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ARTICLE

Perturbed myoepithelial cell differentiation in BRCA
mutation carriers and in ductal carcinoma in situ
Lina Ding et al.#

Myoepithelial cells play key roles in normal mammary gland development and in limiting pre-

invasive to invasive breast tumor progression, yet their differentiation and perturbation in

ductal carcinoma in situ (DCIS) are poorly understood. Here, we investigated myoepithelial

cells in normal breast tissues of BRCA1 and BRCA2 germline mutation carriers and in non-

carrier controls, and in sporadic DCIS. We found that in the normal breast of non-carriers,

myoepithelial cells frequently co-express the p63 and TCF7 transcription factors and that p63

and TCF7 show overlapping chromatin peaks associated with differentiated myoepithelium-

specific genes. In contrast, in normal breast tissues of BRCA1 mutation carriers the frequency

of p63+TCF7+ myoepithelial cells is significantly decreased and p63 and TCF7 chromatin

peaks do not overlap. These myoepithelial perturbations in normal breast tissues of BRCA1

germline mutation carriers may play a role in their higher risk of breast cancer. The fraction of

p63+TCF7+ myoepithelial cells is also significantly decreased in DCIS, which may be asso-

ciated with invasive progression.

https://doi.org/10.1038/s41467-019-12125-5 OPEN

Correspondence and requests for materials should be addressed to K.P. (email: Kornelia_Polyak@dfci.harvard.edu). #A full list of authors and their affiliations
appears at the end of the paper.
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The normal mammary gland is composed of multiple cell
types including luminal and myoepithelial cells1–3. Myoe-
pithelial cells produce and are in direct contact with the

basement membrane (BM). Together, these cells outline the inner
luminal epithelial cells in both ducts and alveoli, serving as a
structural barrier, and they regulate luminal epithelial cell dif-
ferentiation and polarity1–3. Upon lactation and breastfeeding,
myoepithelial cells contract hence propelling milk out of the
lumens in response to oxytocin. Normal myoepithelial cell dif-
ferentiation is still poorly understood, although Notch, TGFβ,
Hh, and HER1-ERK1/2-RSK signaling pathways, and the p63
transcription factor (TF) have been implicated4–9.

Myoepithelial cells also inhibit neoplastic phenotypes including
tumor cell growth, invasion, and angiogenesis10–13. The presence
or absence of an intact myoepithelial cell layer and BM, assessed
based on histology and by immunohistochemical analyses for
myoepithelial markers including CD10, p63, and SMA, differ-
entiat in situ from invasive breast carcinomas14. Immunohisto-
chemical analyses of normal breast tissue, and in situ and invasive
breast carcinomas aiming to identify markers of tumor progres-
sion have identified several genes that are differentially expressed
between normal and DCIS-associated myoepithelial cells includ-
ing SMMHC, CK5/6, CD10, calponin, and integrin αvβ615–21.
Decreased expression of CD10 (MME) was also reported to
predict recurrence in patients with DCIS, but the number of cases
analyzed was small and the patients received variable treat-
ments22. Similarly, loss of myoepithelial CD10 expression by
immunohistochemical staining was associated with stromal
invasion23. Myoepithelial CD10 expression may have functional
relevance, since it is a membrane-associated zinc-dependent
neutral endopeptidase that can cleave glucagon, enkephalins, and
oxytocin24. In normal mouse mammary gland oxytocin enhances
myoepithelial cell proliferation and differentiation25, while in cell
culture CD10 inhibition decreases proliferation26. Thus, the
decreased CD10 expression in DCIS-associated myoepithelial
cells may contribute to their progressive loss27.

We previously purified myoepithelial cells using the CD10 cell
surface marker from normal reduction mammoplasties and
DCIS, and determined that their DNA methylation and gene
expression patterns are distinct implying malignancy-associated
changes in DCIS28,29. We also showed that myoepithelial cells
prevent tumor growth and invasive progression in experimental
models of DCIS6,30, suggesting that perturbed myoepithelial cell
function in DCIS may be permissive for tumor progression.
DCIS-associated myoepithelial cells also overexpress immune-
regulatory proteins (e.g., CXCL12, CXCL14, and PD-L1)28,31

suggesting a role in immune evasion. Thus, loss of normal
myoepithelial cells in DCIS might be key for in situ to invasive
breast carcinoma transition and it may identify patients with high
risk of progression. However, the regulators of normal myoe-
pithelial differentiation programs and how these may be altered
in DCIS are not well understood.

Here we used a combination of genomic profiling of human
normal and DCIS breast tissues and functional assays in the
MCF10DCIS experimental model of DCIS32 to investigate
determinants of normal myoepithelial cell differentiation and
perturbations of these in BRCA1 and BRCA2 germline mutation
carriers and in DCIS. Luminal differentiation was shown to be
perturbed in BRCA1 mutation carriers33–35, but myoepithelial
cells and BRCA2 mutation carriers have not been investigated.
We defined the genomic targets of p63 and TCF7, two TFs we
identified as co-expressed in the majority of myoepithelial cells in
normal breast tissue of non-carrier women but not in BRCA1/2
mutation carriers and in DCIS, and the enhancer landscape in
normal myoepithelial cells. We also characterized the functional
relevance of p63 and TCF7 co-expression and their targets in

MCF10DCIS cells. Our results suggest that a transcriptional
program orchestrated by p63 and TCF7 is required for a normal
differentiated myoepithelial cell phenotype and perturbations of
this may contribute to the increased breast cancer risk of BRCA
mutation carriers, and it may lead to the loss of myoepithelial
cells in DCIS promoting progression to invasion.

Results
Heterogeneity of normal CD10+ myoepithelial cell population.
CD10 is a myoepithelial cell surface marker and its expression
level may vary depending on differentiation state22,23,26, thus we
explored CD10+ cell population heterogeneity in normal human
breast tissues by multicolor FACS for CD10 and markers known
to be associated with basal/progenitor features including CD44,
ITGA3, ITGB6, and ITGA66,28,36–39. We analyzed normal breast
tissues of nulliparous and parous women, as pregnancy and lac-
tation may impact cellular phenotypes40, from reduction mam-
moplasties and from prophylactic mastectomy tissues of BRCA1
and BRCA2 mutation carriers (Supplementary Data 1). Women
were as closely matched as possible for menopausal status, eth-
nicity, and age. We identified two distinct CD10+ cell populations
distinguished by the expression of CD44 that were both CK14+,
but CD10+CD44+ cells were more mesenchymal and CD10+

CD44− cells more epithelial (Fig. 1a and Supplementary Fig. 1a).
We also assessed ALDH activity, a feature of stem/progenitor
cells41, in three distinct CD10+ cell subpopulations (i.e.,
CD10highCD44−, CD10lowCD44−, and CD10+CD44+). ALDH+

cells were mainly present in the CD10+CD44+ subset, where
~37% of the cells displayed ALDH activity suggesting the pre-
sence of progenitors (Supplementary Fig. 1b).

Quantification of the relative fraction of total CD10+ cells and
CD10+CD44− and CD10+CD44+ subpopulations demonstrated
a significant decrease in CD10+ cells in BRCA1 mutation carriers
(Fig. 1b and Supplementary Fig. 1c). CyTOF analysis of non-
carrier (n= 6), BRCA1 (n= 6), and BRCA2 (n= 7) samples using
myoepithelial, luminal, basal, and progenitor markers also
demonstrated significant differences with a decrease in SMA+

CD10+ myoepithelial cells and diminished expression of SMA,
CD10, CD44, and CD49f in BRCA1mutation carriers (Fig. 1c and
Supplementary Fig. 1d, e). To minimize individual or age-related
differences, all samples for a respective mutation status (i.e.,
control, BRCA1, BRCA2) were concatenated and used as a single
file for analysis. These data suggest that the phenotype of
myoepithelial cells is distinct between normal tissues of non-
carrier and BRCA mutation-carrier women.

Gene expression profiles of CD10+ cell populations. Next, we
analyzed CD10+CD44− and CD10+CD44+ cell gene expression
profiles from reduction mammoplasty samples (n= 3 each, from
nulliparous and parous women). Known myoepithelial cell
markers (e.g., ACTG2, SFN, and OXTR) had higher expression in
CD10+CD44− cells, while stem/progenitor cell markers (e.g.,
ALDH1A1, WNT2, and KLF4), and epithelial-to-mesenchymal
transition (EMT)-related genes (e.g., TWIST1 and ZEB1) were
more abundantly expressed in CD10+CD44+ cells (Supplemen-
tary Fig. 1f and Supplementary Data 2). Pathway analysis using
Metacore42 revealed enrichment for extracellular matrix (ECM)
remodeling and TGFβ signaling in CD10+CD44+ cells, whereas
keratin, chemokines, and adhesion pathways were more enriched
in genes highly expressed in CD10+CD44− cells (Fig. 1d). Parity-
related differences were limited and enriched in ECM remodeling
pathways (Supplementary Fig. 1g).

