Lawrence Berkeley National Laboratory Recent Work

Title

THE REACTION p + p-\> $n++d$

Permalink

https://escholarship.org/uc/item/9tv1i5gi

Authors

Crawford, Frank S.
Stevenson, M. Lynn.
Publication Date
1954-09-27

UNIVERSITY OF CALIFORNIA

Radiation

 LaboratoryTWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
 Radiation Laboratory
 Berkeley, California

Contract No. W-7405-eng-48

THE REACTION $p+p \rightarrow \pi^{+}+d$
Frank S. Crawford, Jr., and M. Lynn Stevenson
September 27, 1954

THE REACTION $p+p \rightarrow \pi^{+}+d$
Frank S. Crawford, Jr., and
M. Lynn Stevenson

Radiation Laboratory, Department of Physics University of California, Berkeley, California

September 27, 1954

ABSTRACT

Absolute differential cross sections for the reaction $p+p \rightarrow \pi^{+}+d$ have been measured at incident proton energies (lab systemf from 310 to 338 Mev and at meson angles ($\left(\mathrm{m} . \mathrm{m}\right.$) from 30° to 90°. The two final particles were counted in coincidence. The data are well fitted by the phenomenological theoretical expression

$$
4 \pi \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}\left(\mathrm{c} \cdot \mathrm{~m}_{\cdot}\right)=a_{10} \eta+\beta_{10} \eta^{3} \frac{\left(x+\cos ^{2} \theta\right)}{x+1 / 3}
$$

with $\mathrm{x}=0.082 \pm 0.034, \alpha_{10}=(0.138 \pm 0.015) \times 10^{-27} \mathrm{~cm}^{2}$, and $\beta_{10}=$ $(1.01 \pm 0.08) \times 10^{-27} \mathrm{~cm}^{2} ; \theta=$ meson c, m 。 angle and $\eta=p_{\pi}(\mathrm{c} . \mathrm{m}.) / \mathrm{m}_{\pi} \mathrm{c}$. By measuring a_{10} we have determined directly the amount of S-wave in this reaction.

Further measurements with polarized protons of ~ 315 Mev are presented. These confirm directly the presence of interfering S - and P-waves and give a result $|Q|=0.39 \pm 0.05$ for the as ymmetry $R-L / R+L$ which would be obtained at $90^{\circ} \mathrm{c} . \mathrm{m}$. with 100 percent polarized protons. The polarized and unpolarized results are used together to determine the relative phases of the S - and P-wave mesons.

THE REACTION $p+p \rightarrow \pi^{+}+d$

> Frank S. Crawford, Jr., and M. Lynn Stevenson
> Radiation Laboratory, Department of Physics University of California, Berkeley, California

September 27, 1954

I. INTRODUCTION

Cartwright et al. were the first to observe positive mesons produced in proton-proton collisions. They used nuclear emulsions to detect the mesons: The presence of a pronounced peak at the high-energy end of the meson spectrum suggested that a large fraction of the production could be attributed to the reaction $p+p \rightarrow \pi^{+}+d$. That this was indeed the case was confirmed ${ }^{2}$ by the detection of $\pi-d$ coincidences in the early stages of the experiment here reported. We did not measure absolute cross sections at that time.

Since then we have reported ${ }^{3,4}$ absolute differential cross sections at various angles and at proton energies from 324 to 338 Mev .. The summary presented here includes new data extending to $310 \mathrm{Mev}[(\mathrm{T} \pi \mathrm{c} . \mathrm{m} .=9.5 \mathrm{Mev}]$. These data show for the first time; through the excitation function and angular distribution, the presence of S-wave mesons in the above reaction. Using the same techniques, we have made further measurements ${ }^{5}$ with a polarized proton beam of $\sim 315 \mathrm{Mev}$. These measurements establish directly the simultaneous presence of S - and P -wave mesons and give additional information on their relative phases. This information can be used to set conditions on the $\mathrm{p}-\mathrm{p}$ scattering phase shifts at these energies, for the states involved.

[^0]We have fitted all the data by the method of least squares to the phe nomenological theory of Watson and Brueckner 6 as presented in the notation of Rosenfeld. ${ }^{7}$

II. EXPERIMENTAL TECHNIQUE

A. Unpolarized Protons

Figure 1 shows a nonrelativistic velocity vector diagram of $p+p$ $\rightarrow \pi^{+}+d$ and displays the essential features of the particle dynamics for $342-$ Mev incident protons. The maximum angle that the deuterons can make with respect to the incident protons is $\sim 6^{\circ}$ and corresponds to a c.m angle of $\sim 90^{\circ}$. The meson lab angle is always equal to about one-half of the c.m. angle. These over-all features of the particle dynamics persist in general, over the entire range of proton energies investigated.

Coincidence detection of the meson and deuteron was the most important feature of the experimental technique. For this purpose two scintillation counter telescopes were used, each of which consisted of two counters. (See Fig. 2.) Appropriate copper absorbers were placed between the two counters of each telescope so that the meson and deuteron could not enter the rear counters of their respective telescopes. The rear counters were used in anticoincidence to subtract penetrating background.

The sizes and positions of the counters varied from run to run. The most frequently used front meson counter was a liquid scintillator 2 by 2 by 1.5 inches, placed 24 inches from the target. This counter defined the solid angle. The deuteron counter was usually a liquid scintillator 3 by 3 by 0.5 inches, located ~ 140 inches from the target. The deuteron telescope was moved horizontally and vertically in increments of one counter width until almost all the deuter ons were detected. It was impractical to count all the deuterons within the distribution; therefore, in practice, deuterons were usually detected only at the positions shown in Fig. 3. The number not counted in the "corners" of the distribution usually represented a correction of ~ 20 percent.

