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Monitoring the effects of grazing on rangelands is crucial for ensuring sustainable rangeland ecosystem
function and maintaining its conservation values. Residual dry matter (RDM), the dry grass biomass left
on the ground at the end of the grazing season, is a commonly used proxy for rangeland condition inMed-
iterranean climates. Moderate levels of RDM are correlated with soil stability, forage production, wildlife
habitat, anddiversity of native plants. Therefore RDM iswidelymonitored on rangeland conservation prop-
erties. Current ground-based methods for RDMmonitoring are expensive, are labor intensive, and provide
information in the fall, after the effects of grazing have already occurred. In this paper we present a cost-
effective, rapid, and robust methodology to monitor and predict RDM using Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data.We performed a time series analysis of threeMODIS-based veg-
etation indices (VIs) measured over the period 2000–2012: Normalized Difference Vegetation Index
(NDVI), Leaf Area Index (LAI), and Fraction of Photosynthetically Active Radiation (FPAR). We examined
the correlation between the four VIs and fall RDMmeasured at The Nature Conservancy’s Simon Newman
Ranch in central California. We found strong and significant correlations between maximum VI values in
late spring and RDM in the fall. Among the VIs, LAI values had the most significant correlation with fall
RDM. MODIS-based multivariate models predicted up to 63% of fall RDM. Importantly, maximum and
sum VIs values were significantly higher in management units with RDM levels in compliance with RDM
conservation easement terms comparedwith units out of compliance. On the basis of these results, we pro-
pose amanagementmodel that uses time series analysis ofMODIS VIs to predict forage quantities, manage
stocking rates, and monitor rangeland easement compliance. This model can be used to improve monitor-
ing of rangeland conservation by providing information on range conditions throughout the year.
© 2015 Society for Range Management. Published by Elsevier Inc. All rights reserved.
Introduction

Rangelands provide important ecosystem services, including
water filtration, soil stability, and wildlife habitat, and encompass
great biodiversity (Cingolani et al., 2005; Ferranto et al., 2011).
These ecosystems serve as a substantial carbon sequestration pool,
accounting for 20% of the world’s soil carbon (Follett and Reed,
2010). In addition, rangelands are often grazed by livestock and are
a large component of the meat and dairy production in the western
United States and across theworld (Follett andReed, 2010). Although
en Pollak Research Endow-
fice.
ronmental Science, Policy &
rd Hall #3114, Berkeley, CA,
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overgrazing of rangelands has led to land degradation and in some
cases to desertification (Dregne, 2002), moderate grazing that en-
sures regeneration processes and biodiversity protection can serve
as an economically viable land use that helps to preserve rangelands
from land transformation (Watkinson and Ormerod, 2001; McIntyre
et al., 2003). Indeed, many conservation organizations maintain sus-
tainable livestock grazing on their conservation easement and fee-
owned properties (Reiner, 1999; Hacker et al., 2010). Therefore, mon-
itoring the effects of grazing on rangeland conditions is essential for
long-term management and stewardship. To decrease the extensive
time, labor, and economic resources demanded by rangelandmonitor-
ing,many proxies for rangeland condition have beendeveloped. One of
the most widely applied proxies is residual dry matter (RDM), the dry
grass material left on the ground in the fall, at the end of the grazing
season (Bartolome et al., 2007). Currently, RDM levels are used as a
key conservation easement compliance requirement (Reiner, 1999).
rved.
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Extensive literature shows the relationship between RDM levels
and several aspects of rangeland productivity and conservation. For
example, intermediate RDM promotes grass regeneration and sup-
ports higher forage production in the next growing season (Allen-
Diaz and Jackson, 2000; Bartolome et al., 2007). RDM quantities are
also correlated with soil stability, nutrient cycling, water infiltration,
and grass community health (Bartolome, 2002; Bartolome et al.,
2007). Moreover, RDM is related to numerous biodiversity values, in-
cluding native species diversity, marsh vegetation cover, habitat for
wildlife and endangered birds, butterfly diversity, and native forb di-
versity (Diaz et al., 1998; Jackson and Allen-Diaz, 2001; Allen-Diaz
et al., 2004; Allen-Diaz and Jackson, 2005; Cingolani et al., 2005; Rich-
mond et al., 2012).

In California, RDM is monitored annually at a considerable cost
across hundreds of thousands of acres of conservation lands. Current-
ly, all estimates of RDM are ground based and are performed in the
fall, at the end of the grazing season (Guenther and Hayes, 2008).
RDM is monitored by clipping grass at sample points across the land-
scape or by double sampling, which uses calibrated visual estimation
or a photo point system (Harris et al., 2002; Guenther and Hayes,
2008). Although the visual estimation methods are faster than de-
structive sampling, RDMmonitoring is still time consuming and cost-
ly, especially when performed over large landscapes. Moreover, the
typical ground-based method suffers from several potential draw-
backs. First, insufficient sampling across large spatial scales can
yield overly coarse estimates, with relatively wide error intervals.
Second, it is challenging to compare results across observers, who
vary over properties and years, because of observer-dependent sub-
jectivity (Coulloudon, 1999). Finally, the effectiveness of RDMmoni-
toring is limited because these data can be implemented only in the
year following their collection.

