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Abstract 
Recency effects—giving exaggerated importance to recent 
outcomes—are a common aspect of decision tasks. In the 
current study, we explore two explanations of recency-based 
decision making, that it is (1) a deliberate strategy for adaptive 
decision making in real-world environments which tend to be 
dynamic and autocorrelated, and/or (2) a product of processing 
limitations of working memory. Supporting explanation 1, we 
found that participants strategically adjusted their recency 
levels across trials to achieve optimal levels in a range of tasks. 
Furthermore, they started with default recency values that had 
high aggregate performance across environments. However, 
only some correlations between recency values and WM scores 
were significant, providing no clear conclusion regarding 
explanation 2. Ultimately, we propose that recency involves a 
combination of the two—people can strategically change 
recency within the limits of WM capacities to adapt to external 
environments. 

Keywords: recency; decision making; working memory 

Introduction 
Humans (and other animals) often give exaggerated 
importance to small samples of recent information. The 
existence of such recency effects was initially demonstrated 
through short-term memory recall tasks and was attributed to 
retrieval of the last few list items from the item-limited short-
term memory store (Murdock, 1962). However, this initial 
short-term memory conceptualization and explanation was 
challenged as researchers found recency effects even in long-
term memory tasks, where information had to be retained 
across long stretches of time intervals interleaved with 
distractor tasks (Bjork & Whitten, 1974).  

Since these initial studies with memory recall, a wider 
range of cognitive paradigms, such as decision-making tasks, 
have demonstrated recency effects. For instance, in 
sequential decision making (e.g., choosing among multiple 
gambles repeatedly), researchers find that participants choose 
alternatives that are successful in recent trials (da Silva et al., 
2017). The ubiquity of recency effects in decision making is 
particularly evident in the wide-spread inclusion of a recency 
weighting parameter that discounts the influence of older 
outcomes in many reinforcement learning models (e.g., EVL 
and PVL models; Busemeyer & Stout, 2002; Erev & Roth, 
1998). In fact, researchers find that extremely simplistic last-

outcome-based win-stay-lose-shift models also fit human 
decision data successfully, highlighting the prevalence of 
recency in decision making (Worthy & Maddox, 2014). 

In the current study, we are interested in exploring 
explanations for recency-based decision-making. We 
compare two potential explanations, that it is either (1) a 
deliberate strategy for adaptive decision making in real-world 
environments, or (2) a product of computational limitations. 

Recency as a Deliberate Decision Strategy 
Most natural environments are dynamic and autocorrelated, 
both across time and space (e.g., fertility of land, cultural 
customs). Recency is likely to be an advantage in such 
environments where a small set of recent experiences is 
usually representative of the current state of the world. Here, 
averaging instead across a large pool of previous experiences 
can obscure useful information. Recency as an adaptation to 
real world distributions can be observed across animal 
species. For instance, Real (1992) studied foraging behavior 
of bees, finding that they made search decisions based on a 
relatively small number of visits (approximately three)—an 
effective strategy for the highly spatially and temporally 
autocorrelated nectar distribution in their natural habitat. 
Similarly, Anderson and Schooler (1991) found evidence for 
temporal autocorrelation in informational environments that 
humans regularly interact with (word frequencies in the New 
York Times, emails, and parental speech). They argued that 
stronger recall for recent events serves as an adaptation to 
these external patterns, making the things that are likely to 
reoccur more readily recallable from memory.  

Recency has thus been proposed as an adaptive strategy 
for decision making. Decision strategies may contain 
learning mechanisms that enable flexible updating of 
parameters so that they become more successful in the current 
environmental structure (Gallistel, 1990). For instance, 
environmental challenges such as deciding when to give up 
seeking nectar from flowers can vary in how much to rely on 
recency over time (for instance, from flower patch to flower 
patch). For organisms facing such environments reliably, a 
flexible strategy that can adjust its use of recency could be 
more advantageous, and hence more likely to evolve, than an 
inflexible recency strategy. Supporting this intuition, Wilke 
and Barrett (2009) found that recent-outcome-based decision 
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making was a default strategy for their (human) participants, 
but it could be reduced with experience in random 
environments (e.g., predicting coin tosses) where it was not 
useful. In line with that work, we examine the default recency 
used by participants and their ability to flexibly tune it to suit 
the decision structure provided. 