Next, we profiled CD10+ cells from BRCA1 and BRCA2
mutation carriers and compared them to non-carriers. Principal
component analysis (PCA) depicted three distinct groups
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reflecting germline mutation status (Fig. 1e). Genes highly
expressed in BRCA1-mutant CD10+ cells were enriched in
DNA replication-related functions, whereas BRCA2-mutant
CD10+ cells showed a decrease in keratins and an increase in
immune-related genes (Supplementary Fig. 1g and Supplemen-
tary Data 3).

TFs play key roles in cellular differentiation. Thus, we
identified TFs differentially expressed between CD10+CD44−

and CD10+CD44+ cells including many homeobox genes (e.g.,

IRX1, IRX4, and IRX2) and genes with known roles in epithelial
differentiation (e.g., GATA3 and TFAP2A) and in myoepithelial
cells (e.g., TP63) (Fig. 1f). Among these TFs, TP63 and TCF7 were
particularly interesting, since p63 plays key roles in epithelial
progenitors43,44, whereas TCF7 regulates WNT signaling and its
deletion in mice leads to mammary gland adenomas45. Both TP63
and TCF7 have multiple functionally distinct isoforms46,47. Based
on RNA-seq we detected ΔNp63 and the long isoform of TCF7 in
normal myoepithelial cells (Supplementary Fig. 1h, i).
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We further analyzed the expression of p63 and TCF7 in normal
breast tissues by multicolor immunofluorescence in a larger
cohort. We found that in control non-carrier women and in
BRCA2 mutation carriers the majority of CD10+ myoepithelial
cells were p63+TCF7+, but in BRCA1 mutation carriers the
expression of p63 and TCF7 decreased, and co-localization was
less frequent (Fig. 1g, h). These data indicate altered myoepithe-
lial cell phenotypes in BRCA1 mutation carriers and suggest key
roles for p63 and TCF7 in normal myoepithelial cell
differentiation.

Myoepithelial cells in DCIS. In DCIS, cancer cells are growing
within normal mammary ducts, thus, tumor epithelial and sur-
rounding myoepithelial cells thought to be clonally unrelated. To
investigate CD10+ myoepithelial cells in DCIS we first analyzed
the ratios of CD10+CD44− and CD10+CD44+ cells by FACS. We
found that in DCIS the majority of CD10+ cells were also CD44+

(Fig. 2a, b) and the gene expression profiles of CD10+ cells from
DCIS were distinct from CD10+ cells in normal breast tissues
(Fig. 2c, Supplementary Fig. 2a, and Supplementary Data 4).
Pathway analysis showed enrichment for several immune-related
signaling pathways in both DCIS-high and normal-high genes
(Fig. 2d), implying a role in immune regulation.

We also performed immunofluorescence analysis of p63 and
TCF7 expression in pure DCIS, DCIS adjacent to IDC, and IDC.
There was a striking loss of TCF7 levels in CD10+ cells in DCIS,
especially in high-grade lesions, leading to a significant decrease
in p63+TCF7+ cells compared to normal breast (Fig. 2e, f).
Instead, a subset of DCIS tumor epithelial cells was TCF7+. To
assess if this tumor epithelial expression of TCF7 is maintained
during invasive progression, we also analyzed invasive tumors of
different subtypes. Luminal and basal-like tumors had a nearly
complete lack of p63 and TCF7 expression, although a subset of
leukocytes was TCF7+ (Fig. 2g). In contrast, in metaplastic breast
cancer a variable fraction of cancer cells expressed p63 or TCF7
or both proteins with squamous tumors having the highest
frequency of p63+TCF7+ cells (Fig. 2g, h). Metaplastic breast
tumors are the only breast cancer subset that relatively commonly
have mutations in the APC/β-catenin pathway48 and the
expression of TCF7 could be due to its induction by WNT/β-
catenin signaling45. Overall, these data demonstrate perturbed
myoepithelial cell differentiation in DCIS associated with altered
cellular expression of TCF7.

Targets of p63 and TCF7 and normal myoepithelial enhancers.
Next, we investigated the genomic targets of p63 and TCF7 and
potential differences due to BRCA mutation status in normal
myoepithelial cells by ChIP-seq. We identified significant differ-
ences in both p63 and TCF7 genomic binding between control
and BRCA mutation carriers (Fig. 3a, b, Supplementary Fig. 2b,

and Supplementary Data 5). We detected significant overlap
between p63 and TCF7 peaks only in non-carrier tissues and not
in BRCA1/2 mutation carriers consistent with the decreased fre-
quencies of p63+TCF7+ cells in these tissues (Fig. 3c). Interest-
ingly, normal myoepithelial cell-specific genes including ACTA2,
SFN, and OXR1 were associated with overlapping p63 and TCF7
peaks suggesting that the co-localization of these two TFs may
regulate their expression (Fig. 3d). Metacore analysis of p63 and
TCF7 targets revealed that most of the top pathways were com-
monly enriched in all three tissue types including WNT, Hh, and
NOTCH, cell adhesion, and cell–matrix interaction signaling
(Fig. 3e), consistent with the role of p63 in epithelial stem cells
and cell adhesion49. Mitosis and DNA damage checkpoint
pathways were more significantly enriched in BRCA1 mutation
carriers potentially due to DNA repair defects even in BRCA1+/−

cells (Fig. 3e). TCF7 peaks were enriched in the same process
networks as p63, while p63 and TCF7 overlapping peaks showed
less significant enrichment and in fewer networks.

Integration of p63 ChIP-seq data with differentially expressed
gene lists in CD10+ cells showed enrichment for NOTCH and
WNT signaling in p63 targets with higher expression in BRCA1
tissues implying more progenitor-like features (Fig. 3e). The
majority of genes with higher expression in CD10+CD44− cells
were also direct p63 targets, and many were related to cell
adhesion, cytoskeleton, and neurogenesis-axonal guidance con-
firming a central role for p63 in these cells (Fig. 3e).

Enhancers and super-enhancers (SE) play important roles in
establishing cellular identity50. Thus, we also characterized the
enhancer landscape of normal CD10+ myoepithelial cells by
ChIP-seq for histone H3 lysine 27 acetyl (H3K27ac). We
identified 671 myoepithelial cell SEs that included several TFs
(e.g., TCF7L2, TRPS1, GLI3), genes encoding axonal guidance
(e.g., SEMA3C, SEMA5A) and cytoskeletal proteins (e.g., PALLD,
TNS1), TGFβ-signaling pathway components (e.g., TGFBR3,
SMAD3), and genes involved in muscle differentiation (e.g.,
BOC, MYLK, CALD1) (Fig. 3f and Supplementary Data 6). We
also subject the SE data to core transcriptional circuitry (CRC)
analysis51 and identified 14 TFs predicted to be core regulators of
myoepithelial cell state. To analyze interaction networks among
these 14 TFs, we performed protein–protein interactome analysis
using the STRING database52 as described in Supplementary
Methods. 13 out of 14 TFs formed a tight interaction network
with SMAD3 and TCF7L2 as major hubs (Fig. 3g), suggesting
that these TFs are the master regulators of the myoepithelial cell
SE landscape and phenotype.

Functional relevance of p63 in MCF10DCIS cells. To address
the functional relevance of p63 and TCF7 in regulating myoe-
pithelial cell features, we used the MCF10DCIS human xenograft
model6,32 as we were not able to grow and manipulate normal
CD10+ myoepithelial cells. MCF10DCIS cells form DCIS-like

Fig. 1 Heterogeneity of the CD10+ cell population. a FACS analysis of CD10+ cells according to expression of CD44 in normal breast tissues of nulliparous
(NP) and parous (P) control women and BRCA1 and BRCA2 mutation carriers. b Quantification of percentage of CD10+CD44− and CD10+CD44+ in total
epithelial cells (n= 6/group). p-values indicate statistical significance of difference in total CD10+ cells between groups by t-test. c viSNE maps from
CyTOF analysis of normal breast tissues colored for expression of SMA, CD10, CD44, and CD49f (control n= 6, BRCA1 n= 6, BRCA2 n= 7). Color scale
indicates minimum and maximum values of expression. d Pathways enriched in genes differentially expressed between CD10+CD44− and CD10+CD44+

cells. Color scale corresponds to −log(p-value) of significance of enrichment, calculated by MetaCore Enrichment Analysis test. e 3D Principal component
analysis plots of CD10+ gene expression data from the indicated samples. f Transcription factors differentially expressed between CD10+CD44− and
CD10+CD44+ cells. Red highlight indicates genes selected for further analyses. g Multicolor immunofluorescence analysis of p63, TCF7, and CD10
expression in normal breast tissues. Images are a montage of nine fields captured from one area of the tissue. Scale bar 50 μm. h Relative quantification of
CD10+ myoepithelial cells positive for p63 or TCF7 or both proteins. p-value indicates the significant association of the p63/TCF7 positive/negative status
of CD10+ myoepithelial cells with condition (Control, BRCA1, or BRCA2), as assessed by Pearson’s chi-squared test among averages of estimated cell
counts across replicates (total population size was conservatively estimated to 100 cells). Source data are provided as a Source Data file
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lesions with a myoepithelial cell layer at early time points after
injection that progress to invasive tumors6,32. Thus, while
MCF10DCIS cells are tumorigenic, they have the ability to dif-
ferentiate into cells with myoepithelial features making them
useful for the analysis of this process. We previously showed that
MCF10DCIS cells express ΔNp63 and in cell culture virtually all
cells are p63+6, while in DCIS-like xenografts only the myoe-
pithelial cells remain p63+. We downregulated p63 using TET-
inducible shRNAs (Supplementary Fig. 3a) and analyzed myoe-
pithelial cell differentiation in xenograft assays. We performed
subcutaneous, mammary fat pad, and intraductal injections to