The fact that the deuteron counter was always at angle less than $\sim 6^{\circ}$ made necessary the use of a liquid-hydrogen target. A CH_{2} target would have caused too many diffraction-scattered protons from the carbon to enter the deuter on telescope. Most of the data were obtained with a $1.00 \mathrm{~g} \mathrm{~cm}^{-2}$ cylindrical liquid-hydrogen target.

$$
\begin{aligned}
\bar{\beta}= & \text { VELOCITY OF THE C.M. SYSTEM } \\
\beta_{\pi}^{\prime}= & \text { VELOCITY OF THE MESON IN THE C.M. SYSTEM } \\
\beta_{d}^{\prime}= & \text { VELOCITY OF THE DEUTERON IN THE C.M. SYSTEM } \\
\theta_{\pi}^{\prime}= & \text { ANGLE OF THE MESON IN THE C.M. SYSTEM } \\
\theta_{\pi}= & \text { ANGLE OF THE MESON IN THE LABORATORY SYSTEM } \\
\theta_{d}= & \text { ANGLE OF THE DEUTERON IN THE LABORATORY SYSTEM } \\
& \text { VELOCITY VECTOR DIAGRAM }
\end{aligned}
$$ MU-5210

Fig. 1. Velocity vector diagram for $p+p$ $\rightarrow \pi^{+}+d$.

Fig. 2. Schematic diagram of $p+p \rightarrow \pi^{+}+d$ geometry and electronics.

MU-4514

Fig. 3. Typical deuteron integration curves.

A time-of-flight technique was used to eliminate most of the background from the deuter on counter by preventing high-energy protons from giving accidental coincidences. The rf fine structure of the proton beam made this tech. nique possible. The duration of the external scattered beam produced in one frequency modulation cycle is $\sim 20 \times 10^{-6} \mathrm{sec}$. Within this time there are about 300 equally spaced bursts of protons, separated by the cyclotron rf period of $6.0 \times 10^{-8} \mathrm{sec}$. Each burst lasts $\sim 5 \times 10^{-9} \mathrm{sec}$. At the deuteron telescope position, there was a time-of flight separation of $\sim 2 \times 10^{-8} \mathrm{sec}$ between the deuterons of $\sim 120 \mathrm{Mev}$ and full-energy protons scattered at small angles into the deuteron telescope. The 10^{-8}-sec coincidence circuit adequately resolved this time separation.

Figure 2 shows schematically the procedure by which the $p+p \rightarrow \pi^{+}+d$ event was identified. A coincidence between a pulse in the front meson counter and one in the front deuteron counter triggered a fast oscilloscope. The pulses from all four counters were displayed on the scope by means of appropriate delays in the counter cables, and were photographed on a continuously moving film. The presence of a pulse in the rear counter of either the meson or the deuteron telescope classified an event as "hard" and prevented it from being classified as a possible $p+p \rightarrow \pi^{+}+d$ event. In order to determine the fraction of accidental coincidences among the "soft" events, in a given run, we inserted into the meson telescope an amount of cable delay equal to the time separation of $6.0 \times 10^{-8} \mathrm{sec}$. between rf pulses, and repeated the run. The number of resulting "soft accidental" traces was then subtracted from the total number of soft events to obtain the number of real meson-deuter on coincidences. The soft accidentals were usually ~ 10 to 20 percent of the soft reals.

Not shown in Fig. 2 are the auxiliary electronics, which provided us with data during the run, corresponding to the information that was recorded. on the film.

We identified the process as $p+p \rightarrow \pi^{+}+d$ essentially by determining the masses of the final products, after first showing, through the angular correlation, that a two-body process was involved, Identification was made by measuring the momenta and ranges of the final products. If the momentum of the incident proton is known, then a measurement of the angles of the final products determines their momenta uniquely. We determined the energy of the incident protons by measuring a Bragg curve, using the technique of Mather and Segrè. ${ }^{8}$

[^1]The experiment was performed at various beam energies from 310 to 340 Mev . To obtain a given energy the $340-\mathrm{Mev}$ beam was degraded with appropriate beryllium absorbers. These were placed at Position A in Fig. 7 during the earlier runs and at Position B during the later runs.

Measurement of the meson and deuteron angles was accomplished by setting the meson telescope at the desired angle and then measuring the coincidence counting rate vs. the deuteron telescope position, as is shown in Fig. 3 The width of the observed patterns agrees with that calculated from the finite meson counter width and the multiple Coulomb scattering of the meson and deuteron.

Typical range measurements of the particles in coincidence are shown in Fig. 4. Together with the angular correlation, the ranges determine the particle masses to be those of a mes on and a deuteron. The absence of a step on the deuter on range curve shows that, within the errors, a single monoenergetic particle was detected. That is, the source of coincidences was the reaction $p+p \rightarrow \pi^{+}+d$, with no detectable contribution from $p+p \rightarrow \pi^{+}+n+p$. The shape of the deuteron range curve agrees with that calculated from the energy spread of the deuterons caused by the finite size of the target and the finite angular width of the defining meson counter. The arrows shown in Fig. 4 indicate the expected ranges of mesons and deuterons.

Further evidence that π-mesons were detected came from the scope photographs taken during the running of meson range curves. When mesons were stopped in the front counter, the expected number of $\pi-\mu$ decays was observed. A pulse from the recoiling muon was observed on the trailing edge of the pulse from the stopped pion.

