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Abstract 

Traditional transport systems do not adequately provide the functionality or flexibility required 
by existing and future multimedia applications. Conventional protocol architectures based on a 
static configuration of relatively few protocols are incapable of providing the level of performance 
the channel is capable of producing while still performing the processing needed by the applica
tion. Multimedia applications require transport systems that can be configured to match the the 
functional requirements of diverse multimedia traffic sources as well as capable of adapting to the 
dynamism inherent in multimedia applications and heterogeneous internetworks. 

This paper describes ADAPTIVE, a transport system architecture to support multimedia ap
plications for high-speed networks. The ADAPTIVE system applies object-oriented design and 
implementation techniques to build an integrated framework for protocol specification, composi
tion, prototyping and experimentation. It utilizes a hierarchical specification technique that allows 
both the policies of a communication session to be specified and the actual mechanisms used to 
carry out these policies. Its monitoring and analysis facilities provide a rich environment for 
controlled experimentation through the use of rapid prototyping and integrated instrumentation. 

*This material is based upon work supported by the National Science Foundation under Grant No. NCR-8907909. 
This research is also in part supported by University of California MICRO program. 
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1 Introduction 

Traditional transport systems do not adequately provide the functionality or :flexibility needed by 
existing and future multimedia applications and high speed networks. Applications currently must 
either (1) accept wholesale the functionality and behavior of an available protocol (e.g., TCP, UDP, 
TP4, or VMTP), or (2) attempt to provide its own transport subsystem by building on lower level 
communication service primitives. Due to the diversity of application requirements and the paucity 
of available protocols on most systems, approach (1) often leads to lowest-common-denominator 
solutions that actually only satisfy the requirements of a narrow range of their target applications. 
Approach (2) leads to multiple, ad hoc, implementations that are not easily extended, modified, 
or shared. This also places the burden of protocol processing on the application programmer, who 
may not be fluent in the design and implementation of communication protocols. To alleviate this 
situation, future transport systems must provide communication service that is :flexible and adaptive 
to (1) application diversity, (2) network diversity, and (3) host system diversity. 

Application Diversity Distributed multimedia applications impose unique performance constraints 
on the underlying communication medium and the supporting transport system that are more de
manding and dynamic than those previously encountered in traditional data applications. The pres
ence of these applications increases the dynamism of the underlying network and their supporting 
transport systems due to the high degree of variance in traffic characteristics exhibited by the appli
cations' data sources (e.g., highly bursty, high bandwidth variable bit rate video sources, relatively 
steady, low bandwidth digitized voice sources, short transactional-based sources). Transport systems 
providing communication service that utilizes traditional communication protocol suites typically of
fer very few options with respect to both the quality of service (e.g., high throughput, low delay) and 
the functionality of service (e.g., reliable in-order data stream, best-effort datagram) provided. Exist
ing and future multimedia applications require various levels of performance (e.g., peak/average band
width, maximum delay, low jitter) and behavior (e.g., synchronization, network-kernel-application 
delivery, error correction), that are not adequately addressed in existing systems. 

Network Diversity The diversity of network characteristics encountered by distributed multi
media applications are due to (1) the heterogeneity of internetworking environments, (2) dynamic 
or multipath routing, and (3) :fluctuations in network state caused by the traffic sources described 
above. Network characteristics that vary across network environments include channel speed (e.g., 
lOMbps for Ethernet, lOOMbps for FDDI, 155Mbps or 622Mbps for ATM), maximum data transfer 
unit (e.g., 1500 octets for Ethernet, 9188 octets for SMDS, 48 octets for ATM), available service types 
(e.g., datagram, virtual circuit, multicast, broadcast) and access control scheme (e.g., CSMA/CD, 
token-passing, switch-based). Network characteristics that may vary dynamically over the lifetime of 
an association include the aforementioned characteristics, which may :fluctuate either due to a change 
in routing, the use of multipath routing, or a change in the number or location of participants in a 
communication session. Additionally, network characteristics such as packet loss rate and delay can 
vary greatly over the lifetime of an association due to transient network congestion. 

