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Abstract

Allosteric autoinhibition exists in many transcription factors. The ERG proteins exhibit 

autoinhibition on DNA binding by the C-terminal and N-terminal inhibitory domains (CID and 

NID). However, the autoinhibition mechanism and allosteric pathway of ERG are unknown. In this 

study we intend to elucidate the residue-level allosteric mechanism and pathway via a combined 

approach of computational and experimental analyses. Specifically computational residue-level 

fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the allosteric 

autoinhibition process. A hypothesis of “NID/CID binding induced allostery” is proposed to link 

similar structures and different protein functions, which is subsequently validated by perturbation 

and mutation analyses in both computation and experiment. Two possible allosteric autoinhibition 

pathways of L286-L382-A379-G377-I360-Y355-R353 and L286-L382-A379-G377-I360-Y355- 

A351-K347-R350 were identified computationally and were confirmed by the computational and 

experimental mutations. Specifically we identified two mutation sites on the allosteric inhibition 

pathways, L286P/Q383P (NID/CID binding site) and I360G (pathway junction), which completely 

restore the wild type DNA binding affinity. These results suggest that the putative protein 

structure-function relationship may be augmented with a general relationship of protein “structure/

fluctuation-correlation/function” for more thorough analyses of protein functions.
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Figure S1 plots the convergence trend lines of the ΔΔG for ERGu (Y354F) and ERGi (Y354F). Figure S2 plots purification and 
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against concentration for determination of binding affinity. (b) ERGu; (c) ERGi; (d) ERGu R353A; (e) ERGu Y354F; (f) ERGi 
R353A; (g) ERGi Y354F; (h) ERGi I360G; (i) ERGi L286P/Q383P. The vertical line indicates the value of the calculated equilibrium 
dissociation constant KD. Figure S3 plots linear correlation between KD derived from SPR measurements and ΔG from MM/GBSA. 
This material is available free of charge via the Internet at http://pubs.acs.org.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2017 December 14.

Published in final edited form as:
J Chem Inf Model. 2017 May 22; 57(5): 1153–1165. doi:10.1021/acs.jcim.7b00073.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org


Introduction

Autoregulation refers to the protein function regulated, inhibited, or enhanced by itself via 

internal responses to binding of its functional substrate or triggering of its co-regulatory 

partner 1–3. It is an economic way for proteins to regulate their activities or their substrates 

and is observed in many important proteins, such as transcription factors 1, 4, 5, receptors 6, 

and kinases 7, 8. In many autoregulation processes allostery is found, i.e. the regulatory site 

is at a physically distinct site away from its active site of the same protein 5, 9. Recently the 

roles of autoregulation and its allosteric mechanisms in biochemical processes have drawn 

widespread attention 8, 10, 11. Proteins with autoinhibition, i.e. negative autoregulation, are 

also promising drug targets. Several drugs designed by targeting autoinhibited proteins have 

been reported 12–14.

In typical allosteric regulations with small molecules as allosteric regulators, structural 

changes are often observed 15, 16. An allosteric regulator binds to a protein of interest and 

induces a structural change, which leads to a functional change of the protein. Based on this 

principle 17, pathways are identified in several allosterically regulated proteins 18. However, 

little structural changes could be observed in autoregulation processes 10, 19 so that many 

autoregulation mechanisms and their relationships to structure and function are hard to 

decipher.

In this study, we focus on the allostery mechanism in the autoinhibition of an ETS 

transcription factor family protein, ERG, upon binding to its target DNA. The ERG proteins 

are unique to animals 20. They recognize a central GGA motif on DNA and play key roles in 

the regulation of megakaryocyte differentiation 2 and vasculogenesis/angiogenesis 21. 

Indeed, the ERG gene’s fusion with the TMPRSS2 gene is found in over 50% of the prostate 

cancer 22, 23. The fusion leads to overexpression of ERG in the prostate epithelium. 

Furthermore, fusions of ERG were also found in acute amyloid leukemia 24 and Ewing’s 

sarcoma 25, indicating the importance of ERG’s regulations. Recently X-ray crystallography 

and EPR spectroscopy studies indicate the presence of allosteric autoinhibition of ERG upon 

binding with its target DNA. More interestingly, there is little conformational change in its 

core ETS domain 19. The autoinhibition effect only exists when both N-terminal inhibitory 

domain (NID) and C-terminal inhibitory domain (CID) are present; it disappears when NID 

and CID are absent. Allosteric autoinhibition is also observed in other ETS proteins 26–28.
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Crystal structures of holo- and apo-ERG proteins provide valuable insights into the 

autoinhibition allostery mechanism 19. As shown in the crystal structures (Fig. 1a), 

conserved core domain binds with the DNA GGA motif at the interface of ERG’s helix α3 

and the DNA molecule’s major groove. NID and CID, located at the two terminal regions of 

the core domain, are in close contact with each other. A long hairpin loop (L1) also has a 

large interaction interface with the DNA. The sequence and secondary structure of these 

domains are also illustrated in Fig. 1b with intrinsically disordered regions. An interesting 

observation is that conformational difference between bound autoinhibited ERG (holo-

ERGi) and bound uninhibited ERG (holo-ERGu) is well within the thermal noise (all-atom 

RMSd of 0.35 Å) (Fig. 1c). The Bushweller group subsequently proposed that the ERG 

autoinhibition regulation is, among several other hypotheses, predominantly mediated by the 

protein dynamics due to the absence of noticeable structural changes 19.

Thus a natural question is whether dynamic features can be used to explain the distinct 

functional differences between autoinhibited and uninhibited states of the ERG protein. To 

answer these questions, dynamical networks, which were previously used to illustrate the 

allosteric behavior of aminoacyl-tRNA synthetase 17 and several other systems 29, 30, were 

constructed based on all-atom molecular dynamics (MD) simulations of the wild type and 

mutant ERG protein. From the comparisons of the networks between holo-ERGi and holo-

ERGu, a hypothesis of “NID/CID binding induced allostery” and two possible allosteric 

autoinhibition pathways were proposed to link similar structures and different protein 

functions, which are subsequently validated by both computational and experimental 

mutation analyses.