test if the microenvironment affects the phenotype of the tumors
and p63 expression. MCF10DCIS cells expressing TET-inducible
shTP63 efficiently formed tumors in NSG mice regardless of the
injection site, although there were significant differences in tumor
size with mammary fat pad tumors being the largest (Fig. 4a).
Based on our prior studies, the establishment of DCIS-like his-
tology requires 7–10 days after tumor initiation6, thus, shTP63
was induced 1 day or 10 days after injection and tumors were
harvested 3 weeks after injection. Downregulation of
p63 significantly reduced tumor weight regardless of injection site
and time of shTP63 induction (Fig. 4a). However, while most
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tumors in the fat pad and intraductal groups were invasive,
subcutaneous tumors were mostly DCIS-like (Fig. 4b). Based on
immunofluorescence there was a nearly complete absence of SMA
in myoepithelial cells in the subcutaneous tumors, while in fat
pad and intraductal tumors there were many SMA+ myofibro-
blasts (Fig. 4b). Unexpectedly, myoepithelial cells of DCIS-like
tumors were weakly p63+ in all cases except in intraductal tumors
implying escape from shRNA effect (Fig. 4b). These data
demonstrate that the microenvironment has a pronounced effect
on p63 expression and tumor histology.

To investigate transcriptional changes after p63 downregula-
tion, we analyzed the gene expression profiles by RNA-seq at days
3 and 5 following shTP63 induction (time points chosen based on
assessment of p63 protein levels) (Supplementary Data 7).
Pathway analysis showed an enrichment for cell cycle G2-M
(e.g., cyclin B, BUB1), S phase, WNT signaling (e.g., TCF7L1,
TCF3) in genes downregulated following p63 loss, whereas
upregulated genes were enriched for factors involved in G1-S
phase transition (Fig. 4c).

To explore the relevance of cell adhesion and other signaling
pathways in regulating p63 function, we analyzed p63 protein levels
at different time points after detachment from ECM. We found that
p63 protein level is rapidly decreased after detachment, consistent
with our prior data6 (Fig. 4d). To determine if the detachment-
induced decline in p63 protein levels is due to increased
degradation, we treated cells with proteosomal (MG132), protein
kinase (Staurosporine, STS), and lysosomal (Bafilomycin A1, BAF)
inhibitors. MG132 and BAF treatment significantly inhibited p63
loss, implicating proteosomal and lysosomal degradation as
potential underlying mechanisms (Fig. 4e). To further investigate
the regulation of p63 protein stability, we explored if inhibition of
certain signaling pathways could induce a decrease in p63 protein
levels even in attached cells. We found that mTOR (rapamycin), Hh
(sonidegib), and WNT (XAV939) inhibitors had no effect on p63
protein levels, while treatment with TGFBR (LY2157299), MEK/
ERK (PD0325901), SRC (dasatinib), FAK (Y15), and Hippo
(verteporfin) inhibitors lead to a significant decrease (Fig. 4f).
These data suggest that p63 regulates the expression of ECM and
cell adhesion proteins and p63 protein stability is regulated by ECM
attachment via SRC, FAK, and HIPPO signaling creating a positive
feedback loop. However, since we generated these data in the
MCF10DCIS model, these findings need to be validated in normal
myoepithelial cells.

p63 targets and enhancer landscape in MCF10DCIS cells. To
investigate the genomic targets of p63 and the enhancer landscape
in MCF10DCIS cells and to compare these with normal myoe-
pithelium, we performed ChIP-seq for p63 and H3K27ac
(Fig. 4g). Pathway analysis of genes nearest to p63 and H3K27ac

overlapping peaks demonstrated enrichment in G1-S regulation,
cadherin-mediated and integrin-mediated cell adhesion,
NOTCH, and WNT signaling (Supplementary Fig. 3b). Normal
myoepithelial-specific genes including ACTA2 and several TFs
highly expressed in CD10+CD44− cells (e.g., TCF7, IRF6,
TRIM29) were also direct targets of p63 in MCF10DCIS cells.
Overall, we identified 1,233 p63 targets that were common
between MCF10DCIS cells and normal myoepithelium suggesting
that this model reproduces at least some aspects of normal
myoepithelial cell differentiation.

Next, we performed SE analysis of the H3K27ac ChIP-seq data
and identified 1,178 SEs. Top SEs included genes encoding cell
adhesions proteins (e.g., ITGA6, ITGB4, ITGB1, ITGB6), keratins
(e.g., KRT5), TFs co-expressed with p63 in normal myoepithelial
cells (e.g., GATA3, IRX2, IRX4), and TGFβ pathway components
(e.g., TGFBR2) (Fig. 4h and Supplementary Data 6). As expected,
genes nearest to SEs showed higher gene expression levels, and we
also observed a significant enrichment of p63 peaks in higher
ranking SEs (Supplementary Fig. 3c), highlighting its importance
in regulating basal cell-specific transcription programs. CRC51

analysis of SEs identified 29 top TFs that formed a tight
interaction network with MYC and SMAD3, as major hubs based
on the STRING database52 (Fig. 4i). SMAD3 was also a major
hub in normal myoepithelial cells highlighting its importance in
these cell types.

To further define associations between p63 chromatin binding
and transcription, we integrated p63 ChIP-seq with genes
differentially expressed after shTP63 induction and performed
binding and expression target analysis (BETA)53. We found that
genes downregulated after p63 loss were significantly enriched in
p63 peaks (Fig. 4j), thus, p63 functions as a transcriptional
activator in MCF10DCIS cells. Pathways analysis of down-
regulated genes that are direct p63 targets demonstrated
enrichment in blood vessel morphogenesis, mitosis, cell cycle
G2-M, NOTCH and WNT signaling, and neurogenesis-related
pathways (Supplementary Fig. 3d), which is consistent with the
apparent decrease in cell proliferation after shTP63 expression
(Supplementary Fig. 4a, b). These data demonstrate that p63 is
required for myoepithelial cell features and is a major regulator of
the enhancer landscape in the MCF10DCIS model.

Targets and functional relevance of TCF7 in MCF10DCIS cells.
Although TCF7 and p63 are co-expressed in normal myoe-
pithelial cells, we were not able to detect TCF7 expression in
MCF10DCIS cells neither in cell culture nor in xenografts sug-
gesting that MCF10DCIS cells do not fully recapitulate the nor-
mal differentiated myoepithelial cell phenotype (Fig. 5a).
However, to analyze the effects of p63 and TCF7 co-expression
on myoepithelial cell features in the MCF10DCIS model, we

Fig. 2 CD10, p63, and TCF7 expression in DCIS and in invasive breast tumors. a FACS analysis of CD10 and CD44 expression in DCIS and in normal breast
tissue. b Relative quantification of CD10+CD44− and CD10+CD44+ in total epithelial cells. p-value indicates the significant association of the CD44
positive/negative status of CD10+ cells with condition (Normal, DCIS), as assessed by Pearson’s chi-squared test among averages of estimated cell counts
across replicates (total population size was conservatively estimated to 100 cells). c 3D principal component analysis plot of gene expression data.
d Pathways enriched in genes differentially expressed between CD10+ cells in DCIS and in normal breast. Color scale corresponds to −log(p-value) of
significance of enrichment, calculated by MetaCore Enrichment Analysis test. e Multicolor immunofluorescence analysis of p63, TCF7, and CD10
expression in low grade (LG) and high grade (HG) DCIS and DCIS-IDC. Left panels are a montage of nine fields captured from one area of the tissue, while
right panels are high magnification of selected areas. Scale bar 50 μm. f Relative quantification of CD10+ cells positive for p63 or TCF7 or both proteins in
low (LG) and high (HG) grade pure DCIS and DCIS adjacent to IDC (DCIS-IDC). p-value indicates the significant association of the p63/TCF7 positive/
negative status of CD10+ cells with condition (LG-DCIS, HG-DCIS, and DCIS-IDC), as assessed by Pearson’s chi-squared test among averages of
estimated cell counts across replicates (total population size was conservatively estimated to 100 cells). g Multicolor immunofluorescence analysis of
PanCK, p63, and TCF7 in luminal, basal-like, and metaplastic invasive breast tumors. Images are a montage of nine fields captured from one area of the
tissue. Scale bar 50 μm. h Scoring the expression and co-localization of p63 and TCF7 in different subtypes of metaplastic breast tumors. Source data are
provided as a Source Data file
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expressed HA-tagged TCF7 (long isoform) using a TET-ON
expression vector. Induction of TCF7 expression led to a decrease
in p63 implying cross-regulation (Fig. 5a). Due to the leakiness of
the TET-ON vector we detected TCF7 protein even in unsti-
mulated controls, exhibiting minimal repression of p63 (Fig. 5a),
thus, reproducing the TCF7-p63 co-expression observed in nor-
mal myoepithelium.

