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Abstract

Traditional transport systems do not adequately provide the functionality or flexibility required
by existing and future multimedia applications. Conventional protocol architectures based on a
static configuration of relatively few protocols are incapable of providing the level of performance
the channel is capable of producing while still performing the processing needed by the applica-
tion. Multimedia applications require transport systems that can be configured to match the the
functional requirements of diverse multimedia traffic sources as well as capable of adapting to the
dynamism inherent in multimedia applications and heterogeneous internetworks.

This paper describes ADAPTIVE, a transport system architecture to support multimedia ap-
plications for high-speed networks. The ADAPTIVE system applies object-oriented design and
implementation techniques to build an integrated framework for protocol specification, composi-
tion, prototyping and experimentation. It utilizes a hierarchical specification technique that allows
both the policies of a communication session to be specified and the actual mechanisms used to
carry out these policies. Its monitoring and analysis facilities provide a rich environment for
controlled experimentation through the use of rapid prototyping and integrated instrumentation.

*This material is based upon work supported by the National Science Foundation under Grant No. NCR-8907909.
This research is also in part supported by University of California MICRO program.






1 Introduction

Traditional transport systems do not adequately provide the functionality or flexibility needed by
existing and future multimedia applications and high speed networks. Applications currently must
either (1) accept wholesale the functionality and behavior of an available protocol (e.g., TCP, UDP,
TP4, or VMTP), or (2) attempt to provide its own transport subsystem by building on lower level
communication service primitives. Due to the diversity of application requirements and the paucity
of available protocols on most systems, approach (1) often leads to lowest-common-denominator
solutions that actually only satisfy the requirements of a narrow range of their target applications.
Approach (2) leads to multiple, ad hoc, implementations that are not easily extended, modified,
or shared. This also places the burden of protocol processing on the application programmer, who
may not be fluent in the design and implementation of communication protocols. To alleviate this
situation, future transport systems must provide communication service that is flexible and adaptive
to (1) application diversity, (2) network diversity, and (3) host system diversity.

Application Diversity Distributed multimedia applications impose unique performance constraints
on the underlying communication medium and the supporting transport system that are more de- -
manding and dynamic than those previously encountered in traditional data applications. The pres-
ence of these applications increases the dynamism of the underlying network and their supporting
transport systems due to the high degree of variance in traffic characteristics exhibited by the appli-
cations’ data sources (e.g., highly bursty, high bandwidth variable bit rate video sources, relatively
steady, low bandwidth digitized voice sources, short transactional-based sources). Transport systems
providing communication service that utilizes traditional communication protocol suites typically of-
fer very few options with respect to both the guality of service (e.g., high throughput, low delay) and
the functionality of service (e.g., reliable in-order data stream, best-effort datagram) provided. Exist-
ing and future multimedia applications require various levels of performance (e.g., peak/average band-
width, maximum delay, low jitter) and behavior (e.g., synchronization, network-kernel-application
delivery, error correction), that are not adequately addressed in existing systems.

Network Diversity The diversity of network characteristics encountered by distributed multi-
media applications are due to (1) the heterogeneity of internetworking environments, (2) dynamic
or multipath routing, and (3) fluctuations in network state caused by the traffic sources described
above. Network characteristics that vary across network environments include channel speed (e.g.,
10Mbps for Ethernet, 100Mbps for FDDI, 155Mbps or 622Mbps for ATM), mazimum data transfer
unit (e.g., 1500 octets for Ethernet, 9188 octets for SMDS, 48 octets for ATM), available service types
(e.g., datagram, virtual circuit, multicast, broadcast) and access control scheme (e.g., CSMA/CD,
token-passing, switch-based). Network characteristics that may vary dynamically over the lifetime of
an association include the aforementioned characteristics, which may fluctuate either due to a change
in routing, the use of multipath routing, or a change in the number or location of participants in a
communication session. Additionally, network characteristics such as packet loss rate and delay can
vary greatly over the lifetime of an association due to transient network congestion.