Results and Discussion

Dynamical Features in Different ERG-DNA Complexes

Both crystal structures and modeled structures show relatively high stabilities after 

equilibration in MD simulations. Root mean square deviation (RMSd) with respect to the 

initial structure (Fig. 2) shows that 150 ns simulations are sufficient for equilibration in most 

wild type and mutant systems. For the deletion mutants, holo-ERGi(NID-) and holo-

ERGi(CID-), 200 ns were simulated due to the large structural perturbation to the crystal 

structure. The average structures (over the last 50ns of all trajectories) of the core DNA 

binding domains in holo-ERGi and holo-ERGu were aligned and shown in the insert of Fig. 

3a. The average all-atom RMSd is only 0.72 Å, showing little structural differences between 

autoinhibited and uninhibited core DNA-binding domains.

The root mean square fluctuations (RMSf) of Cα (in protein) or C5’ (in DNA) are also 

shown in Fig. 3a for apo-ERGu, apo-ERGi, holo-ERGu, and holo-ERGi, respectively. 

RMSf’s for single-point mutated and truncated complexes are shown in Fig. 3b. In general, 

the Cα variations in the core domain of holo-ERG are slightly lower than those of the apo-

ERG. As expected in typical MD simulations, large fluctuations are focused on the N and C 

terminal regions for these systems.

In order to confirm the reliability and robustness of the MD simulations, chemical shift 

perturbations between holo-ERGu and holo-ERGi are calculated and shown in Fig. 4. This 
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figure indicates that the results of MD agree well with Bushweller group’s 15N-1H 

heteronuclear single-quantum coherence (HSQC) spectra. Both experiment and computation 

suggest that significant change regions of chemical shift are also located on the N and C 

terminal domains. However these local conformational changes do not reveal how they are 

responsible for the observed differential DNA binding.

Dynamical Networks of Autoinhibited and Uninhibited ERG Proteins

Both experiment and computation indicates that there are significant chemical shift 

differences in the N- and C-terminal domains of the protein. However, these changes do not 

provide a molecular basis for the difference in DNA binding 19. In order to reveal the 

molecular mechanisms responsible for the different binding affinities, we analyzed the 

residue-level fluctuation correlation matrix to identify essential dynamics signatures that are 

in play in autoinhibition and allostery.

A revised dynamical network analysis method was utilized to study the fluctuation 

correlation information. To understand the motivation of the new strategy, envision each 

residue in a protein as a person in a society, so that its fluctuation is mutually influenced by 

other contacting residues just like the person's conversation is mutually influenced by other 

persons in contact. If we treat each residue/person as a node in a network, all nearby nodes 

are correlated as far as information flow is concerned. Therefore, information flow analytic 

properties are useful in understand a network whether it's a social network or a fluctuation 

correlation network.

To construct a dynamical network on fluctuation correlation, the covariance matrices (CERGi 

and CERGu) on fluctuation correlation were first calculated for holo-ERGi and holo-ERGu 

and are shown in Fig. 5, which shows that the main differences between holo-ERGi and 

holo-ERGu are in the binding interface. Based on the covariance matrices for the complexes, 

correlation networks of holo-ERGi and holo-ERGu were constructed 17. In order to reduce 

the effect of thermal fluctuations in any single trajectory, each network was constructed 

using the conformations sampled from three independent trajectories.

The basic network topology characterizations, analyzed as in Materials and Methods, are 

gathered in Table 1. The network centralization, density, and heterogeneity of holo-ERGu 

are higher than those of holo-ERGi. The average numbers of neighbors for the holo-ERGu 

network are also higher than those of the holo-ERGi network. These indicate that the 

dynamical networks of holo-ERGu are apparently different from those of holo-ERGi.

Figure 6 shows the dynamical networks for both holo-ERGu and holo-ERGi. In addition it 

also highlights network hub nodes (labeled by the residues/subunits), i.e. the proportion of 

correlation weighted degrees (CWDs) for the node is larger than 1% of the CWDs for the 

whole nodes. Worth noting, there are 38 hub nodes in the holo-ERGu network and 33 such 

nodes in the holo-ERGi network, for example Y354 in both systems and R350 and R353 in 

holo-ERGu. These hub nodes play key roles in the information transfer of network, so the 

ease of information transfer is higher in the holo-ERGu network. Additionally more hub 

nodes are concentrated on the DNA binding interface in the holo-ERGu network. This 
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suggests that information transfer is particularly high on the DNA binding interface in the 

holo-ERGu network.

Figure 7 further shows that more nodes are with higher CWDs on the DNA binding interface 

in the holo-ERGu network, supporting the conclusion that information transfer is higher in 

the holo-ERGu network, particularly on the binding interface.

Network Differences Correlate with Binding Affinity Differences

Given that the dynamical networks of autoinhibited holo-ERGi and uninhibited holo-ERGu 

are different, it is natural to ask whether the network differences can be used to interpret 

their different binding affinities. For a specific information network, variations in the 

connectivity of the network give rise to local communities. A node is more strongly and 

densely connected to those in the same community than to those in a different community. 

Community analysis may better account for the variations in the information flow among 

structural components in a network 17. We utilized the Girvan-Newman algorithm to split 

the complex networks into multiple communities, and then analyzed the differential 

community connectivity between autoinhibited and uninhibited complex networks.