In contrast to observer-collected monitoring approaches, remote
sensing provides information to support a synoptic and temporal
view of the landscape. Advances over recent decades in the applica-
tion of remote sensing for monitoring and assessing rangeland eco-
systems include forecasting forage yields, measuring primary
productivity and vegetation cover, and quantifying the effects of res-
toration practices on forage productivity (Todd et al., 1998;
Washington-Allen et al., 2006; Malmstrom et al., 2009). For example,
the effect of implementing best management grazing practices on
prairie cordgrass establishment was monitored using aerial photo-
graphs and the Normalized Difference Vegetation Index (NDVI)
(Kamp et al., 2013). Rangeland vegetation cover, net primary produc-
tivity, and fire occurrence in Cerrado Pastures, Brazil, were assessed
using three Moderate Resolution Imaging Spectroradiometer
(MODIS)-based products: Enhanced Vegetation Index (EVI), Leaf
Area Index (LAI), and land surface temperature (Ferreira et al.,
2013). NDVI was used to estimate stocking rates across large areas
(Hunt and Miyake, 2006) and to model ecosystem performance in
sagebrush habitat (Wylie et al., 2012). Washington-Allen et al.
(2006) used Landsat time series to monitor degradation on
rangelands and measure productivity, composition, soil erosion, and
soil quality. More recently, Li et al. (2012) have demonstrated a
model based on MODIS EVI and NDVI to measure Net Primary Pro-
duction and forage production in pastures with different grazing reg-
imens in California. Despite both these advancements and landowner
interest, remote-sensing tools are not widely applied in rangeland
management (Butterfield and Malmstrom, 2006; Karl et al., 2012),
and remote sensing is not used for monitoring RDM.

The use of remote sensing to directly measure dry grass biomass
presents a challenge (Huete, 1988; Roberts et al., 1993). RDM is mea-
sured in the fall, when grasses are typically senescent and nongreen
(Guenther and Hayes, 2008). Low chlorophyll content of senescent
vegetation reduces the red-to-near infrared (NIR) spectral contrast,
which hinders the ability to distinguish vegetation from the back-
ground soil (Huete, 1988; Butterfield and Malmstrom, 2009). Al-
though the literature on the application of remote sensing for
estimating dry vegetation biomass is substantial, the following exam-
ples are particularly relevant to this paper. Hand-held devices (Wang
et al., 2013), hyperspectral sensors (Arsenault and Bonn, 2005), and
Landsat and ASTER satellites (Serbin et al., 2009, 2013) have all
been used to measure dry vegetation remotely. For example, Harris
and Asner (2003) used hyperspectral Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) to detect photosynthetic vegetation (PV),
non-photosynthetic vegetation (NPV), and bare soil cover on a gradi-
ent of grazing pressures, while the Soil-Adjusted Total Vegetation
Index (SATVI) has been used to measure both green and dry vegeta-
tion cover and biomass (Marsett et al., 2006). In a more recent case,
ground data were combined with MODIS and Landsat satellite data
to produce estimates of total and senescent vegetation cover (Hagen
et al., 2012). Many recent developments in the application of remote
sensing for assessing nongreen vegetation focus on the measurement
of crop residue on agricultural land (Arsenault and Bonn, 2005; Zhao
et al., 2012; Zheng et al., 2012). For example, the Normalized Differ-
ence Tillage Index (NDTI), the Shortwave Infrared Difference Residue
Index (SINDRI), and the Cellulose Absorption Index (CAI) have been
used to measure dry crop residue cover and to classify the effects of
different tillage practices (Watts et al., 2011; de Paul, 2012). These
methods often require extensive field work, are expensive, and need
specialized training and preprocessing steps, which makes them im-
practical for extensive management application.

In contrast to the previouslymentionedmethods, in this paperwe
present a rapid, cost-effective, and near-real-time system to monitor
annual rangeland forage production and to estimate RDM using free-
ly available Terra-MODIS satellite imagery. Our overall objective is to
examine the relationship betweenMODIS-derived vegetation indices
and RDM in a variety of spatial and temporal resolutions and habitat
types, in order to determine if there is a reliable protocol that can help
rangeland managers to monitor RDM with freely available remote
sensing data. Our specific objectives were to 1) determine which of
three MODIS-driven vegetation indices (VIs): NDVI, LAI, and Fraction
of Photosynthetically Active Radiation (FPAR), best predicts RDM;
2) identify which covariates improve RDM prediction; 3) assess
whether vegetation indices can be used across habitats to identify
management units in and out of RDM easement compliance; and,
on the basis of the results of these three steps, 4) identify a model
that uses MODIS data for improved RDM monitoring and manage-
ment. This management model is a three-step approach that uses re-
motely sensed vegetation indices in three modes during the grazing
year: prediction in early spring, management for the whole year, and
monitoring RDM in the fall. To our knowledge, this is the first time re-
mote sensing has been used in a direct easement compliance context
to measure RDM.

Methods

Study Site

The Simon Newman Ranch is a 133 km2 property located in
Stanislaus and Merced Counties, California, United States (37°20′N,
121°10′W). It was selected as the study site because it is managed
to achieve land conservation alongside a sustainable grazing regimen.
The property has been owned by The Nature Conservancy (TNC)
since 1998. TNC annually monitors the compliance of the ranch’s
landmanagement activities against conservation easement termsde-
veloped for conservation objectives. The topography is hilly and
rocky in the west and flat in the east. The climate is dry-
Mediterranean, with average annual precipitation of 280 mm. yr-1
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and temperature ranging between 2–12°C (daily min–max) in the
winter and 16–36°C in the summer. The prevalent vegetation types
are annual grassland, chaparral, oak woodland, and riparian vegeta-
tion. The annual grasses are dominated by exotics that produce
most of their yearly growth between February and June. The preva-
lent oak species are Blue Oak (Quercus douglasii) and Valley Oak
(Quercus lobata). The property is divided by fences into 56 pastures,
or management units (Guenther, 2005).

Data Acquisition

RDM Data
We used RDM data, collected annually in the Simon Newman

Ranch for the years 2000–2012 (Guenther, 2005), to ground truth
our method of estimating RDM. These data were collected in early
October each year, at the end of the grazing season, using
photographed reference monitoring sites (“photo points”), as de-
scribed by Guenther (Guenther and Hayes, 2008). Zones with similar
RDM value were delineated visually around each reference site and
varied in size between 0.1 and 8 km2 (Guenther, 2012).