Host System Diversity A large degree of diversity exists in the degree and nature of support
provided by host systems for communication protocols. This diversity appears in both the available
hardware (e.g., CPU, network interface, memory hierarchy) and the supporting system software.
Software-related issues such as scheduling mechanisms (e.g., z-kernel[1] lightweight processes vs.
STREAMS|2] service routines), user-kernel data delivery mechanisms (e.g., BSD socket layer [3] vs.
z-kernel upcall mechanism), buffer management schemes (e.g., BSD mbufs vs. STREAMS mblk_ts)
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Figure 1: ADAPTIVE System Architecture

and protocol composition and demultiplexing mechanisms (e.g., STREAMS modules vs. z-kernel
protocol and session objects). Hardware issues that are variable across host systems include pro-
cessor architectures (e.g., uniprocessor vs. shared memory multiprocessor [4] vs. message passing
multiprocessor[5, 6]), explicit support for protocol processing (e.g., performing all protocol process-
ing off-board processors|7, 8], specialized hardware to assist a single protocol function [9]), effects of
interrupts on overall system performance (e.g., number of interrupts required to move data between
the host system memory and the network interface, performance penalty from interrupt-driven pro-
cessing due to the amount of context a processor must save across interrupts, cache invalidation and
pipeline flushing).

The ADAPTIVE System ADAPTIVE is “A Dynamically Assembled Protocol Transformation,
Intergration, and Validation Environment.” The ADAPTIVE system [10] has been designed to
address the diversity described above by providing: (1) a flexible and adaptive kernel of protocol
mechanisms that provide a framework for protocol composition, (2) a unified scheme for specifying
both the policies and the mechanisms that are used to provide communication services, and (3) an
integrated environment for the specification, collection, and presentation of performance data. As
shown in Figure 1, ADAPTIVE’s three main subsystems are:

1. Map Applications and Networks To Transport Systems (MANTTS) - MANTTS interacts with
the entities of a communication session to select the policies and mechanisms that will satisfy
an application’s communication requirements given the diverse needs of an application and the
dynamic state of the network. Section 3 describes MANTTS in detail.

2. Transport Kernel Objects (TKO) - TKO instantiates precisely-tailored transport system session
contexts from a library of reusable protocol mechanisms. These sessions maintain one or more
streams, each of which corresponds to an independent unidirectional data stream between two
logical endpoints of communication. Section 4 describes TKO in detail.



3. UNIform Transport Evaluation Subsystem (UNITES)- UNITES provides an infrastructure for
traffic monitoring, performance evaluation and protocol instrumentation. Section 5 describes
UNITES in detail.

2 ADAPTIVE Design Principles -

Adequately supporting the diversity of application requirements and network characteristics described
in Section 1 requires a flexible transport system architecture that provides communication service
appropriate for the specific traffic sources and underlying network technologies [11, 12, 13]. ADAP-
TIVE allows the behavior of a communication session to be precisely tailored to the required service
by implementing a protocol in terms of a set of independently recombinable protocol mechanisms.
This independence is achieved through the strict use of uniform abstract interfaces to each set of
functionally-similar mechanisms. Using this composition scheme facilitates the following:

2.1 Controlled Protocol Experimentation

By holding all other mechanisms within a session constant, the effects of choices within one subset of
the mechanisms can be accurately observed without undue interaction with the rest of the protocol.
For example, the effect on protocol performance due to changing the Connection Management func-
tion from one that is implicit timer-based to one that is explicit handshake-based can be attributed
to the mechanism selection, as all other factors can be held constant. Previous comparisons of var-
ious protocol mechanisms [14, 15, 16, 17] have been done largely based on their implementations
within the context of a complete protocol, thus making it difficult to isolate a single mechanism from
its interactions with the rest of the system. More accurate conclusions may be reached as to the
suitability of a given mechanism using controlled experimentation techniques.