At each angle, an absolute cross section was determined. Therefore, measurements were performed to insure that the reaction was detected with full efficiency. Pulse-height distributions for the meson and deuteron were obtained from the film data. A typical example is shown in Fig. 5. Only pulses larger than the "cutoff" value were accepted by the coincidence circuit. We estimate that less than 2 percent of the $\pi-d$ events were lost because of insufficient pulse height.

Time-delay measurements were made to insure that no events were lost because of misalignéd cable delays. Figure 6 shows a typical time-of flight plateau.

Apart from the deuteron integration correction, the $\pi-\mu$ decay in $\mathbb{f i g h t}$

Fig. 4. Typical mes on and deuteron range curves at 332 Mev .

Fig. 5. Typical pulse-height distributions.

MU-5182

Fig. 6. Typical time-delay curve.
generally represented the largest correction made to the unpolarized beam data. This correction was usually approximately five percent. In Table I, the measurements at 312 and 325 Mev , which show relatively large correction factors, were made with a clearing magnetic field to eliminate background in part of a three-counter meson telescope. Because the path length of the mesons was longer than usual, a relatively large correction for $\pi-\mu$ decay in flight was necessary. These two are the only measurements in which a magnet was used, and which therefore differ from the general description given above.

Other small corrections made to the data include nuclear attenuation, Coulomb scattering in the walls of the liquid scintillators, finite aperture of the meson counter, finite beam and target, overlap error in the deuteron integration pattern, and loss of events by electronic dead time.

The statistical error of each cross section was compounded with an error of approximately three percent attributed to uncertainties in the systematic corrections. This was done in the usual manner by taking the square root of the sum of the squares of the errors. In all cases the compounding of this additional error resulted in a negligible increase in the error obtained from counting statistics alone. The last column of Table I tabulates all the over-all correction factors that were applied to the raw data.

In order to search for large hidden systematic errors in the over-all detection scheme, a measurement was made of the elastic p-p scattering cross section at 90° c.m. The apparatus and technique described above were used. A value of $(3.3 \pm 0.3) \mathrm{mb}$ ster $^{-1}$ was obtained, in good agreement with the results of Chamberlain et al. ${ }^{9}$

A more detailed account of the experimental procedure and apparatus used in the $p+p \rightarrow \pi^{+}+d$ experiment with unpolarized protons is given in Reference 4 a and 4 b .
B. Polarized Protons

With minor modifications, the techniques described in Section A were used with the 73 percent polarized proton beam ${ }^{10}$ to measure the azimuthal asymmetry of $p+p \rightarrow \pi^{+}+d$. Because of the low intensity of the polarized beam, a large meson solid angle was necessary. The meson counter was a plastic scintillator 5.75 in 。by 5.75 in . by 0.25 in . It was placed 20 in . from a $0.5 \mathrm{~g} \mathrm{~cm}^{-2}$ slab-shaped liquid-hydrogen target. The deuteron telescope was made large enough to detect all the deuterons at one counter position, with प O. Chamberlain, E. Segrè, and C. Wiegand, Phys. Rev. 83, 923 (1951)

Table I
Cross section data for $p+p \rightarrow \pi^{+}+d$ with unpolarized protons.
$1-7 \mathbf{-}^{\prime} 53$
5-23-'54
1-7,2-10-53
10-17, 11-19-52
$8-9,10=15-152$
10-16, 17,11-17-18-'52
4-1-154

1-8, 2-12-'53
$4-1-154$
5-23-154
5-21-54
5-25-'54

$\begin{aligned} & \mathrm{T}_{\mathrm{p}} \\ & \mathrm{Mev} \end{aligned}$		$n \frac{p_{\pi}(c \cdot m)}{m_{\pi} c}$	$\begin{aligned} & \theta(\mathrm{c} . \mathrm{m} .) \\ & \text { Degrees } \end{aligned}$
338	21.5	577	30
338.6	21.7	577	57.

88
30
60
89
79
89
90
55
69
69
$4 \pi \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}(\mathrm{c} . \mathrm{m})$
$\begin{aligned} & \text { Experimental } \\ & \text { mb. } / \text { steradian }\end{aligned}$
0.449 ± 0.052
$4 \pi \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}$ (c.m.)
Least squares.
$\mathrm{mb} /$ /steradian
0.470
0.249
0.119
0.395
0.2 .02
0.106
0.103
0.090
0.066
0.107
0.080
0.080

Over-all correction factor

1. 12
1.09
1.05
2. 18
3. 12
4. 13
5. 27
6. 20
7. 45
8. 16
9. 15
10. 15
allowances for multiple scattering.
Accidental coincidences with the polarized beam were substantially fewer than with the unpolarized beam at the same beam intensity, primarily because the time spread of the polarized beam was approximately ten times that of the unpolarized beam. The polarized beam differed in another important respect from the unpolarized beam, in that its energy spread was much greater than that of the unpolarized beam. Therefore, since the measurements were made near meson threshold, precautions had to be taken to insure that no mesons were lost in the target because of insufficient energy. In order to obtain mesons with sufficient energy to avoid such losses, the meson telescope was placed at an angle corresponding to 69° in the $c . m$. system rather than at 90°, the expected angle of maximum asymmetry.

It was believed that there would be less likelihood of introducing false asymmetries if, throughout the measurement, the $p+p \rightarrow \pi^{+}+d$ reaction were detected with full efficiency. Meson-range plateaus, time-delay plateaus, and pulse-height plateaus were obtained to check this point.