The community networks are shown in Fig. 8 with nodes and communities projected onto 

the 3D structures. The analysis shows that distinct differences between holo-ERGi and holo-

ERGu were mainly found at two binding interfaces, which is consistent with the networks’ 

differences. 1) The N-terminal region In holo-ERGu (uninhibited), the target DNA is 

partially classified into the same community with the protein’s N-terminus. While in holo-

ERGi (autoinhibited), the N-terminus and the target DNA are classified into two different 

communities with no connecting edges. This indicates that the interaction between the N-

terminus and the DNA is weaker in holo-ERGi than in holo-ERGu. 2) Helix α3 and the 
DNA’s major groove In the holo-ERGi network, no edges between helix α3 and DNA are 

found. This indicates that the information flows between these two components are very 

weak. Consequently, the information from one component to the other must transfer through 

other components without direct pathway. In contrast several edges exist at the second 

binding interface in the holo-ERGu network. Two arginines (R350 and R353) on the helix 

α3 are in contact with the major groove of DNA (Fig. 8), which indicates that these two 

residues are very important for the binding interface. Interestingly, R353 is adjacent to 

Y354, a key functional residue identified in a previous experiment 19. Even though both are 

on the binding interface, our network community analysis shows they have different network 

properties, which correlate with their different binding. However, this difference cannot be 

understood just by analyzing the structures of holo-ERGu and holo-ERGi alone.

NID/CID Binding Induces Allostery Responsible for Differential Information Flows and 
Binding Affinities

Our analysis shows that dynamical networks are significantly different between holo-ERGi 

and holo-ERGu. Furthermore, the differential information flows at the binding interface 

correlate well with the relative binding affinities. Since the structures of the binding domain 

in the two complexes are highly similar, the network differences must be caused by the 

presence of NID and CID. However, the binding interface, helix α3 and the DNA major 
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groove are not close to NID or CID (Fig. 9a). Thus autoinhibition due to the presence of 

NID or CID is most likely to be allosterically regulated, as pointed out by the Bushweller 

group19. They further proposed that the allostery is not driven by conformational alterations 

as the changes observed in the crystal structure were quite subtle particularly at the binding 

interface, as we also observe in our MD simulations.

Further structural analysis suggests that S284, L286 in NID, and Q383 in CID form a 

hydrogen-bonding network between NID and CID, as shown in Fig. 9b. Therefore, a 

“binding-induced allostery” mechanism may be proposed to explain the effect of NID or 

CID upon the allosteric autoinhibition. In order to validate this mechanism, we tried to 

weaken or destroy the interactions between NID and CID to study their influences upon the 

dynamical network and binding affinities as follows.

In previous experiments, CID was reported to be more important than NID as an inhibitory 

cassette: In ETV6, a transcriptional repressor in the ETS family, only CID is found to inhibit 

the DNA binding 32, 33. Thus we first removed CID to build a deletion mutant complex, 

holo-ERGi(CID-). After 200 ns simulation, dynamical network was constructed as other 

complexes. In the network community analysis, helix α3 and the DNA major groove are 

merged into the same community (Fig. 10a), indicating that the two structural components 

become strongly correlated. Inspection of the networks of holo-ERGi(CID-) and holo-ERGu 

(Fig. 8b) show that the two networks are more similar: both with more connections thus 

more information flow on the binding interface. This is correlated with a more favorable 

binding interaction, consistent with previous observations, as shown in Table 2 19. In 

summary, both experimental and computational studies show that the removal of CID, upon 

destroying the interactions between NID and CID leads to stronger binding, even if the 

binding site is not close to CID. This structural perturbation and its consequences confirm 

the hypothesis that binding between NID and CID potentially induces an allosteric 

regulation.

Second, NID was removed from holo-ERGi to build deletion mutant holo-ERGi(NID-) to 

support the hypothesis, similar to the analyses for holo-ERGi(CID-). As Fig. 10b shows, the 

mutant’s community splitting is similar to that of holo-ERGu, with R353 on helix α3 in 

contact with DNA, distinctly different from holo-ERGi (Fig. 8a) without any connections on 

the binding interface. In holo-ERGi(NID-), information can transfer from protein to DNA 

(or vice versus) directly through R353 on the binding interface, instead of through other 

components in holo-ERGi, leading to higher level of information flow at the binding 

interface, which correlates with a higher binding affinity (Table 3). Experimentally this 

system also shows a decrease of inhibition with KD of 41 nM 19, supporting our 

computational analysis (Table 2).

Third, we weakened the binding between NID and CID by setting the correlation-weighted 

degrees between two domains as zero while all the other components in the dynamical 

network remain unchanged. The network community of holo-ERGi (Fig. 10c) upon the 

hypothetical network alteration shows similar results as holo-ERGu. Helix α3 is now 

connected with the DNA major groove, which indicates that information flows between the 

two become easier at the binding interface when NID and CID do not interact with each 
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other, thus leading to higher binding affinity. These observations confirm the interactions 

between NID/CID may perturb the DNA binding.

Finally, according to the interaction analysis, we attempted to destroy the interactions 

between NID and CID by conducting a double-mutation of L286P/Q383P on holo-ERGi, as 

L286 and Q383 form key backbone hydrogen bonds and native contacts. The network and 

community of this double-mutant system (Fig. 10d) are similar to those of holo-ERGu, 

where R350 and R353 are part of the communities nearby the DNA major groove, indicating 

that the two arginines on helix α3 are closely connected with the DNA. This is significantly 

different from the network of holo-ERGi, where none of the protein components and DNA 

are clustered into the same community. Indeed our subsequent thermodynamic integration 

simulations show that the binding affinity of the double-mutant is more favorable (−2.87 

kcal/mol, see Table 2) than that of WT (holo-ERGi). The higher binding affinity was also 

confirmed in our surface plasmon resonance (SPR) experiment, with an 8.59 fold lower KD 

than holo-ERGi (Table 2). More importantly, the affinity of the double mutant is already at 

the level of holo-ERGu, showing almost complete restoration of function in the holo-ERGi 

system. Thus both computational and experimental mutational analyses confirm that the 

destruction of the binding interface between NID and CID may change the network and 

information flow, and change the binding affinity favorably. At the same time, we 

decomposed the binding free energy for R285 that the value R285 is about −4.03 ± 2.75 

kcal/mol in ERGi, and −6.32 ± 2.69kcal/mol in ERGi(L286P/Q383P). This suggests that 

R285 also plays a key role in DNA binding.

