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Abstract

In this paper, we generalize Witten’s non-abelian bosonization in (1 + 1)-D to two and three spatial 
dimensions. Our theory applies to fermions with relativistic dispersion. The bosonized theories are non-
linear sigma models with level-1 Wess-Zumino-Witten terms. We apply the bosonization results to the 
SU(2) gauge theory of the π -flux phase, critical spin liquids in 1,2,3 spatial dimensions, and twisted bilayer 
graphene.
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0. Introduction

Bosonization in (1 + 1)-D has been a very useful theoretical tool. It allows one to map a 
theory, where the Lagrangian is expressed in terms of fermionic variables, to one expressed 
with bosonic variables. Often, things that can be seen easily in one picture are difficult to see 
in the other. The best-known bosonization is the abelian bosonization [1–4], where fermions 
are solitons in the Bose field. A shortcoming of the abelian bosonization, when fermions have 
flavor (e.g., spin) degrees of freedom, is that the flavor symmetries are hidden. This problem was 
solved by Witten’s non-abelian bosonization [5]. In this paper we generalize Witten’s non-abelian 
bosonization to (2 + 1) and (3 + 1) space-time dimensions.

The limitation of our theory is that it only applies to fermions with relativistic dispersion. 
(However, we do not restrict the Fermi velocity to be the speed of light.) In the absence of a mass 
gap, such theories have Dirac-like dispersion relation. In one space dimension, massless fermions 
are generically relativistic at low energies. In two and three space dimensions, relativistic mass-
less fermions have been discovered in many experimental condensed matter systems. Examples 
include graphene and twisted bilayer graphene, Dirac and Weyl semi-metal,...etc. Moreover, rel-
ativistic massless fermions can appear in the mean-field theory of strongly correlated systems. 
Such theory serves as the starting point of a more rigorous treatment. For example, the “spinon 
π -flux phase” mean-field theory sets the stage for a gauge theory description of the Mott insulat-
ing state of the half-filled Hubbard model.

Another important area where relativistic massless fermions appear is at the boundary of 
topological insulators or superconductors, which are simple examples of symmetry-protected 
topological (SPT) phases. The classification of topological insulator/superconductor [6,7] can be 
viewed as asking how many copies of the massless fermion theories on the boundary are required 
to couple together before a symmetry-allowed mass term emerges.

The paper contains two major parts: I. bosonization and II. applications. Each of them contains 
several sections, namely, 14 sections in Part I and 3 sections in Part II. In each section of Part
I, we discuss an important step or input of the bosonization. We shall illustrate the relevant 
concepts with examples in the lowest spatial dimension where it first appears. For higher spatial 
4
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dimensions, we simply present the result while leaving the details to the appendices. Together, 
the 14 sections in Part I provide the readers with the idea and technical details of the bosonization. 
In Part II there are 3 sections, each gives an example of how this bosonization can be applied. 
The topics include the SU(2) gauge theory of the π -flux phase of half-filled Hubbard model, the 
critical spin liquid of “bipartite-Mott insulators” in spatial dimensions 1, 2, 3, and the twisted 
bilayer graphene. Finally, the 11 appendices provide the details omitted in the main text.

Part I. Bosonization

1. The idea

A massless free fermion theory contains two types of gapless excitations. The first is single-
particle-like, corresponding to adding or removing a particle. The second type is the collective 
excitations (e.g., particle-hole excitations). Such excitations are bosonic in nature. In this paper 
by “bosonization”, we mean finding bosonic nonlinear sigma models to describe these collective 
excitations. Depending on whether the electric charge is required to be conserved or not, such 
collective excitations can correspond to the boundary modes of topological insulators or super-
conductors. This motivates us to separate the fermion theories into “complex” and “real” classes. 
In the complex class, the collective modes are the particles-hole excitations with a fixed total 
electric charge. On the other hand, in the real class, the collective excitation can include, e.g., 
particle-particle excitations which do not conserve the electric charge.

As mentioned in the introduction, our theory applies only to relativistic fermions. In the rest 
of the paper, unless otherwise stated, “massless fermion” always refers to massless relativistic 
fermion. Here we stress again that “relativistic massless fermion” does not imply the Fermi ve-
locity is the speed of light. As mentioned in the introduction, in several (2 + 1) and (3 + 1)

dimensional condensed matter systems, relativistic massless fermions have been encountered. 
Another limitation of our theory is that we have not been able to write down bosonic expressions 
for the fermion creation/annihilation operators. However, this does not prevent us from bosoniz-
ing the Hamiltonian because the latter always involves the fermion bilinear. Nonetheless, this 
does prevent us from calculating the fermion single-particle Greens function. For this reason, 
our theory is less powerful than the abelian bosonization in 1+1D.

Our work benefits from looking at the massless fermion theories from two points of view. 
(1) As d (spatial) dimensional theories with emergent, but anomalous, symmetries. (2) As the 
boundary theories of d + 1 dimensional topological insulators/superconductors, where the emer-
gent symmetries serve as the protection symmetries.

The bosonization proceeds by introducing mass terms (or order parameters) whose fluctuation 
represents the particle-hole excitations of the fermion theories. These order parameters break 
the emergent (protection) symmetries. However, by fluctuating them smoothly (in both space 
and time) the broken symmetries can be restored. Since the order parameter fluctuations are 
smooth, we expect the fermion gap to remain intact. Under such conditions, we can integrate 
out the fermions to yield bosonic non-linear sigma models governing the dynamics of the order 
parameters. It turns out that in all cases the resulting non-linear sigma model has the level-1 
Wess-Zumino-Witten (WZW) topological terms. Such term encodes the symmetry anomalies,1

and also causes the solitons of the non-linear sigma model to have fermion statistics.

1 The anomalies divide into two classes: the continuous symmetry anomalies and the discrete symmetry anomalies. 
For continuous symmetry anomalies there is an obstruction in gauging, i.e., once gauge field is introduced, the partition 
5
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From the perspective of the boundary of topological insulators/superconductors, after the sym-
metry is restored the non-linear sigma models are either gapless or possess topological order. We 
conjecture that the mechanism of symmetry restoration is the proliferation of fermionic solitons. 
Because of such proliferation, the non-linear sigma models are gapless and equivalent to the 
massless fermion theories. This conjecture is supported by the fact that the fermion and boson 
theories have (1) the same symmetries, (2) the same anomalies, and (3) the boson theories have 
fermionic solitons. However, we have not proven that (1)-(3) are sufficient conditions for the 
conjecture to hold true.2

As to the question of why do we bother to bosonize? One reason is it allows us to determine 
the low energy physics of a non-trivial bosonized theory by solving the theory of free massless 
fermions, and often what is subtle in one picture can become clearer in the other. Of course, we 
will not stop at the massless free fermion theories, the goal of bosonization is to enable one to go 
further. This will become clear in the applications.

2. Emergent symmetries of the massless fermion theory

A necessary condition for two theories to be equivalent is that they have the same symmetry. 
Thus it is important to determine the symmetry of massless fermion theories. It turns out the 
symmetries of such theories are rather rich. Because the massless fermion theories are low energy 
effective theories, we shall refer to their symmetries as the emergent symmetries.

In the following, we shall consider massless n-flavor fermion theories in spatial dimensions 
1, 2, and 3. As mentioned at the beginning of section 1, we separate the theories into complex 
and real classes depending on whether the collective excitations conserve the electric charge. In 
particular, for the complex class, we shall focus on the Q̂ (electric charge) equals to zero sector 
of the collective excitations. Such sector is often referred to as the “charge neutral point” in the 
condensed matter physics. For obvious reason, it’s convenient to use the Dirac/Majorana fermion 
for the complex/real class.

A clarification is in order here. By complexification one can attain an n-flavor complex 
fermion theory from a 2n-flavor Majorana fermion theory. The reason we divide the fermion 
theories into complex and real classes is the strict constraint we impose on the complex class, 
which requires every state in the Hilbert space of the particle-hole excitation being the eigenstate 
of the total electric charge. The reader can view this as the definition of the two classes. Because 
of the difference in the Hilbert space dimensions, the nonlinear sigma models in the complex and 
real classes are not equivalent even at the low energies.

2.1. Complex class

Now, as an example, let’s determine the emergent symmetry group of a one dimensional 
massless fermion theory. To this end let’s first consider a complex class, n-flavor, massless Dirac 
fermion theory described by the following action

S0 =
∫

dx0dx1ψ†(∂0 − i�1∂1)ψ where (1)

function fails to be gauge invariant. This is referred to as the ’t Hooft anomaly. As to discrete symmetry anomalies, the 
one relevant to this paper is the time-reversal (or parity) anomaly. Section 4.3 is devoted to the discussion.

2 Putting it differently, our conjecture amounts to asserting that under smooth order parameter fluctuations, the non-
linear sigma model with WZW term does not give rise to topological order.
6
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�1 = ZIn

Here In denotes n × n identity matrix. In the following we shall use the shorthand 
I, X, Y, Z, E to denote the Pauli matrix σ0,x,y,z, iσy , and when two matrix symbols stand next to 
each other, e.g., ZIn, it means tensor product Z ⊗ In. For complex fermion field ψ , the possible 
unitary transformations include

ψ → U · ψ
ψ → C · (ψ†)T

where U and C are unitary matrices. Note that as a discrete transformation (the second line of 
the above equations), the charge conjugation transformation does leave the Q = 0 eigenspace 
invariant.3

One can easily show that the full emergent symmetries of the action in Eq. (1) are

Chiral U(n) symmetry:

U(n)+ × U(n)− : ψ →
(
P+ ⊗ g+ + P− ⊗ g−

)
ψ where g± ∈ U(n)

Charge conjugation symmetry:

C : ψ → (Z ⊗ In) (ψ†)T

Time reversal symmetry (anti-unitary):

T : ψ → (X ⊗ In)ψ (2)

Here

P± := I ± Z

2
(3)

are the projection operators with the subscript ± denoting the “right/left” moving fermions, re-
spectively. Note that any other anti-unitary symmetry can be written in terms of the composition 
of a unitary symmetry and the time reversal transformation above.

2.2. Real class

Next, we consider the one-dimensional massless theory in the real class. In this case, we write 
the action in terms of the n-component Majorana fermion field

S0 =
∫

dx0dx1 χT [∂0 − i�1∂1]χ where (4)

�1 := ZIn

For Majorana fermion field, the possible unitary transformations are of the form

χ → O · χ
where O is an orthogonal matrix. The full emergent symmetries of the action in Eq. (4) are

3 However, we do not allow the charge conjugation operator to generate continuous transformations, since under such 
transformations ψ will go into the superposition of ψ and ψ†. This violates the requirement that the Hilbert space is the 
eigenspace of the charge operator. This requirement distinguishes the complex class from the real class (introduced in 
the next subsection), and will affect the mass manifolds in section 3.
7
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Table 1
A summary of the emergent symmetries of massless fermions in (1 + 1)-D, (2 + 1)-D, and (3 + 1)-D. Here P± :=
(I ± Z)/2 as in Eq. (3).

(1 + 1)-D Real class Complex class

�i Z ⊗ In Z ⊗ In

Emergent symmetries
T = X ⊗ In
O+(n) × O−(n) : P+ ⊗ g+ + P− ⊗ g−
where g+ ∈ O+(n) and g− ∈ O−(n)

T = X ⊗ In
C = Z ⊗ In
U+(n) × U−(n) : P+ ⊗ g+ + P− ⊗ g−
where g+ ∈ U+(n) and g− ∈ U−(n)

(2 + 1)-D Real class Complex class

�i Z ⊗ In, X ⊗ In Z ⊗ In, X ⊗ In

Emergent symmetries
T = E ⊗ In
O(n) : I ⊗ g

where g ∈ O(n)

T = Y ⊗ In
C = I ⊗ In
U(n) : I ⊗ g

where g ∈ U(n)

(3 + 1)-D Real class Complex class

�i ZI ⊗ In, XI ⊗ In, YY ⊗ In ZI ⊗ In, XI ⊗ In, YZ ⊗ In

Emergent symmetries
T = EZ ⊗ In
U(n) : II ⊗ g1 − IE ⊗ g2
where u = g1 + ig2 ∈ U(n)

T = YZ ⊗ In
C = IX ⊗ In
U+(n) × U−(n) : IP+ ⊗ g+ + IP− ⊗ g−
where g+ ∈ U+(n) and g− ∈ U−(n)

Chiral O(n) symmetry:

O(n)+ × O(n)− : χ →
(
P+ ⊗ g+ + P− ⊗ g−

)
χ where g± ∈ O(n)

Time reversal symmetry (anti-unitary):

T : χ → (X ⊗ In)χ. (5)

In D = d + 1 space-time dimension, the massless fermion actions are

Complex class: S0 =
∫

dDx ψ†

[
∂0 − i

d∑
i=1

�i∂i

]
ψ

Real class: S0 =
∫

dDx χT

[
∂0 − i

d∑
i=1

�i∂i

]
χ (6)

where ψ and χ are complex and Majorana fermion fields, respectively. In Table 1 we summa-
rize the emergent symmetries of massless fermion theories in 1,2 and 3 dimensions. See the 
detailed derivation in appendix A. Here the discrete symmetries, such as charge conjugation or 
time-reversal, should be viewed as the generators of more general charge conjugation and time-
reversal transformations. For example, compounding the time-reversal transformation with an 
arbitrary unitary symmetry yields another anti-unitary symmetry. The reason for the particular 
choice of the discrete symmetry generators in Table 1 will be discussed in subsection C.1 of 
appendix C.
8
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3. Mass terms and mass manifolds

Mass terms, or order parameters, are fermion bilinears, namely,

ψ†Mψ, or

χT Mχ, (7)

which opens an energy gap when added to Eq. (6). To achieve that, the hermitian mass matrix M
must anti-commute with all the gamma matrices, i.e.,

{M,�i} = 0 for i = 1, ..., d (8)

We will further require that the gap is flavor independent by imposing

M2 = m2 · 1 (9)

Here 1 means the identity matrix of appropriate size. The mass matrices satisfying Eq. (8)
and Eq. (9) form a topological space – the mass manifold. In the simplest case, it can be a k-
dimensional sphere. In general, it is a closed k-dimensional manifold. If, in addition to Eq. (8), 
the mass terms are required to be invariant under certain unitary or anti-unitary transformations, 
the mass manifold will be affected. In the classification of the free fermion SPTs, it is important 
to know what is the homotopy group of the mass manifold [6].

In the following we give two examples in one spatial dimension, to let the readers get a feeling 
of what’s involved in figuring out the mass manifold.

3.1. Complex class

Let the U(1) symmetry transforms the field according to

ψ → eiθψ.

Then all mass terms in the form

ψ†MCψ,

are invariant under U(1). Here the superscript C is to remind us that this is a mass matrix in the 
complex fermion class. MC is a 2n × 2n (2n is the number of component of ψ ) satisfying

MC =
(
MC

)†

{MC,�i} = 0(
MC

)2 = m2I2n

Here I2n is the 2n × 2n identity matrix. Associated with the massless fermion action given in 
Eq. (1), the first two conditions require MC to be of the form

MC = m(X ⊗ H1 + Y ⊗ H2) (10)

where H1 and H2 are n × n hermitian matrices. If we define

QC := H1 + iH2, (11)

it can be easily shown that the third condition requires
9
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QC ·
(
QC
)† = In.

Therefore the mass manifold for one dimension, in complex class, is the topological space formed 
by n × n unitary matrices.

3.2. Real class

In this case, the mass term is the Majorana fermion bilinear

χT MRχ

where the matrix MR is an anti-symmetric matrix satisfying

MR =
(
MR

)†

{MR,�i} = 0(
MR

)2 = m2I2n

The first two conditions require

MR = m(Y ⊗ S + X ⊗ (iA))

where S and A are real symmetric and anti-symmetric matrix, respectively. If we define

QR := S + A

the last condition requires

QR ·
(
QR
)T = In.

Thus, the mass manifold is the space of n × n orthogonal matrices.
In Table 2 we summarize the mass manifolds for 1,2 and 3 dimensions. The detailed deriva-

tions are left in appendix B.

4. The symmetry anomalies of the fermionic theories

Emergent symmetries of a low-energy effective theory can be broken when a cutoff is im-
posed. In this section, we review the symmetry anomalies of the massless fermion theories.

4.1. The continuous symmetry anomaly – the ’t Hooft anomaly

The emergent symmetries discussed in the section 2 can suffer the “’t Hooft anomaly”. A 
theory is said to have the ’t Hooft anomaly with respect to global symmetry group G if there are 
obstructions against gauging G [8]. In the following we shall use the (1 + 1)-D complex class to 
illustrate the ideas.

The simplest example is the chiral anomaly associated with the (1 + 1)-D complex class 
theory defined in Eq. (6). This theory has emergent global U+(n) × U−(n) symmetry. However, 
when one tries to gauge this symmetry, an anomaly is encountered. Namely, in the presence of 
gauge field with non-zero curvature, the theory can not be made to conserve the Noether’s current 
associated with the full U+(n) × U−(n) symmetry.
10
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Table 2
A summary of the mass manifolds for the real and complex class fermions in (1 + 1)-D, (2 + 1)-D, and 
(3 + 1)-D.

(1 + 1)-D Real class Complex class

�i Z ⊗ In Z ⊗ In

Mass manifold
M = Y ⊗ S + X ⊗ (iA)

where QR = S + A ∈ O(n)

M = X ⊗ H1 + Y ⊗ H2
where QC = H1 + iH2 ∈ U(n)

(2 + 1)-D Real class Complex class

�i Z ⊗ In, X ⊗ In Z ⊗ In, X ⊗ In

Mass manifold
M = Y ⊗ S

where QR = S ∈⋃n
l=0

O(n)
O(l)×O(n−l)

M = Y ⊗ H

where QC = H ∈⋃n
l=0

U(n)
U(l)×U(n−l)

(3 + 1)-D Real class Complex class

�i ZI ⊗ In, XI ⊗ In, YY ⊗ In ZI ⊗ In, XI ⊗ In, YZ ⊗ In

Mass manifold
M = YX ⊗ S1 + YZ ⊗ S2

where QR = S1 + iS2 ∈ U(n)
O(n)

M = YX ⊗ H1 + YY ⊗ H2
where QC = H1 + iH2 ∈ U(n)

Starting from the massless fermion theory, we can introduce the U+(n) × U−(n) gauge field 
(i.e., “gauging” U+(n) × U−(n)) via minimal coupling. Moreover, we can define the effective 
gauge action after integrating out fermions,

W [A+,A−] = − ln

[∫
Dψ Dψ̄e−S[ψ,ψ̄,A+,A−]

]
, where

S[ψ, ψ̄,A+,A−] =
∫

d2x ψ̄
[
iγ μ

(
∂μ + iP+ ⊗ A+,μ + iP− ⊗ A−,μ

)]
ψ. (12)

Here A± are the n × n matrix value gauge fields associated with U±(n), and P± are the 
projection operators selecting the chiral fermion modes defined in Eq. (3). Adler [9], Bell, and 
Jackiw [10] first showed that in the presence of a diagonal (i.e., A+ = A−) U(1) gauge field, the 
axial current is not conserved. Shortly after, this was generalized by Bardeen [11] who showed 
that under infinitesimal gauge transformation, W in Eq. (12) is not gauge invariant, namely,

δW := W [A+ + dε+,A− + dε−] − W [A+,A−]
= − i

4π

∫
M

tr
[
A+dε+ − A−dε−

]
. (13)

This is the ’t Hooft anomaly.
This phenomenon is also connected to the physics of SPT. In odd space dimension, this con-

nection constitutes the so-called “anomaly inflow picture” [12]. In fact, each of the emergent 
symmetry groups in Table 1 protects a D + 1 dimensional Z-classified free fermion SPT. The 
D-dimensional massless free fermion theories in Eq. (6) describe the boundary of the generator 
of the SPT, i.e. the 1 ∈Z. We shall discuss this point further in appendix I.

The most familiar anomaly inflow example is for n = 1 in 1D. In this case, we can view the 
1D (non-chiral) massless fermions as the edge modes of two Chern insulators stacked together, 
with each Chern insulator having Hall conductivity σxy = ±1 (see Fig. 1). In the presence of a 
time-dependent flux associated with the diagonal gauge field, there will be the electric fields in 
the azimuthal direction. This induces a Hall current causing the charge to flow from the outer to 
11
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Fig. 1. Two layers of annulus shape Chern insulators with σxy = ±1 stacked together. The outer edge harbors the 1D 
n = 1 non-chiral massless fermion modes. The green and red arrows represent the opposite chiralities. When a time-
dependent diagonal U(1) flux pierces the inner hole, the induced electric field in the azimuthal direction causes a Hall 
current (dashed arrows) flowing from inner to outer boundary in the top layer and from outer to inner boundary in the 
bottom layer. As the result, the chiral current J+ − J− is not conserved viewed from the outer edge alone. This system is 
realized as the “spin Hall insulator” experimentally. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

the inner edge on one layer, and from the inner to the outer edge on the other layer. Viewing from 
the edge (one-dimensional world), the chiral current J+ − J− is not conserved. This manifests 
the chiral anomaly, namely gauging the diagonal U(1) symmetry breaks axial U(1) symmetry -
an example of the ’t Hooft anomaly.

Although the U+(n) × U−(n) anomaly makes it impossible to gauge the whole group con-
sistently, it’s possible to gauge a subgroup of it. For example, if we only gauge the diagonal 
subgroup U(n) within U+(n) × U−(n), i.e., if

A := A+ = A−
ε := ε+ = ε−

then the two terms in Eq. (13) cancel out, hence the theory is anomaly free with respect to 
diagonal U(n) subgroup.

4.2. A heuristic way to determine the ’t Hooft anomaly

The discussions presented above require rather involved field theory calculations. However, 
there is a heuristic way to get the correct answer. The basis of this heuristic argument is the 
fact that if a theory can be defined on a lattice with all its (continuous) symmetry, then these 
symmetries can be gauged without anomaly. When an anomaly does occur, the above statement 
is reminiscent of the SPT physics, namely, the boundary modes of an SPT cannot be regularized 
on a lattice in the dimension of the boundary. In the following we shall again use the (1 + 1)-D 
complex class to illustrate the ideas.

Under Wilson’s regularization [13] (see later), whether a theory with global symmetry group 
G can be defined on a lattice, is determined by whether there is a mass term that respects G.4

Thus, a theory with the U+(n) × U−(n) anomaly, means no mass term is U+(n) × U−(n) sym-
metric. Again, this is the condition that the gaplessness of the boundary modes is symmetry 
protected.

4 Using Wilson’s regularization method [13], the existence of such a mass term is a sufficient condition for the theory 
to be regularizable on a lattice. However, it is more involved to show that it is the necessary condition [14].
12
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First, we show that no mass term is allowed if U+(n) × U−(n) symmetry is to be respected. 
Under U+(n) × U−(n) the fermion field transform as

ψ → (P+ ⊗ g+ + P− ⊗ g−)ψ where P± = I ± Z

2
.

Under such transformation, there is, e.g., no mass term preserving the axial UA(1) generated by 
ZIn. This is because according to Table 2 the mass terms have the form

ψ† (X ⊗ H1 + Y ⊗ H2)ψ.

In fact, the anomaly is not only in the axial UA(1) part. To see that, let’s consider n > 1. The 
diagonal U(n) symmetry requires that both H1 and H2 be proportional to the identity matrix. 
However, such mass term would break U+(n).

Now we show that if we relax the condition to only demanding the diagonal U(n) symmetry, 
there is a mass term. For example,

Mreg = X ⊗ In.

This means that we can then write down a lattice model in momentum space using Wilson’s 
regularization [13]

Ĥ =
∑
k∈BZ

ψ
†
k

[
sin k �1 + (1 − cosk)Mreg

]
ψk

where “BZ” stands for the Brillouin zone. We can Fourier transform the above hamiltonian back 
to the real space which gives us a lattice tight-binding model. The diagonal U(n) gauge field can 
then be introduced via Peierls’ substitution

ψ
†
j ψi → ψ

†
j eiAi,j ψi

for two adjacent sites i, j . Here Ai,j is the gauge connection from site i to j .

4.3. Discrete symmetry anomaly

A (global) discrete symmetry in a fermion theory can also be broken by regularization. In this 
subsection, we shall review the simplest example – the “parity anomaly” [15,16] of the (2 +1)-D 
Dirac fermions in the complex class.

When the anomaly-free U(n) symmetry is gauged, the low energy fermion action is given by

S =
∫

dτ d2x ψ† [(∂0 + i I ⊗ A0) − i�i (∂i + i I ⊗ Ai)]ψ (14)

where �1 = ZIn, �2 = XIn

Here Aμ is the n × n matrix-valued U(n) gauge field. Under the global emergent symmetries 
listed in Table 1, the gauged field transforms as

U(n): Aμ → g · Aμ · g†

Time reversal: Aμ → − (Aμ

)∗
Charge conjugation: Aμ → − (Aμ

)T
(15)

It’s easy to check that the low energy action Eq. (14) is invariant under the combined transfor-
mation of the fermion and the gauge field.
13
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As we saw in the preceding subsection, the condition for a symmetry to be anomaly-free is the 
theory can be regularized while preserving the symmetry. In the present case, to preserve U(n)

we need to choose a regularization that is U(n) invariant. In Wilson’s regularization [13] this 
amounts to choose a U(n) invariant regularization mass. The most general mass term is given by

M = mY ⊗ H,

where H is an n × n hermitian matrix with H 2 = In. When acted upon by the global U(n),

M → (I × g)† · M · (I × g)

(see Table 1). Requiring it to be invariant forces us to choose

Mreg = mY ⊗ In. (16)

Under Wilson’s regularization the momentum space Hamiltonian of the massless Dirac fermion 
(without gauge field) read,

Ĥ =
∑

k∈BZ

ψ
†
k

[
sin k1�1 + sin k2�2 + (2 − cosk1 − cosk2)Mreg

]
ψk (17)

To incorporate the gauge field, we Fourier transform the above equation back to real space and 
introduce the gauge field by Peierls’ substitution. This is all good as far as regularizing Eq. (14)
is concerned.

Under the action of the discrete symmetries, however

Charge conjugation: Mreg → − (I ⊗ In) · MT
reg · (I ⊗ In) = Mreg

Time reversal: Mreg → (Y ⊗ In) · M∗
reg · (Y ⊗ In) = −Mreg

Therefore charge conjugation is respected by the regularization, however, time-reversal symme-
try is not.

It was first shown by Redlich [15,16] that one can detect the time-reversal anomaly through 
the effective U(n) gauge action after integrating out the fermions. We reproduce his argument in 
the following. In momentum space (the Brillouin zone) we have four low energy Dirac fermions, 
each around a time-reversal invariant k points:

k = (0,0) + q : Ĥ(0,0) ≈
∑

small q

ψ
†
(0,0)+q [q1 �1 + q2 �2]ψ(0,0)+q (18)

k = (π,0) + q : Ĥ(π,0) ≈
∑

small q

ψ
†
(π,0)+q

[−q1 �1 + q2 �2 + 2mMreg
]
ψ(π,0)+q

k = (0,π) + q : Ĥ(0,π) ≈
∑

small q

ψ
†
(0,π)+q

[
q1 �1 − q2 �2 + 2mMreg

]
ψ(0,π)+q

k = (π,π) + q : Ĥ(π,π) ≈
∑

small q

ψ
†
(π,π)+q

[−q1 �1 − q2 �2 + 4mMreg
]
ψ(π,π)+q

Among the four, the first is massless and preserves the time-reversal symmetry. The remain-
ing three, however, acquire a large regularization mass, which is time-reversal breaking. In the 
presence of the U(n) gauge field, these massive Dirac fermions would each contribute a Chern-
Simons effective gauge action after the fermions are integrated out [16]. In particular, for each 
massive fermion the effective gauge action is
14
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1

2
× (±1) × i

4π

∫
AdA,

where the sign depends on the product of the signs in front of q1�1, q2�2, and Mreg. Combining 
them, the massive fermions contribute the following breaking effective action(

−1

2
− 1

2
+ 1

2

)
m

|m|
i

4π

∫
tr

[
AdA + 2i

3
A3
]

= − i

8π

∫
tr

[
AdA + 2i

3
A3
]

. (19)

This is time-reversal odd, as can be explicitly shown by replacing Aμ → − 
(
Aμ

)∗ and complex 
conjugating the action. As to the massless fermions near k = (0, 0), based on the fact that the 
first line of Eq. (18) is time reversal invariant so should their effective gauge action. Thus after 
regularization, the time-reversal symmetry of Eq. (14) is broken! As expected, charge conjuga-
tion is not broken by the regularization. Since T is broken while C is not, based on the CPT

invariance, the parity should also be broken.5

In Table 3, we summarize the maximal anomaly-free continuous symmetry and the dis-
crete symmetry that is broken after regularization. The only discrete symmetry which possesses 
anomaly occurs in (2 + 1)-D for the time-reversal symmetry. More detailed discussions are left 
to appendix C.

A disclaimer is in order, namely, in some cases the free fermion anomaly we discussed in this 
section might become trivial when interactions are considered. A simple example is shown in 
[17], and a more complete discussion on this subject can be found in Ref. [18]. We also note that 
this section is entirely devoted to flavor-symmetry-based anomalies. Naturally, the method and 
argument we used here might not be able to detect anomalies which are independent of the flavor 
symmetry.

5. Breaking the emergent symmetry by the mass terms

The mass terms discussed in the last section necessarily break some of the emergent symme-
tries in Table 1. This is because so long as the full emergent symmetries remain unbroken, the 
fermions will remain massless. In the rest of this section, we use one-dimensional examples to 
illustrate this.

5 In two space dimension, the “parity” transformation P is realized by spatial reflection. Take the reflection in x-
direction as an example, the fermion field transforms according to

ψ(τ, x, y)
P−→ XIn · ψ(τ,−x, y).

It is easy to see the that the regularization mass defined in Eq. (16) changes sign under P . However, the combined CPT

transformation leaves it invariant. Thus, there is no CPT anomaly. The same conclusion can be drawn by looking at the 
parity transformation of the effective gauge action. Under P the gauge field transforms as

Aτ (τ, x, y)
P−→Aτ (τ,−x, y)

Ax(τ, x, y)
P−→ − Ax(τ,−x, y)

Ay(τ, x, y)
P−→Ay(τ,−x, y)

Again, Eq. (19) changes sign under P , but is invariant under CPT .
15
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Table 3
The summary of the global symmetry groups and the anomaly-free parts of the sym-
metry groups of the massless fermions (and the bosonized non-linear sigma models) in 
(1 + 1)-D, (2 + 1)-D, and (3 + 1)-D.

(1 + 1)-D Real class Complex class

Global Symmetry

Discrete

Anti-unitary: T 2 = +1

Continuous unitary

Chiral O(n) × O(n)

Discrete

Anti-unitary: T 2 = +1

Unitary: C2 = +1

Continuous unitary

Chiral U(n) × U(n)

Anomaly free part Diagonal O(n), T Diagonal U(n), T , C

(2 + 1)-D Real class Complex class

Global Symmetry

Discrete

Anti-unitary: T 2 = −1

Continuous unitary

O(n)

Discrete

Anti-unitary: T 2 = −1

Unitary: C2 = +1

Continuous unitary

U(n)

Anomaly free part O(n) U(n), C

(3 + 1)-D Real class Complex class

Global Symmetry

Discrete

Anti-unitary: T 2 = −1

Continuous unitary

U(n)

Discrete

Anti-unitary: T 2 = −1

Unitary: C2 = +1

Continuous unitary

Chiral U(n) × U(n)

Anomaly free part O(n), T Diagonal U(n), T , C

5.1. Complex class

The mass terms for the complex class in (1 + 1)-D can be written as

ψ† (X ⊗ H1 + Y ⊗ H2)ψ = ψ†

[
0

(
QC
)†

QC 0

]
ψ.

