

L 	I 	nfl 	£.. r 	T+ IMP 
1 	+ 

STO 1 	* 	RCL i RIM 	PCI 0 	RCL 02 
RU. 03 232*101 87 

PCI 	Ii 	+ 	PCL 	13 
REC 12 	CL2 	VIM 

191 	S 	PCI 	
- 

17IL8L 85 910 16 	PCL 15 
XEQ E 	RCL 05 	Ft 	/ 	- 236ft8L F. 

PCL 14 	/ 	510 ot 
11 	E 	E 

IT 	1 	- 
PCI 14 	- 	Pt 

CM6 	RCL 17 	/ 	310 02 
LRSTX 	RIM 	MEH 	310 UC 

PCI 	11 	F-C E . 

RTi 	30EV 
RCL 12 	+ 	STO 	3 	RIM 
ROt. 61 	PCI 02 

25L0L €16 
KL 04 	31/ 83 	31/ 01 
ST' 02 	31/.83 	EUD. 

257 steps 	SIZE 022 

309 bytes 



Test: 

(2b) 1.978  4' 2.536 4' 3.25 	XEQ 3 -0.558; 

(3b) 0.3 + 0.4 + 0.5 R/S 1.2 140; 

(14b) SST 0.120 SST 7.800; (5) 0.14 E 2.536; 

(2c) 1.552 + 1.978 + 2.536 4' 3.25 	XEQ 14 0.00 14; 

(3c) 0.1 + 0.2 R/S 1.000 

(ltc)SST 2.000 SST 3.000 SST 14.000; (5) 0.14 E 2.536 

C(gr) + 2C12 (g) = CC1 14 (s), (a) 0 + 1 + -2+ -1 XEQ1, 0 

500 	(b ) 68.1 +149.85 + 1.16 	A 	0 
1000 	(b) 81.31+55.143 + 2.78 	A 
1500 	(b) 90.01+58.85 4' 14.19 	A 
2000 	(b) 96.53+61.314 + 5.38 	A 

K 

(c) XEQ, 10, -31.53; (d ) XEQ 14,  -0.02; (3c) 500 + 500 B/S - 33.05; 

(14c) SST 3.60 x 10 	SST 5.20 x 10 	SST 1.60 x 10 0; (5) EEX 3 E -32.33; 

1.98719 STO 14, All °  = -25 x 10 RCL 14 /=-12581 STO 5;  XEQ 6, 1.987 

inK 	 K 

(9) 500 XEQ 5 	8.676 	SST 	 5858 
750 XEQ 5 	0.392 	 1.1479 2 

EEX3 XEQ. 5 	-3.689 	 U 	2.50x1014 
1500 XEQ  5 	-7.656 	 14.73x10 

2EEX3 XEQ 5 	-9.576 	 6.914x10 5  

XEQ 10, -31.53; SST -31.88; (2b) XEQ. 3, -0.143; 	14 	 8 
(3b) 500 4' EEX 3 + 1500 B/S -33.17; (Icb) SST B.OxiO 	SST 14.0xlO 
XEQ 6, 1.987 

(9) 500 XEQ 5 8.676, 	SST 5858 
750 XEQ 5 0.395, 	SST 1.1485 

1500 XEQ 5 -7.656, 	SST 14.73x10 

XEQ 10 -31.53; SST -31.88; SST -32.33; (2a) XEQ, 2, -0.43; 
(3a) 500 + EEX 3 R/S -33.19; (14a) SST 8.6xi0 	(5) EEX 3 E -32.33; 
XEQ 6, 1.987 

(9) 750 XEQ 5 0.397, 	SST 1.148 
1500 XEQ. 5 -7.666, 	SST 14 .69x10 

HO 1 2 3 

a0  a1  a2  a3  

14 	5 	6 	7891011 

R AH 
Std 

 Index -a -b m n x2  

B 
x2  

I 

12 	13 	114 1516 	17 

y2  y32  x1  x3 (x 3-x2)(x2+x3) 

Yi  y2-y1(y3-y1) (y14y)x1 



-7- 

• /RT for 2 to L 

21 	 R 12 	13 	14 17 
temp. 	For steps 

8a and 8b 	
H 98  (H 98)2  inK n 

The minimum SIZE is 022. If data for more than four temperatures are used 
in steps (b) and (c), the values of -(G°-H 98 )/RT will be stored in R22 and 

beyond if a larger SIZE is specified. 

CHAPTER II 

Data Fitting Using the Chebyshev Polynomials 

The Chebyshev (Tschebycheff) polynomials, T(x) = cos(ncosx), are 

orthogonal over the continuous interval 0 < x < 1 and they have been shown 

to be the most economical polynomial for expressing f(x) as a polynomial 

series with the minimum number of terms for a given accuracy.' 	The 

Chebyshev polynomial can be modified to c(i) which is orthogonal for 

discrete integer values of the variable, x, from 0 to N as discussed in 

references 1-4. If x. is the initial value of x and I is the regular 

interval between x values, the data points are assigned integral x values 

from 0 to N where = (x_x)/I and the data are fit to a polynomial of 

the type 

f() = c 0C 0 () + c1C1 () + c 2C2 (x) + cCI.L(). 

Because of the orthogonality of C(x), the matrix calculations for the 

least-square fit of the data are simple and the Cn constants do not depend 

upon whether the quartic term is included or not. Also, the symmetry of 

the function reduces the calculations by half. An additional advantage 

is the more symmetrical weighting over a wide range of data points than 

for many other fitting procedures. After fitting of the equation, the 

value of the quartic term for x = 0 or N is displayed and a decision is 

made whether the quartic term is large enough to retain. Then the equa-

tion is transformed to a power series of third or fourth order: 

= 0 + 	
+ ct2x + cx3x (+ cx 	) 

and 
2 	3 

f(x) = a0  + a1x + a2x + a3x (+ ax). 



10 

The instructions for use of the program are given followed by a listing 

of the program steps. For a more detailed record of the various opera- 

tions of the program and the reasons for the procedures used, an Appendix 

is provided which gives equations used, the general flow chart and dis-

cusses the indices and subroutines used. 

Directions for Fitting N+l Data Points at Even I Intervals of x 

(1) If programs are not already stored in calculator, insert Prgm. CII card 

(2 sides) and Prgm. CB cards (7 sides). 

If the C(X) values for N+l data points have not already been calculated 

and stored, key 

N+l XEQ. 'CII' 	SIZE? = > 3N+20(N odd) or 3N±22(N even) 

Fl will be set if N is even. If number of storage registers is not adequate, 

key 

XEQ 'SIZE' mno 	where mno is three digit number corresponding to the 

number of registers needed. 

R/S 	 -* 	Index = 21 + q/1000 for C values in R21 to 

(3) f(0) 	 XEQ 'CB' 	- 	r(o) 	 Eq 

f(l) 	 R/S 	- 	f(l) 

f(INT N/2) 	R/S 	- 	f(INT N12) 

f(l+INT n/2) 	R/S 	+ 	f(l+INT N12) 

f(N-l) 	 B/S 	+ 	-f(N-l) 

f(N) 	 B/S 	-' 	c) C )4 (0) 

If cC(0) is small enough to drop the quartic term, key 

User A 	
-'- 	

a0 	(F 0 set) 

SST, SST, SST 	 all c 2 , a3  

If quartic term is to be retained key 

B/S 	
+ 

SST, SST, SST, SST + 
	

all a2 , a3 , a 



S 

To tabulate closeness of fit to data, turn off calculator, attach printer 

in MAN mode, turn on calculator and printer,, and key User D to obtain print 

out of f and(f - f) for each data point .wher.ef is value •calQulated from 

polynonlinal equation. After the deviations are printed, 

5 = A(f_52  and.the average deviation, I(I-f)l1(N+1) are printed. 
N-i 

x. + I 	User B 	a0  

SST, SST, SST, (ssT) 	a1 , a2 , a3 , (a1) 

User B 

x User C 	 (x) 

If it is desired to check any constants, c ,to 	are stored in registers 

R 11-15 and a0  to a1  are stored in B 16-20. All of the data points are 

stored in order from f(0) to f(N). The number of the last f register, 

which contains f(N) is given by 1000 (decimal portion of the f Index in 

R5). 

If it is desired to fit another set of data with the same number of 

data points, it is not necessary to repeat steps (1), (2a) or (2b); one can 

start insertingthe data with step 03). If it is desired to haye dimensionless 
values of -(G-H 9 )/RT using a0/R to a4/R, store B in register i, turn printer 
on, and key User F'. 

Test: 

-(G9-H 98 )/T values for C(graphite) from JMTAF Tables (3/31/18) were fit 

between 300 and 1300K. 	 . 

(2a) 11 XEQ CH, SIZE? = > 52, Fl set, SIZE 052; (2b) R/S 21.040; 

(3) 1.372 XEQ CB 1.3720, 1.1462 B/S 1.14620, 1.651 R/S, 1.903  R/S, 2.114 B/S, 

2.457 B/S 2.4510, 2.7 143R/S -2.7 1430, 3.026 R/S -3.026, 3.306 B/S, 3.519 R/S 

-3.5790, 3.845 B/S 0.016; 

b) B/S 1.368 SST )4.9)4x10 2  SST 5.81io 2  SST _6,0I0 	SST 2.21x10 	; 

(5) User D 	 (6) 300 + 102  E 1.9304 , SST 44.9088x10 3 , 
A 	 SST 1 25)4x10 5 , SST -8 7)4146x10 9 , SST 
I.qtL 	 2 2.212xl0 	1.98719 ST/16, ST/il, ST/18, 
1.9fl 	ST/20, RCL 16 to 20 or 1.98719 
2,174 	- i. 
2.45 	ççr1 	 ST08 F 
2.743 	O.c4 	 Ri6 	9?1.41-3 

	

A RI  . 	Ri7 -2.4Th22-3 
3.36 	 R18z 6.3189-e6 
3.579  R19 -4.4847-e9 
3.845 	fj.8fj3 	 R2 	1.1129i2 

5 
• 	1tj4 	**:' 



-10- 

	

-(G-H 98 )/RT 0.9714 - 2.702x103T + 6.311x10_6T2 - 	005x10 9 T3 + 
 12 1.113x10 T , 300-1300K, deviations range from 

2 B -(G-H 98 )/T = 1.6564 compared with tabulated 1.657 cal 

10 3  C -(G°-H 98 )/RT = 1.52 14 51 R/S 30295 aompared to tabulated -(G °-H 98 )/T = 

3.026 

Register Use 

	

R00 1 	2 	 3 	4 	5 	6 	7 	8 	9 	10 

N 	N 	Initial 	C index 	q 	 n 	X. 
n 

	

2 	c 	20 + g 	
index index 

n  
Index 	 q+l lto3 0 to to 1000 	

N 
21+ g 	

INT 
1000 q+l+ 1000 

(f,c) r (,c0 ) ( r,c1 ) (f,c2 ) (f,c 3 ) (f,c) 
index 	 q+l 	index index 11 
0 to 3 	 to 20 	 Ef(x) 
Oto2 
Otol 	 c. 

	

0 	 index 
15 to 11 

	

I 	 a 	n 
index 	index 

20 to 16 1  to 1 

11 	12 	13 	14 	15 

(f,Ch) 
(c1,c) 

ct 3 	[c1] 
II 

(r,c) 	 - 
,c ) nn 

16 	17 	18 19 20 

(c 3 ) (c2) (r, Cb) 
(c,c) 	or C 1  

C 33  c 31-c 32  (c 1-c 2 ) 

C 22 	(f,C2) (f,C) (C 141-C )2+2C143 ) as 
(c2 ,c 2 ) (c 3 ,c 3 ) 

(CIL ) 

a0 	a1 	a2  a3  a14 



-11- 

21 	22 	23 	24 	25 ---- q = 20+2(N-1) for N odd  

	

- 	 or 20+2N for N even 

c1 (1) 	c(i) 	c 3 (i) 	c(i) 	c1 (2) 	c(INT ) 

19+3N for N odd q+l 	q+2 	 q+N+l = 
21+3N for N even 

f(0) 	f(1) 	---- f(N) 

SIZE = 20+3N odd. 
22+3N even 

One may not have values of f(x) to be inserted in step (3) and it may be 

necessary to calculate f(x,y) from values of x and y.. For example, one might 

wish to express -i(G-H 98 )/BT as a polynomial in T given values of 	at 

even T intervals: -(G-H 98 )/RT = (H 93-&)/RT. One would make the follow-

ing modifications to program CB. RCL Z of step 6 would be replaced by the 

two steps R+ R+ and the following six steps would be added to the beginning 

of LBL 10: •RCL 55 + RCL56 I xy 	AH 	 would be stored in R55  and 298 
R would be stored in R56. SIZE would be set at 57. With these program 

modifications, T+ -G would be inserted in place of each f(x) of step (3). 

Of courseLH and AG have to be in the same units and B has tobe in corres-

ponding units. The values of t.G °  are not stored, but the derived values of 

are stored. 298 



-12- 

01.LE:L 	•••j4• 10LE.L 	
rP.. 

1 	- 	810 00 	2 	
/ 6.1 	S1004 	RL02 

STO Ci 	PCL 01 	INT 810 03 	RCL 3 	XEO 11 

Cr0 84 	SF 01 
810 06 	510 07 	570 80 

CTU 05 510 89 	810 10 	PIN 
XEP 10 

I44LBL €14 

CF 01 15sL8 	01 
EMIERi 	EHTER 	ENTERC 

160LBL 85 81+ INU 04 	130 04 

4 	* 	20 	+ 	51084 E82 	XEO2 	XEOO2 

IE03 	/21 	+ 	$1082 XEOO2 	5 	9T-4 	Pt 

I 	- 	Sb 	03 	F:CL €14 RIM 	XEO 18 	010 81 

RCLOO 	+ 	2 	+ 	FIXO 
SIZE?=> 	IWCL X 31*LBL 01 

PROMPT 	0 	FIX 3 	510 87 RCL IMP 82 
81± 1MB 04 	180 84 

42+LBL 00 150 03 	RIM 	F:DH 	RCL 03 

ISO 83 	010 V 	RCL 82 810 03 	RBN 	USE 03 

PTH FS? 01 	XEO: 04 	STOP 
XEQ 	18 	Cui: 	35 

47+LBL 03 
1 	510 06 	81+ 87 594L8i- 04 

PCL 07 	RCL 01 	/ 	CHS 61- 03 	RDN 	PIN 

I 	+ 	STO IMP 03 
55*LOL 05. 

58+LSL 81 ENTEt 	EHTEPI 	MEG 09 

2 	* 	RCLOI 	RCLO7 	- RuN 	xEc9e6 	RN 

* 	PCLO6 	2 	* 	I 	+ 	* XEOO9 	81+09 	RDH 

XOY 	RCL 06 	RCL oe XEO 09 	81+ 83 	RPM 

RCLO6 	+ 	1 	+ 	- XEO09 	57+ cj? 	Pt 	STOP 
P0100 	RCLO6 	/ XEIiI@ 	01005 

RCLO6 	I 	+ 	/ 	18003 
$10 IMP 83 	4 	RCL 06 	1 75±LUL 09 

+ 	XY? 	010 88 	$10 06 PCL DD 03 	HE 03 	* 

1 	51- 03 	Pt 
i RTH 

RCL 1MB 83 	X<>? 	iSG 83 
CTO'01 S0#LE:L 86 

810 1 	810 \ 	CH3 	310 2 
RDF 	51+ Oc 	PT"; 

185+LSL 8 
PCI 82 	510 03 i+L;L 

11 

l08+LBL 02 
FIX 0 	FfL 03 	FSE A 03 	0Th h7 

PCI IMP 03 	FIX 2 	PSE - 
ISO .03 	010 82 	PIN 9703L ii 

P. 02 	FRO 	I 	E3 	* 
118.LBL .0 
VCL 0 	PPREG 	EIB 

+ 	610 05 	P - Pc 

I 	 -- 	 - 	TH 

121 steps 
167 bytes 



-13- 

III4LBL 10 2774L81 14 437.L8L 03 
310 !P K 	13G 05 	PIN RCL 01 1 	+ 	Xt2 	LII3TX 15 	xEO 03 	XPQ 16 

06 31+ 	10 	tIt1 RCL 	4 + 	I' 	I/X 51+ 86.. X1'2 	31+ 07 	Rt 
I+ 31+ PCL Ml °CL 04 	- 1 	+ 	ISG 05 	UO 0- 8 
31+67 RCLOO RCLOI 	-1 	* PCLOO 1 	+ 	91/06 	2 

PIN - 	SI' IT PCI 87 	SORT 
173.181 17 PRX 	RCL86 PRX. 	RTH 
8 	STOOl 4 	51084 297+L8L 13 	' 
Eu 13 PCL 10 RCL 00 FACT 	X12 4624LBL B 
31011 STOP 	CFOO 	1 RCLOO PCLO4 	-FQCT 15 	G1083 
XE014 SI02 0 	1 / 	RCLOO RCLO4 	+ 	1 

Tf 	lii EI 	14 + 	FACT / 	RCL 84 	2 	* 4654LBL r 
910 19 91- 20 	2 1 	.+ 	* RTH 28 
T0 01 .RDN 	XEO 14 
310132 * 	31+203 ?2C'tLBLE . 467.LBLO3. 
SIB 81 RCL 18 	XEQ' 14 81 RON 	ENTERt 310 83 FS? 80 	OSE 03 
PCL 2A Y0Y 	910 21 0 	6 ThTEPt ENTEPt 	FC' RO rTJH 	Et1t 	ENTERt 
* 	-RCLI1 	31012 :Eo15 FS?0I 	XE008 . 	ENTERt PCLII1003 	* 
PCL 19 RCL 18 	3 RCL 14 RCL 81 	3 '?tX OSE 03 XEO 12 1 	

XEQ 12 
1CL20 11 	* 	+ 	RCLL1 / 	91+19 * 	3 	* FC?O8XEO12 
* 	310 13 	RCL 12 91-1:3 * 	81+ 17 	* 	3 RCL IHO 83 	+ 	PIN 
RCL2O 6 	* 	- 	RCL1I / 	81- 16 	RON 	PCI 13 PCLO8 * 	PIN 
* 	310 14 	RCL 20 RCL 01 Xt2 	/ 	81+ 13 
RCI11XSTOL5 *2*31-17*2/ 49*LBL12 

STi- 	16 RON 	RCL 12 PCI 1B 03 	+ 	* 	DSE 03 
1 i8'+L8L 87 RCL 81 / 	91+ 17 	* PIN 
8 	91001 3 	31004 	1 31-16 RCL1I 	81+16 
E0 14 310 19 	1 RCL 16 PIN 	RCL 17 44sL8L F 

310 01 RON 	XEO 14 PCI 18 RCL 19 	RCL 28 Rf, L 0 8 91! 16 	31/ 17 
31-19 31017 	2 	' . 	, 81/18 91/19 	31/ 28 
.310 81 RON 	XEQ 14 3?5+LBL 15 ENC 5 16.82 	FS? 80 
310 18 2 	* 	PCL 19 	+ RCL 15 RCL 01 	4 	YtX 	

. 16819 PRREGX 	E1D 
XEQ13 RCL09 	* 	' 181020 s 	cHS 	4 	s 
310 19 11 	* RIO 19 * 	CHS 	1.5 	* 
31+ 12 RCL 17 	RCL 18 310 13 * 	CHS 	1.5 	/ 
3 	* 	- RCL.19 	* 51017 * 	CHS 	4 	1 

31+ 13 RCL 19 	RCL 19 510 16 RON 	P1K 
$ 	31+ 14 	OSE 04 	8 	' ' RO 	ste s ° 	p 
310 01 1 	:1EO 	14 4801.81. 08 , 	759h bytes 
310 19 1 	910 01 	RDH 0 	910 16 	.910 	17 
E0 14 310 17 	51- 19 	' SIt' 	18 910 19 	RON 	PIN 

XEQ 13 RCL oo 	* ' 
31+ 	11 310 18 	RCL 19 412*1.BL 16 
* 	91+ 12 	RCL 17 RCL IHO 05 	OCX 	3 	- 
RCL 18 * 	31+ 13 SKPCHR X<> I 	RON 	- 
PSEO4 8 	31001 	1 	. . 	OCX 	OOV88 	PIN 
XEOI4 XEOI3,RCLO7 	. 	. 
* 	51+ 11 	* 	31+ 	12 	' 	' 424.LBL 
RCLO6 PCLOO 	1 	+ 	/ FIX3 RCIOO 	1 	+ 
31+ 	11 RCL 11 	STOP .91- 05 PCI 11 	XEQ 16 
RCL 12 PCI 13 	RCL 14 STO 86 Xt2 	91087 	1 
RCL 15 91+ 	5 



_11I_ 

ChAPTER III 

Least-Square Fitting of Data to an Analytical Function 

Least-square fitting of data to any equation y = .f(x) is not, a routine 

process but requires careful consideration of the variations of errors in 

y as a function of 	 For example, if it were desired to obtain 

the values of a and b in the expression y = ax2  + bx3  that best represent 

a set of data, one could least-square a variety of functions of y. The 

use of the unweighted function would tend to heavily weight values of y at 

large x. As just one alternative example, one could least-square 

y/x2  = a + bx and obtain, in general, quite different values of a and ID 

that would correspond to more heavy weighting of values of y at low x than 

for the previous procedure. 