In order to exclude the "unbound" reaction $p+p \rightarrow \pi^{+}+p+n$, an absorber, of two-thirds of the deuteron range in copper, was placed in front of the deuteron telescope. In addition, the deuteron counter was made only as large as was necessary to include all the deuterons, since protons from the unbound reaction, which might not be excluded by the copper absorber, are expected to have a larger angular spread than the deuterons.

We will use the terms "left" and "right" to refer to the left and right sides of the incident beam as viewed by an observer looking in the direction of motion of the beam. For instance, the polarized beam is produced by a "left" scatter, as is shown in Fig. 7. The details of production of the polarized beam can be found in Reference 10.

Absolute differential cross sections were measured on the left and right sides of the beam. During each asymmetry measurement approximately 10 left-right cycles were made. On each side of the beam, measurements were made on hydrogen-plus-container and on the container alone. The approximate times required were 45 minutes and 15 minutes respectively. Thus, the time per left-right cycle was approximately two hours.

During the polarized beam experiments, real coincidences were observed from the empty container, although container effects had never been observed in previous $p+p \rightarrow \pi^{+}+d$ measurements with unpolarized protons. The effect

Fig. 7. Overall geometry of the polarized proton beam.

MU-7864

Fig. 8. $\quad \mathrm{p}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{d}$ as ymmetries obtained with polarized and unpolarized protons.
was found to be characteristic of the target. This target was used for the first time during the asymmetry measurements: The coincidences from the "empty" styrofoam container were found to be $p+p \rightarrow \pi^{+}+d$ events produced when the beam passed through a long path of hydrogen vapor which was in equilibrium with the liquid hydrogen of the full container. There was a vapor effect as long as there was liquid hydrogen in the "full" target. The vapor effect disappeared when the targets were truly empty. The hydrogen vapor contribution was ~ 10. percent of that of the liquid hydrogen and gave the same asymmetry. This is an important point, because some of the asymmetry measurements did not include empty-container data:

A continuous monitor of the meson telescope was maintained by recording separately the coincidences between front and rear meson counters. These events were due mainly to protons from $p-p$ collisions. In this way there was provided a high-counting-rate monitor of the meson detection efficiency, the reproducibility of the meson telescope angle, and the beam polarization. The same value was obtained for the $p-p$ asymmetry as has been observed by Chamberlain et al. ${ }^{10}$ A similar monitoring procedure was used with the deuteron telescope.

The following checks were made to search for instrumental sources of asymmetry. The counters were shown to be insensitive to stray magnetic fields, and to be uniform in sensitivity. Large intentional misalignments of the counter telescopes and of the liquid-hydrogen target were made. In this way it was demonstrated that only gross misalignments could have given a false asymmetry.

A final over-all check was made by replacing the polarized beam with the ordinary "scattered" beam, which has been shown ${ }^{10}$ to be unpolarized. All other conditions, including beam energy, electronics, counter alignment, etc., remained the same. The result, in each case, was the vanishing of the as ymmetry to within statistics. See Fig. 8.

Those polarized beam measurements for which a blank-target subtraction was performed were used to obtain differential cross sections for unpolarized protons. These cross sections were obtained from the average of the left and right yields. The corrections described in the previous section were applied. The statistical errors of these cross section measurements were
approximately three percent. An error of five percent was assigned to cover uncertainties in the systematic corrections. These runs are included in the unpolarized beam data of Table I.

III. RESULTS WITH UNPOLARIZED PROTONS

The twelve absolute differential cross sections which comprise all of our data are presented in the sixth column of Table I, together with their rms errors. These values were fitted by the method of least squares to the phe nomenological theory of Watson and Brueckner, ${ }^{6}$ which predicts that near meson threshold, in Rosenfeld's ${ }^{7}$ notation,

$$
\begin{equation*}
4 \pi \frac{\mathrm{~d} \sigma\left(\mathrm{c} \cdot \mathrm{~m}_{\cdot}\right)}{\mathrm{d} \Omega}=\alpha_{10} \eta+\dot{\beta}_{10} \eta^{3} \frac{\left(\mathrm{x}+\cos ^{2} \theta\right)}{\mathrm{x}+1 / 3} \tag{1}
\end{equation*}
$$

Here $\eta=p_{\pi}(c . m.) / m_{\pi} c$, and $a_{10} \eta$ and $\cdot \beta_{10} \eta^{3}$ are S - and P-wave contributions, respectively, to the total cross section; $x+\cos ^{2} \theta$ is the $c \cdot m$: P-wave angular distribution. ${ }^{11}$ In order to perform a least-squares analysis easily, one needs an expression linear in the parameters. We therefore rewrite the above as

$$
\begin{equation*}
4 \pi \frac{d \sigma\left(c_{0} m_{0}\right)}{d \Omega}=a_{1} \eta+a_{2} \eta^{3}+a_{3} \eta^{3} \cos ^{2} \theta \tag{2}
\end{equation*}
$$

11 The first and second subscripts in a_{10} and β_{10} refer to the total isotopic spin of the two nucleons in the initial and final states, respectively.