Host System Diversity A large degree of diversity exists in the degree and nature of support 
provided by host systems for communication protocols. This diversity appears in both the available 
hardware (e.g., CPU, network interface, memory hierarchy) and the supporting system software. 
Software-related issues such as scheduling mechanisms (e.g., x-kernel[l] lightweight processes vs. 
STREAMS[2] service routines), user-kernel data delivery mechanisms (e.g., BSD socket layer [3] vs. 
x-kernel up call mechanism), buffer management schemes (e.g., BSD mbufs vs. STREAMS mblk_ts) 
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and protocol composition and demultiplexing mechanisms (e.g., STREAMS modules vs. x-kernel 
protocol and session objects). Hardware issues that are variable across host systems include pro
cessor architectures (e.g., uniprocessor vs. shared memory multiprocessor [4] vs. message passing 
multiprocessor[5, 6]), explicit support for protocol processing (e.g., performing all protocol process
ing off-board processors[7, 8], specialized hardware to assist a single protocol function [9]), effects of 
interrupts on overall system performance (e.g., number of interrupts required to move data between 
the host system memory and the network interface, performance penalty from interrupt-driven pro
cessing due to the amount of context a processor must save across interrupts, cache invalidation and 
pipeline :flushing). 

The ADAPTIVE System ADAPTIVE is "A Dynamically Assembled Protocol Transformation, 
Intergration, and Validation Environment." The ADAPTIVE system (10] has been designed to 
address the diversity described above by providing: (1) a :flexible and adaptive kernel of protocol 
mechanisms that provide a framework for protocol composition, (2) a unified scheme for specifying 
both the policies and the mechanisms that are used to provide communication services, and (3) an 
integrated environment for the specification, collection, and presentation of performance data. As 
shown in Figure 1, ADAPTIVE's three main subsystems are: 

1. Map Applications and Networks To Transport Systems (MANTTS)- MANTTS interacts with 
the entities of a communication session to select the policies and mechanisms that will satisfy 
an application's communication requirements given the diverse needs of an application and the 
dynamic state of the network. Section 3 describes MANTTS in detail. 

2. Transport Kernel Objects (TKO)- TKO instantiates precisely-tailored transport system session 
contexts from a library of reusable protocol mechanisms. These sessions maintain one or more 
streams, each of which corresponds to an independent unidirectional data stream between two 
logical endpoints of communication. Section 4 describes TKO in detail. 
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3. UN/form Transport Evaluation Subsystem (UNITES) - UNITES provides an infrastructure for 
traffic monitoring, performance evaluation and protocol instrumentation. Section 5 describes 
UNITES in detail. 

2 ADAPTIVE Design Principles 

Adequately supporting the diversity of application requirements and network characteristics described 
in Section 1 requires a flexible transport system architecture that provides communication service 
appropriate for the specific traffic sources and underlying network technologies [11, 12, 13]. ADAP
TIVE allows the behavior of a communication session to be precisely tailored to the required service 
by implementing a protocol in terms of a set of independently recombinable protocol mechanisms. 
This independence is achieved through the strict use of uniform abstract interfaces to each set of 
functionally-similar mechanisms. Using this composition scheme facilitates the following: 

2.1 Controlled Protocol Experimentation 

By holding all other mechanisms within a session constant, the effects of choices within one subset of 
the mechanisms can be accurately observed without undue interaction with the rest of the protocol. 
For example, the effect on protocol performance due to changing the Connection Management func
tion from one that is implicit timer-based to one that is explicit handshake-based can be attributed 
to the mechanism selection, as all other factors can be held constant. Previous comparisons of var
ious protocol mechanisms [14, 15, 16, 17] have been done largely based on their implementations 
within the context of a complete protocol, thus making it difficult to isolate a single mechanism from 
its interactions with the rest of the system. More accurate conclusions may be reached as to the 
suitability of a given mechanism using controlled experimentation techniques. 