In summary, uninhibited ERGu-like dynamical network and information flow emerge on 

autoinhibited holo-ERGi complex when it undergoes deletion mutation (CID or NID 

removed), the double-point mutation (L286P/Q383P), and the hypothetical network 

alteration. These network changes lead to reduced inhibition upon DNA binding. Because 

the changes on network and edge strength are due to the destruction of the NID/CID 

binding, it can be concluded that the NID/CID binding interaction plays a key role in 

changing the network information flow, and inducing the allostery. Subsequently, the 

allostery causes the changes in DNA binding affinity.

NID/CID Binding-Induced Allostery Pathways

The Bushweller’s group previously proposed a correlation between differential protein 

dynamics and allosteric inhibition, among several other hypotheses, given the absence of 

large conformational changes 19. Our detailed all-atom molecular dynamics simulation and 

dynamical network analysis lead the hypothesis of binding-induced allostery. Our 

subsequent analyses with weakened, deleted, and mutated NID and CID support the 

hypothesis.

The next issue is the actual allostery pathway. Shortest path algorithm 34 was used to 

identify the pathway from the NID-CID binding (regulatory) site to the DNA binding 

(allosteric) site. Dynamical network and community analysis indicate that R350 and R353 

are the most significant difference: the network community changes between holo-ERGu 

and holo-ERGi always occur on these two arginines (Fig. 8 and Fig. 10). Thus they may be 

the key nodes of information transfer at the allosteric site and are used as the destination of 
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the allostery pathways. Indeed, two allostery pathways in holo-ERGi are identified, L286-

L382-A379-G377-I360-Y355-R353 and L286-L382-A379-G377-I360-Y355-A351-K347-

R350 with R350 and R353 as end nodes, respectively (Fig. 11). In summary, we can 

describe the pathways as: NID/CID binding interface → Loop linking α3 and β3 → α3. 

Moreover, we failed to find a similar pathway in holo-ERGu, suggesting no inhibition exists 

in holo-ERGu.

Hypothetical network alteration was used to validate the two allosteric pathways. Note that 

Y355 is located on the junction of the two pathways and is thus crucial for the information 

flow, but it is also important for the structural integrity of the binding interface and its 

mutation unfolds the local structure. Instead, we mutated I360 to confirm the validity of the 

pathways. Without carrying out another MD simulation, the alteration was realized by 

setting the strength of all I360’s edges as zero in the network. The community analysis 

shows a significantly repartitioned network (Fig. 11b) that is similar to that of holo-ERGu: 

R350 is clustered into one community with the DNA major groove, so that the information 

flow may be transferred directly at the binding interface, instead of being detoured in holo-

ERGi (Fig. 8a). Thus the alteration leads to higher information flow and higher affinity, 

which could be further confirmed by ΔΔG of −0.63 kcal/mol (TI calculation) and 4.48 fold 

lower KD (SPR experiment) upon the I360G mutation (Table 2). The linear correlation of 

ΔΔGs for different systems between experiment and computation is shown in Fig. 12. A 

high correlation coefficients of 0.96 from TI (Figure S3) and 0.88 from MM/GBSA (Figure 

S4) show a strong correlation between the simulation and the experiment. Again, its DNA 

binding affinity is restored to the level of holo-ERGu, showing almost complete restoration 

of function in the holo-ERGi system. This suggests that the proposed allostery pathways, at 

least I360 before the junction, play key roles in allosteric autoinhibition.

Comparison with Previous NMR experiments

The structural analysis has shown that Lys347, Arg350, Arg353, and Tyr354 of ERGu are 

key residues to DNA interaction19. Eight stable electrostatic interactions were found for 

Arg350/DNA, Lys347/DNA, Arg350/DNA, and Arg353/DNA in our room temperature 

simulation. Furthermore, two stable hydrogen bonds was formed for Lys347/DNA and 

Tyr350/DNA. These results are in good agreement with the structure analysis that Lys347, 

Arg350, and Arg353 form important interactions with DNA. The previous work also reports 

that Y354F mutant greatly weakened the binding of ERGu with DNA. The electrostatic 

interactions were decreased to 26 from 31 (ERGu wild type) and just one hydrogen bond 

remaining. These results are also consistent with the NMR experiment.

Alternative Mechanisms to the ERG-DNA Binding Regulation

In this study residue-level dynamical network analyses of residue-level fluctuation 

correlation data assisted the formulation of the “binding-induced allostery” hypothesis and 

helped the identification of the allosteric autoinhibition pathway in ERG DNA-binding. The 

computational free energy simulation and experimental SPR measurements support the 

hypothesis and allosteric pathway.
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The previous work suggests that the molecular mechanism of ERG autoinhibition is the 

combination of subtle conformational adjustment and changes in protein dynamics19. 

Specifically, two rotameric states for Y354 were identified in the crystal structures: in the 

first state it is positioned to hydrogen bond with specific bases in the target DNA; in the 

second state it hydrogen bonds to Ser283 in the NID19. In addition the chemical shift of 

Y354 is significantly changed between ERGu vs ERGi19. Finally upon the S283A mutation, 

the DNA binding affinity is also partially restored from that of the ERGi19.

Our molecular dynamics network analysis shows that the end point of the allosteric pathway 

is R350 and R353, with the latter covalently bonded to Y354. All these residues are located 

on the α3 DNA binding interface. They all strongly correlate with the target DNA molecules 

as shown in Table 3, though with R350 and R353 slightly higher. Thus our network analysis 

also supports the important role of Y354, which is part of the allosteric pathway (which 

includes all directly covalent-bonded neighbors to the on-pathway residues shown in Fig. 

11). In addition, mutation Y354F reduces DNA binding19 by 3.1 fold in ERGu and by 1.4 

fold in ERGi (Table 2), similar to the effect of mutation Y353A, which leads to 3.4 fold 

reduction in ERGu and 2.2 fold reduction in ERGi (Table 2). These values are consistent 

with those reported in the literature19.