12
In all our previous cross section publications 3,4 we believed that it was necessary to incorporate the relative excitation data at 0° of Schulz (A.G. Schulz (Thesis), University of California Radiation Laboratory, Report No. UCRL-1756 (1951)) in order to find the energy dependence of the angular distribution. If one inspects Eq. (2), however, he sees that a_{1} and a_{2} can be determined by two 90° (c.m.) points at different energies, after which a_{3} can be determined by an angular distribution at any energy. Since Schulz measured only a relative excitation, then, in the spirit of Eq. (1) or (2), he measured essentially $a_{1} /\left(a_{2}+a_{3}\right)^{\prime}$. Analysis of his data gives $a_{1} /\left(a_{2}+a_{3}\right)=(4.8 \pm 4.6) \times 10^{-2}$. Our data alone yield $a_{1} /$ $\left(a_{2}+a_{3}\right)=(5.2 \pm 0.9) \times 10^{-2}$, so that we no longer incorporate Schul $z^{\prime} s$ data into ours. Our more accurate value is obtained mainly from our excitation points at 90° (c.m.), where the ratio of the S-wave term, ${ }_{1}$, to P-wave terms is greatly enhanced over that at 0°.

Table II presents the least-squares results for the a_{i}, their rins errors δa_{i}, and the correlation errors $\delta a_{i} \delta a_{j}{ }^{13}$ Inserting these values for a_{i} into Eq. (2), we have calculated the least-squares value of $4 \pi \mathrm{~d} \sigma / \mathrm{d} \Omega$ corresponding to each of the twelve experimental cross sections, and have listed these in column 7 of Table I, for comparis on with experimental values in column 6. In order to facilitate comparis on the goodness-of fit of the data to (2) (or (1)): we have divided (2) by η^{3} and plotted the result against η^{-2} and $\cos ^{2} \theta$ in Fig. 9 , so as to exhibit a plane surface in three dimensions. The experimental points are plotted there for comparison.

We can rewrite the least-square results in Rosenfeld's notation, Eq. (1), to obtain

$$
\begin{array}{rlrl}
a_{10} & =a_{1} & =0.138 \pm 0.015 \text { millibarns } \\
\beta_{10} & =a_{2}+1 / 3 a_{3} & & =1.01 \pm 0.08 \text { millibarns } \\
x & =a_{2} / a_{3} & & =0.082 \pm 0.034 \\
\eta_{c} & =\left(a_{1} / a_{2}\right)^{1 / 2} & & =0.83 \pm 0.21
\end{array}
$$

IV. DISCUSSION OF UNPOLARIZED BEAM RESULTS

These experiments have exhibited directly for the first time, by measure ment of ${ }_{10}$, the presence of S-wave mesons in $p+p \rightarrow \pi^{+}+d_{0}$ It is interesting to note that a simple the oretical estimate, 14 which considers the S -wave mesons to be due to a nucleon recoil correction to dominant P-wave interaction predicts that a_{10} / β_{10} should be of the order of the mass ratio $\mathrm{m}_{\pi} / \mathrm{m}_{\text {(nucleon) }}$. Our experimental result of $a_{10} / \beta_{10}=0.137 \pm 0.025$ substantiates this.

Another indirect predication of a_{10} has been made by Brueckner, Serber, and Watson. ${ }^{15}$ They relate $\gamma+p \rightarrow \pi^{+}+n$ near threshold through the π^{-}to π^{+} photoproduction ratio in deuterium to $\gamma+n \rightarrow \pi^{-}+p$; through detailed balanc ing to $\pi^{-}+p \rightarrow \gamma+n$; via calculation to $\pi^{-}+d \rightarrow \gamma+2 n$;

13
The use of the correlation errors $\delta a_{i} \delta a_{j}, i=j$, may be illustrated by finding the least-squares rms error for $x=a_{2} / a_{3}$. Under the usual assumption of "small" errors so that differentials may be used, we differentiate,
M. Gell-Mann and K. M. Watson, "The Interactions between π-Mesons and Nucleons" - (to be published).
K. Brueckner, R. Serber, and K. Watson; Phys. Rev. 81, 575 (1951).

Fig. 9. Comparis on of experimental points with the least-squares solution for the surface $4 \pi \frac{d \sigma}{d \Omega}=a_{1} \eta+a_{2} \eta^{3}+$ $a_{3} \eta^{3} \cos ^{2} \theta$. (Eq. 2)

Table II

The constants a_{i} in $\mathrm{mb}\left(10^{-27} \mathrm{~cm}^{2}\right)$, and correlation errors $\delta \mathrm{a}_{\mathrm{i}} \delta \mathrm{a}_{\mathrm{j}}$ in (mb) ${ }^{2}$, resulting from a least-squares fit of

$$
\begin{array}{ll}
a_{1}=0.138 \pm 0.015 & \delta a_{1} \delta a_{2}=-11.2 \times 10^{-4} \\
a_{2}=0.200 \pm 0.078 & \delta a_{1} \delta a_{3}=3.83 \times 10^{-4} \\
a_{3}=2.44 \pm 0.17 & \delta a_{2} \delta a_{3}=-42.3 \times 10^{-4}
\end{array}
$$

through Panofsky's ${ }^{16}$ branching ratio for π^{-}capture in deuterium to $\pi^{-}+d \rightarrow 2 n$; through detailed balancing to $n+n \rightarrow \pi^{-}+d$, which finally, by the assumption of charge symmetry, may be replaced by $p+p \rightarrow \pi^{+}+d$. Using the results of Bernardini et al. ${ }^{17}$ for $\gamma+p \rightarrow \pi^{+}+n$ near threshold, and for the π^{-}to π^{+} photoproduction ratio in deuterium, one obtains $a_{10}=(0.14 \pm 0.05) \mathrm{mb}$. This is in notably good agreement with our directly measured value of (0.138 \pm 0.015 mb . Within the rather large error in the predicted value, which is presumed to cover the various uncertainties in the several steps, and provided that the assumption of charge symmetry is regarded as the least certain element in the above calculation, then we may regard the good agreement between our directly measured value and the predicted value as a confirmation of the assumption of charge symmetry.