2.2 Flexible Protocol Engineering 

By leveraging off of established software engineering techniques, the task of correctly implementing a 
communication protocol can be made less complex than using traditional implementation methods. 
ADAPTIVE provides a framework of reusable mechanism objects [18] that allow protocols to be 
developed from new and existing component mechanisms that are independently implemented, tested, 
and maintained. ADAPTIVE implements protocol mechanisms to comply with uniform abstract 
interfaces, allowing the one implementation of a protocol mechanism to be replaced by another (e.g., 
go-back-n replacing selective repeat error recovery) written to the same interface without affecting 
the implementation of the other constituent mechanisms. Protocol mechanisms are implemented 
as C++ objects [19] that encapsulate both the current state of a protocol and the operations that 
are performed to implement the mechanism as one unified abstract data type. Instances of these 
data types are then instantiated and configured at run-time to provide the desired protocol function. 
Implementing protocol mechanisms as objects yields several desirable results: 

1. Information Hiding - details specific to the internal implementation of a given mechanism are 
hidden behind a uniform interface [20]. By enforcing the principle of separation of concerns, 
this uniform interface creates a firewall between a mechanism's clients (e.g., the application 
programmer or protocol implementer) and the mechanism's provider (e.g., the mechanism im
plementer). 

2. Reuse via Inheritance - as mechanisms are implemented in terms of C++ classes, the com
monality of a set of mechanisms can be shared via inheritance. Using inheritance, a common 
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base class provides the portion of the mechanism that is shared by all members of the set, and 
each mechanism is implemented by deriving a new sub-class from the base, which requires the 
implementer to provide only the portion of the mechanism that distinguishes the mechanism 
from the rest of the set. This technique allows both the reuse of interface (e.g., several error 
reporting mechanisms which share the same interface for reporting which packets are missing) 
and the reuse of implementation (e.g., several stream synchronization mechanisms which use 
the same underlying implementation for attaching new data streams). 

3. Rapid Prototyping - utilizing the collection of protocol mechanisms provided with ADAPTIVE, 
combined with the techniques described above, protocol designers can rapidly develop new pro
tocols by specifying the desired configuration of available mechanisms. Alternatively, protocol 
mechanism designers may use the library of available mechanisms as a reliable and consistent 
base with which new protocol mechanisms may be designed, prototyped and tested. 

2.3 Adaptive Protocol Operation 

In addition to the flexibility described above, a transport system must exhibit adaptability to suffi
ciently accommodate the dynamism that exist in both the application (e.g., alternate coding schemes 
based on subject activity, adding/subtracting data streams or participants to a communication ses
sion) and the network (e.g., bandwidth availability and packet loss rate fluctuations, latency variations 
due to a switch from terrestrial to satellite links). ADAPTIVE protocol configurations are capable 
of three classes of adaptivity: 

1. Parametric Adaptivity - which varies the behavior of a communication session by adjusting 
some subset of its parameters (e.g., inter-packet gap, transfer unit size, remote context update 
rate). Parametric adaptivity is suited to transient changes in the state of the network due 
to congestion as well as quantitative changes in application behavior (e.g., A/D sample rate 
increases/ decreases). 

2. Functional Adaptivity - which varies the behavior of a communication session by changing 
some subset of its mechanisms (e.g., changing from selective repeat to go-back-n error recovery 
schemes, enabling/disabling gap or duplicate suppression). Functional adaptivity is required 
to adjust to fundamental changes in the state of the network due to sustained packet loss, in
creased latency, or changes in routing as well as qualitative changes in application behavior or 
requirements (e.g., changing video coding schemes may require different error detection behav
ior, adding participants to a unicast data stream requires a different error recovery mechanism). 

3. Quantitative Adaptivity - which varies the behavior of a communication session by adding or 
subtracting data streams. Quantitative adaptivity is required to accommodate multi-stream 
applications that selectively disable/ enable multiple medium sources (e.g., a teleconferencing 
application that switches from audio only to audio and video). Quantitative adaptivity is 
also required to accommodate multi-user collaborative applications that dynamically add or 
subtract participants from a workgroup. 

ADAPTIVE provides various mechanisms which support the three types of transport system adap
tivity described above: 

1. Explicit Mechanism Replacement Support - by building protocol mechanisms based on uniform 
interfaces that hide the variance in different implementations, a single protocol mechanism 
(e.g., update remote contexts) can be implemented by multiple different policies (e.g., periodic 
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updates, request-based updates). As described in Section 4, by providing explicit interface and 
implementation support for run-time mechanism replacement, ADAPTIVE offers an efficient 
and consistent framework for adaptive protocol operation. 

2. Application Feedback/Feedforward Control- by providing callback mechanisms by which appli
cations can be notified of changes in operating environment (i.e., the network, the transport 
system, remote communication entities), and allowing manipulation of running session config
urations via a uniform interface, protocol adaptivity can be placed under direct application 
control. As described in Section 3, ADAPTIVE provides this facility with multiple levels of 
granularity and scope. 