2.2 Flexible Protocol Engineering

By leveraging off of established software engineering techniques, the task of correctly implementing a
communication protocol can be made less complex than using traditional implementation methods.
ADAPTIVE provides a framework of reusable mechanism objects [18] that allow protocols to be
developed from new and existing component mechanisms that are independently implemented, tested,
and maintained. ADAPTIVE implements protocol mechanisms to comply with uniform abstract
interfaces, allowing the one implementation of a protocol mechanism to be replaced by another (e.g.,
go-back-n replacing selective repeat error recovery) written to the same interface without affecting
the implementation of the other constituent mechanisms. Protocol mechanisms are implemented
as C++ objects [19] that encapsulate both the current state of a protocol and the operations that
are performed to implement the mechanism as one unified abstract data type. Instances of these
data types are then instantiated and configured at run-time to provide the desired protocol function.
Implementing protocol mechanisms as objects yields several desirable results:

1. Information Hiding — details specific to the internal implementation of a given mechanism are
hidden behind a uniform interface [20]. By enforcing the principle of separation of concerns,
this uniform interface creates a firewall between a mechanism’s clients (e.g., the application
programiner or protocol implementer) and the mechanism’s provider (e.g., the mechanism im-
plementer).

2. Reuse via Inheritance — as mechanisms are implemented in terms of C++ classes, the com-
monality of a set of mechanisms can be shared via inheritance. Using inheritance, a common



base class provides the portion of the mechanism that is shared by all members of the set, and
each mechanism is implemented by deriving a new sub-class from the base, which requires the
implementer to provide only the portion of the mechanism that distinguishes the mechanism
from the rest of the set. This technique allows both the reuse of interface (e.g., several error
reporting mechanisms which share the same interface for reporting which packets are missing)
and the reuse of implementation (e.g., several stream synchronization mechanisms which use
the same underlying implementation for attaching new data streams).

3. Rapid Prototyping — utilizing the collection of protocol mechanisms provided with ADAPTIVE,
combined with the techniques described above, protocol designers can rapidly develop new pro-
tocols by specifying the desired configuration of available mechanisms. Alternatively, protocol
mechanism designers may use the library of available mechanisms as a reliable and consistent
base with which new protocol mechanisms may be designed, prototyped and tested.

2.3 Adaptive Protocol Operation

In addition to the flexibility described above, a transport system must exhibit adaptability to suffi-
ciently accommodate the dynamism that exist in both the application (e.g., alternate coding schemes
based on subject activity, adding/subtracting data streams or participants to a communication ses-
sion) and the network (e.g., bandwidth availability and packet loss rate fluctuations, latency variations
due to a switch from terrestrial to satellite links). ADAPTIVE protocol configurations are capable
of three classes of adaptivity:

1. Parametric Adaptivity — which varies the behavior of a communication session by adjusting
some subset of its parameters (e.g., inter-packet gap, transfer unit size, remote context update
rate). Parametric adaptivity is suited to transient changes in the state of the network due
to congestion as well as quantitative changes in application behavior (e.g., A/D sample rate
increases/decreases).

2. Functional Adaptivity — which varies the behavior of a communication session by changing
some subset of its mechanisms (e.g., changing from selective repeat to go-back-n error recovery
schemes, enabling/disabling gap or duplicate suppression). Functional adaptivity is required
to adjust to fundamental changes in the state of the network due to sustained packet loss, in-
creased latency, or changes in routing as well as qualitative changes in application behavior or
requirements (e.g., changing video coding schemes may require different error detection behav-
ior, adding participants to a unicast data stream requires a different error recovery mechanism).

3. Quantitative Adaptivity — which varies the behavior of a communication session by adding or
subtracting data streams. Quantitative adaptivity is required to accommodate multi-stream
applications that selectively disable/enable multiple medium sources (e.g., a teleconferencing
application that switches from audio only to audio and video). Quantitative adaptivity is
also required to accommodate multi-user collaborative applications that dynamically add or
subtract participants from a workgroup.

ADAPTIVE provides various mechanisms which support the three types of transport system adap-
tivity described above:

1. Ezplicit Mechanism Replacement Support — by building protocol mechanisms based on uniform
interfaces that hide the variance in different implementations, a single protocol mechanism
(e.g., update remote contexts) can be implemented by multiple different policies (e.g., periodic
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updates, request-based updates). As described in Section 4, by providing explicit interface and
implementation support for run-time mechanism replacement, ADAPTIVE offers an efficient
and consistent framework for adaptive protocol operation.