RDM Classification
TNC’s conservation easement terms require quantitative fall RDM

goals for eachmanagement unit. At the Simon Newman Ranch, man-
agement units dominated by grassland or riparian vegetation have an
RDM goal of 750–1 000 lb · acre-1 (841–1 121 kg · ha-1), while man-
agement units dominated by oak woodland or chaparral vegetation
have an RDM goal of 1 000–1 500 lb · acre-1 (1 121–1 681 kg ·
ha-1) (Guenther, 2012). Note, use of non-metric units is retained be-
cause these are the units currently used by TNC managers. Although
RDM is a continuous value, RDM in the SimonNewmanRanch ismea-
sured and reported as a categorical value (Table 1).

GIS Data
Geographic information system(GIS) layers for the SimonNewman

Ranch included the property boundary, boundaries of themanagement
units, locations of the ground measurement reference points, and the
vegetation type at each management unit. GIS data were available in
Universal Transverse Mercator (UTM, 1983) NAD83/UTM Zone 10N
(Snyder 1987) projection. For the analysis, we re-projected our GIS
layers to the sinusoidal projection of MODIS satellite data.

Terra-MODIS Satellite Data Acquisition
We used Terra-MODIS satellite imagery as our source of data

because it has many advantages for efficient conservation manage-
ment implementation. MODIS satellite imagery is freely available
through NASA’s Reverb system (EODIS, 2013), in a preprocessed,
geo-referenced, and atmospherically corrected form (Solano et al.,
2010). In this paper we used three Terra-MODIS VIs: NDVI, LAI, and
Table 1
Residual dry matter (RDM) classifications for the Simon Newman Ranch.

RDM categories for 2000–2007 RDM categories used aft

Category RDM class (kg·ha-1) 1 Class

— Very low
1 336 Low
2 560 Below
3 785 Meets
4 1121 Exceeds
5 1681 High
6 3363 (added 2007) Very high

1 lb·acre-1 is the common unit used by rangeland managers in the Simon Newman
unit of kg·ha-1 in Table 1.
FPAR. These VIs’ product algorithms are confirmed with extensive
modeling and ground-based data (LP DAAC, 2000-2012; Solano
et al., 2010). The MODIS sensor has daily earth coverage: daily data
is averaged over 16 or 8 days, for NDVI or LAI/FPAR products, respec-
tively. The250×250m(0.065 km2) spatial resolution ofMODIS-NDVI
and 1 × 1 km resolution of MODIS-LAI and -FPAR are adequate for
measurement of aboveground biomass on each management unit
because the ground-based RDMwas estimated for zones with an av-
erage size of 1.9 km2 (Guenther, 2012). Because one MODIS scene
coversmost of California, it can be used to analyzemultiple conserva-
tion properties. We acquired MODIS LAI and FPAR data for
2002–2012 (LP DAAC, 2002-2012) and NDVI data for 2000–2012
(LP DAAC, 2000-2012) (Table 2).

NDVI is calculated using the formula NDVI ¼ ρNIR−ρred
ρNIRþρred

, where ρred
and ρNIR are the reflectance measured by the satellite sensor in the
red (centered at 645 nm) and near infrared (858 nm) wavelengths,
respectively (Tucker et al., 1981). The relationship between NDVI
and green aboveground biomass has been well established (Tucker,
1979; Gamon et al., 1995). Although we have predicted that NDVI
would capture grass productivity well, we examined two additional
VIs that we thought might improve quantification of dry biomass in
the fall. MODIS-based LAI and FPAR use information on canopy struc-
tural attributes and spectral properties. Hence these indices might
provide better prediction than NDVI of dry vegetation biomass
(Knyazikhin et al., 1999). LAI is an important structural property of
a plant canopy because it measures the number of equivalent layers
of leaves in the vegetation, relative to a unit ground area
(Knyazikhin et al., 1999; LP DAAC, 2002–2012). FPAR is a unitless
fraction thatmeasures theproportion of radiation that the canopy ab-
sorbs, out of the total available radiation in the photosynthetically ac-
tive wavelengths of the spectrum, 400–700 nm. Research has
demonstrated that both LAI and FPAR are more strongly correlated
with senesced grass height and biomass than is NDVI (Butterfield
and Malmstrom, 2009).

We compared which of the three VIs most accurately predicts
RDM levels and RDM easement compliance. We removed null VI
values and resampled FPAR and LAI data to 250 × 250mpixel resolu-
tion, to match the resolution of NDVI data.

Climate Data
Detailed climate data for the Simon Newman Ranch were obtain-

ed from the PRISM (Parameter-elevation Regressions on Indepen-
dent Slopes Model) database (PRISM Climate Group, 2000–2012).
We used monthly rainfall data for 2000–2010, at a resolution of
0.0416 decimal degrees (PRISM Climate Group, 2000–2012).

GIS Spatial Statistics
We extracted values of three MODIS VIs for the whole Simon

Newman Ranch and for each of the 56 management units, using the
er 2008

RDM value for grassland/riparian
vegetation (kg·ha-1)

RDM value for oak woodland/
chaparral vegetation (kg·ha-1)

b112 b112
b336 b560
336–841 560–1121
841–1121 1121–1681
1121–1681 1681–2242
1681–3363 2242–4483
N3363 N4483

Ranch and in RDM measurement reports. We have converted it to the scientific



Table 2
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices used in this research and the parameters of each index.