One should carefully consider the magnitude of errors in y as a 

function of x before selecting the appropriate procedure. One should apply 

appropriate weighting to off-set any bias of the least-square procedure as 

well as to attempt to correct for systematic errors. 

A set of x,y values may be fit by least-squaring procedures to a 

variety of equations. Unless the data are unusually accurate, or have been 

smoothed to fit an equation closely, it is rare that more than three para-

meters are justified. The four equations that are fit 'by the least-square 

program given here are f(y) = a + bf(x', f(y) = af 1 (x') + bf2 (x'), 

f(y) = a + bf1(x') + cf2 (xv), and f(y) = af1(x') + bf2(x') + cf(xt) 

which will be identified in the program as abi, ab2, ahc2, and ebc.. 

f(y) can be any function of y or of x and y and f 1 , f2 , and f can be 

any three different functions of x or x', where x' which is a function
1.  

of x such as f(T') = T-298, T-1000, 2890-T T/298, etc. f(y) must also 

be specified to convert values of f(y) to values of y. 

As pointed out above, the least-square process can not be an automatic 

procedure. Built-in weighting bias can distort the fitting depending upon 

the way in which y varies with x. One can offset the bias as illustrated 
22 	3 above by fitting y/x = a + bx instead of y = ax + bx by switching from 

program ab2 to abl. The least-square program also allows specific weight-

ing factors to be applied to each specific value. 



-15- 

In applying the least-square program, one must first make a decision 

about which of the fourequations will be used. Then one must decide 

whether individual weighting will be used If the values of x are spaced 

at even intervals, the insertion of the data can be simplified by storing 

the value of I, the interval between x 'values. 

All data are stored and can be retrieved to be fit to any other equa-

tions, if desired. Once the constants a and b or a,b, and c have been 

fixed, the program will provide calculated values of y,, for any value 

of x in the range that was fit. If it is desired to examine the nature of 

the fit, insertion of the HP141c printer will provide a print-out of -y 

values for7  all n value.s of the original data, the standard deviation 

v'(-y)/(n-2) and (-y)/n, the average deviation. For accurate statical 

evaluation, the standard deviation expression should be modified by 

replacingthe2 in n-2 by larger values depending upon the degree of the 

equation being fit 

To illustrate the selection of f(y), f 1 (y), x', f1(x'), etc , some 

specific examples will be given. High temperature heat capacities are 

often obtained by Drop Calorimetry. Drop CalOrimetry yields values of 

HT_H. for v.rious values of T,.wherei refers to the reference temperature 

which may be 273 or.298Kor some other calbrimeter temperature. It is 

desired to obtain a C equation which will join the accurately known C 

at temperstureT. from low temperature. Shomate has proposed an equation 

which has been found useful for C evaluation.' 8  ForC = a+ bT + 

c/T2  + dT2 , (H _H.)/02 - C 	10 = a + a 0 + a (O+T. 
)l 

 where 0 = T-T., 
i 	P,i 	0 	1 	-1 	' -22 

d = 3a , c = -T.a , b= 2a -dT 	
P,i and a.= C 	. -bT 

.1  
. 	

i 
-cT 	- dT.. For use 

1 	 0 	i 	 2 
in the least-square program y = HT_Hj, x = T, x' = T-T. 	0, f(y) 	y/0 - 

C .,O, f(y) = 02f(y) + OCD 
 i

, and f0 (x') = (0 + T.) 	in program abc2. 

	

.L 	 1 

This procedure joins C smoothly to the low temperature values, but 

the derivative may be discontinuous. TO ensure a smooth joining, one 

would use f(y) = y10 - C. - ½0(dC 1 /dP) and f(y) = 0(f(y) + ce .) + 

½0 (dCv  ./dT) with f1 (x') = (0/TJ(l/T. - l/T) = 0 /TT and f 2 (x') = 

(1/3)02 in program ab2 which will yield the constants c and d of the C 

equation. The other two constants are given by b = dC ./dT + 2(c/T-dT) 
2 	2 	 P,i 	 1 	i 

and a = C P,i - bT 
i  
. - cIT 

i  
. - dT.. 

1 

There may be no accurate low temperature heat capacity data and the 



-i6- 

high temperature data may not be accurate enough to warrant four parameters. 

However, the temperature T*  at which dCkT  reaches a minimum is clearly 

indicated by the heat capacity data. Use of T*  reduces the parameters to 

three with y = C, x' = T, f1(x) = (T + T.)/2 and f2(x) = l/T2 - 3T2/(T) 

with d = _3c/(T*) . a, b, and c are given by program abc2. 

A similar treatment for enthalpy with y = ( HT_H. ),  f(y) = y/O, 

f(y) = Of(y), x'= x ' T, f1 (x) = ½(T+T1 ), and f2 (x) 	l/TT. - 

(T +TT+T. )/(T*)  yields with program abc2 values of a, b, and c. 
i 1 1 

d = _3c1(T*) 

The example of the regular solution partial molal equation 

ax2  + bx2  with the choice of f(y) = Y1 , Y1/x2 , and Y1/x2  with appropriate 

changes in f1  and f2  has been discussed above. A related equation for the 

integral quantity Y 1/x1x2  = a + ½b + ½bx2  can be treated with f(y) = 

y/(l-x2)x2, f(y) = (l-x2 )x2f(y), and f(x) = 	2 The term designated 

as b by program abi corresponds to the b term of the regular solution 

equation. The term designated as a by program abi is equal to ½b plus 

the regular solution a term. 

When regular solution theory is applied to calculation of solidus 

and liquidus curves of phase diagrams, an explicit equation for the 

bouiidaries can not be obtained when there is appreciable solid and liquid 

solubility, although accurate values can be calculated by successive 

approximations.(2) The calculated values can be expressed analytically 

in terms of an approximate equation of the form that would apply if solu-

bilities were small plus a deviation function. A least square fit using 

program abc2 can provide an accurate representation of the solidus and 
liquidus boundaries.(2) 

11 



-11- 

Direetions 

If program is already in or after insertion of cards, indicate by 

la, lb, ic, or id which equation will be used to fit data. ' ' indicates 

ALPHA mode. 

(la) f(y) = a + bf(x'), key XEQ ' a b 1 1 , which sets Fl. 

(ib) f(y) = af1 (x') + bf2 (x'), key XEQ ' 	a b 2', which sets F2. 

(lc) f(y) = a + bf1 (x') + cf2 (x'), key XEQ ' a b c 2 1 , which sets F3. 

(ld) f(y) = af1 (x 1 ) + bf2 (x') + cf3 (x'), key XEQ ' a b c 39,  no flag set. 

For all four program initiations, the calculator will prompt w? 

SF0 I? ST0 00. If all the data are to be given equal weighting, no 

• response to the first question is needed. If wl for any data, key 

SF 00. If the values of x are at regular intervals of I, store I in 

R00; otherwise no response is needed. 

If SIZE is not sufficient, XEQ 'SIZE' 22+2n, where n is the number 

of data sets 'to be entered. If f(y) and f(x) have not already been 

inserted for the desired equation, 	step (2) is carried out. 
Display 

key PRGM 	+ LBL1, key in f(y). 

SST SST 	- LBL2, key in f 1 (y). 

SST SST SST - STO 06, key, in x'f'(x). If x'x, nothing is keyed in. 

SST 	- STO 05, key in f1 (x'). If f(x')=x', nothing is done. 

SST SET SST 	RCL 
05 for abi, key 0 X. 	• 

for other programs, key f2 (x'). 

SST SST SST + RCL 
05 for ab3, key f3 (.x') PRGM. 

otherwise, key 0 X PHGM. 

The above instructions assume no f(y) or f(x) steps left over from 

previous calculations; if there are., they must be deleted if not consis-

tent with the desired functions. If there are no plans to use abc3 in 

a series of calculations, step (2f) can be eliminated by leaving 0 X in 

LBL5 and completing step (2c) with PRGM. If f(x')=x, steps (2c) and 

(2d) can be bypassed after step (2b) by PRGM GT0 1  ' P5GM SST followed 

by step (2c). Other simplifications of step (2) are possible using 

GTO and BST. 	 ' 	" 	• • 	 , 



For each program, there are four variants for inserting, data. 

 no I, w1 key x1  + y1  User E - 	x1  

X2+Y2 E + x2 

x +y Ex 

 I STO 00, w=l key x1  + y1  User E + 

y n 
E+x n+l 

 no I, wl SF00 key x1  + y1  + w1  User E + x1  

E 	x 2 

x +y +w 

 I STO 00, w01 SF 00 key x1  + 
y  + w1  User E - 

E+X3  

y n 
+w 

n 
Ex n+l 

(1) After all data have been entered, 

RS -* a, SST + b, and SST + c for abc2 and abc3. 

Calculated values of y, ,can be calculat'd for any x using step 5a. 

If values are desired at even intervals of x, step. 5b can be used. 

x User C+y 

If I in R00, x, User C + y1, R/S -' y2 , R/S.... 

(6) 	The closeness of the fitbetween the calculated y values and the 

unweighted original data can be checked by turning off the calculator, 

attaching the printer, turning both on with the printer in MN mode, 

and keying n XEQ 10. The printer will print y 1 , _y1; 2' 2-y2 ... y, 

followed by /?_y.)2/(n_2Yand  (I_y)/n. (If the printer is 

still attached from a previous step 6 when step 1 is carried out, the 

calculator will stop after display of w?SFO. R/S will complete the 

display of I?STO 00. SST will then put calculator in position for 



-19- 

insertion of f(y).) 

(7) The x.,y
i 
 values were stored in step (3) and can be retrieved to fit 

to another equation or other functions. Repeat step (1) to indicate 

which equation and insert desired functions. Then n User A will retrieve 

x,y. values and make an unweighted least square fit in place of step (3). 

Follow with step () to obtain a, b, and c values. If it is desired 

to use weighting in the new fit or change the weights applied in a 

previous calculation, subroutine LBL6 can be modified by inserting 

RTN before XEQ E and before GTO E. Step (1) is followed by SF00 and 

n User A as indicated above, but the calculation will stop to display 

each y.. Then key in w. followed by R/S. After the last value has 

been keyed in,. follow as usual with step.(14). 

Note 1: Additional data can be inserted by step (2) after steps 14, 5, 

6, or 7 if the appropriate flag is set for the equation being used, and 

SIZE is adequate or is increased. 

Note 2: Steps 5, 6 and 7 can be repeated in any order. 

Note 3: The closeness of fit obtained in step (6) can be compared 

with the fit using weighting by inserting RTN X in LBL 14 between PEX 

and ABS. 1w. which can be obtained from R16 for all programs except 

abc3 is used in place of n in initiating step (6). The calculation 

will stop after the display of each .-y.. Key inw. followed by R/S. 

After the last value, the.re  will be two additional printouts of which 

the last will be E w. j.-y. I/lw. which can be compared to EJ.-y.  In 1 1 1 	1 	 j 1 1 

given by step 6 as normally carried out. 

Note : If f(y) and,f(x) used in the previous calculation require 

three or more steps, the delete function can be used to remove them 

and add the functions needed for the current calculation. If the 

previous calculation was the fitting of enthalpy data to match C 

and (dCp/dT) i with ab2 as described in the introductory text of 

Chapter III, f(y) took 14 steps, f'(y) 8 steps, x' 2 steps, f1  

9 steps, and f2  3 steps. Step (2) would be carried out as follows: 

DGTO1 PRGM SST XEQ 'DEL' 014, key in new f(y), SST SST SST XEQ 'DEL' 

008, key in new f(y), SST SST SST SST SST , key in new x', SST SST 

XEQ 'DEL' 009,  key in new f 1, SST SST SST XEQ 'DEL' 003, key in new f2, 

PRGN if no new f3. 



-20- 

As mentioned in the step (2) instructions, one can use PRGM 

DGTO5, for the example of deletion of f2 , PRGM DBST flBST  

key in new f 2  PRGM. One could reduce the number of keys required by 

three if the step number after inserting f 1, e.g. 40, is noted. Key 

DGTO .0146 	--,keyin newf2 ,PRGM. 

TESTS 	A sample calculation is carried out for each of the four programs 

which can serve as a check if the program is operating properly. The 

appendix to Chapter III gives insertions into the program for the 

functions and sample calculations for the fitting of Drop Calorimetry 

data as discussed in the introductory text of Chapter III. 

abl Test: ln y = a + bx, n=4, 1=100. 

(la) XEQ 'DaDbDl' - Fl, EEX 2 STO 00, 'SIZE' 030 

(2) With no entries from a previous calculation to be removed, 

PRGM LN 	SST 	SST Dex 	SST 	SST 	SST 	SST 	i/x 

SST 	SST SST 	0 	X 	SST 	SST 	SST 	0 	X PRGM 

(3b) 1300 + 0.0147 User E -* 111.00, 0.0263 E -'. 1500, 0.0 145 E - 1600, 

0.0696 E + 1700 

(14) B/S a4.108, SST b=-10 830 

(5b) 1300 C 0.01 11.65, B/S 0.02657, R/S 0.0 11.145, R/S 0.06988 

0FF, Printer in, MAN, ON ON 14  XEQ 10 

	

8.81478 	-8.8885 

	

8.cj2638 	0.08327 
8.84580 -8.850 

	

8.86968 	8.88828 

0.88845 	*** 
0.88827 	*** 

Retrieval for weighted fit: 

XEQ 'DaDbDl' + Fl,DSFOO, EEX 2 STO 00; DGTO 6 PRGM SST DRTN 

DGTO.508 DRTN PRGM; 1 1. User A 0.01 147, 2 B/S 0.0263, 14  B/S 0.0450, 

1.5 R/S 0.0696, 3 B/S 1700; R/S a = 14.106, b = -10 831 
DGTO 6 PRGM SST SST I DGTO. 508 -  PRGM, to delete BTN twice. 

2 	3 ab2 Test: y = ax + bx , n = 9, I = 0.1, values to be weighted 

(lb) XEQ 'DaflbD2' -- F2,DsFoo 'SIZE' o14o, 	0.1 STO 00 

(2) PRGM SST -  DGTO.o38 ~ DGT0.0142 	x2  DGTO.0 147 -4-3 

(3d) 0.1 + 14.001 + 10 User E 0.2, 23.998 + 9 E 0.3, 72.003 + 8 E 0.14, 159.996+7E0.5, 



-21- 

300.005 + 5 E 0.6, 503.9914  + 14 E 0.7, 7814.00 + 3 E 0.8, 1151.992  + 2 F 

0.9, 1620.009 + 1.5 E 1.0 

(4) R/S a = 199.9906, SST b =2000.015 

(Sb) 0.1 C 14.000, R/S 24.000, R/S 72.000, 0.9 C 1620.003 

Printer ON, 9 XEQ 10, 

	

4.801 	-8.081 

	

23.998 	8.882 

	

72.083 	-8.003 

	

159.996 	8.883 

	

3081005 	-8.885 

	

503.994 	8.806 

	

734.887 	-0.806 

	

1,151.992 	8.810 

	

1628.889 	-0.006 

	

0.806 	*** 

	

8.885 	*** 

abc2 Test: y = a + blnx + dx, n=3, weighted fit 

(ic) XEQ 'DaDb0c02' -' F3, DSFOO, 'SIZE' 028 

(2) DGTO 4 PGRM DBST DBST ~ LN DGTO.047- ~ 1/x PRGM 

(3c) 1 + 20 + 2 E 1, 10 + 15.605 + 1.5 E 10, EEX 2 + 19.31 + 1 E100 

F/S a = 10.00, SST b = 1.99993, SST c = 10.00 

1 C 20.0, 10 C 15.605, EEX 2 C 19.31 

abc3 Test: 1/y = a(3000 - x) + b(3000 - x) 2  + c(3000 - x) 3 , n=5, 1=100 

(id) XEQ 'flaEJbDcD3', SF00, EEX 2 STO 00, 'SIZE' 032 

(2) PRGM 1/x SST SST 1/x SST SST SST 	3 EEX 3 	 CHS 

SST 	SST 	± GTO..050 	rJx2 tJcT0. 0 55 + 	 3 	
0X PRGM 

	

(3d) 1800 +2.2894x  10 	+ 1 E 1900 1  2.7465 	x 10 	+ 2 E 2000, 3.3333 x 10 

+ 3 E 2100, 4.1 x i0 	+ 14 E 2200, 5.1234 x 1O 	+ 5 E 2300 

R/S a = 0.99508, SST b = 1.00947 x 10, c = 9.955 x 10 

1800 C 2.2894 x 10, R/S 2.74645x10, R/S 3.33328 x 	R/S 

4.1001 x 	R/S 5.1234 x io 

The keying of y could have been simplified by changing f(y) to 10 14 /y 

and keying in 104y. 