When acted upon by the emergent symmetries in Eq. (2), QC transforms as

U+(n) × U−(n) : QC → g
†
− · QC · g+ (20)

Charge conjugation : QC →
(
QC
)∗

Time reversal : QC →
(
QC
)T

.

Thus a space-time constant QC breaks the emergent symmetry because both g+ and g− can 
be arbitrary unitary matrices.
16
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5.2. Real class

For the real class in (1 + 1)-D, the mass term can be written as

χ† [Y ⊗ S + X ⊗ (iA)]χ = χT

[
0 −i

(
QR
)T

iQR 0

]
χ. (21)

When the emergent symmetries in Eq. (5) acts on it QR transforms as

O+(n) × O−(n) : QR → gT− · QR · g+

Time reversal : QR →
(
QR
)T

.

Therefore a space-time non-zero QR breaks the emergent symmetry because both g+ and g−
can be arbitrary orthogonal matrices.

6. Restoring the emergent symmetries

So far we have seen that space-time constant QC or QR breaks the emergent symmetry. 
But what if QC and QR fluctuates in space-time? As in statistical mechanics, when the order 
parameters fluctuate, the broken symmetry can be restored. Likewise, if we fluctuate QC and 
QR over the appropriate mass manifold we expect the emergent symmetry to be restored.

Our approach is conceptually similar to that in Ref. [19,20] where, on the surface of the 
topological insulator, the fluctuating superconducting order parameters restore the symmetries of 
the massless fermions. The important difference is that the required order parameter fluctuation 
in Ref. [19,20] is not smooth, because it involves the proliferation of superconducting vortices. 
Since the structure of vortex cores, e.g., the fermion zero modes, is important in that approach, 
and such structure depends on the short-distance physics, this approach is constrained to the 
surface of SPTs where regularization is not an issue. In contrast, our goal is to bosonize the low 
energy effective theory, where the emergent symmetry is necessarily broken at short distances 
(due to anomaly). As the result, we restrict our order parameter to be smooth in space and time, 
so that they act on the low energy theory only.

But what does “appropriate mass manifold” mean? For complex class in (1 +1)-D, QC needs 
to fluctuate over the space formed by n ×n unitary matrices, or U(n). Such a space is connected 
and has a single component. On the other hand for the real class in 1D, QR needs to fluctuate 
in the space formed by n × n orthogonal matrices, or O(n). This space has two disconnected 
components, corresponding to det[QR] = ±1. It’s only when QR fluctuates in both components 
with the equal statistical weight we can restore the emergent symmetry.

In (3 + 1)-D the mass manifold consists of a single component, in which QC,R fluctuate. 
However, in (2 + 1)-D the mass manifold in complex class is ∪n

l=0
U(n)

U(l)×U(n−l)
which contains 

n + 1 disconnected components. Here QC needs to fluctuate in the component l = n/2 in order 
to restore the time reversal symmetry.6 In real class, the mass manifold in two space dimension 
is ∪n

l=0
O(n)

O(l)×O(n−l)
, and QR needs to fluctuate in the l = n/2 component in order to restore the 

time reversal symmetry. We summarize the results for higher dimensions in Table 4 and leave 
the detail in appendix B.

6 Of course this requires n to be even.
17
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Table 4
The summary of the symmetry transformations of QR,C , and the mass manifolds in which the QR,C fluctuations can 
restore the full emergent symmetries.

(1 + 1)-D Real class Complex class

Symmetry transformations

of QC,R
T : QR →

(
QR

)T
O+(n) × O−(n) : QR → gT− · QR · g+

T : QC →
(
QC

)T
C : QC →

(
QC

)∗
U+(n) × U−(n) :

QC → g
†
− · QC · g+

The mass manifold required to

restore the full emergent symmetries
O(n) U(n)

(2 + 1)-D Real class Complex class

Symmetry transformations

of QC,R
T : QR → −QR

O(n) : QR → gT · QR · g

T : QC → −
(
QC

)∗
C : QC →

(
QC

)T
U(n) : QC → g† · QC · g

The mass manifold required to

restore the full emergent symmetries

O(n)
O(n/2)×O(n/2)

for n ∈ even

U(n)
U(n/2)×U(n/2)

for n ∈ even

(3 + 1)-D Real class Complex class

Symmetry transformations

of QC,R
T : QR →

(
QR

)∗
U(n) : QR → uT · QR · u

T : QC →
(
QC

)∗
C : QC →

(
QC

)T
U+(n) × U−(n) :

QC → g
†
− · QC · g+

The mass manifold required to

restore the full emergent symmetries
U(n)
O(n)

U(n)

7. The conditions for the effective theory being bosonic

In order to achieve bosonization, the fermions in Eq. (1) and Eq. (4) must not appear in 
the low energy theory. To ensure that, we need to impose some conditions on the space-time 
dependence of QC and QR. Namely, as functions of x and τ , QC(τ, x) and QR(τ, x) needs to 
fluctuate smoothly (comparing with the length and time scale set by m). Under such conditions, 
the original fermions can be integrated out, yielding a non-linear sigma model for the order 
parameters. The idea is similar to that encountered in magnetism, where electrons form local 
moments. After integrating out the electrons we arrive at an effective theory – a non-linear sigma 
model describing the fluctuations of the local moments in space and time.

8. Fermion integration

In this section, using (1 + 1)-D as an example, we shall describe how to integrate out the 
fermions. In higher spatial dimensions we shall present the results while leaving the details in 
appendix D.
18
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8.1. Complex class

The fermion action with a space-time dependent mass term reads

S = ∫ dτ dx ψ†
[
∂0 − i�1∂1 + mM̂(τ,x)

]
ψ (22)

where and �1 = ZIn, and

{�1, M̂(t,x)} = 0, and M̂(τ,x)2 = I2n. (23)

The M̂(τ, x) that satisfies Eq. (23) is given by

M̂(τ,x) = m [X ⊗ H1(τ,x) + Y ⊗ H2(τ,x)] .

For smooth order parameter configurations M̂(τ, x), the fermion integration can be done via 
gradient expansion. (See [21] for example. We shall convert the action to a Lorentz invariant 
form and present the general formalism applicable for all spatial dimensions in appendix D.)
The resulting effective action consists of two types of terms: the non-topological and topological 
terms. For the non-topological term (the stiffness term) we shall keep the one with the smallest 
number of space-time derivatives (they are the most relevant in the renormalization group sense). 
The topological term is dimensionless. In (1 + 1)-D, explicit fermion integration yields (see 
appendix D for details)

W [QC] = 1

8π

∫
M

d2x tr
[
∂μQC†∂μQC

]
− 2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]

, (24)

where QC is given in Eq. (10) and Eq. (11). The first term in Eq. (24) is the stiffness term and 
the second is the Wess-Zumino-Witten (WZW) topological term. Eq. (24) reproduces the level-1 
U(n) (abbreviated as U(n)1) WZW model in Witten’s non-abelian bosonization [5]. Note that the 
symbol “tr” means tracing over the n × n portion of the matrix. (In doing fermion integration, 
we have already traced out the matrix part involving γ μ’s.) In Eq. (24) M is the space-time 
manifold, and B is the extension of the space-time manifold M so that

∂B = M.

In addition, Q̃C(u, x) is an extension field of QC(x) so that

Q̃C(u = 1, x) = QC(x) and

Q̃C(u = 0, x) = constant

In the equation above, “constant” means a space-time independent matrix.
For simplicity we shall focus on the space-time manifold M = SD so that B is a D + 1-

dimensional disk. The reason for this choice is to ensure the extension Q̃C(u, x) exists. Because 
we require a smooth evolution from QC(u = 0, x) to Q̃C(u = 1, x) (x denotes (τ, x)), it means 
the mapping

QC : (u = 1, x) → mass manifold

is homotopically equivalent to the mapping

QC : (u = 0, x) → mass manifold.
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Since Q̃C(u = 0, x) = constant is homotopically trivial, a necessary condition for the smooth 
extension to exist is

πD(mass manifold) = 0,

i.e., all smooth mappings from the space-time manifold to the mass manifold are homotopically 
trivial. It turns out this condition is met for sufficiently large n in all spatial dimensions. We shall 
return to this point in appendix B, D, and H. For (1 + 1)-D, π2(U(n)) = 0 for any n.

For the WZW term to be well defined, it had better not depend on the extension. When there 
are two different extensions on the D + 1 dimensional disk, say one defined by Q̃C

1 on B1 and 
the other by Q̃C

2 on B2, the difference in the WZW term associated with these two extensions is 
given by

�WWZW [Q̃C] = − 2πi

24π2

∫
B1∪(−B2)

tr
[(

Q̃C†dQ̃C
)3 ]

(25)

where −B2 is the mirror reflection of B2. Since B1 ∪ (−B2) = SD+1, removing the factor 2πi, 
Eq. (25) is the topological invariant associated with π2+1(mass manifold). It turns out that for 
all relevant cases, πD+1(mass manifold) =Z (see appendix B). In (1 + 1)-D, π3(U(n)) = Z for 
n ≥ 2 (n = 1 corresponds to flavorless or spinless fermion where the bosonization is abelian). 
The coefficient of the WZW term renders �WWZW = 2πi × integer. The fact that the WZW 
term is 2πi times the topological invariant implies the level (k) is 1. After the exponentiation, 
the phase factor associated with the WZW term is well-defined.

8.2. Real class

The 1+1-D Majorana fermion action with a space-time dependent mass read

S =
∫

dτ dx χT
[
∂0 − i�1∂1 + mM̂(τ,x)

]
χ (26)

where

�1 = ZIn and M̂(τ,x) = [Y ⊗ S + X ⊗ (iA)] .

Following the same steps discussed in the last subsection, fermion integration yields the fol-
lowing effective action (see appendix D)

W [QR] = 1

16π

∫
M

d2x tr
[
∂μQRT ∂μQR

]
− 2πi

48π2

∫
B

tr
[(

Q̃RT dQ̃R
)3 ]

. (27)

Eq. (27) is the O(n)k=1 WZW model. Again, Q̃R(u, x) is extension field of QR(x), which 
exists if πD(mass manifold) = 0. In (1 + 1)-D, π2(O(n)) = 0 for n ≥ 3. Here the difference in 
the WZW term associated with two different extensions is the topological invariant associated 
with π3(O(n)) = Z for relevant n (see appendix B). The coefficient of the WZW term renders 
�WWZW = 2πi × integer hence yields the same phase factor upon exponentiation. Again, the 
fact that the WZW term is 2πi times the topological invariant implies the level (k) is 1.

Thus, for both complex and real classes, the bosonization of massless fermion is the non-
linear sigma model with WZW term. This reproduces Witten’s non-abelian bosonization results, 
which was obtained using a totally different method (the current algebra).
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Table 5
The n values above which the πD+1(mass manifold) is stabilized.

Real class complex class

(1 + 1)-D
O(n)1 WZW term
stabilized for n ≥ 3

U(n)1 WZW term
stabilized for n ≥ 2

(2 + 1)-D

[
O(n)

O(n/2)×O(n/2)

]
1

WZW term

stabilized for n ≥ 6

[
U(n)

U(n/2)×U(n/2)

]
1

WZW term

stabilized for n ≥ 4

(3 + 1)-D
[U(n)/O(n)]1 WZW term
stabilized for n ≥ 5

U(n)1 WZW term
stabilized for n ≥ 3

The above bosonization scheme can be straightforwardly generalized to higher dimensions. 
One thing that needs some care is the fact that the homotopy group of the mass manifold depends 
on n. For n exceeds certain value πD+1(mass manifold) = Z. In that case fermion integration 
does lead to a nonlinear sigma model with k = 1 WZW term. However, for small n (before the 
“homotopy stabilization”) sometimes, e.g., πD+1(mass manifold) = 0. We shall discuss one such 
instance in appendix H. Fortunately, for the vast majority of applications n is sufficiently big so 
that πD+1(mass manifold) = Z.

9. Non-linear sigma models in (2 + 1)-D and (3 + 1)-D

As mentioned, the bosonization strategy described in the preceding section can be applied to 
two and three spatial dimensions. To facilitate later discussions, including the applications in (2 +
1)-D and (3 +1)-D, the explicit form of the nonlinear sigma models in Table 5 are given here. For 
briefness, we shall only include the results for sufficiently large n so that πD+1(mass manifold) =
Z. As discussed earlier, under such conditions the non-linear sigma model possesses a WZW 
term.

9.1. Complex class in (2 + 1)-D

For Dirac fermions with n flavors in the complex class, after bosonization the sigma model 
matrix field (or the order parameter) lives in the space of complex Grassmannian, namely,

QC(x) ∈ U(n)

U(n/2) × U(n/2)
.

This means that at any space-time point x, QC(x) is an n × n hermitian matrix with half of the 
eigenvalues +1, and the other half −1. One can specify QC(x) by the unitary matrix, C(x), 
which renders QC(x) diagonalized upon similarity transformation, i.e.,

QC(x) = C(x) ·
(

In/2 0
0 −In/2

)
· C†(x).

Obviously two different C(x)s related by

C′(x) = C(x) ·
(

g1(x) 0
0 g2(x)

)
,

21



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
where g1(x), g2(x) ∈ U(n/2), will lead to identical QC(x). Due to this redundancy, the order 
parameter lives in the quotient space U(n)

U(n/2)×U(n/2)
.

Explicit fermion integration yields the following non-linear sigma model

W [QC] = 1

2λ3

∫
M

d3x tr
[(

∂μQC
)2]− 2πi

256π2

∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
, (28)

where λ3 is a parameter having the dimension of length. In the limit where the short distance 
cutoff is zero,

λ3 = 8π

m
(29)

where m is the fermion energy gap.
The first term in Eq. (28) is the stiffness term and the second is the level-1 (k = 1) 

Wess-Zumino-Witten term. Q̃C(x, u) is the extended field of QC(x), which exist because 
π3(

U(n)
U(n/2)×U(n/2)

) = 0 for n ≥ 4. The difference in the WZW term associated with two different 

extensions is 2πi times the topological invariant associated with π4(
U(n)

U(n/2)×U(n/2)
) = Z. Con-

sequently upon exponentiation, different extensions yield the same phase factor. (To recapitulate 
the explanation, the readers are referred to subsection 8.1.)

9.2. Real class in (2 + 1)-D

For massless n-flavor Majorana fermions in the real class, the fluctuating order parameters 
QR(x) lives in the space of real Grassmannian, namely,

QR(x) ∈ O(n)

O(n/2) × O(n/2)
.

This means that at any space-time point x, QR(x) is an n × n real symmetric matrix, with half 
of the eigenvalues +1, and the other half −1. One can specify QR(x) by the orthogonal matrix, 
R(x), required to render QR(x) diagonalized, namely,

QR(x) = R(x) ·
(

In/2 0
0 −In/2

)
· RT (x).

Two different R(x)s related by

R′(x) = R(x) ·
(

g1(x) 0
0 g2(x)

)
,

where g1(x), g2(x) ∈ O(n/2), will lead to identical QR(x). Due to this redundancy, the order 
parameter lives in the quotient space O(n)

O(n/2)×O(n/2)
.

Explicit fermion integration leads to the following non-linear sigma model

W [QR] = 1

4λ3

∫
M

d3x tr
[(

∂μQR
)2]− 2πi

512π2

∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]
. (30)

Again, λ3 has the dimension of length, and in the limit where the short-distance cutoff is zero λ3
is given by Eq. (29).

The first term in Eq. (30) is the stiffness term and the second is the Wess-Zumino-Witten 
topological term of level k = 1. Q̃R(x, u) is the extended field of QR(x), which exist because 
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π3(
O(n)

O(n/2)×O(n/2)
) = 0 for n ≥ 6. The difference in the WZW term associated with two differ-

ent extensions is 2πi times the topological invariant associated with π4(
O(n)

O(n/2)×O(n/2)
) = Z. 

Consequently upon exponentiation different extensions yield the same phase factor. (Again, to 
recapitulate the explanation, the readers are referred to subsection 8.2.)

9.3. Complex class in (3 + 1)-D

For the n-flavor massless Dirac fermions in the complex class, the fluctuating order parameters 
QC(x) lives in the space of n × n unitary matrices, namely,

QC(x) ∈ U(n).

Explicit fermion integration leads to the following non-linear sigma model

W [QC] = 1

2λ2
4

∫
M

d4x tr
[
∂μQC∂μQC†

]
− 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

, (31)

where λ4 has the dimension of length. Using dimensional regularization λ4 is given by

1

λ4
=
[
�(0+)m2

8π2

]1/2

, (32)

signifying that λ4 is cutoff-dependent. Here �(0+) is the gamma function evaluated at 0+ from 
dimensional regularization (see appendix D for the details).

The first term in Eq. (28) is the stiffness term and the second is the level k = 1 Wess-Zumino-
Witten term. Q̃C(x, u) is the extended field of QC(x), which exist because π4(U(n)) = 0 for 
n ≥ 3. The difference in the WZW term associated with two different extensions is 2πi times the 
topological invariant associated with π5(U(n)) = Z. Consequently upon exponentiation different 
extensions yield the same phase factor. (Again, to recapitulate the explanation, the readers are 
referred to subsection 8.1.)

9.4. Real class in (3 + 1)-D

For the n-flavor massless Majorana fermions in the complex class, the fluctuating order pa-
rameters QR(x) lives in the space of “real Lagrangian Grassmannian”, namely,

QR(x) ∈ U(n)

O(n)
.

This means that at any space-time point x, QR(x) is an n ×n symmetric unitary matrix. Accord-
ing to the Autonne decomposition (e.g., corollary 2.6.6 of [22]), any symmetric unitary matrix 
can be decomposed into

QR(x) = W(x) · WT (x),

where W(x) is unitary. Hence, two different W(x)s related by

W ′(x) = W(x) · g(x),

where g(x) ∈ O(n), will lead to identical QR(x). Due to this redundancy, the order parameter 
lives in the quotient space U(n) .
O(n)
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Explicit fermion integration yields the following non-linear sigma model

W [QR] = 1

4λ2
4

∫
M

d4x tr
[
∂μQR∂μQR†

]
− 2π

960π3

∫
B

tr
[(

Q̃R†dQ̃R
)5 ]

. (33)

The first term in Eq. (30) is the stiffness term and the second is the level k = 1 Wess-
Zumino-Witten topological term. Q̃R(x, u) is the extended field of QR(x), which exist because 
π4(U(n)/O(n)) = 0 for n ≥ 5. The difference in the WZW term associated with two dif-
ferent extensions is 2πi times the topological invariant associated with π5(U(n)/O(n)) = Z. 
Consequently upon exponentiation different extensions yield the same phase factor. (Again, to 
recapitulate the explanation, the readers are referred to subsection 8.2.)

In Table 5 we summarize the n values above which πD+1(mass manifold) is stabilized. We 
shall discuss some of the small n cases which are relevant to our applications in appendix H.

9.5. The value of the stiffness constant and the phases of non-linear sigma models

Unlike in (1 + 1)-D, the stiffness constants of the non-linear sigma models in (2 + 1)-D 
and (3 + 1)-D are dimensionful parameters. A natural question then arises, how does the values 
of these parameters determine the phase of the non-linear sigma models? For small λ3 and λ2

4
the action costs of space-time varying QR,C is large, hence we expect spontaneous symmetry 
breaking to occur. Quantum disorder sets in for large λ3 and λ2

4. In the presence of the WZW 
term, the quantum disordered phase is gapless. It is in the latter phase do the non-linear sigma 
models represent the massless free fermions.

10. Non-linear sigma models as the effective theories of interacting fermion models

As we have seen in section 9, while the coefficient in front of the stiffness term in the 
non-linear sigma model is dimensionless in (1 + 1)-D, those in (2 + 1)-D and (3 + 1)-D are 
dimensionful parameters. This begs the question of what are these parameters? and for what 
values of these parameters are the non-linear sigma models equivalent to the massless fermion 
theories? In addition, for D = 2 + 1 the mass manifold consists of more than one connected 
components. What kind of model can realize phases correspond to different components of the 
mass manifold? In the following, we answer these questions by focusing on the complex class. 
It is straightforward to generalize the result to the real class.

As listed in Table 2, the mass terms correspond to QC are given by

(1 + 1)-D : M[QC] = X ⊗ 1

2

[
QC +

(
QC
)†
]

+ Y ⊗ 1

2i

[
QC −

(
QC
)†
]

(2 + 1)-D : M[QC] = Y ⊗ QC

(3 + 1)-D : M[QC] = YX ⊗ 1

2

[
QC +

(
QC
)†
]

+ YY ⊗ 1

2i

[
QC −

(
QC
)†
]

(34)

Let’s consider the four-fermion interacting generated by the following inverse Hubbard-
Stratonovich transformation,

exp
{
−SI

[
ψ†,ψ

]}
:=
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∫
D [Q(x)] exp

{
−
∫

dDx

[
ψ† M[Q(x)] ψ + 1

2λI

tr
[
Q(x)†Q(x)

]]}
(35)

where Q(x) is an n × n matrix-valued function of space-time. We note that the strength of the 
four fermion interaction in Eq. (35) is proportional to λI .

The emergent global symmetries transform Q(x) in exactly the same way as QC (see Table 1). 
This is because Q(x) and QC couple to the same fermion bi-linears. Such transformation can be 
absorbed by the redefinition of the integration variable Q(x). Therefore as long as the integration 
measure in Eq. (35) is symmetric under the symmetry transformations, SI is invariant under the 
action of emergent symmetries.

When λI is sufficiently large, it is energetically favorable for

tr
[
〈Q†(x)Q(x)〉

]
to acquire a non-zero expectation value. Assuming such expectation value doesn’t spontaneously 
break the continuous symmetry7 it must satisfy

〈Q†(x)Q(x)〉 → g† · 〈Q†(x)Q(x)〉 · g = 〈Q†(x)Q(x)〉
for all g ∈ U(n) (for (1 + 1)-D and (3 + 1)-D g ∈ U+(n)). This requires the expectation value of 
Q†(x)Q(x) to be proportional identity matrix,

〈Q†(x)Q(x)〉 = κ2In

where κ2 should grow monotonically with λI . At low energy and long wavelength, the dynamics 
of Q is governed by the Goldstone modes QC(x), where

Q(x) → κQC(x), and
(
QC
)†

QC = In.

The manifold in which QC(x) fluctuates is exactly the mass manifold given in Table 2.
The effective action governing the fluctuations of QC(x) is given by the results of section 9, 

where the stiffness term coefficients 1
2λ3

and 1
2λ2

4
should grow with κ2 which, in turn, mono-

tonically increases with λI . As the result, strong four-fermion interaction implies small λ3 and 
λ2

4, while weak four fermion-interaction implies large λ3 and λ2
4. Thus, we obtain a duality-

like relation, namely, strong coupling fermion theory corresponds to weak coupling non-linear 
sigma model, and weak coupling fermion theory corresponds to strong coupling non-linear sigma 
model. Since, by dimension counting, local four-fermion interaction is an irrelevant perturbation 
to the massless theory in (2 + 1)- and (3 + 1)-D, we expect there is a range of large λ3 and λ2

4
where the non-linear sigma model is massless.

Now we come to (2 + 1)-D, where according to Table 2, the mass manifold has n + 1 com-
ponents, namely,

QC ∈
n⋃

l=0

U(n)

U(l) × U(n − l)
.

(Here l corresponds to the number positive eigenvalues of QC(x), the readers are referred to 
appendix B for details.) The condition that the order parameter is a smooth function of space-time 
confines QC(x) to fluctuate in one of the mass manifold components. If such fluctuation is to 

7 The possible symmetry breaking phases are captured by the non-zero expectation value 〈Q(x)〉.
25



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
restore the time-reversal symmetry, it further restricts l = n/2 (we focus on n = even). However, 
if we allow the possibility of spontaneous time-reversal symmetry breaking, then QC(x) can 
fluctuate in the l �= n/2 mass manifold. It is interesting whether the order parameter fluctuation 
in the l �= n/2 mass manifolds can restore the unitary part of the emergent symmetry, and if it 
does can the resulting phase be gapless.

11. Global symmetries of the non-linear sigma models

Up to this point, we have derived the non-linear sigma model. The bosonic partition function 
is given by

Z =
∫

D[QC,R] e
−SNLσ

[
QC,R

]
.

Here QC,R ∈ mass manifolds, and the integration measure is defined so that at every space-time 
point QC,R and the symmetry transformed QC,R (see Table 5) have the same weight.

Now, using the complex class in (1 + 1)-D as an example, we demonstrate that the non-linear 
sigma model in Eq. (24) respects the emergent symmetries of the massless free fermion theory. 
Under the action of the global emergent symmetries, a configuration QC(τ, x) transforms by 
Eq. (20), namely,

U+(n) × U−(n) : QC(τ,x) → g
†
− · QC(τ,x) · g+

Charge conjugation : QC(τ,x) →
(
QC(τ,x)

)∗

Time reversal : QC(τ,x) →
(
QC(τ,x)

)T

.

Under the action of U+(n) × U−(n)

QC†∂μQC → g
†
+ ·
(
QC†∂μQC

)
· g+

Due to the cyclic invariance of trace, the similarity transformations cancel out and the action 
Eq. (24) is invariant.

Under charge conjugation, the stiffness term transforms as

− 1

8π

∫
M

d2x tr

[(
QC†∂μQC

)2
]

→ − 1

8π

∫
M

d2x tr

[(
QCT ∂μQC∗)2

]

= − 1

8π

∫
M

d2x tr
[(

∂μQC†QC
)(

∂μQC†QC
)]

= − 1

8π

∫
M

d2x tr
[(

QC†∂μQC
)(

QC†∂μQC
)]

hence is invariant. Here the first equality in the second line is due to the invariance of trace under 
transposing, and the second equality is due to ∂μQC†QC = −QC†∂μQC . A similar argument 
applies to the WZW term,
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2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]→ 2πi

24π2

∫
B

tr
[(

Q̃CT dQ̃C∗)3 ]

= − 2πi

24π2

∫
B

tr
[(

dQ̃C†Q̃C
)3 ]= 2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]

.

The extra minus sign in the second line is because transposing causes an odd number of crossing 
of the differential 1-forms. This negative sign is canceled out in the last term due to the odd 
number of negative signs arising from dQC†QC = −QC†dQC . Therefore Eq. (24) is invariant 
under charge conjugation.

Under the action of time-reversal transformation, the stiffness term transforms as

1

8π

∫
M

d2x tr
[
∂μQC†∂μQC

]
→ 1

8π

∫
M

d2x tr
[
∂μQC∗∂μQCT

]

= 1

8π

∫
M

d2x tr
[
∂μQC∂μQC†

]
= 1

8π

∫
M

d2x tr
[
∂μQC†∂μQC

]

As for the WZW term, note that the i in front becomes −i due to the complex conjugation 
involved in the time-reversal transformation.8 Thus the WZW term transforms as

2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]→ − 2πi

24π2

∫
B

tr
[(

Q̃C∗dQ̃CT
)3 ]

= 2πi

24π2

∫
B

tr
[(

dQ̃CQ̃C†
)(

dQ̃CQ̃C†
)(

dQ̃CQ̃C†
)]

= 2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]

(36)

The disappearance of the minus sign in the second line is because transposing causes an odd 
number of crossings of differential 1-forms. The passing to the third line follows from the cyclic 
invariance of trace.

In summary, the non-linear sigma model is invariant under the action of the global emergent 
symmetries. The same conclusion applies to the real and complex classes nonlinear sigma models 
in other space-time dimensions. The detail is left in appendix D.

12. The symmetry anomalies of the nonlinear sigma models

A necessary condition for the bosonized non-linear sigma model to be equivalent to the mass-
less fermion theory is that the former has the same symmetry anomalies as the original massless 
fermion theories. In this section, we will show this is indeed the case.

8 The time-reversal symmetry in Euclidean space-time requires a complex conjugation on the Boltzmann weight. It is 
important to check whether a term is real or complex before deciding how time-reversal transformation acts.
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12.1. Gauging the non-linear sigma models and the ’t Hooft anomalies

In Table 3 we see that in (1 + 1)-D and (3 + 1)-D, the massless free fermion theories have 
the ’t Hooft anomalies (with respect to the continuous symmetries). In this subsection, we first 
gauge the non-linear sigma models and then determine their ’t Hooft anomalies.

Again, taking the complex class (1 + 1)-D example, under an infinitesimal U+(n) × U−(n)

transformation, QC and gauge fields transformed as

QC → e−iε−QCeiε+

A± → A± + dε± + i[A±, ε±] (37)

where we let g± = eiε± in the symmetry transformation. For the stiffness term, the usual minimal 
coupling guarantees the gauge invariance

Wstiff[QC,A+,A−] = − 1

8π

∫
M

d2x tr

[(
QC†

(
∂μQC − iQCA+,μ + iA−,μQC

))2
]

.

However, it is less clear how to gauge the WZW term. Here we follow Witten’s “trial-and-error” 
method [23], which we shall explain in the following.

First, we determine the variation of the WZW term when QC undergoes space-time dependent 
transformation given by the first line of Eq. (37)

δ
[
− i

12π

∫
B

tr

[(
QC†dQC

)3
]]

= 1

4π

∫
M

tr
[
dε+

(
QC†dQC

)
+ dε−

(
dQCQC†

)]

Here we remark that although writing down the action requires the extended space-time manifold 
B, the variation of the action can be expressed solely in the space-time manifold M, which is 
(1 + 1)-D in the example.

In an attempt to make the theory gauge invariant, we subtract a term with dε± replaced by 
A±. Together, the gauge variant part becomes

δ
[
− i

12π

∫
B

tr

[(
QC†dQC

)3
]

− 1

4π

∫
M

tr
[
A+
(
QC†dQC

)
+ A−

(
dQCQC†

)]]

= − i

4π

∫
M

tr
[
A+
(
dε+ − QC†dε−QC

)
+ A−

(
−dε− + QCdε+QC†

)]

Last, we repeat the previous step by adding another term with dε± in the above equation 
replaced by A±. After some work we obtain

δ
[
− i

12π

∫
B

tr

[(
QC†dQC

)3
]

− 1

4π

∫
tr
[
A+
(
QC†dQC

)
+ A−

(
dQCQC†

)
+ iA+QC†A−QC

]]

M
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= − i

4π

∫
M

tr
[
A+dε+ − A−dε−

]

Now the gauge variant part contains no QC anymore. Hence we cannot find any term to cancel 
the remaining non-gauge-invariance. This result reproduces Bardeen’s result in Eq. (13).

In summary, the gauged WZW model is given by

W [QC,A+,A−] = − 1

8π

∫
M

d2x tr

[(
QC†

(
∂μQC − iQCA+,μ + iA−,μQC

))2
]

− i

12π

∫
B

tr

[(
QC†dQC

)3
]

− 1

4π

∫
M

tr
[
A+
(
QC†dQC

)
+ A−

(
dQCQC†

)
+ iA+QC†A−QC

]]
.