Our detailed molecular dynamics/network analysis facilitates the formulation of a more 

detailed hypothesis, leading to the identification of the residue-level pathway starting from 

the CID/NID binding interface. Our computational and experimental mutational analyses 

confirm that the destruction of the binding interface between NID and CID may change the 

network and information flow, and change the binding affinity favorably. Specifically, both 

mutation L286P/Q383P on the CID/NID binding interface and on-pathway mutation I360G 

were found to restore ERGi DNA binding affinities to the original wild type ERGu level 

(Table 3).

The flexibility of the NID was also proposed to be important for the autoinhibition of ERG 

protein19. Its flexibility allows it to be displaced entirely as a result of DNA binding as 

shown in the crystal structure19. In our molecular dynamics network analysis, removal of 

NID from ERGi was found to lead to a system more connected between the protein and the 

target DNA. These results support the hypothesis of NID/CID-binding-induced allosteric 

autoinhibition and are in agreement with the previous works19. It was also hypothesized that 

NID might interact with other binding partners as in the cooperative binding of the 

transcription factors ETS-1 and Pax5 to DNA 6–12, 15–19. Our analysis complements this 

possible mechanism on how such interactions may work, i.e. the additional intramolecular 

interactions might reduce the NID/CID interaction to achieve their regulation roles.

Materials and Methods

Computational structure preparation

Initial atomic coordinates of all complexes were retrieved from the Protein Data Bank: 

uninhibited apo-ERG without CID and NID (apo-ERGu, 289-378) was extracted from 

4IRG; autoinhibited apo-ERG with CID and part of NID (apo-ERGi, 283-384) was extracted 

from 4IRH; and the autoinhibited holo-ERG (holo-ERGi, 283-385) was extracted from 4IRI. 
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Because the NID structure is incomplete in 4IRI, the nine missing residues (283-291) were 

modeled with 4IRH as template. Based on the structural similarity between uninhibited and 

autoinhibited apo-ERG (RMSd: 0.35 Å), the initial uninhibited holo-ERG structure (holo-

ERGu, 289-378) was modeled with the autoinhibited holo-ERG from 4IRI as template. 

Besides these wild-type complexes, mutants R353A, Y354F, L286P/Q383P, and I360G were 

constructed. Deletions by removing either NID or CID were also modelled. All the 

modelling, mutations, and representations were conducted in PyMOL 1.7 35

Molecular dynamics simulations

All initial structures were first minimized in SYBYL®-X 2.1.1 36 to eliminate any possible 

overlaps or clashes. All simulations and most analysis procedures were conducted using the 

AMBER12 software package 37. Hydrogen atoms were added using the LEaP module of 

AMBER12. Counter-ions were used to maintain system neutrality. All systems were 

solvated in a truncated octahedron box of TIP3P waters with a buffer of 10 Å. Particle Mesh 

Ewald (PME) 38 was employed to treat long-range electrostatic interactions with the default 

setting in AMBER12. The ff99IDPs force field 39–41 was used for all simulations. The 

SHAKE algorithm 42 was used to constrain bonds involving hydrogen atoms. All the MD 

simulations were accelerated with the CUDA version of PMEMD 43, 44 and run on 

NVIDIA® Tesla K20. Up to 20000-step steepest descent minimization was performed to 

relieve any further structural clash in the solvated systems. This was followed by a 400-ps 

heating up and a 200-ps equilibration in the NVT ensemble at 298K. The heating and 

equilibration runs were simulated with a time step of 2 fs in the Langevin thermostat with 

default settings. Finally the production runs were simulated in the NPT ensemble at 298K 

with a time step of 2 fs in the Berendsen’s thermostat and barostat with default settings.

Three independent production trajectories of 150 ns each were simulated for apo-ERGi, apo-

ERGu, holo-ERGi, and holo-ERGu, respectively. 150 ns simulations were found sufficient 

for these systems to reach equilibrium at the room temperature. For the deletion mutants, 

holo-ERGi(NID-) and holo-ERGi(CID-), 200ns were simulated due to the large structural 

perturbation to the experimental structure. 2.95 μs trajectories in total were collected for all 

simulated systems including the wild type and mutant proteins, taking about 1,100 GPU 

hours. Detailed simulation conditions are listed in Table 4. All structures, both from 

experiment and modelling, show relatively high stabilities after equilibration in MD 

simulations. RMSd with respect to the initial structure (see Fig. 2) shows that 150 ns 

simulations are sufficient for most wild type and mutant systems.

Dynamical Network Analysis

Dynamical fluctuation correlation network is constructed from the atomic fluctuation 

covariance matrix 45–48:

(1)
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where displacement of node m is computed respect to its time average as 

, 〈·〉 is the time average of node m, and  is the position of node 

m. Fluctuation sampling data was collected along the last 70 ns in each trajectory, with each 

snapshot covering 200 ps. For the multi-trajectory runs, the mean position of individual 

trajectory was used to calculate the displacements before averaging when using equation (1). 

The fluctuation covariance matrix was used as input to construct a network following the 

method of Luthey-Schulten and co-workers 17. Here every amino acid is defined as one node 

and every nucleotide is defined as two nodes with the nucleotide backbone as one and the 

base group as the other. An edge between two nodes is defined if they are not covalently 

bonded but are with heavy atoms closer than 4.5 Å over 75% of sampling time. The strength 

of the edge is defined as the absolute value of the covariance matrix element (Cmn) as 

computed in equation (1). The number of connected edges at each node is defined as the 

degree of the node. The correlation-weighted degree (CWD) is the normalized sum of all 

strengths of connected edges (apparently it is reduced to degree if equal weight is given to 

each edge). The relative correlation-weighted degree of the node is defined as the ratio of the 

total strength of all edges connected to the node over the total strengths of all nodes, 

indicating the importance of the node.