To investigate the effects of TCF7 expression on tumor growth
and histology, we performed xenograft assays. Similar to shTP63,
we tested mammary fat pad, intraductal, and subcutaneous
injections to see how the microenvironment influences tumor
growth and histology, and we induced TCF7 at day 1 or day 10

after injection. Expression of TCF7 decreased tumor size
regardless of injection site and time of induction, although again,
there was a significant difference in tumors size with fat pad
tumors being the largest and intraductal the smallest (Fig. 5b).
There were significant differences in histology as well, with mixed
DCIS-IDC histology in the fat pad, invasive histology in the
intraductal group, and DCIS in subcutaneous tumors (Fig. 5c).
Interestingly, in the xenografts TCF7 expression was hetero-
geneous and SMA+ myoepithelial cells were largely TCF7
negative (Fig. 5d). In tumors with mixed IDC histology, both
p63 and SMA expression were much lower in myoepithelial cells
than in more DCIS-resembling areas with nearly complete

0

50,000

100,000

150,000

200,000

0 10,000 20,000

Enhancer rank

H
3K

27
ac

 N
or

m
al

iz
ed

 r
ea

d 
de

ns
ity

POU5F1B

ACTN4

ITGB4

WWTR1

a

d

c

b

e

f

h

0.25
0.50
0.75
1.00

p63 H3K27ac
p63
Overlap

p6
3 

(1
64

3)

–2.0 2.0

p6
3 

H
3K

27
ac

 o
ve

rla
p 

(2
09

4)

–2.0 2.0kb
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1000 2000 3000 4000 5000 6000 7000

0

20

40

60

80

100

Rank of genes based on regulatory 
potential score (from high to low)

C
um

ul
at

iv
e 

fr
ac

tio
n 

of
 g

en
es

%

Static (background)
Upregulated (0.715)
Downregulated (1.72e−10)

g

ERBB-family signaling

Cholecystokinin signaling

Progesterone signaling

FSH-beta signaling pathway

Feeding and Neurohormone signaling 

Neurogenesis_Axonal guidance

Keratinocyte differentiation

Regulation of epithelial-to-mesenchymal transition

Cytoplasmic microtubules

Integrin-mediated cell-matrix adhesion

Integrin priming

Cell junctions

Cadherins

Attractive and repulsive receptors

Amyloid proteins

Wnt_beta-catenin, Notch, VEGF, IP3 and integrin signaling

Anti-apoptosis med. by ext. signals via PI3K/AKT

Regulation of angiogenesis

Actin filaments

G1-S Interleukin regulation

G1-S Growth factor regulation

WNT signaling

Blood  vessel morphogenesis

Spindle microtubules

Regulation of cytoskeleton rearrangement

Mitosis

0 6

Value

0

30

C
ou

nt

C
el

l a
dh

es
io

n 
C

yt
os

ke
le

to
n 

D
ev

el
op

m
en

t
S

ig
na

lin
g

C
el

l c
yc

le
ap

op
to

si
s

U
p

D
ow

n

shTP63
diff genes
days 3&5

p < 0.0001

p < 0.0001

Dox start − d1 d10 − d1 d10 − d1 d10

Injection site Mammary
fat pad

Intraductal Subcutaneous

p = 0.0394p = 0.009

p = 0.0039

0

100

200

300

400
T

um
or

 w
ei

gh
ts

 (
m

g)

0

20

40

60

0

20

40

60

80

i

j

p6
3

H
&

E
S

M
A

Fat pad Intraductal Subcutaneous

No Dox Day1 Day10 No Dox Day1 Day10 No Dox Day1 Day10

Textmining
Experimentally determined
Curated databases
Co-expression
Protein homology

KLF13KLF13
STAT4STAT4 TP63TP63

TCF7L2TCF7L2
FOXO3FOXO3SREBF1SREBF1

FOSFOS FOSL2FOSL2HES1HES1

MYCMYC
GATA3GATA3

VDRVDRBHLHE40BHLHE40
RXRARXRA

SMAD3SMAD3
TGIF1TGIF1

RARARARAZNF217ZNF217 KLF5KLF5 RUNX1RUNX1

SOX9SOX9
GLI3GLI3

TFCP2L1TFCP2L1
ETV6ETV6

NFIBNFIB

p63

GAPDH

0 4 44 4 Time (h)

D
M

S
O

M
G

13
2

S
T

S

B
A

F

76

52

38

M
w

 (kD
)

p63

0 0.5 1 2 4 6 Time (h)

GAPDH

76

38

M
w

 (kD
)

p63

GAPDH

D
M

S
O

R
ap

am
yc

in

S
on

id
eg

ib

X
A

V
93

9

LY
21

57
29

9

D
as

at
in

ib

Y
15

V
er

te
po

rf
in

P
D

03
25

90
1

76

38

M
w

 (kD
)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12125-5

8 NATURE COMMUNICATIONS |         (2019) 10:4182 | https://doi.org/10.1038/s41467-019-12125-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


absence of these cells in intraductal tumors (Fig. 5c). These data
suggest that the microenvironment has the most pronounced
effect on tumor histology and myoepithelial cell features possibly
via regulating p63 and TCF7.

To investigate the genomic targets of TCF7 and the enhancer
landscape of MCF10DCIS-TCF7 cells, we analyzed the gene
expression profiles of cells at different time points following TCF7
induction and performed ChIP-seq for TCF7 and H3K27ac
(Supplementary Data 8). Pathway analysis showed an enrichment
of genes upregulated following TCF7 overexpression for cell cycle
S phase and G2-M, antigen presentation, proteolysis, DBS repair,
mRNA processing, and regulation of angiogenesis, whereas
downregulated genes were enriched for translational regulation,
cytoskeleton rearrangement, cell adhesion, and FSH-signaling
pathways (Fig. 5e). These gene expression changes are consistent
with the apparent increase in cell proliferation after TCF7
expression (Supplementary Fig. 4b).

TCF7 ChIP-seq demonstrated 68,592 TCF7-binding sites in
MCF10DCIS cells and one-third of these (23,034) overlapped
with H3K27ac peaks (Fig. 5f and Supplementary Data 8).
Pathway analysis of genes nearest to TCF7 and H3K27ac
overlapping peaks demonstrated enrichment in EMT, integrin-
mediated cell adhesion, angiogenesis, and NOTCH, WNT, and
Hedgehog signaling (Fig. 5e). TCF7 direct targets include TP63,
CDH1, CCND1, and CCND2 (Fig. 5g). Interestingly, TCF7 is also
a direct target of p63, thus, these two TFs cross-regulate each
other’s expression.

Analysis of H3K27ac data identified 1,178 SEs in TCF7-HA-
expressing cells and most of these were also SEs in MCF10DCIS
cells (Fig. 5h and Supplementary Data 6). However, we also
identified 135 SEs that were gained after TCF7 expression and
many of these were associated with TCF7-binding sites. The
TCF7 locus itself was associated with a gained SE, demonstrating
that TCF7 self-regulates its own expression, as well as several
other TFs (e.g., FOXO3, SMAD2, TEAD1, IRF2), and cell cycle
regulators (e.g., CDK6). The gain of these SEs was coupled with
the increased expression of the associated genes, which could
contribute to the increase in cell proliferation after TCF7
expression in vitro (Supplementary Fig. 4b). Analysis for CRCs51

identified 25 top TFs, mostly overlapping with top CRC-forming
TFs in MCF10DCIS cells, but we also observed some differences
including gain of ELF3, ETS2, IRF2, and loss of TP63. Analysis of
interaction networks among these 25 TFs identified a well-
connected network with SMAD3, MYC, and SP1 as major hubs
(Supplementary Fig. 4c).

To further investigate the effect of TCF7 on transcription, we
integrated TCF7 ChIP-seq and RNA-seq data and found that
genes upregulated after TCF7 expression were significantly

predicted to be TCF7 targets indicating that TCF7 functions as
a transcriptional activator in MCF10DCIS cells (Fig. 5i). Pathway
analysis of direct TCF7 targets that are upregulated after TCF7
expression showed enrichment in proteolysis, antigen presenta-
tion, cell cycle S phase, ESR1 pathway, mitosis, regulation of
angiogenesis, and EMT (Fig. 5e).

We also analyzed potential overlap between TCF7 and p63
peaks in MCF10DCIS cells and found that ~25% of p63 peaks
overlap with TCF7-binding sites (Supplementary Fig. 4d, e). Most
genes associated with these overlapping peaks are stem cell-
related, such as WNT, NOTCH, and Hh signaling (Fig. 5e)
implying that TCF7 and p63 may cooperate to regulate the
proliferation and differentiation of epithelial stem cells. To test if
p63 and TCF7 are in the same chromatin complex in
MCF10DCIS cells, we performed TCF7 immunoprecipitation
followed by p63 immunoblot. We found that a significant fraction
of p63 is associated with TCF7, which could explain the
significant overlap between p63 and TCF7 peaks (Fig. 5j).