Moreover, we have shown that it has the same ’t Hooft anomaly for the continuous symmetry as 
the original massless fermion. In appendix F we summarize the gauged non-linear sigma model 
in d = 1, 2, 3.

12.2. Discrete symmetry anomalies

In section 4.3, we saw that massless fermion theory has a time-reversal anomaly for the com-
plex class in (2 + 1)-D. This anomaly originates from the massive Dirac fermion at time reversal 
invariant k points other than k = (0, 0) where the mass breaks time-reversal. We would like to 
see the same phenomenon in the nonlinear sigma model.

In the following, we focus on the complex class in (2 + 1)-D. First, let’s focus on the vicinity 
of k = 0 (under Wilson’s regularization). The bosonized model is given by Eq. (28). Following 
Witten’s trial-and-error method discussed in the preceding subsection (see appendix F for the 
detail), we obtain the following gauged nonlinear sigma model,

W [QC,A] = 1

2λ3

∫
M

d3x tr
[(

∂μQC + i[Aμ,QC]
)2]

(38)

− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]

+8
∫
M

tr
[
iAQC(dQC)2 − (AQC)2dQC

− i

3
(AQC)3 + iA3QC − AQCF − AFQC

]}
This action is invariant under global symmetry transformations where the gauge field and QC are 
transformed according to Eq. (15) and Table 4. This is expected, given the low energy fermion 
theory near k = 0 respects these symmetries.

For the Dirac fermions near k = (π, 0), (0, π), and (π, π), there are time reversal breaking 
masses, namely, M = 2m Y ⊗ In for k = (π, 0), (0, π) and M = 4m Y ⊗ In for (π, π). The 
non-linear sigma model describes these massive fermions is again given by Eq. (38) except that 
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now l = n or 0. Due to the signs in front of q1�1 and q2�2 at k = (π, 0), (0, π), and (π, π) the 
effective mass sign for these massive fermions are given by

ηk := sign of (q1�1) × sign of (q2�2) × sign of (m).

Consequently the QC associated with the massive fermions obeys

QC = ηkIn. (39)

We can thus use the gauged nonlinear sigma model in appendix F to predict the Chern-Simons 
term due to the massive fermions at k = (π, 0), (0, π), and (π, π) by plug in Eq. (39). For these 
space-time constants QC we can drop all the terms with derivatives on QC . The remaining 
can be combined into the Chern-Simons term. Summing the contribution from k around (π, 0), 
(0, π), and (π, π), we get

W(π,0) + W(0,π) + W(π,π) =
(

−1

2
− 1

2
+ 1

2

)
m

|m|
i

4π

∫
tr

[
AdA + 2i

3
A3
]

= − i

8π

∫
tr

[
AdA + 2i

3
A3
]

which agrees with Eq. (19).
As for other discrete symmetry anomalies, with the input of how QC,R and the gauge field 

transform under discrete symmetries, it’s simple to show that in (1 + 1)-D and (3 + 1)-D, there 
is no discrete-symmetry-anomaly after gauging the anomaly-free part of the continuous sym-
metries. In (2 + 1)-D, gauging the continuous symmetry breaks the time-reversal symmetry as 
discussed in subsection 12.2.

In appendix F, we show that all the symmetry anomalies of massless fermions in Table 3 are 
reproduced by the corresponding gauged nonlinear sigma models. This lends strong support to 
the idea that the nonlinear sigma models are equivalent to the original massless fermion theories.

13. Soliton of the non-linear sigma models and the Wess-Zumino-Witten terms

In order for the bosonization to hold, somehow the bosonic non-linear sigma model must 
possess fermion degrees of freedom. In this section, we show that due to the WZW term, the 
solitons of the non-linear sigma model are fermions.

13.1. Soliton classification

Soliton is a spatial texture of the “order parameter” (QC,R). Such texture represents a non-
trivial mapping from the spatial space to the mass manifold, i.e., the space where the order 
parameter lives. In d spatial dimension, solitons are classified by the d-th homotopy group of the 
mass manifold, namely,

πd (mass manifold) .

In appendix B, we list the relevant homotopy groups. Since exchange statistics only make sense 
for spatial dimension greater than one, in the following we shall focus on d ≥ 2. For the nonlinear 
sigma models considered in section 9, when n is sufficiently large so that there is a WZW term, 
the soliton classifications are Z for the complex classes, and are Z2 for the real classes, namely,
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π2

( U(n)

U(n/2) × U(n/2)

)
= Z for n ≥ 4

π2

( O(n)

O(n/2) × O(n/2)

)
= Z2 for n ≥ 6

π3

(
U(n)

)
= Z for n ≥ 3

π3

(U(n)

O(n)

)
= Z2 for n ≥ 5

This means that for the complex classes, we can define a topological quantum number, namely, 
the “soliton charge” Qsol. When we fuse two solitons of different charges, Qsol adds; for the real 
classes, on the other hand, this soliton charge is defined mod 2 so that two solitons with unit 
soliton charges can fuse into zero soliton charge.

13.2. Soliton charge and the conserved U(1) charge Q

For the complex classes, it is natural to ask what is the relation between the soliton charge 
Qsol and the conserved charge Q. The conserved charge Q is associated with a global U(1) 
symmetry. In (3 + 1)-D such U(1) symmetry belongs to a diagonal subgroup of U+(n) ×U−(n). 
As shown in Table 3, it is anomaly-free. For (2 + 1)-D the U(1) symmetry is a subgroup of the 
global symmetry group U(n), which is also anomaly-free according to Table 3.

In appendix F we present the gauged non-linear sigma model. In particular, by focusing on 
the term linear in the gauge field (associated with the anomaly-free U(1) subgroup) derived from 
the WZW term, we can extract the U(1) current. The answer is9

(2 + 1)-D : Jμ = − i

16π
εμνρ tr

[
QC∂νQ

C∂ρQC
]

(40)

(3 + 1)-D : Jμ = − 1

24π2 εμνρσ tr
[(

QC†∂νQ
C
)(

QC†∂ρQC
)(

QC†∂σ QC
)]

.

Thus the U(1) charge given by

(2 + 1)-D : Q = − i

16π

∫
d2x εij tr

[
QC∂iQ

C∂jQ
C
]

(3 + 1)-D : Q = − 1

24π2

∫
d3x εijktr

[(
QC†∂iQ

C
)(

QC†∂jQ
C
)(

QC†∂kQ
C
)]

.

These are, in fact, exactly the same expression as the topological invariant corresponding to 
π2(

U(n)
U(n/2)×U(n/2)

) = Z in (2 + 1)-D and π3(U(n)) = Z in (3 + 1)-D (see appendix B for the 
details). Thus, for both cases

Q = Qsol. (41)

13.3. Statistics of soliton

One way to derive the statistics of soliton is to calculate the topological spin by comparing 
Berry’s phase difference between the following two processes. In the first process, we have a 

9 The same result can be derived by fermion integration.
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static soliton. In the second process, the spatial soliton configuration is adiabatically rotated by 
2π in time. Following Witten [24], we show in appendix G that such Berry’s phase difference is 
e−ikπ , where k is the level of the WZW term (see appendix G for the details). Since all nonlinear 
sigma models in section 9 have k = 1 WZW term, their solitons are fermion.

14. A summary of Part I

So far, we have established the fact that the fermion theory and non-linear sigma model have 
the same global symmetries and anomalies. In addition, we have shown that the solitons of the 
non-linear sigma model are fermions. All of these support the equivalence between the fermion 
theory and non-linear sigma model. However, we stress again such “the equivalence between 
the non-linear sigma model with the k=1 WZW term and the massless free fermion theory” is a 
conjecture rather than a proven theorem.

Now we present a brief summary of Part I. We begin in section 1 by presenting the essential 
idea underlying the present work. Prior to performing the fermion integration, we first identify 
the emergent symmetries in section 2, and the mass manifolds in section 3. For a given massless 
fermion theory, the mass manifold is the topological space formed by all mass terms that can 
fully gap out the fermions. We then work out the anomalies with respect to the emergent symme-
tries in section 4. Afterward, we introduce mass terms at the expense of breaking the emergent 
symmetries in section 5 and fluctuate the mass terms smoothly to regain the emergent symmetries 
in section 6. As discussed in section 7, the smoothness of the mass fluctuations is to ensure that 
the original fermions remain gapped, hence can be integrated out to yield non-linear sigma mod-
els in section 8 and section 9..10 The level-1 WZW term resulting from the fermion integration is 
checked against the prediction of homotopy groups in the appendix, which is referred to in sec-
tions 8 and 9. In section 10, we present local interacting fermion theories that have duality-like 
relationships with the bosonized non-linear sigma models. In section 11, we analyze the symme-
tries of the non-linear sigma models. A comparison with the results obtained in section 2 leads to 
the conclusion that the fermion and boson theories have the same symmetry. Using the method 
of reference [23] we determine the anomalies of the non-linear sigma models in section 12. A 
comparison with the results obtained in section 4 leads to the conclusion that the fermion and 
boson theories have the same anomalies. Finally, in section 13, we show the bosonized theories 
have fermionic degrees of freedom, namely the solitons of the non-linear sigma models.

Part II. Applications

15. The SU(2) gauge theory of the π -flux phase of the half-filled Hubbard model

15.1. The “spinon” representation of the spin operator

The paradigmatic model describing a Mott insulator is the Hubbard model in the large U limit. 
At half-filling, every site is occupied by one electron. Below the Mott-Hubbard gap, the active 
degrees of freedom are those of spins. Through Anderson’s super-exchange [25], the dynamics 
of the spins is governed by the anti-ferromagnetic Heisenberg interaction

10 The procedure can be easily applied to higher dimensions, though we shall not pursue it in the present paper.
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Ĥ =
∑
〈ij〉

Jij
Si · Sj .

In the “spinon” treatment [26,27] one decomposes a spin-1/2 operator into auxiliary fermion 
(spinon) operators

Sa
i = 1

2
f

†
iασ a

αβfiβ, (42)

and supplement it with the single occupation constraints

f
†
i↑fi↑ + f

†
i↓fi↓ = 1

f
†
i↑f

†
i↓ = 0

fi↓fi↑ = 0. (43)

In the following we shall refer to the above constraints as the “Mott constraint”. The decompo-
sition in Eq. (42), where one separates the physical spin degrees of freedom into the auxiliary 
“spinon” degrees of freedom, is an example of the so-called “slave particle” approach.

In terms of the spinon operators the Heisenberg Hamiltonian read

Ĥ =1

4

∑
〈ij〉

Jij

(
f

†
iασ a

αβfiβ

)(
f

†
jγ σ a

γ δfjδ

)

=1

4

∑
〈ij〉

Jij

(
−f

†
iαfiαf

†
jβfjβ − 2f

†
iαfjαf

†
jβfiβ

)

= − 1

2

∑
〈ij〉

Jij

(
1

2
f

†
iαfiαf

†
jβfjβ + f

†
iαfjαf

†
jβfiβ

)

Upon Hubbard-Stratonovich transformation, we express

exp
{

−
β∫

0

dτ
[∑

i

f
†
iα∂0fiα + H

]}
=

∫
D[U ] exp

{
−

β∫
0

dτ
[∑

i

ψ
†
i ∂0ψi+

∑
〈ij〉

3

8
Jij

(
−
(
ψ

†
i Uijψj+h.c.

)
+1

2
Tr
[
U

†
ijUij

])]}
.

(44)

where

ψi =
(

fi↑
f

†
i↓

)
,Uij =

[
χ∗

ij �ij

�∗
ij −χij

]
. (45)

For later convenience, we rewrite the spinon operator in terms of Majorana fermions

fiα := Fi,1α + iFi,2α,

in terms of which, the spin operators are represented as

Sa
i = 1

2
F

†
i �aFi, where

�a = (YX, IY,YZ) . (46)
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In the last line, the first and second Pauli matrices carry the Majorana and spin indices, respec-
tively.

The spin operators in Eq. (46) are invariant under the following local “charge-SU(2)” trans-
formation

Fi → WiFi

where Wi is generated by

T b = (XY,Y I,ZY ).

In terms of The Majorana fermion operators, the Mott constraint in Eq. (43) becomes

f
†
iαfiα − 1 = FT

i (Y I)Fi = FT
i T 2Fi = 0

εαβ
(
fiαfiβ + f

†
iβf

†
iα

)
= FT

i (XY)Fi = FT
i T 1Fi = 0

iεαβ
(
fiαfiβ − f

†
iβf

†
iα

)
= FT

i (ZY )Fi = FT
i T 3Fi = 0 (47)

These constraints are implemented via the Lagrange multipliers in the path integral

Z =
∫

D[F ]D[U ]D[a0] exp (−S)

with

S =
β∫

0

dτ
{∑

i

F T
i ∂0Fi +

∑
〈ij〉

3

8
Jij

[
FT

i

(
Re[χij ]YI + i Im[χij ]II + Re[�ij ]XY

− Im[�ij ]ZY
)
Fj + |χij |2 + |ηij |2

]
+ i
∑

i

ab
i0

(
FT

i T bFi

)}
. (48)

15.2. The π -flux phase mean-field theory and the SU(2) gauge fluctuations

In treating the path integral, Eq. (48), one often starts from a mean-field theory where Uij

and ab
i0 are assumed to be space-time independent. To see the many possible mean-field ansatzes 

we refer the readers to, e.g., Ref. [27]. In the following, we shall focus on the so-called “π -flux 
phase mean-field theory” [28] for the nearest neighbor Heisenberg model.

The π -flux mean field theory assumes the following mean-field Ūij and āb
i0

�̄ij = 0, āb
i0 = 0,

χ̄i,i+x̂ = iχ,

χ̄i,j+ŷ = i(−1)ix χ (49)

where χ is a real parameter (see Fig. 2). This leads to the following fermion mean-field Hamil-
tonian,

ĤMF = −3

4
J
∑

i

{
i χ
[
FT

i+x̂ (I I )Fi

]
+ i (−1)ix χ

[
FT

i+ŷ (I I )Fi

]
+ h.c.

}
Because the Pauli matrices are identity in both the Majorana and spin spaces, this mean-field 
Hamiltonian enjoys both global spin- and charge-SU(2) symmetries generated by
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Fig. 2. The π -flux mean-field theory. Here the black bonds represent hopping amplitude iχ in the positive x- or y-
direction and the green bonds represent −iχ . The unit cell is enclosed by the orange rectangle.

Spin-SU(2) generators: �a = (YX, IY,YZ)

Charge-SU(2) generators: T a = (XY,Y I,ZY) . (50)

Using the eigenvalues ±1 of the “sub-lattice Pauli matrix” Z to label the blue and red sub-
lattices in Fig. 2, and performing Fourier transform we obtain the following momentum-space 
mean-field Hamiltonian

ĤMF = −3

4
Jχ

∑
k

FT−k

[
II ⊗

[
i
(
eik2 − e−ik2

) −i + ie2ik1

i − ie−2ik1 −i
(
eik2 − e−ik2

)]]Fk

= −3

4
Jχ

∑
k

FT−k [II ⊗ (− sin 2k1 X + (1 − cos 2k1) Y − 2 sin k2 Z)]Fk.

(51)

In the above equation the tensor product of Pauli matrices are ordered according to

Majorana ⊗ spin ⊗ sub-lattice.

In Eq. (51) the (halfed) Brillouin zone is

−π/2 ≤ k1 < π/2, − π ≤ k2 < π

and the Dirac nodes are situated at k0 = (0, 0) and (0, π), which are referred to as two “valleys” 
in the following.

Expand k = k0 + q around these two Dirac nodes, and Fourier transform (w.r.t. q) back to the 
real space, we obtain the following low energy mean-field Hamiltonian

ĤMF =
∫

d2x F̃ T (−i�i∂i) F̃ ,

where
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�1 = IIXI

�2 = IIZZ. (52)

The tensor product of four Pauli matrices in Eq. (52) are arranged according to

Majorana ⊗ spin ⊗ sub-lattice ⊗ valley.

Including the sub-lattice and valley Pauli matrices the generators of the charge and spin SU(2) 
transformations are given by

Spin-SU(2) generators: �a = (YXII, IY II,YZII)

Charge-SU(2) generators: T a = (XYII,Y III,ZYII) . (53)

Because the local charge-SU(2) gauge degrees of freedom is a redundancy in the original 
half-filled Mott insulator, we expect the field theory in Eq. (48) to have the local charge-SU(2) 
symmetry. This motivates one to think the low energy theory, including fluctuations in Uij and 
ab
i0, is a charge-SU(2) gauge theory with

Uij = Ūij e
iaij

where aij = ab
ij T

b is the spatial component of the charge-SU(2) gauge field. According to 

Ref. [27,29], because the mean-field Ūij commutes with the global charge-SU(2) transforma-
tions, the low theory is a charge-SU(2) gauge theory, with a0 and aij playing the roles of the 
time and spatial components of the gauge field, respectively.

The partition function of the charge-SU(2) gauge theory reads

Z =
∫

D[F̃ ]D[aμ]e−S[F̃ ,aμ]

S =
∫

d3x
{
F̃ T

[(
∂0 + iaa

0T a
)− i

2∑
i=1

�i(∂i + iaa
i T a)

]
F̃ + 1

2g
f 2

μν

}
. (54)

In Eq. (54) the 1
2g

f 2
μν is generated by integrating out the higher energy fermion degrees of free-

dom. The theory in Eq. (54) describes the n = 8 real class fermion theory coupled to a dynamic 
charge-SU(2) gauge field.

According to the bosonization in section 9.2, the bosonized theory is a gauged O(8)
O(4)×O(4)

nonlinear sigma model with the k = 1 WZW term.11 Here the charge-SU(2) subgroup of the 
fermion (emergent) global symmetry group O(8) is gauged.

In the following let’s assume that the effect of the SU(2) gauge field is to cause confinement 
(note, however, we are not implying the deconfined phase does not exist).12 Under such con-
dition, the fermion-antifermion pair oder parameter (analogous to mesons in QCD) must be a 

11 Note that although for n = 8, the homotopy group are not yet stabilized, fermion integration still gives a WZW term. 
When B is a closed manifold, and after division by 2πi, the WZW term is the topological invariant of one of the Z factor 
of the π4.
12 Note that unlike the compact U(1) gauge field, here the confinement can be not caused by the proliferation of 
monopoles. This is based on the following homotopy argument. The SU(2) gauge configurations on the space-time 
surface S2 surrounding the location of the monopole are classified by the mapping classes of S2 → BSU(2), where 
BSU(2) is the classifying space of SU(2). Using the following identity in algebraic topology,

[S2,BSU(2)]∗ = [�S1,BSU(2)]∗ = [S1, SU(2)]∗ = π1(SU(2)) = 0,
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charge-SU(2) singlet. Since QR is precisely the “meson” field, it follows that in the charge-
SU(2) confined phase the finite energy QR are restricted to a sub-manifold of O(8)

O(4)×O(4)
which 

are invariant under the charge-SU(2) transformation13.14 This sub-manifold is the S4 spanned by 
the following 5 mutually anti-commuting masses,

S4 =
{ 5∑

i=1

niMi;
5∑

i=1

n2
i = 1

}
, where

Mi = YXZX,IYZX,YZZX,IIY I, IIZY. (55)

In order to match the gamma matrices and mass matrices convention in Table 1 and 2 (based 
on which the non-linear sigma models in subsection 9 and appendix C and F are derived), we 
will make the following change the basis. We first exchange the order of the third and the fourth 
(i.e., sub-lattice and valley) Pauli matrices, followed by the orthogonal transformation,

II ⊗
[
I 0
0 X

]
In the new basis the gamma matrices and the mass terms become

�̃1 = IIIX

�̃2 = IIIZ

M̃i = YXYY, IYYY,YZYY, IIXY, IIZY (56)

These are consistent with the matrices shown in Table 1 and Table 2, except a trivial exchange 
of the first and the last Pauli matrices. In this basis, the order parameter QR is defined by M̃ =
m QR ⊗ Y .

15.3. Antiferromagnet, valence bond solid, and the “deconfined” quantum critical point

For the mass manifold in Eq. (55), we expect the non-linear sigma model to have a WZW 
term because π4(S

4) = Z. Substituting

QR = niNi where

Ni = (YXY, IYY,YZY, IIX, IIZ) (57)

into the non-linear sigma model given by Eq. (30) in subsection 9.2 we obtain

it follows that there is no topologically non-trivial gauge field configuration on S2, hence there is no monopole. Here �
denotes “reduced suspension”, and [X1, X2]∗ is the homotopy class of base-point-preserving maps X1 → X2. Physically 
speaking, assuming the SU(2) monopole exists, we can take the northern and southern hemispheres as the patches to 
define the gauge connection so that on each patch, the gauge field configuration is non-singular. On the equator, S1, 
where the two patches overlap, a gauge transformation must relate the gauge fields originated from the two patches. At 
each point of S1 the gauge transformation is an element in SU(2). Therefore the monopole classification is given by the 
homotopy class of gauge transformation on the S1, i.e., π1(SU(2)).
13 In addition to restricting QR to be invariant under charge-SU(2) transformations, the charge-SU(2) gauge fluctua-
tions can also generate four-fermion interactions, the effects of which are not studied in the current work.
14 Our result is analogous to Witten’s non-linear sigma model description of QCD in the color SU(3) confined 
phase [24].
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Fig. 3. Translation by one lattice constant in the x-direction compounded with the gauge transformation which multiplies 
the fermion operators on sites in the orange rows by -1 leaves the mean-field Hamiltonian invariant.

W [n̂] = 2

λ3

∫
M

d3x
(
∂μni

)2 − 2πi

64π2

∫
B

εijklmñi dñj dñk dñl dñm. (58)

This model has O(5) global symmetry generated by the pair-wise product of the matrices in M̃i , 
which are also the generators of O(8) that commutes with the charge-SU(2) generators. Hence 
Eq. (58) is often referred to as the “O(5)” non-linear sigma model in the literature [30–33] (a 
recent related work can be found in [34]).

Now we address the physical meaning of the five masses given in Eq. (55) (or equivalently 
the physical meaning of M̃i in Eq. (56)). The first three of the masses in Eq. (55) correspond to 
the Néel order parameters, while the last two to the valence bond solid (VBS) orders. To see this, 
we first note that the first three masses rotate into each other under spin-SU(2),

�a = (YXII, IY II,YZII)

while the last two are invariant.
We can also deduce the effect of translation by one lattice constant on these mass terms. In 

writing down the mean-field Hamiltonian we have chosen a particular charge-SU(2) gauge that 
explicitly breaks the symmetry associated with x-translation by one-lattice spacing. However, 
this is an artifact of gauge choice. The compounded transformation where the x-translation is 
followed by the gauge transformation which multiplies the fermion operator located on the or-
ange rows in Fig. 3 by −1

(
FI,1,FI,2

) T̂x̂−→ (−1)Iy × (FI,2,FI+x̂,1
)

(
FI,1,FI,2

) T̂ŷ−→ (
FI+ŷ,1,FI+ŷ,2

)
, (59)

leaves the mean-field ansatz invariant. This is an example of “projective transformation”. In 
Eq. (59) I label the unit cell in Fig. 2, and we have omitted the Majorana and spin indices 
because they are unaffected by the translation.

In the following, we derive the effects of the “projective translation” on the fermion operator 
F̃ which is related to F via
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FI,l =
∑

small q

(
F̃q,(l,1)e

iq·I + F̃q,(l,2)e
i((0,π)+q)·I)

where the (l, v) are the indices for sub-lattice and valleys respectively. Doing the inverse Fourier 
transform, the above projective translation transforms F̃ according to

F̃ → Tx̂,ŷ F̃

where

Tx̂ = IIXX

Tŷ = IIIZ. (60)

Here we have put back the Majorana and spin (i.e., the first two) Pauli matrices.
Under Tx̂,ŷ the mean-field Hamiltonian is invariant, but the first three mass terms change sign 

under T̂x̂ and T̂ŷ (as should the Néel order parameter) while the remaining two masses each 
breaks T̂x̂ or T̂ŷ . These are the expected transformation properties of the VBS order parameters.

In appendix J we show that the order parameters in Eq. (57) completely decouple from the 
charge-SU(2) gauge field. Thus even in the presence of such gauge field the non-linear sigma 
model preserves the form in Eq. (58). Before moving on, there is one additional thing worth 
mentioning, namely,

π2(S
4) = 0.

Hence there is no soliton in the order parameter associated with Eq. (58).
In summary, we have found that after the charge-SU(2) confinement Eq. (58) describes the 

critical point between the AFM and VBS phases the so-called “deconfined quantum critical 
point” [30,31,35,36]. It is important to note that in the treatment so far, we have assumed that 
the sole effect of the charge-SU(2) confinement is to restrict QR to the appropriate submanifold 
of O(8)

O(4)×O(4)
. However, the SU(2) gauge field fluctuations can also induce four-fermion interac-

tions, the effects of which are not studied in the current work. It is very satisfying that aside from 
the Néel order parameter, Eq. (57) captures the best-known VBS order parameter once the Néel 
is destabilized by quantum fluctuation [37–41].

15.4. The chiral spin liquid

As we discussed earlier, with spontaneous time-reversal symmetry breaking, the interacting 
fermion models in section 10 allow QR to reside in the l �= 4 components of the manifold

8⋃
l=0

O(8)

O(l) × O(8 − l)
.

In particular, it can be shown that in addition to the l = 4 component, the l = 0 and l = 8 com-
ponents also contain charge-SU(2) invariant order parameter satisfying all the constraints. The 
associated order parameter is

QR = ±III (61)

This describes the “chiral spin liquid” state [42]. In the presence of a background spin-SU(2)

gauge field a, using the result of appendix F with QR given by Eq. (61) we arrive at
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W [a] = ± i

4π

∫
tr

[
a da + 2i

3
a3
]

. (62)

This is the level-1 SU(2) Chern-Simons theory. According to Ref. [43] (see page 383), this is 
the spin-SU(2) gauge action of the chiral spin liquid.1516

16. The critical spin liquid of “bipartite Mott insulators” in D = 1 + 1, 2 + 1 and 3 + 1

The idea explained in the preceding section can be generalized to the insulating phase of 
“bipartite Mott insulators”.

A bipartite Mott insulator is a Mott insulator whose lattice consists of two sub-lattices, and 
hoppings only occur between different sub-lattices. The nearest-neighbor spin-1/2 antiferro-
magnetic Heisenberg model in one spatial dimension describes the dynamics of spin degrees of 
freedom in a one-dimensional bipartite Mott insulator. It realizes the SU(2)1 WZW non-linear 
sigma model, where the emergent symmetries are realized in a non-onsite (e.g., translation) 
fashion. This model serves as a paradigm of, e.g., quantum number fractionalization, and has 
profoundly influenced theoretical physics. It is natural to ask what is the generalization of this 
non-linear sigma model in the Mott insulating phase of higher dimensions. In the present section, 
we answer this question.

In a Mott insulating phase, the low energy degrees of freedom are the spins. Since the spin 
operators are invariant under the charge-SU(2) transformation, there are lots of choices in frac-
tionalizing the spin into spinons. Different choices are related by the spinon charge-SU(2) gauge 
transformation. The spin-spin interaction is generated by Anderson’s super-exchange, the spinon 
mean-field theory amounts to choosing a spinon tight-binding model which reproduces the spin-
spin interaction after super-exchange. Since the spin-spin interaction is independent of which 
charge-SU(2) gauge we choose, we shall choose the gauge so that the hoppings are purely imag-
inary in the following. The reason for doing so is because in such a gauge, the mean-field spinon 
Hamiltonian is charge-SU(2) invariant. This gauge choice exists when the Mott insulator is bi-
partite.

In section 15.2, we saw that the Mott insulating condition is imposed by the constraint that 
the order parameter QR is a charge-SU(2) singlet. In this section we show that imposing such 
constraints allows us to derive the spin effective theory in bipartite Mott insulators in spatial 
dimensions 1,2 and 3.17

15 A technical comment is in order here. In general for each of the disconnected component of the mass manifold

8⋃
l=0

O(8)

O(l) × O(8 − l)
,

the WZW term in only stabilized when l and n − l are both sufficiently large. Since the gauge field dependent terms of 
the non-linear sigma model in appendix F originate from the WZW term, it seems unjustified to used such result for l = 8
or l = 0 We shall provide the justification in appendix H using the idea of mass manifold enlargement.
16 This is also consistent with the U(1)k=2 Chern-Simons theory in Ref. [42], whose edge modes are described by the 
chiral boson theory with a specific compactification radius so that it is equivalent to the SU(2)k=1 WZW theory.
17 Although we will not pursue it in the present paper, the discussion in the following can be generalized to the cases 
with larger flavor number or in higher dimensions.
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Fig. 4. (a) The usual 1D nearest neighbor tight-binding with real hopping. (b) Upon the gauge transformation (cA
j

, cB
j

) →
(cA

j
, i cB

j
), hoppings become purely imaginary with alternating sign. The arrows point in the direction where the hopping 

is +it . The hopping Hamiltonian in panel (b) is charge-SU(2) invariant.

16.1. (1+1)-D

16.1.1. The analog of the π -flux phase
For the nearest neighbor tight-binding model with real hopping in 1D, one can break the lattice 

into A, B sub-lattice and do the transformation (cA
j , cB

j ) → (cA
j , i cB

j ) to make the hopping purely 
imaginary (see Fig. 4). This leads to the lattice model

Ĥ =t
∑

k

c
†
k

[
I ⊗

(
0 i + ie−ik

−i − ie+ik 0

)]
ck

= − t
∑

k

c
†
k [−(sin k)IX + (1 + cosk)IY ] ck

Here identity matrix I part acts on the spin. After linearizing around kF = π , the low energy 
effective theory in Majorana fermion basis reads

H =
∫

dx χT (x) [−i�1∂1] χ(x)

where

�1 = IIX. (63)

To comply with the gamma matrix notation in Table 1, we perform a basis transformation χ →
e−i π

4 IIY χ , so that the gamma matrix becomes

�1 = IIZ. (64)

Here the tensor product of Pauli matrices are arranged according to

Majorana ⊗ spin ⊗ sub-lattice.

In the presence of Hubbard U , there is the global charge-SU(2) symmetry at half-filling. In the 
low energy theory, the charge-SU(2) transformation is generated by

Charge-SU(2) generators : T a = (XYI,Y II,ZYI)

On the other hand, the spin-SU(2) transformations are generated by the following charge-SU(2) 
invariant matrices,

Spin-SU(2) generators : �a = (YXI, IY I,YZI)
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16.1.2. The charge-SU(2) confinement
Following the discussion in section 8.2, the massless free fermion theory is equivalent to 

the O(4) level-1 WZW model. Gauging the charge-SU(2) symmetry of the sigma model, and 
integrating over the gauge field, amounts to imposing the Mott insulating constraint. Assume the 
system is in the charge-SU(2) confined phase, only charge-SU(2) singlet order parameters (mass 
terms) can exist at low energies. These mass terms satisfy

{�1,M} = 0

[T a,M] = 0

M2 = I8

The most general mass M satisfying the first two lines has the form

M = n0 IIY + n1 YXX + n2 IYX + n3 YZX (65)

Among the mass terms

IIY,YXX,IYX,YZX,

the last three rotate into each other under the action of spin-SU(2) transformations, and the first 
one is invariant. They correspond to the dimer and Néel order parameters respectively. The con-
dition that M2 = I8 gives

3∑
i=0

n2
i = 1.