2. Application Feedback/Feedforward Control — by providing callback mechanisms by which appli-
cations can be notified of changes in operating environment (i.e., the network, the transport
system, remote communication entities), and allowing manipulation of running session config-
urations via a uniform interface, protocol adaptivity can be placed under direct application
control. As described in Section 3, ADAPTIVE provides this facility with multiple levels of
granularity and scope.

3. Network Feedback — by utilizing information collected by the ADAPTIVE/UNITES subsystem,
protocol adaptivity can be enabled by various conditions observed in the underlying network
and local and remote transport systems. UNITES provides information on both the state
of the network (e.g., packet loss rate, channel utilization) and the state of local and remote
ADAPTIVE entities (e.g., buffer utilization, retransmission counts). Section 5 describe the
metric collection facilities of ADAPTIVE in detail.

3 Map Applications and Networks To Transport Systems (MANTTS)

ADAPTIVE is a transformational system that configures and instantiates transport system config-
urations based on application requirements and network characteristics. The ADAPTIVE/MANTTS
subsystem provides the Application Programmatic Interface (API) to the ADAPTIVE system through
the use of ADAPTIVE Communication Descriptors (ACDs). ACDs provide a flexible mechanism for
applications to describe (1) grade of service requirements, (2) application-transport system interac-
tions, and (3) instrumentation/measurement configurations. MANTTS performs a series of transfor-
mations on an ACD to synthesize a Session Configuration Specification (SCS), which is used by the
ADAPTIVE/TKO subsystem to instantiate and instrument a communication session.

3.1 Hierarchical Specification

Flexible and adaptive transport systems are of little utility if they lack an effective facility for
applications to specify the characteristics required from a communication session. Various schemes
for specifying an application’s quality of service (QoS) requirements (e.g., error rate, throughput,
delay) as well as it’s functionality of service (FoS) requirements (e.g., connection-oriented vs. con-
nectionless, best effort vs. acknowledged vs. reliable delivery) exist [21, 22, 23]. Existing schemes
have been designed for transport systems that are either inflexible and/or non-adaptive to diversity
in application or network characteristics. For a specification scheme to provide applications with an
adequate interface to flexible and adaptive transport services, explicit support must be offered for
the following:

1. Variable Granularity — both for QoS and FoS parameters, a specification scheme must provide
fine grain control to applications that are aware of and require precise specification of a com-
munication session configuration. Courser grain macro-level specification is also required for
applications that are not aware of or are unconcerned with every detail of a session’s configu-
ration.

2. Application-based Specification — to allow most applications to specify a communication session
in terms of the application domain, a specification scheme must provide sufficient insulation
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Figure 2: Hierarchical Specification

from the underlying protocol implementation. Application-based specification allows an appli-
cation to specify high level communication policies (e.g., deliver all data reliably) and relies on
the transport system to decide on the actual mechanisms to be used (e.g., PAR, ARQ, FEC).

3. Mechanism-based Specification — provisions must be made for applications that require low-level
control of the exact configuration of a communication session. Mechanism-based specification
permits the application to bypass the application-based specification scheme by directly speci-
fying the mechanisms used by a communication session. Provisions should be made for rejecting
inconsistent protocol configurations resulting from incomplete or incompatible specifications.

4. Application-Transport System Interaction — the previous three requirements primarily address
the initial configuration of a communication session. To effectively support the diversity and
dynamism inherent in multimedia applications, explicit provisions for application-transport
system interactions are required. These provisions take two forms:

(a) Transport System-Application Data Delivery, which specifies the policies and mechanisms
the transport system must use to deliver received data to the application. This entails
dictating when to deliver the data (e.g., immediately upon reception, periodically, or
based on reception of related data) as well as how to deliver the data (e.g., using an upcall
mechanism([24] or read/write system calls).

(b) Application-guided Adaptation, which specifies both the conditions the transport system
needs to react to (e.g., end-to-end delay exceeding some threshold, a remote application
requesting an additional data stream on a connection) as well as the actions that are to
be taken (e.g., change retransmission mechanism, notify application via a callback).

