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Abstract

The electrokinetic pumping characteristics of nanoscale charged porous media packed in microchannels are investigated using a mesoscopic
evolution method. When the pore size of porous media is comparable to the thickness of electric double layer, the effects of particle surface
potentials on the bulk electric potential distribution will not be negligible. The lattice Poisson–Boltzmann method provides an accurate numerical
solution for such problems, which combines two sets of lattice evolution methods solving the nonlinear Poisson–Boltzmann equation for electric
potential distribution and the Navier–Stokes equations for fluid flow, respectively. The effects of the finite particle size, the bulk ionic concentration,
the external electric field strength and the surface potentials on the electroosmotic micropump performances are therefore studied. The results show
that for a certain porosity the maximum pumping pressure is inversely proportional to the particle diameter and the flow rate under zero pressure
drop increases with the particle size. The pumping flow rate decreases with the backpressure yet increases with the external electric field strength,
linearly respectively. The averaged flow rate increases with the bulk ionic concentration and the particle surface potential, but is slightly influenced
by the surface potentials of channel walls. The numerical results agree with the published experimental data while some results deviate from the
predictions based on the macroscopic linear assumptions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Micro- and nano-fluidic devices have gained much recent
attention due to their increasing applications in chemical analy-
sis [1], biological and medical diagnostics [2,3], and energy
supply [4]. The inherent advantages of miniaturization lie in
the integration of complex multi-functions with remaining pre-
cise controlling of objects [5,6]. Actuating without any moving
parts is a new promising direction for micro-system designs
despite the low efficiency [7–10]. Electrokinetic flow (EKF)
is one of the most important non-mechanical techniques for
micro- and nano-fluidics [10–12], and has been widely applied
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for pumping [13,14], mixing [15,16], and separating [3] for
years. Recently, charged porous media structures have been em-
ployed in micro devices to change the fluid behavior. A low
flow rate together with a high pumping pressure is therefore
obtained, which has been used in capillary electrochromatog-
raphy (CE) [17] and improved high-performance micropumps
[18–20]. With the polarization effect of porous electrodes con-
sidered, the structured electrode arrays can be designed as a
concentration demixer of electrolytes [21].

Electrokinetic transport phenomena in porous media have
been studied much in the past ten years both theoretically
and numerically [22–26]. However, most results were actu-
ally based on linearization approximations of the Poisson–
Boltzmann equation [27] so that the reliable applications were
limited to where the electric double layer (EDL) length was
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very thin or very thick comparing to the channel size. To
our knowledge, there is only a public literature that presents
successful numerical simulations for the electrokinetic flows
in charged porous media by solving the nonlinear Poisson–
Boltzmann equation and Navier–Stokes equations [28,29],
though the CFD techniques have been successfully applied for
channel electrokinetic flows [30–33], even in rough channels
[34,35]. For the electrokinetic flows in microchannels packed
with charged porous media, the EDL length could be of the
same level as the pore size. As a result, the surface charges
of particles affect significantly the potential distribution across
the channel and therefore affect the flow behavior. If the wall
surface potentials of either channel or particles are not very
low (>30 mV), the linear approximation for the Poisson–
Boltzmann equation will introduce errors into the numerical
predictions [31,36]. The nonlinear factor will cause the classi-
cal CFD solutions for electrokinetic flows in porous media to
be very expensive.

In recent years, a mesoscopic statistics-based method, lat-
tice Boltzmann method (LBM), has been developed for elec-
trokinetic transports in micro devices [18–22]. He and Li [37]
proposed a lattice Boltzmann scheme for analyzing the elec-
trochemical processes in an electrolyte based on a locally
electrically neutral assumption [38]. Li et al. [39–41] simu-
lated the electrokinetic flows in microchannels using a lattice
Boltzmann method with one-dimensional linearized solution of
the Poisson–Boltzmann equation. Melchionna and Succi [42]
solved the nonlinear Poisson–Boltzmann equation by an effi-
cient multi-grid technique and then predicted the flow behavior
using a lattice Boltzmann scheme. The multi-grid technique
has great efficiency to solve the nonlinear Poisson–Boltzmann
equation; however it has rarely been extended for complex
geometries [43,44]. Recently, Guo et al. [45] presented a finite-
difference-based lattice Boltzmann algorithm for electroos-
motic flows with the Joule heating effect. Wang et al. [46,47]
developed a lattice Poisson–Boltzmann method (LPBM) which
combined a potential evolution method on discrete lattices to
solve the nonlinear Poisson–Boltzmann equation with a density
evolution method on discrete lattices to solve the Boltzmann–
BGK equation. The LPBM has been applied to study the mixing
enhancement in heterogeneously charged microchannels [48]
and the roughness and cavitation effects in electroosmotic mi-
crofluidics [49].