The non-linear sigma model describing the fluctuations of n̂ has a WZW term because 
π3(S

3) = Z, namely,

W [n̂] = 1

4π

∫
M

d2x
(
∂μn̂
)2 − 2πi

12π2

∫
B

εijkl ñi dñj dñk dñl . (66)

This is the SU(2)1 non-linear sigma model, known to be the effective theory of the Heisenberg 
spin chain [44].

16.2. (2 + 1)-D

16.2.1. The analog of the π -flux phase
In (2 + 1)-D we use the honeycomb lattice to write down the tight-binding model. The lattice 

vectors in the real and momentum space are

a1 = √
3a

(
1

2
,

√
3

2

)
, a2 = √

3a

(
−1

2
,

√
3

2

)

and

b1 = 4π

3a

(√
3

2
,

1

2

)
, b2 = 4π

3a

(
−

√
3

2
,

1

2

)
, (67)

respectively. In the following we perform the gauge transformation
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Fig. 5. (a) The usual nearest neighbor tight-binding model on the honeycomb lattice with real hopping. (b) Upon the 
gauge transformation (cA

j
, cB

j
) → (cA

j
, i cB

j
), hoppings become purely imaginary with alternating sign. The arrows point 

in the direction where the hopping is +it . The tight-binding Hamiltonian in panel (b) is charge-SU(2) invariant.

(cA
j , cB

j ) → (cA
j , i cB

j )

on the two sub-lattices, so that the nearest-neighbor hopping becomes purely imaginary (see 
Fig. 5). The tight-binding Hamiltonian reads

Ĥ =t
∑
k

c
†
k

[
I ⊗

(
0 i + ieik·a1 + ieik·a2

−i − ie−ik·a1 − ie−ik·a2 0

)]
ck

=t
∑
k

c
†
k

[
− (sin(k · a1) + sin(k · a2)) IX − (1 + cos(k · a1) + cos(k · a2)) IY

]
ck

Here the Pauli matrices are arranged according to

spin ⊗ sub-lattice.

In the Majorana fermion basis,

Ĥ=t
∑
k

χ
†
k

[
− (sin(k · a1)+ sin(k · a2)) IIX− (1+ cos(k · a1)+ cos(k · a2)) IIY

]
χk.

(68)

Here the Pauli matrices are arranged according to

Majorana ⊗ spin ⊗ sub-lattice.

In the presence of repulsive Hubbard U , there is charge-SU(2) symmetry at half-filling. In the 
low energy theory the charge-SU(2) transformation is generated by

Charge-SU(2) generators : T a = (XYI,Y II,ZYI)

On the other hand, the spin-SU(2) transformations are generated by the following matrices,

Spin-SU(2) generators : �a = (YXI, IY I,YZI)

Eq. (68) is invariant under both the charge- and spin-SU(2). In momentum space the Dirac points 
are located at K and K̂ points, i.e., ±k0 where k0 := 1 (b1 − b2) (see Eq. (67)). Note that in the 
3
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Majorana fermion basis, the contribution of Hamtiltonian from k and −k are the same due to the 
constraint χT

−k = χ
†
k . This means that one can take the fermion χk0+q around k0 as the Fourier 

modes of complex fermion c̃q and discard the other node. We then break this complex fermion c̃
into real fermion by c̃ = χ̃1 + iχ̃2 (in the following we shall refer to this 1 and 2 as the “valley” 
indices). In this final Majorana representation, the low energy Hamiltonian reads

Ĥ =
∫

dx χ̃T (x) [−i�1∂1 − i�2∂2] χ̃ (x)

where �1 = IIIX and �2 = IIYY .18 Here the Pauli matrices are arranged according to

Majorana ⊗ spin ⊗ valley ⊗ sub-lattice.

In this basis, the symmetry generators are

Charge SU(2) generators : T a = (XYII,Y III,ZYII)

Spin SU(2) generators : �a = (YXII, IY II,YZII).

16.2.2. The charge-SU(2) confinement
Following the discussions in section 9.2, the massless fermion theory is equivalent to the 
O(8)

O(4)×O(4)
level-1 WZW model. Notice that the low energy fermion theory is identical to the 

π flux phase spinon mean-field theory discussed in section 15. Imposing the Mott constraint 
constraints the mass manifold. Specifically it requires the mass terms to commute with the 
charge-SU(2) generators. Under conditions the allowed mass terms satisfy

{�i,M} = 0

[T a,M] = 0

M2 = I16

The most general mass, M ∈ O(8)
O(4)×O(4)

, satisfying the first two equations has the form

M = n1 YXIZ + n2 IY IZ + n3 YZIZ + n4 IIXY + n5 IIZY

Similar to the discussion in section 15, the first three of the masses in Eq. (55) correspond to 
the Néel order parameters, while the last two to the valence bond solid (VBS) order parameters. 
The order parameter space forms an S4. Plugging it into the O(8)

O(4)×O(4)
level-1 WZW model, we 

arrive at the O(5) WZW theory

W [ni] = 2

λ3

∫
M

d3x
(
∂μni

)2 − 2πi

64π2

∫
B

εijklmñi dñj dñk dñl dñm.

Here we note that because π2(S
4) = 0 there is no soliton.

16.3. (3 + 1)-D

16.3.1. The analog of the π -flux phase
As a model for bipartite Mott insulator, we begin with a 3-dimensional tight-binding model 

consists of stacked honeycomb lattice. Here the lattice sites of each layer are stacked on top of 

18 This is related to the gamma matrices in Table 1 by a basis transformation.
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Fig. 6. (a) The tight-binding model on a stacked honeycomb lattice with real-valued nearest-neighbor hopping. Blue/red 
(A/B) mark the two sub-lattices of the honeycomb lattice respectively. The positive hoppings are drawn in black, while 
the negative hoppings in white. (b) After the gauge transformation (cA1

j
, cB1

j
, cA2

j
, cB2

j
) → (c

A1
j

, icB1
j

, icA2
j

, cB2
j

), a 
unit cell contains four sites. This is marked by blue/red/green/orange and labeled as A1/B1/A2/B2 respectively. The 
hoppings become purely imaginary. The arrows point in the direction where the hopping is +it . The tight-bonding 
Hamiltonian in panel (b) has charge-SU(2) symmetry.

those in the layer beneath. Within each layer, we have real hopping between the nearest-neighbor 
sites described in section 16.2. Between layers, the (real) hopping have the opposite sign for 
the A and B sub-lattice (see Fig. 6a). In order to make the hopping terms global charge-SU(2) 
invariant, we first enlarge the unit cell by grouping two adjacent layers to form A1, B1, A2, B2
sub-lattices as shown in Fig. 6b. We then perform the following gauge transformation,

(c
A1
j , c

B1
j , c

A2
j , c

B2
j ) → (c

A1
j , ic

B1
j , ic

A2
j , c

B2
j ).

Here the lattice vectors in the real and momentum spaces are

a1 = √
3

(
1

2
,

√
3

2
,0

)
, a2 = √

3

(
−1

2
,

√
3

2
,0

)
, a3 = 3 (0,0,1)

and

b1 = 4π

3

(√
3

2
,

1

2
,0

)
, b2 = 4π

3

(
−

√
3

2
,

1

2
,0

)
, b3 = 2π

3
(0,0,1) (69)

respectively. In the above we have assumed the magnitude of the hopping in the z-direction is the 
same as those within each layer. Moreover, we have tuned the lattice constant in the z-direction 
so that the Dirac cone is isotropic. The resulting tight-binding model reads

Ĥ = i t
∑
k

c
†
k · I ⊗

⎛
⎜⎜⎝

0 Sxy(k) Sz(k) 0
−S∗

xy(k) 0 0 Sz(k)

−S∗
z (k) 0 0 −Sxy(k)

0 −S∗
z (k) S∗

xy(k) 0

⎞
⎟⎟⎠ ck

= t
∑
k

c
†
kI ⊗

{− [sin(k · a1) + sin(k · a2)]ZX − [1 + cos(k · a1) + cos(k · a2)]ZY

+ sin(k · a3)XI − [1 + cos(k · a3)Y I ] .

}
ck

(70)
45



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
where the Sxy and Sz in Eq. (70) are defined as

Sxy(k) = 1 + eik·a1 + eik·a2

Sz(k) = 1 + e−ik·a3,

and the Pauli matrices are arranged according to

spin ⊗ sub-lattice (4 × 4).

It is simple to show that in the momentum space the Dirac points are located at ±k0, where 
k0 := 1

3 (b1 − b2).
Converting Eq. (70) into the Majorana fermion basis, the Hamiltonian reads

Ĥ =t
∑
k

χT
−kII

⊗
[− (sin(k · a1)+ sin(k · a2))ZX − (1+ cos(k · a1)+ cos(k · a2))ZY

+ sin(k · a3)XI − (1 + cos(k · a3)Y I)

]
χk (71)

where the first Pauli matrix I acts in the Majorana space. The Hamiltonian in Eq. (71) is invariant 
under the global charge and spin SU(2) transformations generated by

Charge-SU(2): T a = (XYII, Y III, ZYII)

Spin-SU(2): �a = (YXII, IY II, YZII) (72)

When performing the mode expansion near ±k0, because χT
−k = χ

†
k , one can keep the com-

plex fermion operator c̃q = χk0+q while disregard the mode expansion near −k0. We subse-
quently break c̃ into real fermion operators c̃ = χ̃1 + iχ̃2 (in the following we shall refer to this 
1 and 2 as the “valley” indices). Omitting the tilde, in this final Majorana representation, the 
low energy theory of the Hamiltonian Eq. (71) is given by the n = 8 real class massless fermion 
Hamiltonian

Ĥeff =
∫

d3x χT

[
−i

3∑
i=1

�i∂i

]
χ

where �1 = IIZXI, �2 = IIZYY, �3 = IIXII, (73)

and Eq. (72) is given by

Charge-SU(2): T a = (XYIII, Y IIII, ZYIII)

Spin-SU(2): �a = (YXIII, IY III, YZIII) (74)

In this basis, the Pauli matrices correspond to

Majorana ⊗ spin ⊗ sub-lattice (4 × 4) ⊗ valley.

For the gamma matrices to be in the standard basis used in Table 1, we can do the transforma-
tion

χ → ei π
4 IIZYI · ei π

4 IIIXY χ,

and then switch between the third and the fifth Pauli matrices. In the new basis, Eq. (73) becomes
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Ĥeff =
∫

d3x χT

[
−i

3∑
i=1

�i∂i

]
χ

where �1 = IIIZI, �2 = IIIXI, �3 = IIIYY, (75)

while the symmetry generators in Eq. (74) remain unchanged. Upon bosonization, Eq. (75) is 
equivalent to the U(8)/O(8) nonlinear sigma model in Eq. (33).

16.3.2. The charge-SU(2) confinement
Following the discussion in section 16, the Mott constraint can be imposed by demanding the 

order parameter to be charge SU(2) singlet. It is straightforward (but lengthy) to show that the 
following QR satisfies the charge-SU(2) singlet requirement

QR(x) = eiθ(x)

[
n0(x)N0 + i

5∑
i=1

ni(x)Ni

]
:= eiθ(x)GS(x), (76)

where

N0 = III, N1 = IIZ, N2 = IIX, N3 = IYY, N4 = YZY, N5 = YXY

and
5∑

i=0

n2
i = 1, i.e., (n0, n1, n2, n3, n4, n5) ∈ S5.

In addition, in Eq. (76) GS is a symmetric special unitary 8 × 8 matrix, namely,

GS(x) ∈ SU(8)

O(8)
.

Substituting Eq. (76) into the bosonized nonlinear sigma model Eq. (33) and noting that

1

i
QR†∂μQR = 1

i
G†

S∂μGS + ∂μθ,

the stiffness term becomes

1

4λ2
4

∫
M

d4x tr
[
∂μQR∂μQR†

]

= 8

4λ2
4

∫
M

d4x
[
∂μθ∂μθ

]+ 1

4λ2
4

∫
M

d4x tr
[
∂μGS∂μG†

S

]

= 2

λ2
4

∫
M

d4x
[
∂μθ∂μθ

]+ 2

λ2
4

∫
M

d4x

5∑
i=0

(∂μni)
2 (77)

The cross term vanishes because

1

i
Tr[G†

S∂μGS] = 0. (78)

Eq. (78) is due to the fact that GS is a symmetric special unitary matrix hence ∈ SU(n). As a 
result, the matrix part of 1

i
G†

S∂μGS can be decomposed into the generators {ta} of su(n), which 
are traceless.
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As to the WZW term it can be shown that

− 2π

960π3

∫
B

tr
[(

Q̃R†dQ̃R
)5 ]= − 2π

960π3

∫
B

tr
[(

G̃S
†
dG̃S

)5 ]

= − 2πi

120π3

∫
B

εi1i2i3i4i5i6 ñi1dñi2dñi3dñi4dñi5dñi6 . (79)

(We shall prove this relation in appendix K.)
Putting together Eq. (77) and Eq. (79), the non-linear sigma model action is given by

W [θ,β] = 2

λ2
4

∫
M

d4x
[
∂μθ∂μθ

]+ 2

λ2
4

∫
M

d4x

5∑
i=0

(∂μni)
2

− 2πi

120π3

∫
B

εi1i2i3i4i5i6 ñi1dñi2dñi3dñi4dñi5dñi6 .

(80)

Therefore unlike (1 + 1)- and (2 + 1)-D, the spin effective theory for (3 + 1)-D bipartite Mott 
insulator has an extra U(1) mode!

16.3.3. Gapping out the U(1) mode
In this subsection we show that there is a charge-SU(2) singlet fermion interaction term that 

gaps out the θ degree of freedom. For convenience, we use the basis in Eq. (75). The emergent 
symmetry is U(n) which includes a subgroup U(1) (not to be confused with the extra U(1) mode 
discussed earlier) generated by

QU(1) = In ⊗ IY.

We can use this QU(1) to complexify the Majorana fermion,19 namely,

ψα
i := 1√

2
(χαi1 + i χαi2) . (81)

Here the Majorana field χαia carries three indices: α = 1, 2, ..., n is the flavor index; i indexes 
the second Pauli matrix in Eq. (75) and a = 1, 2 indexes the last Pauli matrix. In terms of the 
complexified fermion operators the mass term reads (see Table 2)

χT [S1 ⊗ YX + S2 ⊗ YZ]χ

=
[
ψα

i

(
i Yij

)
(S1 + i S2)αβ ψ

β
j + h.c.

]
=
[
ψα

i EijQ
R
αβ ψ

β
j + h.c.

]
(82)

where S1 and S2 are symmetric real matrices.
Now we are ready to construct the desired interaction term to gap out the U(1) mode in 

Eq. (76)

19 Note that although we have complexified the Majorana fermion using the emergent U(1), this is different from the 
complex class because we allow the mass term to break this U(1).
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Ĥint = −Uθ

2

∫
d4x
[
Ei1j1Ei2j2 ...Einjn

(
εα1α2...αnψ

α1
i1

ψ
α2
i2

...ψ
αn

in

)
×
(
εβ1β2...βnψ

β1
j1

ψ
β2
j2

...ψ
βn

jn

)
+ h.c.

]
. (83)

First we note that Eq. (83) is a charge-SU(2) singlet, hence is unaffected by the Mott con-
straint. The proof goes as follows. When acted upon by the charge-SU(2) transformation, the 
fermion operator in Eq. (81) transforms according to

ψα
i → uα

βψ
β
i ,

where uα
β is the charge-SU(2) transformation matrix. Under such transformation, the term in each 

parenthesis of Eq. (83) transforms according to

εα1α2...αnψ
α1
i1

ψ
α2
i2

...ψ
αn

in
→ εα1α2...αnu

α1
β1

u
α2
β2

...u
αn

βn
ψ

β1
i1

ψ
β2
i2

...ψ
βn

in

= (detu) εβ1β2...βnψ
β1
i1

ψ
β2
i2

...ψ
βn

in
= εα1α2...αnψ

α1
i1

ψ
α2
i2

...ψ
αn

in
.

Therefore Eq. (83) is charge-SU(2) invariant.
Next, we note, upon bosonization

Eijψ
α
i ψ

β
j → QR

αβ = (S1 + iS2)αβ ,

where

QR ∈ U(8)

O(8)

is the order parameter of the nonlinear sigma model in Eq. (33). As the result, the action corre-
sponds to Ĥint is

Sint = −Uθ

2

∫
d4x

{
det
[
QR
]
+ c.c

}
. (84)

Substituting Eq. (76) into Eq. (84) we obtain

Sint = −Uθ

∫
d4x cos(8θ). (85)

Naively, it might appear that the θ -vacuum is 8-fold degenerate, corresponding to

θ = 2πl

8
with l = 0,1, ...7.

However, this is due to a redundancy in the splitting U(8)/O(8) → U(1) × SU(8)/O(8). The 
transformation

eiθ →ei(θ+ 2π
8 )

can be absorbed by the following transformation of GS

GS →ei 2π
8 GS.

Because 
(
ei 2π

8

)8 = 1, the transformed GS still belongs to SU(8)/O(8). As a result, the 8 differ-

ent θ vacua should be counted as one, as long as there is no spontaneous symmetry breaking in 
GS (i.e., when GS(x) fluctuates over all possible configurations in SU(8)/O(8)).
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In the phase that the θ degrees of freedom are gapped out, we have

QR(x) =
[
n0(x)N0 + i

5∑
i=1

ni(x)Ni

]
. (86)

Among the six order parameters, the first three are spin-SU(2) singlet and the last three are spin-
SU(2) triplet. The latter can be interpreted as the anti-ferromagnetic order parameters. As to 
the first three, they break the lattice rotation symmetry, and can be identified as the VBS order 
parameters. The non-linear sigma model governing the ni degrees of freedom read

W [ni] = 2

λ2
4

∫
M

d4x

5∑
i=0

(∂μni)
2 − 2πi

120π3

∫
B

εi1i2i3i4i5i6 ñi1dñi2dñi3dñi4dñi5dñi6,

(87)

which is the S5 (or O(6)) nonlinear sigma model with k = 1 WZW term. Note that since 
π3(S

5) = 0, there is no soliton. This model is a natural generalization of the spin effective theory 
in (1 + 1)- and (2 + 1)-D.

Finally, the cautionary remarks in the summary of section 15, concerning the four-fermion 
interactions, induced by the charge-SU(2) gauge field fluctuations, also apply here.

17. Twisted bi-layer graphene

Another 2D system where relativistic electron dispersion comes into play is the twisted bilayer 
graphene (TBLG). When the twisting angle is close to the “magic” value, the relevant bands 
become very flat [45], which suggests strong correlation. Under that condition, as a function 
of band filling ν, a rich phase diagram emerges. This includes various insulating phases near 
integer filling and superconductivity when ν deviates from integer [46–51]. In the following, we 
shall hold the point of view that the essence of the TBLG physics is the fact that the interaction 
energy overwhelms the bandwidth, which does not require the bandwidth to be zero. Therefore 
we restrict ourselves to twisting angles close but not exactly equal to the magic values.

In the non-interacting picture, the Fermi energy (EF ) only intersects the Dirac nodes at the 
charge neutral point ν = 0. However, by measuring the electronic compressibility, it is recently 
suggested that the coincidence of EF and Dirac nodes reappears at all integer filling factors [52,
53]. Such “Dirac revivals” is interpreted as the evidence of the unequal filling of bands induced 
by the polarization of the flavor (including valley and spin) degrees of freedom. Therefore the 
relativistic massless fermions and bosonized non-linear sigma models discussed in Part I are 
good starting points to address the physics of TBLG.

The real space structure of the TBLG is shown in Fig. 7a for a certain small but commensurate 
twisting angle. In Fig. 7b we show the associated momentum space structure. The large blue and 
the red hexagons are the original graphene Brillouin zones for the two layers. The small hexagons 
colored orange are the Brillouin zone of the Moiré superlattice. In Fig. 7c we blow up one of the 
Moiré Brillouin zones. Here KM and K ′

M labels the two valleys in the Moiré Brillouin zone, 
while the blue/red K and K ′ labels the valleys of the graphene Brillouin zone. Note that each 
valley of the Moiré Brillouin zone consists of two opposite valleys of the graphene Brillouin 
zone.
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Fig. 7. (a) A real space picture of twisted bilayer graphene. (b) Blue and red color the Brillouin zones of the first and 
second layer graphene. Orange colors the Brillouin zone of the Moiré superlattice. (c) At KM there are the K1 of the 
first layer and K ′

2 of the first layer. At K ′
M

there are the K ′
1 of the first layer and K2 of the second layer.

17.1. Charge neutral point ν = 0

In the presence of inter-layer hybridization, there are eight “active” graphene-like bands. We 
can label these eight “flavors” by the flavor index which represents

graphene valley, Moiré valley, spin

degrees of freedom. At the charge neutral point, the Fermi level crosses the Dirac points at KM

and K ′
M .

In the momentum space we expand the band dispersion around KM and K ′
M , the resulting low 

energy Dirac-like band structure is described by the following continuum real-space Hamiltonian

Ĥ =
∫

d2x ψ†(x)
(−i�1∂x − i�2∂y

)
ψ(x), (88)

where ψ is an eight-component complex fermion field, and

�1 = XZII, �2 = YIII. (89)

Here the tensor product of Pauli matrices is arranged according to

sub-lattice ⊗ graphene valley ⊗ Moiré valley ⊗ spin.

The reason we use the complex fermion (rather than Majorana) representation in Eq. (88) is that 
at integer band fillings there is no evidence of superconductivity [48]. Therefore Eq. (88) belong 
to the complex class.

The massless free fermion Hamiltonian in Eq. (88) has emergent U(8) symmetry. After per-
forming the basis transformation

ψ → ei π
4 XIII ·

[(
I 0
0 Z

)
⊗ II

]
ψ

to cast the gamma matrices into the form used in Table 1, namely,

�1 = XIII, �2 = ZIII,
51



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
we can use our bosonization result (see appendix F). In the presence of the electromagnetic 
(U(1)) gauge field A, the massless fermion theory in Eq. (88) is equivalent to the following 
gauged non-linear sigma model

W [QC,A] = 1

2λ3

∫
M

d3x tr
[(

∂μQC
)2 ]− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]

+8
∫
M

tr
[
iAQC(dQC)2 − 2AFQC

]}
, (90)

where

QC ∈ U(8)

U(4) × U(4)
. (91)

As discussed in section 10, there exists a local interacting fermion model which respects 
all emergent symmetries and the phases (which might spontaneously break the continuous or 
discrete symmetries) are described by the effective theories given by Eq. (90) but with

QC ∈
8⋃

l=0

U(8)

U(l) × U(8 − l)

Among the last two terms of Eq. (90), the term linear in Aμ measures the soliton current

Jμ = i

16π
εμνρ tr

[
QC∂νQ

C∂ρQC
]
.

The term proportional to AF gives rise to a Chern-Simons term

− i

8π

∫
M

tr[QC]AF,

with the corresponding Hall conductance

σxy = 1

2
tr[QC] = l − 4. (92)

Therefore only the l = 4 mass manifold, U(8)
U(4)×U(4)

, has σxy = 0. Since so far there is no reported 
(non-zero) Hall conductivity at the charge neutral point [51], we take it as implying the relevant 
mass manifold is U(8)

U(4)×U(4)
.

The resulting non-linear sigma model has two phases depending on the coupling constant λ3
in the stiffness term. For λ3 < λc there is a spontaneous breaking of the U(8) symmetry, and 
the sigma model is gapped. We interpret this phase as the “symmetry-breaking insulator”. For 
λ3 > λc, there is a gapless phase for the non-linear sigma model, and we interpret that as the 
semi-metal phase. As far as we know, it is still not totally clear whether the low-temperature 
phase at ν = 0 is a Dirac semimetal or a correlated charge insulator.

17.2. ν = ±1, ±2, ±3

Experimentally a sequence of asymmetric jumps in the electronic compressibility are ob-
served near integer filling factors [52,53]. In Ref. [52] this is coined “Dirac fermion revivals”, 
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Fig. 8. A caricature of the possible flavor polarization at (a) ν = 2 and (b) ν = 1 and (c) ν = 3. Note that as long as the 
Fermi level intersects bands with the right degeneracy, the bands below the Fermi energy can overlap without changing 
the filling factor. For ν = −2, −1, −3 we simply reflect the figures with respect to the x-axis.

which is interpreted as due to “flavor polarization”. In the following we shall assume this inter-
pretation holds and regard the massless Dirac fermion as a good starting point for analyzing the 
low temperature phases. This point of view is also adopted in [54].

The mechanism of flavor polarization is likely due to a combination of Coulomb interaction 
and narrow bands, much like the occurrence of spin polarization (ferromagnetism) in narrow 
band metal. In the following, we shall assume the simplest flavor polarization mechanism. More 
complicated ones will not affect our discussions, as long as, after the polarization, the low energy 
spectrum forms Dirac cones and the number of active bands and the associated low-energy theory 
are captured correctly.

For simplicity, we shall consider ν ≥ 0 in the following discussion. In the cases of ν =
1, 2, 3,20

the Fermi level crossing band number is reduced to 3, 2, 1 respectively. This can be caused by 
a polarization operator

�p

∫
d2x ψ(x)†P ψ(x) (93)

where P is a hermitian matrix that commutes with �i and satisfies P 2 = I16. In addition, P
needs to be identity matrix for the Moiré valley degree of freedom. This leads to the space

P ∈
4⋃

ν=0

U(4)

U(4 − ν) × U(ν)
. (94)

Such a term will shift 4 −ν bands on the Moiré Brillouin zone upward and the remaining ν down-
ward by the energy ±�p . For example, P = IZII is one such polarization matrix for ν = 2
causing the polarization of graphene valleys, with half of the bands are shifted upward/down-
ward. The resulting spectrum for each ν is schematically shown in Fig. 8.

After the polarization, the low energy free fermion Hamiltonian read

Ĥ =
∫

d2x ψ†(x)
(
−i�

(ν)
1 ∂x − i�

(ν)
2 ∂y

)
ψ(x), (95)

where, up to a flavor basis transformation,

20 ν = −1, −2, 3 can be mapped onto ν = 1, 2, 3 by flipping the signs of �p in Eq. (93) and εF in Fig. 8.
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�
(ν)
1 = XII4−ν, �

(ν)
2 = YII4−ν . (96)

Here I4−ν is the identity matrix for size 4 − ν. The order parameter associated with the Fermi-
level crossing bands is

QC ∈
8−2ν⋃
l=0

U(8 − 2ν)

U(l) × U(8 − 2ν − l)
, (97)

and the associated non-linear sigma model reads

W [QC,A] = 1

2λ3

∫
M

d3x tr
[(

∂μQC
)2 ]− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]

+8
∫
M

tr
[
iAQC(dQC)2 − 2AFQC

]}
, (98)

where Aμ is the electromagnetic (U(1)) gauge field. Here, associated with each mass manifold 
the σxy is given by

σxy = l − (4 − ν).

First consider we ν = 1, 2. Since experimentally σxy = 0 at ν = 1, 2 [51] for B = 0, we 
take it as implying the relevant mass manifold is U(8−2ν)

U(4−ν)×U(4−ν)
. The resulting non-linear sigma 

model can have two phases. One of phases occurs for λ3 < λc, where there is a spontaneous 
breaking of the U(8 − 2ν) symmetry and the sigma model is gapped. We interpret this phase as 
the “symmetry-breaking correlated insulator”.21 The other phase occurs for λ3 > λc where the 
sigma model remains gapless. We interpret that as the semi-metal phase.

For ν = 3, the order parameter associated with the Fermi-level crossing bands is

QC ∈
2⋃

l=0

U(2)

U(l) × U(2 − l)
. (99)

The l = 2 and l = 0 mass manifolds break the time-reversal symmetry and yield σxy = ±1 (see 
appendix H for the details). Hence the phase corresponds to a quantum anomalous Hall state. 
This is consistent with the experimental observation of Ref. [51]. We stress that the non-zero σxy

associated with mass manifold l = 0 or 2 is independent of the choice of flavor polarization P so 
long as it obeys Eq. (94).

The mass manifold associated with l = 1 is

U(2)

U(1) × U(1)
= S2.

In that case QC can be replaced by a unit vector n̂ ∈ S2. This leads to the bosonization of a small 
n case (i.e., before the WZW term is stabilized). The resulting nonlinear sigma model was first 
derived in Ref. [55] and reviewed in appendix H. The action is given by

W [n̂] = 1

2λ′
3

∫
M

d3x
(
∂μn̂
)2 + iπH [n̂].

21 Due to the flavor polarization, the original emergent symmetry is broken. Hence in principle, the low energy massless 
fermion theory can be regularized. If so there is the possibility that a Mott insulator phase exists.
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Here H [n̂] is the Hopf invariant of the S3 → S2 mapping. In the presence of such Hopf term 
the solitons are fermions [56]. Depending on the value of λ′

3 this non-linear sigma model can be 
gapless (preserving the U(2) symmetry) for λ′

3 < λc , or gapped (spontaneous symmetry break-
ing) for λ′

3 > λc. In the latter case the fermionic solitons will be gapped. In either case σxy = 0. 
We viewed the gapped soliton phase a “correlated insulator” arising from symmetry breaking.

18. Conclusions

In this paper we have proposed the (non-abelian) bosonized theories associated with two 
classes of massless fermion theories, the real and complex class, in spatial dimensions 1, 2, and 
3. The bosonized theories are non-linear sigma models with the level-1 Wess-Zumino-Witten 
terms. We have also included three examples showing how to apply the bosonization results.

Of course, the goal of bosonization is not simply writing down theories equivalent to that 
of massless free fermions. For example, the bosonized models manifest what are the “near-
by” symmetry-breaking states. These symmetry-breaking states can be reached when anisotropy 
terms are added to the non-linear sigma models. The bosonized theories also allow one to include 
the effects of strong interaction such as the charge-SU(2) confinement discussed in the first two 
applications. Moreover, as we have discussed, the main idea of this bosonization is inspired by 
the physics of topological insulators and superconductors. Indeed, the results discussed here can 
be applied to the boundary physics of such systems.

In this paper, when restoring the symmetries, we have restricted the bosonic order parameters 
to fluctuate smoothly. As the result, defect proliferation is not considered. In the literature, it is 
known that proliferation of symmetry-protected defects can lead to topological order (e.g., in 
Ref. [57]). However, in that case, one is restricted to the boundary of topological insulators/su-
perconductors (or more generally symmetry-protected topological states). This is because defects 
are sensitive to short-distance physics, and the symmetries that protect the desired properties of 
defects can be broken by the regularization. Of course, unless the defects are on the boundary of 
an SPT, where regularization is provided by the bulk, and no symmetry breaking is necessary. An 
interesting question is how to reach a topological ordered state without invoking defects. These 
are directions that warrants more researches.
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Appendix A. The emergent symmetries for (2 + 1) and (3 + 1)-D

In this appendix we derive the emergent symmetries of the massless fermion theory (see 
Table 1) for spatial dimension d = 2, 3 (for d = 1 the result has already been discussed in sec-
tions 2).