The following section describes the ADAPTIVE Communication Descriptor, a hierarchical interface
to flexible and adaptive transport services that satisfies the aforementioned requirements.
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3.2 ADAPTIVE Communication Descriptor (ACD)

Applications request communication services from ADAPTIVE by providing MANTTS with a set of
ADAPTIVE Communication Descriptors (ACDs). For a given communication session, the application
furnishes a separate ACD per data stream that describes the behavior requested for that stream. Each
ACD consists of five major components as follows:

1. Quality of Service (QoS): The QoS contains the gquantitative description of the desired
service. It allows the application to specify the a range of values to be used for each parameter
(e.g., minimum acceptable, expected maximum, expected mean, expected variance), providing
a set of default values (e.g., don’t care, mazimum allowed, unknown) for applications that are
not capable of providing complete information. QoS parameters include throughput, connection
duration, delay, jitter, and loss probability. ‘

2. Functionality of Service (FoS): Applications specify the qualitative behavior of desired
service using the FoS. The FoS describes the policies (e.g., recover lost data, suppress duplicates,
encryption) that are to be carried out by the transport system. In contrast to the QoS, which
describes when and how much data will be transmitted, the FoS describes what processing must
be done before tranmission and reception.

3. Data Synchronization and Delivery (DSD): The DDS specifies the the policies to be used
in synchronizing multiple data streams within one communication session (i.e., what tolerance
of intra-stream drift is acceptable, what action to take given a loss of synchronization), and the
mechanisms to be used to ultimately deliver the data to the application (e.g., via read/write
calls, via upcalls into application, via in-kernel direct routing to a device).

4. Transport Service Adjustment (TSA): The TSA allows applications to participate in the
dynamic configuration of the communication session. The TSA is a set of < condition, action >
pairs, where the condition specifies what event the application is interested in responding to,
(e.g., resource request denied, latency exceeds 10ms), and the action specifies the esponse to
be taken, either as a callback to the application, or a call to an internal ADAPTIVE routine.
These internal routines range from macro-level operations, (e.g., abort connection) to very
fine grain actions that implement both parametric, functional, and em quantitative adaptiv-
ity. MANTTS provides a special condition value that, when used in conjunction with these
functional adaptivity operations, allows the application to “escape” the normal configuration
process and hard-wire a protocol configuration. The session configuration that results from this



direct specification method can then be validated by ADAPTIVE/MANTTS to guarantee that
a meaningful protocol will be produced (i.e., that fundamental mechanism incompatibilities do
not exist).

5. Transport Metric Configuration (TMC): To accommodate protocol development, proto-
typing and measurement, the TMC allows the application to specify what performance metrics
it is interested in monitoring. Each metric is specified by (1) what is to be measured and where
(e.g., host system throughput, per-stream transmission count, transmission delay), (2) the sam-
pling and reporting rate (e.g., sample every k milliseconds, report every n seconds), and (3)
the reporting action to be taken (e.g., add sample(s) to a repository, callback to application).
The TMC allows any application using ADAPTIVE services to instrument a communication
session.

3.3 MANTTS Operation

ADAPTIVE Communication Descriptors provide the API to ADAPTIVE. Once the ACDs have been
created by the application and passed to ADAPTIVE, MANTTS must then transform these con-
figuration requests that are expressed in terms of application-domain requirements into a Session
Configuration Specifier (SCS) that can be used to directly instantiate a communication session. This
transformation process examines the parameters of an ACD and attempts to match it to a pre-
configured Transport Service Class (TSC) that represents a common set of communication require-
ments shared by a class of applications (e.g., Real-Time Non-Isochronous, Interactive Isochronous).
Figure 3 shows a representative set of transport service classes and the parameters they encompass.

4 Transport Kernel Objects (TKO)

Transport Kernel Objects (TKO) is a protocol composition framework that provides flexible data
transport service to applications. It provides a set of uniform abstract interfaces and a library of
mechanism implementations for the various functions required to compose multimedia communication
protocols. TKO is implemented as a collection of C++ classes that allow protocols to be composed
using objects that implement the mechanisms used in a particular protocol configuration. As shown
in Figure 4, TKO consists of two major subsystems:

1. TKO Operating Services Interface Library (TKO-OSIL) — a set of C++ classes that provide
an efficient uniform interface to the basic operating system services required by all protocols.
TKO-OSIL allows protocols to be implemented in a portable and consistent manner.