-22- 

I 

OItLBL db1 
SF 81 GIG 8' 

04+16L ab2 
SF 82 GIG 05 

87*18L abc2" 
SF 83 GIG 00 

18+L8L aic3 
11+LBL 80 

CF 80 22.1 $10 28 CL 
8 STO VOL SIC 81 
510 03 810 84 FS -,  01 
GIG 13 810 17 510 18 
FS? 82 GIG 13 510 19 

28+LBL 1? 
1? SF 8 	flVjE1I PSE 
1? ST 08' flYIEW PIN 

35#LBL . 81 
PIN 

37+LSL 02 
RTH 

39'LBL 0 1, 
510 86 810 05 RTN 

43+LBL 04 
RCL 85 PIN 

46+LBL 85 
PCI 05 PTN 

494181 E 
FS? 80 GIG 87 
$10 08 RDN GIG 88 

56+L8L 87 
31+ 16 SORT 810 08 
SI- 16 RDH RBN 

64.181 82 
810 !HD20 13C 28 
XN 81 RCL 08 * 
810 18 X<)Y 510 14D 28 
ISG 20 XEQ 8 7-  RCL 08 
* 810 89 FS? 81 
GIG 09 	84 RCL 88 
* ¶10 t.7 FS? 82 
GTO It 1S 83 CTO 12 
GT 15 

85+L8I 09 
RCLB8 I - * 51+11 
LflSTX RCL 18 * 81+ 13 
RCL 18 PCL 09 Z+ 
PCLO6 RCLOO + RTH. 
RCI 15 PCI 11 PCI 13 
* RCL 16 / - RCL 12 
PCI 11 Xt2 PCI 16 / 
- I 510 82 MEi1 
RCL 02 * - .510 81 
CF 81 PIN RCL 82 

129.LBL 11 
ci 10 * ST+ 18 
RCL 89 PCI 10 * 

81+ 17 RCL 07 RCL 89 
+ PCI 86 F:CL 80 + 

RTH PCI 12 RCL 18 * 

RCL 17 RCL 15 	- 

RCL 12 PCL 14 $ 

.RCL 15 Xt2 - 

810 83 PCI 15 * 

PCI 17 - CHS RCL 12 
/ 510 82 CF 82 PIN 
PCI 03 

1784L8L 12 
RCL82 1 - 51003 * 

51+ 13 PCI 83 RCL 83 
* 81+11 PCI 10 
PCI 08 * SIt 19 
RCL 87 XEO 11 	N 
PCI 19 810 10 RCL 11 
Xt2 PCI 16 81/ 18 / 
PCL 12 - PCI Ii 
PCL 13 PCL 16 / * 

PCI 15 - STO 86 XO? 
510 83 PCI 13 Xt2 
PCI 16 / PCI 14 - 

810 05 PCI 17 RCL 18 
RCL BY PCI 13 * X<)Y 
- 81002 PCI 18 
RCL 11 * RI - 510 07 
PCL 03 P.CL 05 * 

- - 
r t.L jj 	 iL 	.,L ,.( 
RCL 05 * Pc.L 86 
RCLO8 *  
810 82 RCL 0? 
RCL 87 - CHS RCL 06 
/ 810 0? PCL 13 
RCL 11 PCI 82 * + 

PCI 16 / Pc:L 18 - 
CHS. 710 81 CF 83 PIN 
RCIZ 

262'.6L iS 
PCI 10 * 81+' 12 
PCI 89 Xt2 31 ~ .14 
PCI 87 :tz 51+ 17 
RCLO9 RCLO7 * 
51+ 15 RCL 10 RCL 89 
$ S1+ 11 XEO 85 
'PCI 83 * ENTERt 
EHTERt ENTERt 	2 
81+ 19 RDN PCI 10 * 

51+ 13 RDN PCI 89 * 

RCIB8 Xt2 - 1 + 
81+ 16 PDH PCI 87 * 

T+ 18 RCL 86 RCL 08 
+  P 1 4PCI 17 RCL 13 
* RCL 18 X2 - 
810 04 PCI 15 PCI 19 
* PCI 16 RCL 12 * - 

810 85 RCL 15 PCI 18 
* RCI 16 PCI 17 * - 

510 06 RCL 16 
RCL 14 RCL 84 	+ 
PCL 15 RCL 85 	- 
STO 07 RCL 12 RCL 18 
$ PCI 13 PCI 17 	- 
810 88 PCI 16 * 

RCL 12 PCI 19.* 
PCI 13 PCI 18 * - 

31009 PCI 15 * - 

RCIO4 PCI 11 * + 

PCI 87 / 810 82 
PCI 13 PCI 15 * 

'Rft-12 RCL 16 * - 

810 18 PCI 16 * 

RCLO5 PCI 11 * - 

RCLO9 PCI 14 * + 

RCL 07 / 810 03 
PCI 06 RCL 11 $ 

PCI 10 RCL 15 * - 
PCI 08 PCI 14 '* - 

RCL 87 / 510 04 
PCI 02 PIN PCI 03 
RCI A 



-23- 

416'L3 	C 
XEg Cl-, CL 02 	* 
XE€4 RCLO3 	S 	+ 
XEQ85 RCL84 	+ 
PCI 91 + 	XE9 92 	RIM 
PCI 88 RCL 9 	+ 	GTO C 

436.LBL 18 
STO 87 2 * 22.82 + 
1E3 / 22 + 51029 
1 + 51021 0 51089 
51018 

4.5LBL 14 
PCI 1MB 21 XEP C 
RCI 1MB. 20 ISG 28 ACX 
3 SKPCHR RBH - ACX 
IIDY ABS ST+ 18 Xt2 
$14 89 ISG 21 610 14 
RCI 87 51' 18 2 - 
SI, 89 PCI 09 SQRT 
ADY PRX RCL 10 PRX 
RIM 

483.LBL A 
2 *19 + 1 E3 / 22 
4 510 21 

493+L8L 86 
XEQ 16 XEQ E 196 21 
610 06 .1 91+ 21 
XEG 16 610 E 

582+LBL 16 
RCL 1MB 21 156 21 
RCL 1MB 21 X<)? EHB 

507 steps 

715 bytes 



I oj cn 
.1 c- 

O •  

COC\J - 
H+ 
cdHO 

c\J C') OJH (\JrH C\J 
H q 1  

o 	•Cd 

H 	•H H I H H 
H Ci4 I 

UE•H I 
!DG) 	0 

Cd 	j r 
a) I PI 

H 

r c'J a) 

L 0. 

H H H 
CH 

Cs 	+)H 
Cl) 0 H 

I-i 	Cd 	Cl) L L 
Cd 

a) 
,0 CO O+ 

q-1CO 
rdp 	•H 
a)}1rd 	O 
C) r. W 

t— 
I 
I L  ç 

Cd 	Cd m 
H I 0) 0) C!) • 
PCO 	• s-I CH 
a) a) H0 

H0 
CO cd-H 

•H 
r. 

C) 	Cd 
+ r!) 

, 	0 

L(\ - 
0r1Q 

0 

COO 
•H 	C+ - 0 0 0 0O 

0O< 
C. 	a) 0) 

'dO) 
H 

r1 	4)r-14-) In 0 0,0 Iä() 0 10 
'd 	Cd 

-P•r-1 	CO 
-i 	Cd+ 

Cd ) 	 -i 
Cd 

CO+'O+' C') ,0 Cd ,0 Cd 
CH 	C!) 

COCO 

CC! 	•r-1 	a) 	C) 
Cd 	CO 	• 

H 0Cd 0 Ocd 0 
O r. 

OCO 
PA o 	r1 .0 

H 0) In 
r10H-1 H 0 0 
HC'JC\J pq  

Cd Cd Cd Cd 

rd 
a) 

.' 0 
In 4) 
0) CO 

CO 
1 •-f 

•r-1 

H '4 

H 
.. 	•r-1 

0) 	4.) 
C') 

rd 

Cfl r. 	(\J 
•r-! 	•-1 	Z 

H C'J 
' 	•H 

o 	ocicn 
H 

'-0 I C44 
H 

4-I 
F-) 

C\) 0) (\J 
Lf\ 4-i 4-i 4-i 4-i 
H H H H 

I ('JO) ('JO) OJH 
H I 4-i 4-i  

0) 	(n 
H 	C') 	C) 	C) 

Cd 	Cd 	Cd 	Cd 

In 
CD 00)00) 0 
H 

N- 0 H 0 H 0C\J0.J 
H CH CH 4-4 



-25- 

APPENDIX I (for Chapter I) 

Prgm INTERP 

2 Pt: a1  = (y1-y2 )/(x1-x2 ), a0 = y2 - a 1x2  

( y2_y1 )(x2 -1-x3 ) 	(y3_y2)(x1+x2)] / 
3 Pt: a = 	 - 	 i ,(x -x 

L 	2 - 1 	x3-X2 	jf 3 

a2 = (-2 - a /(x2+x3) 

a0 = y2  - a1x2  - a2x2  

Pt: y=y-y 

a3  = (y - 	+ y/3)/2I 3  

a2  = (y - 2y)/2I2  - 3a3(I + x1 ) 

a1 = y/I - a2 (I + 2x1) - (12 + 3x 11 + 3x)a3  

2 	3 
a0 = y1  - a1x1  - a 

2  x 
 1 - a 

3  x 
 1 

When values of y are not directly available and must be calculated, the 

program can easily be modified. Steps a to d for the calculation of 

-(G°-H 98 )/RT present one example of the ways in which f(x) values can be 

calculated and then fit to a power series. As another example, the use of 

values of .H 98  and 	 . to obtain two to four point fit for -A(G-H 98 )!RT 

will be illustrated. Key 0 + + + 1 XEQ1 for step (a). Key T + AG B 

to display -(G°-H 98 )/RT with R in register 4 and 	in register 5.298 
LBLB OHS RCL5 + RCL4 / xy / STO 1ND6 RTN 

Steps (c) and (d) are used unchanged. Before step (9) is used to calculate 

K, RCLI4 ST/5 to convertH 98  to AH98/R. 



-26.- 

APPENDIX hA (for Chapter II) 

by Susie Hahn 

1) Prograa CR 

Program 01 provides values of the Chebyshev polynomial terms C() for 

n1 to 4 and for x=O to N when N+1 data are to be inserted in program CB. C 0  

= k/N, C2  = 1 + 6G-N)/N(N-1)  and additional terms can be calcu-1, C1  = 1 - 2

lated using the recurrence relation for a given : 

= [(2n+1)(N-2)C - n(N+n+1)C_11/(n+1)(N-n). 

The sequence of calculations in program 01 is outlined in the following 

flow chart. When the number of data points, N+1, is followed by XEQ '01', 1 

is subtracted, N is stored in ROO, N/2 is stored in Ri, N/2 is compared with 

the integer value of N/2 to determine if N is even or odd. If odd, the calcu-

lation goes to LBL4, flag 1 is cleared, and the calculation proceeds to LBL5. 

If even, flag 1 is set and LEL5 is initiated. LBL5 calculates the last C 

register number, q = 20+4INT(N/2), which is stored in R4 and the C index 

number, 21 + q/1000, which is stored in R2. The form of the C index number 

is , where the integral part, 21, signifies the first register in 

which the first value ofC1  will be stored and the fractional part, 1000 

signifies the last register in which the last value of C will be stored. 

Next, the C index number Is reduced by one to accomodate the increment by 1 

which occurs in LBLOO, and this number is stored in R3. SIZE = q+2+N Is 

determined and displayed to indicate the minimum number of registers required. 

The x index = 0 is stored in R7. 

LBLOO increments the C index in R3 by 1 and the calculation jumps to 

LBL3 if the Cn  index in R3 is not greater than q. At this point, C index = 

21.100 q  and since 21 A q, the calculation goes to LBL3. 



- 27 - 

LBL3 stores the n index of 1 in -R6 and increments the x index in R7 by 1 

and stores this new X. Then C1 (1) = 1 - 2/N is calculated and stored indi-

rectly in R21 as directed by the C index in R3. 

LBL1 then uses the recurrence relation to calculate C 2 (1) = [2C 1 (1)(N/2 - 

)(2n + 1) - n(N + n + 1)C0(1)]/(n  + 1)(N - n) with n = = C 0 (1) = 1. The 

calculation proceeds as follows: 

C 1 (1) 	already in X stack position from LBL3 

2 

* 	 2C 1 (1)(N/2 -i)(2n+1) 

N/2 - 	RL1 - RGL7 	 in X to Y + X<>Y 
* 

n*2+1 + RL6x2+1 

* 

6*(N+n+1) 	RCL6 x (RcLOO + RcL6 + 1) 	 n(N+n+1)C0 (1)j in X 
- 	 X -YinX 

N-n + RLOO - RCL6 	 [2C1(1)(N/2 - x)(2n+1) - n(N+n+1)Cp(1)] 
N - n 

/ 
n+1 + Ra6+1 

/ 	 c 	- [ 2C1(1)(N/2 - x)(2n+1) - n(N+n+1)Cp(1)] 
/ 	 2'. /' - 	 (n+1)(N-n) 

Then the Cn index in R3 is incremented by 1, which at this point is 22.10 

so that C(1) is stored indirectly in R22 as directed by the C index in R3. 

The next sequence of steps brings 4, the maximum number for n, into the X 

stack position, recalls the n index in R6 and increments it by 1, which places 

the new value of n in the X stack position and pushes 4 into the Y stack 

position. Then, the new value of n is compared to the maximum value for n, 

4. If n A 4 (and at this point n=2), the next step is skipped and the new 

value of n is stored in R6. The Cn  index in R3 is reduced by 1 to obtain the 

previous value, which at this point becomes 21.?000 , so that the number C 1  

corresponding to the register of this index can be retrieved. 



The next sequence of steps arranges the stack positions as follows: 

T 	C2 (1) 	 4 	 n index 	 n index 

Z 	4 	
____n index 
	 1 	 1 

Y 	n index 	 1 	 C2(1) 	 C1 (1) 

X 	1 	 C2(1) 	. 	C1 (1) 	 C2 (1) 

Then, the C index in R3 is incremented by 1, which at this point becomes 

, to restore the index to the proper value in its sequence. 
1000 

The stacks are arranged in the way shown above when LELI is again exe-

cuted. LEL1 repeats the process in a similar manner but with n=2 in R6 and 

C2 (1) in the X stack position to calculate C3 (1) from the recurrence relation. 

When C3 (1) is calculated, the C. index is Incremented by 1 so that C3 (1) can 

be stored in the next available register, which at this point is R23. Since n 

4 yet, the stacks are again arranged so that C3 (1) is in the X stack posi- 

tion and C2 (1) is In the Y stack position. Then GTO 01 again executes LBL1 to 

repeat the calculation with n=3 In R6 and C3 (1) in X to determine C(1) which 

is stored in the next available register, R24. 

At this point, n = 4 so that the test condition x=y? is true. Therefore, 

the program executes LBLOO which Increments the C n  index by 1 to position the 

next available register, which at this point becomes R25, and then jumps to 

LBL3. LBL3 restores the n index in R6 to 1 and Increments the x Index in R7 

by 1. Then, C 1 (2) = 1 - 2k/N, where x = 2 at this point is calculated and 
stored indirectly in R25. The program repeatedly executes LBL1 in a manner 

analogous to the one previously described to calculate C 2(2), C3 (2), and 

C(2). When the n index in R6 is incremented to 4, the XY? test sends the 

calculation back to LBLOO, LBL3, and then LEL1 to calculate Cn()  for In R7, 

one larger than the previous calculation, starting with n1 again. The loop 

Is repeated for each value of x in R7 until the return to LBLOO increments R3 

beyond the limit for the storage of the C(i) values. If ISG 03 in LBLOO is 



- 29 - 

true, that is, the integer before the decimal point in the last calculated C1  

index number is greater than q, then the next step In skipped and the calcula-

tion stops with a display of the initial C index = 21 + q/1000. 

Putting the calculator in the USER imde and then pressing B executes 

label B. L& B recalls the original C index and stores it in R3. Then LH. 2 

is executed. The display is fixed to 0 to display only the register number 

part of the Ca  index. Then, the C value corresponding to this register 

number is recalled and displayed, fixing to 2 decimal places. The register 

number is incremented by 1 and as long as the register number is less than the 

q value, the entire process is repeated until all the register numbers and 

their corresponding C values are displayed. 

Putting the calculator in the USER mode and then pressing C with the 

printer attached prints the register numbers and their corresponding C values 

since the instruction 
21.100  PRREGX prints the registers from 21 to q and the 

corresponding values in these registers. 



- 30 - 

N+1XEQH 

STO 	N 	InRO 

ST0 	 inRi 

Test N even or odd 

SF01 	LBLO4 

LIBLO54 	CF01 

caic. C index 

1 
LBLOO 

ISG03-3. RTN if C index in R3 exceeded 

L BLO3 

repeat for C 3  & C 

User B displays Reg. number & C value 

User C prints Reg. number & C value 

n=4? 
/\ 

no 

ic. C 1 (i) 

L BLO 1 

from C 



- 31 - 

2) Prograa CB 

Introduction: 

The thebyshev polynomials are so useful in treating data, that a detailed 

discussion is presented. A summary of the nomenclature, equations, and calcu-

lation procedures is presented here. 

The Chebyshev polynomial, C 0 ()1, C1 ()1-2/N, and C 1 = 

[(2n+1)(N-2i)C - n(N-f-n+1)C_1]/(n+1)(N-n), is orthogonal for discrete integer 

values of X from 0 to N. If x1  is the initial value of x and I is the regular 

interval between x values, N+1 data points are assigned integral x values from 

0 to N where x= (xxi)/I  and the data are fit to a polynomial of the type: 

f(x) = c 0 C0 (x) + c 1 C 1 (x) + c2 C2 (x) + c 3 C3 (x) + cC(x) 

A least square fit is used to fit the data, but because of the orthogonality 

of C(), cross terms are zero in a matrix used to solve the set of linear 

equations obtained by setting the partial derivatives of the squares of the 

deviations equal to zero. Thus, the coefficients, cn,  of the polynomial are 

readily calculated without solution of the matrix by the relation: 

Cn = (f,Cn )/(Cn Cn ) 

where 

(f,C) = 	f()C() 

and 

(CnCn) = 	
[c(i)]2 = (N+n+1)! (N-n)! 

x0 	 (2n+1) (N!) 

If f(x) is desired as a function of x, an expansion of the c() values 

- in powers ofxby 	

(n)! x! (N-rn)! 

C() mO (_1)m (n-rn)! (rn!) 2  (i-rn)! N! 



- 32 - 

yields: 

" 	c()'' = a + x[a 1+x(a2+x(a3-I- (c)))] 

The am  terms are calculated from the relation 

am 
 =

Bnm(fCn) 

where the values of Bnm are calculated from 

B 31  = m(m+1) = 2 

B 1  = - (m+2) (3+in) = -6 

B32  = - 	(14-rn) = - 3 

B142  = m2+3m+1 = 11 

B143  = - 	(1+rn) = -6 

so that 

n 	(f,C) 
0 n0 (C C ) where n' denotes a maximum n value of n3 or 4. 

n, n 

(f,C4) [C 
a1 = (C14,C1.1) 	

- C 	+ B31 C143  + 	 C44 

+ (f,C3) [C (f,C2) [C 
(C3,C3) 31 - C

32  + B31 C33 ] + (C2,C2) 21 - 22 

+ (f,C1) 
(C1,C1) C11] 

- (f,C14) [C 	+ 	 + (f,C3)  [C 
a2 - (C14,C14) 142 	

B32 C143  + B42.] 	(C3,C3) 32 + 
B32 C33 ] 

+ (f,C) 
(C2,C2) C22] 
______ 	

(f, C3) (f, C)  
= 	(C14,C14)143 + 

B143 C1414 ] + (C3,C3)1331 

(f,C14) EC a14 = 	(C14,C14).1414 

where values of Cnm are calculated from: 



- 33 - 

Cnm+i = (n+in+1)(rn-n) 	
starting withCr0 = 1. 

n,m 
C 	

(m+1) 2  (N-rn) 

If f(x) is desired as a function of x, the conversion 

f(x) = am()m  = ax 

can be made using the relations: 

	

2 	i a0  = a3 (4) + 	
x 2 
	

x 

ai_rJ + a0  

	

(xi)2 	x 
a1  = 3a3 	- 2a2 (-4) + Ol  

x 
a = -3a 2 	3  —+ 

i2  

a = 3 

a = 4 	
I 

The contributions of a4  to a0  to a4  must be added to each am  value if the 

quartic term is present. The a4  term contributes to each am  term from m = 

to rn = 0. For a given m and n, the contribution to am  is 

a 	 3 inax 

3+' 

where j is a positive integer increasing from 0 to j max  = m - n - 1. The a 0  

contribution is a4 /14 . The a0  contribution multiplied by (-4x1 ) yields the a 1  

contribution. The a 1  contribution multiplied by (l.Sxi)  yields the a2  con-

tribution. The a 2  contribution multiplied by (xi/l.S)  yields the a 3  con-

tribution. Multiplication by - -- (x 1 ) yields the a 4  contritution. 

Program CB first calculates the contribution of the quartic term 

A decision is made whether to retain the quartic term, and the remainder of 

the calculation can be carried out for a cubic or quartic fit. Due to the 

orthogonality of C(), the coefficients of the earlier terms are not changed 



-34- 

if the quartic term is dropped for the Chebyshev polynomial. Also, the sym-

metry of the function reduces the calculation by half. The program indicates 

the degree of fit by calculating (f()-f()), the standard deviation of the 

mean CY = ) I'2 , and the nan derivation If(i)-f(X)I/(N+l) where 

for each data point, f denotes the value calculated from the Chelyshev poly-

nomial and f denotes the corresponding value of the input data. 

Explanation of Program CB Steps: 

To begin Program CB, key the first data point, f(0), and then XEQ 'CB'. 

The first step of the program stores 6.1 in register R4. This number, actual-

ly 6.100, is the (f,C) index number. Values for (f,C) are stored in R6 to 

RiO; the 100 being a "dummy" counter test value. The next step recalls the C 

index number, 21.100 , calculated from Program CH from R2 and stores it in 

R3. Then, f(0) is brought down from the z into the x stack position before 

the program jumps to LBL1I. 