A.1. Complex class in (2 + 1)-D

In the complex fermion representation, the minimal size of the gamma matrices in two spatial 
dimensions is 2 × 2. If the fermion has n flavors, modulo a basis transformation, we have

S0 =
∫

d3x ψ†(∂0 − i

2∑
i=1

�i∂i)ψ where

�1 = ZIn, �2 = XIn. (100)

It’s easy to see that the full emergent symmetries include U(n) transformations in the flavor 
degrees of freedom. In addition, there are discrete symmetries, namely, charge conjugation and 
time-reversal symmetries. To summarize, Eq. (100) is invariant under

U(n) symmetry :
U(n) : ψ → (I ⊗ g)ψ where g ∈ U(n)

Charge conjugation symmetry :
C : ψ → (I ⊗ In) (ψ†)T

Time reversal symmetry :
T : ψ → (Y ⊗ In)ψ. (101)

A.2. Real class in (2 + 1)-D

In the Majorana fermion representation, the minimal size of the gamma matrices in two spatial 
dimensions, is 2 × 2. If the fermion has n flavors, modulo a basis transformation, we have

S0 =
∫

d3x χT (∂0 − i

2∑
i=1

�i∂i)χ where

�1 = ZIn, �2 = XIn. (102)

It’s easy to see that the full emergent symmetries include O(n) transformations in the flavor 
degrees of freedom. In addition, there is time reversal symmetry. To summarize, Eq. (102) is 
invariant under
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O(n) symmetry :
O(n) : χ → (I ⊗ g)χ where g ∈ O(n)

Time reversal symmetry :
T : χ → (E ⊗ In)χ. (103)

A.3. Complex class in (3 + 1)-D

In the complex fermion representation, the minimal size of the gamma matrices in three spatial 
dimensions is 4 × 4. If the fermion has n flavors, modulo a basis transformation, we have

S0 =
∫

d4x ψ†(∂0 − i

3∑
i=1

�i∂i)ψ where

�1 = ZIIn, �2 = XIIn, �3 = YZIn. (104)

Similar to the (1 + 1)-D case, the chirality matrix

�5 := −i�1�2�3 = IZIn

commutes with the gamma matrices. As a result, the full emergent include chiral U(n) transfor-
mations, namely, U+(n) ×U−(n) (see below). In addition, there are discrete symmetries, namely, 
charge conjugation, and time-reversal symmetries. To summarize, Eq. (104) is invariant under

Chiral U(n) symmetry :
U+(n) × U−(n) : ψ → (IP+ ⊗ g+ + IP− ⊗ g−)ψ where g± ∈ U±(n)

Charge conjugation symmetry :
C : ψ → (IX ⊗ In) (ψ†)T

Time reversal symmetry :
T : ψ → (YZ ⊗ In)ψ, (105)

where

P± := I ± Z

2
.

A.4. Real class in (3 + 1)-D

In the Majorana fermion representation, the minimal size of the gamma matrices in three 
spatial dimensions is 4 × 4. If the fermion has n flavors, modulo a basis transformation, we have

S0 =
∫

d4x χT (∂0 − i

3∑
i=1

�i∂i)χ where

�1 = ZIIn, �2 = XIIn, �3 = YYIn. (106)

Although we can still define �1�2�3 = IEIn, this is an anti-symmetric matrix with complex 
eigenvectors hence cannot be used to define chirality for Majorana (real) fermions.

To find the most general continuous unitary symmetry, notice that only II and IE commute 
with the first two Pauli matrices in �1,2,3. Hence the symmetry transformation needs to be in the 
form
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χ → (II ⊗ g1 − IE ⊗ g2)χ.

Here g1 and g2 are orthogonal matrices (which preserve the realness of the Majorana fermion 
operator and their anti-commutation relation). The condition of g1 and g2 being orthogonal ma-
trices is equivalent to requiring g1 + ig2 ∈ U(n).22 Thus, the unitary continuous symmetry is 
U(n). In addition, there is time-reversal symmetry. To summarize, Eq. (106) is invariant under

U(n) symmetry :
U(n) : χ → (II ⊗ g1 − IE ⊗ g2)χ where g := g1 + ig2 ∈ U(n)

Time reversal symmetry :
T : χ → (EZ ⊗ In)χ (107)

Appendix B. The mass manifolds, homotopy groups and symmetry transformations

In this appendix we derive the mass manifolds in Table 2, and the transformation of QC and 
QR under the emergent symmetries in Table 4 for d = 2, 3 (the d = 1 case has been discussed in 
section 3 and 6). In addition, we discuss the relevant homotopy groups of the mass manifolds. For 
sufficiently large flavor number n, it turns out that the πD+1, relevant to the existence of WZW 
term, are always equal to Z. On the other hand, πD−1, relevant to the existence of non-trivial 
soliton, are Z or Z2 depending on whether the class is complex or real.23

B.1. Complex class in (2 + 1)-D

In (2 + 1)-D, complex fermion representation, the gamma matrices in Eq. (100) are

�1 = ZIn, �2 = XIn. (108)

The most general hermitian mass matrix M satisfying

{M,�i} = 0 and M2 = I2n

is of the form

M = Y ⊗ H := Y ⊗ QC (109)

where QC = H is an n ×n hermitian matrix satisfying H 2 = In. This last condition requires the 
eigenvalues of H to be ±1. Assuming l of the eigenvalues are +1 and n − l are −1, we have

QC = W · diag(+1, ...,+1︸ ︷︷ ︸
l

,−1, ...,−1︸ ︷︷ ︸
n−l

) · W †.

Different QC are characterized by the unitary matrix (whose columns are eigenvectors) W ∈
U(n). However, not all W will yield distinct QC . Under the transformation

W → W ·
(

W̃1 0
0 W̃2

)
where W̃1 ∈ U(l) and W̃2 ∈ U(n − l),

22 As an algebraic relation, IE plays the role of i here because (IE)2 = −I4.
23 Although we shall not further discuss it in this paper, the Z or Z2 soliton classifications are originated from K-
theory [6] and the Bott periodicity [58,59]. Therefore this statement holds true in even higher dimensions.
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Table 6
The homotopy groups of the complex Grassmannian 

U(n)
U(n/2)×U(n/2)

. We box the homotopy group when it is sta-
bilized, i.e., no longer changes with increasing n.

n (even) Mass manifold π2 π3 π4

(soliton) (θ term) (WZW)

≥ 4 U(n)
U(n/2)×U(n/2)

Z 0 Z

2 U(2)
U(1)×U(1)

= S2 Z Z Z2

QC is unchanged. Thus the mass manifold M is the union of the quotient spaces

M =
n⋃

l=0

U(n)

U(l) × U(n − l)
.

These quotient spaces are called “complex Grassmannians”. Note that M contains n + 1 discon-
nected components.

Under the action of the emergent symmetries in Eq. (101), the order parameter QC transforms 
as

QC U(n)−−→ g† · QC · g
QC C−→

(
QC
)T

QC T−→ −
(
QC
)∗

Among them, the time reversal transformation changes the signs of all eigenvalues and thus 
exchanges l and n − l. Therefore only when

QC ∈ U(n)

U(n/2) × U(n/2)
for n ∈ even

does the time reversal transformed QC stay in the same component of the mass manifold. Only 
in this manifold, fluctuating QC can restore the full emergent symmetries.

Using the long exact sequence of the homotopy group corresponding to the fibration,

0 → U(
n

2
) × U(

n

2
) → U(n) → U(n)

U(n
2 ) × U(n

2 )
→ 0,

we can deduce the homotopy groups of the complex Grassmannian from the homotopy groups 
of U(n) (see, e.g., [60]). In Table 6 we list the results of the second, third, and fourth homotopy 
groups. They are relevant for determining the existence of solitons, θ -term, and WZW term. 
These results are used in appendix D.

B.2. Real class in (2 + 1)-D

The massless fermion Hamiltonian is given by Eq. (102), where the gamma matrices are given 
by

�1 = ZIn �2 = XIn (110)
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The most general purely imaginary antisymmetric mass matrix (requirement due to hermiticity 
and Majorana condition) M satisfying

{M,�i} = 0 and M2 = I2n

is of the form

M = Y ⊗ S := Y ⊗ QR (111)

where QR = S is an n ×n real symmetric matrix satisfying S2 = In. This last condition requires 
the eigenvalues of QR to be ±1. Assuming l of the eigenvalues are +1 and the rest are −1, we 
have

QR = W · diag(+1, ...,+1︸ ︷︷ ︸
l

,−1, ...,−1︸ ︷︷ ︸
n−l

) · W †.

Hence different QR are characterized by the orthogonal matrix W ∈ O(n). However, not all W
yield distinct QR. Under the transformation

W → W ·
(

W̃1 0
0 W̃2

)
where W̃1 ∈ O(l) and W̃2 ∈ O(n − l),

QR is unchanged. Thus the mass manifold is the union of quotient spaces called “real Grass-
mannians”

M =
n⋃

l=0

O(n)

O(l) × O(n − l)
.

Here, M contains n + 1 disconnected components.
Under the action of the emergent symmetries in Eq. (103), the order parameter QR transforms 

as

QR O(N)−−−→ gT · QR · g
QR T−→ −QR.

Among them, the time reversal transformation changes the signs of all eigenvalues and thus 
exchanges l and n − l. Therefore only when

QR ∈ O(n)

O(n/2) × O(n/2)
for n ∈ even

does the time reversal transformed QR stay in the same component of the mass manifold. Only 
in the mass manifold, fluctuating QR can restore the full emergent symmetries.

Using the long exact sequence of the homotopy group associated with the fibration,

0 → O(
n

2
) × O(

n

2
) → O(n) → O(n)

O(n
2 ) × O(n

2 )
→ 0,

we can deduce the homotopy groups of the real Grassmannian from the homotopy groups of 
O(n) (see e.g., [60]). We list the results of the second, third, and fourth homotopy groups in 
Table 7. They are relevant for determining the existence of solitons, θ -term, and WZW term. 
These results are used in appendix D.
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Table 7
The homotopy groups of the real Grassmannian O(n)

O(n/2)×O(n/2)
. We box 

the homotopy group when it is stabilized, i.e., no longer changes with in-
creasing n.

n (even) Mass manifold π2 π3 π4
(soliton) (θ term) (WZW)

≥ 10 O(n)
O(n/2)×O(n/2)

Z2 0 Z

2 S1 0 0 0

4 S2×S2

Z2
Z2 Z2 Z2

2

6 Z2 0 Z

8 Z2 0 Z3

B.3. Complex class in (3 + 1)-D

The massless fermion Hamiltonian is given by Eq. (104), where the gamma matrices are given 
by

�1 = ZIIn, �2 = XIIn, �3 = YZIn (112)

The most general hermitian mass matrix M satisfying

{M,�i} = 0

is of the form

M = YX ⊗ H1 + YY ⊗ H2 (113)

Here H1,2 are n × n hermitian matrices. It’s easy to check that the extra condition on the mass 
matrix

M2 = I4n

is equivalent to requiring

QC := H1 + iH2 ∈ U(n)

Thus, the mass manifold is U(n). Here the mass manifold contains only a single component.
Under the action of the emergent symmetries in Eq. (105), the order parameter QC transforms 

as

QC U(n)×U(n)−−−−−−→ g
†
− · QC · g+

QC C−→
(
QC
)T

QC T−→
(
QC
)∗

Fluctuating QC within U(n) can restore the full emergent symmetries.
We list the results of the second, third, and fourth homotopy groups in Table 8. They are 

relevant for determining the existence of solitons, θ -term, and WZW term. These results are 
used in appendix D.
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Table 8
The homotopy groups of U(n). We box the homotopy group 
when it is stabilized, i.e., no longer changes with increasing n.

n Mass manifold π3 π4 π5
(soliton) (θ term) (WZW)

≥ 3 U(n) Z 0 Z

1 S1 0 0 0

2 S3×S1

Z2
Z Z2 Z2

B.4. Real class in (3 + 1)-D

The massless fermion Hamiltonian is given by Eq. (106), where the gamma matrices are given 
by

�1 = ZIIn, �2 = XIIn, �3 = YYIn (114)

The most general antisymmetric (to ensure hermiticity) mass matrix M satisfying

{M,�i} = 0

is of the form

M = YX ⊗ S1 + YZ ⊗ S2 (115)

Here S1,2 are n × n real symmetric matrices. It’s easy to check that the extra condition on the 
mass matrix

M2 = I4n

is equivalent to requiring

QR := S1 + iS2 ∈ symmetric U(n).

According to the “Autonne decomposition” (e.g., corollary 2.6.6 of [22]), any symmetric unitary 
matrix can be decomposed into

QR = U · UT

where U is a general n × n unitary matrix. However, not all U will yield different QR. The 
transformation

U → U · O, where O ∈ O(n)

leaves QR unchanged. Thus the mass manifold is

Mm = U(n)

O(n)
.

This mass manifold is called the “real Lagrangian Grassmannian”, which contains a single com-
ponent.

Under the action of the emergent symmetries in Eq. (107), the order parameter QR transforms 
as
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Table 9
The homotopy groups of the real Lagrangian Grassmannian 
U(n)
O(n)

. We box the homotopy group when it is stabilized, i.e., 
no longer changes with increasing n.

n Mass manifold π3 π4 π5
(soliton) (θ term) (WZW)

≥ 6 U(n)
O(n)

Z2 0 Z

1 S1 0 0 0

2 S1×S2

Z2
Z Z2 Z2

3 Z2 0 Z×Z2

4 Z2 Z Z×Z2
2

5 Z2 0 Z×Z2

QR U(n)−−→ gT · QR · g
QR T−→

(
QR
)∗

Fluctuating QR in U(n)/O(n) can restore the full emergent symmetries.
Using the long exact sequence of the homotopy group associated with the fibration,

0 → O(n) → U(n) → U(n)

O(n)
→ 0,

we can deduce the homotopy groups of the real Lagrangian Grassmannian from the homotopy 
group of U(n) and O(n) (see e.g., [60]). We list the results of the second, third, and fourth 
homotopy groups in Table 9. They are relevant for determining the existence of solitons, θ -term, 
and WZW term. These results are used in appendix D.

Appendix C. The anomalies of the fermion theories

In this section, we shall use the heuristic method introduced in subsection 4.2 to determine 
the anomalies associated with the emergent symmetries of the massless free fermion theory in 
(1 +1), (2 +1) and (3 +1)-D. For each massless fermion theory, we shall determine 1) the largest 
subgroup of the continuous symmetry that is anomaly free, 2) whether the discrete symmetries 
are anomalous after imposing a regularization mass that is invariant under the anomaly-free part 
of the continuous symmetry. Readers are referred to Table 1 for the emergent symmetries of 
the massless free fermion theories; Table 2 for the general form of mass terms (QC,R), and the 
topological space (mass manifold) they reside in; Table 4 for the transformations of QC,R under 
the emergent symmetries.

C.1. The choice of discrete symmetry generators

Before discussing the free fermion anomalies, we would like to discuss the reason for mak-
ing the particular choice for the time-reversal and charge conjugation generators in Table 1. As 
mentioned in the main text, such choice is not unique. Because we can generate new choices by 
compounding the C and the T in Table 1 with other unitary symmetries.
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In (1 + 1)-D and (3 + 1)-D we specifically choose the generators of C and T so that when 
a regularization mass is picked to commute with the maximal anomaly-free subgroup of the 
continuous symmetry, it is also charge conjugation and time reversal invariant. In (2 + 1)-D, a 
regularization mass that commutes with the entire continuous symmetry group and C exists. In 
contrast, it is impossible to pick a T so that the chosen mass is also time reversal invariant.

C.2. Complex class in (1 + 1)-D

As discussed in section 4.2, whether a symmetry group is anomalous depends on whether 
there exists a regularization mass that is invariant under its action. For continuous symmetries, 
the existence of an invariant regularization mass guarantees the possibility of gauging such sym-
metries.

As shown in Table 1 the continuous part of the emergent symmetries form the U+(n) ×U−(n)

group, and a general mass term has the following form

M = X ⊗ H1 + Y ⊗ H2 where H1 + iH2 := QC ∈ U(n)

Under the action of U+(n) × U−(n) these mass terms transform according to

QC → g
†
− · QC · g+, where (g+, g−) ∈ U+(n) × U−(n).

Since there is no (regularization) mass invariant under the action of the entire U+(n) × U−(n), it 
follows that U+(n) × U−(n) is anomalous.

The largest anomaly free subgroup is the diagonal U(n), i.e., g+ = g− = g ∈ U(n). In this 
case we can choose QC = In (i.e., H1 = In and H2 = 0), such that it is invariant under the 
diagonal U(n). One can thus use

Mreg = X ⊗ In

as the regularization mass.
Note that this mass term is invariant under the time-reversal and charge-conjugation symme-

tries

QC T−→(QC)T = In

QC C−→(QC)∗ = In.

Consequently there is no anomaly for these discrete symmetries after imposing the diagonal 
U(n)-invariant regularization mass.

C.3. Real class in (1 + 1)-D

As shown in Table 1 the continuous part of the emergent symmetries form the O+(n) ×O−(n)

group, and a general mass term has the following form

M = Y ⊗ S + X ⊗ (iA) where S + A := QR ∈ O(n).

Under the action of O+(n) × O−(n) these mass terms transform according to

QR → gT− · QR · g+, where (g+, g−) ∈ O+(n) × O−(n).

Since there is no (regularization) mass invariant under the action of the entire O+(n) × O−(n), 
it follows that O+(n) × O−(n) is anomalous.
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The largest anomaly free subgroup is the diagonal O(n), i.e., g+ = g− = g ∈ O(n). In this 
case QR = In (i.e., S = In and A = 0) is invariant under the diagonal O(n). One can thus use

Mreg = Y ⊗ In

as the regularization mass.
Since this mass term is invariant under the time-reversal, i.e.,

QR T−→(QR)T = In,

there is no anomaly for time-reversal symmetry after imposing the diagonal O(n)-invariant reg-
ularization mass.

C.4. Complex class in (2 + 1)-D

As shown in Table 1 the continuous part of the emergent symmetries form the U(n) group, 
and a general mass term has the following form

M = Y ⊗ QC where QC ∈
⋃
l

U(n)

U(l) × U(n − l)

Under the action of U(n) these mass terms transform according to

QC → g† · QC · g, where g ∈ U(n).

Because QC = ±In is invariant under the action of U(n) one can choose

Mreg = ±Y ⊗ In

as the regularization mass. Hence the entire U(n) is anomaly free.
It is easy to see that QC = ±In is the only U(n) preserving mass term. Although this mass 

term is invariant the charge-conjugation

QC C−→(QC)T = ±In,

it is odd under the time-reversal symmetry

QC T−→ − (QC)∗ = ∓In.

Therefore the time-reversal symmetry is anomalous after imposing the U(n)-invariant regulariza-
tion mass. Note that one cannot avoid this anomaly by compounding the time-reversal symmetry 
with other unitary symmetries, because all of the unitary symmetries leave the mass term invari-
ant.

C.5. Real class in (2 + 1)-D

As shown in Table 1 the continuous part of the emergent symmetries form the O(n) group, 
and a general mass term has the following form

M = Y ⊗ QR where QR ∈
⋃
l

O(n)

O(l) × O(n − l)
.

Under the action of O(n) these mass terms transform according to
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QR → gT · QR · g, where g ∈ O(n).

Because QR = ±In is invariant under the action of U(n), one can choose

Mreg = ±Y ⊗ In

as the regularization mass. Hence the entire O(n) is anomaly free.
It is easy to see that QR = ±In is the only O(n) preserving mass term. However, this mass 

term is odd under the time-reversal symmetry

QR T−→ − QR = ∓In.

Therefore the time-reversal symmetry is anomalous after imposing the O(n)-invariant regulariza-
tion mass. Note that one cannot avoid this anomaly by compounding the time-reversal symmetry 
with other unitary symmetries, because all of the unitary symmetries leave the mass term invari-
ant.

C.6. Complex class in (3 + 1)-D

As shown in Table 1 the continuous part of the emergent symmetries form the U+(n) ×U−(n)

group, and a general mass term has the following form

M = Mreg = YX ⊗ H1 + YY ⊗ H2 where QC := H1 + iH2 ∈ U(n)

Under the action of U+(n) × U−(n) these mass terms transform according to

QC → g
†
− · QC · g+, where (g+, g−) ∈ U+(n) × U−(n).

Since there is no (regularization) mass invariant under the action of the entire U+(n) × U−(n), it 
follows that U+(n) × U−(n) is anomalous.

The largest anomaly free subgroup is the diagonal U(n), i.e., g+ = g− = g ∈ U(n). In this 
case QC = In (i.e., H1 = In and H2 = 0) is invariant under the diagonal U(n). One can thus use

Mreg = YX ⊗ In

as the regularization mass.
Note that this mass term is invariant under the time-reversal and charge-conjugation symme-

tries,

QC T−→(QC)∗ = In

QC C−→(QC)T = In

Consequently there is no anomaly for these discrete symmetries after imposing the diagonal 
U(n)-invariant regularization mass.

C.7. Real class in (3 + 1)-D

As shown in Table 1, the continuous part of the emergent symmetries form the U(n) group, 
and a general mass term has the following form

M = YX ⊗ S1 + YZ ⊗ S2 where QR := S1 + iS2 ∈ U(n)/O(n).
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Under the action of U(n), these mass terms transform according to

QR → gT · QR · g, where g ∈ U(n).

Since there is no (regularization) mass invariant under the action of the entire U(n), it follows 
that U(n) is anomalous.

The largest anomaly-free subgroup is O(n), i.e., g ∈ O(n). In this case QR = In (i.e., S = In

and S2 = 0) is invariant under the diagonal O(n). One can thus use

Mreg = YX ⊗ In

as the regularization mass.
Note that this mass term is invariant under the time-reversal transformation,

QR T−→ (QR)∗ = In.

Consequently there is no anomaly for time-reversal symmetry after imposing the O(n)-invariant 
regularization mass.

Appendix D. Fermion integration

In this section, we derive the nonlinear sigma models summarized in section 8 and 9 by 
integrating out the gapped fermions.

D.1. Integrating out real versus complex fermions

For fermions in the real classes, we face integration of the following form

Z[QR(x)] = e−W [QR(x)] =
∫

Dχ(x)e−S[χ(x),QR(x)] where

S[χ,QR(x)] =
∫

dDx χT
{
∂0 + Ĥ [QR(x)]

}
χ. (116)

A convenient trick for doing such integration is to perform the corresponding complex fermion 
integration and divide the resulting effective action by two.

Too see this, consider two copies of Majorana fermion χ1 and χ2 coupled to the same QR(x). 
After fermion integration, the result should be the square of that in Eq. (116), namely,∫

Dχ1 Dχ2 e
−
{
S[χ1(x),QR(x)]+S[χ2(x),QR(x)]

}
=
{
Z[QR(x)]

}2 = e−2W [QR(x)]

:= e−W̃ [QR(x)].

On the other hand, we can combine χ1,2 into a complex fermion field

ψ = χ1 + iχ2,

so that the sum of the real fermion actions can be written as a complex fermion action,

χT
1

[
∂0 + Ĥ (QR)

]
χ1 + χT

2

[
∂0 + Ĥ (QR)

]
χ2

= ψ†
[
∂0 + Ĥ (QR)

]
ψ.
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Note that the cross terms cancel out, due to the anti-commutation relation between χ1 and χ2, 
and the fact that[

∂0 + Ĥ (QR)
]T = −

[
∂0 + Ĥ (QR)

]
.

Consequently if W̃ [QR(x)] is the effective action due to the complex fermion integration, we 
have

W [QR(x)] = 1

2
W̃ [QR(x)]. (117)

Due to Eq. (117), we shall focus on the complex fermion integration in the following.

D.2. Integrating out complex fermions

To make the action explicitly Lorentz invariant, we rewrite the fermion-boson action as

S =
∫

dτ dx ψ†
[
∂0 − i

d∑
i=1

�i∂i + mM̂(τ,x)
]
ψ

=
∫

dτ dx ψ†(−iγ0)
[
(iγ0)∂0 − i(iγ0)

d∑
i=1

�i∂i + m(iγ0)M̂(τ,x)
]
ψ, (118)

where γ 0 is a 2n ×2n hermitian matrix which anti-commutes with {�i} and satisfying (γ 0)2 = 1. 
In general we choose γ 0 to be identity matrix among the flavor degrees of freedom. We will write 
down γ 0 explicitly for each dimension later on. Here we also extract out the parameter m, which 
controls the size of the fermion gap. As discussed in section 3, we will focus on the M̂ belonging 
to the mass manifold, i.e., satisfying M̂2 = 1. Now define

γ μ := (γ 0,−iγ 0 �i) where i = 1, ..., d

ψ̄ := ψ†(−iγ 0)

β(τ,x) := γ 0M̂(τ,x) (119)

so that Eq. (118) turns into

S =
∫

dDx ψ̄
[
iγ μ∂μ + imβ(x)

]
ψ :=

∫
dDx ψ̄ D̂ ψ

where D̂ := i /∂ + i mβ(x).

Using the anti-commutation relations between {�i} and γ 0, the γ μ satisfies the Clifford algebra

{γ μ, γ ν} = 2δμν.

It’s also easy to check that β(x), being a function of QC(x), is a matrix-valued smooth function 
of space-time, satisfying

β(x)† · β(x) = 1.

Note that β(x) is in general not hermitian.
Fermion integration generates the effective action

W = − ln det[D̂] = −Tr ln[D̂].
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The variation of the effective action W induced by a small variation in δβ (triggered by a 
small variation in QC subject to the constraint β(x)† · β(x) = I ) is given by

δW = − Tr
[(

δD̂
)
D̂−1

]
= − Tr

[
imδβ D̂−1

]
= − Tr

[
imδβ

(
D̂†D̂

)−1
D̂†
]

= − Tr

[
imδβ

[
G−1

0 − m((/∂β))
]−1

D̂†
]

= − Tr

[
imδβ

[
G−1

0

(
I − mG0((/∂β))

)]−1
D̂†
]

= − Tr

{
imδβ

[ ∞∑
l=0

[mG0 ((/∂β)) ]l
]

G0

(
i /∂ − imβ†

)}

Here the double parentheses in ((/∂β)) means that the derivative acts only on β and nothing 
afterward, and

G0 := (−∂2 + m2)−1.

One can thus express δW in powers of ((/∂β)). In the following, we shall retain terms where the 
number of space-time derivatives is less or equal to D. Hence by dimension counting, each of 
these terms is either relevant or marginal. The expansion is called the gradient expansion in the 
literature [21]. There are two types of terms having ≤ D derivatives, namely,

−Tr

{
imδβ

[
D−1∑
l=0

[mG0 ((/∂β)) ]l
]

G0
(
i /∂
)}

(120)

and

−Tr

{
imδβ

[
D∑

l=0

[mG0 ((/∂β)) ]l
]

G0

(
−imβ†

)}
(121)

It turns out that among all non-vanishing parts of Eq. (120) and (121) there is a unique pure 
imaginary term – the WZW term. The rest are real. In D = 1 + 1 and 2 + 1 the only real term 
is the stiffness term. In D = 3 + 1 there are several extra real terms in addition to the stiffness 
term. However, all of these extra terms contain four space-time derivatives. Hence they are ir-
relevant compared with the stiffness term. Therefore the non-linear sigma model with the WZW 
term contains the most relevant real and imaginary terms after the fermion integration. To avoid 
sidetracking, we shall leave these details in subsection D.4.

Throughout this appendix, we shall adopt the following convention. Tr denotes the trace over 
both the space-time and the matrices in β, δβ , and γ μs. tr′ denotes the trace over the matrices 
in β , δβ , γ μ. trγ denotes the trace over only the γ matrices. tr denotes the trace over the n × n

matrices in β, δβ . According to the above convention

tr′ = trγ × tr.

Moreover, we shall adopt the following short hand
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∫
dDk

(2π)D
:=
∫
k

D.2.1. The stiffness term
The first non-vanishing such term is the stiffness term,

δWstiff = −Tr
[
imδβ

(
mG0((/∂β))

)
G0
(
i /∂
)]

. (122)

Fourier transforming Eq. (122), we obtain

δWstiff = −m2
∫
p

∫
q

tr′
[
δβ−q

1

(p + q)2 + m2 /qβq

1

p2 + m2 /p

]

≈ 2m2
∫
p

1

(p2 + m2)3

∫
q

(q · p) tr′
[
δβ−qβ†

q /q /p
]

= 2m2
∫
p

pμpν

(p2 + m2)3

∫
q

(qμqλ) tr′
[
δβ−qβ†

qγ νγ λ
]

(123)

As usual

/p := γ μpμ.

In passing to the second line in Eq. (123) we have expanded the expression

1

(p + q)2 + m2 = 1

p2 + m2

∞∑
n=0

(
−2p · q + q2

p2 + m2

)n

(124)

and keep the lowest order non-vanishing term. Because∫
p

1

(p2 + m2)3 pμpν = 1

D

∫
p

p2

(p2 + m2)3 δμν,

Eq. (123) turns into

δWstiff ≈ 2m2

D

∫
p

p2

(p2 + m2)3

∫
q

(qμqλ) tr′
[
δβ−qβ†

qγ μγ λ
]

= 2m2

D

∫
p

p2

(p2 + m2)3

∫
q

q2 tr′
[
δβ−qβ†

q

]
(125)

In passing to the second line of Eq. (125) we have used the fact that

qμqλγ
μγ λ = q2I.

The p-integration in Eq. (125) converges for (1 +1)-D and (2 +1)-D, but diverges for (3 +1)-D. 
We shall use dimensional regularization (D = 4 − ε with ε → 0+), which leads to
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δWstiff ≈2m2 1

D

∫
p

p2

(p2 + m2)3

∫
q

q2 tr′
[
δβ−qβ†

q

]

=
[

�(2 − D
2 )

2(4π)D/2 mD−2

]∫
M

dDx tr′
[
∂μ(δβ)∂μβ†

]
(126)

Here �(l) is the gamma function. For (3 + 1)-D, the dimension regularization is given by

�(2 − D

2
) = �(

ε

2
) ≈ 2

ε
− γ + O(ε)

where γ is the Euler-Mascheroni constant. Thus, the term whose variation with respect to δβ
yields Eq. (126) is

Wstiff[β] = 1

2λD−2
D

∫
M

dDx tr′
[
∂μβ∂μ β†

]
(127)

where λ has the dimension of length. In the limit that the short-distance cutoff is zero,

1

λD−2
D

=
[

�(2 − D
2 )

2(4π)D/2 mD−2

]
. (128)

D.2.2. The WZW (topological) term
The second type of non-vanishing term in the gradient expansion is topological in nature, 

namely, the Wess-Zumino-Witten term

δWWZW = −Tr
[
imδβ

(
mG0((/∂β))

)D
G0

(
−imβ†

)]

≈ −mD+2

⎡
⎣∫

p

1

(p2 + m2)D+1

⎤
⎦∫
M

dDx tr′
[

D∏
a=1

(γ μa∂μaβ)β† δβ

]

= −
[

1

(4π)D/2

�(D
2 + 1)

�(D + 1)

]∫
M

dDx tr′
[

D∏
a=1

(γ μa∂μaβ)β† δβ

]
(129)

Eq. (129) is the difference in the Berry phase between the order parameter configurations β(x)

and β(x) + δβ(x). To determine the Berry phase for a specific β(x), we integrate Eq. (129)
from a reference configuration β(x) = constant matrix. The existence of a continuous retraction 
leading from β(x) to the reference configuration relies on

πD(mass manifold) = 0.