Recency Produced by Cognitive Limitations 
Another possible explanation for the prevalence of small 
sample recency in an agent’s behavior is that it arises from 
inescapable limitations in the agent’s cognitive abilities. 
Humans can maintain and manipulate limited amounts of  
information at one time—this computationally limited 
capacity is commonly referred to as working memory (WM; 
Cowan, 2017). As stated earlier, researchers initially 
conceived of recency as a product of retrieval from the short-
term store of the WM. Although this conceptualization does 
not sufficiently explain recency effects found in tasks 
involving long-term memory, it is possible that WM 
limitations are also responsible for long-term recency since 
they make it expensive to sample and process large amounts 
of information for decision making simultaneously. Some 
researchers suggest that the experience of mental effort or 
fatigue with extensive information processing is a result of 
sampling information from long-term memory and 
processing it in WM, producing opportunity costs for the 
information included in deliberations (Shenhav et al., 2017; 
Vul et al., 2014). Since recent information is often more 
valuable than older, humans needing to limit to small samples 
of information might retrieve recent information 
preferentially, and thus make decisions giving exaggerated 
importance to it. 

Such an account would suggest that recency effects are 
contingent on WM limitations, and that smaller WM capacity 
could lead to stronger reliance on more recent information. 
Several studies have attempted to investigate relationships 
between individual differences in recency and working 
memory, obtaining inconclusive results. For instance, Luthra 
and Todd (2019) found weak correlations (p<.1) of recency 
with WM storage measures. Ashby and Rakow (2014) 
obtained stronger correlations, but further analysis by Wulff 
and Pachur (2016) found that their models had low 
discriminability and potentially less reliable estimates of 
recency. In the current study, we compare modelled recency 
parameters across task structures to provide more conclusive 
results on the relationship between recency and WM. 

Current Study 
We have provided two conceptualizations of recency—as a 
strategy adapted to typical decision environments and as a 
bias resulting from cognitive limitations. These explanations 
are not mutually exclusive. For instance, in some 
environments (where the optimal sample size for recency-
based decision making is smaller than WM size), participants 
might strategically choose to engage in recency, and in others 
(where a larger sample is optimal or where humans are 
already mentally overloaded) recency might be produced by 
WM constraints.   

The current study explores these alternative explanations 
for recency (strategy, bias, or both) in a probability learning 
task. This task entails sequential trials of choosing between 
two mutually exclusive and exhaustive outcomes. For 
example, in one setting participants are presented with two 
lightbulbs—Bulb A and Bulb B with 0.8 and 0.2 probabilities 
of turning on respectively—and on each trial, participants 
must predict which lightbulb will turn on without knowing 
these underlying probabilities. Researchers find that 
responses in this type of probability learning task are 
frequently influenced by recent outcomes (da Silva et al., 
2017). Under a static task structure (where probabilities of 
lightbulbs remain constant across trials), recency would be a 
comparatively poor strategy since it would produce noisy 
calculations of expected value from small samples of only 
recent events. On the other hand, under a changing and 
autocorrelated task structure, recency would be a more 
effective strategy, since only a small recent sample would be 
representative of the current expected value. 

In our current experiment, each participant was given 
one of two task structures—gradual change (lightbulb 
probabilities changed gradually across time) and sudden 
change (there were sudden shifts in probabilities). We 
compared our data with results from Luthra and Todd (2019) 
where probabilities of lightbulbs remained constant across 
time. This gives three task structures to consider—sudden 
change, gradual change, and static (displayed in Figure 1). 
These were chosen for two reasons. First, the two changing 
task structures represent aspects of particular real-world 
environments (which will often be more complex) where 
events are autocorrelated and they either change gradually 
(e.g., nectar content of flowers) or suddenly (e.g., appearance 
of a predator). Second, the level of recency that is most 
effective in each of the three environments differs—extreme 
recency is adaptive in sudden change, less recency is adaptive 
in gradual change, and recency is entirely maladaptive in the 
static environment. The varying usefulness of recency in the 
three environments is shown in Figure 2 which plots results 
of simulations comparing performance of different values of 
recency (defined as amount of temporal discounting—see 
Modelling section below).  