LEL1I recalls the C index number, takes its fractional part, and multi-

plies by 1000 to yield q. Adding 1 to q yields the register in which f(0) 

will be stored. This quantity, q + 1, is stored in R5. The next sequence of 

steps calculates q + 1 + N (in R00), which is the register number for the last 

input data, f(N). Dividing this quantity by 1000 and adding this to the 

q+1+N 
number previously stored in R5 yields the f index number, q+1. 

1000 
 where 

the input data f() will be stored from R(q+1) to R(q+1+N). The stack is 

rolled down to restore f(0) to the x position before the program continues to 

LEL1O. 

LBL1O indirectly stores f(0) in R(q+1), directed by the f index number in 

R5. Then the f index is incremented by 1 to position the register for the 



- 35 - 

next input data before the program execution returns to LJCB right after the 

XEQ11 instruction. Since f(0) is still in the x stack position,it is stored 

in R6,7,8,9 and 10. The f(0) value can be stored directly in these (f,C) 

registers because f(0) C(0) = f(0), since Cj(0) = 1. The return instruction 

stops the program and displays f(0). 

Now, f(1) should be entered and then keying R/S resumes the program which 

executes LEL1O. LBL10 'indirectly stores f(1) in the next available f register 

and again increments the f index number to position the register for the next 

input data. The program returns to L 'CB' after the XEQ10 instruction and 

proceeds to LBL1. 

LBL1, in conjunction with LBL2, calculates the (f,C) values for the 

first half of N+1 data points if N is odd or for the first half plus 1 of the 

data points if N is even, excluding, of course, the first data point, f(0). 

The first steps in LBL1 fill the stacks with the previously entered f(1) value 

since LEL2 uses it 4 times in the XEQ2 command. The next step indirectly adds 

f(1) to f(0) In R6, directed by the (f,C) index in R4 which at this point is 

6.1. R6 will contain f(i) since (f,C 0 ) = f()C0 (i) and C 0 () = I. Then,, the 

(f,C) index is incremented by 1 to 7.1 to position the next (f,C) register 

for the value f(1).C 1 (1). Next, the program jumps to LRL2. 

In LBL2, the stack is rolled down to remove the previous (f,C) value 

(there is no (f,C) value before the first XEQ2 in LBL1 but just f(i)) and 

bring f(i) into the x stack position. C 1 (1) is indirectly recalled from R21 

to the x stack position, directed by the C index in R3, which pushes f(1) 

into the y stack position. Then f(1) is multiplied by C 1 (1) and this value, is 

indirectly added to the contents of R7, f(0)C 1 (0), and this sum is indirectly 

stored in R7, directed by the (f,C) index In R4 which Is 7.1 at this point. 

The (f,C) index is incremented by 1 to 8.1,. and the Cn  index is also incre- 



- 36 - 

mented by 1 to prepare to retrieve the next C vaLue. Then program execution 

returns to LBL1 to XEQ2 a second time. 

This time LBL2 removes the previous (f,C) value and returns f(1) to the 

x stack position. C2 (1) is indirectly recalled from R22, directed by the C n  

index in P.3. Then, f(1)xC2 (1) is calculated and indirectly added to the 

contents of R8, f(0)C2 (0), and this sum is indirectly stored in R8, directed 

by the (fCn)  index in R4 which is 8.1 at this point. The (f,C) index and 

the C index are both incremented by 1 before execution returns to LEL1 to 

XEQ2 a third time. 

LBL2 removes the previous (fCn)  value and brings f(1) back to the x 

stack position. C3 (1) is indirectly recalled from R23, directed by the C n  

index in P.3. Then f(1)xC3 (1) is calculated and indirectly added to the con-

tents of R9, f(0)C3 (0), and this sum is indirectly stored in R9, directed by 

the (f,C) index in R4 which is 9.1 at this point. The (f,Cn)  index and the 

C index are both incremented by 1 before execution returns to LBL1 to XEQ2 a 

fourth time. 

LBL2 again removes the previous (f,Cn)  value and returns f(1) to the x 

stack position. C(1) is indirectly recalled from R24, directed by the Cn 

index in P.3. Then f(1)xC(1) is calculated and indirectly added to the con-

tents in RiO, f(0)C(0), directed by the (fCn)  index in R4 which is 10.1 at 

this point. The (f,C) index is incremented to 11.1 and the Cn  index is 

incremented to 25.q before execution returns to LBL1 after the fourth XEQ2. 

By subtracting 5 from P.4 in LBL1, the (f,Cn)  index is restored to 6.1 so 

that the next (f,C) value, f(2)C0 (2) may be added to the proper (fCn)  regis-

ter, R6. Rolling up the stack brings f(1) into the x stack position. RTN 

stops the program, displays f(1), and allows f(2) to be entered; program 

resumes by keying R/S to execute LEL1O. 



- 37 - 

LBL1O indirectly stores f(2) in the next available f register, directed 

by the f index in R5 and this index is then incremented by 1 before execution 

returns to LBL1 right before the G11 command which brings the program to the 

beginning of LBL1. 

In a manner completely analogous to that just described,. LBL1 and LBL2 

again calculate (fCn)  values, adds these values to the proper (f,C) regis-

ters, and store these sums in their respective registers. Thus for f(2), the 

registers contain: 

previously in R6 
f(2) + f(1) + f(0) 

previously in R7 
f(2)C1 (2) + f(1)C 1 (1) + f(0)C1 (0) 

previously in R8 
f(2)C2 (2) + f(1)c2 (1) + f(0)C2 (0) 

previously in R9 
f(2)C3 (2) + f(1)C3 (1) + f(0)C3 (0) 

previously in RiO 
f(2)C(2) + f(1)C(i) + f(0)C(0) 

STO+IND04 or R6 with 6.1 in R4 

STO+IND04 or R7 with 7.1 in R4 

STO+IND04 or R8 with 8.1 in R4 

ST0+IND04 or R9 with 9.1 in R4 

STO+IND04 or RiO with 10.1 in R4 

At this point, immediately after the STO+IND04 instruction from the 

fourth execution of LBL2, the (f,C) index and the Cn  index are again incre-

mented by 1. Assuma now that half plus one (if N=4) or that half (if N=5) of 

the N + 1 data points, that is, f(INT -) have been keyed in thus far. Then 

the. C index will have been exceeded by the last incrementation to (q+1). 100 . 

Thus, the next step, RTN, is skipped and the stack is rolled down to remove 

the previous (f,C) value and return f(2) to the x stack position. The C 

index, (q+1). 100  , is recalled from R3 and the integral, part is taken and 

stored back into R3. Then the stack is rolled down to return f(2) to the x 

stack position before the C index in R3 is decremented by 1 to yield q in R3, 

the position of the last C value. Due to the symmetry of. the Chebyshev 



- 38 - 

polynomial function, the program can run backwards through the C values to 

obtain the remaining (f,C) values, and the DSE 03 instruction recalls the C 

values from the last to the first C.  register. 

The next step, FS?01, tests whether N is even (flag 1 was set in Program 

Q-I if N was even). If so, the program jumps to LBL4. If N Is even, In keep-

ing with the symmetry, the last 4 Ch values are not needed to calculate the 

remaining (f,C) values: 

keyed in (f(0) x C(0) 

thus f(1) x C(1) 

far: ( f(2) x Cn(2) -- last 4 Cn  values are used only once 

x Cn (l) 

x C(0) 

Therefore, LBL4 decreases the C index in R3 by 4, positioning the proper 

register, R(q-4), for the next (f,C) calculation. Then the stack is rolled 

down to display f(2) before the program returns to LBL2 and stops to display 

f(2). Then f(3) is entered and R/S keyed to resume the program execution with 

LBL1O. 

LBL10 indirectly stores f(3) In the proper f register, guided by the f 

index number in R5. Then, this index is incremented by 1 before the program 

returns to LBL2 to go to LBL5. 

LEL5 fills the x, y, and z stack positions with f(3) and then jumps to 

LBL9. LBL9 indirectly recalls the proper C value, CLI(1),  In the case with 

N=4, directed by the C Index in R3. Then this index is decremented by one to 

position to the correct Cn value for the next time LEL9 is executed. Then 

with f(3) in the y stack position and C(1) in the x stack position, the two 

numbers are multiplied, yielding f(3)C(1). The program returns to LBL5, adds 

the last (f,C) value to the sum of (f,C) values previously in RiO, and 

stores this new sum, f(3)C(1) + f(2)C 1 (2) + f(i)C(1) + f(0)C(0), in RiO. 



-39- 

Then the stack is rolled down to bring f(3) into the x stack position before 

the program jumps to LBL6. 

LBL6 rearranges the stack as follows: 

T f(3)C4 (1) 	f(3) 	f(3) 	f(3) 	f(3) 	-f(3) 

Z f(3) 	 f(3) 	f(3) 	f(3) 	-f(3) 	f(3) 

	

IQ_L+ 	 STO_ +  

Y f(3) 	 f(3) 	f(3) 	f(3) 	f(3) 	-f(3) 

X f(3) 	 f(3) 	f(3) 	-f(3) 	-f(3) 	f(3) 

Then f(3) is added to the contents of R6 and stored, to yield f(3) + f(2) + 

f(1) + f(0) in R6. Then, the program returns to LBL5, after the XEQ6 command, 

with the stacks arranged as shown after the RDN instruction in LBL6. 

The importance of the alternating signs comes about from the symmetry of 

the Chebyshev polynomial function. . If a symmetry plane is drawn half way 

between the 's for the Cn()  values, the values above the plane are equal to 

their corresponding "mirror images" below the plane, except that for n1 and 

3, the signs of the symmetrical C values are opposite. For example, if N=4 

the C values are: 

nO 	1 	2 	3.4 

01 	1 	1 	1 	1 	1 

11 	1 	/2 1 /2 	-2 	-4 

21 	1 	0 -1 . 0 	6 	- - - - symmetry plane 

31 	1 	/2 '/2 	2 	-4 

41 	1 	-1 	1 	-1 	1 

	

+ 	+ 
"mirror images" have opposite signs 
but same absolute value 

Instead of changing the signs of the proper C values, the signs of the cor-

responding f(i) values will be changed to calculate (f,C) values. 



- 40 - 

Back in LBL5, the stacks are rolled down to yield: 

T 	f(3) 

z 	-f(3) 

Y 	f(3) 

x 	-f(3) 

Then LBL9 is executed which indirectly recalls the proper C value, C 3 (1) in. 

the case with N=4, guided by the C index in R3. Then this index is again 

decremented by 1. Now, 	because N=3, -f(3) 	is 	in the Y stack position and 

C3 (1) is in the X stack position so multiplication yields -f(3)C 3 (1). The 

program returns to LBL5, adds the last (fCn)  value to the sum of (fCn ) 

values previously in R9, and stores this sum, -f(3)C 3 (1) + f(2)C3 (2) + 

f(1)C3 (1) + f(0)C3 (0) in R9. Then the stack is rolled down to bring f(3) into 

the X stack position before the program jumps again to LBL9. LBL9 indirectly 

J 
recalls the proper C value, C2 (1) in the case with N=4, directed by the Cn  

index in R3. This index is then decremented by 1. With f(3) now in the Y 

stack position and C 2 (1) in the X stack position, f(3)C 2 (1) is calculated and 

the program returns to LBL5 to add this value to R8, and stores the sum, 

f(3)C2 (1) + f(2)C2 (2) + f(1)C2 (1) + f(0)C2 (0), in R8. Then the stack is 

rolled down to bring -f(3) into the X stack position before execution jumps 

again to LBL9. LBL9 recalls the proper C 11  value, C 1 (1) in the case with N4, 

directed by the C index in R3. This index is decremented by 1. With -f(3) 

now in the Y stack position, since n=1, and C 1 (1) in the X stack position 

-f(3)C1 (1) is calculated and the program returns to LBL5 to add this value to 

the contents of R7, and stores this sum, -f(3)C 1 (1) + f(2)C 1 (2) + f(1)C 1 (1) + 

f(0)C 1 (0), in R7. . Next, the stack is rolled up to display -f(3) when the 

program halts. At this point, f(4) is keyed in and then R/S so that the 

program returns with LBLIO. 



- 41 - 

LBL10 indirectly stores f(4) in the proper f register, guided by the f 

index in R5. Then the f index is incremented. If f(4) were not the last data 

point, the program loops again through LEL5, LBL9, LBL6, and LBL10 in an 

analogous manner to that just described to determine and store the 
N-i
_ f(i)C() 
x0 

values, up to N-i. However, if f(4) is the last data point, as it has been 

formerly assumed, then this last incrementation exceeded the f index. There-

fore, the RTN instruction is skipped and the program executes LBL6. 

LBL6 again rearranges the stack as follows: 

T -f(3) 	 f(4) 	f(4) 	f(4) 	f(4) 	-f(4) 

Z f(3)Ci(1) 	f(3)Ci(1) f(3)Ci(i) 	f(3)C(1) -f(4) 	f(4) 

Y -f(3) 	-f(3) 	f(4) 	f(4) 	f(4) 	-f(4) 

X f(4) f(4) f(4) -f(4) -f(4) f(4) 

Then, f(4) is added to the contents of R6, and the sum f(4) + f(3) + f(2) + 

f(1) + f(0) is stored in R6. The program returns to LBL10. Since Cn(N) = ±1, 

f(N)C(N) ± f(N) so that f(N) can be directly stored in R8 and RiO and -f(N) 

can be directly stored in R7 and R9, for which n'i and 3, respectively. Thus, 

f(4) (still in the X stack position) is added to the contents of RiO, and the 

sum, f(4)C 1 (4) + f(3)C4 0) + f(2)C4 (2) + f(1)C(1) + f(0)C 4 (0) is stored in 

RiO. Then the stack is rolled down to bring -f(4) into the X position and 

this is added to the contents of R9, and the sum, -f(4)C 3 (4) - f(3)C3 (i) + 

f(2)C3 (2) + f(1)C3 (1) + f(0)C 3 (0), is stored in R9. The stack is rolled down 

again to bring f(4) into the X position and this is added to the contents of 

R8, and the sum, f(4)C2 (4) + f(3)C2 (1) + f(2)C2 (2) + f(1)C2 (i) + f(0)C2 (0), is 

stored in R8. Again, the stack Is rolled down to bring -f(4) into the X 

position and this is added to the contents of R7, and the sum, -f(4)C 1 (4) 

-f(3)C1 (1) + f(2)C 1 (2) + f(1)C1 (1) + f(0)C 1 (0) is stored in R7. 



- 42 - 

If, in LEL2, N was odd (for instance N=5), then the FS?01 test would be 

false and the next step, XEQ4, would be skipped. If N is odd, In keeping with 

the symmetry of the Chebyshev function, the last four Cn  values are used to 

calculate the remaining (f,C) values: 

keyed in 	(f(o) x C(0) 

thus 	f(1) x C(1) 

far: 	(f(2) x C(2) 

 x C(2) 

 x Cn (l) 

 x Cn ( 0 ) 

last 4 Ch values are used for the 
upcoming (f,C) value 

This execution proceedes Immediately with LBL10 after f(3). R/S is keyed in, 

skipping LBL4 which decrements the C index by 4. Then the program ioops 

through LBL5., LBL9, LBL6, and LBL1O, in an analogous manner to that previously 

described to determine and store the f()C(x)  values in their proper regi-

sters. 

Next, whether N was even or odd, LBL17 is executed. LBL17calculates the 

part of the am  terms, involving the quartic term. First, 0, the m Index, is 

stored in Ri and 4, the n index, Is stored in R4. Then, LBL13 is executed. 

LBL13 calculated the reciprocal values of (C,C). At this point, since 

n = 4, it calculates i/(C4 ,C) as follows: 

(N!) 2  -- R00, FACr, x2  

(N - n)! -- R00 - R4, FACr 

(N!) 2 /(N - n)! -- / 

(N + n + 1)! -- RGLOO + RCL4 + 1, FACT 

(N!) 2/(N + n + 1)! (N - n)! - / 

(2n + 1) -- RGL4 * 2 + 1 

(2n + 1)(N!) 2/(N + n + 1)! (N - n)! - * 



- 43 - 

Then execution returns to LBL17, with 1/(C4 ,C4 ) in the X stack position, 

where (f,C L,) is 

which is stored 

contribution of 

is usually less 

term is dropped 

recalled from RiO and multiplied to i/(C L,,CL,) to yield 
(CL, , C+) 

in Ru. The program stops to display this ratio which is the 

the quartic term to f(0) and f(N) for which CL, = 1. As C L,() 

than 1, the display indicates the maximum error if the quartic 

If the quartic term is to be retained, key R/S; if it is to 

be dropped, press USER A. 

If R/S is pressed, flag 0, which indicates the quartic term is dropped, 

is cleared. One is placed into the X stack position before LBL14 is executed 
(C 	1) 

because LBL14 calculates 	 x (C ) where C 	is obtained from the 
n, in (C 	) 	n,m 	n,m 

previous run through of LBL14. However, for the first execution of LBLI4 in 

the sequence, Cnrn = 1, since n = 4 and in = 0 and CL, ,0  = 1. 

LBL14 calculates 	 in the following manner: 
n,m 

(rn + 1)2 -- (RCL1 + 1), x 2  

(in + 1 + n) --- IASTx + RCL4 

(in + 1) 2 /( rn  + 1 + n) -- / 

(n + m + 1)/(m + 02 -- i/x 

(m - n) -- RCL1 - RCL4 

(n + m + 1)(m - n)/(m + 1) 2 	* 

(N - m) -- RCLOO - RCL1 
(C 	) 

(n + in + 1)(m - n)/(m + 1) 2 (N - m) -- / 
n,m 

At this point, n = 4 and m = 0 so that 
(C4,1) 

 was calculated. Then, with CL, 
(CL,,Q) 

= 1 now in the Y stack position, 	1) (cL, 	is calculated so that execution 
(C+ , o) 

returns to LBL17 with C41  in the X stack position. 

In LBL17, C41  is stored in R20. The m index in Ri is incremented by I 

so that at this point, m = 1. Then the stack is rolled down to restore C41  

to the X stack position before LBL14 is executed again. 



- 44 - 

(C 
LBL14 again calculates (C) , this time with n = 4 and m = 1. Since 

is in the Y stack position, 	4,2) (CL4.,1) = C 
(C4,1) 	

is calculated. Then the 

program returns to LBL17 with C42  in the X stack position. 

In LBL17, C 4,2  is stored in R19. Then C4,2  is subtracted from the con-

tents of R20, so that C41-C42  is stored in R20. Again, the m index in Ri is 

incremented by 1 to m=2. Then the stack is rolled down to restore C4  to the 

X stack position before LBL14 is executed. 

This time, LBL14 calculates 	and then (C4,3) (C4,1) = C4,3. 	The 

program returns to LBL17 with C43  in the X stack position. 

In LBL17, C4,3  is stored in R18. Multiplying C43  by 2 yields B31 C43  

since B 31  = 2. Adding B31 C43  to R20 yields C41  - C42  + B31 C43  in R20. Again, 

the m index in Ri is incremented by 1 to in = 3. Then C4,3  is restored to the 

X stack position before LBL14 is executed by recalling R18. 

At this point, LBL14 calculates (C4,4)  and then (C4,2)  (C 	) = C. The (C4,3) 	 (C4,3) 	 4,2 

program returns to LBL17 with C44  in the X stack position. 

In LBL17, the contents of R20 are recalled and then the X and Y stack 

positions are interchanged: 

Y C4 4 	 . 	 C41  - C42  + B31 C43  
, 

X C41  - C42  + B31 C43 	 C4,4  

Then C4,4  is stored in R20. C44  is multiplied by 6 and 6C4,4  is subtracted 

from C41 - C42 + B31C43 to yield C - C42 + B31C43 + B41C44 since B41  = -6. 