It turns out this is exactly the condition when the WZW term exists (see later). Under the con-
dition that such continuous retraction exists, we can find a continuous family of configurations 
β̃(x, u) so that

β̃(x,u = 1) = β(x)

β̃(x,u = 0) = constant matrix. (130)

We can integrate Eq. (129) to yield
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WWZW [β] = −
[

1

(4π)D/2

�(D
2 + 1)

�(D + 1)

]∫
B

dudDx tr′
[

D∏
a=1

(γ μa∂μa β̃) β̃
†
∂uβ̃

]

(131)

As in the main text, B is the extension of space-time manifold M, so that

∂B = M.

In summary, when the fermion flavor number, n, is sufficiently large so that the WZW term is 
stabilized, the non-linear sigma model action is

W [β] = 1

2λD−2
D

∫
M

dDx tr′
[
∂μβ∂μβ†

]

−
[

1

(4π)D/2

�(D
2 + 1)

�(D + 1)

]∫
B

dudDx tr′
[

D∏
a=1

(γ μa∂μa β̃) β̃
†
∂uβ̃

]

where
1

λD−2
D

=
[

�(2 − D
2 )

2(4π)D/2 mD−2

]
. (132)

In the following, we shall apply this result to (1 + 1)-D, (2 + 1)-D, and (3 + 1)-D.24

D.3. The fermion integration results for sufficiently large n so that the WZW term is stabilized

In this subsection, we shall focus on the results of fermion integration when n is sufficiently 
large so that

πD+1(mass manifold) = Z.

The case of small n, before the WZW term is stabilized, will be discussed in appendix H.

D.3.1. Complex class in (1 + 1)-D
The fermion action for the complex class in (1 + 1)-D is given by Eq. (22)

S =
∫

d2x ψ† [∂0 − i(ZIn)∂1 + m(X ⊗ H1 + Y ⊗ H2)]ψ

=
∫

d2x ψ†(−iXIn) [i(XIn)∂0 + i(−YIn)∂1 + im (I ⊗ H1 + iZ ⊗ H2)]ψ

:=
∫

d2x ψ̄
[
i /∂ + i mβ

]
ψ

where

ψ̄ = ψ†(−iXIn)

γ 0 = XIn, γ 1 = −YIn, γ 5 = ZIn

β = I ⊗ H1 + iγ 5I ⊗ H2. (133)

24 It turns out that it always contains a level-1 WZW term in even higher dimensions, though we shall not discuss them 
in the present paper.
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Plugging the above results into equation Eq. (127) and Eq. (128) the stiffness term is given by

Wstiff[QC] = 1

8π

∫
d2x tr

[
∂μ(H1 + iH2)∂

μ(H1 − iH2)
]

= 1

8π

∫
d2x tr

[
∂μQC∂μQC†

]
where QC := H1 + iH2 ∈ U(n). Substitute Eq. (133) into Eq. (131) we obtain WZW term as

WWZW [QC]
= − 1

8π

∫
B

dud2x tr′
[
(γ μ1∂μ1 β̃)(γ μ2∂μ2 β̃) β̃

†
∂uβ̃
]

= − 1

8π

∫
B

dud2x tr′
[ (

γ μ1γ μ2
) (

I ⊗ H̃1 − iγ 5I ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iγ 5I ⊗ H̃2

)

× ∂μ1

(
I ⊗ H̃1 − iγ 5I ⊗ H̃2

)
∂μ2

(
I ⊗ H̃1 + iγ 5I ⊗ H̃2

)]
= − 1

8π

∫
B

dud2x tr′
[(

γ μ1γ μ2γ 5
) (

I ⊗ H̃1 − iI ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iI ⊗ H̃2

)

× ∂μ1

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂μ2

(
I ⊗ H̃1 + iI ⊗ H̃2

)]
= − 1

8π

∫
B

dud2x
(−2iεμ1μ2

)
tr
[
Q̃C† ∂uQ̃

C ∂μ1Q̃
C† ∂μ2Q̃

C
]

= − i

4π

∫
B

dud2x εμ1μ2 tr
[(

Q̃C†∂uQ̃
C
)(

Q̃C†∂μ1Q̃
C
) (

Q̃C†∂μ2Q̃
C
)]

= − i

4π
× 1

3

∫
B

dud2x εμ̃1μ̃2μ̃3 tr
[(

Q̃C†∂μ̃1Q̃
C
)(

Q̃C†∂μ̃2Q̃
C
) (

Q̃C†∂μ̃3Q̃
C
)]

= − 2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]

where

Q̃C := H̃1 + iH̃2 ∈ U(n)

is the extension of QC = H1 + iH2 into B, and μ̃a is extended space-time manifold index (i.e., 
they include u). This extension in Eq. (130) is possible because

π2(U(N)) = 0.

The passing from the 2nd to the 3rd line is due to the fact that when H̃2 → −H̃2 the whole 
expression changes sign, hence only the terms with an odd number of H̃2 survive. The final 
non-linear sigma model action, namely,

W [QC] = 1

8π

∫
d2x tr

[
∂μQC∂μQC†

]
− 2πi

24π2

∫
B

tr
[(

Q̃C†dQ̃C
)3 ]

(134)

is the U(n)k=1 WZW theory.
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D.3.2. Real class in (1 + 1)-D
The Majorana fermion action for the real class in (1 + 1)-D is given by Eq. (26)

S =
∫

d2x χT [∂0 + i(ZIn)∂1 + m(X ⊗ (iA) + Y ⊗ S)]χ,

where S and A are symmetric and anti-symmetric matrices, respectively. Upon the complexifica-
tion described in subsection D.1, the form of the action becomes exactly the same as the complex 
class action in the preceding section, except that

H1 → iA H2 → S.

Following the discussion in subsection D.1, we can substitute

QC = H1 + iH2 → i(A + S) := iQR

into Eq. (134) and divide the result by 2 to obtain the following non-linear sigma model action

W [QR] = 1

16π

∫
d2x tr

[
∂μQR∂μ(QR)T

]
− 2πi

48π2

∫
B

tr
{[

(Q̃R)T dQ̃R
]3 }

(135)

This is the action of the O(n)k=1 WZW theory.

D.3.3. Complex class in (2 + 1)-D
The fermion action for complex class in (2 + 1)-D can be constructed from Eq. (108) and 

Eq. (109),

S =
∫

d3x ψ†
[
∂0 − i(ZIn)∂1 − i(XIn)∂2 + mY ⊗ QC

]
ψ

=
∫

d3x ψ†(−i Y In)
[
i(Y In)∂0 + i(XIn)∂1 + i(−ZIn)∂2 + imI ⊗ QC

]
ψ

:=
∫

d3x ψ̄
[
i /∂ + imβ

]
ψ

where

ψ̄ = ψ†(−iY In)

γ 0 = YIn, γ 1 = XIn, γ 2 = −ZIn

β = I ⊗ QC . (136)

Here QC(x) is an n × n hermitian-matrix-value function satisfying 
(
QC
)2 = In, forming the 

mass manifold 
⋃n

l=0
U(n)

U(l)×U(n−l)
(see appendix B). As discussed earlier, the l = n/2 component 

is special because the full emergent symmetries of the fermion theory can be restored upon 
order parameter fluctuation. Hence as far as bosonization is concerned we will focus on l = n/2. 
However, the following derivation works for other values of l too as long as both l and n − l are 
sufficiently large for the WZW term to be stabilized.
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Substitute Eq. (136) into Eq. (127) and Eq. (128), we obtain the following stiffness term

Wstiff[QC] = 1

4λ3

∫
d3x tr′

[
∂μβ∂μβ†

]
= 1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
,

where λ3 has the dimension of length and in the limit where the short-distance cutoff is zero,

λ3 = 8π

m
. (137)

Substitution of Eq. (136) into equation (131) yields the WZW term

WWZW[QC] = −
[

1

(4π)3/2

�( 5
2 )

�(4)

]∫
B

dud3x tr′
[

D∏
a=1

(γ μa∂μa β̃) β̃
†
∂uβ̃

]

= − i

32π

∫
B

dud3x εμ1μ2μ3 tr
[
Q̃C ∂uQ̃

C ∂μ1Q̃
C ∂μ2Q̃

C ∂μ3Q̃
C
]

= − i

128π

∫
B

dud3x εμ̃1μ̃2μ̃3μ̃4 tr
[
Q̃C ∂μ̃1Q̃

C ∂μ̃2Q̃
C ∂μ̃3Q̃

C ∂μ̃4Q̃
C
]

= − 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

.

Here Q̃C is the extension of QC into B, and μ̃a extended space-time index. The extension in 
Eq. (130) is possible because

π3

(
U(n)

U(n/2) × U(n/2)

)
= 0.

The existence of WZW is indicated by

π4

(
U(n)

U(n/2) × U(n/2)

)
= Z,

with the topological invariant

1

256π2

∫
S4

tr

[
Q̃C

(
dQ̃C

)4
]

∈ Z.

Comparing with the result of fermion integration, the WZW term is 2πi times the above topo-
logical invariant, implying the level, k, is 1. In summary, the non-linear sigma model action is

W [QC] = 1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
− 2πi

256π2

∫
tr

[
Q̃C

(
dQ̃C

)4
]

. (138)
B
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D.3.4. Real class in (2 + 1)-D
The fermion action for real class in (2 +1)-D can be constructed from Eq. (110) and Eq. (111),

S =
∫

d3x χT
[
∂0 + i(ZIn)∂1 + i(XIn)∂2 + mYQR

]
χ

Note that the form of this action is the same as that in the preceding section, except that the 
fermions are Majorana and QR is real symmetric instead of hermitian. According to the discus-
sion in subsection D.1, we can replace

QC → QR ∈ O(n)

O(n/2) × O(n/2)

in Eq. (138) and divide the result by 2. The resulting non-linear sigma model action is

W [QR] = 1

4λ3

∫
d3x tr

[
∂μQR∂μQR

]
− 2πi

512π2

∫
B

tr
[
Q̃R (dQ̃R)4

]
. (139)

Here λ3 has the dimension of length and in the limit where the short-distance cutoff is zero λ3 is 
given by Eq. (137). Moreover, Q̃R is the extension of QR into B. The extension in Eq. (139) is 
possible because

π3

(
O(n)

O(n/2) × O(n/2)

)
= 0.

The existence of the WZW term is indicated by

π4

(
O(n)

O(n/2) × O(n/2)

)
= Z,

with the topological invariant given by

1

512π2

∫
S4

tr

[
Q̃R

(
dQ̃R

)4
]

∈ Z.

Comparing the WZW term with the topological invariant we conclude Eq. (139) is the action for 
the O(n)

O(n/2)×O(n/2)
non-linear sigma model with k = 1 WZW term.

D.3.5. Complex class in (3 + 1)-D
The fermion action for complex class in (3 + 1)-D can be constructed from Eq. (112) and 

Eq. (113),

S =
∫

d4x ψ† [∂0−i(ZIIn)∂1−i(XIIn)∂2−i(YZIn)∂3+m(YX ⊗ H1+YY ⊗ H2)]ψ

=
∫

d4x ψ†(−iYXIn)
[
i(YXIn)∂0 + i(XXIn)∂1 + i(−ZXIn)∂2 + i(−IY In)∂3

+ im (II ⊗ H1 + i IZ ⊗ H2)
]
ψ

:=
∫

d4x ψ̄
[
i /∂ + imβ

]
ψ

where
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ψ̄ = ψ†(−iYXIn)

γ 0 = YXIn, γ 1 = XXIn , γ 2 = −ZXIn, γ 3 = −IY In, γ 5 = IZIn

β = II ⊗ H1 + iγ 5II ⊗ H2. (140)

Substitute Eq. (140) into Eq. (127) and Eq. (128), the stiffness term read

Wstiff[QC] = 1

8λ2
4

∫
d4x tr′

[
∂μβ∂μβ†

]

= 1

2λ2
4

∫
d4x tr

[
∂μQC∂μQC†

]
where

QC = H1 + iH2 ∈ U(n).

The parameter λ4 has the dimension of length and in the limit where the short-distance cutoff is 
zero,

1

λ2
4

=
[
�(0+)m2

8π2

]
. (141)

In the case where the short distance cutoff is finite the coefficient �(0+) should be replaced by a 
cutoff dependent parameter. Substitution Eq. (140) into Eq. (131) yields the WZW term

WWZW[QC]
= −

[
1

(4π)2

�(3)

�(5)

]∫
B

dud4x tr′
[
(γ μ1∂μ1 β̃)(γ μ2∂μ2 β̃) (γ μ3∂μ3 β̃) (γ μ4∂μ4 β̃) β̃

†
∂uβ̃
]

= − 1

192π2

∫
B

dud4x tr′
[ (

γ μ1γ μ2γ μ3γ μ4
)

×
(
I ⊗ H̃1 − iγ 5I ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iγ 5I ⊗ H̃2

)
× ∂μ1

(
I ⊗ H̃1 − iγ 5I ⊗ H̃2

)
∂μ2

(
I ⊗ H̃1 + iγ 5I ⊗ H̃2

)]
× ∂μ3

(
I ⊗ H̃1 − iγ 5I ⊗ H̃2

)
∂μ4

(
I ⊗ H̃1 + iγ 5I ⊗ H̃2

)]
= − 1

192π2

∫
B

dud4x tr′
[(

γ μ1γ μ2γ μ3γ μ4γ 5
)

×
(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iI ⊗ H̃2

)
× ∂μ1

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂μ2

(
I ⊗ H̃1 + iI ⊗ H̃2

)]
× ∂μ3

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂μ4

(
I ⊗ H̃1 + iI ⊗ H̃2

)]
= − 1

192π2

∫
dud4x

(
4εμ1μ2μ3μ4

)
tr
[
Q̃C† ∂uQ̃

C ∂μ1Q̃
C† ∂μ2Q̃

C ∂μ3Q̃
C† ∂μ4Q̃

C
]

B
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= − 1

48π2

∫
B

dud4x εμ1μ2μ3μ4 tr
[(

Q̃C†∂uQ̃
C
)(

Q̃C†∂μ1Q̃
C
) (

Q̃C†∂μ2Q̃
C
)

(
Q̃C†∂μ3Q̃

C
)(

Q̃C†∂μ4Q̃
C
)]

= − 1

240π2

∫
B

dud4x εμ̃1μ̃2μ̃3μ̃4μ̃5 tr
[(

Q̃C†∂μ̃1Q̃
C
) (

Q̃
C†
3 ∂μ̃2Q̃

C
)(

Q̃
C†
3 ∂μ̃3Q̃

C
)

(
Q̃

C†
3 ∂μ̃4Q̃

C
)(

Q̃
C†
3 ∂μ̃5Q̃

C
)]

= − 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

where Q̃C is the extension of QC into B, and μ̃a is the coordinate index of the extended space-
time manifold. The extension in Eq. (130) is possible because

π4(U(n)) = 0.

In passing from the 2nd to the 3rd line is due to the fact that when H̃2 → −H̃2, the entire 
expression changes sign, hence only terms with an odd number of H̃2 survive. The existence of 
the WZW term is indicated by

π5(U(n)) = Z,

with the topological invariant given by

i

480π3

∫
S5

tr
[(

Q̃C†dQ̃C
)5 ] ∈ Z.

Comparing the WZW term with the topological invariant we conclude the WZW term is at level 
k = 1. In summary, the non-linear sigma model action is given by

W [QC] = 1

2λ2
4

∫
d4x tr

[
∂μQC∂μQC†

]
− 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

. (142)

D.3.6. Real class in (3 + 1)-D
The fermion action for complex class in (3 + 1)-D can be constructed from Eq. (114) and 

Eq. (115),

S =
∫

d4x χT [∂0 − i(XIIn)∂1 − i(ZIIn)∂2 − i(YY In)∂3 + m(YX ⊗ S1 + YZ ⊗ S2)]χ

This action has the same form as that in the preceding section, except that the following differ-
ences. (i) The fermions are Majorana, (ii) an unitary change of the matrix basis, namely, rotation 
by π/2 generated by IXIn, and (iii) H1 → S1 and H2 → S2. According to the discussion in sub-
section D.1, we can use the result in the preceding section by substituting QC → QR = S1 + iS2
into Eq. (142) and divide the final effective action by 2. The resulting non-linear sigma model 
action is given by

W [QR] = 1

4λ2
4

∫
d4x tr

[
∂μQR∂μQR†

]
− 2π

960π3

∫
B

tr
[(

Q̃R†dQ̃R
)5 ]

.

(143)
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The existence of the WZW term is indicated by

π5(U(n)/O(n)) = Z,

with the topological invariant given by

i

960π3

∫
S5

tr
[(

Q̃R†dQ̃R
)5 ] ∈Z.

Again, we conclude that the WZW term is at level 1.

D.4. The less relevant real terms originate from Eq. (120) and Eq. (121)

In this subsection, we provide the details which show that in (1 +1)-D and (2 +1)-D, the non-
vanishing terms in Eq. (120) and Eq. (121) having ≤ D space-time derivatives are the stiffness 
and WZW terms. In (3 + 1)-D, there are extra real terms. In the following, we shall present a 
detailed analysis of these potential extra terms.

D.4.1. (1 + 1)-D
Given the fact that

β = I ⊗ H1 + iγ 5I ⊗ H2,

the l = 0 term in Eq. (120) read

−Tr
[
imδβG0γ

μ(i∂μ)
]
.

Since β only contains I or γ 5, it follows that the this term vanishes when we trace over the 
gamma matrices because both

trγ
[
γ μ
]= 0, trγ [γ μγ 5] = 0.

Similar argument applies to the l = 1 term in Eq. (121).
This leaves the l = 0 term in Eq. (121) as the only term requiring further attention, namely,

− Tr [imδβG0(−i mβ)]

= −m2
∫

p,q

1

p2 + m2 tr′
[
β†

−qδβq

]

= −m2

⎛
⎝∫

p

1

p2 + m2

⎞
⎠∫ d2x tr′

[
β†δβ

]

= −2m2

⎛
⎝∫

p

1

p2 + m2

⎞
⎠∫ d2x δ

{
tr
[
H 2

1 + H 2
2

]}

= 0.

In passing to the last line we used the constraint that

QC = H1 + iH2 ∈ U(n) ⇒ H 2
1 + H 2

2 = In.

Hence the only non-vanishing terms are the stiffness and WZW terms in subsection D.2.1 and 
D.2.2.
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D.4.2. (2 + 1)-D
Given the fact that

β = I ⊗ QC,

both the l = 0 term in Eq. (120) and the l = 1 term in Eq. (121) vanishes under trγ because

trγ [γ μ] = 0.

The l = 2 term in Eq. (120) gives

− Tr
[
imδβ

(
mG0((/∂β))

)2
G0
(
i /∂
)]

= m3
∫

p,q1,q2

1

p2 + m2

1

(p + q1)2 + m2

1

(p + q1 + q2)2 + m2

× tr′
[
δβ−q1−q2

(i/q2βq2
)(i/q1βq1

)(i /p)
]

≈ m3
∫

p,q1,q2

(−2p · (2q1 + q2))

(p2 + m2)4

(
2iεμνρ

)
q

μ
2 qν

1 pρ tr
[
δQC−q1−q2

QC
q2

QC
q1

]

= −4im3

3

∫
p,q1,q2

p2

(p2 + m2)4 εμνρq
μ
2 qν

1 (2q1 + q2)
ρ tr
[
δQC−q1−q2

QC
q2

QC
q1

]
= 0

In passing to the third line we have traced over the γ matrices, and in passing to the last line we 
have used the fact that qμ

2 qν
1 (2q1 +q2)

ρ is symmetric with respect to (ν, ρ) or (μ, ρ), while εμνρ

is totally anti-symmetric.
The l = 0 term in Eq. (121) gives

− Tr
[
imδβG0

(
−imβ†

)]
= −m2

∫
p

1

p2 + m2

∫
d3x tr′

[
δββ†

]

= −2m2
∫
p

1

p2 + m2

∫
d3x tr

[
δQC QC

]

= 0

In passing to the last line we noted that(
QC
)2 = In ⇒ δQC QC = −QCδQC ⇒ tr

[
δQC QC

]
= −tr

[
QCδQC

]
Upon using the cyclic property of trace we conclude

tr
[
δQC QC

]
= 0.
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The l = 2 term in Eq. (121) gives

− Tr
[
imδβ

(
mG0((/∂β))

)2
G0

(
−imβ†

)]
= −m4

∫
p,q1,q2

1

p2 + m2

1

(p + q1)2 + m2

1

(p + q1 + q2)2 + m2

× tr′
[
β†

−q1−q2−q3
δβq3

i/q2βq2
i/q1βq1

]
≈ −m4

∫
p

1

(p2 + m2)3

∫
q1,q2

tr′
[
β†

−q1−q2−q3
δβq3

i/q2βq2
i/q1βq1

]

≈ −2m4
∫
p

1

(p2 + m2)3

∫
d3x tr

[
QC δQC ∂μQC ∂μQC

]

= 0

In passing from the second to the third line we have used the fact at most three qi are 
allowed (otherwise the term becomes irrelevant). Therefore at most we can expand the 

1
(p+q1)

2+m2
1

(p+q1+q2)
2+m2 to first order in q1,2. However, such expansion inevitably comes with a 

p, and will vanish upon p integration. Thus we can only keep the 0th order term 1
p2+m2

1
(p2+m2)2 . 

In passing to the last line we have used δQC QC = −QCδQC three times to move QC to the 
end, and use the cyclic property to move it back to the front. In this way, we have proven that the 
quantity is the minus of itself, hence it is zero.

To summarize, including all (the most and less relevant) terms, the non-linear sigma model is 
given by

W [QC] = 1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

.

D.4.3. (3 + 1)-D
Given

β = I ⊗ H1 + iγ 5I ⊗ H2,

the l = 0, 2 terms of Eq. (120) and the l = 1, 3 terms of Eq. (121) vanishes upon trγ . This is 
because they contain either one or three γ from /p or /qi

. Because β contributes either I or γ 5. 
These terms vanish due to the fact that

trγ [γ μ] = trγ [γ μγ 5] = trγ [γ μγ νγ ρ] = trγ [γ μγ νγ ργ 5] = 0.

The l = 0 term of Eq. (121) gives

− Tr [imδβG0(−i mβ)]

= −m2
∫

1

p2 + m2 tr′
[
β†

−qδβq

]

p,q
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= −m2

⎛
⎝∫

p

1

p2 + m2

⎞
⎠∫ d4x tr′

[
β†δβ

]

= −4m2

⎛
⎝∫

p

1

p2 + m2

⎞
⎠∫ d4x δ

{
tr
[
H 2

1 + H 2
2

]}

= 0.

In passing to the last line we use the same reasoning as the corresponding term in (1 + 1)-D.
While maintaining two space-time derivatives, the l = 1 term of Eq. (120) gives rise to the 

variation of the stiffness term δWstiffness in subsection D.2.1. Here we retain up to 4 space-time 
derivatives,

− Tr
[
imδβ

(
mG0((/∂β))

)
G0(i /∂)

]
= −m2

∫
p,q

1

p2 + m2

1

(p + q)2 + m2 tr′
[
δβ−q(γ μqμ)βq(γ νpν)

]

= −m2
∫

p,q

1

p2 + m2

1

(p + q)2 + m2 qμpν tr′
[
δβ−qγ μγ νβ†

q

]

= δWstiffness − m2
∫

p,q

1

(p2 + m2)2

(
4q2(p · q)

(p2 + m2)2 − 8(p · q)3

(p2 + m2)3

)
(q · p)tr′

[
δβ−qβ†

q

]

= δWstiffness − m2
∫

p,q

(
p2q4

(p2 + m2)4 − p4q4

(p2 + m2)5

)
tr′
[
δβ−qβ†

q

]

= δWstiffness − 1

192π2

∫
d4x tr′

[
∂2(δβ)∂2β†

]
= δWstiffness − 1

96π2

∫
d4x tr

[
∂2(δQC)∂2QC† + ∂2(δQC†)∂2QC

]
= δWstiffness − 1

96π2

∫
d4x δ

(
tr
[
∂2QC∂2QC†

])
(144)

In passing from the 2nd to the 3rd line, we use the property βγ ν = γ νβ† for μ = 0, 1, 2, 3. From 
the 3rd to the 4th line we have used the fact that the trace is only non-zero if the γ μ and γ ν

are the same. From the 4th to the 5th line, we used the fact that rotational invariance allows the 
following replacement in the integrand of the p integral

pμpνpρpσ → p4

D(D + 2)

(
δμνδρσ + δμρδνσ + δμσ δνρ

)
.

(The factor 1
D(D+2)

can be fixed by taking trace on both sides.) In the 5th line, only the terms in 

δβ−qβ†
q having an even number of γ 5 are non-zero. Moreover, since γ 5 is always accompanied 

by H2, we can replace γ 5 with the identity matrix as long as we symmetrize the end result with 
respect to H2. After the replacement, β becomes II ⊗ QC , the identity matrix can then be trace 
out, and the symmetrization amounts to sum over the terms with QC = H1 + iH2 replaced by 
QC† = H1 − iH2. We will use this last trick several times in the following.
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The l = 3 term of Eq. (120) gives

− Tr
[
imδβ

(
mG0((/∂β))

)3
G0
(
i /∂
)]

= m4
∫

p,q1,q2,q3

1

p2 + m2

1

(p + q1)2 + m2

1

(p + q1 + q2)2 + m2

1

(p + q1 + q2 + q3)2 + m2

× tr′
[
δβ−q1−q2−q3

(i/q3βq3
)(i/q2βq2

)(i/q1βq1
)(i /p)

]
≈ m4

∫
p,q1,q2,q3

−2p · (3q1+2q2+q3)

(p2 + m2)5
q

μ
3 qν

2 q
ρ
1 pσ tr′

[
γ μγ νγ ργ σ δβ−q1−q2−q3

β†
q3

βq2
β†

q1

]

= −m4

2

∫
p

p2

(p2 + m2)5

∫
q1,q2,q3

q
μ
3 qν

2 q
ρ
1 (3q1 + 2q2 + q3)

σ
(
δμνδρσ − δμρδνσ + δμσ δνρ

)

× tr′
[
δβ−q1−q2−q3

β†
q3

βq2
β†

q1

]
even terms inH2

= − 1

96π2

∫
q1,q2,q3

(
3q2

1 (q2 · q3) − 2q2
2 (q1 · q3) + q2

3 (q1 · q2) + 4(q1 · q2)(q2 · q3)
)

× tr′
[
δQC−q1−q2−q3

QC†QC
q2

QC†
q1

]
even H2

= − 1

96π2

∫
d4x

1

2
tr

⎡
⎢⎢⎣

3 δQC∂μQC†∂QC∂2QC†+3 δQC†∂μQC∂μQC†∂2QC

−2 δQC∂μQC†∂2QC∂μQC†−2 δQC†∂μQC∂2QC†∂μQC

+ δQC∂2QC†∂μQC∂μQC†+ δQC†∂2QC∂μQC†∂μQC

+4 δQC∂μQC†∂μ∂νQ
C∂νQ

C†+4 δQC†∂μQC∂μ∂νQ
C†∂νQ

C

⎤
⎥⎥⎦

= 1

96π2

∫
d4x tr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QC†δQCQC†

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 ∂μQCQC†∂μQCQC†∂2QC

+2 ∂μQCQC†∂2QCQC†∂μQC

−∂2QCQC†∂μQCQC†∂μQC

−4∂μQCQC†∂μ∂νQ
CQC†∂νQ

C

+6∂μQCQC†∂μQCQC†∂νQ
CQC†∂νQ

C

−2∂μQCQC†∂νQ
CQC†∂νQ

CQC†∂μQC

+2∂μQCQC†∂νQ
CQC†∂μQCQC†∂νQ

C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(145)

From the 3rd to the 4th line, we take the terms with even number of γ 5 (thus even number of 
H2) from β and use the identity trγ

[
γ μγ νγ ργ σ

] = 4(δμνδρσ − δμρδνσ + δμσ δνρ). The terms 
with odd number of γ 5 vanish because trγ

[
γ μγ νγ ργ σ γ 5

]= 4εμνρσ is totally anti-symmetric, 
while qν

3 qν
2 g

ρ
1 (3q1 + 2q2 + q3)

σ is symmetric with respect to either (μ, σ), (ν, σ), or (ρ, σ). 
From the 4th line to the 5th line, we used the same trick as in Eq. (144). From the 6th to the 7th 
line, δQC† = −QC†δQCQC† is used repeatedly until δ or ∂ act only on QC .

The l = 2 term of Eq. (121) gives

− Tr
[
imδβ

(
mG0((/∂β))

)2
G0

(
−imβ†

)]
= −m4

∫
1

(p + q1 + q2)2 + m2

1

(p + q1)2 + m2

1

p2 + m2

p,q1,q2,q3
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× tr′
[
β†

−q1−q2−q3
δβq3

(i/q2βq2
)(i/q1βq1

)
]

≈ m4
∫

p,q1,q2,q3

qν
2 q

μ
1

(p2 + m2)3

[
1 − q2

1 + (q1 + q2)
2

p2 + m2

+ 4
(p · q1)

2 + (p · (q1 + q2))
2 + (p · q1)(p · (q1 + q2))

(p2 + m2)2

]
× tr′

[
β†

−q1−q2−q3
δβq3

(γνγμβ†
q2

βq1
)
]

= m4
∫

p,q1,q2,q3

(q1 · q2)

(p2 + m2)3

[
1 − q2

1 + (q1 + q2)
2

p2 + m2

+ p2
(
q2

1 + (q1 + q2)
2 + q1 · (q1 + q2)

)
(p2 + m2)2

]
× tr

[
β†

−q1−q2−q3
δβq3

β†
q2

βq1

]
= m4

∫
q1,q2,q3

(q1 · q2)
[ 1

32π2m2 − 1

192π2m4

(
q2

1 + q2
2 + q1 · q2

)]

× tr′
[
β†

−q1−q2−q3
δβq3

β†
q2

βq1

]
=
∫

d4x
[
− m2

32π2 tr′
[
β†δβ∂μβ†∂μβ

]
− 1

192π2

× tr′
[
β†δβ

(
∂μβ†∂μ∂2β + ∂μ∂2β†∂μβ + ∂μ∂νβ

†∂μ∂νβ
)]]

=
∫

d4x
[
− m2

16π2 tr
[
QC†δQC∂μQC†∂μQC + QCδQC†∂μQC∂μQC†

]

− 1

96π2 tr

⎡
⎣ QC†δQC

(
∂μQC†∂μ∂2QC + ∂μ∂2QC†∂μQC + ∂μ∂νQ

C†∂μ∂νQ
C
)

+QCδQC†
(
∂μQC∂μ∂2QC† + ∂μ∂2QC∂μQC† + ∂μ∂νQ

C∂μ∂νQ
C†
)
⎤
⎦]

In passing from the 6th to the last line we have used the symmetrization trick in arriving at 
Eq. (144). Using δQC† = −QC†δQCQC†, the first term in the last line gives zero. The second 
term can be evaluated using the same formula repeatedly. After some straight-forward expansion, 
most terms cancel out and we are left with

− 1

96π2

∫
d4x tr

[
QC†δQCQC†

(
∂2QCQC†∂μQCQC†∂μQC

− ∂μQCQC†∂μQCQC†∂2QC
)]

(146)

Summing over Eq. (144), Eq. (145), and Eq. (146), we obtain

δWstiffness + δ

⎛
⎝ 1

92π2

∫
d4x tr

⎡
⎣ ∂μQC†∂μQC∂νQ

C†∂νQ
C

− 1
2∂μQC†∂νQ

C∂μQC†∂νQ
C

−∂2QC∂2QC†

⎤
⎦
⎞
⎠ . (147)

All these terms are real. At low energy and long wavelength they are dominated by the stiffness 
term. In appendix E we shall refer to the stiffness term plus these extra terms as the “generalized 
stiffness” term.
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To summarize, including all “generalized stiffness” terms, the non-linear sigma model is given 
by

W [QC] = 1

2λ2
4

∫
M

d4x tr
[
∂μQC∂μQC†

]
− 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

+ 1

92π2

∫
M

d4x tr

⎡
⎣ ∂μQC†∂μQC∂νQ

C†∂νQ
C

− 1
2∂μQC†∂νQ

C∂μQC†∂νQ
C

−∂2QC∂2QC†

⎤
⎦ (148)

Appendix E. Emergent symmetries of the nonlinear sigma models

In this appendix, we shall generalize the discussions in section 11 to (2 + 1)-D and (3 + 1)-
D, namely, showing the nonlinear sigma models respect the full emergent symmetries of the 
massless free fermion theories (see Table 4, or appendix A).