This paper models and analyzes the electrokinetic pump-
ing effects of charged nanoscale porous media packed in mi-
crochannels using the lattice Poisson–Boltzmann method. The
effect of particle surface potential on the electric potential
distribution is considered by solving the nonlinear Poisson–
Boltzmann equation in the whole domain. The enhanced pump-
ing performances by adding the charged porous media are
therefore discussed. Several factors are concerned including the
particle size, the bulk ionic concentration, the external electric
field strength, and the surface potentials of walls and particles.
The simulation results will be compared with existing experi-
mental data and macroscopic theories.
2. Numerical model

2.1. Governing equations

For an incompressible laminar flow, the continuity and mo-
mentum equations are

(1)∇ · u = 0,

(2)ρ
∂u
∂t

+ ρu · ∇u = −∇P + μ∇2u + FE,

where u is velocity vector, ρ the solution density, P the pres-
sure, μ the dynamic fluid viscosity and FE the electric force
density vector. In general, the electrical force in electrokinetic
fluids can be expressed as

(3)FE = Fext + ρe(Eint + ξ × Bint) + FV,

where Fext represents the external field body forces, including
the Lorentz force associated with any externally applied elec-
tric and magnetic field. For only an electrical field, Fext = ρeE,
where ρe is the net charge density and E is the electrical field
strength. Eint and Bint are internally smoothed electrical and
magnetic fields due to the motion of the charged particles in-
side the fluid. FV is a single equivalent force density due to the
intermolecular attraction [40].

Electric double layer (EDL) theory [27] relates the electro-
static potential and the distribution of counterions and co-ions
in the bulk solution by the Poisson equation as follows:

(4)∇2ψ = − ρe

εε0
,

where ψ is the electrical potential, ε the dimensionless dielec-
tric constant of the solution, ε0 the permittivity of a vacuum,
and ρe the net charge density.

The transport of each ion species is generally determined by
the Nernst–Planck equation [50–52]. According to the classical
EDL theory, for the dilute solution of point ions where the sizes
and interactions of ions are negligible, the equilibrium Boltz-
mann distribution function can be used to describe the ionic
number concentration [53]. Therefore, the net charge density
distribution can be expressed as the sum of all the ions in the
solution:

(5)ρe =
∑

i

zieni,∞ exp

(
− zie

kBT
ψ

)
,

where the subscript i represents the ith species, n∞ is the bulk
ionic number concentration, z the valence of the ions (includ-
ing the sign), e the absolute value of one proton charge, kB the
Boltzmann constant, and T the absolute temperature.

Substituting Eq. (5) into Eq. (4) yields the nonlinear Pois-
son–Boltzmann equation for the electrical potential in the dilute
electrolyte solution:

(6)∇2ψ = − 1

εε0

∑
i

zieni,∞ exp

(
− zie

kBT
ψ

)
.
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2.2. Evolution equations

2.2.1. Evolution equation for hydrodynamics
The continuity and momentum equations can be solved by

tracking the movements of molecule ensembles through the
evolution of the distribution function [54] using the popular lat-
tice Boltzmann method. The lattice Boltzmann equation can be
derived from the Boltzmann equation [55]. For the flows with
external forces, the continuous Boltzmann–BGK equation with
an external force term, F , is

(7)
Df

Dt
≡ ∂tf + (ξ · ∇)f = −f − f eq

τν

+ F,

where f ≡ f (x, ξ , t) is the single particle distribution function
in the phase space (x, ξ), ξ the microscopic velocity, τν the
relaxation time, and f eq the Maxwell–Boltzmann equilibrium
distribution. For a steady fluid immersed in a conservative force
field, the equilibrium distribution function is defined by adding
a Boltzmann factor to the Maxwell–Boltzmann distribution:

(8)f eq = ρ0

(2πRT )D/2
exp

(
− U

kT

)
exp

(
− (ξ − u)2

2RT

)
,

where U is the potential energy of the conservative force field,
ρ0 the fluid density where U lowest, R the ideal gas common
constant, D the dimension of the calculation space (1D, 2D, or
3D), k the Boltzmann constant, and u the macroscopic velocity.
Here the external force term, F , needs to be chosen carefully.
Dimensional analysis led to the following form of F :

(9)F = G · (ξ − u)

RT
f eq,

with G being the external force per unit mass [56]. The
Chapman–Enskog expansion can be used to transform the
Boltzmann–BGK equation, Eq. (7), into the correct continuum
Navier–Stokes equations [57].