Then this value is multiplied to the contents of Ru, (f,C4 )/(C4 ,C4 ), to yield 

(CC)t4 - C42+ B31C43 + B41Q441 which is stored in R12. The next series 

of steps brings C42  in R19 to the Z stack position, C 43  In RiS to the Y stack 

position, and 3 to the X stack position. Multiplying yields 3C43  and then 

subtracting yields C42 - 3C43 or C142 + B32C4 3 since B32  = -3. The last value 

is pushed into the Z stack position as C44  in R20 is placed in the Y stack 



- 45 - 

position and 11 is placed in the X stack position. Multiplying yields 11C 
44 

and adding yields C42  + B32 C43  + 42C44  since B42  = 11. Then this value is 

multiplied to the contents of Ru, to yield (f,C14)  [C + B C + B C 
(C4,C4) 	42 	32 43 	42 414 

which is stored in R13. The next series of steps brings C43  in R18 to the Z 

stack position,C44  in R20 to the Y stack position, and 6 to the X stack 

position. Multiplying yields 6C44  and then subtracting yields C 4  - 6C44  or 

C43  + B43 C44  since B 4 3 = -6. Then this value is multiplied to the contents of 

Ru, to yield 	[C + B C ] which is stored in R14. The contents of 
(C4,CL+) 43 	43 44 

R20, C44 , are multiplied to the contents of Ru, to yield 	[ 44 j which 
(C4,CL+ ) 

is stored in R15. Now the quartic term of a is stored in Ru, that of a 1  is 

in R12, that of a2  is in R13, that of a 3  is in R14, and that of a4 , which con-

sists only of the quartic term, is in R15, that is, R15 contains a4 . 

If, after the program halts in LBL17 to display the qüartic term error, 

the decision Is made to drop the quartic term, key USER A. LBL A stOres the 

display, 	,C4), in R20. Then it clears Ru, 12, 13, and 14 since the STO+ 
(C14 , C) 

command will be used with these registers to determine acj,  a, 
I

a2 , and a 3 . 

Also, if R/S was first keyed and then the decision is made to drop the qüartic 

term, this step clears the quartic term contributions to the am  values, which 

were previously calculated and stored in R 11 through R15 by the steps In 

LBL17 following R/S. (R15 is not cLeared because it contains a 4  which Is no 

longer required so that this register is never again recalled to use for the 

cubic fit.) Then, flag 0 is set to indicate that the quartic term has been 

dropped. 

Next, LBL7 is executed whether the quartic term has been retained or 

not. LBL7 calculates a0 , a1 , a2 , a3 , and a4 .if the quartic term Is retained. 

First, m = 0 is stored in Ri and n = 3 is stored in R4. One is placed in the 

X stack position since C3,0  = 1. Then LBL14 is executed. 



- 46 - 

(Cmn+i ) 	 ______ 
or at this point (C3,1)• Then Once again, LBL14 calculates (C ) 
	 ( C3,0) 

m,n 
(C31)(c ) = C 	is calculated. The program returns to LBL7 with C3,  in (C3,0) 	3,0 	3,1 	 1 

the X stack position. 

In LBL7, C3,1  is stored in R19. Then the in index is increased by one to 

m = 1. The stack is rolled down to bring C 31  back in the X stack position 

before LBL14 is executed again. 

This time, LBL14 calculates (C3,2) and then 	321(C ) 	C • 	The 
(C3, i) 	 (C3,1) 	3,1 	32 

program returns to LBL7 with C32  in the X stack position. 

In LBL7, C32  is subtracted from the contents of R19 so that C31- C32  is 

stored in R19. Then C3 2  is stored in R17. The in index is incremented to in = 

2. Then C3,2  is returned to the X stack position before execution proceeds to 

LBL14. 

LBL14 calculates 
(C30) and then (C33)(c ) = C • The program returns 
(C3,2) 	 (C3,2) 	3,2 	33 

to LBL7 with C3,3  in the X stack position. 

In LBL7, C3,3  is stored in R18. Then C3,7  is multiplied by 2 and added 

to the contents of R19 to yield the sum C31- C32+ B 31 C33 , since B 31  = 2. Then 

execution jumps to LBL13. 

As before, LBL13 calculates l/(CnCn) but this time with n = 3 so that 

1/(C3 ,C3 ) is calculated. The program then returns to LBL7. 

In LBL7, 1/(C39 C 3 ) is multiplied to (f,C 3 ) in R9 to yield (CC) which 

is stored in R19. This is added to the contents of R11 so that the sum (f,Ci) 
(C , CO 

+ (f,C3)  is stored in Ru. However, if the quartic term was dropped the 
(C3,C3) 

first term would be zero. Since C 31 -C32+B31 C33  is in the Y stack position 

C) is still in the X position, multiplying gives (C c[C3i - C32  + and (C  

BC]. This term is added to the contents of R12 to yield (f,CL + [C41  31  33 	 - 
(C4 , C1.) 

C + B C] + 	
,C3)  [C - C + B C ] which is stored in R12. Again, 

42 	41 44 	(C3,C3) 	31 	32 	31 33 

the first term would be zero for a cubic fit. The next series of steps places 



- 47 - 

C32  in the Z stack position, C 32  in the Y position and 3 in the X position. 

Multiplying yields 3C33  and then subtracting yields C 32  - 3C33  or C32  + B32 C33  

since B32  = -3. This is multiplied by (fC3))  in R19 to yield 

[C + B C I which is added to the contents of R13 to yield the sum 
32 	32 33 

	

CO [C + B C + B c ] + 	03)[C + B C ] which is stored in 
(C4,C4) 	42 	32 43 	42 44 	(C3,C3, 32 	32.33 

R13. For a cubic fit, the first term would be zero. Then C33  in.R18 is 

multiplied to 	,C3) 	in R19. This is then added to the contents of R14 to 
(C3, C3) 

yield the sum 	
,C4)  [C + B C ] + (f,C3) C which is stored in R14. This 

(C4,C4) 43 	43 44 	(C3,C3) 

sum is a 3 . Again, the first term would be zero if the quartic term had been 

dropped. Next, the n index in R4 is decremented by 1 to n = 2 and the m index 

in Ri is decremented to 0. One is placed in the X stack position since C20  = 

1 before the program jumps to LBL14. 

LBL14 calculates 	2,1)  and then (C21)(C) = C 	. 	The program re- 
(C2, i) 	 (C2 ,o) 	2,0 	2 1 

turns to LBL7 with C2,1  In the X stack position. 

In LBL7, C2,1  Is stored in R19. The m index is incremented to m1 and 

then C2,1  is restored to the X stack position before LBL14 is executed again. 

LBL14 calculates (C2,2)  and- then 	 ) = C . 	The program re- 
C2,11 	 C2,1' 	2'

-
1 	22 

turns to LBL7 with C2,2  in the X stack position. 

In LBL7, C 2,2  is stored in R17. Then C2,2 	 21 Is subtracted from C in R19 

and C21  - C22  is stored in R19 before execution jumps to LBL13. 

LBL13 again calculates l/(CnCn) with n = 2. The program then returni to 

LBL7. 	 I  

In LBL7, 1/(C,C) is multiplied to (f,C ) in R8. Then (f,C2)  is added 2 	 (C2,C2) 

to the contents of Ru to yield the sum 	,C4) + 	
,C3) 

 + (f,C2) . For a 

	

(C4,C4) 	(C3,C3) 	(C2,C2) 

cubic fit, the first term would be zero. 	,C2) Is stored in R18 and then 
(C2, C2) 

multiplied by (C21  - C22) in R19. Next, this product is added to the contents 

of R12 to yield the sum, 	[C - C + B C + B C ] + (f,C3) [C - 
(C4,C4) 41 	42 	31 43 	41 44 	(C3,C3) 



- 48 - 

C32 + B31C31 + (CC) [C - C 1, which is stored in R12. Again, the first 

term would be zero for a cubic fit. Now, C 	in R17 is multiplied to 
22 	 (C2,C2 

in R18. This product is added to the contents of R13 to yield the sum, 
(C1 , CO 

[C + B C + B C I + ( f,C3) [C + B C ]+ (f,C2)  C which is stored in 
142 	32 143 	1+2 +1+ 	(C3,C3) 	32 	32 33 	(C2,C2)  22 

R13. This sum is a2 . Once again, the first term would be zero if the quartic 

term had been dropped. Finally, the n index in R4 is decremented by 1 to n1, 

the m index in Ri is decremented to 0, and 1 is placed in the X stack position 

since C1,0  = 0, before the program jumps to LBL14. 

LBL14 calculates 	and then (C11)(C ) = C 	. Execution returns 
io 	1,1 

with C11  in the X stack position to LBL7 which immediately executes LBL13. 

LBL13 calculates 1/(C,C) for n1. The program returns to LBL7. 

In LBL7, 1/(C11 ) is multiplied to (f,C 1 ) in R7 and the product is added 

to the contents of Rh (f,G4) + (f,C3)  + (f,C2)  + (f,C1) which is 

	

to yield (C14,C1+) 	(C3,C3) 	(C2,C2) 	(C1,C1) 

stored in Ru. Again, the first term would be zero if the quartic term had 

been dropped. Then multiplication with C 	in the Y stack position and
Ill 

in the X position yields (f,C1) (C ) which is added to the contents (C1,C1) 	 (C1,C1) 	121 

of R12 to yield the sum, (f,0) [C - C + B C + B C ] + 
(Q+,O4) 	141 	1+2 	31 43 	1+1 44 

(f,C3)[C 
	- C 	+ B C 	+ 

	
[C 	- C 	

+ (f,C1) [C 
	I. This sum is
ill (C3,C3) 31 	32 	31 33 	(C2,C2) 21 	22 	(C1,C1) 

a. Again, the first term would be zero for a cubic fit. Next, (f,C 0 ) in R6 

is placed in the Z stack position, N in ROO is placed in the Y position, and 1 

is placed in the X position. Addition yields N+1, and then division yields 

(f,C0 )/(N+1). (N+1) is the value of 1/(C,C) for n=O. Then, (f,C 0 )/(C0) C0 ) 

is added to th& contents of Ru 	
(f,C1+) + (f,C3) 

 + (f,C2)  + to yield 
(C14,C1+) 	(C3,C3 	(C2,C2) 	(C1,C1) 

+ (f,Cp) 

	

	 (f,C1+) 	
contribution if the quartic This sum in Ru, minus the 

(CO ,C0) 	 (Q ,C14) 

term had been dropped, is a,• At this point, the program stops to display 

a0 . Then keying SST recalls a 1  in R12 to the display, keying SST once more 

recalls a2  in R13 to the display, SST again recalls a 3  in R14 to the display, 



- 49 - 

and if the quartic term was retained, keying SST a final time recalls a in 

R15 to the display. If the quartic term had been dropped, the ctm  value dis-

played would not contain the quartic term contribution and, of course, cz, 

would not exist. 

LBL D tabulates the closeness of fit of the thebyshev polynomial equation 

to the data for each data point. To execute LBL D, turn of f the calculator, 

attach the printer in manual mode, and key USER D. LBL D fixes the number of 

places after the decimal to 3. Then it recalls N in ROO and adds 1. Since at 

this point, the f index in R5 is exceeded by 1, subtracting 5 from this index 

positions the f registers to f(0). Then a is recalled from Rll before execu-

tion jumps to LBL16. 

LBL16 holds instructions for the printer. First, f(0) is recalled indi-

rectly by the f index in R5. A copy of f(0) in the X register is accumulated 

into the print buffer when the instruction, AQ(, is given. 3 SHPQIR tells the 

printer to skip 3 spaces on a line. The next two steps rearrange the stacks 

as follows: 

T 	N+1 	 3 	 N+1 

Z 	 a0 	3  RDN 

Y 	f(0) 	 f(0) 	 a0  

X 	3 	 N+1 	 f(0) 

Subtracting yields a0 - f(0) which equals f(0) - f(0), where f denotes the 

calculated value and f denotes the data input value, since f(0) = a 0 , using 

the general equation, fG) =0 + + x(a2  + + (a)))J. AQ( accumu-

lates f(0) - f(0) into the print buffer. ADV prints what is in the buffer, 

right justified: 

f(0) 	 f(0) = f(0) 	in this case, with R = 0.. 

Then the absolute value of f - f is taken before the program returns to LBL D. 

LBL D then stores If-fl in R6, squares this value and stores f-f 2  in 

Ri. The f index in R5 is incremented by 1 to prepare to retrieve f(1). 



- 50 - 

Next LBL8 is executed. The a index number, 15, is placed in the X stack 

position before execution jumps to LBL3. 

LBL3 stores the a index, 15, into R3. Then FS?00 teéts whether flag 0 is 

set, that is, whether the quartic term was dropped. 

If the answer is no, that is, the quartic term was retained, the next 

line is skipped and the stack is rolled down to bring 1, corresponding to 

into the X stack position and then the stacks are filled with 1. Guided by 

the a index in R3, which is 15 at this point, aL+  is indirectly recalled from 

R15. Multiplication yields 1 x a or simply. a. Then the a index in R3 is 

decremented by 1 to 14 before execution jumps to LBL12. 

LBL12 indirectly recalls a 3 , using the a index in R3. SInce 1 is in both 

the T and Z stack positions, ci 4  is In the Y position, and a 3  is In the X 

position, addition yields a3  + a1  and then multiplication by 1 yields the 

same. The a index is again decremented by 1 to 13 before the program returns 

to LBL3. 

LBL3 immediately executes LBL12 again. This time a 2  is indirectly recal-

led 1~y the a index in R3. With 1 in both the T and Z stack positions, a, + a 1 , 

in the Y position, and a2  in the X position, addition yields a + a + a, and 

then multiplication by 1 yields the same. The a index is decremented by 1 to 

12 before the program returns to LBL3. 

In LBL3, FC?00 tests to see if flag 1 is cleared, that Is, if the quartic 

term was retained. 

If the answer is yes that the quartic term was retained, LBL12 is exe-

cuted once again. This time a 1  is recalled indirectly by the a index. With 1 

in both the T and Z stack positions, a 2  + a3  + a in the Y position, and a 1  in 

the X position, addition yields a 1  + a2  + a3  + a , and multiplication by 1 

yields the same. The a index is decremented by 1 to 11 before the program 

returns to LBL3. 



- 51 - 

In LBL3, a0  is indirectly recalled by the a index in R3.. With a + a2  + 

+ a4  in the Y stack position, addition yields a + a + a + a 3  + a4  which 

equals f(1). Then the program returns to LBL8 after the XEQ 3 command and 

jumps to LBL16. 

In LBL16, f(1) is recalled indirectly by the f index in R5 and then 

accumulated in the print buffer. The next two steps rearrange the stacks: 

T 	I 	 1 

Z 	f(1) 	1. X<>T 	 3 
2. RDN 	 A 

Y 	f(1) 	 + 	f(1) 

x 	3 	 f(1) 

Subtraction yields f(1) - f(1), which is accumulated into the print buffer. 

Then f(1) and f(1) - f(1) are printed. The absolute value of f(1) - f(1) is 

taken before the program returns to LBL8. 

In LBL8, f(1) - f(1)I is added to the contents of R6 and the sum, 

If(1) - f(1) + f(0) - f(0)I, is stored in R6. Then If(1) - f(1) 2  is calcu-

lated and added to the contents of Ri and the sum, f(1) - f(1)1 2  + 

If(0) - f(0)! 2  is stored in R7. The stack is rolled up to bring 1 to the X 

stack position and 1 is added to yield =2. Then the f index in R5 is incre-

mented by 1 to prepare to retrieve f(2) before the program goes to the begin-

ning of LBL8. 

LBL8 restores the a index to 15 before it jumps to LBL3. 

LBL3 stores the a Index of 15 in R3. Then It tests flag 0 again to see 

if the quartic term was dropped. If the answer is no, the next line is skip-

ped again and the stacks are rolled down to bring X=2 in the X position and 

then the stacks are filled with =2. Directed by the a index In R3, a4  is 

indirectly recalled from R15 and multiplied by 2. Then the a index Is decre-

mented to 14 before LBL12 is executed. 



- 52 - 

LBL12 indirectly recalls a 3  from R14 by the a Index. With 2 in both the 

T and Z stack positions, 2a4  In the Y position, and a 3  in the X position, 

addition yields a3  + 2(a4 ) and then multiplication yields 2(a 3  + 2(a4 )). The 

a index is again decremented to 13 before the program returns to LBL3 which 

immediately executes LBL12 again. 

This time, LBL12 indirectly recalls a 2  from R13 using the a Index. With 

2 in both the T and Z stack positions, 2(a 3  + 2(a4 )) in the Y position, and a 2  

In the X position, addition yields a 2  + 2(a 3  + 2(a4  )) and then multiplication 

yields 2(a2  + 2(ct 3  + 2(a4 ))). The a index Is decremented to 12 before the 

program returns to LBL3. 

In LBL3, FC?OO tests to see if the quartic term was retained. If the 

answer is yes, LBL12, Is executed once again. 

This time, LBL12 indirectly recalls a 1 , guided by the a Index. With 2 in 

the T and Z stack positions, 2(a 2  + 2(a 3  + 2(a4 ))) in the Y position, and a 1  

in the X position. Addition yields a 1  + 2(a2  + 2(a 3  + 2(a4 ))) and then multi-

plication yields 2 [a 1  + 2(ct2  + 2((x3  + 2(a4 )))]. The a index Is decremented to 

11 before the program returns to LBL3. 

In LBL3, a0  is indirectly recalled by the a index. With 2[a 1  + 2(a2  + 

2(a3  + 2(a4 )))] in the Y stack position, addition yields a 0  + 2[a1  + 2(a2  + 

2(a 3  + 2(a4 )))] which equals f(2). Then the program returns to LBL8, after 

the XEQ 3 command, to immediately execute LBL16. 

LBL16 calculates f(2) - f(2) and If(2) - f(2)I and prints f(2) and f(2) - 

f(2) in a manner analogous to the one previously described. Then the program 

returns to LBL8. 

LBL8 adds If(2) - f(2)I to the contents of R6 to yield lf(2) - f(2)I + 

Jf(1) - f(1)I + If(0) - f(0) 1 which Is stored in R6. It then calculates 

f(2) - f(2)1 2  and adds this to the contents of R7 to yield If(2) - f(2)1 2  + 



If(1) - f(1)1 2  + If(0) - f(0)1 2  which is stored in R7. 	Then the stack Is 

rolled up to bring x=2 to the X stack position and 1 is added to obtain 3. 

Finally, the f index in R5 is incremented by 1 to prepare to retrieve f(3). 

At this point the program would return to the beginning of LEL 8 and the 

great loop of LBL8 to LBL3 to LBL12 to LBL16, and then back to LBL8 would be 

repeated. However, to address the matter of the flags if the quartic term 

were dropped, momentarily interrupt the quartic loop and return to LBL3 for 

the first test for flags, FS?OO. If the answer is yes, that the quartic term 

had been dropped, the next step decrements the a index from 15 to 14 so that 

after =1 is filled in the stacks, a 3  is Indirectly recalled from R14 by the a 

index In R3. Then the a index is decremented to 13 before LBL16 is executed 

and then decremented to 12 before LBL16 is executed again to yield lEa r  + 1(a2  

+ 1(a3 ))]. Then a is decremented to 11 before the program returns to LBL3 for 

the second test, FC?OO. Since the answer to whether the quartic term was 

retained is no, the program skips the third execution of LBL12 and proceeds to 

indirectly recall a 0  from R11 using the a index. Then a 0  + 1Ea1  + 1(a2  + 

1(a3 ))] is calculated. Similarly, when the test FS?OO Is encountered a second 

time with =2, the a Index is decremented from 15 to 14 so that a3  is recalled 

first and then 2 [ a 1  + 2(a2  + 2(a3 ))] is eventually calculated. Also, when 

FC?OO is encountered again with =2, the third execution of LBL12 is akipped 

so that + 2[a1  + 2(a2  + 2(a3 ))J is then calculated. 

Now, returning to the paragraph before the last one, and the position in 

the program after the steps ISGO5 and GTO08 in LBL8, the great ioop of LBL8, 

LBL3, LBL12, LBL16, and then LBL8 once more, is repeated again and again in 

exactly the sane fashion as previously described. Each time 1 is Incremented 

to the x value and also to the f index so that all the data is run through the 

calculations. At the end of the last execution of this loop, immediately 



- 54 - 

preceeding the step, ISGO5, in LBL8, E If(x) - f(x)I will be stored in R6, 

If(x) - f(x)1 2  will be stored in R7, and the printer read out will appear as 

f(0) 	f(0) - f(0) 

f(i) 	f(1) - f(1) 

f(N) 	f(N) - f(N) 

If FS?00 Is true, these calculated values will not contain the quartic terms. 