The P-wave angular distribution is $x+\cos ^{2} \theta$. If only the $D_{2} p-p$ states contributed to P-wave mesons, we would have $x=1 / 3$, as indicated in Table III. The measured value is $\mathrm{x}=0.08 \pm 0.03$, which shows, therefore, that ${ }^{1} S_{o}$ protons also contribute to P-wave mes on production. The relative phase τ_{o} between the ${ }^{1} S_{o}$ and ${ }^{1} D_{2} p-p$ contributions is unknown. Therefore the meas urement of x serves only to put limits on the ${ }^{l_{S}}{ }_{o}$ contribution. For the measured value of x these limits are given by $0.25<r_{0}<1.51$, as shown in Fig. 10. The value of τ_{o} is 180° at both limits, and reaches a minimum of $\sim 133^{\circ}$ at $\left|r_{o}\right| \sim 0.60$. Arguments have been given ${ }^{18,19}$ which predict predominance of the ${ }^{1} D_{2}$ over the ${ }^{1} S_{o} p-p$ contributions. Roughly, these arguments point out that ${ }^{1} D_{2}$ protons can produce the pion and one of the final nucleons of the deuteron in the strongly interacting state of total angular momentum $3 / 2$ and isotopic spin $3 / 2$, whereas the ${ }^{l_{S}}{ }_{o}$ protons cannot. On the basis of this argument, one could take $\mathrm{r}_{\mathrm{o}}: \sim 0.25$ and $\tau_{o} \sim 180^{\circ}$.
16 W. Panofsky, L. Aamodt, and J. Hadley, Phys. Rev. 8́ ${ }^{8}$, 565 (1951).
${ }^{17}$ Goldwasser, Beneventano, Lee, Stoppini, Hanson, and Bernardini, Proceedings of the Fourth Annual Rochester Conference on High Energy Nuclear Physics.
18 K. A. Brueckner and K. M. Watson, Phys. Rev. 86, 923 (1952).
19 Aitken, Mahmoud, Henley, Ruderman, and Watson, Phys. Rev. 93, 1349 (1954).

4011-8195

Fig. 10. Possible values of r consistent with the experimental value of the P-wave angular distribution parameter, $x=$ 0.082 ± 0.034. See Table III. The inner and outer dotted circles correspond to the errors ∓ 0.034, respectively.

Table III

$$
\begin{gathered}
p+p \rightarrow \pi^{+}+d \text { transitions that conserve total angular momentum } \\
\text { and parity, for meson angular momenta } \ell<2 \text {. The } \\
\text { indicated angular dependences hold if a single } \\
\text { transition is present (no interference). }
\end{gathered}
$$

Initial p-p State	Relative Transition Amplitude	$\begin{gathered} \text { Final } \\ \pi \text { State } \\ \hline \end{gathered}$	Dependence on Meson Momentum \qquad and Angle
${ }^{1} \mathrm{~S}_{0}$	$\mathrm{r}_{\mathrm{o}}=\mathrm{r}_{\mathrm{o}} \mathrm{O}^{\text {exp }} \mathrm{i} \tau_{0}$	P	$\eta^{3} \mathrm{x}$ const.
${ }^{3} P_{1}$	$\mathrm{r}_{1}=1 \mathrm{r}_{1} \mid \exp \mathrm{i} \tau_{1}$	S	$\eta \mathrm{x}$ const.
${ }^{1} \mathrm{D}_{2}$	$\mathrm{r}_{2}=1$	P	$\eta^{3} \times\left(1 / 3+\cos ^{2} \theta\right)$

The c.m. angular distribution, including both S and P mesons, is given by $A+\cos ^{2} \theta$. From Eq. (2),

$$
A=\left(a_{1} \eta+a_{2} \eta^{3}\right) / a_{3} \eta^{3}=0.082+0.056 \eta^{-2}
$$

This curve, with its rms least-square error band, is plotted in Fig. 11, and its extrapolation is compared there with results obtained at higher energies by other workers. We see that the experimental points for $\eta>1$ tend to lie above the extrapolated curve. This may represent the breakdown of Eq. (1), which is only assumed to hold "near threshold", where, approximately, $\eta<1$. For instance, meson momenta higher than P-states may no longer be negligible.

The total cross section obtained by integration of Eq. (l) is given by

$$
\sigma_{\mathrm{T}}=a_{10} \eta+\beta_{10} \eta^{3}=\left(0.138 \eta+1.01 \eta^{3}\right) \mathrm{mb} .
$$