2. TKO Mechanism Class Library (TKO-MCL) — a set of C++ classes that provide implementa-
tions of the various protocol mechanisms that comprise a communication session. TKO-MCL is
partitioned into mechanism families that allow several alternate implementations of a protocol
function to share both interface and implementation.

The remainder of this section describes these two subsystems.

4.1 TKO-Operating Services Interface Library (TKO-OSIL)

Implementing efficient communication protocols for general purpose computers requires operating
system support for protocol development and operation. The services required from the operating
environment include scheduling, buffer management, multiplexing/demultiplexing and context man-
agement. Most existing systems provide some subset of these services (e.g., BSD-UNIX[3], UNIX
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System V STREAMS[2], z-kernel[1]), but with very little consistency across environments. For exam-
ple, all three of the previously mentioned systems provide some form of buffer management (e.g., BSD
mbuf, STREAMS mblk, z-kernel Msg), but each has somewhat different semantics and interfaces for
the basic set of operations (e.g., logical vs physical copying, appending/truncating messages). TKO-
OSIL provides a consistent interface to these basic operating system services for use by TKO-MCL
protocol implementations by providing the following three C++ classes:

1. TKEvent — the basic abstraction for temporal events. Many protocols must respond to tempo-
ral events such as retransmission timer expiration or periodic update requests [25]. The TKEvent
class defines an infrastructure for event management, providing operations like TKEvent : : scheduls,
TKEvent: :happen, and TKEvent: :cancel. TKEvent objects schedule themselves to happen one
or more times (i.e., they are intermittent or periodic), they may be cancelled, and they are trig-
gered to happen asynchronously by the operating system’s timer facility. To accommodate the
synchronization of multimedia applications and protocols to isochronous devices (e.g., D/A con-
verters, frame buffers), TKEvent allows periodic events to enable or disable drift compensation
to overcome fluctuations in system scheduling services.

2. TKMessage — the basic abstraction for incoming and outgoing network messages. Previous
work has shown that memory-to-memory copying is a significant source of transport system
overhead [26]. Therefore, some form of buffer management is necessary to avoid unnecessary
copying when moving messages between protocol entities and when adding or deleting headers
and trailers [27]. The TKMessage class provides a uniform interface for services that create,
copy, prepend, and split messages. TKMessage objects are internally divided into two distinct
regions: the header and the data. The data region supports efficient logical copying operations
and segmenting and reassembling of data chunks. The header region supports operations (e.g.,
TKMessage: :prepend and TKMessage: :unprepend) that efficiently prepend header information
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onto a message and later strip it off. Explicit support is also provided for combining/separating
-component sub-messages belonging to multiple data streams for subsequent delivery to the
network or application.

. TKSession — the basic abstraction for a communication session. A protocol implementation
must retain a collection of state variables for the proper operation of the protocol. In a mul-
tiprotocol environment, this includes both (1) information that a protocol must maintain on a
per-session basis for addressing, internal buffer management, and protocol specific operations,
and (2) some mechanism for associating the state variables of a session to the global state of the
specific protocol the session is associated with, specifically, which operations or methods are to
be performed as part of the protocol processing. TKSession encapsulates this information be-
hind a uniform abstract interface that allows basic protocol operations (e.g., TKSession: :send,
TKSession: :recv, TKSession: :control) to be properly dispatched to the appropriate protocol
function. TKSession is implemented in two parts: (1) global variables and functions — respon-
sible for TKSession creation and management and demultiplexing incoming TKMessages to the
appropriate TKSession, and (2) instance variable and functions — responsible for performing
the protocol specific operations on incoming and outgoing TKMessages.

These three classes provide the foundation for the operation and composition of protocols using the
TKO Mechanism Class Library described below.