Vegetation index
shortcut

Vegetation index name MODIS product
name

Temporal
resolution

Spatial
resolution

Boolean dates and
years used

Data range Scale
factor

NDVI Normalized Difference Vegetation Index MOD13Q1 16 days 250 × 250 m 049.2000–275.2010 –2 000, 10 000
Fill value: –3000

0.0001

FPAR Fraction of Photosynthetically Active Radiation MCD15A2 8 days 1 × 1 km 185.2002–321.2010 0–100
Null values: 249–255

0.01

LAI Leaf Area Index MCD15A2 8 days 1 × 1 km 185.2002–321.2010 0–100
Null values: 249–255

0.1
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Zonal Statistics ++ Auto function in Hawth’s tools extension in
ArcGIS 9.3 (Beyer, 2004). We extracted PRISM rainfall data for the
property, using the same methodology.
Statistical Analysis

Time Series Analysis of VIs and RDM
We constructed a time series for each VI in order to characterize

the vegetation productivity patterns over time and their responses
to rainfall at the SimonNewmanRanch. In California’sMediterranean
climate, the growing season starts with the onset of rains in the fall of
the previous calendar year and concludes with grass senescence in
the current calendar year (Allen-Diaz and Jackson, 2005). Therefore
we consider a particular “growth year” to start from mid-October of
the preceding year until mid-October of the current year; for exam-
ple, data for year 2011 used data from 16 October 2010 to 15 October
2011. This approach synchronizes VI and rainfall time series with the
timing of RDM data collection in October. All statistical analyses for
each of the three VIs were performed separately for the whole prop-
erty, as well as for each individual management unit. RDM values for
the whole property were calculated as an area-weighted average of
RDM values for all the management units.

We calculated the following summary statistics values for each
growth year, for each VI: annual average, annual median, annual
standard deviation, annual minimum, date of minimum occurrence,
annual maximum, and date of maximum occurrence. Additionally,
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predictive power. We included as covariates all the individual
MODIS-measured VI values (23 or 46 values, for NDVI or LAI/FPAR,
respectively) and their summary statistics (additional nine values).
The year and vegetation type were included as categorical variables
in the model. In order to optimize this model, to reduce the number
of covariates used in the model, and to identify the most important
parameters for RDM prediction, we performed an automated back-
ward stepwise model selection procedure, which uses the Akaike In-
formation Criterion (AIC) as the model selection criterion
(Murtaugh, 2009).
Analysis of Variance (ANOVA)
To assess howwell VI summary statisticsmeasure RDMeasement

compliance, we performed ANOVA comparing VI values for manage-
ment units in or out of compliance. The compliance threshold for
each management unit was determined on the basis of its vegetation
type, where RDM ≥ 750 lb · acre-1 (841 kg · ha-1) is required for
management units with grassland or riparian vegetation, and RDM
≥ 1 000 lb · acre-1 (1 121 kg · ha-1) is required for management
units with oak woodland or chaparral vegetation. We performed
the analysis for NDVI, LAI, and FPAR, separately, and used the VI an-
nualmaximum, sum, and average values as predictors of compliance.
To verify how well MODIS data predicted RDM in different habitats,
we repeated theANOVA including an interaction term for compliance
and habitat type.We performed factorial ANOVA and then compared
the averages of each combination pair, using Tukey Honest Signifi-
cant Differences (HSD) to correct for multiple comparisons
(Yandell, 1997).
Logistic Regression
Weperformed logistic regression to parameterize the relationship

between RDM compliance and each VI.We calculated the log odds of
management units in compliance comparedwith units out of compli-
ance as a function of each of the three VI summary statistics using the
glm function in R (family = binomial, link = logit) (R Development
Core Team, 2007). We then repeated the analysis including the hab-
itat type as a covariate in the regression, to measure how well
MODIS predicted RDM in different habitats. We calculated the odds
ratios and their 2.5% and 97.5% confidence intervals. We performed
all statistical analysis using R 2.15.2 software (R Development Core
Team, 2007).

Case Study: Monitoring 1-Year of Residual Dry Matter

After testing the process, we developed a standardized workflow
in order to demonstrate a proof-of-concept monitoring framework
that can be used by rangeland managers. In this section we describe
how we applied this proposed management model with the Simon
Newman Ranch data. In the “Management Application” section that
follows, we further describe how this model can be applied by range-
land managers. Our workflow proceeds from imagery acquisition
through multivariate analysis using LAI and is focused on the entire
property, as well as individual management units.

We acquired LAI data for the entire Simon Newman Ranch and in-
dividual management units and analyzed them according to the
methods described earlier. We then calculated baseline LAI values
that coincide with RDM compliance for the whole property and for
each habitat type.We used these baseline values in a three-stepmeth-
odology during the grazing year: prediction of productivity in early
spring,management for thewhole year, andmonitoring RDM in the fall:

Step 1: Prediction
We extracted LAI values in early spring (mid-March) of each year

for thewhole property and for eachmanagement unit. We compared
these values to theMODIS-LAI time course (2002–2012), focusing on
how current year LAI values compare with years when the property
(or specific management units) were in versus out of compliance
with RDM easement terms.

Step 2: Management
We mapped forage conditions as measured by spring LAI and

RDM outcomes for each management unit. This evaluation of forage
conditions can inform management early in the spring about appro-
priate stocking rates and cattle rotation.

Step 3: Monitoring
We extracted and plotted LAI values at the end of September of

each year. We compared the annual LAI sum and average values for
each year and at each management unit, to the threshold LAI value
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for RDM compliance. This comparisonwas then used to identify units
out of compliance and to pinpoint potential problematic areas that
should be further monitored.

Results

Relationship between Time Series of Vegetation Indices and Residu-
al Dry Matter

NDVI time series over 11 years showed a distinct annual vegeta-
tion growth cycle that is highly repetitive throughout the decade
(Fig. 1), with one peak of green vegetation growth per year that oc-
curs around the same time every year. Maximum greenness occurred
around March 6 in areas with riparian or grassland vegetation and
around March 22 in oak woodland and chaparral areas. Minimum
vegetation greenness appeared around mid-October. An analysis of
these time series showed a close relationship between the amount
of green vegetation and the amount of rainfall. For example, in
2007 precipitation was about half the average annual value for the
decade; the NDVI values for that year were the lowest of the decade.
Average annual precipitationwas indeed highly correlatedwith aver-
age annual NDVI (R2= 0.69, P=0.001). Similarly, the timing of veg-
etation growth followed rainfall closely, with a lag of about 2 weeks
between the timing of rainfall and the resulting growth (Fig. 1). For
example, a very low NDVI value for December 2005 likely can be as-
cribed to the late rainfall that year, which began January 2006. Like-
wise, we detected a significant correlation between the maximum
monthly rainfall and the maximum NDVI values each year (R2 =
0.57, P = 0.007) and a moderate correlation between RDM and the
total annual rainfall (R2 = 0.39; P b 0.01). Although NDVI is influ-
enced by the timing of the rainfall, no significant correlation between
the timing of the first and last rains of the year and RDM values was
found.