Our xenograft and gene expression data implied that down-
regulation of TP63 and overexpression of TCF7 may have similar
functional consequences and that both TFs regulate the
expression of ECM and cell adhesion proteins, which in turn
regulate p63 protein levels. To determine if the apparent decrease
in p63 protein levels after TCF7 overexpression in MCF10DCIS
cells could be due to indirect effects through the ECM, we
performed immunoblot analysis for FAK and SRC activity. We
found that TCF7 expression results in decreased phospho-
FAKY397 and phospho-SRCY416 levels (Fig. 5k), which could
explain the decrease in p63 protein levels, since inhibition of these
pathways had the same effect (Fig. 4f). We also evaluated if
decrease in FAK and SRC activity influences cellular migration,
invasion, or adhesion to different substrates. We found that while
cell migration and invasion were not significantly different
between control and shTP63 or TCF7-expressing cells, although
migration and invasion is very low in MCF10DCIS cells making it
difficult to see a decrease, cell adhesion to fibronectin and
collagens significantly decreased (Supplementary Fig. 4f, g). These
results suggest that p63 and TCF7 cooperate to regulate ECM and
cell adhesion, and these reciprocatively regulate the levels and
activity of these two TFs (Supplementary Fig. 4h).

Discussion
BRCA1 and BRCA2 germline mutation carriers have an increased
risk of breast cancer, but the cellular and molecular basis of this
increased risk is still poorly defined. Prior studies described
perturbed luminal differentiation and expansion of luminal pro-
genitors in BRCA1 mutation carriers33,34,39. However, the

Fig. 4 Functional relevance of p63 in myoepithelial cells. a Xenograft tumor weight of shTP63-expressing MCF10DCIS cells with or without doxycycline
following mammary fat pad, intraductal, or subcutaneous injection. p-value indicates statistical significance of difference in tumor weight between groups
based on t-test. Mean ± SD shown. b Hematoxylin–eosin (H&E) staining and immunofluorescence analysis of SMA and p63 expression. Scale bar 100 μm.
c Pathway enrichment analysis of genes up-regulated or down-regulated following shTP63 expression in MCF10DCIS cells. Color scale corresponds to −log
(p-value) of significance of enrichment, calculated by MetaCore enrichment analysis test. d–f Immunoblot analysis of p63 expression levels in MCF10DCIS
cells following detachment from matrix d, detachment and concomitant treatment with MG132 (10 µM), Staurosporin (STS, 10 µM), and Bafilomycin A1
(BAF 100 nM) e, and treatment with inhibitors of various signaling pathways [Rapamycin (mTOR), Y15 (FAK) 5 µM; Sonidegib (Hh), XAV393 (WNT),
LY2157299 (TGFβ), Verteporfin (YAP), PD0325901 (MEK) 10 µM; Dasatinib (SRC) 2 µM] in adherent conditions f. GAPDH serves as loading control.
g Heatmap depicting unique and H3K27ac overlapping p63 peaks. The color key is the score of ChIP-seq signal over selected genomic region, the signals
across different genomic regions have scaled to the same length. h Hockey stick plot depicting super-enhancers in MCF10DCIS cells. i Predicted protein
interaction network of TFs identified as core transcriptional regulatory circuits in MCF10DCIS cells. Legend indicates the source of data used to determine
interactions. TFs that are not part of the network were removed. j Integration of differential gene expression and p63 targets by BETA analysis. The p-value
listed in the top left represents the significance of the UP or DOWN group relative to the NON group as determined by the Kolmogorov–Smirnov test.
Source data are provided as a Source Data file
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potential impact of BRCA1/2 germline mutation on myoepithelial
cells has not been investigated in detail. In this study, we describe
the molecular characterization of CD10+ myoepithelial cell
population from normal breast tissue of healthy control nulli-
parous and parous women with no family history of breast
cancer, and BRCA1/2 mutation carriers, as well as from DCIS.
Based on our integrated analyses of gene expression, enhancer,

and p63 and TCF7 genomic target profiles, we determined that
normal myoepithelial cell programs are maintained by an inter-
active TF network orchestrated by p63 and TCF7 in part via their
regulation of ECM proteins and cell adhesion.

p63 plays key roles in the formation of epithelia during
embryonic development and germline mutations in TP63 are
responsible for multiple syndromes that involve malformations of
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various epithelial structures, limb deformations, and cleft
palate54. Some of these individuals also have other abnormalities
including hypoplastic mammary glands and/or nipples high-
lighting the importance of p63 in mammary gland development.
Interestingly, several other genes that we identified as co-
expressed and/or targets of p63 in myoepithelial cells are also
linked to congenital syndromes with skin and facial abnormal-
ities. IRF6 is co-expressed with p63 in normal CD10+CD44− cells
and it is the target of both p63 and TCF7 in MCF10DCIS cells.
Germline mutations in IRF6 cause van der Woude syndrome55,
while its deletion in mice results in skin and limb abnormalities56.
Germline mutations in TFAP2A and TFAP2B, TFs also co-
expressed with p63 in myoepithelium, cause branchio-oculo-
facial and Char syndrome57, respectively. Abnormal epithelial cell
differentiation, and disorganized cell adhesion and ECM path-
ways are features of all these syndromes implying that pertur-
bation of the interactive TF network orchestrated by p63 at
different points can have similar effects.

TCF7 (a.k.a. TCF1) is a member of the TCF/LEF TF family that
are nuclear-binding partners of β-catenin and downstream
mediators of WNT signaling47,58. APC/WNT/β-catenin signaling
is a key regulator of stem/progenitor cell proliferation and sur-
vival, and germline mutations of APC predispose to colorectal
and, at lower penetrance, breast carcinomas59. In animal models,
mammary-specific deletion of Apc leads to delayed ductal
development and metaplastic outgrowths, but these do not pro-
gress to neoplasia60. However, combined deletion of Apc and Tcf1
(Tcf7) completely abrogates mammary gland development and
leads to acanthomas45. In our study, we identified TCF7 as a TF
co-expressed with p63 in normal myoepithelial cells in control
women. Furthermore, p63 and TCF7 also colocalize on the
chromatin near genes required for normal myoepithelial cell
function including ACTA2 (smooth muscle actin) and OXR1
(oxytocin receptor 1). In contrast, in BRCA1 mutation carriers
and in DCIS TCF7 and p63 are expressed in distinct cell types
and almost no overlap is detected in their genomic binding. These
data suggest that changes in the cellular expression pattern of
TCF7 play important roles in breast tumor initiation and
progression.

We identified an extensive cross-talk between p63 and TCF7/
WNT signaling both in normal myoepithelial cells and also in the
MCF10DCIS model, as well as a crosstalk of these pathways with
ECM, Hh, and TGFβ signaling (Supplementary Fig. 4h). TCF7
and p63 are direct genomic targets of each other and p63 protein
levels decrease with an increase in TCF7 in MCF10DCIS cells due
to changes in cell–matrix interaction and pathways regulated by
these including FAK and SRC signaling. GLI3, a transcriptional

mediator of Hh signaling, is also a direct target of p63, while
SMADs, transcriptional mediators of TGFβ signaling are direct
targets of TCF7. At the same time, each one of these TFs regulate
numerous cell adhesion and ECM proteins, which in turn reg-
ulate p63 protein levels. In normal myoepithelial cells p63 and
TCF7 are co-expressed in non-carrier women, but the fraction of
these cells is decreased in BRCA1 mutation carriers. Based on the
phenotype of the Tcf1−/− mice demonstrating mammary ade-
nomas in the absence of Tcf1, it is possible that the decrease of
TCF7 in basal/myoepithelial cells of BRCA1 mutation carriers
may play a role in their higher risk of breast cancer, especially
predisposing them to basal/triple-negative tumors. However,
functional data obtained in animal models and in the
MCF10DCIS model we utilized in this study should be inter-
preted with caution as neither mice nor the MCF10DCIS model
fully recapitulate the expression patterns of p63 and TCF7
observed in normal human breast tissues. Thus, mechanistic
studies focusing on myoepithelial cell differentiation would
require the development and testing of more faithful models in
the future. Mammary organoid cultures61 or certain strains of rats
that can be manipulated experimentally may potentially be useful
in this regard.

DCIS is a precursor of invasive breast cancer, but currently we
lack molecular markers to predict the likelihood of progression.
We and others have analyzed the gene expression and genetic
profiles of DCIS and IDC with the aim of identifying histologic
stage-specific markers and drivers of invasive progression62–65,
but none of the cancer cell-specific markers had shown consistent
differences. In contrast, the lack of myoepithelial cells differ-
entiates invasive from in situ disease and DCIS-associated
myoepithelial cells show consistent differences compared to
normal. Interestingly, many genes differentially expressed
between tumor epithelial cells in DCIS and IDC encode cell
adhesion and ECM proteins, and the downregulation of one of
these (DST) in an intraductal model increased invasive progres-
sion62 implying that perturbed cell–ECM interactions play an
important role in tumor progression. Since normal myoepithelial
cells prevent invasive progression by multiple different mechan-
isms, perturbed myoepithelial cell differentiation, such as changes
in TCF7 expression patterns, could potentially be used as long-
itudinal biomarkers for patient risk stratification.