3. Network Feedback- by utilizing information collected by the ADAPTIVE/UNITES subsystem, 
protocol adaptivity can be enabled by various conditions observed in the underlying network 
and local and remote transport systems. UNITES provides information on both the state 
of the network (e.g., packet loss rate, channel utilization) and the state of local and remote 
ADAPTIVE entities (e.g., buffer utilization, retransmission counts). Section 5 describe the 
metric collection facilities of ADAPTIVE in detail. 

3 Map Applications and Networks To Transport Systems (MANTTS) 

ADAPTIVE is a transformational system that configures and instantiates transport system config
urations based on application requirements and network characteristics. The ADAPTIVE/MANTTS 
subsystem provides the Application Programmatic Interface (API) to the ADAPTIVE system through 
the use of ADAPTIVE Communication Descriptors (ACDs). ACDs provide a flexible mechanism for 
applications to describe (1) grade of service requirements, (2) application-transport system interac
tions, and (3) instrumentation/measurement configurations. MANTTS performs a series of transfor
mations on an ACD to synthesize a Session Configuration Specification (SCS), which is used by the 
ADAPTIVE/TKO subsystem to instantiate and instrument a communication session. 

3.1 Hierarchical Specification 

Flexible and adaptive transport systems are of little utility if they lack an effective facility for 
applications to specify the characteristics required from a communication session. Various schemes 
for specifying an application's quality of service (QoS) requirements (e.g., error rate, throughput, 
delay) as well as it's functionality of service (FoS) requirements (e.g., connection-oriented vs. con
nectionless, best effort vs. acknowledged vs. reliable delivery) exist [21, 22, 23]. Existing schemes 
have been designed for transport systems that are either inflexible and/or non-adaptive to diversity 
in application or network characteristics. For a specification scheme to provide applications with an 
adequate interface to flexible and adaptive transport services, explicit support must be offered for 
the following: 

1. Variable Granularity - both for QoS and FoS parameters, a specification scheme must provide 
fine grain control to applications that are aware of and require precise specification of a com
munication session configuration. Courser grain macro-level specification is also required for 
applications that are not aware of or are unconcerned with every detail of a session's configu
ration. 

2. Application-based Specification - to allow most applications to specify a communication session 
in terms of the application domain, a specification scheme must provide sufficient insulation 
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Figure 2: Hierarchical Specification 

from the underlying protocol implementation. Application-based specification allows an appli
cation to specify high level communication policies (e.g., deliver all data reliably) and relies on 
the transport system to decide on the actual mechanisms to be used (e.g., PAR, ARQ, FEC). 

3. Mechanism-based Specification- provisions must be made for applications that require low-level 
control of the exact configuration of a communication session. Mechanism-based specification 
permits the application to bypass the application-based specification scheme by directly speci
fying the mechanisms used by a communication session. Provisions should be made for rejecting 
inconsistent protocol configurations resulting from incomplete or incompatible specifications. 

4. Application-Transport System Interaction - the previous three requirements primarily address 
the initial configuration of a communication session. To effectively support the diversity and 
dynamism inherent in multimedia applications, explicit provisions for application-transport 
system interactions are required. These provisions take two forms: 

(a) Transport System-Application Data Delivery, which specifies the policies and mechanisms 
the transport system must use to deliver received data to the application. This entails 
dictating when to deliver the data (e.g., immediately upon reception, periodically, or 
based on reception ofrelated data) as well as how to deliver the data (e.g., using an upcall 
mechanism[24] or read/write system calls). 

(b) Application-guided Adaptation, which specifies both the conditions the transport system 
needs to react to (e.g., end-to-end delay exceeding some threshold, a remote application 
requesting an additional data stream on a connection) as well as the actions that are to 
be taken (e.g., change retransmission mechanism, notify application via a callback). 

The following section describes the ADAPTIVE Communication Descriptor, a hierarchical interface 
to flexible and adaptive transport services that satisfies the aforementioned requirements. 