For the two-dimensional case, third-order Gauss–Hermite
quadrature leads to the nine-speed LBE model with the discrete
velocities

(10)eα =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0,0),

α = 0,

(cos θα, sin θα)c, θα = (α − 1)π/2,

α = 1,2,3,4,√
2(cos θα, sin θα)c, θα = (α − 5)π/2 + π/4,

α = 5,6,7,8,

where c is the sound speed and the density equilibrium distrib-
ution

(11)

f
eq
α = ωαρ0 exp

(
− U

kT

)[
1 + 3

eα · u
c2

+ 9
(eα · u)2

c4
− 3u2

2c2

]
,

with

(12)ωα =
{4/9, α = 0,

1/9, α = 1,2,3,4,

1/36, α = 5,6,7,8.
Thus, the discrete density distribution satisfies the evolution
equation

fα(r + eαδt , t + δt ) − fα(r, t)

(13)= − 1

τν

[
fα(r, t) − f

eq
α (r, t)

] + δtFα,

where r is the position vector, δt the time step, τν the dimen-
sionless relaxation time which is a function of the fluid viscos-
ity,

(14)τν = 3ν
δt

δ2
x

+ 0.5,

where ν is the kinetic viscosity and δx the lattice constant (or
grid size).

For electrokinetic flows in dilute electrolyte solutions, the
external electrical force in Eq. (2) can be simplified to

(15)FE = ρeE − ρe∇Φ,

where Φ is the stream electrical potential caused by the ion
movements in the solution based on the Nernst–Planck theory.
Generally, the stream potential dominates the electro-viscosity
effect in pressure driven flows, but its value is much less than
the external potential and can be ignored in electrically driven
flows. Therefore, the external force in the discrete lattice Boltz-
mann equation should include the pressure and electric force

(16)Fα = (−∇P + ρeE − ρe∇Φ) · (eα − u)

ρRT
f

eq
α .

The macroscopic density and velocity can be calculated us-
ing

(17)ρ =
∑
α

fα,

(18)ρu =
∑
α

eαfα.

2.2.2. Evolution equation for electrodynamics
Borrowing the spirit from the lattice Boltzmann method, we

rewrite Eq. (6) as a Boltzmann-like equation by expanding a
time-dependent term:

(19)
∂ψ

∂t
= ∇2ψ + grhs(r,ψ, t),

where

grhs = 1

εε0

∑
i

zieni,∞ exp

(
− zie

kBT
ψ

)

represents the negative right-hand side (RHS) term of the orig-
inal Poisson–Boltzmann equation. The solution of Eq. (6) is
actually the steady solution of Eq. (18). The evolution equa-
tion for the electrical potential on the two-dimensional discrete
lattices can then be written as [46]

gα(r + �r, t + δt,g) − gα(r, t)

(20)= − 1

τg

[
gα(r, t) − g

eq
α (r, t)

] +
(

1 − 0.5

τg

)
δt,gωαgrhs,
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where the equilibrium distribution of the electric potential evo-
lution variable g is g

eq
α = �αψ , with

(21)�α =
{0, α = 0,

1/6, α = 1,2,3,4,

1/12, α = 5,6,7,8.

The time step in Eq. (20) is

(22)δt,g = δx

c′ ,

where c′ is a pseudo sound speed in the potential field [46]. The
dimensionless relaxation time for Eq. (20) is

(23)τg = 3χδt,g

2δ2
x

+ 0.5,

where χ is defined as the potential diffusivity which equals to
unity in these simulations.

The evolution equations (20)–(23) were proved consis-
tent with the macroscopic nonlinear Poisson–Boltzmann equa-
tion (6). After evolving on the discrete lattices, the macroscopic
electrical potential can be calculated using

(24)ψ =
∑
α

(gα + 0.5δt,ggrhsωα).

Though the electrical potential evolution equations are in an
un-steady form, only the steady state result is realistic, because
the electromagnetic susceptibility has not been considered. Al-
though the lattice evolution method for nonlinear Poisson equa-
tion is not as efficient as the multi-grid solutions due to its long
wavelength limit, it has the advantages of suitability for com-
plex geometries and parallel computing. Although this paper
only presents 2D cases, the algorithm is easy to extend to 3D
cases [46].