This curve is plotted in Fig. 12, where it is compared with the experimental results of other observers. Except for the lowest energy resuit of Durbin et al. at $\eta=0.625$, and perhaps the result of Cartwright et al at $\eta=0.585$, we see that there is very good agreement between the predictions of Eq. (1), as fitted by our data, and other measurements extending up to cross sections an order of magnitude larger than those we have measured. Thus, the phenomenological theory's assumption of negligible energy dependence of a_{10}, β_{10}, and x is born out by experiment, at least for β_{10}, the dominant term in the total cross section for $\eta \sim 1$. We note that the experimental points, for $\eta>1$, tend to lie below the curve. This could indicate the beginning of the breakdown of applicability of Eq. (1). For instance, D-wave mesons may be notinsignificant for $\eta>1$. In addition, it should be remembered that $\gamma+p \rightarrow \pi^{\circ}+\mathrm{p}^{2}{ }^{20}$ $\gamma+\mathrm{p} \rightarrow \pi^{+}+\mathrm{n},{ }^{21}$ and π-nucleon scattering ${ }^{22}$ all go through maxima at T_{π} (c. m. $) \sim 125 \mathrm{Mev}$, or $\eta \sim 1.6$, and we should presumably expect a similar behavior for $p+p \rightarrow \pi^{+}+d$. Thus, the tendency noted could be due to an approaching maximum near $\eta \sim 1.6$. Of course, the data shown in Fig. 12 barely suggest this as a possibility.
${ }^{20}$ R. Walker, D. Oakley, and A. Tollestrup, Phys. Rev. 89, 1301 (1953).
21 R.F. Backer, J.C. Keck, V.Z. Peterson, L.S. Teasdale, A. V. Tollestrup,
R.L. Walker, and R. M. Worlock, Phys. Rev. 92. 1090(A) (1953).

22 J . Ashkin, J. Blaser, F. Feines, J. Gorwan, and M. Stern, Phys. Rev. 93. 1129 (1954).

Fig. 11. Comparis on of $p+p \rightarrow \pi^{+}+d$ angular distribution parameter A obtained in this paper with results of other observers at higher energies. The curve and its rms error band were obtained from a least-square fit of the data (not shown) of this paper alone. The cross hatching indicates the range of meson momenta covered in this paper.

Fig. 12. Comparis on of the total $p+p \rightarrow \pi^{+}+d$ cross section obtained in this paper with results of other observers at higher energies. The curve and its rms error band were obtained from a least-square fit of the data (not shown) of this paper alone. The cross hatching indicates the range of meson momenta covered in this paper. The experimental points shown for Clark et al, Durbin et al., and Stadler were obtained by detailed balancing from the inverse

V. RESULTS WITH POLARIZED PROTONS

The raw data of the as ymmetry measurements ${ }^{5}$ on $p+p \rightarrow \pi^{+}+d$ made with polarized protons near 315 Mev are shown in Fig. 8. Marshas and Messiah ${ }^{23}$ have derived

$$
\begin{equation*}
\epsilon=R-L / R+L=P Q \frac{A \sin \theta}{A+\cos ^{2} \theta} \tag{3}
\end{equation*}
$$

for the asymmetry produced by interference between the S - and P-wave mesons. Here P is the beam polarization, $A+\cos ^{2} \theta$ is the $c . m$. angular distribution, and Q is the quantity of interest in the theory. In Rosenfeld's notation,

$$
\begin{equation*}
Q=\frac{\eta c \eta \sqrt{2}}{\eta_{c}^{2}+\eta^{2}} \quad \sin \left(\psi-\tau_{1}\right) \tag{4}
\end{equation*}
$$

We note that Q, and therefore the asymmetry, disappears in the absence of S waves $\left(\eta_{c}=\left(a_{1} / a_{2}\right)^{1 / 2}=0\right)$, or of P-waves $\left(\eta_{c}=\infty\right)$, and at certain values of the relative phase angle ψ and $\tau_{i} ;|Q|$ cannot exceed $0.70 ; \psi$ and τ_{1} are given by $r_{o}+\sqrt{1 / 2}=\left|r_{o}+\sqrt{1 / 2}\right| \exp (i \psi)$ and $r_{1}=\left|r_{1}\right| \exp \left(i \tau_{1}\right)$. The terms r_{o} and r_{1} are the complex transition amplitudes for $\pi-d$ production from ${ }^{1} S_{0}$ and ${ }^{3} P_{1} p-p$ states, respectively, to P - and S-wave meson states, respectively, as is shown in Table III; r_{o} and r_{1} are defined relative to the amplitude r_{2}, which describes the transition from the ${ }^{1} D_{2} p-p$ state to the P-wave meson state; r_{2} is taken as unity; r_{o} is written alternately as r_{o} $=\left|\mathrm{r}_{\mathrm{o}}\right| \exp \left(\mathrm{i} \tau_{0}\right)$.

Taking $|P|=0.73^{24}$ (the sign of P is at present unknown), $A=\left(a_{1} \eta+\right.$ $\left.a_{2} \eta^{3}\right) / a_{3} \eta^{3}$ from Eq. (2) and Table II, and averaging the angular dependence over the angular aperture centered at $\theta=69^{\circ}$, we calculate from Eq. (3) a measured value of $|Q|$ for each of the experimental runs shown in Fig. 8. Because these values of $|Q| a r e$ all equal within the errors, we assume negligible variation with energy in the region measured and average the results to obtain

$$
|Q|=0.39 \pm 0.05
$$

at an average $\mathrm{T}_{\mathrm{p}}=314 \mathrm{Mev}, \quad \eta=0.41,\left(\mathrm{~T}_{\pi}\right) \mathrm{c} . \mathrm{m}_{0}=11.3 \mathrm{Mev}$.