6 



Transport Example Average Burat Delay Jitter Order Lo•• Multicaat 
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Interactive Conversa.tion 
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Real-Time Manufa.cturing moderate modera.te high somewha.t var1a.ble low yes 
Non-Isochronous Control 

File Transfer modera.te low low low hi~h low no 
Non-Real-Time Remote Login very low hi~h hi~h low hi iii !ow no 
Non-Isochronous On-Line low high high !ow va.na.Die low no 

Tra.nea.ction 
Processina: 

Figure 3: Transport Service Classes 

3.2 ADAPTIVE Communication Descriptor (ACD) 

Applications request communication services from ADAPTIVE by providing MANTTS with a set of 
ADAPTIVE Communication Descriptors (A CDs). For a given communication session, the application 
furnishes a separate ACD per data stream that describes the behavior requested for that stream. Each 
ACD consists of five major components as follows: 

1. Quality of Service (QoS): The QoS contains the quantitative description of the desired 
.service. It allows the application to specify the a range of values to be used for each parameter 
(e.g., minimum acceptable, expected maximum, expected mean, expected variance), providing 
a set of default values (e.g., don't care, maximum allowed, unknown) for applications that are 
not capable of providing complete information. QoS parameters include throughput, connection 
duration, delay, jitter, and loss probability. 

2. Functionality of Service (FoS): Applications specify the qualitative behavior of desired 
service using the FoS. The FoS describes the policies (e.g., recover lost data, suppress duplicates, 
encryption) that are to be carried out by the transport system. In contrast to the QoS, which 
describes when and how much data will be transmitted, the FoS describes what processing must 
be done before tranmission and reception. 

3. Data Synchronization and Delivery (DSD): The DDS specifies the the policies to be used 
in synchronizing multiple data streams within one communication session (i.e., what tolerance 
of intra-stream drift is acceptable, what action to take given a loss of synchronization), and the 
mechanisms to be used to ultimately deliver the data to the application (e.g., via read/write 
calls, via upcalls into application, via in-kernel direct routing to a device). 

4. Transport Service Adjustment (TSA): The TSA allows applications to participate in the 
dynamic configuration of the communicat iurr session. The TSA is a set of< condition, action > 
pairs, where the condition specifies what e\·ent the application is interested in responding to, 
(e.g., resource request deni.ed, latency exceeds lOms ), and the action specifies the cesponse to 
be taken, either as a callback to the application, or a call to an internal ADAPTIVE routine. 
These internal routines range from macro-level operations, (e.g., abort connection) to very 
fine grain actions that implement both parametric, functional, and em quantitative adaptiv
ity. MANTTS provides a special condition value that, when used in conjunction w.ith these 
functional adaptivity operations, allows the application to "escape" the normal configuration 
process and hard-wire a protocol configuration. The session configuration that results from this 
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direct specification method can then be validated by ADAPTIVE/MANTTS to guarantee that 
a meaningful protocol will be produced (i.e., that fundamental mechanism incompatibilities do 
not exist). 

5. Transport Metric Configuration (TMC): To accommodate protocol development, proto
typing and measurement, the TMC allows the application to specify what performance metrics 
it is interested in monitoring. Each metric is specified by (1) what is to be measured and where 
(e.g., host system throughput, per-stream transmission count, transmission delay), (2) the sam
pling and reporting rate (e.g., sample every k milliseconds, report every n seconds), and (3) 
the reporting action to be taken (e.g., add sample(s) to a repository, callback to application). 
The TMC allows any application using ADAPTIVE services to instrument a communication 
session. 

3.3 MANTTS Operation 

ADAPTIVE Communication Descriptors provide the API to ADAPTIVE. Once the ACDs have been 
created by the application and passed to ADAPTIVE, MANTTS must then transform these con
figuration requests that are expressed in terms of application-domain requirements into a Session 
Configuration Specifier (SGS) that can be used to directly instantiate a communication session. This 
transformation process examines the parameters of an ACD and attempts to match it to a pre
configured Transport Service Class (TSC) that represents a common set of communication require
ments shared by a class of applications (e.g., Real-Time Non-Isochronous, Interactive Isochronous). 
Figure 3 shows a representative set of transport service classes and the parameters they encompass. 