In our experiments we aim to determine whether 
participants can tune their recency to appropriate levels for 
each structure, providing support to the conceptualization of 
recency as strategic. We also correlate recency values with 
WM—high correlations between the two, and similar recency 

Figure 1: Decision task structures. 
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values across tasks (rather than adaptive tuning to each task), 
would support the conceptualization of recency as a 
computational bias. As mentioned earlier, participant 
behavior might be produced by both combined—here, we 
could find that in task structures calling for high recency (i.e., 
sudden change) participants strategically reduce their sample 
size, and in task structures calling for no recency (i.e., static 
environments) sample size is correlated with WM limits. 

Methods 
The current experiment with gradual and sudden change task 
structures and the earlier experiment with the static structure 
(Luthra & Todd, 2019) used very similar methods, so the 
following description applies to both. We have specified any 
divergences in procedures. 

Participants 
Sixty-five undergraduate students of Indiana University 

served as participants for this study. Of these, data of four 
participants had to be discarded due to failure to complete at 
least one of the tasks. This was a between-groups study—34 
and 31 participants were given the sudden and gradual change 
conditions respectively. For the static task structure, data of 
48 participants (out of 123 total) was used from Luthra and 
Todd (2019), as explained below.  

Procedures and Tasks 
In both studies, participants were provided with five 
computer-based tasks in the laboratory, beginning with four 
tasks measuring WM capacity, followed by the probability 
learning task. 

 
Memory tasks. Participants performed the WM tasks in the 
following order: symmetry span, digit span, visual array, and 
operation span. The digit span is a classic short-term memory 
task involving simple number recall (method similar to 
Woods et al., 2011). The visual array task involves 
identifying rapid color changes in arrays of 4, 6, 8, or 10 

colored squares (method similar to Cowan et al., 2006). 
Symmetry and operation span involve short-term retention of 
information (spatial positions of colored squares for 
symmetry span and letters for operation span) across intervals 
of distractor processing tasks (symmetry or arithmetic 
accuracy judgements respectively; Oswald et al., 2015). 

These specific WM tasks were selected because they 
involve usage of functionally different WM components—
digit span and visual array use WM storage; symmetry and 
operation span use WM control (see Cowan, 2008 for 
difference between the two). They also use different content 
modalities—digit and operation span are verbal numeric; and 
symmetry span and visual array are visuospatial. 

 
Probability learning task. In the probability learning task 
participants were presented with a ‘bulb-box’ on the 
computer screen—a device containing two lightbulbs (Bulb 
A and Bulb B). They were informed that one of the two bulbs 
would turn on in each trial (across a total of 200 trials) and 
they had to choose the correct bulb. For correct guesses, 
participants gained a point and for incorrect guesses, they lost 
a point. To motivate participants to perform optimally, they 
were awarded with 0 to 3 nutritional bars depending on 
performance. 

In the sudden change condition, a randomly chosen bulb 
would start initially with 0.8 probability of being correct. 
After several trials, this probability would suddenly drop to 
0.2 (the probability of the other bulb increased to 0.8). Across 
200 trials, this flipping of optimal lightbulb occurred three 
times (between trials 40-60, 90-110, and 140-160). In the 
gradual shift condition, the bulbs changed probabilities 
gradually across time, with the optimal bulb flipping 
gradually at similar timepoints. The static condition data from 
Luthra and Todd (2019) had only 100 trials, but each 
participant performed the task thrice, each with a different 
probability contingency—0.6, 0.7, and 0.8—in a random 
order. For the current analyses, we only used data from the 
48 participants who saw the 0.8 probability contingency (to 
match the probability of the present experiment) in the first 
task (preventing any practice effects).  Figure 1 displays 
examples of all three conditions. 

Models 
The collected data was fit with a recency and a random 
Bernoulli model. We assumed that participants who were 
better fit by random Bernoulli were using an alternate 
unaccounted strategy (e.g., random guessing, pattern 
matching) while participants who were better fit by the 
recency model were using some variation of recency. 
Therefore, we estimated the frequency of recency in the 
sample (in comparison to random Bernoulli) and by fitting 
the recency parameter, we estimated the strength of recency. 