As we explained in appendix D.3, the nonlinear sigma models in real classes can be derived 
from the complex classes by restricting QR to the appropriate sub-mass manifold of QC . Simi-
larly, for each space-time dimension the emergent symmetry group of the real class is a subgroup 
of the complex class (see Table 4). Hence, once we have matched the symmetries (between the 
nonlinear sigma models and fermion theories) for the complex class, it is straightforward to do 
the same for the real class. All we need to do is to restrict the order parameters to the appropriate 
sub-mass manifold and the symmetries to the appropriate subgroup. Therefore we shall focus on 
the complex classes in the following.

E.1. Complex class in (2 + 1)-D

The nonlinear sigma model is given by Eq. (138), namely,

W [QC] = 1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

.

(i) Global U(n)

Using the cyclic invariance of trace, the action in Eq. (138) clearly respects the U(n) symme-
try

QC → g† · QC · g.

(ii) Charge conjugation
QC transforms under the charge conjugation as

QC C−→
(
QC
)T

.

Under such transformation the stiffness term becomes

1

2λ3

∫
d3x tr

[
∂μ

(
QC
)T

∂μ
(
QC
)T
]

= 1
∫

d3x tr
[
∂μQC∂μQC

]

2λ3
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Hence is invariant. In passing to the last line we have used the fact that the trace of a transposed 
matrix is the same as that of the original.

Under charge conjugation the WZW term transforms as

− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

C−→ − 2πi

256π2

∫
B

tr

[
(Q̃C)T

(
d(Q̃C)T

)4
]

= − 2πi

256π2

∫
B

tr

[(
dQ̃C

)4
Q̃C
]

= − 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

.

In passing to the second line we have used the transposing invariance of the trace, and the fact the 
reordering caused by transposing results in an even number of exchanges between the differential 
1-forms, hence there is no sign change. The cyclic property of trace is used for the last equality. 
Therefore the WZW term is charge conjugation invariant.

(iii) Time reversal
Under time-reversal QC transforms as

QC T−→ −(QC)∗ = −(QC)T .

(Here we have used the fact that QC is hermitian.) This results in the following transformation 
of the stiffness term

1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
T−→
(

1

2λ3

∫
d3x tr

[
∂μ(−QC∗)∂μ(−QC∗)

])∗

= 1

2λ3

∫
d3x tr

[
∂μQC∂μQC

]
In passing to the second line we have used the fact that in Euclidean space-time the Boltzmann 
weight needs to be complex conjugated under anti-unitary transformation. Therefore, the stiff-
ness term is time reversal invariant.

The WZW term transforms as follows under time reversal

− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

T−→
⎛
⎝− 2πi

256π2

∫
B

tr

[
(−Q̃C)∗

(
d(−Q̃C)∗

)4
]⎞⎠∗

= − 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

,

where the five negative signs associated with transposing are canceled out by the negative sign 
arising from complex conjugation of i. Thus the WZW term is time reversal invariant.

In summary, the nonlinear sigma model respects the full emergent symmetries of the massless 
fermion theory (see Table 4).
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E.2. Complex class in (3 + 1)-D

The nonlinear sigma model in Eq. (148) is given by

W [QC] = 1

2λ2
4

∫
M

d4x tr
[
∂μQC∂μQC†

]
− 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

+ 1

92π2

∫
M

d4x tr

⎡
⎣ ∂μQC†∂μQC∂νQ

C†∂νQ
C

− 1
2∂μQC†∂νQ

C∂μQC†∂νQ
C

−∂2QC∂2QC†

⎤
⎦

(i) Global U(n) × U(n)

Eq. (148) is clearly invariant under the U+(n) × U−(n) transformations

QC → g
†
− · QC · g+.

This is because in Eq. (148) QC and QC† appears sequentially.
(ii) Charge conjugation
Under charge-conjugation QC transforms as

QC C−→ (QC)T .

Under such transformation the “generalized stiffness” terms transforms as

1

2λ2
4

∫
d4x tr

[
∂μ

(
QC
)T

∂μ
(
QC†

)T
]

+ 1

92π2

∫
d4x tr

⎡
⎢⎢⎢⎢⎣

∂μ

(
QC†

)T

∂μ

(
QC
)T

∂ν

(
QC†

)T

∂ν

(
QC
)T

− 1
2∂μ

(
QC†

)T

∂ν

(
QC
)T

∂μ

(
QC†

)T

∂ν

(
QC
)T

−∂2
(
QC
)T

∂2
(
QC†

)T

⎤
⎥⎥⎥⎥⎦

= 1

2λ2
4

∫
d4x tr

[
∂μQC∂μQC†

]
+ 1

92π2

∫
d4x tr

⎡
⎣ ∂μQC†∂μQC∂νQ

C†∂νQ
C

− 1
2∂μQC†∂νQ

C∂μQC†∂νQ
C

−∂2QC∂2QC†

⎤
⎦

(149)

In arriving at the final line we have used the transposing invariance of the trace. Therefore the 
“generalized stiffness” terms are charge conjugation invariant.

Under charge conjugation, the WZW term transforms as

− 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

C−→ − 2π

480π3

∫
B

tr
[(

(Q̃C)∗d(Q̃C)T
)5 ]

= − 2π

480π3

∫
tr
[(

dQ̃C Q̃C†
)5 ]
B
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= − 2π

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]

In passing to the third line we have used the transposing invariance of the trace. Note that there is 
no extra sign because the number of exchanges between 1-forms is even (10 times). In arriving 
at the last line, the last Q̃C† is moved to the front by the cyclic invariance of the trace. Thus the 
WZW term is charge conjugation invariant.

(iii) Time reversal
Under time-reversal QC transforms as

QC T−→ (QC)∗.

W
[
QC
]

T−→
(
W
[(

QC
)∗])∗ = W

[
QC
]
.

This is because all the coefficients (including those in front of the generalized stiffness terms and 
the WZW term) in the nonlinear sigma model are real, the complex conjugation of the Boltzmann 
weight cancels out with complex conjugation in QC∗.

To summarize, the nonlinear sigma model is invariant under the full emergent symmetries of 
the massless fermion theory (see Table 4).

Appendix F. Anomalies of the nonlinear sigma models

To reveal the ’t Hooft anomalies of the non-linear sigma model we first need to gauge it. In 
this section, we shall extend the discussions in section 12.1 to gauge the continuous symmetries 
of nonlinear sigma models in (1 + 1)-D, (2 + 1)-D, and (3 + 1)-D. We shall adopt Witten’s 
trial-and-error method [23].

We have discussed at the beginning of appendix E that the mass manifold and emergent sym-
metries of the non-linear sigma model of real classes are the submanifold and sub-group of the 
corresponding sigma model of complex classes. Consequently, once one knows how to gauge the 
nonlinear sigma models in the complex classes, one simply needs to restrict the order parameters 
(QR) to the submanifold, and the gauge group to the subgroup, to derive the gauged non-linear 
sigma models of real classes.

F.1. The (’t Hooft) anomalies associated with continuous symmetries

F.1.1. Complex class in (1 + 1)-D
The discussion for gauging the nonlinear sigma model of complex class in (1 + 1)-D was 

already in section 12.1. We will not repeat the argument but just quote the result here:

W [QC,A+,A−] = − 1

8π

∫
M

d2x tr

[(
QC†

(
∂μQC − iQCA+,μ + iA−,μQC

))2
]

− i

12π

∫
B

tr

[(
QC†dQC

)3
]

− 1

4π

∫
M

tr
{
A+
(
QC†dQC

)

+ A−
(
dQCQC†

)
+ iA+QC†A−QC

}
. (150)

Under infinitesimal U+(n) × U−(n) gauge transformation,
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QC → e−iε−QCeiε+

A± → A± + dε± + i[A±, ε±],
Eq. (150) acquires an addition piece

δW = − i

4π

∫
M

tr
[
A+dε+ − A−dε−

]
. (151)

Thus Eq. (150) is not gauge invariant, revealing the ’t Hooft anomaly associated with U+(n) ×
U−(n). However, when one only gauges the diagonal U(n), i.e., A+ = A− := A and ε+ = ε− =
ε, the non gauge invariant terms in Eq. (151) cancels out. Hence Eq. (150) is anomaly free with 
respect to the diagonal U(n). This agrees with the free fermion anomaly.

F.1.2. Real class in (1 + 1)-D
The gauged nonlinear sigma model for real class in (1 +1)-D can be derived from the complex 

class by 1) restricting the order parameter QC ∈ U(n) to the subspace QR ∈ O(n), 2) restricting 
the gauge group from U+(n) × U−(n) to O+(n) × O−(n), and 3) divide the nonlinear sigma 
model by a factor of two (see D.1). The result is

W [QR,A+,A−] = − 1

16π

∫
M

d2x tr

[(
(QR)T

(
∂μQR − iQRA+,μ + iA−,μQR

))2
]

+ 2πi

48π2

∫
B

tr
[(

(Q̃R)T dQ̃R
)3 ]+ 1

8π

∫
M

tr
{
A+
(
dQR(QR)T

)

+ A−
(
(QR)T dQR

)
− iA+(QR)T A−QR

}
. (152)

Here A± are the gauge fields associated with O+(n) × O−(n). Under the O+(n) × O−(n)

gauge transformation,

QR → e−iε−QReiε+

A± → A± + dε± + i[A±, ε±],
(here ε+ and ε− are imaginary anti-symmetric matrices) Eq. (152) acquires an addition piece

δW = − i

8π

∫
M

tr
[
A+dε+ − A−dε−

]
,

manifesting the ’t Hooft anomaly associated with O+(n) × O−(n). Again, when only the diago-
nal O(n) is gauged, Eq. (152) is anomaly-free, consistent with the free fermion prediction.

F.1.3. Complex class in (2 + 1)-D
In the following, we carry out Witten’s method [23] for the non-linear sigma model. The emer-

gent continuous symmetry is U(n) and under gauge transformation QC and A change according 
to

QC → QC + δQC where δQC = i[QC, ε]
A → A + δA where δA = dε + i[A,ε]. (153)

The gauge field enters stiffness term in Eq. (138) via the minimal coupling,
89



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
Wstiff[QC,A] = 1

2λ3

∫
M

d3x tr
[(

∂μQC + i[Aμ,QC]
)2]

which is gauge invariant.
Following Witten’s trial-and-error method, we now determine how gauge field enters through 

the WZW term. Under Eq. (153) the WZW term acquires an addition piece

δ

⎛
⎝∫
B

tr
[
QC(dQC)4

]⎞⎠
=
∫
B

tr
[
δQC(dQC)4 + 4Qd(δQC)(dQC)3

]

=
∫
B

tr
[
5δQC(dQC)4 + d

(
4QCδQC(dQC)3

)]

=5
∫
B

tr
[
i
(
QCε − εQC

)
(dQC)4

]
+
∫
M

tr
[
4QCi

(
QCε − εQC

)
(dQC)3

]

=0 + 8i

∫
M

tr
[
ε(dQC)3

]

= − 8i

∫
M

tr
[
dε QC(dQC)2

]
(154)

In passing to the second line we used the constraint QCdQC = −dQC QC . An integration by 
part is done from the 2nd to the 3rd line. The 1st term in the 4th line vanishes because we can 
repeatedly use QCdQC = −dQC QC and the cyclic invariance of the trace to show

tr
[
εQC(dQC)4

]
= tr

[
QCε(dQC)4

]
.

To cancel out the gauge dependent part of Eq. (154), we add an additional term

Added term 8i

∫
M

tr
[
AQC(dQC)2

]
. (155)

Under the gauge transformation Eq. (153) this additional term transforms into

δ

⎛
⎝8i

∫
M

tr
[
AQC(dQC)2

]⎞⎠
=8i

∫
M

tr
[
δAQC(dQC)2 + δQC(dQC)2A + d(δQC)

(
dQC AQC + AQC dQC

)]

=8i

∫
M

tr

[
δAQC(dQC)2 + δQC

(
(dQC)2A + dQC dAQC − dQC AdQC

−dAQC dQC + AdQC dQC

)]

=8i

∫
tr

[
dε QC(dQC)2 + i[A,ε]QC(dQC)2
M
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+ i[QC, ε]
(

(dQC)2A + dQC dAQC − dQC AdQC

−dAQC dQC + AdQC dQC

)]

=8i

∫
M

tr
[
dε QC(dQC)2

]
− 8

∫
M

tr

[
ε d

(
QC dQC AQC + QC AQC dQC

QC dA + dAQC

)]

=8i

∫
M

tr
[
dε QC(dQC)2

]
+ 8

∫
M

tr

[
dε

(
QC dQC AQC + QC AQC dQC

QC dA + dAQC

)]
(156)

The first term of the final result cancels the gauge dependent term of Eq. (154) by design. We 
continue to add the additional term

Added term − 8
∫
M

tr
[
(AQC)2dQC

]
(157)

in an attempt to cancel the term

8
∫
M

tr
[
dε
(
QC dQC AQC + QC AQC dQC

)]
(158)

in Eq. (156). Under the gauge transformation (Eq. (153)) the added term transforms as

δ

⎛
⎝−8

∫
M

tr
[
(AQC)2dQC

]⎞⎠

= −8
∫
M

tr

⎡
⎢⎢⎢⎣

δA
(
QC AQC dQC + QC dQC AQC

)
+δQC

⎛
⎝ AQC dQC A + dQC AQC A

−dAQC AQC + AdQC AQC

+AQC dAQC − AQC AdQC

⎞
⎠
⎤
⎥⎥⎥⎦

= −8
∫
M

tr

⎡
⎣ dε

(
QC AQC dQC + QC dQC AQC

)
+i ε d

(
−AQC A + QC AQC AQC

)
⎤
⎦

=
∫
M

tr

⎡
⎣−8dε

(
QC AQC dQC + QC dQC AQC

)
+8i dε

(
−AQC A + QC AQC AQC

)
⎤
⎦ (159)

The top line in the final result achieves canceling out Eq. (158). Now we focus on canceling out 
the terms in the bottom line of Eq. (159). The term∫

M

tr
[

+8i dε
(
QC AQC AQC

) ]
(160)

can be canceled out by adding the extra term

Added term − 8i

3

∫
M

tr
[
(AQC)3

]
. (161)

Under gauge transformation the added term transforms as
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δ

⎛
⎝−8i

3

∫
M

tr
[
(AQC)3

]⎞⎠
= −8i

∫
M

tr
[
δ(AQC)(AQC)2

]

= −8i

∫
M

tr
[(

dε QC + i[A,ε]QC + iA[QC, ε]
)

(AQC)2
]

= −8i

∫
M

tr
[
dε QC(AQC)2

]
(162)

which indeed cancels Eq. (160). The remaining term∫
M

tr
[

+8i dε
(
−AQC A

) ]
(163)

in Eq. (159) can be partially canceled by adding the extra term

Added term 8i

∫
M

tr
[
A3QC

]
, (164)

which transforms as

δ

⎛
⎝8i

∫
M

tr
[
A3QC

]⎞⎠
= 8i

∫
M

tr
[
(dε + i[A,ε])

(
A2 QC + AQC A + QC A2

)
+ i[QC, ε]

(
A3
)]

= 8i

∫
M

tr
[
dε
(
A2 QC + AQC A + QC A2

)]
(165)

under the gauge transformation. The second term in Eq. (165) cancel Eq. (163).
At this point, under the gauge transformation, the sum of the original WZW term and the 

added terms Eq. (155), Eq. (157), Eq. (161), Eq. (164) acquires the extra piece

δ

⎛
⎝∫
B

tr
[
QC(dQC)4

]
+ 8

∫
M

tr

[
i AQC(dQC)2 − (AQC)2dQC

− i
3 (AQC)3 + i A3QC

]⎞⎠
= 8

∫
M

tr
[
dε
(
QCF + FQC

)]
(166)

where F := dA + iA2. This last non-gauge invariant term, Eq. (166), can also be canceled out 
by adding

Added term − 8
∫

tr
[
AQC F + AF QC

]
. (167)
M
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Indeed, under the gauge transformation the added term transforms as

δ

⎛
⎝−8

∫
M

tr
[
AQC F + AF QC

]⎞⎠

= −8
∫
M

tr

⎡
⎣ (dε + i[A,ε])(QC F + F QC)

+i [F, ε](AQC + QC A)

+i [QC, ε](F A + AF)

⎤
⎦

= −8
∫
M

tr
[
dε
(
QC F + F QC

)]

which cancels Eq. (166). Thus the entire U(n) symmetry can be gauged without anomaly. This 
is consistent with the free fermion prediction.

In summary, the U(n) gauged nonlinear sigma model in (2 + 1)-D is

W [QC,A] = 1

2λ3

∫
M

d3x tr
[(

∂μQC + i[Aμ,QC]
)2]− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]

+8
∫
M

tr
[
iAQC(dQC)2−(AQC)2dQC− i

3
(AQC)3+iA3QC−AQCF−AFQC

]}
.

(168)

F.1.4. Real class in (2 + 1)-D
The gauged nonlinear sigma model can be derived from the results in preceding subsection by 

1) restricting the order parameter QC ∈ U(n)
U(n/2)×U(n/2)

to the sub-manifold QR ∈ O(n)
O(n/2)×O(n/2)

, 
2) restricting the gauge group from U(n) to O(n), and 3) divide the effective action by a factor 
of two (see D.1). The resulting gauged nonlinear sigma model action is

W [QR,A] = 1

4λ3

∫
M

d3x tr
[(

∂μQR + i[Aμ,QR]
)2]− 2πi

512π2

{∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]

+8
∫
M

tr
[
iAQR(dQR)2 − (AQR)2dQR − i

3
(AQR)3 + iA3QR − AQRF − AFQR

]}
(169)

Here A is the gauge connection for the O(n) gauge group. Again the entire O(n) symmetry is 
anomaly free, agreeing with the free fermion prediction.

F.1.5. Complex class in (3 + 1)-D
The emergent symmetry is U+(n) × U−(n). The gauged WZW term was written down by 

Witten [23] with a minor correction in Ref. [61]. To simplify the notation, we will define

α1 := dQC QC†, α2 := QC†dQC .

The derivation is rather long, so we shall not repeat it here. The result is [23]
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W [QC,A+,A−]
= − 1

2λ2
4

∫
M

d4x tr

[(
QC†

(
∂μQC − iQCA+,μ + iA−,μQC

))2
]

− 2π

480π3

{∫
B

tr
[
(QC†dQC)5

]

+5
∫
M

tr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−i
(
A+α3

2+A−α3
1

)− ((dA+A++A+dA+)α2+(dA−A−+A−dA−)α1)

+dA−dQCA+QC†−dA+d(QC†)A−QC+A+QC†A−QCα2
2−A−QCA+QC†α2

1+ 1
2

(
(A−α1)

2−(A+α2)
2
)−i

(
A3−α1+A3+α2

)
+i
(
(dA+A++A+dA+)QC†A−QC− (dA−A−+A−dA−)QCA+QC†

)
−i
(
A−QCA+QC†A−α1+A+QC†A−QCA+α2

)
+
(
A3+QC†A−QC−A3−QCA+QC†

)
+ 1

2 (QCA+QC†A−)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
}

(170)

Under the infinitesimal gauge transformation, the action transforms as

δW = 2πi

48π3

∫
M

tr
[
ε+
(
(dA+)2 − i

2
d(A3+)

)
− ε−

(
(dA−)2 − i

2
d(A3−)

)]

The situation is similar to the (1 + 1)-D case: there is an anomaly if we gauge U+(n) and U−(n)

independently. However, there is no anomaly if we only gauge the diagonal part of U(n). This is 
consistent with the free fermion prediction.

F.1.6. Real class in (3 + 1)-D
The gauged nonlinear sigma model for the real class in (3 + 1)-D can be derived from the 

results of the preceding subsection by 1) restricting the order parameter QC ∈ U(n) to the sub-
manifold QR ∈ U(n)

O(n)
(the space of symmetric unitary matrix), 2) restricting the gauge group from 

U+(n) × U−(n) which transforms QC according to

QC → g
†
− · QC · g+,

to the sub-group U(n) (the global symmetry group in the real class is U(n)), which transforms 
QR according to

QR u∈U(n)−−−−→ uT · QR · u,

and 3) divide the action by a factor of two (see D.1). The resulting gauged nonlinear sigma model 
is

W [QR,A]
= − 1

4λ2
4

∫
M

d4x tr

[(
QR†

(
∂μQR − iQRAμ + i(−AT

μ)QR
))2
]

− 2π

960π3

{∫
tr
[
(QR†dQR)5

]

B
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+5
∫
M

tr

⎡
⎢⎢⎢⎢⎢⎣

−i
(
Aα3

2+(−AT )α3
1

)− ((dAA+AdA)α2+(d(−AT )(−AT )+(−AT )d(−AT ))α1
)

+d(−AT )dQRAQR†−dAd(QR†)(−AT )QR+AQR†(−AT )QRα2
2−(−AT )QRAQR†α2

1+ 1
2

(
((−AT )α1)

2−(Aα2)
2
)−i

(
(−AT )3α1+A3α2

)
+i
(
(dAA+AdA)QR†(−AT )QR− (d(−AT )(−AT )+(−AT )d(−AT )

)
QRAQR†

)
−i
(
(−AT )QRAQR†(−AT )α1+AQR†(−AT )QRAβ

)
+
(
A3QR†(−AT )QR−(−AT )3QRAQR†

)
+ 1

2 (QRAQR†(−AT ))2

⎤
⎥⎥⎥⎥⎥⎦
}
.

(171)

Here we have used the definition

α1 := dQRQR†, α2 := QR†dQR.

Under the infinitesimal gauge transformation,

QR → eiεT

QReiε

A → A + dε + i[A,ε],
the gauged nonlinear sigma model acquires an addition piece

δW = 2πi

96π3

∫
M

tr
[
dε
(
AdA − i

2
A3
)

+ dεT
(
(−AT )d(−AT ) − i

2
(−AT )3

)]
(172)

manifesting the ’t Hooft anomaly of associated with U(n).
However, if we only gauge the O(n) subgroup of U(n)

εT = −ε, AT = −A.

Under such condition the two terms in Eq. (172) cancel. Thus the O(n) subgroup anomaly free. 
This agrees with the free fermion anomaly.

F.2. Anomalies with respect to the discrete groups

After gauging the anomaly-free part of the continuous group, it is straightforward to deter-
mine how the resulting action transform under discrete symmetries. The necessary input is the 
transformation of the gauge field and the QC,R. Here we simply state the results. In (1 + 1)-D 
and (3 +1)-D there is no anomaly with respect to discrete symmetries after gauging the anomaly-
free part of the continuous symmetries. In (2 + 1)-D, gauging the continuous symmetry breaks 
the time-reversal symmetry as discussed in subsection 12.2.

Appendix G. Soliton’s statistics

As discussed in subsection 13.1 of the main text, in (2 + 1)-D and (3 + 1)-D the mass mani-
folds for QC,R support solitons for sufficiently large n (number of flavors). In this appendix, we 
follow Ref. [24] to determine the statistics of soliton. This is achieved by computing the Berry 
phase, arising from the WZW term, of an adiabatic self-rotating soliton.

Here is our strategy. (1) We write down the QC,R configuration corresponding to a static unit 
soliton. (2) Based on the result of (1), we write down the QC,R configuration corresponding to 
an adiabatic self-2π -rotating soliton. (3) We plug the QC,R configuration constructed in (2) into 
the WZW term to compute the Berry phase.
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Because the space-time manifold SD is incompatible with the QC,R configuration of a single 
soliton,25 in this section we shall follow Ref. [24] and use

M = SD−1 × S1

as the space-time manifold. Here SD−1 is in the spatial manifold and S1 is the loop in time. The 
extended manifold needed to define the WZW term is [24]

B = SD−1 × D2,

where D2 is a two-dimensional disk with the boundary ∂D2 = S1 being the time loop.

G.1. Complex class in (2 + 1)-D

The mass manifold is
U(n)

U(n/2) × U(n/2)
.

For n ≥ 4 both homotopy groups π2 (relevant to the existence of soliton) and π4 (relevant to the 
existence of the WZW term) are stabilized (see Table 6). This is the situation we shall focus on 
in the following.

To write down a static soliton configuration, let us begin with n = 2. This is because as far as 
π2 (relevant to the existence of soliton) is concerned, it stabilizes at n = 2, for which the mass 
manifold is

U(2)

U(1) × U(1)
= S2,

and QC is a 2 × 2 hermitian matrix. Here a unit soliton is a degree 1 map from the spatial 
manifold S2 to the mass manifold S2. An example of such map is

QC
sol(θ,φ) = n · σ where n = (sin θ cosφ, sin θ sinφ, cos θ), (173)

where θ and φ are the usual coordinates on S2. This can be verified by computing the topological 
invariant associated with the soliton quantum number

I2 = i

16π

∫
tr
[
QC

sol(dQC
sol)

2
]

= 1.

For n ≥ 4 we can write down a static unit soliton configuration as the direct sum of the 2 ×
2 QC

sol(θ, φ) in Eq. (173) with a number of Pauli matrices Z, i.e.,

QC
sol(θ,φ) = n(θ,φ) · σ ⊕ Z ⊕ Z... =

⎛
⎜⎜⎝

n3 n1 − in2 0 0
n1 + in2 −n3 0 0

0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠⊕ Z... (174)

To construct the configuration of a 2π -self-rotating soliton (around, e.g., the nx axis) we 
introduce the following space-time dependent QC , namely,

25 On SD , the infinite future corresponds to a single point. It follows that QC,R is a constant matrix at infinite future. 
This is incompatible with the single soliton configuration.
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QC(θ,φ, τ ) = RT (τ) · QC
sol(θ,φ) · R(τ), where

R(τ) =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

e+i τ
2 0 0 0

0 e−i τ
2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠⊕ I...

⎤
⎥⎥⎦ (175)

Here τ ranges from 0 to 2π along the time loop, and QC
sol(θ, φ) is given by Eq. (174).

As discussed earlier, in order to calculate the Berry phase arising from the WZW term, we 
need to extend the space-time manifold from M = S2 ×S1 to B = S2 ×D2. However, this exten-
sion is complicated by the fact that the orthogonal matrices R(τ) in Eq. (175) is not single-valued 
as τ runs through the time loop (note, however, QC(θ, φ, τ) is single valued). To overcome 
this difficulty, we use the algebraic fact observed by Witten [24] that to reproduce the same 
QC(θ, φ, τ), one can replace the R(τ) in Eq. (175) by the following single valued matrix

R(τ) =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1 0 0 0
0 e−iτ 0 0
0 0 e+iτ 0
0 0 0 1

⎞
⎟⎟⎠⊕ I...

⎤
⎥⎥⎦ .

After such replacement, one can extend it to S2 × D2 by writing

Q̃C(θ,φ, τ,u) = R̃T (τ, u) · QC
sol(θ,φ) · R̃(τ, u), where

R̃(τ, u) =

⎡
⎢⎢⎣
⎛
⎜⎜⎝

0 0 0 0
0 sinue−iτ cosu 0
0 − cosu sinue+iτ 0
0 0 0 1

⎞
⎟⎟⎠⊕ I...

⎤
⎥⎥⎦ , (176)

where u ∈ [0, π].
It’s straightforward, though slightly tedious, to plug Eq. (176) in the WZW term26 to obtain

WWZW[Q̃C] = − 2πi

256π2

∫
B

tr
[
Q̃C (dQ̃C)4

]
= iπ.

Therefore we conclude that the Berry’s phase due to the self-rotation is −1, implying the unit 
soliton is a fermion.

G.2. Real class in (2 + 1)-D

The relevant mass manifold is O(n)

O( n
2 )×O( n

2 )
. From Table 7, both π2 and π4 are stabilized for 

n ≥ 10. In the following we shall restrict ourselves to such situation.
Unlike the case of complex class, the stabilized π2 is

π2

(
O(n)

O(n
2 ) × O(n

2 )

)
= Z2,

26 It can be checked that for the self-rotating soliton configurations we consider here and the rest of this appendix, where 
the space-time manifold is SD−1 × S1 and the extended space-time manifold is SD−1 × D2, the WZW terms exist, and 
are extension-independent up to (2πi) Z. Thus, the soliton statistics is well-defined.
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rather than Z. As a consequence, unlike the soliton in the preceding section, there is no integral 
form of topological invariant we can use to test whether a proposed QR

sol configuration indeed 
corresponds to the non-trivial element of Z2. The purpose of the following subsection is to es-
tablish such a testing method.

G.2.1. How to test whether a proposed Z2 soliton is trivial or not
Let’s consider the “fibration”

F
i−→ E

p−→ B. (177)

Here F stands for “fiber space”, E stands for “total space”, and B stands for “base space”. 
“Fibration” means that locally (i.e., in a small neighborhood of the base space B), the total space 
is the Cartesian product of the base space and the fiber space. In Eq. (177) i and p stand for 
the inclusion and projection maps, respectively. They satisfy the property that image of i is the 
kernel of p. It is a non-trivial theorem that the fibration in Eq. (177) induces the following long 
exact sequence of mappings between homotopy groups (see, e.g., [60])

...πn(F )
i∗−→ πn(E)

p∗−→ πn(B) → πn−1(F )
i∗−→ πn−1(E)

p∗−→ πn−1(B)... (178)

Here i∗, p∗ stand for the map between mapping classes induced by the inclusion and projection, 
respectively. Eq. (178) has the property that for two consecutive mappings between homotopy 
groups, the image of the preceding map is equal to the kernel of the subsequent map.

In our case

F = O
(n

2

)
× O

(n

2

)
, E = O(n), B = O(n)

O(n
2 ) × O(n

2 )
.

The inclusion and projection maps in Eq. (177) are defined by

(O1,O2)
i−→ O :=

(
O1 0
0 O2

)
where O1,2 ∈ O

(n

2

)
and O ∈ O(n)

O
p−→ S := O · diag(+1, ...,+1︸ ︷︷ ︸

n/2

,−1, ...,−1︸ ︷︷ ︸
n/2

) · OT , where S ∈ O(n)

O(n
2 ) × O(n

2 )
.