4 Transport Kernel Objects (TKO) 

Transport Kernel Objects (TKO) is a protocol composition framework that provides flexible data 
transport service to applications. It provides a set of uniform abstract interfaces and a library of 
mechanism implementations for the various functions required to compose multimedia communication 
protocols. TKO is implemented as a collection of C++ classes that allow protocols to be composed 
using objects that implement the mechanisms used in a particular protocol configuration. As shown 
in Figure 4, TKO consists of two major subsystems: 

1. TKO Operating Services Interface Library (TKO-OSIL) - a set of C++ classes that provide 
an efficient uniform interface to the basic operating system services required by all protocols. 
TKO-OSIL allows protocols to be implemented in a portable and consistent manner. 

2. TKO Mechanism Class Library (TKO-MCL) - a set of C++ classes that provide implementa
tions of the various protocol mechanisms that comprise a communication session. TKO-MCL is 
partitioned into mechanism families that allow several alternate implementations of a protocol 
function to share both interface and implementation. 

The remainder of this section describes these two subsystems. 

4.1 TKO-Operating Services Interface Library (TKO-OSIL) 

Implementing efficient communication protocols for general purpose computers requires operating 
system support for protocol development and operation. The services required from the operating 
environment include scheduling, buffer management, multiplexing/ demultiplexing and context man
agement. Most existing systems provide some subset of these services (e.g., BSD-UNIX[3], UNIX 
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Figure 4: Transport Kernel Objects 

System V STREAMS[2], x-kernel[l]), but with very little consistency across environments. For exam
ple, all three of the previously mentioned systems provide some form of buffer management (e.g., BSD 
mbuf, STREAMS mblk, x-kernel Msg), but each has somewhat different semantics and interfaces for 
the basic set of operations (e.g., logical vs physical copying, appending/truncating messages). TKO
OSIL provides a consistent interface to these basic operating system services for use by TKO-MCL 
protocol implementations by providing the following three c++ classes: 

1. TKEvent - the basic abstraction for temporal events. Many protocols must respond to tempo-
ral events such as retransmission timer expiration or periodic update requests [25]. The TKEvent 
class defines an infrastructure for event management, providing operations like TKEvent: : schedule, 
TKEvent: : happen, and TKEvent: : cancel. TKEvent objects schedule themselves to happen one 
or more times (i.e., they are intermittent or periodic), they may be cancelled, and they are trig
gered to happen asynchronously by the operating system's timer facility. To accommodate the 
synchronization of multimedia applications and protocols to isochronous devices (e.g., D /A con
verters, frame buffers), TKEvent allows periodic events to enable or disable drift compensation 
to overcome fluctuations in system scheduling services. 

2. TKMessage - the basic abstraction for incoming and outgoing network messages. Previous 
work has shown that memory-to-memory copying is a significant source of transport system 
overhead [26]. Therefore, some form of buffer management is necessary to avoid unnecessary 
copying when moving messages between protocol entities and when adding or deleting headers 
and trailers [27]. The TKMessage class provides a uniform interface for services that create, 
copy, prepend, and split messages. TKMessage objects are internally divided into two distinct 
regions: the header and the data. The data region supports efficient logical copying operations 
and segmenting and reassembling of data chunks. The header region supports operations (e.g., 
TKMessage: :prepend and TKMessage: :unprepend) that efficiently prepend header information 
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onto a message and later strip it off. Explicit support is also provided for combining/separating 
· component sub-messages belonging to multiple data streams for subsequent delivery to the 
network or application. 

3. TKSession - the basic abstraction for a communication session. A protocol implementation 
must retain a collection of state variables for the proper operation of the protocol. In a mul
tiprotocol environment, this includes both (1) information that a protocol must maintain on a 
per-session basis for addressing, internal buffer management, and protocol specific operations, 
and (2) some mechanism for associating the state variables of a session to the global state of the 
specific protocol the session is associated with, specifically, which operations or methods are to 
be performed as part of the protocol processing. TKSession encapsulates this information be
hind a uniform abstract interface that allows basic protocol operations (e.g., TKSession: : send, 
TKSession: : recv, TKSession: : control) to be properly dispatched to the appropriate protocol 
function. TKSession is implemented in two parts: (1) global variables and functions - respon
sible for TKSession creation and management and demultiplexing incoming TKMessages to the 
appropriate TKSession, and (2) instance variable and functions - responsible for performing 
the protocol specific operations on incoming and outgoing TKMessages. 

These three classes provide the foundation for the operation and composition of protocols using the 
TKO Mechanism Class Library described below. 