The recency model is a variant of the expectancy-valence 
learning (EVL) model frequently used to fit decision making 
data (Busemeyer & Stout, 2002). It has two parameters—
recency (R) and exploration (c). The model assumes that 

Figure 2: Performance of recency parameter values across 
task structures. Asterisk indicates optimal recency parameter. 
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participants assign a utility value u on every trial t to each 
bulb j based on the current outcome x of the ‘bulb-box’: 

𝑢𝑢𝑗𝑗(𝑡𝑡) = �1  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) = 𝑗𝑗,
0  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) ≠ 𝑗𝑗  

Therefore, if the current outcome is j, bulb j is given utility of 
1, and otherwise 0. Across trials, this utility is incorporated 
into the running expected utility Ej of both bulbs while 
discounting the value of older outcomes in proportion to the 
recency parameter R: 

𝐸𝐸𝑗𝑗(𝑡𝑡) = �1 − �
1
𝑡𝑡
�
1−𝑅𝑅

� ∙ 𝐸𝐸𝑗𝑗(𝑡𝑡 − 1) + �
1
𝑡𝑡
�
1−𝑅𝑅

∙ 𝑢𝑢𝑗𝑗(𝑡𝑡) 

Here, R can vary from 0 (no recency, averaging of all 
outcomes) to 1 (extreme recency, only last outcome included 
in calculations; Hertwig et al., 2006). On each trial, the 
expected utility Ej produces decisions D through a softmax 
version of Luce’s choice rule which incorporates exploration: 

Pr[𝐷𝐷(𝑡𝑡 + 1) = 𝑗𝑗] = 𝑒𝑒𝜃𝜃(𝑡𝑡) ∙ 𝐸𝐸𝑗𝑗(𝑡𝑡)

� 𝑒𝑒𝜃𝜃(𝑡𝑡) ∙  𝐸𝐸𝑘𝑘(𝑡𝑡)2

𝑘𝑘=1

  ;    𝜃𝜃(𝑡𝑡) = ( 𝑡𝑡
20

) 𝑐𝑐 

Here, exploration c can range from 0 (high exploration) to 1 
(high exploitation based on calculated utility). In the above 
equation, the ( 𝑡𝑡

20
) 𝑐𝑐 term leads the model to gradually move 

from exploration to exploitation across trials and fits data 
better than a model assuming constant exploration. We 
incorporated exploration in our model even though it is 
irrelevant to our hypothesis because the model fit the data 
better with its addition (despite punishing for increased 
degrees of freedom), indicating that exploration was 
important to participant responding. 

The second model was a simple random Bernoulli model 
with only one parameter—the probability that participants 
choose bulb j. Therefore, this model predicts unequal 
probabilities of choosing the two bulbs, independent of 
observed outcomes. As mentioned earlier, this model is 
useful for identifying participants who are using an 
unaccounted strategy other than recency. 

We used Bayesian hierarchical modelling for parameter 
fitting and model comparison, implemented on JAGS via R. 
We drew 20,000 samples using three MCMC chains. A 
categorical distribution was employed to determine the best 
fitting model for each participant—on each MCMC timestep, 
one or the other model was sampled in proportion to their 
probabilities of being the true model. Diagnostic plots and 
effective sample size indicated appropriate convergence for 
most parameters. Prior to fitting participant data, we 
performed parameter recovery on simulated data to ensure 
that modelling was able to appropriately estimate underlying 
parameters. 

Results 
Overall, the recency model provided a good fit to data and 
outperformed the random Bernoulli model. The posterior 
probability P(model=recency|D) was 0.79, Bayes factor was 
3.76, and 95 out of 113 participants across the tasks were 
better fit by the recency model. Since Bayesian model fitting 
automatically compensates for model complexity (Kruschke, 

2014), we can be confident that the greater performance of 
the recency model over Bernoulli is not because of its greater 
degrees of freedom, but because participants made choices 
fitting a recency approach to decision making. Figure 3 
displays model fits to individual participant data.  