Then since ISG 05 will not be true, that is, the f index will be exceeded 

after the last data point has been run through, the next step, GTO 08, will be 

skipped. The next set of calculations in LBL8 tabulate the average derivation 

and the standard derivation as follows: 

N + 1 -- RCLOO + 1, in X stack position 

- f(x)I/(N+i) -- STO/06 : average derivation in R6 

N - i -- (N+1) -2 

- f(x)12/(N-1) -- STO/07 

(LIf(x) - f(x)I2j'/2 	R CL 7, SQRT : standard derivation 
(N-i) 

The standard derivation is printed and the average derivation is recalled from 

R6 and is also printed. Then the program returns to the normal mode. 

LBL E converts the am  values to am  values. To execute LBL E, key In x1 , 

the initial value, press ENTER, key in 1, the interval, and then key USER E. 

LBL E stores I In Ri. The stack is rolled down to return x 1  to the X stack 

position and then the stacks are filled with x1 . Next the FC?00 test checks 

to see if the quartic term was retained. 

If the answer Is yes that the quartic term was retained, the program 

jumps to LBL15 which calculates the contribution of a to a through a. The 

first series of steps places x j  in the T stack position, a in R15 In the Z 



- 55 - 

position, I in Ri in the Y position, and 4 in the X position. Taking y to the. 

power of x yields 14 and then dividing yields 	which is stored in R20. 

This is the contribution of 	to a0  and also equals a. Thus, a is stored 

in R20. With x1  now in the Y stack position, multiplication yields cz4x/I4 . 

Then the sign of this value is changed and it is multiplied by four to yield 

-4c+x1 /I4  which is the contribution of a to a 1 . This is stored in R19. With 

x1  again in the Y stack position, multiplication yields -4ax/I4  .+ 	. 	Then 

multiplication by -1.5 yields 6a4x/I 4  which is the c contribution to a 2 . 

This is stored in R18. With xi  still in the Y stack position, multiplication 

yields 6at+x/I4 . 	Then division by -1.5 yields -4c*x/I 4  which is the 

contribution to a 3 . This is stored in R17. With Xj  again in the Y stack 

position, multiplication yields -4cu4/I 4 . Then division by -4 yields 

which is the a contribution to a. This is stored in R16. Then the stack is 

rolled down to bring Xj to the X stack position before the program returns to 

LBLE after the XEQ 15 command. In LBL E, the test FS?00 is made. Since the 

quartic term was retained the answer to whether flag 0 was set is no, so that. 

the next step, GTO 00, is skipped and the program continues with the step, RGL 

14. 

However, back to the first test, FC?00, in LBL E: if the answer had been 

no so that the quartic term had been dropped, the next step, XEQ 15, would be 

skipped and the test FS?00 would be encountered. This time the answer would 

be yes and LBLOO would be executed. LBLOO stores 0 in R16,17,18 and 19 since 

the contribution of a to a 0  through a 3  does not exist if the quartic term is 

dropped. Thus, if at first the quartic term had been retained and then it;was 

decided to drop it, LBLO clears the registers in which the c contribution to 

a0  through a 3  had been stored. (It does not clear R20 which contains the 

contribution to a4 ,, or simply a4 , because this is not necessary.) Then the 



stack is rolled down to bring x1  to the X stack position. The program returns 

to LBL E.  after the XEQ 00 command and continues with the next step, R1 14. 

Hence, whether or not the quartic term was retained, the program contin-

ues by recalling a 3  in R14 and placing it in the Z stack position, placing I 

in Ri in the Y position, and 3 in the X position. Taking y to the power of x 

yields and then division yields a 3 /13 . Adding to the contents of R19 

yields a3/13 - 4axi/I4  which is stored in R19. This equals a 3 . If the quar-

tic term had been dropped the last term would be zero. Next, with x 1  in the Y 

stack position and a3 /13  in the X position, multiplication yields ct3 x1 /13  and 

then multiplication by 3 yields 3a3x1 /13.. Subtracting this term from the 

contents of R18 yields -3ct3xi/13  + 6ax1 2/I4  which is stored in R18. The last 

term is  zero for a cubic fit. Then with x in the Y stack position and 

3a3xi/ 13  in the .x position, multiplication yields 3a34/1 3 . This term is 

added to the contents of R17 to yield 3a 34/13  -4a4/I4  which is stored in 

R17. The last term is zero for a cubic fit. With Xj still in the Y stack 

position and 3a3x/I3  in the X position, multiplication yields 3a34/13  and 

then division by 3 yields a3x/I3 . Subtracting this term from the contents of 

R16 y1elds -a 3z/I3  + a4/ i4  which is stored in R16. The last term is again 

zero for a cubic fit. Then the stack is rolled down to keep xi in the stack. 

The next series of steps places x in the Z stack position, a2  in R13 in the Y 

position, and I in Ri in the X position. Squaring yields 1 2  and then dividing 

yields a2 /12 . This term is added to the contents of R18 which yields 

-3a3xi3/13 + a2 /12  + 6a4x/I4  which is stored in R18. This equals a 2. The 

last term is zero for a cubic fit. Then with x1  now in the Y stack position 

and a2 /12  in the X position, multiplicatioii yields a2X/I2  and then multipli-

cation by 2 yields 22Xi/12 ct 	. This term is subtracted from the contents of R17 

to yield 3a3x/I3  - 2a2x/I2  - 4ax/I4  which is then stored in R17. Again, 



- 57 - 

the last term is zero for a cubic fit. With xi again in the Y stack position 

and 2 2x1 /12  in the X stack position, multiplication yields 2a 2x/I2  ct 	and then 

division by 2 yields a24/i2 . This term is added to the contents of R16 to 

yield -ct 3 (x/I) 3  + a2 (x1 /I) 2  + a(x1 /I) 4  which is stored in R16. The last 

term is zero for a cubic fit. Then the stack is rolled down to keep xi  in the 

stacks. The next series of steps places xi in the Z stack position, a, in R12 

in the Y position, and I in Ri in the X position. Division yields cs/I. This 

term is added to the contents of R17 to yield 3c*3x/I3 - 2a2xi112 + c/I - 

4x/I4 . This equals a 1 . The last term is zero for a cubic fit. Then with 

Xj in the Y stack position and cs/I in the X position, multiplication yields 

ai xi/I. This term is subtracted from the contents of R16 to yield -c 3 (x1/I) 3  

+ a2 (x1 /I) 2  - ct 1 (x1I) + a 1 (xi/I) 4  which is stored in R16. Again the last 

term is zero for a cubic fit. Next, a o Is recalled from R11 and added to the 

contents of R16 to yield -c*3(xi/I)3 + x2(x1/I)2 - ci(xi/I) + a o + 

which is stored in R16. This equals a 0 . Once again the last term is zero for 

a cubic fit. Finally, a 0  is recalled from R16 and the program stops to dis-

play a0 . Keying SST recalls a 1  from R17 and displays it. Keying SST again 

recalls a 2  from R18 and displays it, SST again recals a 3  from R19 and displays 

it, and if the quartic term was retained, keying SST a final time would recall 

a from X20 and display it. 

If it is desired to have a 0  to a3  or a yield dimensionless values of 

-(G °-H 98  )/RT, at this point store R, the universal gas constant, in R90 and 

with the printer attached, key USER F. LBL F recalls R from R90 and then 

divides the am  values in R16 through R20 by R to obtain a 0 /R, a 1 /R, a 2 /R, 

a 3 /R, and a/R if the quartic term was retained. The display is set to 5 

figures beyond the decimal point in engineering notation in case the am/R 

values are very small. Entry of 16.02 in the X position is followed by FS?OO. 



- 58 - 

If the test FS?00 is false, that is, the quartic term was retained, execution 

jumps to PRREGX and the command 16.02 (actually 16.020). PRREGX prints the 

contents of R16 through R20 which are a 0 /R, a 1 /R, a 2/R, a 3 /R, and a 14 /R.If the 

quartic term had been dropped, FS?00 is true and 16.02 in the X position is 

displaced by 16.019. The command 16.019 PRREGX tells the printer to print the 

contents of R16 though R19 which are a 0 /R, a 1 /R, a2 /R, and a 3 /R. 

LBL B calculates and displays individual f(X) values. To execute LBL B, 

enter a x value for which the f() value is desired; then press USER B. LBL B 

sets the a index to 15 before it goes to LBL 3. LBL 3 stores the a index, 15, 

in R3 and then fills the stacks with the x value entered. By decrementing the 

a index each time the loop is performed, the program goes through a 14  or a3  to 

, depending on whether the quartic term was retained or dropped. The pro-

gram proceeds to calculate f(i) = a0  + + (a2  + (a3  + i(a4 )))], where 

the last term would be zero for a cubic fit, in a manner analogous to the one 

previously described for LBL 3, going through LBL 12. After f() has been 

calculated, the program stops to display it. 

LBL C calculates and displays individual f(x) values. To execute LBL C, 

enter a x value for which the f(x) value is desired; then press USER C. LBL C 

sets the a Index to 20 before it moves to LBL 3. LBL 3 stores the a index, 

20, in R3 and then fills the stacks with the xvalue entered. By decrementing 

the a Index each time the loop is performed, the program runs through a 1, or a 3  

to a0 , depending on whether the quartic term was retained or dropped. The 

program proceeds to calculate f(x) = a 0  + x[a1  + x(a2  + x(a 3  + x(a 14 )))] in a 

procedure analogous to that described previously. After f(x) has been calcu-

lated, the program stops to display it. However, if USER F has been keyed 

already, the a registers would contain am/R  so that f(x)/R would have been 

calculated instead. Since R is in R90 and LBL3 is followed by RCL90 * RTN, 

R/S will calculate (c)  R to obtain and display f(x). 



- 59 - 

Program CB can readily be modified to fit various types of data. For 

instance, if values of -(G °-H 98  )/T are to be fit into an analytic equation 

but the data points are given in reference to so that values of -(G °-H)/T 

are listed instead; the following modification of Program GB can be made to 

convert values of -(G °-H)/T to -(G °-H 98  )/T before the data are fit to the 

Chebyshev polynomial equation. 

To execute this modified version, labelled CBO, store R, the universal 

gas constant, in R90, the value of H 98 -R for the given substance in R91, the 

initial temperature, T 1 , in R92, and the temperature interval between the data 

points, I, in R93. If the four quantities are put on the stack in order from 

R to I, LBLST ST093 RDN ST092 RDN ST091 RDN ST090 END will store the values 

with XEQ 'ST'. The maximum register numbers needed for storage, excluding R88 

through R95, if N < 16 is: 

20 + 4N for N odd 	and 	22 + 4N for N even. 

Two entirely new labels are introduced, LBL18 and LBL19. LBL 19 sets up 

the registers where -(G °-H)/T values will be stored and where -(G °-H)/T + 

(H 98  - H)/T = -(G ° -H 98 )/T values will be stored. LBL 18 adds the (H8 

H)/T values to the corresponding -(G °-H)/T values. 

Upon entering the first data point, f 0 (0) = -( G ° -H)/T, and then XEQ CBO, 

the program proceeds unchanged from the unmodified version until LBLI1 is 

executed. LBL11 is changed by adding XEQ 19 and then XEQ 18 at the end of the 

original version. LBL19 consists of the following steps: 

LBL19 RCL92 RCL93 - ST089 RDN RCL05 FRC 1E3 * 1.1 + ST094 RDN RTN 

First, T 1  in R92 is reduced by I in R93 so that T 1  - I is stored in R89. The 

reason for this is that LBL18 increments the temperature, T, in R89, by I each 

time it is executed so that the first time the program executes LBL18, T will 

equal T i . The the stack is rolled down to bring f(0) back to the X stack 



MORTIM 

position, having been placed there before LBL19 had been executed. Next, the 

original f index, 	 is recalled from R5. The fractional part of the 
1000 

f index is taken and multiplied by 1000 to yield the register in which the 

last value of -(G ° -H 98 )/T = f298 (N) = f 0 (N) + (H 98  - H)/T will be stored 

(by LBL10). Then 1.1 is added to yield a new index, g 0  = q + 1 + N + 1.100, 

f or the input data, and this number is stored in R94. Thus, the original data 

will be stored beginning with R(q+N+2); 100 is nErely a large enough counter 

test value to prevent skipping. Finally, the stack is rolled down to bring 

f(0) back to the X stack position before the program returns to LBL1L to 

immediately execute LBL18. 

LBL18 consists of the following steps: 

LBL18 STO 1ND94 1SG94 RCL93 ST+89 RDN RCL91 RCL89 / + RTN 

First, f 0 (0) is indirectly stored in R(q+N+2) by the g 0  index in R94. Then 

this index is incremented by 1 in preparation for the next data point. I is 

recalled from R93 and added to the temperature, T, in R89 which had equalled 

T 1 -I. The incremented temperature, Ti.  is stored in R89. The stack is rolled 

down to return f 0 (0) to the X position.(H 98 - H) is recalled from R91 and 

divided by the temperature in R95, T=T 1 , corresponding to f 0 (0). This value, 

(H 98  - H)/T 1  is added to f 0 (0) before execution returns to LBL11 which then 

continues to LBLIO. 

No steps are altered In LBL10, but this time it indirectly stores the 

calculated f 0 (0) + (H 98  - H)/T 1  value, guided by the original f index, 

In R5. Thus, the values for f 298 () = f 0 () + (H 98- H 00 )IT, where T 

is continually incremented to correspond to its f 0 () value, are stored in 

R(q+1) through R(q+1+N). 

Since LBL10 stores the f 0 () + (H 98 - H)/T values, LBL18 must be exe-

cuted before each execution of LBL10. Thus, before each XEQ 10 in LBL 'CBO', 



- 61 - 

LBL1, LBL2, and LBL5, an XEQ 18 must be inserted after steps 13, 29, 49, and 

86, respectively. Then the modified program runs through the data in a simi-

lar manner to the original program, but with LBL18 storing f 0 () in R(q+N+2) 

through R(q+2N+2) using the g0  index In R94 and storing f 298 (x) In R(q+1) 

through R(q+N+1) using the original f index in R5. Then the calculations for 

fit proceed in the same manner, using the f 298 (x) values. 

The next modification of the program occurs in LBL E, as follows: 

LBL E RcL93 STOOl Rc192 ENTER+ . . 

Since the interval, I, is stored in R93 and the Initial value, Ti.  is stored 

in R92, these values are simply recalled rather than re-entered before keying 

USER E, as done with the original program. 

The next alteration occurs in LBL D. An extra step, ST-94, should be 

inserted after step ST-05. Subtracting N+1 from the original f index in R5 

had positioned the registers to the first f 0 G) + 298  H)/T value. Also 

subtracting N+1 from the g 0  index in R94 positions the registers to the first 

f 0 () value. 

LBL16 which handles the printout is modified as follows: 

LBL16 RL 1ND94 AX 1SG94 RDN RL IND05 AQ( -- AQC ADV ABS RTN 

The first time through, -(G °-H)/T 1  is indirectly recalled, directed by the g 

index in R94 which had been set to R(q+N+2) by LBL D before LBL16 was exe-

cuted. This value is printed and the g index is Incremented by 1 to prepare 

to print out the next -(G °-H)/T value. Then the stack is rolled down to 

bring f 298 (0) = -(G °-H 98  )/T into the X position, having been placed in the 

stack previously by LBL D. Next, f 298 (0) = -(G °-H 98  )/T is indirectly re-

called, guided by the f 0 1  Index in R5, and this value is printed. Subtraction 

yieldsf 298(0) - f 299 (0), with H 98  as the reference state, and this value Is 

also printed. LBL16 eventually runs through all the data as before, so that 

the printout is listed as follows: 



- 62 - 

f0 (0) = -(G °-H)/T 1 	f298 (0) = -(G °-H 98 )/T 1 	 f298() - f 298 (0) 

The final modification of Program CB occurs in LBL3. The following steps 

may be added after step 518, RTN: 

R CL9O * R L9 1 + / -- RTN 

These steps would be executed after USER C was keyed if USER F had been keyed 

earlier. Before these steps, -(G °-H 98  )/RT would be placed in the Xstack 

position by LBL3, If LBL F had been previously executed. Therefore, R Is 

recalled from R90 so that multiplication yields -(G °-H 98 )/T. Then H 98  - HO  

is recalled from R91. Since the value for T corresponding to f(x) had been 

keyed in along with USER C, the stack is rearranged as follows: 

T 	T 	 N+1 

Z 	 T 	 -(G°-H 98 )/T 
R+ 

-------- ~ 

Y 	-'G°-H°  ' 1T 	 H° 	- H °  298" 	 298 	0 
Y 	HO 98  - H O 	 T 

Therefore, division yields (H 98  - H)/T and then subtraction yields -(G °  - 

H 98 )/T or -(C °  - H)/T, which Is displayed. 

The following change may be made If it is desired to recall the f 0 (x) 

values for a repeat fitting; for example If one of the values was incorrectly 

keyed in. 

To repeat a fit, replace STO 1ND94 in LBL18 by RL 1N094. XEQ 'CBO". 

Then key R/S for automatic retrieval of each value of f(). 

With the foregoing modifications of Program CB, the program consists of 

559 steps and 857 bytes. 



- 63 - 

Program_CB 

f(0) XEQ GB - 	 5w LBL11 - 	0- LBL1O 
store 6.1=(fC ) in R4 	f index 	store 

i transfer c nex from 	in 
R2 to R3 are f(0) 

in R6 to RiO 

f(1)R/S .4 
f(2)R/S   

f(INT 	

adds f to R6 	caic. & store 
(f,Cn ) 

When Cn  index 
is exceeded 

integer C index In R3 
4 

FS?O1 

LBLO4 

by4 
reduce ' Cn  index 

0(2 + INT N/2) R/S 

: 	 LBL1O 

f(N - 	
stores f 

1) R/S 	

for f(N) 

LBLO5 
to R(6+n) 

after 	

/ 

LBLOÔ 	first 
add f to R6 cycieJ n=l run  

caic. (f,Cn ) 	 add to R6 to 10 
store m index in Ri 
store n index in R4 

LBL17 4- 	 LBL13*7—____..) 
(f,Q) 	

calc. (C ,C ) 
n n 

	

retain quartic, R/S 	Reject quartic, User A 

	

CFOO, XEQ14 	SF00 

	

caic. quartic contrib to am 	clear 1(11-14 

LBLO7 	
LBLD caic. as-f  or c* 
prints ( (ff)

2/(Ni) 	LBL E 

(IfI/N+1 	
caic. a s-i  or a 3  to a0 



- 64 - 

APPENDIX III (for Ciapter II) 

A number of supplementary programs are used for additional treatment of 

the analytical equations, -(G°-H 98  )/RT = anTnl, obtained by programs B or 

CBO. For example, it may be desired to round the values of a n  without chang 

ing the calculated values even at the highest temperature by more than the 

uncertainty or probable error, e, of the original data. Also, when fitting 

-(G°-H 98 )/T values, it may be desired to have the calculated value at 298.15K 

fit exactly the value of S 98 . Because the rounding error might happen to be 

in the same direction for most of the a n  values, a limiting rounding error, 

e/2, is applied to the contribution from each ail  value at the maximum tempera-

ture, 'Tmax•  The, probable error is based on the uncertainty of S 98 , which is 

usually the major source of uncertainty, and no account is taken of the in-

creasing uncertainty due to error in the heat capacity values as the tempera-

ture is increased. When the uncertainty In S 98 /R is greater than 0.005, the 

value of e/R used In the rounding procedure is restricted to 0.005. 