The definitions of the topological parameters from social network 49 and associated 

algorithms were utilized to describe and compare different networks. Central nodes are the 

most important nodes in network. Network centralization 50 indicates how centralized the 

central nodes are within a network: network with higher centralization is more centralized 

on a fewer central nodes. Network density quantifies the proportion of actual edges out of all 

possible edges, which indicates how easily the information can transfer in the network. 

Heterogeneity measures the uniformity of the network: higher heterogeneity indicates that 

the network is more likely consisted of different components. Hub node is the node which 

the ratio of CWDs for single node over CWDs of total nodes is higher than 1%.

As an extension of the method documented in Ref 17, network topological analysis and 

network plot were performed using Cytoscape 3.1.1 51. The Floyd-Warshall algorithm 34 

was used to calculate the shortest path between any two nodes in the network. Edge 

betweenness is then defined as how many times this edge is passed by all the shortest paths. 

Thus the edge betweenness can be used to identify the importance of an edge in information 

flow. Therefore an edge is more important for information transfer if it has a higher 

betweenness 34. In network visualization, edges are colored with their betweenness, thin 

green lines for lower betweenness and thick red lines for higher betweenness.

The networks were then clustered into communities with the Girvan-Newman algorithm 17 

to summarize the difference between different networks. This algorithm is based on a 

process of progressive edge removal from the original network. At every step, betweenness 

of every edge is calculated, and the edge with the highest betweenness is removed. Once this 

edge is removed, the betweenness of every other edge is calculated and the edge of the 

highest betweenness is removed again. The process is repeated until no edge is left. 

Obviously important edges are removed first. The network can then be transformed into a 

hierarchical tree by backtracking the edge removal process. By inspecting the main branches 

of the hierarchical tree, functional communities can be identified. Nodes in the same 
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community are considered to be more closely correlated than those in different communities. 

Edges connecting different communities are considered as the most important paths for 

information flow 17.

Besides the general topology and community splitting, the network difference was also 

quantified with the proportion (P) of edge strengths (described above) between the protein 

and its target DNA out of the total edge strengths in the complex, as shown below:

(2)

where Sbtwn is the strength of an edge between the protein and the DNA, and Sall is the 

strength of any edge within the whole complex. Because there are more nodes in ERGi than 

in ERGu, it may be confusing whether the proportion change is caused by the decrease 

between protein and DNA or by the increase of total edge strengths. To remove this 

uncertainty, proportions of edge strengths in all complexes were computed without 

considering nodes and edges that belong to the extra NID and CID in ERGi.

Other Computational Details

The last 50 ns of all trajectories were used to compute the average structures for the DNA 

binding domains in holo-ERGi and holo-ERGu. Tertiary contact assignment was handled 

with in-house software 40, 52, 53. Average structures were reported as the snapshots closest 

(in term of main-chain RMSd) to the averaged main-chain structures after alignment using 

the PTRAJ program in AMBER12. SPARTA version 1.01 was used to predict chemical shift 

of nitrogen and hydrogen atoms 31. These data can be compared with the N-H heteronuclear 

single-quantum coherence (HSQC) results in the previous experiments 19 as shown in Fig. 4. 

Linear regressions were performed using the R package 54.

In this study, the soft-core thermodynamic integration (TI) method 55, 56 was used to 

calculate the relative binding free energy difference between WT and mutants complexes, 

which can be compared directly with experiment. Taking WT of holo-ERGu or holo-ERGi 

as example, the three average WT structures from the three independent trajectories were 

used as the starting state. The corresponding Y354F mutant structures were used as the 

ending state. Coupling parameter λ was set to change with 0.05 intervals. Parallel version of 

PMEMD 55 was used to perform the soft-core TI calculation. For every λ window, the 

starting structure was first minimized with the steepest descent method for 10000 steps, and 

then followed by 25 ps heating and 100 ps equilibration. Production run lasted 1.5 ns for 

every λ. Supplementary Figure S1 shows the ΔDelta;G of Y354F of both ERGu and ERGi 

converges after 1.0 ns. Therefore, 1.5 ns simulations are sufficient for the equilibration of TI 

calculation.

ERG Protein Expression and Purification

Genes encoding ERGi (272-388) and ERGu (289-378) were cloned into the pET28a 

(Novagen) vector, with an N-terminal 6×His-tag. In order to confirm the allosteric pathway, 

a series of mutants were constructed by the whole-plasmid PCR and DpnI digestion method, 
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and were verified by plasmid sequencing. The primers for all the constructs are listed in 

Table 5.

All ERG protein constructs were overexpression in Escherichia coli BL21 (DE3) cells 

(Novagen). Cells were cultured at 37°C in Luria Broth medium to an OD600 of 0.8–1.0, and 

were then induced for 20 hr at 16°C with 0.2 mM IPTG. Cells were harvested by 

centrifugation with 4000 rpm for 30 minutes at 4°C, and the cell pellet was resuspended in 

ice-cold binding buffer (25 mM MES, pH 6.0, 300 mM NaCl, and 20 mM imidazole). 

Resuspended cells were lysed by sonication, followed by centrifugation. The resulting 

supernatant of cell lysates was than purified on Ni2+-NTA affinity chromatography (Qiagen) 

and washed thoroughly with 1 M KCl to remove contaminating DNA fragments 19. Then the 

protein was further purified by Superdex75 gel filtration chromatography (GE Healthcare). 

The Superdex75 buffer contained 10 mM HEPES, pH 7.5 and 300 mM NaCl. Protein 

homogeneity was checked by SDS-PAGE followed by Coomassie-based staining (see 

Supplementary Fig. S2a). Peak fractions were combined with a final concentration of 6–7 

mg/ml, flash-frozen in liquid nitrogen, and stored in −80°C until use.