4.2 TKO Mechanism Class Library (TKO-MCL) 

TKO-MCL is implemented as a C++ class library of reusable C++ protocol mechanisms. Each 
TKO-MCL class is an implementation of a single protocol function (e.g., error detection, encryption, 
transmission control), that encapsulates both the state and method needed to perform the desired 
function. A TKO protocol is composed from multiple lightweight TKO-MCL objects, each of which 
performs a different protocol function. The remainder of this section provides a description of TKO
MCL and discusses several performance enhancements available to TKO-MCL protocol implementors. 
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4.2.1 Mechanism Families 

To efficiently support flexible configuration and adaptive reconfiguration, TKO-MCL is organized as a 
C++ inheritance hierarchy. TKO-MCL takes advantage of C++ language mechanisms for (1) encapsu
lation to bind operations and their associated context allowing object-oriented protocol composition, 
(2) dynamic binding to allow protocol operations to be transparently and automatically selected at 
run-time, and (3) inheritance which allows multiple protocol mechanisms to be implemented as spe
cializations of a single mechanism. As shown in Figure 5, the TKO-MCL class hierarchy is partitioned 
into multiple Mechanism Families, each of which provides one or more implementations of a given 
protocol function (e.g., error reporting, encoding, stream synchronization). Each Mechanism Family 
consists of two distinct types of classes, a single Abstract Base Class (ABC), that defines the interface 
or signature for the protocol mechanism and optionally implements any shared or default behavior, 
from which one or more Concrete Derived Classes (CDCs) are derived, each of which represents a 
particular implementation of the abstract protocol function its family represents. Within a Mech
anism Family, new mechanism implementations are usually implemented by deriving directly from 
the Abstract Base Class, but can alternatively be derived indirectly via a Concrete Derived Class 
when only a small amount of behavior in an existing implementation needs to be changed. Using 
derivation or subclassing as an implementation technique offers the following advantages: 

• Shared interfaces allow multiple implementations to be transparently "plugged in" to perform 
a given protocol function. This interface consists of a collection of methods or C++ member 
functions that provide consistent and controlled access to the services provided by a mechanism 
implementation. The dynamic binding of virtual member functions in C++ ensures that the 
appropriate code is executed based upon the class a particular implementation is an instance 
of. A more detailed discussion of this appears in Section 4.2.2. 

• Shared implementations allow a mechanism implementation to be expressed in terms of its 
differences from its base class. Reusing existing implementations via specialization allows new 
protocols to be implemented more rapidly and aids the task of protocol maintenance, as defects 
that are repaired in a base class are automatically repaired in any derived classes. 

As shown in Figure 5, TKO-MCL provides a standard set of Mechanism Families that correspond to 
the basic mechanisms used in protocol processing (e.g., Connection Management, Remote Context 
Management, Reliability Management, Stream Synchronization Management, Transmission Man
agement). The Reliability Management Mechanism Family shown in Figure 5 is an example of a 
Composite Component, which is described in Section 4.2.3. As described above, each family con
tains a single Abstract Base Class that defines the basic interface to the mechanism, and multiple 
Concrete Derived Classes, that represent specific policy decisions that are used to implement a given 
mechanism. 

4.2.2 Context Architecture 

TKO provides an additional C++ class, TKContext, that links together a selection of various TKO
MCL mechanism implementations to form a cohesive protocol. TKO utilizes one TKContext per 
unidirectional data stream, combining multiple, possibly different, TKContexts to form a communi
cation session. As shown in Figure 4, a single TKSession object is used to provide a rendezvous point 
for managing the TKContexts associated with the multiple data streams attached to a session. Each 
TKContext maintains a set of pointers to Abstract Base Classes, one for each TKO-MCL Mechanism 
Family. Operational TKContexts are created by setting these pointers to instances the appropriate 
Concrete Derived Classes. 

11 



Figure 6: UNITES Architecture 

4.2.3 Optimizations 

As previously described, TKContexts maintain pointers to base classes and rely on language mech
anisms to dynamically bind the appropriate executable code at run-time. Although studies have 
shown that it is possible to efficiently implement operating systems and communication protocols 
using these techniques [28, 29, 30], ADAPTIVE/TKO provides several optimizations that streamline 
the creation and operation of commonly instantiated protocol configurations. 