Time series of LAI and FPAR showed similar patterns toNDVI,with
one growing cycle each year (Fig. 2A–B). However, within the grow-
ing season, LAI and FPAR increased slower than NDVI and decreased



Table 3
Best models selected by stepwise regression for fall RDM prediction, for each VI.

Parameter Coefficient
Estimate

Standard
error

P-value

Best model: Normalized Difference Vegetation Index (NDVI)
Intercept -3891.67 831.84 0.00
vegetation type -501.38 139.60 0.00
year factor 5739.86 606.48 0.00
NDVI value January 17 -3149.73 780.88 0.00
NDVI value June 10 -13994.97 3734.04 0.00
NDVI value June 26 9302.11 4241.49 0.03
NDVI value August 29 13381.28 2835.08 0.00
NDVI value September 30 -4122.78 1219.15 0.00
Standard deviation 15364.13 2092.71 0.00
Minimum value -2767.46 1552.50 0.08
Maximum value 5.45 2.41 0.02
Length of growth period (days) -2.30 1.41 0.10

Best model: Leaf Area Index (LAI)
Intercept 338.37 364.94 0.35
vegetation type 356.30 172.26 0.04
year factor 2911.67 348.16 0.00
LAI value October 16 -1047.06 467.49 0.03
LAI value December 03 -994.46 645.57 0.12
LAI value December 19 667.17 442.18 0.13
LAI value January 17 -353.34 167.43 0.04
LAI value February 2 -307.54 134.49 0.02
LAI value February 18 -181.83 87.59 0.04
LAI value March 22 155.88 85.38 0.07
LAI value April 7 -185.50 107.13 0.08
LAI value May 25 -1341.44 695.17 0.05
LAI value June 10 1817.68 909.46 0.05
LAI value June 26 -1490.39 821.95 0.07
Standard deviation 1504.09 535.99 0.01
Minimum value 1840.68 742.82 0.01
Length of growth period (days) 1.91 1.28 0.14

Best model: Fraction of Photosynthetically Active Radiation (FPAR)
Intercept 675.02 517.54 0.19
vegetation type -420.52 161.63 0.01
year factor 2314.46 685.56 0.00
FPAR value January 1 1280.30 648.38 0.05
FPAR value February 2 -1675.04 736.72 0.02
FPAR value March 6 2334.69 1081.21 0.03
FPAR value March 22 1332.20 769.08 0.08
FPAR value June 10 3177.46 2213.58 0.15
FPAR value August 29 7892.30 2429.07 0.00
FPAR value September 14 -2161.03 1482.60 0.15
FPAR value September 30 -4068.46 2341.71 0.08
Median 4842.42 1624.05 0.00
Sum -412.26 99.20 0.00
Standard deviation 12600.19 3508.63 0.00
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slightly faster. The FPAR temporal pattern had the highest interannu-
al variability among the three vegetation indices (Fig. 2B).

There were significant correlations between RDM and the annual
maximum, average, and sum of LAI and FPAR, as well as between
RDM and maximum NDVI (Fig. 3A–C). Importantly, for all three VIs,
the annual maximum value was the most significant predictor of
RDM in the fall. LAI had the strongest correlation with RDM,
explaining a large portion of the variability in fall RDM.Maximuman-
nual values of LAI explained as much as 68% of RDM variability
(Fig. 3B).
Prediction of RDM with Multivariate Regression

The multivariate model containing all NDVI covariates predicted
RDM with R2 = 0.6, P b 0.001; the LAI-based model with R2 = 0.56,
P b 0.001; and the FPAR-based model with R2 = 0.57, P b 0.001.
When we used the stepwise model selection with AIC criteria, all
the selected RDM prediction models contained the vegetation type
and the year as significant covariates (Table 3). The selected NDVI-
based model (AIC = 7914.24) included as important covariates
NDVI values from 4 months, the annual NDVI standard deviation,
the minimum and the maximum annual values, and the length of
the growing season (Table 3). This selected NDVI model predicted
63% of the variability in fall RDM (R2= 0.63, P b 0.0001). The selected
LAI model (AIC = 6832.96) predicts RDMwith R2 = 0.57, P b 0.0001
and includes LAI values from 8months, the annual LAI standard devi-
ation, theminimum annual value, and the length of the growing sea-
son. The FPAR selected model (AIC = 6820.3) included as covariates
values from 6 different months, the annual median, sum, and stan-
dard deviation values (Table 3). It predicted fall RDM with R2 =
0.58, P b 0.001.

RDM Compliance Monitoring

Management units in compliance with RDM conservation ease-
ment terms had significantly higher annual maximum, sum, and av-
erage VIs than those out of compliance (P b 0.01) (Fig. 4A–C).
Maximum LAI provided the most pronounced and significant differ-
ence between management units in and out of compliance (Fig. 4B).

When comparing RDMmanagement units in and out of compli-
ance separately in each habitat type (i.e., chaparral, grassland, oak
woodland and riparian habitat), the overall resulting ANOVAwas sig-
nificantly different for units in and out of compliance within each
habitat type, for all three VIs (NDVI sum and average: P = 0.055;
LAI and FPAR: P b 0.001). However, when we compared each pair of
habitat type separately using Tukey's Honest Significant Difference
method, the difference was significant only for LAI and FPAR in the
grassland and oak woodland habitats (Fig. 5A–C).