(179)

Our goal is to decide whether a given

S2 f2−→ O(n)

O(n
2 ) × O(n

2 )
(180)

is topologically trivial or not. To answer that we consider the following sub-sequence of Eq. (178)

π2(O(n))
p∗−→ π2

(
O(n)

O(n
2 ) × O(n

2 )

)
β∗−→ π1

(
O
(n

2

)
× O

(n

2

))
i∗−→ π1(O(n)),

where it is known that

π2(O(n)) = 0

π2

(
O(n)

O(n) × O(n)

)
= Z2
2 2
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π1

(
O
(n

2

)
× O

(n

2

))
= Z2 ×Z2

π1(O(n)) = Z2.

The map

π1

(
O
(n

2

)
× O

(n

2

))
i∗−→ π1(O(n))

sends

Z2 ×Z2 →Z2 via (s1, s2) → (s1 + s2 mod 2).

Hence the kernel of this map is (0, 0) and (1, 1). According to Eq. (178) these should be the 
image of the map

π2

(
O(n)

O(n
2 ) × O(n

2 )

)
β∗−→ π1

(
O
(n

2

)
× O

(n

2

))
,

or equivalently,

Z2
β∗−→ Z2 ×Z2. (181)

The requirement that the image of the map in Eq. (181) be (0,0), (1,1), implies that

s
β∗−→ (s, s). (182)

Therefore the soliton configuration, which is an representative of the s = 1 element of 

π2

(
O(n)

O( n
2 )×O( n

2 )

)
, is mapped to a configuration representative of the (1, 1) element of π1

(
O
(

n
2

)
× O

(
n
2

))
under β . Hence if we can tell whether a representative map of π1(O(n/2)) is triv-

ial or not, we can deduce whether the configuration in Eq. (180) is topologically non-trivial by 
applying β to it.

But this requires us to know how to construct the β map. To achieve that we consider the 
following commutative diagram (a diagram is commutative if different paths leading from the 
same initial space to the final space are the same map. The fact that the following diagram is 
commutative is by construction.)

S1 D2 S2

O(n
2 ) × O(n

2 ) O(n)
O(n)

O( n
2 )×O( n

2 )

f1

δ1

λ

γ2

f2

i p

Here δ1 is the inclusion map which maps S1 to the boundary of the 2-dimensional disk D2; γ2
is the map that compactifies the boundary of D2 to single point; f2 is the map in Eq. (180) and 
f1 is the map obtained by applying β to f2, i.e., β[f2] = f1. By knowing whether f1 is a non-
trivial map representing (1, 1) in Eq. (182) we can deduce whether f2 is a non-trivial soliton 
configuration. In the commutative diagram λ is the homotopy lift of f2 ◦ γ2. The fact that such a 
lift exists is because D2 is homeomorphic to a two dimensional cube, i.e., a square, hence by the 
homotopy lifting property λ exists.

Because the image of γ2 ◦ δ1 is a point, so does the image of f2 ◦ γ2 ◦ δ1 = p ◦ λ ◦ δ1. 

This implies (λ ◦ δ1)[S1] is in the kernel of the map O(n) 
p−→ O(n)

n n . Since (λ ◦ δ1)[S1]

O( 2 )×O( 2 )
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is projected to a point in the base space, it must be contained entirely in a single fiber O
(

n
2

)×
O
(

n
2

)
. Therefore the sought-after f1 is given by

f1 = λ ◦ δ1.

The above arguments allow us take the map f2 as input and produce the map f1 as output, i.e., 
we have constructed β .

In the following we apply the construction discussed above to the following proposed soliton 
configuration27

f2 : (θ,φ) → QR
sol = (n1XI + n2EE + n3ZI) ⊕ Z ⊕ Z... (183)

where

n = (sin θ cosφ, sin θ sinφ, cos θ).

Because QR
sol is a real symmetric matrix, it can be diagonalized by orthogonal transformation

QR
sol = W ·

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠⊕ Z ⊕ Z...

⎤
⎥⎥⎦ · WT

where

W(θ,φ) =

⎛
⎜⎜⎝

cos θ
2 cosφ − cos θ

2 sinφ − sin θ
2 0

cos θ
2 sinφ cos θ

2 cosφ 0 − sin θ
2

sin θ
2 0 cos θ

2 cosφ cos θ
2 sinφ

0 sin θ
2 − cos θ

2 sinφ cos θ
2 cosφ

⎞
⎟⎟⎠⊕ I...

Naively, one might think W(θ, φ) is a mapping between S2 and O(n). However, this is not true. 
To see it, let’s inspect W(0, φ) and W(π, φ),

W(0, φ) =

⎛
⎜⎜⎝

cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ sinφ

0 0 − sinφ cosφ

⎞
⎟⎟⎠⊕ I...,

W(π,φ) =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠⊕ I...

The fact that W(0, φ) depends on φ and W(π, φ) does not imply that we should view W as a 
mapping between D2 and O(n), where θ = 0 corresponds to the boundary while θ = π cor-
responds to the center of D2 (i.e., the radius of D2 is π − θ ). In fact, W is the map λ in the 
commutative diagram, namely,

λ = W.

Hence the map f1 is given by

27 It is illuminating to compare QR with QC in Eq. (174), namely, QR = Re[QC ] ⊗ I + Im[QC ] ⊗ E.
sol sol sol sol sol
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f1(φ) = W(0, φ) =

⎛
⎜⎜⎝

cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ sinφ

0 0 − sinφ cosφ

⎞
⎟⎟⎠⊕ I... (184)

=
{(

cosφ − sinφ

sinφ cosφ

)
⊕ 1...

}
⊕
{(

cosφ sinφ

− sinφ cosφ

)
⊕ 1...

}
.

To summarize, given the map f2 in Eq. (183), we have obtained the map f1 in the commutative 
diagram via Eq. (184).

Now we are ready to determine whether Eq. (183) is a topological non-trivial soliton config-
uration. It is known that the following map from S1 to O(n/2)

f̃1(φ) =
{(

cosφ ∓ sinφ

± sinφ cosφ

)
⊕ 1...

}
is a representative of the generator of π1(O(n/2)) = Z2. Thus the mapping class of f1 in 
Eq. (184) is the (1, 1) element of π1(O(n/2) ×O(n/2)) = Z2 ×Z2. It follows that f2 in Eq. (183)
is a representative of the generator of π2(

O(n)
O(n/2)×O(n/2)

) = Z2, i.e., it is a soliton configuration.

G.2.2. The Berry phase of a self-rotating Z2 soliton
To calculate the Berry’s phase due to a 2π self-rotation of the soliton in Eq. (183), we rotate 

the soliton configuration to produce QR(θ, φ, τ) in the same way in the appendix G.1. After all 
dust settles, we end up with

QR(θ,φ, τ ) = Re[QC(θ,φ, τ )] ⊗ I + Im[QC(θ,φ, τ )] ⊗ E =⎛
⎜⎜⎝

cos θ 0 sin θ cos(φ + τ) − sin θ sin(φ + τ)

0 cos θ sin θ sin(φ + τ) sin θ cos(φ + τ)

sin θ cos(φ + τ) sin θ sin(φ + τ) − cos θ 0
− sin θ sin(φ + τ) sin θ cos(φ + τ) 0 − cos θ

⎞
⎟⎟⎠

⊕ Z ⊕ Z...

Similarly, we can extend the space-time to one extra dimension by defining

Q̃R(θ,φ, τ,u) := Re[Q̃C(θ,φ, τ,u)] ⊗ I + Im[Q̃C(θ,φ, τ,u)] ⊗ E.

(It’s easy to check it suffices all the properties we want for extension.) Plugging the extended 
Q̃R

2 into the WZW term, we find

WWZW [QR] =2πi

⎛
⎝− 1

512π2

∫
B

tr
[
Q̃R (dQ̃R)4

]⎞⎠= iπ.

Hence the soliton is again a fermion.

G.3. Complex class in (3 + 1)-D

The mass manifold in this situation is U(n). π3 (relevant to the existence of soliton) and the 
π5 (relevant to the existence of the WZW term) are both stabilized for n ≥ 3. In the following, 
we shall restrict ourselves to such conditions.

The fact a unit soliton in this mass manifold is a fermion has already been discussed in [24]. 
We briefly repeat the argument here for completeness. To construct a static soliton we start from 
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n = 2 (as far as π3 is concerned, it stabilizes for n ≥ 2 with π3(U(n)) = Z). Thus the n = 2
unit soliton is just the degree one map of S3 → SU(2) ∼ S3.28 We can choose the unit soliton 
configuration to be

QC
sol(

�) =
(

�0 + i�3 i(�1 − i�2)

i(�1 + i�2) �0 − i�3

)
where

�2
0 + �2

1 + �2
2 + �2

3 = 1

are the coordinate on S3. For n ≥ 3 one can write the unit soliton as

QC
sol(

�) =
(

�0 + i�3 i(�1 − i�2)

i(�1 + i�2) �0 − i�3

)
⊕ 1 ⊕ 1...

Next, we rotate the unit soliton in, say, the �1-�2 plane by 2π . The time-dependent soliton 
configuration can be written as

QC( �,τ) =
⎡
⎣
⎛
⎝e−i τ

2 0 0
0 e+i τ

2 0
0 0 1

⎞
⎠⊕ 1...

⎤
⎦ · QC

sol(
�) ·

⎡
⎣
⎛
⎝e+i τ

2 0 0
0 e−i τ

2 0
0 0 1

⎞
⎠⊕ 1..

⎤
⎦

=
⎡
⎣
⎛
⎝1 0 0

0 e+iτ 0
0 0 e−iτ

⎞
⎠⊕ 1..

⎤
⎦ · QC

sol(
�) ·

⎡
⎣
⎛
⎝1 0 0

0 e−iτ 0
0 0 e+iτ

⎞
⎠⊕ 1..

⎤
⎦

where τ ∈ [0, 2π] = S1 is the time parameter. One can extend the configuration to B = S3 ×D2, 
where D2 is the two-dimensional disk with radius u ∈ [0, π], by

Q̃C( �,τ,u) =
⎡
⎣
⎛
⎝1 0 0

0 sinue+iτ − cosu

0 cosu sinue−iτ

⎞
⎠⊕ 1...

⎤
⎦ · QC

sol(
�)

·
⎡
⎣
⎛
⎝1 0 0

0 sinue−iτ cosu

0 cosu sinue+iτ

⎞
⎠⊕ 1..

⎤
⎦ (185)

Plugging Eq. (185) into the WZW term gives

WWZW [Q̃C] =2πi

⎛
⎝ i

480π3

∫
B

tr
[(

Q̃C†dQ̃C
)5 ]⎞⎠= iπ.

Hence the unit soliton is a fermion.

G.4. Real class in (3 + 1)-D

The mass manifold is U(n)/O(n). Here π3 (relevant to the existence of soliton) and π5 (rele-
vant to the existence of the WZW term) are both stabilized for n ≥ 6. To write down the degree 
one soliton in U(n)/O(n), let’s first look at the fibration

28 Note that π3(U(n)) = Z originates from the SU(n) part of U(n). Among other things, it means that we can limit 
ourselves to the SU(n) WZW term for the Berry phase calculation.
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O(n)
i−→ U(n)

p−→ U(n)/O(n). (186)

Here the projection p is defined by

u
p−→ uS = uT · u, where u ∈ U(n), uS ∈ U(n)/O(n). (187)

After the homotopy groups are stabilized, the long exact sequence associated with Eq. (186) is 
given by

...π4(U(n)/O(n)) → π3(O(n))
i∗−→ π3(U(n))

p∗−→ π3(U(n)/O(n)) → π2(O(n))...

... 0 → Z
i∗−→ Z

p∗−→ Z2 → 0 ...

This implies that we can construct the unit soliton in U(n)/O(n) by taking a unit soliton in U(n), 
namely QC

sol in appendix G.3, and perform the projection map in Eq. (187), namely,

QR
sol =

(
QC

sol

)T · QC
sol.

The time dependent QR( �, τ) can be constructed by the similar projection of QC( �, τ), i.e.,

QR( �,τ) =
(
QC( �,τ)

)T · QC( �,τ).

The extended Q̃R can also be constructed by the same projection

Q̃R( �,τ,u) =
(
Q̃C( �,τ,u)

)T · Q̃C( �,τ,u).

The result Q̃R( �, τ, u) can be substituted into the WZW term to obtain

WWZW [QR] =2πi

⎛
⎝ i

960π3

∫
B

tr
[(

Q̃R†dQ̃R
)5 ]⎞⎠= iπ

Therefore the unit soliton is again a fermion.

Appendix H. Bosonization for small flavor number

In this appendix we discuss the bosonization in cases when n, the number of flavors, is less 
than the value necessary to stabilize πD+1(mass manifold), or the WZW term.

In some cases, although the homotopy group πD+1(mass manifold) is not yet stabilized, it 
already contains Z as a subgroup. For instance, for real class in (3 + 1)-D, π5(U(3)/O(3)) =
Z × Z2. The nonlinear sigma model derived from fermion integration in appendix D contains 
the level-1 WZW term, which is 2π times the topological invariant of the Z part of π5. This is 
also true for n = 6, 8 of the non-charge-conserved cases in (2 + 1)-D. In these cases the story is 
unchanged.

In other cases πD+1(mass manifold) is a finite abelian group, e.g., Z2, or even 0. This requires 
a case-by-case study. Here, instead of attempting at studying all possible cases, we shall focus on 
the case that is relevant to the applications in Part II of the main text, namely, the case of n = 2
complex class in (2 + 1)-D (which is relevant to the discussions in subsection 17.2 of the main 
text).
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H.1. Complex class in 2 + 1 D with n = 2

The mass manifold is

U(2)

U(1) × U(1)
= S2

and

π4(S
2) = 0, but π3(S

2) = Z.

The generator of π3(S
2) is called Hopf map [62]. The question at hand is whether this signifies 

the presence of a topological term in the nonlinear sigma model. A similar situation occurs for, 
e.g., the non-linear sigma model describing the anti-ferromagnetic spin chains in (1 + 1)-D. 
There, the mass manifold is S2 and π3(S

2) = 0 but π2(S
2) = Z. In the nonlinear sigma model, 

there is a topological term associated with the π2 in the non-linear sigma model, the θ term, which 
is responsible for the difference between the integer and half-integer spin chains [63,64,44].

To answer the question posed above, the derivation in appendix D is not applicable. This is 
because the Hopf term (or the θ term) is invariant under arbitrary infinitesimal deformation of 
QC .

H.2. Mass manifold enlargement

One way to proceed is to enlarge the mass manifold (or the target space of the order parame-
ter). The idea [65] is as follows. If two order parameter configurations cannot be deformed into 
each other, as in the case where configurations correspond to different elements of πD (in this 
case π3), we can enlarge the mass manifold so that after the enlargement, one configuration can 
be continuously deformed to the other. One can then compute the Berry phase difference caused 
by infinitesimal order parameter variation using the method explained in D, and integrate the 
result. However, it is important to note that enlarging the mass manifold requires adding extra 
fermion flavors. It is important to make sure that the initial and the final order parameters couple 
to the added fermion flavors in a trivial way (i.e., in the added flavor space, the order parameters 
are the same constant) so that the Berry phase difference is originated from the original fermions. 
Finally, one accounts for the Berry phase by picking the coefficient in front of the πD (here π3) 
topological invariant.

Using this technique, Abanov [55] enlarged U(2)
U(1)×U(1)

= S2 to

U(l + 1)

U(l) × U(1)
= CP l

and showed that the nonlinear sigma model from the n = 2 fermion integration contains a θ = π

Hopf term. In the following we will choose an alternative enlargement, namely,

U(2)

U(1) × U(1)
= S2 → U(4)

U(2) × U(2)
.

We will show that the result is consistent with that of Abanov. Because of the Hopf term, the unit 
soliton has fermion statistics [56].
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H.3. The derivation of the Hopf term

The Hopf map is a map from S3 with coordinate (�0, �1, �2, �3) where 
∑3

i=0 �3
i = 1 to S2

with coordinate (n1, n2, n3) where 
∑3

i=1 n2
i = 1. More explicitly,

� Hopf−−→ n = z†σaz where z :=
(

�0 + i�1
�2 + i�3

)
. (188)

The QC of the non-linear sigma model is given by

QC( �) =
3∑

a=1

na( �) · σa = 2 z( �)z( �)† − I2, (189)

where z is given by Eq. (188). In writing down the 2nd equality we have used the identity

3∑
a=1

σa
ij σ

a
kl = 2δilδjk − δij δkl .

In Eq. (189) the 2 × 2 matrix QC has eigenvalues ±1, and z is the eigenvector associated with 
eigenvalue +1.

In the following, we enlarge the order parameter so that QC can be deformed to σz. To do so, 
we add two additional fermion flavors and enlarge the mass manifold to

U(4)

U(2) × U(2)
.

In the enlarged space the order parameter is given by

Q′C( �) = QC( �) ⊕ (−Z) =
(

QC( �) 0
0 −Z

)

=
(

2 z( �)z( �)† − I2 0
0 −Z

)
(190)

where z( �) is given by Eq. (188). Here the fermions associated with extra flavors couple to the 
mass term Y ⊗ (−Z) (see Table 2). Although the QC given by Eq. (189) cannot be deformed to 
a constant configuration in the space U(2)

U(1)×U(1)
= S2 (i.e., within the first 2 × 2 block) because

π3(S
2) = Z,

it is possible to deform the 4 × 4 Q′C to a constant matrix. This is because

π3

(
U(4)

U(2) × U(2)

)
= 0.

Now we explicitly construct such a deformation. First we rewrite Eq. (190) as

Q′C( �) =
(

2 z′( �)z′( �)† − I3 0
0 +1

)

where z′( �) :=
⎛
⎝�0 + i�1

�2 + i�3
0

⎞
⎠ .
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We then write down a continuous deformation, as a function of u, as follows

Q̃′C( �,u) =
(

2 z̃′( �,u) z̃′†( �,u) − I3 0
0 +1

)

z̃′( �,u) :=

⎧⎪⎨
⎪⎩
(
− cosu (�0 + i�1) ,− cosu (�2 + i�3) , sinu

)T

for u ∈ [π
2 ,π](

cosu,0, sinu

)T

for u ∈ [0, π
2 ).

(191)

This extends the configuration from the space-time M = S3 at u = π to a four dimensional disk 
B = D4 with u ∈ [0, π]. Here ∂B = M and with u as the radial direction of D4. For u = π

Eq. (191) reduces to Eq. (190), while for u = 0

Q̃′C( �,u = 0) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

⎞
⎟⎟⎠= Z ⊕ (−Z).

Therefore at u = 0 and u = π the fermions associated with the added flavors couples to exactly 
the same mass term Y ⊗ (−Z) according to Table 2.

Eq. (191) constitutes an extension we need to define the WZW term (which is stabilized at 
n = 4). Now we can plug Eq. (191) into the WZW term of the U(4)

U(2)×U(2)
non-linear sigma model. 

When all dust settles we obtain

WWZW[Q̃′C] = − 2πi

256π2

∫
B

tr
[
Q̃′C (dQ̃′C)4

]
= iπ.

This result agrees with that of Ref. [55] and suggests the existence of a θ = π Hopf term.

H.4. Gauging small n non-linear sigma models

In appendix F, we have shown how to gauge the nonlinear sigma models. Recall that the 
non-trivial gauge coupling terms all originate from the WZW term. For small n, the WZW term 
does not exist. One might think we need to re-derive the gauging procedure. Fortunately, we 
can use the mass manifold enlargement idea discussed in the preceding subsection to derive the 
coupling between QC,R and the gauge field. Without going into details we (1) add additional 
fermion flavors until the WZW term is stabilized. (2) Proceed as usual to gauge the continuous 
symmetries. (3) Restrict QC,R to the proper sub-mass manifold and the gauge group to the 
proper subgroup (so that the gauge field does not couple to the added fermion flavors). Following 
this procedure, we gauged the small n nonlinear sigma model following the same try-and-error 
method.

As an example, we shall write down the charge-U(1) gauged nonlinear sigma model for n = 2
in the (2 +1)-D complex class. As shown in appendix H.3, the bosonized theory the S2 nonlinear 
sigma model with the θ = π Hopf term. Plugging QC = naσa into the gauge coupling part in 
Eq. (168), we arrive at

W [β,A] = 1

λ3

∫
M

d3x (∂μn̂)2 + iπH(n̂) +
∫
M

d3x

[
iAμ

(
1

8π
εabcεμνρna∂νn

b∂ρnc

)]
,
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where the last term makes the S2 solitons carry U(1) charge. For QC in the l = 0 and l =
2 component of the mass manifold, we have a constant configuration QC = ±I ∈ U(2)

U(2)×U(0)
. 

Plugging it into Eq. (168), we get

± i

4π

∫
M

d3x εμνρAμ∂νAρ, (192)

which gives σxy = ±1.

Appendix I. Massless fermions as the boundary of bulk topological 
insulators/superconductors

The idea behind our bosonization is to fluctuate the bosonic order parameters (QC or QR) 
to restore the full emergent symmetries of the massless fermion theory. These order parame-
ters are chosen so that when they are static, any QC,R(x) configuration will fully gap out the 
fermions. As shown in appendix B, a static QC,R(x) configuration breaks at least some of the 
emergent symmetries. Conversely, if the full emergent symmetries are unbroken the fermion 
spectrum should remain gapless. Putting it succinctly, the emergent symmetries protect the gap-
less fermions.

The above situation reminds us of the boundary gapless modes of SPTs. Therefore, it is natu-
ral to suspect that each of the gapless fermion theories can be realized at the boundary of certain 
emergent-symmetry-protected SPT. In this appendix, we show that this is indeed the case. More-
over, we shall construct the bulk SPT explicitly.

I.1. The Z classification

As discussed in Ref. [6], the classification of free fermionic SPTs can be determined by 
checking how many copies of the boundary theory can be “stacked” together before a sym-
metry allowed mass term emerges. For example, a ZN classification implies, after stacking 
N copies of the massless fermion theory, a mass term can be found without breaking any of 
the protecting symmetry (here the emergent symmetries). In the following, we show that the 
emergent-symmetry-protected SPT has Z classification.

For the sake of generality, we shall use the Majorana fermion representation, even for complex 
classes. N copies of the boundary theory are described by the gamma matrices and the matrices 
that execute symmetry transformations,

�
(N)
i =�i ⊗ IN , i = 1, ..., d

T (N) =t ⊗ IN

U(N) =u ⊗ IN

Here t and u are orthogonal matrices obeying {t, �i} = [u, �i] = 0. The symbol t and u stand for 
anti-unitary and unitary, respectively. It is important to note that t and u represent the complete 
set of anti-unitary and unitary transformation matrices, from the product of which all symmetry 
matrices can be constructed. In addition, �i, t, u stand for the gamma and symmetry matrices for 
one copy of the massless fermion theory.

Existence of a mass term for the stacked massless fermion theory, implies that there exists a
matrix M(N) that anti-commutes with all of the gamma matrices. The general form of M(N) is
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M(N) = ms ⊗ AN + ma ⊗ SN

where ms, SN and ma, AN are symmetric and anti-symmetric matrices, respectively. Since 
�

(N)
i = �i ⊗ IN , T (N) = t ⊗ IN , U(N) = u ⊗ IN it follows that

{ms,a,�i} = {ms,a, t} = [ms,a, u] = 0

If such a ma �= 0 exists, we can use it as the mass term for the original massless fermion theory. 
This contradicts the statement that under the protection of emergent symmetry there is no mass 
term. Thus ma = 0 and M(N) reduces to

M(N) = ms ⊗ AN. (193)

On the other hand, ms can then be used to construct an anti-unitary symmetry. By our assump-
tion, such anti-unitary symmetry matrix ms must be the product t’s and u’s. Thus the matrix

T (N)′ = ms ⊗ IN

is an anti-unitary symmetry matrix of the stacked fermion theory. However such T (N)′ commutes 
with Eq. (193) which is a contradiction. (Recall that in Majorana fermion representation, a mass 
matrix must anti-commute with all anti-unitary symmetry matrices.) Therefore M(N) can not 
exist for any N . Consequently, the classification of the massless fermion theory must be Z.

I.2. Construction of the bulk SPT

To construct the bulk SPT, we follow the “holographic construction” in Ref. [66]. In the 
following, we just summarize the results.

For a massless fermion theory, with gamma matrices {�i| i = 1, 2, ..., d}, anti-unitary symme-
try t , and unitary symmetries {u}, we can construct the bulk matrices,

�
(bk)
i =

{
�i ⊗ Z for i = 1, ..., d

Idim(�i) ⊗ X for i = d + 1

T (bk) =t ⊗ Z

U(bk) =u ⊗ I

Here the label (bk) is for distinguishing the bulk from the boundary matrices. In [66], it’s shown 
that as long as the boundary massless fermion is irreducible, and t , u prohibit any mass term, 
then there is single allowed bulk mass term which respects all the symmetries.29 Such mass term 
is given by

M(bk) = Idim(�i) ⊗ Y.

The above mass term can be used to regularize and gap out the fermion in the bulk. In Wilson’s 
regularization, the SPT (single-particle) Hamiltonian in momentum space is given by

h(bk)(k) =
d+1∑
i=1

sin ki �
(bk)
i +

(
d + 1 + mB −

d+1∑
i=1

coski

)
M(bk)

29 Here the irreducibility means the gamma and the symmetry matrices cannot be simultaneously block-diagonalized 
non-trivially. The fact that this is true for our case is because the inclusion of the full emergent symmetries. (Proof 
omitted.)
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When mB < 0, and when the lattice is cut open in the (d + 1)th direction (actually the gapless 
boundary modes exist when the cut is along any direction), the boundary low energy theory is 
that of the original massless fermions.

Appendix J. The decoupling of the charge-SU(2) gauge field from the low energy 
non-linear sigma model after confinement

In this appendix, we show that the charge-SU(2) gauge field is not coupled to Eq. (58). To 
recap, the charge-SU(2) singlet QR is given by

QR = niNi where

Ni = (YXY, IYY,YZY, IIX, IIZ) .

Following appendix F after gauging the charge-SU(2) symmetry, the O(8)
O(4)×O(4)

nonlinear sigma 
model with k = 1 WZW term becomes

W [QR, a]
= 1

4λ3

∫
M

d3x tr
[(

∂μQR + i[aμ,QR]
)2]− 2πi

512π2

{∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]

+8
∫
M

tr
[
iaQR(dQR)2 − (aQR)2dQR − i

3
(aQR)3 + ia3QR − aQRf − af QR

]}
.

(194)

Since all Ni commute with the charge-SU(2) group, it follows that QR = niNi commutes with 
charge-SU(2) gauge field a. Hence the gauge coupling term in the stiffness term vanishes.

To show this is also true for the gauged WZW term part, we shall take the

tr
[
aQR(dQR)2

]
term in Eq. (194) as an example. Plugging in QR = niNi , we obtain

tr
[
aQR(dQR)2

]
=
∑
i,j,k

tr[a NiNjNk]ni dnj dnk.

In the following we shall prove that each term in the sum vanishes, i.e.,

tr[a Ni Nj Nk] = 0 ∀(i, j, k).

To achieve that we insert a N2
l = 1 where l �= i, j, k into the trace and leave it invariant, i.e.,

tr[aNiNjNk] = tr[N2
l aNiNjNk].

Due to the commutivity between Nl and a and the anti-commutivity between Nl and each of the 
Ni,j,k , we can move one Nl all the way to the right end and use the cyclic property of trace to 
put it back to the front

tr[N2
l aNiNjNk] = −tr[NlaNiNjNkNl] = −tr[NlNlaNiNjNk] = −tr[aNiNjNk].

Thus

tr[aNiNjNk] = −tr[aNiNjNk] ⇒ tr[aNiNjNk] = 0.
109



Y.-T. Huang and D.-H. Lee Nuclear Physics B 972 (2021) 115565
This proof can be applied to all gauge coupling terms in Eq. (194) because there is an odd number 
of QRs for every term that couples to the gauge field. Therefore the charge-SU(2) gauge field is 
not coupled to QR = niNi .

Appendix K. The WZW term in the (3 + 1)-D real class non-linear sigma model

In this section, we will show that upon the decomposition in Eq. (76) of subsection 16.3.2, 
namely,

QR(x) = eiθ(x)GS(x),

the contribution of the WZW term is solely from the GS(x) part, i.e., namely

tr

[(
QR†dQR

)5
]

= tr

[(
G†

SdGS

)5
]

First, note that one can at most choose dθ once in the expansion of tr

[(
QR†dQR

)5
]

=
tr
[
(G†

SdGS + idθ)5
]
, otherwise the differential form vanishes because (dθ)2 = 0. The only term 

that can possibly survive other than tr
[
(G†

SdGS)5
]

is then of the form

tr

[
dθ
(
G†

SdGS

)4
]

= dθ
(
G†

SdGS

)a (
G†

SdGS

)b (
G†

SdGS

)c (
G†

SdGS

)d

tr
[
tatbtctd

]
Here {ta} are the complete basis for the generators of SU(n) in the fundamental representation 
(note that GS are the symmetric special unitary matrices, which are special kind of unitary matri-
ces). In the following, we will show that for every term from the trace tr

[
tatbtctd

]
, it is at least 

symmetric with respect to two of the indices in a, b, c, d . If so, because the scalar valued one 

forms 
(
G†

SdGS

)a

anti-commute with each others tr
[
dθ
(
G†

SdGS

)4
]

vanishes.

We shall choose the conventions

tr
[
tata

]= 1

2
δab (195)

[ta, tb] = ifabct
c (196)

where fabc is the structure constant for SU(n). Here the Einstein summation convention is used. 
fabc is real and totally anti-symmetric. We shall also define

dabc = 2 tr
[
{ta, tb}tc

]
(197)

It can be shown simply that due to the cyclic property of trace and the hermiticity of ta, dabc is 
real and totally symmetric with respect to a, b, c.

As a pre-step, we would calculate tatb . Because the identity matrix In together with {ta} form 
a complete basis for all n × n complex matrices, we can decompose tatb in terms of them. The 
coefficients can be calculated making use of Eq. (195), Eq. (196), and Eq. (197),

tatb =1

n
tr
[
tatb

]
In + tr

[(
{ta, tb} + [ta, tb]

)
tc
]
tc

=1

2

[
1

n
δabIn + (dabc + ifabc)t

c

]
. (198)
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The equation above implies

{ta, tb} = 1

n
δabIn + dabct

c (199)

For later usage, we will derive another formula for the product of two fabcs. By direct expansion, 
one can prove the following identity

[ta, [tb, tc]] = {{ta, tb}, tc} − {{ta, tc}, tb}.
Using of Eq. (196) and Eq. (199) twice in the equation above, we get

fabefcde = 2

n
(δacδbd − δadδbc) + (dacedbde − dadedbce) (200)

Now we can calculate tr
[
tatbtctd

]
by applying Eq. (198) twice and carrying out the trace. 

After some algebra and the help of Eq. (200), we get

tr
[
tatbtctd

]
=1

4
tr

[(
1

n
δabIn + (dabc + ifabe)t

e

)(
1

n
δcdIn + (dcdf + ifcdf )tf

)]

=1

4

[ 1
n
(δabδcd − δacδbd + δadδbc)

+ 1
2 (dabedcde − dacedbde + dadedbce)

+ i
2 (fabedcde + fcdedabe)

]

By the symmetry properties of δab and dabc, every term is least symmetric with respect to two 
indices. For example, fabedcde is symmetric with respect to c, d . This concludes our proof.
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