Methods
Cell lines and breast tissue specimens. MCF10ADCIS.com cells were generously
provided by Fred Miller (Karmanos Cancer Institute, Detroit, MI, USA) and cul-
tured following the provider’s recommendations. Jurkat (TIB-152) and DU4475
(HTB123) cell lines were purchased from ATCC. Cell line identity was confirmed
by short tandem repeats (STR) analysis and the cells were regularly tested for

Fig. 5 Functional relevance of TCF7 in myoepithelial cells. a Immunoblot analysis of p63 and TCF7 expression in parental MCF10DCIS cell line and TCF7
overexpressing TET-inducible derivatives. Jurkat and DU4475 cells were used as positive control for TCF7. ACTB is loading control. b Xenograft tumor
weight of parental and TCF7 expressing MCF10DCIS cells by mammary fat pad, intraductal or subcutaneous injection. p-values indicate statistical
significance of difference in tumor weight between groups based on T-test. Mean ± SD shown. c Hematoxylin–eosin (H&E) staining and
immunohistochemical analysis of SMA and p63 expression. Scale bar 100 μm. d Immunofluorescence analysis of TCF7 and SMA expression in xenograft
tumors of parental and TCF7 expressing MCF10DCIS cells. Scale bar 100 μm. e Pathway-enrichment analysis of genes upregulated and downregulated
following TCF7 expression in MCF10DCIS cells. Color scale corresponds to −log(p-value) of significance of enrichment, calculated by MetaCore
enrichment analysis test. f Heatmap depicting TCF7 unique and H3K27ac overlapping peaks. The color key is the score of ChIP-seq signal over selected
genomic region, the signals across different genomic regions have scaled to the same length. g Gene tracks of TCF7 and H3K27ac signals at selected
genomic loci. The x-axis shows position along the chromosome with gene structures drawn below, whereas y-axis shows genomic occupancy in units of
rpm/bp. h Hockey stick plot depicting changes in super-enhancers in MCF10DCIS cells after TCF7 expression. i Integration of differential gene expression
and TCF7 targets by BETA analysis. The p-value listed in the top left represents the significance of the UP or DOWN group relative to the NON group as
determined by the Kolmogorov–Smirnov test. j Immunoblot analysis of total cell lysates and TCF7 immunoprecipitates. k Immunoblot analysis of
MCF10DCIS-TCF7 cells with or without doxycycline (dox) (24 h) for phospho-FAKY397, FAK, phospho-SRCY416, and SRC. GAPDH serves as loading
control. Source data are provided as a Source Data file
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mycoplasma (Venor GeM Mycoplasma Detection Kit, Sigma). Fresh normal and
neoplastic breast tissue specimens were collected at Harvard-affiliated hospitals, at
John Hopkins University School of Medicine, Baylor-Charles A. Sammons Cancer
Center, Hellen Diller Family Comprehensive Cancer Center, Washington Uni-
versity School of Medicine, University of Michigan, Sutter Roseville Medical
Center, Seoul National University using protocols approved by the Institutional
Review Board at each institution. Tissue samples at Dana-Farber Cancer Institute
were collected under Dana-Farber Harvard Cancer Center (DF/HCC) Institutional
Review Board (IRB) protocol #93-085 following written informed consent and used
in the lab in compliance with DF/HCC IRB protocol #14-400 approved for the use
of de-identified tissue samples. The study is compliant with all relevant ethical
regulations regarding research involving human participants. Samples were de-
identified prior to transport to the laboratory.

FACS, immunofluorescence, and immunohistochemical analyses. For FACS,
single-cell suspensions of human breast epithelial cells were obtained by col-
lagenase IV (1 mg/ml, Worthington, LS004l89bar) hyaluronidase (1 mg/ml, Sigma
cat#H3506) digestion in DMEM/F12 followed by trypsinization. Cells were stained
with DAPI, and the following antibodies at 1:100 dilution in PBS+ 2% BSA
solution: CD10-FITC (Fisher Scientific cat#F082601F) or CD10-RPE (DAKO,
clone SS2/36, cat#R084801), or CD10 (Biolegend, clone HI10A, cat#312202),
CD10-FITC (BD Biosciences; clone HI10a, cat#340925), CD24-Alexa 647 (Biole-
gend; clone ML5, cat#311110) and CD44-PE (BD Biosciences; clone 515,
cat#550989). The analysis was performed on a BD FACS Canto system (BD
Biosciences). Gating and subpopulation analysis were performed using FlowJo
software.

Immunofluorescence and immunohistochemical analyses were performed
following standard protocols for formalin-fixed paraffin-embedded tissues using
antibodies CD10 (DAKO, clone 56C6, cat#M0727), TCF7 (Cell Signaling, C63D9,
cat#2203S), pan-cytokeratin (DAKO, Clone AE1/AE3, cat#M3515), SMA (Thermo
Scientific, Clone 1A4, cat#MS113B), and p63 (Santa Cruz, clone 4A4, cat#sc-8431)
at 1:100 dilution in PBS 10% goat serum. Images from multiple areas of each
sample were acquired using a Nikon Ti microscope attached to a Yokogawa
spinning-disk confocal unit using a 603 plain apo objective, and OrcaER camera
controlled by Andor iQ software; or a Leica SP5 confocal scanning microscope or
slides were scanned by Servicebio (http://www.servicebio.com). Expression of
TCF7 and p63 in metaplastic tumors was scored as follows 0 (negative), 1 (weak),
and 2 (strong), whereas the co-expression of the two proteins were scored as 0 (no
co-staining), 1 (<50% overlap), and 2 (>50% overlap).

SAGE-seq, RNA-seq, ChIP-seq sample preparation, and data analysis. A
subset of the RNA-seq and ChIP-seq libraries were generated by the Center for
Cancer Computational Biology (CCCB), Center for Functional Cancer Epigenetics
(CFCE), and Molecular Biology Core (MBC) at Dana-Farber Cancer Institute
(DFCI) following manufacturer’s protocols. ChIP for p63, H3K27ac, TCF7, and
TCF7-HA was performed using antibodies p63 (abcam, ab735), H3K27ac (abcam,
ab4729), TCF7 (Sigma, WH0006932M1), and HA (abcam, ab9110)66. For TCF7
and TCF7-HA ChIP-seq, 1 × 107 cells were fixed with 2 mM DSG (Thermo Fisher
Scientific cat#20593) for 30 min at room temperature. DSG was then removed and
replaced with fixing buffer (50 mM HEPES–NaOH (pH 7.5), 100 mM NaCl, 1 mM
EDTA) containing 1% paraformaldehyde (Electron Microscopy Sciences, 15714)
and crosslinked for 10 min at 37 °C. For histone modification ChIP-seq, 5 × 106

cells were fixed with 1% paraformaldehyde for 10 min at room temperature. For ER
ChIP-seq, 1 × 107 cells were fixed with 1% paraformaldehyde for 10 min at 37 °C.
Crosslinking was quenched by adding glycine to a final concentration of 0.125 M.
Cells were washed with ice-cold PBS and harvested in PBS. The nuclear fraction
was extracted by first resuspending the pellet in 1 ml of lysis buffer (50 mM
HEPES–NaOH (pH 8.0), 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40,
and 0.25% Triton X-100) for 10 min at 4 °C. Cells were pelleted, and washed in
1 ml of wash buffer (10 mM Tris–HCl (pH 8.0), 200 mM NaCl, 1 mM EDTA) for
10 min at 4 °C. Cells were then pelleted and resuspended in 1 ml of shearing buffer
(10 mM Tris–HCl (pH 8), 1 mM EDTA, 0.1% SDS) and sonicated in a Covaris
sonicator. Lysate was centrifuged for 5 min at 14,000 rpm to purify the debris. Then
100 µl of 10% Triton X-100 and 30 µl of 5 M NaCl were added. The sample was
then incubated with 20 µl of Dynabeads Protein G (LifeTechnologies,10003D) for
1 h at 4 °C. Primary antibodies were added to each tube and immunoprecipitation
(IP) was conducted overnight in the cold room. Cross-linked complexes were
precipitated with Dynabeads Protein G for 2 h at 4 °C. The beads were then washed
in low salt wash buffer (20 mM Tris–HCl pH 8, 150 mM NaCl, 10 mM EDTA, and
1% SDS) for 5 min at 4 °C, high salt wash buffer (50 mM Tris–HCl pH 8, 10 mM
EDTA, and 1% SDS) for 5 min at 4 °C and LiCl wash buffer (50 mM Tris–HCl pH
8, 10 mM EDTA, and 1% SDS) for 5 min at 4 °C. DNA was eluted in elution buffer
(100 mM sodium bicarbonate and 1% SDS). Cross-links were reversed overnight at
65 °C. RNA and protein were digested with 0.2 mg/ml RNase A for 30 min at 37 °C
followed by 0.2 mg/ml Proteinase K for 1 h at 55 °C. DNA was purified with
phenol–chloroform extraction and isopropanol precipitation. ChIP-seq libraries
were prepared using the ThruPLEX DNA-seq Kit (Rubicon, cat#R400427) from
1 ng of purified ChIP DNA or input DNA according to the manufacturer’s pro-
tocol. ChiLin pipeline 2.0.067 was used for QC and preprocess of the ChIP-seq. We
used Burrows–Wheeler Aligner (BWA)68 as a read mapping tool, and Model-based