Logistic regression provided further parameterization of the dif-
ference in VI values in management units in or out of RDM compli-
ance terms (Table 4). In grassland habitats, increase in one unit of
NDVI annual sum significantly increased the odds ratio (OR) of
RDM compliance versus noncompliance by 1.13. Increase in one
unit in the annual NDVI average increased the OR of compliance by
17.1. Increase in one unit of LAI maximum, sum, and average in-
creased the OR of compliance by 1.86, 1.06, and 17.8, respectively
(Table 4). The increase in annual values of LAI and FPAR significantly
increased the OR of compliance in all habitats (Table 4). Although the
ORs of compliance versus noncompliance were highest in models
using LAI or FPAR averages, the confidence intervals for these odds
ratios were wide, especially in chaparral habitat (Table 4).

Three-Step Management Model and Application at the Simon
Newman Ranch

Our results suggest the feasibility of an RDM monitoring frame-
work that is based on MODIS NDVI, LAI, and/or FPAR satellite data.
In this section we present such a framework and demonstrate an op-
erational monitoring process using MODIS-LAI data acquired for the
Simon Newman Ranch. On the basis of the analysis of the MODIS-
LAI time courses and data on RDM compliance from 2002–2012, we
determined that years when the RDM of the whole property was in
compliance had an average annual maximum LAI value of 2.2. Man-
agement units in compliance with RDM terms had maximum LAI
values of 1.7, 2.8, 2.1, and 2.3 for chaparral, grassland, oak woodland,
and riparian habitat, respectively. We used these baseline values in a
three-step methodology: prediction, management, and monitoring
(see methods).

Step 1: Prediction
LAI values in early spring (mid-March) for the whole Simon

Newman Ranch were above the compliance threshold in years
when the property was in RDM compliance, and vice versa. For
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example, in March 2007 the property-wide LAI average was 1.02,
which was below the value for RDM compliance of 2.2 (Fig. 6). On
the basis of this March LAI value, we would predict that property-
wide fall RDM level would be lower than a minimum value of
952 kg · ha-1 required for easement compliance; indeed, the
property-wide RDM average in 2007 was 944 kg · ha-1 (Fig. 6). In
contrast, in March 2004 the property-wide LAI was 2.4, which was
above the threshold for easement compliance. On the basis of this
March LAI value, we would predict that fall RDM levels would be
within easement compliance terms, and that is indeed what we
saw; the property-wide RDM average in 2004 was 1 113 kg · ha-1

(Fig. 6).

Step 2: Management
By proactively comparing March LAI values to the established

baseline values for compliance, we could identify potential problem
areas and consider management adjustments of stocking rates or
grazing rotations early in the season. Fig. 7A shows a map of RDM
values for each management unit at the Simon Newman Ranch in
fall 2008. Indeed, areas with higher RDM also had higher spring LAI



In compliance Not in compliance 

*** **

0.0

0.2

0.4

0.6

0

2

4

6

8

10

0.0

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

2.0

2.5

***

0

5

10

15

20

25

30

35 *** **

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
ha

pa
rr

al

G
ra

ss
la

nd

O
ak

R
ip

ar
ia

n

*** *

0

2

4

6

8

10

12

14

C
ha

pa
rr

al

G
ra

ss
la

nd

O
ak

R
ip

ar
ia

n

*** **

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
ha

pa
rr

al

G
ra

ss
la

nd

O
ak

R
ip

ar
ia

n

*** **

M
ax

im
um

 N
D

V
I

M
ax

im
um

 L
A

I

S
um

 L
A

I

A
ve

ra
ge

 L
A

I

M
ax

im
um

 F
P

A
R

S
um

 F
P

A
R

A
ve

ra
ge

 F
P

A
R

S
um

 N
D

V
I

A
ve

ra
ge

 N
D

V
I

A

B

C

Fig. 5.Difference in the annualmaximum, sum, and average values of each VI inmanagement units in compliancewith RDMeasement terms comparedwithmanagement units out
of RDM compliance, depending on habitat type. A, Normalized Difference Vegetation Index (NDVI). B, Leaf Area Index (LAI). C, Fraction of Photosynthetically Active Radiation
(FPAR). Asterix above columns denote Tukey Honest Significant Differences: ( ) P b 1; (·) P b 0.1; (*) P b 0.05; (**) P b 0.01; (***) P b 0.001.

181M. Tsalyuk et al. / Rangeland Ecology & Management 68 (2015) 173–185
(Fig. 7B) and, in the some cases, also higher LAI values in the fall
(Fig. 7C).
Step 3: Monitoring
By the end of September, LAI data for the rest of the growth year

should be extracted and plotted, as demonstrated in Fig. 6. The sum
and average of LAI values for the year are calculated and compared
with the established compliance values for each area. By this time
in the growth year, LAI time course and all three statistics (annual
maximum, sum, and average) can be used to identify whichmanage-
ment units are likely to be out of compliance (Fig. 6). This can inform
more targeted ground monitoring. For example, at the Simon New-
man Ranch, management units with RDM compliance should
have annual LAI sum ≥ 33 and LAI average ≥ 0.72. In 2008, the
total LAI sum was 40.67, and LAI average = 0.88, above the
threshold values for compliance. Indeed, in 2008 90% of the 56
management units were in compliance.
Discussion

Monitoring the effects of grazing on rangelands is essential to en-
suring proper ecological functioning of the ecosystem and to
protecting biodiversity on conservation easement properties. Field-
basedmonitoring of vast rangeland easement areas demands consid-
erable time and resources, making such monitoring difficult with in-
creasingly limited funds available for conservation. In this paper, we
developed a method that uses multitemporal MODIS data that is
cost-effective and efficient at monitoring RDM on rangeland conser-
vation easements. To our knowledge this is the first time that remote
sensing has been applied tomonitor RDM in the context of rangeland
easement compliance.

Analyses of the three MODIS vegetation indices over time—NDVI,
LAI, and FPAR—showed that a strongly repetitive pattern exists across
California’s rangelands (Figs. 1 and 2). This pattern matches the
Mediterranean climate of California, where the growth cycle of annu-
al grass-dominated rangelands has one clear peak, around March,



Table 4
Results of logistic regression of RDMcompliance as a function of vegetation indices (VI)
summary statistics. (CI = confidence intervals).