Surface Plasmon Resonance (SPR)

1) ERG Protein Immobilization—All SPR experiments were performed at 25°C using a 

BiacoreTM T200 instrument (GE Healthcare). All solutions and buffers were prepared with 

MilliQ water. The running buffer was HBS-EP buffer contained 10 mM HEPES, pH 7.4, 150 

mM NaCl, 3 mM EDTA, and 0.05% (v:v) surfactant P20 (GE Healthcare). All the ERG 

proteins were individually immobilized on CM5 sensor chips using a BiacoreTM Amine 

Coupling Kit according to the manufacturer’s instructions. Briefly, sensor chip surface was 

activated with two injections of N-hydroxysuccinimide (NHS, 0.1 M) and 1-ethyl-3-(3-

dimethylaminopropyl)- carbodiimide (EDC, 0.4 M) (1:1) for 420 s at a flow rate of 10 μl/

min. Each ERG protein, diluted to 20 μg/ml in 10 mM acetate (pH 4.0), was injected for 30 s 

at a flow rate of 10 μl/min. Excess free amine groups on sensor chip surface were blocked 

injecting 1 M ethanolamine-HCl (1.0 M, pH 8.5) 420 s at a flow rate of 10 μl/min. Typical 

immobilization level is ~2000 resonance units (RU).

2) Biacore Kinetic Binding Assays—Protein-bound DNA is a 12 bp double-strand 

oligonucleotide, with sequence 5’-GACCGGAAGTGG-3’ as in MD simulations. It was 

synthesized and diluted in running buffer to final concentrations gradient of 200, 100, 50, 

25, 12.5, 6.25, 3.125, 1.5625, 0.78125, 0.390625, 0.1853125 nM. Diluted samples were 

injected for 45 s at a flow rate of 30 μl/min over the derivatized surface, or an underivatized 

surface as a background control. Running buffer was then washed for 90 s at a flow rate of 

30 μl/min, and finally the chip surface was regenerated by EP buffer for 30 s at a flow rate of 

30 μl/min.

3) Curve fitting and modeling—Kinetic data and affinities were obtained from 

BiacoreTM T200 Evaluation Software (version 2.0; GE Healthcare). The affinity evaluation 

fits a plot of response against concentration to the equation (3) 57.
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(3)

Here, KA is the association constant, C is the DNA concentration (nM), Rmax is the response 

at saturation, and offset is a constant term that gives the intercept of the fitted curve on the y-

axis. Data was analyzed using a one-site binding model. The affinity is reported as a KD 

value, which is the inverse of KA. In addition, our SPR experiments were validated by 

utilizing the self-consistency tests for SPR reported previously 58. The affinity is reported as 

a KD value and regression curve of KD for different systems are shown in Supplementary 

Fig. S2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Initial structure and sequence information of autoinhibited ERG/DNA complex. (a) Cartoon 

representations with two viewing angles. The conserved core domain (blue) binds with the 

DNA GGA motif at the interface of helix α3 and the major groove. NID (red) and CID 

(green), which locate at the two termini of the core domain, are in contact with each other 

tightly. (b) Sequence and secondary structure of the autoinhibited ERG/DNA complex. (c) 

Structural alignment between autoinhibited (blue) and uninhibited (green), ERGs showing 

high structural similarity.
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Figure 2. 
RMSd for all simulated trajectories. There are three trajectories in the top four plots. For 

mutant systems, only one trajectory was simulated. Worth noting is the blue trajectory for 

holo-ERGi where a large fluctuation is observed at the beginning of the simulation. This is 

due to the large oscillation of NID and CID, as illustrated in the structural alignments (insert 

in the top right plot) among the initial structure (magenta), the snapshot with highest RMSd 
(at 15ns, green), and the snapshot that goes back to the equilibrium (at 30ns, blue), which 

shows high structural consistency in the core domain and variation mainly in the flexible 

NID and CID.
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Figure 3. 
RMSf for all the simulation trajectories with secondary structures labeled. (a) Wild-type 

trajectories. Mean structures of holo-ERGi (green) and holo-ERGu (orange) are also shown 

and aligned with Cα atoms, RMSd is 0.72Å.; (b) Mutant trajectories.
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Figure 4. 
Comparison of chemical shift perturbation between holo-ERGi and holo-ERGu with 

previous experiment 19. Chemical shift data of atoms N and H for all residues (except 

proline) were calculated using SPARTA 1.01 31. (a) N-H HSQC spectra between holo-ERGu 

(red) and holo-ERGi (blue), which can be compared with Fig. 3E in Regan et al. 19. (b) 

Chemical shift perturbations mapped on the cartoon representation of protein part of holo-

ERGu, with color scale labeled below. This can be compared with Supplementary Fig. S2 in 

Regan et al.
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Figure 5. 
Averaged differences in inter-residue correlation coefficients between holo-ERGi and holo-

ERGu (CERGi minus CERGu), secondary structures were labeled. Two dashed lines split the 

contour into four regions: top-left and bottom-right for protein-DNA correlations, bottom-

left for intramolecular correlations within protein, and top-right for the intramolecular 

correlations within DNA. Two blue boxes in the top-left region indicates that correlations are 

weaker between protein and DNA in the presence of NID and CID, i.e. protein and DNA are 

less correlated under autoinhibited state; The red box on the bottom-right shows the 

correlations within protein are higher under autoinhibited state in the presence of NID and 

CID.
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Figure 6. 
Dynamical networks on fluctuation correlation of (a) holo-ERGi and (b) holo-ERGu. Nodes 

are drawn to sizes based on the actual values for the ratio of CWDs and are colored 

according to their structural domains. See labels in the coloring legend. Hub nodes are 

labeled with the residues/subunits.
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Figure 7. 
Difference in the ratio of CWDs between holo-ERGi and holo-ERGu, with red bars as ERGi 

> ERGu, and blue bars as ERGi < ERGu. The DNA binding interface is located at the α3 

helix.
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Figure 8. 
Network communities on (a) holo-ERGi and (b) holo-ERGu. Communities were split using 

the Girvan-Newman algorithm based on the edges and correlations between nodes in the 

correlation networks. The corresponding zoom-in details at the binding interface are shown 

at the bottom. Edges can be found between communities of α3 and DNA in holo-ERGu. 