Analysis of ChIP-Seq (MACS2)69 as a peak caller. Peak annotation was performed
using annotatePeaks.pl of the HOMER package v4.9.1 with version hg19 of the
human genome70. Based on a dynamic Poisson distribution MACS2 can effectively
capture local biases in the genome sequence, allowing for more sensitive and robust
prediction of binding sites. Unique read for a position for peak calling was used to
reduce false-positive peaks, statically significant peaks were finally selected by
calculated false discovery rate of reported peaks. The following QC methods were
applied to the ChIP-seq data: (1) sequence quality QC, we calculated these scores
using the FastQC software (FastQC. http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). A good sequence quality score is ≥ 25; (2) PCR bottleneck coef-
ficient—PBC score ≥ 0.90; (3) percentage overlap with known DHSs derived from
the ENCODE project (the minimum required was 70%); (4) peak conservations;
(5) number of total peaks (the minimum required was 1000). Deeptools71 was used
for the heatmap plots. BETA53 was used in integrates ChIP-seq of TFs or chro-
matin regulators with differential gene expression data to infer direct target genes.
Super enhancers were called by ROSE50 using H3K27ac ChIP-seq data. Core
regulator circuits were identified using the superenhancers data using the algorithm
developed by the Young lab51 and interactions among TFs were visualized using an
online tool STRING52. Specifically, we identified TFs predicted to form CRCs and
selected TFs in the two top scoring CRCs for further analyses. These included 14
TFs in normal myoepithelial cells (ETV5, ETV6, FOXO1, GLI3, MAF, PBX1,
RFX2, RUNX1, SMAD3, TCF7L2, TEAD1, TFAP2B, TFAP2C, THRB), 29 TFs in
MCF10DCIS cells (RUNX1, SMAD3, RREB1, BHLHE40, TCF7L2, MYC, KLF13,
ETV6, SOX9, VDR, ZNF217, GATA3, STAT4, EHF, FOS, TGIF1, FOSL2, RXRA,
GLI3, SREBF1, HES1, RARA, TFCP2L1, KLF5, ERF, NFIB, FOS, OSR1, TGIF1),
and 25 TFs in MCF10DCIS-TCF7 cells (SMAD3, TEAD1, RREB1, KLF13,
BHLHE40, EGR1, MYC, RUNX1, IRF2, TCF7L2, ELF3, RARA, SP1, STAT4, EHF,
ETS2, FOS, RXRA, RFX3, FOSL2, FOXO3, TFCP2L1, DLX2, SREBF1, GATA3).
These TFs were then loaded into the STRING online tool to assess interactions
using default settings: network edges based on evidence, use all active interaction
sources (indicated in legend), medium confidence interaction score (0.004), and use
only query proteins.

SAGE-seq library construction and sequencing were performed using long
iSAGE kit (Invitrogen, cat#T500003) and following the manufacturer’s
instructions39. SAGE-seq tags were mapped to genes according to the best tag file
for long SAGE (available from SAGE genie website at ftp://ftp1.nci.nih.gov/pub/
SAGE/HUMAN). Tag counts mapped to the same genes were combined and total
counts were normalized to counts per 10 million reads. For human patient samples,
SAGE-seq and RNA-seq results were combined, first quantile normalized and then
subjected to batch effect removal using the R software comBat package. Cluster
analysis was done using the Cluster and TreeView software (available at http://
rana.lbl.gov/EisenSoftware.htm) on top 1000 most variedly expressed genes. PCA
analysis was performed using the R software pca function and rgl package.
Differential gene expression was done using the R software samr and limma
packages. The significance of overlap between gene signatures was performed by a
hypergeometric test using the R function phyper. For MCF10DCIS cell line raw
RNA-seq datasets read alignment, quality control, and data analysis were
performed using STAR72. Differential expression is called by DEseq273, significant
genes were selected based on cutoff of P-value < 0.05 and log2fold change > 1.

Cell adhesion, migration, and invasion assays. Cell adhesion assay was per-
formed using CytoSelectTM 48-Well Cell Adhesion Assay (ECM Array, Colori-
metric Format) (Cell Biolabs, Inc., cat#CBA-070) according to the manufacturer’s
instruction. In brief, MCF10DCIS-TCF7 and MCF10DCIS-shTP63 cells were
incubated with doxycycline (1 µg/ml) for 24 and 72 h, respectively. 7.5 × 104 cells in
serum-free medium supplemented with 0.5% BSA, 2 mM CaCl2, 2 mM MgCl2, and
with or without doxycycline were plated on ECM Adhesion plate and incubated for
1 h in a cell culture incubator. Migration and invasion assays were performed using
CytoSelectTM 24-Well Cell Migration and Invasion Assay (8 µm, Colorimetric
Format) (Cell Biolabs, Inc., cat#CBA-100-C) according to the manufacturer’s
instructions. In brief, MCF10DCIS-TCF7 and MCF10DCIS-shTP63 cells were
incubated with doxycycline (1 µg/ml) for 24 and 72 h, respectively. 4 × 104 cells in
serum-free medium supplemented with 0.5% BSA, 2 mM CaCl2, 2 mM MgCl2 and
with or without doxycycline were plated on invasion or migration insert. Insert was
placed on full media. Migration assay was incubated for 24 h and invasion assay for
48 h in a cell culture incubator.

Immunoblot analyses. Cell lysates were prepared in ice-cold RIPA lysis buffer (50
mM Tris pH 8, 150 mM NaCl, 1% NP40, 0.5% Na-deoxycholate, 0.1% SDS)
supplemented with HALTTM Protease and Phosphatase Inhibitor Cocktail
(Thermo Fisher Scientific) and sonicated using a Bioruptor® Pico sonication device
(diagenode). Protein content was determined with the BCA Protein Assay Kit
(Pierce). 20 µg of protein were resolved by SDS–PAGE, transferred to Nitrocellu-
lose membrane (Thermo Fisher Scientific) and blocked in 5% Milk/TBST for 1 h at
RT. Primary antibodies were used as follows: anti-p63 (ab735; 1:500; abcam), anti-
phospho FAK-Y397 (#8556; 1:500; Cell Signaling Technology), anti-FAK (#3285;
1:1000; Cell Signaling Technology), anti-phospho Src-Y416 (#6943; 1:1000; Cell
Signaling Technology), anti-Src (#2109; 1:1000; Cell Signaling Technology), TCF7
(#2203; 1:1000; Cell Signaling Technology), anti-GAPDH (#5174; 1:5000; Cell
Signaling Technology), and anti-ACTB (#A2228; 1:1000, Sigma-Aldrich).
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Proliferation assay. 1.5 × 105 cells were seeded in 6 cm tissue culture plates in
duplicate. Cells were pulsed with BrdU (10 µM) for 1 h next day and stained with
FITC-conjugated-anti-BrdU antibody and 7-AAD using the BD BrdU Flow kit
(BD, Biosciences, cat#552598) according to the manufacturer’s instructions and
analyzed by flow cytometry. Data acquisition was performed on a BD LSR Fortessa
Flow Cytometry Analyzer, data analysis was done with Cytobank.