VI Vegetation type Log
odds

Odds
ratio

CI 2.5% CI 97.5% P-value

NDVI Maximum
NDVI All 1.15 3.15 0.51 18.31 0.21
NDVI Chaparral 1.41 4.09 0.35 53.22 0.27
NDVI Grassland 1.17 3.22 0.51 19.11 0.20
NDVI Oak woodland 1.09 2.98 0.39 21.84 0.29
NDVI Riparian 0.71 2.04 0.26 15.07 0.49
NDVI Sum
NDVI All 0.11 1.12 1.00 1.26 0.06
NDVI Chaparral 0.14 1.15 0.99 1.36 0.08
NDVI Grassland 0.12 1.13 1.01 1.27 0.04
NDVI Oak woodland 0.11 1.12 0.99 1.27 0.08
NDVI Riparian 0.08 1.08 0.95 1.23 0.23
NDVI Average
NDVI All 2.60 13.45 0.93 195.74 0.06
NDVI Chaparral 3.24 25.48 0.74 1279.92 0.08
NDVI Grassland 2.83 17.01 1.12 263.05 0.04
NDVI Oak woodland 2.54 12.73 0.73 228.75 0.08
NDVI Riparian 1.78 5.93 0.32 114.73 0.23
LAI Maximum
LAI All 0.62 1.86 1.50 2.35 0.00
LAI Chaparral 0.93 2.54 1.21 7.36 0.03
LAI Grassland 0.59 1.81 1.47 2.28 0.00
LAI Oak woodland 0.90 2.47 1.65 3.99 0.00
LAI Riparian 0.67 1.95 1.29 3.33 0.00
LAI Sum
LAI All 0.06 1.06 1.04 1.09 0.00
LAI Chaparral 0.06 1.07 1.02 1.14 0.01
LAI Grassland 0.06 1.06 1.04 1.09 0.00
LAI Oak woodland 0.07 1.07 1.04 1.10 0.00
LAI Riparian 0.05 1.05 1.02 1.09 0.00
LAI Average
LAI All 2.88 17.86 7.50 44.85 0.00
LAI Chaparral 2.98 19.67 2.74 352.02 0.01
LAI Grassland 2.89 18.02 7.25 48.34 0.00
LAI Oak woodland 3.11 22.38 6.52 92.54 0.00
LAI Riparian 2.43 11.33 2.94 57.55 0.00
FPAR Maximum
FPAR All 3.84 46.40 15.37 145.34 0.00
FPAR Chaparral 4.32 75.52 7.13 1790.81 0.00
FPAR Grassland 3.82 45.62 14.92 146.40 0.00
FPAR Oak woodland 4.17 64.93 14.94 324.97 0.00
FPAR Riparian 3.52 33.86 7.12 201.93 0.00
FPAR Sum
FPAR All 0.18 1.20 1.14 1.26 0.00
FPAR Chaparral 0.19 1.20 1.09 1.39 0.00
FPAR Grassland 0.18 1.20 1.14 1.27 0.00
FPAR Oak woodland 0.18 1.20 1.13 1.29 0.00
FPAR Riparian 0.15 1.16 1.09 1.26 0.00
FPAR Average
FPAR All 8.25 3824.86 416.58 38732.44 0.00
FPAR Chaparral 8.53 5076.45 49.71 3802139.30 0.00
FPAR Grassland 8.46 4734.56 456.92 56161.66 0.00
FPAR Oak woodland 8.38 4346.01 246.12 105234.23 0.00
FPAR Riparian 6.91 998.62 44.64 35695.80 0.00

Fig. 6. Comparison of Leaf Area Index (LAI) time series for the Simon Newman Ranch
property-wide average in years with low (2007), medium (2004), and high (2008)
RDM (kg·ha-1) outcomes in the fall. Horizontal line marks LAI = 2.2, the threshold
property-wide annual maximum LAI value for RDM in compliance.
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that drops to its minimum value during the early fall months, when
vegetation is senescent (Mooney and Dunn, 1970; Jackson, 1985).
The maximum value of each of the three VIs occurs at our study site
at almost the same time every year, around mid-March (Figs. 1 and
2). This suggests that data can be extracted for an assessment of
ranch conditions at the same time of spring every year, without the
need to wait until the end of the season. We expect a similar pheno-
logical pattern across California’s rangeland ecosystems, which are
mostly dominated by annual grass species. For other areas, the
exact timing of maximum NDVI, LAI, or FPAR would need to be
assessed. The strong correlation we found between NDVI and the
quantity and timing of rainfall is consistent with previous research
across rangeland ecosystems (Garcia et al., 2010; Mao et al., 2012).
Springmaximum values of all three VIs had the strongest correla-
tion with fall RDM in our study area (Fig. 3). These results suggest
that land managers and conservation practitioners can use MODIS-
based estimates of maximum productivity, as measured by maxi-
mumNDVI, LAI, or FPAR, tomakewithin season decisions about graz-
ing practices, including those related to stocking rate and grazing
timing that help ensure easement compliance, protect conservation
values, andmaximize the productivity and profitability of the graz-
ing operation. This finding has important management implica-
tions, especially across lands with conservation easements
where RDM is typically monitored in the fall, at the end of the
grazing season, when the impacts of grazing, whether positive or
negative, have already occurred (Harris et al., 2002).

We examined a range of univariate and multivariate models to
determinewhether we could accurately predict RDM levels using re-
mote sensing data. We found that these models were highly signifi-
cant and could successfully measure high proportion of RDM
variability (Fig. 3, Table 3). The use ofmultiple VIs in this research im-
proved our overall ability to monitor RDM; LAI provided the best
RDMprediction in the univariatemodels (68%), while NDVI provided
the best RDM prediction in the multivariate models (63%) (Table 3).
All of the selected multivariate models included both fall and spring
VI values, which suggests a possibility to develop models that use
fall VIs to monitor RDM directly. The year factor had an important
role in themodels, which indicates the central effect climate variabil-
ity has on RDM outcomes. The vegetation type also appeared as an
important factor in all predictive models, emphasizing the impor-
tance of habitat type in the relationship between the VI and RDM.