Estimates of R obtained from the recency model were 
then used to analyze recency as an adaptive decision strategy 
and as a computational bias. Here, we present three analyses: 
(1) We compared the use of recency by participants across 
task structures to determine if participants could, through 
experience, strategically adjust their recency to optimal levels 
for their task (as displayed in Figure 2). (2) We analyzed 
change in recency across trials within tasks—this helped us 
determine the default recency used by participants (in the 
beginning of the task) and observe how quickly participants 
adjusted it to suit current task structure. (3) We calculated 
correlations between recency and WM measures to determine 
if recency strategy was a result of computational limitations. 

Analysis 1: Recency across Task Structures 
Figure 4 displays distribution of recency values across the 
three task structures. As can be seen, participants used lowest 
recency for the static task structure (M = 0.42; SD = 0.12), 
higher recency for gradual change (M = 0.62; SD = 0.07) and 
highest for sudden change (M = 0.78; SD = 0.04). The mean 
recency values used roughly correspond with the optimal 
values displayed in Figure 2. The difference in recency for all 
three task structure comparisons was significant (p < .05), 
suggesting that participants strategically tuned their recency 
to the current task structure.  

Analysis 2: Recency across Trials 
To quantify the change in recency across trials, we divided 
participant data into 50-trial phases and fit a different recency 
parameter to each phase. Therefore, for the sudden and 
gradual change conditions, we obtained four recency values, 

Figure 3: Model fits to individual participants. 
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each for a different 50-trial phase across the 200 trials. Since 
data for the static condition from Luthra and Todd (2019) 
consisted of only 100 trials, these were fit by just two recency 
values. Prior to modelling, we used parameter recovery on 
simulated data and confirmed that 50 trials were enough for 
the model to accurately converge on parameter values. 

Figure 5 displays the fitted recency values across trial 
phases. Across all three task structures, recency in the first 50 
trials is similar (no significant difference). The average 
starting value (possibly a default recency value) is 0.52 (SD 
= 0.17). From this initial starting value, recency parameters 
in the gradual and sudden change condition are adjusted by 
participants across trials to values closer to the optimal for 
those task structures (shown in Figure 2). However, for the 
static condition, the recency parameter values do not change. 
There is a significant difference in recency values of the last 
trial phase between the three conditions (p < .05). 

Analysis 3: Correlations between Recency and WM 
Table 1 displays correlations between mean recency 
parameters from Analysis 1 and WM scores. Overall, the 

correlations seem weak and mostly not significant. 
Correlations are highest for the static condition and 
significant for the symmetry span WM task. Recency values 
from just the last 50 trials of the tasks provided similar 
correlation results. 

Discussion 
This study explores the use of recency as (1) a decision 
strategy that can be flexibly adapted to the environment 
and/or (2) a bias resulting from computational limitations. 
Results from Analysis 1 suggest that participants successfully 
tuned their recency strategy to adaptive levels for the task 
structure they were provided. We investigated this more 
closely through Analysis 2, where participant data was split 
into 50-trial phases and a different recency parameter was fit 
to each phase. Across all task structures, participants started 
with similar recency values. In gradual and sudden change 
environments, these were updated over trials to near-optimal 
levels (seen in Figure 2). This provides support for the 
conceptualization of recency as a decision strategy that can 
be flexibly adapted toward optimality in the environment. 

However, recency values remained constant for the static 
condition, although optimal performance here is achieved at 
0 recency (i.e., averaging over all outcomes seen). Two 
possible explanations for this stand out. First, even though 
optimal performance is achieved at 0 recency, performance is 
close to plateauing at values below 0.5 (see Figure 2). 
Potentially, participants compromised slightly on 
performance in exchange for lesser mental effort (i.e., having 
to process just a small recent sample rather than averaging 
over all outcomes). This suggests that if rewards for using 0 
recency were higher, participants would engage more mental 
resources to include larger samples in their decision making. 
Such an account is supported by Engle (2010), who finds that 
WM control is state-dependent, being influenced by factors 
such as motivation, exhaustion, etc. Second, it is possible that 
there are strict WM limits preventing recency values below 
0.5 which process larger samples. Both these explanations 
would predict correlations between WM and recency scores 
(possibly, the latter explanation predicts stronger correlations 
than the former). However, correlation scores were not 
entirely conclusive—only one WM test had a significant 
correlation (p<.05) with recency values of the static condition 
while two others had p<.1. For gradual and sudden change 
conditions, recency values had non-significant correlations 
with WM scores, potentially because the optimal sample 
sizes for decision making were smaller than the typical WM 
size and were therefore not limited by it. Overall, our results 
do not negate the possibility of a combined influence of 