Mass cytometry (CyTOF). For CyTOF, antibodies were purchased in carrier-free
buffers and conjugated with the respective lanthanide metals by the CyTOF
Antibody Resource and Core at Brigham Women’s Hospital, Boston, MA, USA.
Single cell suspensions of normal breast tissue from non-carrier and BRCA1 and
BRCA2 mutation carriers were treated with 50 µM IdU-127 (Fluidigm, cat#201127)
for 30 min and 100 µM of the intercalator-103Rh (Fluidigm, cat#201103A) for
15 min at 37 °C in DMEM/F12 medium. Next, 1 × 106 cells of each sample were
barcoded using the Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm, cat#201060)
according to the manufacturer’s instructions. Barcoded samples were pooled and
stained simultaneously. Cells were fixed for 10 min with paraformaldehyde (Elec-
tron Microscopy Sciences, cat#50-980-494) at a final concentration of 1.6% fol-
lowed by Fc-receptor block Human TruStain FcX (Biolegend, cat#422302) for 10
min and surface antibody staining for 30 min at room temperature. Subsequently,
cells were permeabilized with methanol for 10 min on ice and incubated with the
antibody cocktail for intracellular epitopes for 30 min. Cells were kept at 4 °C
overnight in Fix and Perm Buffer (Fluidigm, cat#201067) supplemented with
Intercalator-IR (Fluidigm, cat#201192A) 1:2000. Prior to analysis cells were washed
with water, resuspended in water containing EQ™ Four Element Calibration Beads
(Fluidigm, cat#201078) (1:10) and filtered through a 35 µm strainer. Samples were
acquired at a CyTOF Helios instrument (Fluidigm), normalized as previously
described74 and analyzed with Cytobank (Cytobank, Inc., Mountain View, CA).
For all washes during staining Cell Staining Media (PBS with 0.5% BSA, 0.02%
NaN3) was used. For analysis all files for normal (n= 6), BRCA1 (n= 6), and
BRCA2 (n= 7) samples have been concatenated to create a single normal, BRCA1
and BRCA2 file, respectively. Files have been gated for singlets, viable (defined as
Rh-103 negative) and non-apoptotic (cleaved PARP negative). To exclude con-
taminating immune cells (defined as CD45+), files have further been gated for
CD45− population. viSNE analysis has been performed using this population or
the myoepithelial population defined as CK8/18 negative, E-Cadherin+ and SMA+.
For all viSNE analysis the following markers were used for clustering: PR, CD10,
CD44, MUC1, CD24, Vimentin, Epcam, CK8/18, SMA, GATA-3, ER, AR, HER2,
CK5, E-Cadherin, CD49f. Antibodies used for CYTOF (metal): Rabbit monoclonal
anti-PR a/b (141Pr), Cell Signaling Technology Cat#8757; Mouse monoclonal anti-
CD10 (142Nd) BD Biosciences Cat#555373; Rat monoclonal anti-CD44 (143Nd)
Biolegend Cat#103002; Mouse monoclonal anti-cyclin D3 (144Nd) Abcam
Cat#ab28283; Mouse monoclonal anti-MUC1 (145Nd) Biolegend Cat#355602;
Mouse monoclonal anti-LAMP2 (146Nd) Biolegend Cat#354302; Mouse mono-
clonal anti-CDK4 (147Sm) BD Biosciences Cat#559677; Rabbit monoclonal anti-
PTEN (148Nd) Cell Signaling Technology Cat#9559; Rabbit monoclonal anti-E-
Cadherin (149Sm) Cell Signaling Technology Cat#3195; Mouse monoclonal anti-
EpCAM (150Nd) Biolegend Cat#324202; Mouse monoclonal anti-HER2 (151Eu)
BD Biosciences Cat#554299; Rabbit polyclonal anti-CK5 (152Sm) Abcam
Cat#ab53121; Mouse monoclonal anti-CD24 (153Eu) Biolegend Cat#311102;
Mouse monoclonal anti-CDK1 (154Sm) Biolegend Cat#626901; Rabbit mono-
clonal anti-CDK6 (155Gd)

Cell Signaling TechnologyCat#13331; Rabbit monoclonal anti-p63 (158Gd)
Abcam Cat#ab124762; Rabbit monoclonal anti-TCF7 (159Tb) Cell Signaling
Technology Cat#2203; Rabbit monoclonal anti-AR (160Gd) Cell Signaling
Technology Cat#5153; Mouse monoclonal anti-Cyclin A (161Dy) BD Biosciences
Cat#554175; Mouse monoclonal anti-Ki-67 (162Dy) BD Biosciences Cat#550609;
Mouse monoclonal anti-SMA (163Dy) Thermo Fisher Scientific Cat#14-9760-82;
Mouse monoclonal anti-cPARP (164Dy) BD Biosciences Cat#552596; Rabbit
monoclonal anti-Vimentin (165Ho) Cell Signaling Technology Cat#5741; Rat
monoclonal anti-GATA3 (166Er) eBioscience Cat#14-9966-80; Rabbit monoclonal
anti-p21 (167Er) Cell Signaling Technology Cat#2947; Rabbit monoclonal anti-
phospho-AKT Ser473 (168Er) Cell Signaling Technology Cat#4060; Rabbit
monoclonal anti-phospho-STAT3 Tyr705 (169Tm) Cell Signaling Technology
Cat#9145; Rabbit monoclonal anti-EGFR (170Er) Cell Signaling Technology
Cat#4267; Rabbit monoclonal anti-phospho-SMAD2 Ser465/467/Smad3 Ser423/
425 (171Yb) Cell Signaling Technology Cat#8828; Rabbit monoclonal anti-ERα
(172Yb) Cell Signaling Technology Cat#13258; Rat monoclonal anti-CD49f
(173Yb) Biolegend Cat#313602; Rabbit monoclonal anti-phospho-STAT5 Tyr694
(174Yb) Cell Signaling Technology Cat#4322; Rabbit monoclonal anti-phospho-S6
Ser235/236 (175Lu) Cell Signaling Technology Cat#4858; Mouse monoclonal anti-
CK8/18 (176Yb) Cell Signaling Technology Cat#4546; Mouse monoclonal anti-
CD45 (156Gd) BD Biosciences Cat#555480.

shRNA plasmids and lentivirus production. pLKO shRNA vectors for control
GFP (clone 437) and TP63 (clones 6502, 6504, and 6506) were obtained from the
Broad Institute RNAi consortium (TRC). To express doxycycline-inducible
shRNAs, annealed oligos (LacZ and TP63) were cloned into pLKO-tet-on lentiviral
vector (kindly provided by Dr. Alex Toker, Beth-Israel Deaconess Medical Center,

Boston, MA). For expression of TCF7, HA tagged full-length TCF7 cDNA was
obtained from pcDNA-HA-TCF1 plasmid purchased from Addgene75. cDNA was
inserted into pLenti6.3 Gateway compatible lentiviral vector (Life Technologies,
cat#V53306). To produce lentiviral supernatants, HEK293T cells were co-
transfected with shRNA or expression vectors, VSVG, and pDG8.91 using Fugene
6 (Roche, cat#11988387001). The targeting cells were infected with the viral
supernatant containing 8 µg/ml polybrene. 48 h post-infection, the target cells were
exposed to puromycin (2 µg/ml) to select for infected cells.

Mouse xenograft assays. Female NSG mice (8 weeks old) were purchased from
The Jackson Laboratory and maintained in pathogen-free conditions. Tumors were
induced by mammary fat pad, intraductal and subcutaneous bi-lateral injections of
MCF10DCIS-shTP63 (45 mice, 5 mice per treatment group) or MCF10DCIS-TCF7
(45 mice, 5 mice per treatment group) cells (2 × 10e5 in 50 µL, 1 × 10e5 in 20 µL,
and 2 × 10e5 in 100 µL, respectively) resuspended in DMEM-F12 medium/Matrigel
Growth Factor Reduced Basement Membrane Matrix, Phenol Red-Free (Fisher
Scientific, cat#CB356238) in a 1:1 ratio. Treatment groups received doxycycline
rodent chow (2000 ppm). Animal experiments were performed by the Lurie Family
Imaging Center following protocols approved by the Dana–Farber Cancer Institute
Animal Care and Use Committee. The study is compliant with all relevant ethical
regulations regarding animal research. Mice were euthanized and tumors collected
21 days after injection.

Statistical analyses. Statistical significance of differences in tumor weight and cell
adhesion were determined by based on T-test. For assessing the association among
cell subtype (Figs. 1h and 2f: p63−TCF7-, p63+TCF7+, TCF7+p63−, p63+TCF7−;
Fig. 2b: CD10+CD44−, CD10+CD44+) and condition Fig. 1i: Control, BRCA1,
BRCA2; Fig. 2b: Normal and DCIS; Fig. 2f: DCIS-HG, DCIS-LG, DCIS-IDC), we
first conducted Pearson’s chi-squared tests among averages of estimated cell counts
across replicates. For computing the P-values in the main figures, we used a
conservative estimate of 100 cells. With increasing population size, the power of
identifying associations also increases: for 150 cells, p-values of 1.485e−07 (Fig. 1h)
and 8.998e−06 (Fig. 2f); for 200 cells: 1.864e−10 (Fig. 1h) and 8.713e−08 (Fig. 2f).
For Fig. 1h and population size of 100, we simulated the p-value, since the count for
Control p63-TCF7- was only 2. Next, in order to take into account the variation
among replicates (which is not considered by the chi-squared test), we employed
methods specific to Compositional Data Analysis76. These methods are needed
because of the negative correlations artificially introduced by the structure of these
data: since the amount of every cell subtype is limited to the whole, if the per-
centage of one subtype of cells increases, the amounts of other subtypes must
decrease. Therefore, we first evaluated whether the cell subtype composition can be
accurately predicted given the condition, by using Dirichlet regression77. The
Dirichlet distribution is a multivariate generalization of the beta distribution and is
commonly employed for modeling compositional data78. However, likely because
of the low number of replicates, as well as the large variation among replicates, in
all cases (data from Figs. 1h and 2b, f) the effect sizes were small, and the large
majority of predictors were not significant. We further evaluated whether the
condition can be accurately predicted given the cell subtype composition, by using
Multinomial logistic regression. Prior to this, the cell subtype compositions were
transformed to a D−1 dimensional space (where D is the dimension of the original
data), by using the isometric log transform79, commonly applied to compositional
data. Likely from the same reasons described above, in almost all cases the pre-
dictors were not significant, with the sole exception of the ratio of CD10+CD44+

cells in separating DCIS from Normal, for which the effect size was 1.01, and the
p-value 0.063.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw genomic data was deposited to GEO under accession number GSE113909. The
source data underlying Figs. 1b, h, 2b, f, h, 4b, 5b and Supplementary Figs. 4b, f, g and the
full-size images of immunoblots depicted in Figs. 4d, e, f, 5a, j, k and Supplementary
Fig. 3a are included in the Source Data file. Detailed protocols and reagents described in
this manuscript are available from the corresponding author upon request.
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