23
R. E. Marshak and A. M. L. Messiah, Il Nuovo cimento 11, 337 (1954).

24
O. Chamberlain, R. Donaldson; E. Segrè, R. Tripp, C. Wiegand, and T. Ypsilantis, Phys. Rev. 95, 850 (1954).

Inserting $\eta_{c}=0.83, \eta=0.41$, and $|Q|=0.39 \pm 0.05$ into Eq. (4), we obtain $\left|\sin \left(\psi-\tau_{1}\right)\right|=0.70 \pm 0.1425$
P and $\sin \left(\psi-\tau_{1}\right)$ have the same sign.
Carvalho et al. ${ }^{26}$ have looked for an asymmetry in mes on production while examining sources of asymmetric background in elastic p-p scattering with 439-Mev polarized protons. Their measurement included about 78 percent of the "unbound" reaction $p+p \rightarrow \pi^{+}+p+n$, which is about equal in magnitude to $p+p \rightarrow \pi^{+}+d$ at Chicago energies. ${ }^{7}$ They obtained essentially a null result of $2 \epsilon=-0.07 \pm 0.085$.

Fields et al. ${ }^{27}$ have measured the asymmetry in $p+p \rightarrow \pi^{+}+d$ using polar ized protons of 415 Mev . They obtain $Q=0.45 \pm 0.08$, with $\left(\mathrm{T} \mathrm{T}_{\mathrm{K}}\right) \mathrm{c} . \mathrm{m}$. $=$ 55 Mev, $\eta=0.97$. The sign of Q agrees with our value. If we assume, as does the phenomenological theory, negligible energy variation in the parameters ${ }^{\alpha}{ }_{10}, \beta_{10}$, and x_{y} and in the relative phases τ_{0} (or ψ) and τ_{1}, then we can use our results and Eq. (4) to calculate a predicted value of Q at the Carnegie Tech. energy. Using $\eta_{c}=0.83 \pm 0.21$ from our unpolarized beam results, and our value of $Q=0.39 \pm 0.05$ at $\eta=0.41$, we would predict an increase in $|Q|$ by a factor 1.25 ± 0.24 in going to $\eta=0.97$, to yield $Q \mid=0.49 \pm 0.10$. This value is clearly consistent with the result of Fields et al. The agreement would seem to indicate that the relative S - and P-wave phase angles, as well as the parameters of Eq. (1), are indeed energy-insensitive, as the phenomenological theory assumes.

25
This supersedes our previously published ${ }^{4}$ value, $\left|\sin \left(\psi-\tau_{1}\right)\right|=0.61 \pm$ 0.10 , which resulted from using the value $\eta_{c}=0.62 \pm 0.16$ instead of ar present value, $\eta_{c} \neq 0.83 \pm 0.21$.
26
H. G. de Carvalho, E. Heiberg, J. Marshall, and L. Marshall, Phys. Rev. 94, 1796 (1954)
27
T.H. Fields, J. G. Fox, J. A. Kane, R. A. Stallwood, and R. B. Sutton, to be published.

Gell-Mann and Watson ${ }^{14}$ have shown that, near meson threshold, τ_{0} and τ_{1} are related to the $p-p$ scattering phase shifts for the corresponding states by the relations

$$
\begin{aligned}
& \tau_{0}=a\left({ }^{1} S_{0}\right)-a\left({ }^{1} D_{2}\right)+n \pi \\
& \tau_{1}=a\left({ }^{3} P_{1}\right)-a\left({ }^{1} D_{2}\right)+\left(n^{\prime}+1 / 2\right) \pi
\end{aligned}
$$

where the a's are the p-p scattering phase shifts in the indicated states, and n and n^{\prime} are integers. Thus, the result, Eq. (5), of our polarized-beam experiment can be used to put conditions on $p-p$ scattering phase shifts calculated near 315 Mev .

In addition, it should be possible to calculate $\sin \left(\psi-\tau_{1}\right)$ from meson theories. If the sign alone of $\sin \left(\psi-\tau_{1}\right)$ were to be calculated from meson theory, then one could predict the sign of the proton beam polarization P. Presumably, at present, such a prediction could not be considered to be conclusive. In the event, however, that the sign of P becomes determined, through a more easily understood process, then the sign of $\sin \left(\psi-\tau_{1}\right)$ will be known, and can be compared with a meson theoretical calculation.

ACKNOWLEDGMENTS

We are indebted to Dr. Kenneth M. Crowe and Prof. Herbert F. York for valuable discussions and suggestions. We wish to thank Mr. Vern G. Ogren for building the fast electronic circuits, and Messrs. Richard L. Blumberg, Robert E. Donalds on, and Harrold B. Knowles for assistance during the runs.

This work was done under the auspices of the U.S. Atomic Energy Commission.

[^0]: 1 W.F. Cartwright, C. Richman, M. N. Whitehead, and H.A. Wilcox, Phys. Rev. 78, 823 (1950)
 2 F.S. Crawford, Jr., K. M. Crowe, and M.L. Stevenson, Phys. Rev. 82: 97 (1951)
 3 F.S. Crawford; Jr., and M.L. Stevenson, Phys. Rev. $\begin{array}{r}91,468 \text { (1953) } \\ 2027\end{array}$
 4a Frank S. Crawford, Jr.; Absolute Cross Sections of the Reaction $p+p$ $\rightarrow \pi^{+}+d$. (Thesis), University of California Radiation Laboratory, Report No. UCRL-2187 (April, 1953).
 M. Lynn Stevenson, The Angular. Distribution of the Reaction $p+p$ $\rightarrow \mathrm{d}+\pi^{+}$at 338 Mev (Thesis), University of California, Radiation Laboratory, Report No. UCRL-2188, (April, 1953).
 5 F.S. Crawford, Jr., and M. L. Stevenson, Phys. Rev. 95, 1112 (1954)

[^1]: R. Mather and E. Segrè, Phys. Rev. 84, 191 (1951)