Table 1: Correlations between WM and recency 

 Visual 
Array 

Digit 
Span 

Symmetry 
Span 

Operation 
Span 

Sudden -0.16 -0.32+ -0.08 -0.03 
Gradual -0.1 -0.15 -0.26 -0.13 
Static -0.25+ -0.24+ -0.29* -0.7 

 

Figure 5: Change in recency across trials for each task 
structure. 

Figure 4: Distribution of recency values across task  
structures. 
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strategy and computational limits on recency—potentially, 
participants strategically reduced recency values when 
optimality was achievable (in sudden and gradual change) 
and maintained fixed values (limited by WM) when larger 
samples were needed for optimality (in static task structure). 
Further studies are needed to investigate the relationship 
between recency and WM more conclusively. 

On average, participants tended to start tasks around 
recency value 0.52 (Figure 5), which could potentially be a 
default strategy. Such a default would be useful if it was near 
optimal across a wide range of environmental structures that 
an individual is likely to encounter. To investigate this 
possibility, we simulated static, sudden change, and gradual 
change environments across a wide range of probability 
contingencies (0.9, 0.8, 0.7, 0.6) and estimated performance 
of a range of recency values in these environments. We then 
scaled performance of each environment to lie between 0 and 
1 and aggregated this scaled performance (Figure 6). Here, 
we see that the aggregate performance across these 
environments peaks at recency value near 0.6. This is close 
to the starting recency value we found in our data, which may 
thus be used because of its adaptivity across environments. 

Our results on recency align with previous work in the 
area. Wilke and Barrett (2009) found that participants had a 
default positive dependency to previous outcomes—if a coin 
landed on heads, participants indicated that it was more likely 
to land on heads again—which could be reduced with 
experience. According to Wilke and Barrett, this default 
response is an evolutionary adaptation to foraging in 
autocorrelated environments—an explanation supported by 
findings of similar behavior in rhesus monkeys (Blanchard, 
Wilke, & Hayden, 2014). 

Previous work on changing decision environments have 
used approximations to Bayesian solutions (Brown & 
Steyvers, 2009; Piray & Daw, 2020) to model human 
behavior. Since Bayesian analyses are often computationally 
intractable, these studies assume that humans approximate 
the posterior Bayesian distribution of decision outcomes by 
sampling from it by using MCMC methods like particle 
filtering. These models differ from the non-Bayesian model 
described in the current work—here, we suggest that 
participants take small samples from a likelihood distribution 

consisting of previous experiences (giving preferentiality to 
recent ones) while Bayesian models suggest that participants 
store a posterior distribution of hypotheses of the current state 
of the world (generated from the likelihood distribution and 
priors) and take small samples from that distribution when 
making predictions. Incorporating recency in such a particle 
filter model entails tweaking its learning rate parameter 
which determines how quickly a posterior distribution 
changes based on recent experience—such a model was used 
recently by Piray and Daw (2020). Future analyses can 
compare the model used here with such Bayesian models. 

The current study focuses on a one-way impact of 
environments on decision making. However, it is more likely 
that the two mutually interact with each other in a dynamic 
fashion. That is, human environments influence human 
decisions, and are in turn influenced by them. For instance, 
the temporal autocorrelation studied by Anderson and 
Schooler (1991) in human language-based environments 
could both be a cause of and a result of recency in decision 
making—autocorrelation in environments encourages 
recency-based strategies in decision making which in turn 
produce autocorrelation in human environments. Dynamical 
interactions between behavior and environments provide an 
interesting open direction for decision-making research. 

Data Availability 
The simulation code and data are publicly available at 
https://github.com/mahiluthra/recency-decisions 
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