Program GG starts with the following quantities in registers 88 to 94, 

when used with program CBO: 

R: 	88 	89 	90 	91 	92 	93 	94 

e/R 	 R 	H 98- HO 	T 1 	I 	g Index 

Register 71 contains the index used for Indirect storing of the final rounded 

and corrected a n  values in registers 72 to 87. The g 0  index in R94 is used 

for storing and retrieving -(G °-H)/T values in registers q+N+2 to q+2N2. As 

described in Appendix hA, the f index in R5 deals with indirect storage and 

retrieval of values of (G°H 98  )/T in registers q+1 to q+N+1. For example, 

for 13 data points ranging from 1000 to 3000K at intervals of 1=200K, N = 12, 

q = 44, and the -(G°-H 98 )/T values are stored In registers 45 to 57 and the 

_(G0_H)/T values are stored in registers 58 to 70. 



- 65 - 

In addition to the an  values in R16 to 19 or 20, thea following additional 

quantities are utilized by prograinGG: 

R: 	1 	3 	4 	5 	6 	7 	8 	9 	10. 

e/2R an 	 m index 	1Oma 	f index 	e/2RT 	 h1 lO 

Operation of the rounding operation of program-CC is outlined below. Flag 

2 is set for m=6, 9, and 12. R8 contains n3  if FOO is set or 4 If FOO is. 

not set. R7*R1O+10m(e/2RT x)=O.h and FRC 10ma 0.d. 
ma 

R3 	R6 	LBL25 	m for 
lOma  in R4 

	

a tdex 	operation - and 
10m  ?.n RiO 

+ 

17.1 0 +5  d>h to LBL26—_ 	L8L24 88 to LBL25 
d<h to LBL25 	

/ on m8 line 

17.1 1 + 	 + LBL26 + LBL21'7  

18.1 0 8 d>h to LBL26—.._. 	LBL24 861 to LBL20 
d<h to LBL25Th.,/ - lines aorb 

18.1 1 + LBL26 + LBL21 / 

	

19.1 	0 	+11  d>h to LBL26 _-__-._LBL24 8<14'to LBL20 
d<h to LBL25 	 line c 

	

19.1 	1 	+ 	c-i + LBL26 + LBL21 

20.1 	0 + 14 	d>h to LBL26—.--..... LBL24 8<17 to LBL20 
d<h to LBL25D ,7 line c 

20.1 	1 + ci+ LBL26 + LBL2I/ 

to LBL H if FOO set, XEQ L8L25 on line i=11 above to round a 3  
LBL2Ob 

ta 
to LBL25 on m11 hue above if 11m11 

c to LBL I as 11<m=14 or 17, XEQ LBL25 on line m=14 above 
to round a4  

The rounding procedure starts with n1, m5, Am=O and 17.1 in R3. nmaxis  3 

If FOO is set and is 4 otherwIse. LBL25 puts 10 5a 1  in R4 and 10 x 	2RTmax  

yields the fraction 0.h which Is compared with FRC 10 5a 1 0.d. If d<h, LBL26 

rounds 10 5a 1  from R4, drops O.d, divides by 10 and stores in R17. R3 is 



-66- 

incremented to 18.1, and m in RiO is increased to 8. LBL24 divides R7 by Tmax 

from R89 and LBL25 commences the rounding of a 2 . If d>h, Flag 2 is set, Am=1 

is put in Rh, and m in RiO is Increased to 6. Then LBL25 Is repeated to find 

106 (e/ 2rT) > FRC 106a 1 . 106a 1  from R4 is then rounded by LBL26, divided by 

106 , and stored In R17. R3 Is Incremented to 18.1 and LBL21 Increases m in 

RiO by 3-m=2 to m=8 and changes Am In R11 back to zero. Then L8L24 prepares 

for a2  as Indicated above. 

When m In RiO has been increased to 11, LBL20 checks FlagOO. If F00 is 

not set in R8), LBL25 commences rounding of a 3 .' If It Is desired to 

round the last an  value, XEQ 25 will round it and stop again at LBL H or LBL 

I. R/S with printer attached will then print calculated values of -(G°-H)/T 

at T 1  and Tmax3l  and rounded values of a. 

When T 1  Is 300K and it is desired to have the calculated value at 298.15K 

fit exactly the value of Sf 98  , the first and last an  values are modified to 

increase the calculated value y at 298 or 300K by =y-y to provide an exact 

fit and to reduce the calculated value at T max  by t so that the fit at high 

temperature is not changed by the adjustment at 298K. The two equations, 

y-y = = 	a0 +Lan ( 298 . 15 ) t' 
and 	0 = 

yield: 	Aa L/( 298 • 15 T ax  ) 	and = a 0  A-(298.i5)'M. 

If this procedure Is to be followed, programGG is carried out to round the 

intermediate a n  values until LEL H or LBL I Is reached. If R/S is then keyed, 

a0  and the last an  are modified to provide the exact fit at 298K and both are 

rounded. R/S will print out the calculated values at 298.15 and Tmax  based on 

the revised and rounded values followed by a printout of the final a n  values. 

It is often desired to not only print out the constants along with the 

name of the species, the temperature range, and uncertainty, but it is conven- 

lent to store the information in the main storage registers of the calculator, 



- 67 - 

or in the extended memory, or in a cassette to allow ready retrieval of the 

constants for use in calculations without having to key them in. 

Program P can be run after Gi and before GB or CEO to store the name and 

state of the species and the temperature range of fit in registers starting 

with R72. As each register holds only six characters and the program rotates 

the entries in the Alpha register six at a time, sufficient spaces should be 

included to yield a total of 18 characters or, if Flag 4 is set, a total of 24 

characters. The entire line will be printed out. Before initiating program P 

for the first time, the index value 72.1 should be stored in R71. If program 

CEO is being used, only registers 72 to 87 are available. When the available 

registers have been used, the stored data is transferred to extended memory or 

to a cassette and 72.1 is stored again in R71 for a new set of entries. The 

storage in the Alpha register is simplified by. use of ARL to àbtain the 

following register contents: 

95 	 96 	97 	98 	 99 

K,e/R 	<S,L> 	0-1000 	0-2900 	0-3000 

The procedure will be illustrated first for 02  gas. The quotation marks 

indicate entries in ALPHA mode. 

72.1 ST071, 1 02<G>100 ARGL99 Sp K Sp' XEQ 'P'. 

The printout is 02<G>1000-3000 K and 02<01 is stored in R72, 000-30 is stored 

in R73, 00 K is stored in R74. 

The inclusion of uncertainty will be illustrated for 0 gas. 

72.1 ST071 1 0<030 ARCL97 ARCL95' XEQ 'P' will print out 0<G>300-1000K,e/R=, 

and if this is now followed by 0.002 R/S, the 0.002 will be printed out on the 

second line. 0<G>30 will be stored in R72, 0-1000 will be stored in R73, 

K,e/R= will be stored in R74, and 0.002 will be stored in R75 and in R88 where 

it will be used subsequently by program G for the rounding operations. The 



- 68 - 

first six characters stored in the first register should contain enough infor-

mation to identify the species, Its state, and the temperature range if equa-

tions are given for two temperature ranges for the sane state, as the contents 

of the first register will also be used as a data file name for storage in 

extended memory or in a cassette. Seven examples are given below to indicate 

the entries in the ALPHA mode and the printout. The printout Is separated 

into the contents of each storage register. The actual printout will not have 

any gaps. For MgO and A1 2 0 3 , a bracket was omitted so that the temperature 

range beginning at 300K could be distinguished in the file name from the range 

beginning at 1000K for MgO or the label for A1 20 3  solid could be distinguished 

from the label for A1 20 3  liquid. For 02  and MgO, the equals sign was deleted 

to save a register as e/R=0.002 or e/R 0.002 are equivalent. 

R73 R74 I R75 	SF4 R72 

'0<G>30 ARCL97 ARCL95' I 	0<G>30 0-1000 K,e/R= 
1 02<G>30 AkCL97 ARCL95 CIA' I 	02<G>3100-100 OK,e/R 

'AL ARcL96 ARCL97 ARCL95 SpSpSp' I 	AL<S,LI>300-1 000K,eI/R 

'MGO<G30 ARCL97 ARCL95 CIA' I 	MGO<G3 00-100 OK,e/R 
'AL203S>30 ARCL97 ARCL95 SpSpSp' 

I I 	AL203S I 
>300-1 000K,e 

I 
/R 

'M08023<S>30 ARCL97 ARCL95 Sp'  I 	M08023<S>300 -1000KLe/R 
'T1305<a,b>30 ARCL97 ARCL95' 

I 1 	T1305< I 
a,b>30 0-l000fK,e/R 

I 

The index for storing in the registers is automatically incremented, but 

when the registers have been used up and the stored data transferred to ex-

tended memory or to a cassette the next entries must be preceeded by 72.1 

STO71. 



- 69 - 

After entry of the characters in the ALPHA register, keying 0.002, for 

example, followed by R/S will print 0.002 on the second line. However, if a 

number greater than 0.005, e.g. 0.01, is keyed in, the printout will read 

0.01, USE 0.005 and 0.005 will be stored in R88 in place of 0.01 for the 

rounding operations of program G. However, the e/R value of 0.01 will be 

stored in the register following the register which contains é/R. 

After the use of program P, the data are entered as described in Chapter 

II and Appendix hA followed by the rounding operations of program C described 

above in this appendix. 

There are other auxiliary programs that are convenient to use with pro-

gram CBO. Program CBO requires the storage of R, H 98 - H, Ti.  and I In 

registers 90 to 93. The entry of these four values followed by XEQ ST will 

store them in the proper registers, as noted in Appendix hA. For subsequent 

calculations, if only H 98 - H needs to be changed, it can be stored in R91 

without using program ST. 

The above discussion of program P described the storage Of information 

about the species, Its state, temperature range covered, and the e/R uncer-

tainty. Following the rounding of the a n  values, XEQ SR will shift the a n  

values from registers 16 to 19 or 20 and store them in the registers following 

the register containing the e/R value as directed by the index in R71. After 

all the available registers have been used, the data can be stored in extended 

memory or In a cassette using programs REGE or REGC. Two sets of information 

are needed for these programs. First the data file name is required in the 

ALPHA register which can be provided by the name in the first register filled 

in program P, e.g. ARCL72 or perhaps ARCL80, and the total number of registers 

in the X register. In the example of 0 gas with a quartic fit between 300 and 

lOOK, nine registers would be required. If only a cubic fit were selected, 



- 70 - 

eight registers would be required. For Ti 3 0 5  between 300 and 1000K with a 

quartic fit, ten registers would be required. With those two entries, XEQ 

RECE will prepare a file in extended memory. Then the numbers of the regis-

ters to be moved must be inserted in the X register followed by R/S. For the 

example of Ti 3 0 5  with ten registers starting in R72, the entry would be 72.081 

R/S. Exactly the same procedure is used to store in a cassette. For the Ti 3 0 5  

example, the steps would be 'ARCL72' 10 EXQ'REGC' followed by 72.081 R/S. 

To retrieve the Ti 3 0 5  data from extended nmory, one would key in 

'T1305<' XEQ'EREG' followed by bbb.eee R/S where the data are to be stored in 

registers bbb to eee. To retrieve the Ti 3 0 5  data from the cassette, one would 

key In 'T1305<' XEQ'cREG' followed by bbb.eee R/S. 

If one were fitting N+1 tabulated values of g 0=-(G°-H)/T at regular 

intervals using program CEO together with the auxillary programs described 

above, the sequence of steps would be as follows: 

N+1 XEQ'aI', R/S 

Enter in ALPHA register the name of species, state, and temperature 

range, using ARL 96 to 99 as appropriate, followed by ARL 95, for 

a total of 18 or 24 characters, spaces and commas. 	SF4 if 24 

characters. Tone will sound when 24 characters have been entered. 

72.1 ST071 if initiating storage. 

Attach printer in MAN mode and XEQ 'P'. 

Value of e/R R/S. 

R+H 98 -Hg+T 1 tI XEQ 'ST' unless values of R, T 1  and I are unchanged 

from previous fit; then H 98-H ST091. 

g0 (0) XEQ'CBO' + g298 (0) 

g 0 (1) R/S 	+ g 298 (1) 

g 0 (N-1) R/S 	+ -g298 (N-1). 

g 0 (N) R/S 	+ equar , error due to dropping quartic term. 



- 71 - 

(7) If quartic term selected, R/S with printer in MAN mode. 

If cubic fit selected, User A with printer in MAN mode. 

As T 1  and I have been stored in step(5), it is not necessary to stop and 

initiate 0, E, F, and GGas in program CB. As a result of initiating step 7, 

two printouts will take place. The first will print all the values of g 0  in-

serted, the resulting values of g298 , and the difference 9298-9298  between the 

values calculated from the analytical equation and the value obtained from the 

entered values, followed by the standard error and the average deviation. The 

second printout will give the a values of -(G °-H 98 )/RT = EaT'. For a cubic 

fit, 8 will be displayed in the X register. For a quartic fit, 11 will be 

displayed. 

If T 1  = 300K and it is desired to fit S298 /R exactly,' initiate the 

modification by R/S. 8 or 11 will be displayed again. R/S'with MAN 

printer will print out the calculated valueS of (G°H)/T at 298 

298.15K and Tmax  based on the final an  values which are lalsô 

printed. 

If T 1  is not 300K or it is not necessary to fit S 298/R exactly, XEQ 

25 will round the last an  value. RCL16 FIX3 RND ST016 will round 

a 0 . R/S will print out calculated g 0  values at the extreme tempera-

tures and the values of a. 

(9) Either step (8a) or (8b) will also initiate program SR which trans-

fers the final an  values to the register following the register 

containing the e/R value as directed by the index in R71. 

It is often convenient to fit data for the 298-1000K and 1000K-3000K 

separately but to store the constants together. If the lower temperature data 

are fit first and the name and constants stored starting with register 72, the 

index in R71 will store the constants for the higher temperature in the regis- 



- 72 - 

ters following those used for the first set. It is not necessary to repeat 

the uncertainty in the second set. The versions of programs SR and REGE given 

below will retrieve R72 to use as a file name and will calculate the number of 

registers used from the R71 index. With that version, no additional data have 

to be inserted after the printout of the rounded constants. Keying R/S will 

Initiate program REGE and automatically transfer all the stored information to 

extended memory. / 

The steps listed below for programs P, ST, CEO, CC, SR, REGE, and EREG 

are given with CC and CBO combined in a single program. They are stored in 

extended nmory or on magnetic tapes separately to allow CC to be used either 

with GB or CBO. However, once they are recalled, END at the end of CEO is 

deleted to allow automatic initiation of CC after completion of the subroutine 

of LBL F and to allow subroutine 22 of CC to utilize LBL C of program GB or 

CBO. Program Gi, which is given in thapter 2, is normally used with deletion 

of subroutines B, C, and 2 to reduce the number of steps to 105. With the 35 

steps of LBL P, the 9 steps of LBL ST, the 684 steps of CBO combined with CC, 

and the 39 steps of the combined SR, REGE, and EREG programs,there is a total 

of 872 steps. The number of bytes is 1395, corresponding to use of 199 regis-

ters for the programs. 



-73- 

65.LBL 05 

Ff' 00 	MEG EiTEF1 EriEt MEG 09 2LBL 01 . 
'T+ 	10 RDH XEQ 86 	RON  Ii 	510 ci 1 	STU Lu F-.' N 	XEQ cH 

q SIT 09 	RE iEl' 	14 910 19 	I 
XEO 09 STt 08. 	RDH S,j 01 RE 	)Eu 14 FIX 4 

 STO IND 71 
ISC 71 A CX MEG 09 51+ 87 	Ft 	ShiP _ 

CL' 01 X<>Y 	FUr 	RTH  n E0 18 XEO 18 	Clii 85 STO 01 RPM 	)EQ 14 
910 th 2 	RL 	1' 	+ 

2I4LPL jc 90+181 89 XEO 13 RCL 09 	*: 

ST0 IHP 71 	I:C 	71 	6 RCL IND 03 DSE 03 910 19 Sfl 	ii 

krJt 	r.1 RIM 91+ 12 RCL 17 	PCL18 
3 	* PCLL9 

9500 06 91+ 13 PCI 	1:3, 	RCL 	19 

pn 	 .. 910 I 	910 i 	OH:, 	STO 2 * 	bi+ 14 	DSE 04 	0 

AOFF .. 	P 	-PRBUF PDH 	ST+ 06 RTH qo 01 1 	M EG 14 

END 51019 1 	STOOl 	RPM 

ppp II33sLBL A XEO 14 STO.  17 	SI- 19 
51028 0 51011 XEO 13 RCL 08 	* 

I1+iL RT 910 12 910 Ii 	STO 14 51+ 11 S0 18 	RU. 19 

STO 93 RPM 	910 9 	pp SF 	i0 	Clii 87 * 	.51+ 12 	RU. 17 

610 91 RPM 	510 90 	END RCL 1 ST+ 	1-3 
112+LBL 19 ISE 04 0 	S.T1iU1 	I 

PPP PCI 92 RCL 93 	- XEO 14 XEC.,  13 	RCL . 07 
STO 89 RDH PCI 05 	FRC * 	91+ 11 	* 	51+ 12 

OWLBL 180, 1 E3 	* 1.1 + 	910 94 RCL 86 PCI 08 	1 	+ 

6:1 	•fl 	84 	POL 	82 RPM 	RIM 91+ 11 Clii B 

910 03 PCI 2 	XEQ ii 
510 .9Tf 	.7 	iti 	c i r L(+LdL Li .+. r,1.  ._ t 

Tl 	r fl 	i 	Fi FOL u iF 1  I 	E 	t 	1 POL 61 1 	+ 	t2 	LP3T" 

XEO 15  XEQ 	10 + 	JO 05 FIL ii 	+ ROL 04 + 	/ 	I ,  
1E3 	/ 51+05 PPM RCLOI.RCLO4 - 	* 

fEL 01 
E1 	19 XEQ ', PCI H P.CL Of -  

ENTE:t ENTERt 	EHTERt Phi 

51+ IMR 04 	ISO 04 143LBL ie 

NEQ 	2 	XE@ 22 'Iu 	Ilfl 05 ISG £i 	FIN ::+IPL 13 

T- 	04 	R-11' KEQ 0 6 Sh 10 	REUNI,  PCI U Ffl 	I 	1-12 

FT' 	XE 	1ZF: 91+ P'4' 1+ 1i9 	Ft pa U prL 01 	- 	FlirT 

rTU - 51+ 07 / 	RCL ..00 RCL 04 	+ 
+ 	EliOT / 	RCLO4 	2 	* 

3LDL 07 155.LBL 17 - 1 	+ RIM 

RPM 	PiLJPD 93 8 	910 81 4 	910 04 
c1. 	i'i 	04 	TSG 04 KEQ13 FcL 1 34?LL E 

IS i 	11 3 FTH 	cj 	POL 03 STO 11 STOP CF 	'-ii 	1 FrI 93 rTl; 	HI 	P'L 	"_ 

PiT 	110 03 	RN 	ISE 03 XEQ14 nH  20 	I EtITEP' ErilEFt 	ElFEFI 

F 	-' 	l zEi) 04 	STOP Tij 	cit PLi XEQ 14 FI 	@9 XE Q, 	1 	F 	' 
q- 20 	2 EH 00 F1L 14 	FLL 0 1 

51001 RtlN XEO14 3 	?tX / 	91+ 19 	* 	3 
91018 2 * 	51+283 * 	51-10 * 	91+17 	* 

STfl BD 94 	ISO 94 510 81 P'L 18 	MEG 14 3 	/ 	51- 16 	RPM 
P1 20 X0Y STLI 2" 	6 PIL 13 PU. Of 	et 	/ 

PIL 5 i * 	- 	PIL 	11 * 	510 12 51+ 19 t 	2 	* 	51- 17 

RIM P0119 ROLlS 3 	- s 	2 	/ 91+16 	PPM 
RCL 20 11 + 	PCI Ii PCI 12 PCI 01 	/ 

64+LBL 04 * 	.510 13 PCL 13 91+ 17 * 	SI- 16 

4 	5T-3 	RPM 	PIN RCL2O 6 * 	- 	F:CLII P0111 91+16 	Cliii 
* 	91014 RCL2O 
ROL 11 * .910 	15 

/ 



-T - 

,)QVL 
4 
L..