Composites Figure 5 shows that Reliabilty Management is implemented as a Composite Compo
nent. Composites allow multiple related mechanism families to be bundled together into one larger 
mechanism. Composites are useful for enforcing relationships between multiple sub-mechanisms (e.g., 
requiring go-back-N error recovery to use cumulative acknowledgments) while still allowing the sub
mechanisms to be independently used elsewhere (e.g., using cumulative acknowledgment with sliding 
window flow control). Composites also allow the larger mechanism they represent to be replaced in 
one operation, which greatly reduces the complexity of run-time reconfiguration. 

Preconfigured Contexts TKO allows entire TKContexts to be preconfigured for commonly used 
protocol configurations. This entails implementing the class as a collection of actual instances of 
the constituent mechanisms, instead of a collection of pointers to instances that must be created 
separately and linked to the TKContext at run-time. This preconfiguration technique offers encreased 
performance by (1) eliminating one to two levels of indirection due to the pointer dereference and 
virtual function resolution and (2) by allowing instances of preconfigured contexts to be cached for 
faster instantiation. 

5 UNiform Transport and Evaluation Subsystem (UNITES) 

One of the primary goals of the ADAPTIVE system is to provide a framework for controlled 
protocol experimentation. ADAPTIVE provides an integrated experimentation environment by uti-
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lizing UNITES' metric specification, collection, analysis and presentation facilities. Performance data 
gathered by UNITES can be used to evaluate various protocol mechanisms and configurations with 
respect to (1) the level of service provided to the application, (2) the utilization of the underlying 
communication channel, and (3) the internal performance characteristics of a given set of protocol 
mechanisms. 

As shown in Figure 6, the UNITES Metric Repository stores the collected performance data 
in a shared database to minimize the intrusion made by the metric collection process [31]. Users 
may access this information via (1) UNITES-provided interactive graphic displays, (2) the UNITES 
C++ run-time library, or (3) standard network management protocols such as SNMP or CMIP. This 
metric data is available on either a systemwide, per-host, or per-connection basis. The performance 
monitoring process can be initiated when application programs use the Transport Measurement 
Component (TMC) parameter in the ADAPTIVE Communication Descriptor (ACD) to indicate the 
metrics they are interested in monitoring. ADAPTIVE then selectively instruments the instantiated 
TKO configurations and automatically collects the performance data during the operation of the 
system. 

Metric collection may also be specified independent of a communication session using either 
a graphics-based or language-based interface to UNITES. Sjodin et al. [32] defines a specification 
language that indicates what measurements to collect and what traffic to generate. UNITES provides 
similar functionality with its UNITES Metric Specification Language (UMSL), but also provides a 
graphical interface that allows complex metric collection configurations to be specified using common 
user-interface elements (e.g., check boxes, edit text fields, buttons, menus). This interface can be used 
to generate UMSL code for subsequent modification or to be used directly to configure a UNITES 
metric collection configuration. 

UNITES supports two primary classes of metrics, black box and white box. Black box metrics 
require no knowledge of or interaction with the internal implementation of a protocol configuration. 
Black box metrics include application-based and host system-based metrics (e.g., throughput, latency, 
and jitter) and network based metrics (e.g., bit error rates, network utilization, and packet lengths). 
White box metrics require internal instrumentation of a protocol configuration and may be collected 
on a mechanism, mechanism family, connection, application, host system or system-wide basis. White 
box metrics include retransmission count, buffer utilization, instruction length, and scheduling and 
dispatching overhead. Both black box and white box metrics contribute to pinpointing performance 
bottlenecks in protocol configurations. 

6 Summary 

ADAPTIVE provides an integrated framework for protocol composition, evaluation and experimen
tation. It utilizes object-oriented design and implementation techniques to create an infrastructure 
for protocol composition that allows both flexible configuration and adaptive reconfiguration of com
munication protocols. The ADAPTIVE system integrates the hierarchical specification of application 
requirements and protocol configurations with the monitoring and reporting of performance metrics 
to create a transport system capable of adapting to network and application diversity and dynamism. 

We are currently designing and implementing a prototype implementation written in C++ that 
runs under System V STREAMS. We plan to use this prototype to experiment with different transport 
system configurations that support multimedia applications (e.g., network voice and video) running 
on several different networks (e.g., Ethernet, Tree Network [33], DQDB, and FDDI). 
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