LAI and FPAR had stronger correlated with RDM and were better
predictors of RDM compliance across our study site than NDVI.
There are few possible explanations for this result. First, while NDVI
is ameasure of vegetation greenness, LAI and FPARmeasure structur-
al and functional properties of vegetation, which are more relevant
for measuring senesced vegetation (Knyazikhin et al., 1999; Myneni
et al., 2002). LAI and FPARhave been shown to have a strong relation-
ship with grassland biomass, both green and senescent, in variety of
ecosystems (Asner et al., 1998), including California rangelands
(Malmstrom et al., 2009; Butterfield and Malmstrom, 2009). LAI de-
scribes the canopy structure of the number of equivalent layers of
leaves relative to a unit ground area (Knyazikhin et al., 1999),
which may explain LAI’s superiority at predicting RDM in the fall,
since RDM is the cumulative outcomeof year-round grass availability.
FPAR measures the photosynthetic capacity of vegetation, a capacity
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that continues, to some degree, in dry vegetation as well (Butterfield
and Malmstrom, 2009). Second, MODIS-based LAI and FPAR data
have higher temporal resolution (every 8 days) than NDVI (every
16 days), which potentially allows them to capture finer vegetation
dynamics and hence bemore sensitive to changes in biomass. Finally,
the model that MODIS uses to calculate LAI and FPAR includes NDVI,
as well as canopy reflectance data, sun-view geometry, a cover radi-
ance transfer model specific for each land cover type, and extensive
ground validation (Knyazikhin et al., 1999). These additional data
sets may improve the correlation between LAI and FPAR and the
ground-based measure of RDM.

We found a significant difference among the annual maximum,
sum, and average values of NDVI, LAI, and FPAR within management
units that were in compliance versus out of compliance with The Na-
ture Conservancy’s RDM easement terms; these findings were
consistent when evaluated compliance within individual habitat
types (Fig. 5, Table 4). Ability to evaluate compliance in all exam-
ined habitat types demonstrates the robustness of our approach to
predict RDM easement compliance across the grazing season and
within a variety of rangeland ecosystems.

Interestingly, we found excellent RDM compliance prediction ca-
pability in oak woodlands even though the satellite view of the grass
layer in this habitat is partially obscured bywoody vegetation. A pos-
sible explanation is that the tree cover in these regions is relatively
sparse (Guenther, 2012). Another explanation may be that because
the difference between RDM compliant and noncompliant units is
more significant when measured by LAI or FPAR, and the algorithms
calculating these indices take the vegetation type into consideration,
these algorithms normalize the relative influence of tree canopy
cover (Myneni et al., 2002). Finally, the correlation between VIs and
RDM in woody vegetation may be explained by an indirect effect.
Tree canopy enhances grass productivity by concentrating nutrients
and providing shade (Belsky, 1994). Therefore, higher tree greenness
may predict greater grass biomass. This hypothesis needs to be fur-
ther examined using field data and satellite imagery with finer
resolution.

Future improvements to our analysis may include more refined
field RDMmeasurements. Because we used RDM data that were ac-
quired for management purposes by using photo points, these data
were relatively coarse both in spatial and in class resolution. Incorpo-
rating detailed topographic data and cattle stocking rates into the
analysis should improve RDM predictions. In the future, if finer
spectral and spatial resolution satellite data are made available to
the public in a preprocessed form, it may further improve RDM pre-
diction ability (Irons et al., 2012).

Management Implications

We propose a novel rangeland monitoring framework. Our data-
driven rangeland monitoring and management approach uses
MODIS-LAI and has three steps: “Predict, Manage, and Monitor.” Our
model uses analysis of multiyear time series to establish LAI baseline
values for annual maximum, average, and sum, for a property that is
in good conditions and is RDMcompliant. In early spring, prediction of
forage availability is performed by extracting LAI data for a site and
comparing it with baseline LAI values for compliance. We suggest
that land managers evaluate closely areas with LAI below the
established spring LAI for easement compliance. Next, data-driven
management entails choosing stocking rates according to forage avail-
ability, as indicated by the spring LAI, to assure moderate grazing
pressure. Evaluating forage conditions and potential easement com-
pliance in early spring allows land managers and conservation prac-
titioners to adjust grazing practices to meet both the needs of the
cattle operation and the terms of the conservation easement. For ex-
ample, cattle may be rotated out of management units where poten-
tial problems exist and into units where additional forage may be
available. In extreme conditions, like extended drought, managers
can determine early in the season, before the largest economic im-
pacts may occur, that cattle need to be moved out of an easement
property where forage conditions are low and where threats to con-
servation values are greatest, and on to a propertywheremore forage
exists. Finally, RDM monitoring during October is improved by using
LAI sum and average values to identify management units with low
RDM and targeting potential problem areas for monitoring. We sug-
gest this method as an augmentation, rather than a replacement of
typical ground-based monitoring. Although remote sensing cannot
replace the direct contact of land managers with the land, it can en-
hancemonitoring efforts by directing them to themost needed areas.

Finally, our methodology is cost-effective, simple, and easily scal-
able, which ensures that it can be easily implemented by land man-
agers and conservation practitioners. Great cost savings are realized
because MODIS satellite data are free; have been around for 15
years, which allows retrospective analyses, as well as current and fu-
ture ones to be undertaken; are preprocessed, and are easily
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manipulated using open-source software (e.g., GDAL, R). The low cost
and technical simplicity of our methodology makes it especially via-
ble for use across large rangeland properties. We demonstrated that
MODIS data can be used to predict RDM levels and RDM easement
compliance at a variety of habitats and spatial and temporal scales.
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