C 
 

PCI 15 RCL 01 4 	YtX 
/ 	9T020 	* CHS 	4 	* 
910 19 * 	CHS 1.5 
STO 12 * 	CHS 1.5 	/ 
910 17 * 	CHS 4 	/ 
910 16 RuM 	PIN 

427+LBL 88 
0 910 16 910 17 
210 18 910 19 RDH RIM 

435+18116 
PCI mn 94 ACX ISS 94 
RIIF1 RCL 1MB 05 ccx - 

flCX 1MW ABS RIM 

447+LBL B 
FIX3 RCLOB 1 + 
Si- 85 SI- 94 RCL 11 
XEQ 16 910 06 X t 21  
91007 .1 .91+ .85 

441LBL 08 
15 XEO 83 XEQ 16 
51F..,06 Xt2 91+ 87 Pt 
I + 19805 81002 
RCLBG I + 91/06 2 
- SI' 07 RCL 87 SORT 
PRX RCL 86 PRX 810 E 

426+LBL B 
15 8108.3 

489+LBL. C 
28 

491+LBL 03 
910 83 FS? 82 	DSE 83 
RDU 	EHTEPI ENTERt 
ENTERt RCL IMI' 03 	* 
PSE 83 XEO 12 	XEi. 	12 
FC? 08 XEO 12 
RCL 1MB 83 + 	F:TM 

589'LBL 12 
RCL IMP 03 + 	DSE 83 
F:Tti 

515+LBL F 
RCL 90 91' 16 SI ,  17 
91/ 18 51/ 19 91/ 28 
ENG 5 16.82 FS? 88 
16.819 PRREGX 

527.LBL IGCI  
RCL 88 2 / 910 81 
RC189 / 910 87 1 ES 
510 18 17.1 910 83 8 
910 86 3 910 82 
FS? 88 810 25 1 
91+88 

54741 EL. 25 
PCI 07 RCL 10 
PCI 1KB 83 RCL 18 * 
510 04 FRC ABS X<Y? 
810 26 SF 82 1 91+ 86 
18 91* 18 810 25 

5656L8L 26 
PCI 84 FiX 8 RND 
RCI 18 / 910 1KB 83 
138 83 FS? 82 810 21 
I E3 ST* i8 

5?7•LBL 24 
PCI 89 51/ 87 RCL 18 
LOG 8 X<? 810 28 
810 25 

586+LBL 2j 
FS? 88 810 H RBM It 
X(Y? 810 1 GTO 25 

594+LBL 21 
3 PCL 86 - lOtX 
ST 10 CF 82 8. STO 86 
CTfi24 

684+LBL H 
STOP 16.89 910 84 
PCI 83 28 X<?? 
810 23 810 27 

613+LBL I 
STOP 16.822 STO 84 
PCL 03 21 X<?? 
810 23 

621•LBL 2 
PCLOC It 4  ST-85 
•.PCL 1KB 85 PCI 98 / 
91084 298.15 910 92 
Ka C RCL 04 - CHS 
910 89 PCI 92 PCI 88 
YtX PCI 89 PCI 08 YtX 
- ' 91+28 RCL92 
RCL 82 YIX * RCL 89 
- SI- 16 PCI 16 FIX 3 
PHD STO. 16 RCL 88 .1 
+ 91+ 03 810 25 

6624LBL. 23 
FIX 3 RCL 92 XEQ 22 
PCI 89 XEO 22 PCI 84 
ENG 5 PRREGX 810 5R 

672.IBL 22 
PCX 2 SKPCHR RDN 
XEQ C RCL 98 * flCX 
ADY END 

PP.P 5R 

81+181 SR 
PCI 71 INT 510 78 
I E3 / 16 4 PCL 82 
91+78 1 + 51+ 71 
1 E6 / + REGMOVE PIN 

19+181 RECE 
CLR flRCL 72 P.CL 78 71 
- CRFIP RCL 78 1 E3 
/ 72 + SflYERX. PIN 

33. 11BL EREC 
B SEEKPTP RIM CETRX 
EHD 

S 



-75- 

APPENDIX III (for Chapter III) 

The combined programs abi, ab2, abc2, and abc3 carry out the same 

calculations in the first 36 steps except for the flag setting of Fl if 

abi is initiated, F2 if ab2 is initiated, F3 if abc2 is initiated, and 

no specific flag If abc3 is initiated and the clearing of R19 for abc2 

and abc3, and the clearingof R17 and R18 for all but abi. For all pro-. 

grains, registers 0, 1, 3, 4 and 11-16 are cleared and 22.1 is stored in 

R20 as an index for storage of the x,y input data. FO is also cleared. 

In response to the queries from the calculator after the first step, 

FO is set if wl, and if the x values are at regular intervals of I, I is 

stored in RO. 

Data Entry 

After the initial step, the data are inserted followed by User mode 

E in four possible manners as indicated in the directions depending upon 

whether the weighting factor w is 1 or not and whether the x values come 

at intervals of I or not. The treatment of the inserted values is indicated 

by the following outline. 

SFO(w1)+LB7 Add.w. to R16, /T to R8, decrement R16 so 
/ 
/ 	 only w.-1 1is added, remove1 	1 and vI- w from stack-1 

LBLE 	 1 	 Go to LBL8 

CFO 	- Store 1 in R8, remove 1 

LBL8: Store y. in IND20, increment R20, caic f(y.) by LBL1, store V7 f(y.) 

in RiO, 

store x. 
1  in IND20, increment R20, use LBL3 to store x. in R6., i 

caic x! and store in R5, caic f (x!) and f / and store in R9. 
1. 	 ii 	ii 

Then branch to specific calculations for each program. 

<

SFl---LBL9 
 —) F2 LBL11 

	

CF1Ca1c  f (x') by LBL; then f2 	in R1< 	SF3 	?LBL12 21 
CF2 

CF3 	>LBL15 

For all program upon completion of entry of each (x., y..,  w), x. 

from R6 plus I from RO displays x. + I for next data entry. In the follow-

ing summaries, y will be used for f(y.), f1  for f1(x!), f2  for f2(x!), 

etc. and subscript i is dropped on w, x, and y. n will be used for the 



- y6- 

total number of x,y sets inserted, and Ew = 	
A storage entry for a 

il 
register which is not used in the specific program is indicated by ---. on pg. 24. 

abi LBL9:  (vc - 1) fv'i = fw - N7 added to RU 

(v' - l)y = yw - yvw added to R13 

yV'w and fv' are processed by + to add fV to previous 

fw - fV7 in Rll to yield net addition of fw and similar 

• 	calculation for yw. w - 1 had been previously added to R16 

so net addition is w. Additions to R12, 13, and 15 are f 2w, 

• 	yw, and yfw, respectively. 

ab2 LBL11: f2,1 times y/7 from BlO is added to R18. From R9, 

f1 ttimes yV from BlO is added to Rh. Then 

f21 and f V7 are processed by E+. Only Efw in R12, 

fw in RlL, and f 
1  f  2 

 w inR15  are used. 

abc2 LBL12: f2 /, / from R8 minus 1 ST03, (f2vc)(Vc - 1) = 	-• 

f 2  w - 	ST +13 2  f 1 w .- f1V ST+h1, (yvc)v' 	yw ST+19, 

f2 c to LBL11 as for ab2 above 

abc3 LBL15: f/iimes yV from RiO adds yf2w to R12. (P9)2 = fw ST+l. 

(R7) 2  = fw ST+lT. R9R7 = f1f2w ST+15. R1OR9 = yf1w ST+hi. 

LBL5 calculates f3 * f3 / fills the stack. fw ST+19. 

yf3w ST+13. f1f3w - w +1 ST+16 (-w+l compensates for LBLI). 

f 2f3w sT+18. 	 • r 	• 

Least-Squares Calculations 

The next section outlines the calculations after all of the data have 

been entered. For each program, the least-square equations are derived 

and the calculations given in terms of storage registers used. 

abi 	To minimize [Z(y-a-bf)] 2 , differentiation with respect to a and 

then b and setting differentials equai:to zero rie1ds 



-TI- 

aEw + bEfw = Eyw 

aEfw + bf2w = Eyfw 

Eyfw - (Eywfw)JEw - 

b 	Efw - (f w)z/ w  

a = (Eyw - bfw)/Ew 

After insertion of all data, the remainder of LBL9 calculates 

R15 - R11R13/R16 = Eyfw - EfwEyw/Ew 

m R12 - (Rll) 2/Rl6 = Ef2w - (Efw) 2/w 

2,/rn is stored in R2. 

ME N places Efw/Ew in x register and Zyw/Ew in y register. 

yw/Ew - bEfw/w is stored in Rl. 

ab2 	Minimization of [E(y-af1-bf2 )] 2  yields 

2
2 

aEfw + b 	= Eyf1w 	
= EfwEyf2w - Eyf1wEf1f2w 

Efwfw - (f1f2w) 2  

aEf1f2w + bfw = Eyf2w a = [Eyf1w - bEf1f2w]/Efw 

The remainder of LBL11 calculates 

j = R12R18 - R1IR15 = ZfiwEyf2w - Eyf1wEf1f2w 

k = R12R14 - (R15) 2  = Efwfw - (f1f2w) 2  

= j/k is stored in R3. a = (R11 - bRl5)/R1 2  = (Zyf1w - bEf1f2w)/Efw 

is stored in R2. 

abc2 	Minimization of [E(y-a-bf1-cf2 )] 2  yields 

aEw + bZfw + cEf2w = Yrw 

aEf1w + bEfw + cZf1f2w 	yf1w 

aEf2w + bf1f2w + cEfw = Eyf 2w 

The remainder of LBL12 calculates R19/R16 = Eyw/Ew, stored in RiO and 

q = (Rll) 2/Rl6 - R12 = (Ef1w) 2/w - Efw stored in R3. 

s = R11R13/Rl6 - R15 = Ef 1wEf2w/w - f1f2w stored in R6. 

r = (R13) 2/R16 - RlL = (f2w) 2/Ew - Efw stored in R5. 

u = R1OR13 	- R18 = ywZf2w/Ew - Eyf2w stored in R8. 



-78- 

t = R1OR11 - BiT = EYwZf1w/w - Eyf1w stored in R7. 

R5R7 - R6R8 	rt - su 
b = 	 2 = 	 stored in R2. 

R3R5 - (R5) 	qr - s 

R7-R2R3 	t - bg 	 * 
c = 	 = 	 stored in R3. Rb 	 s 

a RiO - [R3R13 + R11R2]/R16 = Eyw/Ew - [cEf2w + bf1w]/w 

stored in Ri. 

abc3 	Minimization of [(y-af1-bf2-cf3 )] 2  yields 

af1w + bEf1f2w + cEf1f3w = Eyf1w 

af2w + bEfw + cf2f3w = Eyf2w 

aEf3w + bEf2f3w + cf w = yf3w 

The remainder of LBL 15 calculates 

A = R17R19 - (R18) 2  = Efwfw 	- (f2f3w) 2 	, stored in R 14, 

B = R15R19 - R16R18 = Ef1f2wZfw - f1f3wf2f3w, stored in R5, 

C = R15R18 - R16R17= f1f2wf2f3w - Ef1f3wf w , stored in R6, 

D .  = C(R16) + RilRlt - R15B5 = CEf1f3w + Afw - BEf1f2w in R7, 

B = R12R18 - R13R17 = yf 2wEf2f3w - Eyf3wfw in R8, 

Q = R12R19 - R13R18= yf2wfw 	- Eyf3wEf2f3w in R9, 

a = [R(Ri6)-Q(R15)+R4Rli]/R7 = (REf1f3w '- Qf 1f2w + AEyf1w)/D in R2, 

S = R13R15 - B12R16 =yf 3vEf1f2w - Eyf2wf1f3w in RiO, 

b = (S(Ri6)-R5R11+R9R14)/R7 = (SEf1f3w-BEyf1w+QEfw)/D in B3, 

c = (R6Ri1-RlOR15-R8R1)/R7 =(Cyf 1w-SEf1f2w-Rfw)/D in R. 

Closeness of Fit 

The number of data sets, n, is stored by LBL10 in B7.  Then 22 + 

(2n + 22.02)/1000 is used as a y index in R20. The x index in R21 is 

larger by 1. R9 and 10 are cleared. LBL14 Uses RCL IND21Jo retrieve 

next x value which is used by LBLC to' calculate. RCL IND20 provides y; 



-79- 

y 	-y is printed after incrementing R20. IS-yl. is added to RiO and 
(-y) 2  to R9. R21 is incremented. As long as the integer portion in R21 

is not greater than 22 + 2n, the calculation will return to the beginnLg 

of LBL1 14. After the last set has been treated, IS&21will cause a jump 

to division of RiO by n and division of R9by n-2 followed by the square 

root. 

Note 3 of the Directions section of Chapter III indicates a procedure 

for printing of the weighted average E w 	.-y/Ew.. Minor modifications 

of IBL1 14 can allow calculation of V 	(j_y1)L/(Ew1_2) or simultaneous 

calculation and printing of both weighted and unweighted quantities. 

Retrieval of (x.,y.) Values 

All inserted data sets are stored in R22 to R21+2n and can be retrieved 

by step (7). n User A calculates the y,x index 22+(19+2n)/1000 for R21 

and LBL6 uses LBL16 to retrieve y1  and x1  which are then inserted by LBLE. 

This continues until the next to iast.set has been processed when ISG21 

causes jump to add 0.1 to B21. LBL16 retrieves the last y,x set and 

LBL completes insertion of thelast data set. The rest of the Procedure 

is the regular least-square calculation for the indicated equation. As 

indicated instep (7) of Chapter III, a minor modification allows insertion 

of weighting factors. Step (7) thus allows repeated least-square treat-

irients of the data using different fitting equations and different weighting 

factors. 

Special Programs 

The introductory text of Chapter III discusses equations for fitting 

enthalpy, heat capacity, and partial molal data. Their application will 

be illustrated by some examples. 

If it is desired to fit drop calorimetry data, y = (HT_H)/R, as a 

function of 0 = T-T., where T. is. the reference temperature of the calori-

meter, with a smooth joining to C and dCIdT at T
i 
 obtained from low 

temperature calorimetric measurements, program ab2 can be used with the 

following functions. 	I  

f(y) = y/0 - Cpj/B - ½0(dCp/RdT), f(y) = 0 [f(y) -i-C ./R] +½o2(dC/RdT)1 



MOOTIM 

x'=0 , f (x') = 02/T 
1 	2
T, f (x') = (1/3)02. The data for cCa will be used to 

illustrate the insertion of the functions and testing of the program. 

T. = 298.15, (c/R) 298  = 3.16, (d(C/R)dT) 298  = 1.2 x 10 	IC', n=5,  1=100. 

(lb) XEQ 'DaDb02' 	F2, EEX 2 STO 00, 'SIZE'032, 298.15 STO 19,  6 EEX 14 

CHS STO21 

(2) 	With no entries from previous use of the program, 

PRGM 	xy STO6 RCL19 - ST05 / 3.16 - BCL5 

RCL21 	X - RCL:6 xy SST SST 3.16 + RCL5 

RCL21 	X + RCL5 X SST SST SST RCL19 - 

SST 	DLAST x 3 
Dyx 

/ RCL5 X RCL6 / SST 

SST 	SST x2  3 / SST SST SST 0 x 
PRGM 

(3b) 300 + 6.0 User E 1400, 326.6 E 500, 651.1 E 600, 979.3 E 700, 1307.9 E 

800 

(14) 	R/S c = -16 805,  SST d = -6.7 x 10 

(5) 300 C 5.85, R/S 326. 14, R/S 651.8, R/S 979.14, R/S 1307.8 

•To calculate the other constants and C/R, the following additions to 

to program are made to the end of LBL16. 

DGTO16 PRGM DGTO.5143  DRTN DLBL'B' RCL2 	RCL19 3 	
OyX 	

/ 

RCL3 RCL19 	X 	- 	2 	X 	RCL21 2 	X 	+ 

STO14 RCL3 	RCL19 	X 	+ 	RCL19 X 	CHS RCL2 RCL19 

/ - 3.16 	+ 	ST01 DRTN 	RCLI4 

LBLD 	+ 	+ 	+ 	RCL3 	X 	RCL14 	+ 	X 	RCL1 

+ 	RCL2 	R+ 	Ox2 	/ 	+ 	DRTN 	R+ 	RCLOO + 

GTOD PRGM 

User B 	a = 3.3688 	b = —6.14114 x 

c/R = 3.369 - 6.14 x 10 5T - 6.7 x 10 	T2  - 16 805/T2 . 

300 D 3.162, R/S 3.237, R/S 3.268, R/S 3.281, B/S 3.286, 298.15 D 3.160, 

350 D 3.208 

There is some uncertainty in the value of dC/dT at 298.15K. The 

retrieval capability of step (7) is illustrated by repeating the fit 

with (d(c/R)/dT) 298  = 1.202 x 10 3K 	instead of 1.2 x 10 3K 1 . 

(ib) XEQ 'DaUbQ2'+ F2, EEX 2 STO 00. 

As B21 which had been used to store dC/BdT is used in step 7,  R21 

4 



IFOOE 

in f(y) and f'(y) must be changed to Ri. Also the use of R21 in LBLB 

must be changed to RCL1. As above, (d(C/R)/d) 298  is stored. 

(2) PRGM DG'IO.045 + RCL1 .DGTO.055 + RCL1 DGTO.551 RCL1 PRGM 

(7) 6.01 EEX 4 CHS ST01 5 User A 800 

* 	() R/S c = 716 920, SST d = 4 7 6 x 10 

User B a = 3.3731, SST b = -7.157 x 10 

C/R = 3 373 - 7 76 x 10 T + 4. 6 x 10 T2  - 16 920 / T2  

300 D 3.162, R/S 3.237, R/S .3.268, R/S 3.281, R/S 3.286 

If (dC/dT). isnot wellknown, but C. is known, the drop 

calorimeter data can be treated by abc2 as described in the intro-

ductory text of Chapter III 

f(y) = y/0 2  - C ./RO, f(y) = 0 2f(y) + Ocr,. ./R 

- f1 (x')= 0, f2(x')= (0 + T.)* 	
.: 

(ic) XEQ 'DaDbDcD21 , EEX2ST0 00. 	. . 	., 

(2) With no entries from aprevious calculation, 

PRGM xr STO6 298.15 	- 	ST05 Ox2 	/ 	3.16 	RCL5 

/ 	- 	RCL6 	x-'y 	SST SST RCL5 	X 	3.16 	+ 

RCL5 	X 	SST 	SST 	SST 298.15 - 	SST SST 	SST 

SST 	+ 	RCL6 1/x 	SST SST SST 	0 	X 	PRGM 

(3b) 300 +5 85 User E 400, 326.1 E 500,651.85 E 600, 979.4  E 700, 1307. 8  

E 800 

() R/S a0 = -2.54 x 10, SST a1  = 3.09 x 10 6SST, a 1  = 1.10 

(5) 300 User C 5.85, B/S 327.14, R/S 6149.6, B/S 9714.8, B/S 131 14.6 

S 

S 



REFERENCES 

L. Brewer, Estimation of Thermodynamic Data and Phase Diagrams Using. 

HP-65 Calculator Programs, LBL- 149914, June 1976. 

L. Brewer, HP-61 Calculator Programs for Thermodynamic Data and Phase 

Diagram Calculations, LBL-5485, May 1978. 

M. Abramowitz and I.A. Steguri, Editors, Handbook of Mathematical 

Functions, N.B.S. Applied Mathematics Series 55, June 1964, Supt. of 

Documents, U.S. Gov't Printing Office, Washington. 

(14) R. Hamming, Numerical Methods for Scientists and Engineers, McGraw-

Hill, New York, 1973. 

W.E. Wentworth, J. Chem. Educ. 142, 96-103, 162-7 (1965). 

W.E. Deming, Statistical Adjustment of Data, John Wiley, New York, 

1943. 

C.H. Shoinate, J. Am. Chem. Soc. 66, 928 (19414). 

T. Chiang, Y.A. Chang, Can. Metall. Quart. 14, 233-141 (1975). 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



rj 	ti -3 
o 