4.2 TKO Mechanism Class Library (TKO-MCL)

TKO-MCL is implemented as a C++ class library of reusable C++ protocol mechanisms. Each

TKO-MCL class is an implementation of a single protocol function (e.g., error detection, encryption,
transmission control), that encapsulates both the state and method needed to perform the desired
function. A TKO protocol is composed from multiple lightweight TKO-MCL objects, each of which
performs a different protocol function. The remainder of this section provides a description of TKO-
MCL and discusses several performance enhancements available to TKO-MCL protocol implementors.
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4.2.1 Mechanism Families

To efficiently support flexible configuration and adaptive reconfiguration, TKO-MCL is organized as a
C++ inheritance hierarchy. TKO-MCL takes advantage of C++ language mechanisms for (1) encapsu-
lation to bind operations and their associated context allowing object-oriented protocol composition,
(2) dynamic binding to allow protocol operations to be transparently and automatically selected at
run-time, and (3) inheritance which allows multiple protocol mechanisms to be implemented as spe-
cializations of a single mechanism. As shown in Figure 5, the TKO-MCL class hierarchy is partitioned
into multiple Mechanism Families, each of which provides one or more implementations of a given
protocol function (e.g., error reporting, encoding, stream synchronization). Each Mechanism Family
consists of two distinct types of classes, a single Abstract Base Class (ABC), that defines the interface
or signature for the protocol mechanism and optionally implements any shared or default behavior,
from which one or more Concrete Derived Classes (CDCs) are derived, each of which represents a
particular implementation of the abstract protocol function its family represents. Within a Mech-
anism Family, new mechanism implementations are usually implemented by deriving directly from
the Abstract Base Class, but can alternatively be derived indirectly via a Concrete Derived Class
when only a small amount of behavior in an existing implementation needs to be changed. Using
derivation or subclassing as an implementation technique offers the following advantages:

o Shared interfaces allow multiple implementations to be transparently “plugged in” to perform
a given protocol function. This interface consists of a collection of methods or C++ member
functions that provide consistent and controlled access to the services provided by a mechanism
implementation. The dynamic binding of virtual member functions in C++ ensures that the
appropriate code is executed based upon the class a particular implementation is an instance
of. A more detailed discussion of this appears in Section 4.2.2.

e Shared implementations allow a mechanism implementation to be expressed in terms of its
differences from its base class. Reusing existing implementations via specialization allows new
protocols to be implemented more rapidly and aids the task of protocol maintenance, as defects
that are repaired in a base class are automatically repaired in any derived classes.

As shown in Figure 5, TKO-MCL provides a standard set of Mechanism Families that correspond to
the basic mechanisms used in protocol processing (e.g., Connection Management, Remote Context
Management, Reliability Management, Stream Synchronization Management, Transmission Man-
agement). The Reliability Management Mechanism Family shown in Figure 5 is an example of a
Composite Component, which is described in Section 4.2.3. As described above, each family con-
tains a single Abstract Base Class that defines the basic interface to the mechanism, and multiple
Concrete Derived Classes, that represent specific policy decisions that are used to implement a given
mechanism.

4.2.2 Context Architecture

TKO provides an additional C++ class, TKContext, that links together a selection of various TKO-
MCL mechanism implementations to form a cohesive protocol. TKO utilizes one TKContext per
unidirectional data stream, combining multiple, possibly different, TKContexts to form a communi-
cation session. As shown in Figure 4, a single TKSession object is used to provide a rendezvous point
for managing the TKContexts associated with the multiple data streams attached to a session. Each
TKContext maintains a set of pointers to Abstract Base Classes, one for each TKO-MCL Mechanism
Family. Operational TKContexts are created by setting these pointers to instances the appropriate
Concrete Derived Classes.
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Figure 6: UNITES Architecture

4.2.3 Optimizations

As previously described, TKContexts maintain pointers to base classes and rely on language mech-
anisms to dynamically bind the appropriate executable code at run-time. Although studies have
shown that it is possible to efficiently implement operating systems and communication protocols
using these techniques [28, 29, 30], ADAPTIVE/TKO provides several optimizations that streamline
the creation and operation of commonly instantiated protocol configurations.