2.2.3. Boundary conditions
The hydrodynamic boundary conditions for the lattice Boltz-

mann method have been studied extensively [58–66]. In the
previous work for electrokinetic flows, the bounce-back rules
were used [39–42,45–47], or a second-order accurate nonslip
boundary condition was implemented at wall surfaces [49]. The
half-way bounce-back rule [62,63] for the nonequilibrium dis-
tribution proposed by Zou and He [64] is introduced into this
work and extended to both hydrodynamic and electrodynamic
boundary implements to deal with the complex geometries in
porous media.

At the boundary the following hydrodynamic boundary con-
dition holds:

(25)f
neq
α = f

neq
β ,

where the subscripts α and β represent opposite directions.
Analogously, the nonequilibrium “bounce-back” rule for the
electric potential distribution at the wall surfaces is suggested
as

g
neq
α = −g

neq
β .

The “half-way” bounce-back scheme with interpolation is
used here to deal with the curved surfaces in porous media
[65,66]. This boundary treatment has a super-linear accuracy
when the wall surface varies between two adjacent nodes and
an approximately second-order accuracy if the wall surface lo-
cates at the middle [63,64]. This method is easy to implement
for complicated boundary conditions without special consider-
ations for corners. Periodic conditions were implemented at the
inlet and outlet.

3. Results and discussion

Fig. 1 shows a typical illustration of electrokinetic flows in
structured porous media packed in a microchannel. Both chan-
nel walls and the particle surfaces are charged. The electrolyte
solution is driven flow by an external electric field, a pres-
sure drop or both effects. In this section, we will simulate the
electrokinetic pumping effects in charged porous media using
the mesoscopic evolution numerical methods described in Sec-
tion 2. The effects of particle size, ionic concentration, external
electric field strength, and particle surface zeta potential on the
electrokinetic pump performance are analyzed.

In the following two dimensional simulations, the channel
walls are homogeneously charged with the zeta potential ζw =
−50 mV. The channel width H is 1 µm. The charged micro-
spheres are arranged as a structured array with equal space be-
tween in the channel. The particle diameter dp varies from 54 to
325 nm, with remaining the porosity as a constant at 0.33. The
particle surfaces are homogeneously charged, whose potentials
ζp vary from −10 to −90 mV. The electrolyte solution is driven
flowing through the porous media, whose properties are: the
relative dielectric constant ε = 81, the density ρ = 1000 kg/m3

and the dynamic viscosity μ = 0.889 mPa s. The bulk ionic con-
centration c∞ changes from 10−6 to 10−3 M and the external
electric field strength E changes from 1 to 5 kV/m.

3.1. Particle size effects

The effects of particle size on the electric potential distribu-
tion are first considered. In most previous analytical or numer-
ical modeling of electroosmosis in porous media, the electric
double layer (EDL) was mostly assumed small compared to the
particle size so that the Debye–Huckle theory would lead to

Fig. 1. Schematic illustration of electrokinetic flow in a microchannel packed
with charged porous media. The A–A section crosses the centers of the cycles
in the same section.
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Fig. 2. The electric potential and velocity profiles across the A–A section for
different particle sizes.

Fig. 3. Backpressure vs flow rate for different particle sizes.

simplified expressions for electric potential and velocity fields
[18–20]. However when the particle size is of the same level
as or even smaller than the EDL thickness, the particle surface
potential will affect greatly on the bulk electric potential dis-
tribution, not only on the boundary conditions. Fig. 2 shows
the electric potential profiles across the A–A section for dif-
ferent particle sizes. Because the particle diameter and the gap
distance are both comparable to the EDL thickness, the electric
potential distribution is significantly affected by the particle sur-
face charge. The electric potential profile in a channel packed
with charged porous media is quite different from that in a va-
cant channel. Smaller particles lead to smaller electric potential
maximums across the channel.

Since the porous media additive has been reported to im-
prove performances of the electroosmotic micropump, the
nanoscale particle size effects on the pumping performance
are here investigated. Fig. 3 shows the backpressure ver-
Fig. 4. Maximum pumping pressure vs particle diameter.

sus flow rate for different particle sizes when E = 1 kV/m,
ζp = −50 mV, and c∞ = 10−4 M. Comparing with the no
porous media additivity case, the porous media additivity im-
proves the pump performance significantly with much higher
pumping pressures and lower flow rates. A smaller particle
size leads to a higher backpressure maximum and a lower
zero-pressure-drop flow rate. Under the current parameters and
conditions the backpressure maximum reaches over 50 MPa/m
for dp = 54 nm. For each case, the pressure and flow rate are in
a linear relationship, which agrees with the experimental data
in Ref. [18].