However, α3 and DNA are not closely connected in holo-ERGi. In each network, different 

colors show different communities.
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Figure 9. 
Potential allostery induced from the NID-CID binding interface. (a) NID (blue) and CID 

(magenta) are in contact closely, but neither of them contact with DNA directly. In contrast, 

helix α3 (orange), far away from NID and CID, binds with the major groove of DNA. (b) 

Hydrogen-bond network between NID and CID in holo-ERGi. Numbers in dark blue 

represent the average population for each hydrogen bond. The residues involved in the 

hydrogen-bond network are thus considered as key residues in the binding between NID and 

CID.
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Figure 10. 
Network communities on (a) holo-ERGi(CID-), (b) holo-ERGi(NID-), (c) connectivity-

weakened holo-ERGi, and (d) holo-ERGi(L286P/Q383P). All these deleted/mutant 

complexes show uninhibited-like community splitting, which is distinctly different from the 

original complex of autoinhibited holo-ERGi, confirming the binding between NID and CID 

is key to the changing of correlation network in the complex.
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Figure 11. 
Allosteric autoinhibition pathways and community network analysis. (a) Proposed allosteric 

autoinhibition pathways in holo-ERGi. (b) Community network after weakening the 

connectivity. CWDs of all I360’s edges are set to zero in the network perturbation analysis. 

An uninhibited-like community-splitting outcome becomes apparent, with R350 connecting 

communities of α3 and DNA.
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Figure 12. 
Linear correlation between Gs derived from SPR measurements and TI simulations.
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Table 1

Network topological characteristics of holo-ERGi and holo-ERGu.

Characteristics Holo-ERGi Holo-ERGi (ΔNID&CID) * Holo-ERGu

Network centralization 0.060 0.067 0.065

Network density 0.036 0.041 0.041

Heterogeneity 0.542 0.546 0.546

Average Num. of neighbors 5.293 5.364 5.507

*
Only regions without NID and CID in holo-ERGi were analyzed.
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Table 2

Relative binding free energies (with respect to WT) for ERGi and ERGu.

System ΔG(kcal/mol) from MMGBSA ΔΔG (kcal/mol) from TI KD (nM) from SPR Δ ΔG (kcal/mol) from SPR

ERGu −127.13±14.28 0 7.22±1.40 0

ERGu(R353A) −93.41±15.52 1.52±2.27 24.84±8.40 +0.72

ERGu(Y354F) −102.16±15.79 2.01±0.74 22.62±7.00 +0.68

ERGi −107.11±13.88 0 37.18±1.70 0

ERGi(R353A) −65.79±12.55 1.98±1.30 83.18±5.60 +0.48

ERGi(Y354F) −70.20±14.92 1.26±1.04 52.44±22.0 +0.20

ERGi(L286P/Q383P) −118.57±14.91 −2.87±1.54 4.33±0.73 −1.27

ERGi(I360G) −110.68±15.81 −0.63±0.56 8.29±0.19 −0.89
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Table 3

Raw correlation coefficients between R350, R353, Y354 and DNA in the holo-ERGi and holo-ERGu.

holo-ERGi holo-ERGu

Connections Strength Connections Strength

R350 - C4_SC 0.1628 R350 - C4_SC 0.3125

R350 - G5_SC 0.0868 R350 - G5_SC 0.3862

R350 - G6_SC 0.3462 R350 - G6_SC 0.2979

R350 - A7_SC 0.2884 R350 - A7_SC 0.1222

R350 - T17_SC 0.2645 R350 - T17_SC 0.2881

R350 - T18_SC 0.2821 R350 - T18_SC 0.3517

R350 - C19_SC 0.1645 R350 - C19_SC 0.3560

R350 - C20_SC -0.0682 R350 - C20_SC 0.3599

R350 - G21_SC -0.0138 R350 - G21_SC 0.2440

R353 - C3_BB −0.038 R353 - C3_BB 0.3378

R353 - C4_BB 0.0948 R353 - C4_BB 0.4924

R353 - C4_SC 0.1461 R353 - C4_SC 0.3384

Y354 - C14_BB 0.1875 Y354 - C14_BB 0.0315

Y354 - A15_BB 0.5324 Y354 - A15_BB 0.3078

Y354 - A15_SC 0.4239 Y354 - A15_SC 0.3158

Y354 - C16_SC 0.3523 Y354 - C16_SC 0.3246

BB represents backbone. SC represents sidechain. The highlighted entries indicate that these pairs of nodes have no edges in the networks.
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Table 5

Primers used in PCR.

Primer Name Sequence (5’ to 3’)

5′ ERGi GGAATTCCATATGCAGTTAGATCCTTATCAG

3′ ERGi CCGCTCGAGTTACTCCGGGGGGTGGGGCTG

5′ ERGu GGAATTCCATATGCCAGGCAGTGGCCAGATC

3′ ERGu CCGCTCGAGTTAGATCCCGTGGAAGTCGAA

5′ R353A GCCCTCgctTACTACTATGACAAGAACATCATGACCAA

3′ R353A TAGTAGTAagcGAGGGCGCGGCTGAGCTTATC

5′ Y354F CCTCCGTttcTACTATGACAAGAACATCATGACCAAGG

3′ Y354F CATAGTAgaaACGGAGGGCGCGGCTGAGCTTA

5′ ERGi I360G CAAGAACggcATGACCAAGGTCCATGGGAAGC

3′ ERGi I360G TGGTCATgccGTTCTTGTCATAGTAGTAACGGAGGG

5′ ERGi L286P TAGCCGCcctGCAAATCCAGGCAGTGGCC

3′ ERGi L286P GATTTGCaggGCGGCTACTTGTTGGTCCAA

5′ ERGi Q383P AGGCCCTCccgCCCCACCCCCCGGAGCTC

3′ ERGi Q383P GTGGGGcggGAGGGCCTGGGCGATCCC
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