Composites Figure 5 shows that Reliabilty Management is implemented as a Composite Compo-
nent. Composites allow multiple related mechanism families to be bundled together into one larger
mechanism. Composites are useful for enforcing relationships between multiple sub-mechanisms (e.g.,
requiring go-back-N error recovery to use cumulative acknowledgments) while still allowing the sub-
mechanisms to be independently used elsewhere (e.g., using cumulative acknowledgment with sliding
window flow control). Composites also allow the larger mechanism they represent to be replaced in
one operation, which greatly reduces the complexity of run-time reconfiguration.

Preconfigured Contexts TKO allows entire TKContexts to be preconfigured for commonly used
protocol configurations. This entails implementing the class as a collection of actual instances of
the constituent mechanisms, instead of a collection of pointers to instances that must be created
separately and linked to the TKContext at run-time. This preconfiguration technique offers encreased
performance by (1) eliminating one to two levels of indirection due to the pointer dereference and
virtual function resolution and (2) by allowing instances of preconfigured contexts to be cached for
faster instantiation.

5 UNIform Transport and Evaluation Subsystem (UNITES)

One of the primary goals of the ADAPTIVE system is to provide a framework for controlled
protocol experimentation. ADAPTIVE provides an integrated experimentation environment by uti-
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lizing UNITES’ metric specification, collection, analysis and presentation facilities. Performance data
gathered by UNITES can be used to evaluate various protocol mechanisms and configurations with
respect to (1) the level of service provided to the application, (2) the utilization of the underlying
communication channel, and (3) the internal performance characteristics of a given set of protocol
mechanisms.

As shown in Figure 6, the UNITES Metric Repository stores the collected performance data
in a shared database to minimize the intrusion made by the metric collection process [31]. Users
may access this information via (1) UNITES-provided interactive graphic displays, (2) the UNITES
C++ run-time library, or (3) standard network management protocols such as SNMP or CMIP. This
metric data is available on either a systemwide, per-host, or per-connection basis. The performance
monitoring process can be initiated when application programs use the Transport Measurement
Component (TMC) parameter in the ADAPTIVE Communication Descriptor (ACD) to indicate the
metrics they are interested in monitoring. ADAPTIVE then selectively instruments the instantiated
TKO configurations and automatically collects the performance data during the operation of the
system.

Metric collection may also be specified independent of a communication session using either
a graphics-based or language-based interface to UNITES. Sjodin et al. [32] defines a specification
language that indicates what measurements to collect and what traffic to generate. UNITES provides
similar functionality with its UNITES Metric Specification Language (UMSL), but also provides a
graphical interface that allows complex metric collection configurations to be specified using common
user-interface elements (e.g., check boxes, edit text fields, buttons, menus). This interface can be used
to generate UMSL code for subsequent modification or to be used directly to configure a UNITES
metric collection configuration.

UNITES supports two primary classes of metrics, black bor and white boz. Black box metrics
require no knowledge of or interaction with the internal implementation of a protocol configuration.
Black box metrics include application-based and host system-based metrics (e.g., throughput, latency,
and jitter) and network based metrics (e.g., bit error rates, network utilization, and packet lengths).
White box metrics require internal instrumentation of a protocol configuration and may be collected
on a mechanism, mechanism family, connection, application, host system or system-wide basis. White
box metrics include retransmission count, buffer utilization, instruction length, and scheduling and
dispatching overhead. Both black box and white box metrics contribute to pinpointing performance
bottlenecks in protocol configurations.

6 Summary

ADAPTIVE provides an integrated framework for protocol composition, evaluation and experimen-
tation. It utilizes object-oriented design and implementation techniques to create an infrastructure
for protocol composition that allows both flexible configuration and adaptive reconfiguration of com-
munication protocols. The ADAPTIVE system integrates the hierarchical specification of application
requirements and protocol configurations with the monitoring and reporting of performance metrics
to create a transport system capable of adapting to network and application diversity and dynamism.

We are currently designing and implementing a prototype implementation written in C++ that
runs under System V STREAMS. We plan to use this prototype to experiment with different transport
system configurations that support multimedia applications (e.g., network voice and video) running
on several different networks (e.g., Ethernet, Tree Network [33], DQDB, and FDDI).
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