The maximum pumping pressure for each case can be obtai-
ned from the intercept of the pressure-flow rate curve on y-axis.
The curves of the maximum pumping pressure versus particle
diameters are plotted in Fig. 4. The results indicate that the
smaller the particle diameter, the higher the maximum pumping
pressure. The subplot in Fig. 4 shows the maximum pumping
pressure is almost inversely proportional to the particle diame-
ter. This result disagrees with the macroscopic linearized ana-
lytical solution which results in a maximum pumping pressure
depending on the inverse square of particle diameter [18]. The
reason lies in that the surface electric potentials of nanoscale
particles change the bulk potential distribution and the conse-
quent driving force differently from those of macroscale ones
do.

In macroscale analyses, the flow rate is independent of parti-
cle size for given structural parameters of porosity and tortuos-
ity [18]. However, things change for nanoscale. Fig. 5 shows
pumping flow rate versus particle size when E = 1 kV/m,
�P = 0 Pa/m, ζp = −50 mV, and c∞ = 10−4 M. The flow
rate increases sharply with the particle size when the particle is
smaller than 160 nm and a little platter when the particle be-
comes bigger. For macroscale cases, the variety of particle size
only changes locations of the boundaries but never changes
the shape and maximum value of the electric potential profiles
under the thin EDL assumption; however for nanoscale, the par-
ticle size variety does not only change the maximum electric
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Fig. 5. Flow rate vs particle diameter under zero pressure drop.

Fig. 6. Flow rate vs external electric field strength.

potential but also changes the profile shape, as shown in Fig. 2.
This is why the current results disagree with the macroscale pre-
dictions. This result also suggests that fine porous media can be
used to control electric fluids precisely.

3.2. External electric field strength effect

The dependence of flow rate on external electric field
strength for the electroosmotic pump is also numerically stud-
ied when �P = 0 Pa/m, ζp = −50 mV, dp = 108 nm, and
c∞ = 10−4 M. Fig. 6 shows a perfect linearity between the
flow rate and the electric field strength, which agrees well with
the experimental data [18].

3.3. Ionic concentration effect

Since the ionic concentration has a great effect on the elec-
tric potential distribution in microchannels [46], here we model
the flow rate versus the ionic concentration in an electroosmotic
Fig. 7. Flow rate vs bulk ionic concentration.

Fig. 8. Flow rate vs particle surface potential for three charged schemes. Case 1:
the wall surface potential changes with the particle surface potential synchro-
nously; case 2: the wall surface potential remains ζw = −50 mV unchanged;
case 3: the wall surface potential remains uncharged (ζw = 0 mV).

micropump packed by nanoscale charged porous media when
E = 1 kV/m, �P = 0 Pa/m, ζp = −50 mV, and dp = 108 nm.
Fig. 7 indicates the flow rate increases with the ionic concentra-
tion monotonically.

3.4. Surface potential effect

The effect of particle surface potentials on pumping flow
rate is studied by changing the particle surface potential from
−10 to −90 mV. Here we consider three cases: case 1, the
wall surface potential changes with the particle surface poten-
tial synchronously; case 2, the wall surface potential remains
ζw = −50 mV; case 3, the wall surface potential remains un-
charged (ζw = 0 mV). Fig. 8 compares the results of the three
cases where E = 1 kV/m, �P = 0 Pa/m, c∞ = 10−4 M, and
dp = 108 nm. The results indicate that the flow rate increases
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with the particle surface potential, however with little depen-
dence of the wall surface potential. The relative error between
each case is less than 5% when the particle surface potential is
larger than 30 mV, which indicates that the main driving force
of the electroosmotic pump comes from the charged porous me-
dia rather than the channel walls.

4. Conclusions

The mesoscopic evolution methods developed in this paper
provide an efficient numerical tool to analyze the electrokinetic
transport characteristics in nanoscale charged porous media
where the particle surface potential influences greatly the bulk
electric potential distribution. The results indicate: the particle
size affects not only the electric potential maximum but also the
shape of the electric potential profile across the channel. As a
result, for a certain porosity the maximum pumping pressure is
inversely proportional to the particle diameter rather than the
inverse square of the particle diameter based on the lineariza-
tion assumption and the flow rates increase with the particle
size rather than keep constant as predicted by the macroscopic
analyses. The flow rate changes linearly with the backpressure
and the external electric field strength, which agrees well with
the existing experimental data. The results also show that the
flow rate is dependent greatly on the ionic concentration and the
particle surface potential, however slightly affected by the elec-
tric potential of channel walls. The current results may improve
the understanding of the electrokinetic transport characteristics
in nanoscale charged porous media in microchannels.
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